
DATA-DRIVEN APPROACHES TO MODEL PREDICTIVE CONTROL OF

NEURAL SYSTEMS

Christof Kane Fehrman

Charlottesville, Virginia

Bachelor of Science, Middle Tennessee State University, 2015

Master of Arts, Middle Tennessee State University, 2017

A Dissertation submitted to the Graduate Faculty

of the University of Virginia in Candidacy for the Degree of

Doctor of Philosophy

Department of Psychology

University of Virginia

May 2024

C. Daniel Meliza, Chair

Teague Henry

Cynthia Tong

Nicola Bezzo

ii

Copyright © 2024, Christof Kane Fehrman

iii

Data-Driven Approaches to Model Predictive Control of Neural
Systems

Christof Kane Fehrman

(ABSTRACT)

Achieving precise control of neural activity is a major focus of modern neuroscience.

This challenge persists due to the diverse nonlinearities in neuronal dynamics and

the largely unknown biophysical mechanisms governing large populations of neurons.

Increasing our ability to control these systems would be of enormous benefit, both

in terms of basic theory and clinical applications. Model Predictive Control (MPC)

is a powerful control technique that uses mathematical models of a system to find

optimal inputs to get a desired output. Using data-driven methods, models can be

empirically fit to neural activity for use in MPC. This allows for control of a neural

system even when there is very limited knowledge about the dynamics present. This

dissertation provides a framework for how these data-driven models can be fit and

utilized for MPC of neural systems without needing extensive a priori information.

iv

Dedication

To my ladies, Melissa and Marbles.

v

Acknowledgments

I want to acknowledge first and foremost the unwavering love and support from my

wife Melissa. Without her, I would be lost. I can’t wait to see what the future holds

for us (besides more cats). I would also like to thank my Mom and Dad, not only for

being great parents but for always encouraging a curiosity of the world. Thank you

both for the many wonderful days of finding snakes under rocks, and the nights spent

naming the constellations. I of course need acknowledge my advisor Dan Meliza. It

is an understatement to say that joining his lab was the most important and best

decision I made in graduate school. I can’t imagine being in any other lab. I will

never be able to thank him enough for his mentorship, encouragement, and humor.

Finally, I would like to thank Jacy and Milan for the countless days of ‘band’ practice

that turned into calculus lessons on a dirty white board. Simply put, they’re the best.

vi

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Control Theory in Neuroscience . 1

1.2 Model Predictive Control . 5

1.2.1 Data-Driven Approaches to Modeling 10

1.3 Aim of Dissertation . 11

2 MPC of a Single Conductance-Based Neuron Model 13

2.1 Connor-Stevens Model . 14

2.2 Data-Driven Forecasting of CS Model 15

2.2.1 Simulating Training Data . 18

2.2.2 Choosing RBFN Hyperparameters 18

2.2.3 Training RBFN . 19

2.2.4 Validating Forecasting Model 19

2.3 Model Predictive Control of CS Neuron 20

2.4 Results . 22

vii

2.4.1 Experiment I: Homogeneous System Control 22

2.4.2 Experiment II: Heterogeneous System Control 26

2.4.3 Experiment III: Spike-Train Control 26

2.5 Conclusions . 28

3 Controlling a Spiking Neural Network 34

3.1 Neural Manifolds . 35

3.2 Simulating an Extracellular Recording Experiment 37

3.2.1 Artificial Circuit . 39

3.3 Dimensionality Reduction of Stimuli and Neural States 44

3.3.1 Stimulus VAE . 47

3.3.2 Neural VAE . 48

3.4 Latent Dynamics Model . 51

3.5 Control Loop . 52

3.6 Experiment I: Latent Set-Point Control 53

3.7 Experiment II: Effects of Partial Observation on Control 57

3.8 Experiment III: Comparing Latent Reference Trajectories 61

3.9 Conclusions . 65

4 Conclusions and Future Directions 70

Bibliography 73

viii

Appendices 87

.1 Connor-Stevens Model Parameters 88

.2 Artificial Circuit Hyperparameters 88

.3 sVAE Hyperparameters . 89

.3.1 sVAE Layers . 89

.3.2 sVAE Training . 89

.4 nVAE Hyperparameters . 89

ix

List of Figures

1.1 Open- vs Closed-Loop Control . 4

1.2 Receding Horizon of MPC . 8

2.1 Connor-Stevens Model Behavior . 16

2.2 DDF Model Forecasts . 20

2.3 MPC via DDF Diagram . 23

2.4 Results of Homogeneous System Control 25

2.5 Results of Heterogeneous System Control 27

2.6 Results of Spike-Train Control . 29

3.1 Neural Manifolds . 38

3.2 Simulation of Extracellular Experiment 41

3.3 Variational Autoencoder Architecture 46

3.4 Dimensionality Reduction of MNIST Stimuli 48

3.5 Latent Embedding of Neural Activity 49

3.6 Forecasting Performance of Latent Dynamics Model 51

3.7 MPC Control Loop of Artificial Circuit 52

3.8 Control of Artificial Circuit in Latent Space 55

x

3.9 Control of Artificial Circuit in Measurement Space 56

3.10 Effects of Partial Observation in Measurement Space 58

3.11 MPC Performance Across Observation Percentage 60

3.12 Comparison Between Trajectories . 62

3.13 Latent States and Inputs Between Trajectories 64

3.14 Comparison of AC Spiking and Inputs Across Reference Trajectories . 66

xi

List of Tables

3.1 Results of Set-Point Control . 54

3.2 Normalized Mean Squared Error of Latent State Across Models . . . 59

3.3 Root Mean Square of Latent Inputs Across Models 61

3.4 Performance of Control Between Trajectories 65

1 AC Training Hyperparameters . 88

2 Convolutional VAE Layer Hyperparameters 89

3 sVAE Training Hyperparameters . 89

4 nVAE Training Hyperparameters . 89

1

Chapter 1

Introduction

1.1 Control Theory in Neuroscience

Precise control of neural systems is a major focus of modern neuroscience, both as a

means for experimental investigation of the brain and as a clinical method for treating

neurological disorders. In the most general sense, how can we make the system do

what we want it to do? The ‘neural system’ could be from a wide variety of structures

in the nervous system. For example, we may want to control the membrane voltage of

a single neuron so that it fires in accordance with a particular spike train. On a larger

scale, we may want to force a population of neurons to produce activity that elicits a

desired behavior from the organism as a whole. This level of control would allow us

to experimentally test the predictions of hypotheses in neural systems and potentially

restore normal function to a circuit that has gone into a pathological state.

If we take a dynamical systems approach to neuroscience, the field of control theory

gives us the vocabulary and tools needed to deal with these problems. In this view,

neural systems are modeled as a set of differential equations of the general form,

dx

dt
= f(x(t), u(t)) (1.1)

Many passages and figures in this dissertation are freely adapted from the preprint Fehrman and
C Daniel Meliza 2023. In particular, Chapter 2 contains much of the content found in this article.

2

where x(t) is the trajectory of system state and may be a scalar or vector-valued

function. At any given point in time, the state error is given by

e(t) = xref (t)− x(t) (1.2)

where xref (t) is the reference trajectory and is the desired behavior of the system.

The problem of control can now be formalized as finding some command signal u(t)

such that it will force the state of the system to follow the reference trajectory.

Broadly speaking, there are two strategies for finding the command input u(t): open-

and closed-loop control. In open-loop control, the command signal is chosen ahead

of time based on a general model of the system and then applied to an individual

instance (Figure 1.1 A). The outcome may provide additional information on how

to update the general model, but this occurs offline. In neurophysiology, examples

of open-loop control include current-clamp intracellular recording as well as most

optogenetics experiments, where a pulse of current or light is used as the command

signal to force a neuron to spike or prevent it from spiking (Emiliani et al. 2022). What

makes these open-loop is that the intensity and duration of the command signal is not

automatically adjusted if the stimulus fails to achieve the desired effect (Grosenick,

Marshel, and Deisseroth 2015). Although open-loop control has the advantages of

being fast and simple to implement, it is not robust to unknown disturbances or

errors in command signal calculation (Zaaimi et al. 2022). Because neurons in vivo

receive many spontaneously active excitatory and inhibitory inputs, there may be

significant trial-to-trial variability in the number of spikes evoked during application of

the command signal. More broadly, variability in the actual effects of a manipulation

reduces the power to make causal inferences in experimental settings.

3

In contrast, for closed-loop (or feedback) control, the command signal is dynamically

adjusted as a function of the difference between the actual (or estimated) state of

a specific system and the desired reference trajectory (Figure 1.1 B). This can be

expressed as

u(t) = g(e(t)) (1.3)

where the function g(.) acts as the controller for the system, turning state errors into

control inputs. A common (but limited) implementation of feedback control is with

a proportional controller,

u(t) = Ke(t) (1.4)

where K is a gain hyperparameter. This is the approach employed in voltage-clamp

experiments, where the difference between the actual and the desired membrane volt-

age (the state error) is scaled by a gain factor and used as the command signal of

electrical current injected into the neuron (Nowotny and Levi 2014). Closed-loop

controllers have the ability to adapt to unknown system disturbances and changes

in system dynamics even when tracking complicated reference trajectories (Stefani

2002). Because of this, considerable work has gone into incorporating feedback con-

trollers in other areas of neuroscience such as brain-machine interfaces (Shanechi,

Orsborn, Moorman, et al. 2017; Gilja et al. 2012; Willett et al. 2017; Zhang et al.

2021) and neuro-prosthetics (Shanechi, Orsborn, and Carmena 2016; Shanechi, Ors-

born, Moorman, et al. 2017; Cunningham et al. 2011; Wright et al. 2016; Pandarinath

and Bensmaia 2022; Pedrocchi et al. 2006). In particular, there have been recent ad-

vancements in using feedback controllers with optogenetic stimulation to give more

fine-tuned and reliable control of neural spiking at both the individual neuron (Bolus

et al. 2021) and population levels (Bergs et al. 2023; Newman et al. 2015).

4

System

Cell

Command
Signal

State
Trajectory

System

Controller

State
Trajectory

Reference
Trajectory

State
Error

Command
Signal

Injected
Current

Membrane
Voltage

Reference
Voltage

Current
Electrode

Voltage
ElectrodeCell

Recording
Electrode

Light
Stimulation

Open-Loop Closed-LoopA B

Figure 1.1: Open- vs Closed-Loop Control. A) (Above) Block diagram of open-
loop control. A command signal is applied to the system irrespective of the system
output. (Below) Diagram of typical optogenetic stimulation experiment. A light
source is applied to a cell expressing the appropriate light-sensitive opsin. For open-
loop stimulation, the intensity of the light is determined before recording and may or
may not cause the cell to fire. B) (Above) Block diagram of closed-loop control. A
command signal is calculated by the controller based on the state error - the difference
between the system state trajectory and reference trajectory. (Below) Diagram of a
voltage-clamp experiment. The cell is held at a specified voltage by injecting current
determined by an online comparison of the membrane voltage with the desired refer-
ence voltage.

5

Although a promising avenue of research, there are still many issues when using feed-

back controllers with complicated systems. Most implementations of feedback control

are purely reactive, where the command signal is a function of the present and/or

past state error terms. Reactive controllers are often sensitive to abrupt changes

in the reference trajectory and time delays in the system (Afram and Janabi-Sharifi

2014). Another issue with classical feedback control schemes is that the technique

is either rigorously justified only for linear systems or requires strong assumptions

about the structure of the nonlinearities of the system (Zhao and Guo 2022). These

challenges are particularly prominent in the control of neural systems, because the

desired behavior usually has abrupt changes in state (i.e., spikes) and the systems ex-

hibit strong and diverse nonlinear dynamics (Johnston and S. M.-s. Wu 1995; Bjoring

and C. Daniel Meliza 2019; Chen and C. Daniel Meliza 2018; Martinez et al. 2023).

Additionally, having only reactive controllers would be detrimental to problems of

preventing pathological neural activity. As a concrete example, this would mean we

could only try and stop an epileptic seizure after it begins instead of preventing it

from even occurring. In order to have greater control over complex neural systems,

more sophisticated feedback control schemes are needed.

1.2 Model Predictive Control

One promising method of feedback control to deal with these problems is model

predictive control (MPC), which is a type of optimal controller. It is optimal in the

sense that the control input u minimizes an objective function of the form

J(x0) =
T∑
i=0

ℓ(xi, ui), (1.5)

6

with constraints

xn+1 = f(xn, un)

xLB ≤ x ≤ xUB

uLB ≤ u ≤ uUB,

where ℓ(xi, ui) is the loss associated with ith time step, which is a function of the state

variable(s) x and input(s) u. Many types of loss functions are possible, but typically

involve the state error and energy cost of the command signal. The constraints allow

one to specify the dynamics of the system and to give lower and upper bounds for the

state variables and inputs. More sophisticated versions of MPC allow for additional

constraints where knowledge of any measurement or process noise can be incorporated

(Hewing et al. 2020).

The controller uses a discrete-time model of the system f(xn, un) to predict what

command inputs would best force the system to follow the reference trajectory over

some time horizon T (Figure 1.2). At each time step, the controller finds an optimal

sequence of command signals by minimizing the total loss given the constraints. The

total loss is calculated by summing the actual and predicted losses across the time

horizon. However, only the first time step in the optimized sequence is applied to the

system, and the optimization is performed again in the next time step. This process

repeats at each discrete time step, which leads some to refer to MPC as receding

horizon control (Holkar and Waghmare 2010). By finding an optimal input based

on predictions of how the system will behave in the future, MPC is an anticipatory

controller (Lin et al. 2023). Although the command signal is only guaranteed to be

7

globally optimal for linear systems with convex loss functions, MPC has been widely

used in nonlinear system control (Raković and Levine 2019; Steven L. Brunton and

Jose Nathan Kutz 2019).

A commonly used analogy to describe MPC is the game of chess (Raković and Levine

2019), where the player (the controller) wants to find a set of moves (the command

signal) to win the game (the objective function). When selecting a move, the player

must use a model of their opponent to anticipate how that opponent will respond

to their moves. Although the player may have mapped out their moves for the next

T turns (the time horizon), the player can only implement the first of these moves

during their turn. The player may update their planned moves based on a variety

of factors. Their opponent may have selected a different move than predicted, or

after completing their turn the player is able to think one more move ahead (the

receding horizon) and finds a new optimal set of moves. Intuitively, being able to

think more moves ahead (extending the length of the time horizon) should produce

a more optimal set of moves to win the game. However, this comes at the cost of

increased computational complexity for the player, and errors in modeling how the

opponent will respond can accumulate when incorporating these errors across the

extended time horizon. This leads to a balancing act in MPC where not having a

large enough time horizon may result in suboptimal moves in the long run, whereas

too long of a time horizon is expensive and sensitive to modeling errors.

One of the primary considerations in implementing MPC is choosing a good model of

the system one wants to control (Schwenzer et al. 2021). At first glance, this might

not seem to be a problem for applications in neuroscience since constructing math-

ematical models of neural systems is one of the main research areas. For example,

models based on voltage-dependent ionic conductances using the Hodgkin-Huxley

8

142 143 144 145 142 143 144 145
Time (ms)Time (ms)

-80

-40

0

40

Vo
lta

ge
 (m

V
)

-80

-40

0

40

Vo
lta

ge
 (m

V
)

-80

-40

0

40

Vo
lta

ge
 (m

V
)

-80

-40

0

40
Vo

lta
ge

 (m
V

)

-40

0
20
40

I in
j (
μA

)

-20

60
80

100

-40

0
20
40

I in
j (
μA

)
-20

60
80

100

-40

0
20
40

I in
j (
μA

)

-20

60
80

100

-40

0
20
40

I in
j (
μA

)

-20

60
80

100

Figure 1.2: Receding Horizon of MPC. Starting at the top row, (left) the system
state trajectory (red) is being controlled to follow the reference trajectory (black).
At the current time step (vertical dotted line) the controller finds the optimal set
of inputs that minimize the loss function for a specified time horizon. In this case,
the controller looks ahead 5 time steps (black dashed curve). Given the state at the
current time, the controller uses a model to predict where the system will be across
the future time horizon (red dashed curve). The inputs into the system (right) are
optimized in discrete-time, and the input into the system is held constant between
model time steps (solid blue curve). The predicted optimal future inputs (dashed
blue curve) are calculated across the future time horizon. However, only the first
of these values (circled in black) is used as input in the next time step before the
optimization procedure begins again. From the top to bottom rows, we see how the
controller may pick new optimal inputs given updates in the model predictions and
by having access to new reference trajectory values (black dotted curve).

9

(HH) framework can accurately predict how the membrane voltage of a neuron with

a given morphology and complement of currents will respond to an arbitrary input.

However, building a conductance model of a specific neuron is far from trivial (Ra-

binovich et al. 2006). The types of currents must be chosen along with dozens to

hundreds of free parameters that govern the maximal conductances of the intrinsic

currents and their voltage-dependent kinetics, and there are many state variables of

which only the membrane voltage is typically observable (Toth et al. 2011). MPC has

been successfully applied to conductance models in previous work (Fröhlich and Jez-

ernik 2005; Yue, Tomastik, and Dutta 2022; Senthilvelmurugan and Subbian 2023),

but always with the assumption that the number, type, and/or functional forms of

all the intrinsic currents are known a priori. Under this assumption, there are many

data assimilation methods that can be used to estimate the unknown parameters and

hidden states of the model (Toth et al. 2011; Kostuk et al. 2012; Ullah and Schiff

2009). However, in most biological preparations, this is an unrealistic assumption,

because neurons express a large, diverse complement of voltage-gated channels whose

physiological properties can depend on variations in isoform composition, modulatory

subunits, phosphorylation state, and subcellular localization. Choosing even a general

form of a model to be used with a specific type of cell requires significant hand-tuning

(C Daniel Meliza et al. 2014) that would not be feasible if the goal is to control a

specific neuron or network in a live experiment. This issue is only compounded when

trying to model larger neural systems where precise control over population dynam-

ics is desired. Relatively fewer biophysically detailed models exist for neural circuits

compared to individual neurons and those that do would have even more parameters

to estimate than their HH counterparts.

10

1.2.1 Data-Driven Approaches to Modeling

An alternative to constructing a detailed biophysical model is to use a data-driven

approach where the dynamics of the system are modeled based on empirical data

with minimal reference to the underlying biology of the neuron. Using standard

machine-learning approaches, unknown parts of the system can be modeled via func-

tion approximation and used to predict the time-evolution of the system in response

to various inputs.

Fitting these models is achieved by observing a temporal sequence of the state and

input variables with some sampling period ∆t,

X = [x0, x1, ..., xN],U = [u0, u1, ..., uN] (1.6)

where xn = x(n∆t). A discrete-time model can be parameterized such that,

x̂n+1 = fθ(xn, un) (1.7)

These types models are often referred to as forecasting models since the model predicts

how the system will change across time. The goal is to find a set of parameters θ

such that given some initial state value x0,

[x0, x̂1, ..., x̂N] ≈ [x0, x1, ..., xN] (1.8)

for any general temporal data sequence produced from the true dynamical system.

Data-driven approaches have been successfully applied to MPC problems in diverse

fields (Bieker et al. 2019; Kaiser, J. N. Kutz, and S. L. Brunton 2018; Hewing et al.

11

2020; Salzmann et al. 2023; Zheng and Z. Wu 2023) and the field is rapidly growing.

In order for data-driven models to be useful for MPC applications in neuroscience,

these models must be able to accurately predict the states to be controlled based only

on observable state measurements, be agnostic to the number of hidden states, and

generalize to a control scheme where command signals may be outside the training set.

These challenges are not unique to neuroscience, but are still important to consider

when selecting a data-driven approach to model the system dynamics. However,

there are several unresolved issues that have prevented the widespread adoption of

MPC for neural systems control. Neural activity often occurs at very fast time scales

(∼ milliseconds) which creates a computational issues since the optimization step of

MPC must be completed at every discrete time point. While a rigorous treatment

of hardware and software improvements for increased controller speed is beyond the

scope of this dissertation, there will be an emphasis on data-driven model simplicity

to reduce the number of calculations needed at every time step of the optimizer.

Another challenge is the high dimensionality of states in neural populations and of

naturalistic stimuli which may be used as the source of a command signal. This is not

only an issue in terms of computational complexity for optimization problem but also

increases the difficultly of preventing overfitting in the data-driven dynamics model.

1.3 Aim of Dissertation

In this dissertation, I demonstrate that MPC of complex neural systems is possible

using data-driven dynamics models derived from observationally limited sources of

neuronal measurement. I first show that MPC can be applied to control the voltage

of a biophysical conductance-based neuron model. This will provide the fundamental

12

framework for how data-driven dynamics models can be constructed using only ob-

servations that would be realistically obtainable in an in vivo or in vitro experiment.

I then extend these results to control of a spiking neural network which simulates the

activity of a large circuit of neurons that are driven by exogenous naturalistic images.

Population level control of the network is a achieved by controlling the latent dynam-

ics of the network rather than the activity in the original measurement space. I show

that this not only has beneficial practical results (i.e. reduced model complexity)

but also allows for future experiments interrogating the nature and function of neural

manifolds. In all simulations, there is an emphasis on how MPC can be achieved

using experimental designs that are currently feasible in terms of both measurement

and system perturbation.

13

Chapter 2

MPC of a Single

Conductance-Based Neuron Model

As a proof of principle, I conducted a simulation study to control the membrane

voltage of an HH-type neuron through current injection when the parameters of the

model were unknown, and only the membrane voltage was observable. These observa-

tions were used to construct a nonlinear data-driven dynamics model for MPC that

accurately predicted the response of the system to command signal inputs. While

there has been previous work using these approaches to model HH-type neurons, the

models were either used solely for prediction instead of control (Plaster and Kumar

2019), or made unrealistic assumptions about which state variables were available in

the training data and the extent to which the complement and functional forms of

the intrinsic currents could be known (Yue, Tomastik, and Dutta 2022; Senthilvel-

murugan and Subbian 2023). The model made no assumptions about the nature of

the intrinsic currents and still allowed the controller to force the membrane voltage

to follow a reference trajectory. Although control of single unit voltage activity is

achievable with proportional feedback control both in vivo and in vitro (Sherman-

Gold 2012), the goal was to demonstrate how data-driven modeling can be applied

to nonlinear MPC of neural systems.

14

2.1 Connor-Stevens Model

As a model of single-unit responses to an injected current, the HH-type Connor-

Stevens (CS) model was used for all simulations (Sterratt 2011). The CS model

includes four intrinsic currents and an extrinsic injected current. A noise current was

also included that modeled the unknown, variable synaptic inputs that contribute to

the trial-to-trial variability neurons tend to exhibit in vivo. The model is given by

the equations

C
dV

dt
= INa + IK + IA + Il + Inoise + Iinj , (2.1)

where

INa = gNam
3h(ENa − V)

IK = gKn
4(EK − V)

IA = gAa
3b(EA − V)

Il = gl(El − V),

where INa, IK , and IA are the voltage-dependent sodium, potassium, and A-type in-

trinsic ionic currents, and Il is the intrinsic leak current. For the noise current Inoise,

pink noise was used since it has been shown to model neuron response stochasticity

(Destexhe et al. 2001). The activity of the neuron can be externally modulated by

varying the injected current Iinj. Note that all currents are functions of time but I

omit making this explicit in the equations for simplicity. Each of the three voltage-

gated currents depend on one or more unobservable state variables that model the

activation state (m,n, a) and inactivation state (h, b) of the channels. Each of these

state variables is governed by a first-order differential equation with unique parame-

15

ters that determine its kinetics. While in principle one could estimate the values of

the state variables and model parameters using data assimilation techniques (Toth et

al. 2011; Kostuk et al. 2012; Knowlton et al. 2014), in an actual biological preparation

one would be unlikely to know all of the channels a specific neuron expresses.

The CS model is able to produce distinct firing dynamics by changing the parameter

El and gA parameter values. With gA = 47.7 mS and El = −22 mV, the model

exhibits Type-I excitability, which is characterized by a smooth increase in firing rate

when the input currents exceed the firing threshold. When gA = 0 mS (eliminating

the A-type current) and El = −72.8 mV, the model instead exhibits Type-II excitabil-

ity, which is characterized by a discontinuous jump in firing rate for input currents

that exceed the firing threshold. This difference in spiking behavior reflects two dis-

tinct dynamical topologies that undergo qualitatively different kinds of bifurcations:

Type-I spiking is indicative of a saddle-node bifurcation, whereas Type-II spiking is

caused by an Andronov-Hopf bifurcation. To show that data-driven approaches to

MPC can extend to various types of neural dynamics and number of intrinsic currents,

both the Type-I and Type-II CS models were used in all simulated experiments.

2.2 Data-Driven Forecasting of CS Model

The HH model and its variants are conductance-based models where the cell mem-

brane is modeled as a capacitor (Skinner 2006). Thus, the relationship between the

membrane voltage and cellular currents can be expressed using the current conserva-

tion equation

C
dV

dt
=

∑
i

Ii(t),

16

0 100 200 300 400 500

-50

50

0

-50

50

0

6 7 8 9 10
0

50

100

0

10

20

0 100 200 300 400 500

Tr
ia

l

FR
 (H

z)

Vo
lta

ge
 (m

V)

Time (ms) Time (ms)Iinj (μA)

Type-I
Type-II

A B C

Figure 2.1: CS Model Behavior. A) The spiking pattern of a Type-I (above) and
Type-II (below) CS model in response to a 300 ms 8.5 µA step current. B) The firing
rate of the CS model as a function of step current amplitude. Notice that the Type-I
model’s firing rate increases approximately linearly after the input passes the firing
threshold while the Type-II model abruptly jumps in firing rate. C) The effect of
the noise current on the CS models when stimulated with the same step current from
panel A.

where the time derivative of the membrane voltage V is proportional to the sum of

all currents through the membrane. These currents may be externally applied (e.g.

electrode injected currents) or intrinsic to the neural dynamics themselves (e.g. arising

from voltage- and ligand-gated ion channels). To construct a forecasting model, we

only assumed the dynamics of the membrane voltage were given by

C
dV

dt
= F (V,X,Θ, t) + Iinj , (2.2)

where C is the membrane capacitance and F (.) is an unknown time-varying function

of membrane voltage, with unknown states X and unknown parameters Θ. This

assumption would hold not only for the CS model, but any conductance-based model

because of the additivity of the currents. For the CS model, this F (.) would be

the intrinsic currents, X would be the intrinsic state variables, and Θ would be the

model parameters. The goal in data-driven forecasting (DDF) is not to estimate these

17

unknowns but to approximate F such that one can accurately predict how the neuron

will respond to an arbitrary input current Iinj by integrating Equation (2.2).

Let V = [V0, V1, ..., VN] denote a set of discretely sampled membrane voltages where

Vn = V (n∆t) and ∆t is the sampling period. Similarly, let I = [I0, I1, ..., IN] be the

set of discretely sampled injected currents. Given only V and I, the goal is to find

a DDF model of the form Vn+1 = FDDF (V, I) that can accurately map Vn to Vn+1.

There are many possible models FDDF (.) to choose from and as a general rule demand

larger amounts of training data as the DDF model gets more complex (Bourdeau et

al. 2019). Additionally, if one used both the membrane voltage and injected currents

as input into black-box function approximator, it would be difficult to separate the

effects of the intrinsic dynamics of the system (membrane voltage) from the effects of

the external force (injected current). An approach taken by (Clark, Fuller, et al. 2022)

when modeling the dynamics of HH-type neurons was to exploit the fact that the Iinj

term is additive and remove that from the function approximation step. In (Clark,

Fuller, et al. 2022), they were able to achieve a good forecasting model by using

time-embeddings of V in conjunction with a radial basis function network (RBFN).

Although this is a classical approach largely superseded by more modern forecasting

models such as LSTMs and Transformers, their DDF model generalized to in vitro

recordings across many different neuron types. In contrast to more complex models,

RBFNs are easier to train while still being universal function approximators (Park

and Sandberg 1991). The general form of this DDF model is given by the equation

Vn+1 = Vn + FRBF (Sn) + α(In+1 + In), (2.3)

where Vn is the membrane voltage at the nth time sample, Sn is a time-embedding of

Vn, FRBF (.) is a RBFN with learned parameters, In is the injected current at the nth

18

time sample, and α is a learned scaling parameter. See (Clark, Fuller, et al. 2022;

Clark, Fairbanks, et al. 2022) for a more detailed treatment.

2.2.1 Simulating Training Data

Separate DDF models were trained on data from the Type-I and Type-II CS neuron

models. The injected currents used to stimulate the CS neurons were obtained from

the Lorenz63 system (Lorenz 1963). This chaotic current has been shown to cover

a large frequency spectrum and has been used to drive in vitro neurons across a

sufficient extent of their state space to support accurate data assimilation (Toth et

al. 2011). All simulations were performed using scipy.integrate.odeint with a

time window h = 0.02 ms. Five seconds of simulated data were used as training data

for each of the DDF models. Because MPC is computationally expensive, we would

not expect to be able to run the optimization process (Figure 2.3, blue loop) at the

sampling rate of the recording, and so we down-sampled the membrane voltage and

injected currents to 10 kHz, which corresponds to a sampling period of ∆t = 0.1 ms.

This is a relatively low sampling rate for voltage-clamp experiments and demonstrates

we are still able to control these systems with less data than typically used to build

biophysical conductance-based models.

2.2.2 Choosing RBFN Hyperparameters

A Gaussian was used as the radial basis function in the RBFNs, which is of the form

ψc(Sn) = exp{−R||Sn − µc||2}. (2.4)

19

The time-embedding was chosen to have an embedding dimension De of 3 and time

delay τ of 1 for both DDF models (i.e., Sn = [Vn, Vn−1, Vn−2]). The center vectors

µc (N = 500) were obtained by performing k-means clustering in the time-embedded

space of the training data. For all RBFs, a scaling parameter R = 0.1 was used.

2.2.3 Training RBFN

The RBFNs were trained via Ridge regression (also known as Tikhonov regulariza-

tion) with the solution given by

W = (XTX + λI)−1XTY, (2.5)

where

Y =

V1 − V0

V2 − V1
...

VN − VN−1

, X =

ψ1(S0) ψ2(S0) . . . ψN(S0) I1 + I0

ψ1(S1) ψ2(S1) . . . ψN(S1) I2 + I1
...

ψ1(SN−1) ψ2(SN−1) . . . ψN(SN−1) IN + IN−1

,W =

w1

w2

...

α

.

(2.6)

Model training was performed using the sklearn python package (Pedregosa et al.

2011) with 10-fold cross-validation to obtain an optimal λ regularization parameter.

2.2.4 Validating Forecasting Model

Although previous work has shown that the DDF model has high accuracy for in

silico and in vitro neurons (Clark, Fuller, et al. 2022), the sampling rate was much

higher than data used here (≥ 50 kHz). To assess whether DDF would work on

20

Time (ms)
0 200 400 600 800 1000

Vo
lta

ge
 (m

V)

-75

-25
-50

25
50

-100

0

-50

50

0

Figure 2.2: DDF Model Forecasts. Each of the DDF models were fit with five
seconds of training data and evaluated based on their ability to accurately predict the
voltage and spiking behavior of the corresponding CS model to testing input current.
The forecasts are completely open-loop, where the DDF model does not get corrected
based on errors in predictions. The spike trains of the CS model (colored rasters)
and DDF model (black rasters) are shown above the voltage predictions. (Above)
Predicted membrane voltage and rasters of the Type-I DDF model in response to
one second of testing data. (Below) Predicted membrane voltage and rasters of the
Type-II DDF model in response to one second of testing data.

the CS model using data with a lower sampling rate more in line with the control

loop speed we might expect to achieve in a live, biological preparation, open-loop

forecasting was performed on novel injected currents. Because the DDF models had

a time-embedding parameters De = 3 and τ = 1, the first three ∆t time samples were

used to seed the model.

2.3 Model Predictive Control of CS Neuron

Controlling the membrane voltage of a CS neuron via MPC was performed by finding

an optimal set of injected current inputs that minimized the cost function

J(V0) = se2T +
T−1∑
n=0

qe2n + r∆I2n+1, (2.7)

21

subject to the constraints

Vn+1 = Vn + FRBF (Sn) + α(In+1 + In)

|In| ≤ 100 µA, (2.8)

where V0 is the membrane voltage at the current time step, en is the error between the

membrane voltage Vn and the reference trajectory V ref
n at the nth time step relative

to V0, and ∆In+1 = In+1−In (also relative to V0). Note that solving this optimization

problem corresponds to controlling the In+1 term in the DDF model. For the very

first optimization loop, I0 was set to 0 µA. The controller hyperparameters s,q and

r allow one to differentially weight errors in control and errors in input fluctuations.

Setting r = 0 can result in rapid input fluctuations which may make the controller

perform poorly (Qin and Badgwell 2003).

At the beginning of the control loop, the controller uses a model of the system to

simulate T time steps into the future in order to find the optimal set of inputs to

minimize the cost function. Recall that the DDF model is working in 0.1 ms time

steps resulting in the control input Iinj applied to the CS neurons being kept constant

for that time window. Reducing the width of this window would enable one to control

systems at faster time scales but at the cost of increased computational load.

All MPC optimizations and implementations were performed using the do-mpc python

package (Fiedler et al. 2023). This package utilizes CasADi (Andersson et al. 2019)

and IPOPT (Wächter and Biegler 2006) for interior-point optimization and automatic

differentiation methods. All controllers used the following controller hyperparameters:

T = 5, s = 5,q = 1, r = 0.5.

22

Note that the range in which the control input operates is higher than is typical

of patch-clamp experiments (Sherman-Gold 2012). The CS model has parameters

that are normalized by soma surface area which result in different conductance and

capacitance values when modeling cells of different sizes. For simplicity all CS models

corresponded to a neuron with a soma surface area of 1cm2. In practice, the size of the

neuron would have a significant impact on the magnitudes of the input currents used.

Larger cells will require larger values of input current to produce meaningful changes

in the membrane voltage compared to smaller cells (Sterratt 2011) and smaller cells

would not survive larger injected currents. However, in a real patch clamp scenario the

researcher would know a reasonable range of voltages that would produce neural firing.

Given enough data, the DDF model would be able to learn the relationship between

the magnitude of input needed to drive the neuron without needing an estimate of

the soma size.

2.4 Results

2.4.1 Experiment I: Homogeneous System Control

The first test of MPC for neural control was to force a CS neuron to reproduce a pre-

viously recorded voltage trajectory (the reference trajectory V ref). This is referred to

as homogeneous system control because each CS model was forced to track a refer-

ence trajectory it previously produced. For each CS model, 50 trials were simulated

of 1-second responses to a chaotic current similar to the one used in the training

data. MPC was then performed with the corresponding DDF model to find Iinj such

that the errors in state tracking were minimized, thereby forcing the CS model to

23

Membrane
Voltage

Noise
Current

CS Neuron DDF Model

First Optimized
Injected Current

Model Membrane
Voltage

Cost
Function

Constraints

Controller

Reference
Trajectory

State
Errors

Optimized
Injected Currents [In+1,In+2,...,IT]

[en,en+1,...,eT]
Optimizer

V(nΔt)Inoise(t)

In+1

˄

˄ ˄ ˄

[Vn-2,Vn-1,Vn,Vn+1,...,VT]
˄ ˄

Sn+1

Sn

˄

Figure 2.3: MPC via DDF Diagram. (Red) The CS neuron receives an input
Iinj(t) from the controller at time step n which is held constant across a time interval
of ∆t seconds. (Blue) The DDF model gets an update of the CS model membrane
voltage every ∆t seconds. Given the membrane voltage Vn, time-embedded state
history Sn, and discrete-time input In, the controller finds an optimal input for the
next time step In+1. Given this optimized input, the DDF model makes a prediction
of the CS model membrane voltage at the next ∆t time step, Vn+1. The controller
uses the DDF model to simulate 5 ∆t time steps into the future (the time horizon)
to find a sequence of optimized inputs by minimizing the loss function. (Purple) The
first of these optimized inputs In+1 is used as the next injected current into the CS
neuron.

24

reproduce each of these 50 trials.

As a control, each trial was performed in an open-loop condition; that is, by injecting

the same input current that produced the reference trajectory. If the neuron were

deterministic, then the voltage trace would perfectly match the reference. However,

because Inoise varies in each trial, the same injected current will not produce the same

voltage trace or pattern of spiking. Thus, the open-loop condition gives a reference

for the amount of variability we would expect to see without feedback control.

In order to quantify how well the MPC and open-loop control performed, three mea-

sures of fit were used: MSE, ISI-distance, and spike-distance. The MSE was calcu-

lated by comparing the reference trajectory V ref with the voltage trajectory V the

controlled CS model produced. The ISI- and spike-distances are measures of spike

train similarity (Mulansky and Kreuz 2016). Rather than directly comparing the

trajectories, these measures use the times that the CS model spiked and compare

them to corresponding spikes in V ref . Spike times were obtained by recording when

the voltage exceeded a threshold (30 mV). The ISI-distance measures the similar-

ity between the inter-spike intervals (ISI) of two spike trains, and the spike-distance

measures the similarity of the spike timing between the two spike trains.

As seen in Figure 2.4, MPC performed much better than open-loop control for both

CS model types. This is clear from visual inspection of the membrane voltages and

from the quantitative measures of performance. This result is remarkable because

the underlying DDF model in the controller does not have any knowledge of the

biophysical details of the system it is controlling.

25

MPC

Open-Loop

Input

M
SE

IS
I-D

is
ta

nc
e

Sp
ik

e-
D

is
ta

nc
e

Type-I Type-II
MPC Open MPC Open

Type-I Type-II
MPC Open MPC Open

Type-I Type-II
MPC Open MPC Open

Time (ms)

100

0

200

300

400

0

0.5

0.4

0.3

0.2

0.1

0

0.25

0.20

0.15

0.10

0.05

100 500

Vo
lta

ge
 (m

V)
Vo

lta
ge

 (m
V)

C
ur

re
nt

 (μ
A)

0

100

-100

MPC

Input

Time (ms)
100 500

Open-Loop

0

100

-100

0

100

-100

A B

C

Figure 2.4: Results of Homogeneous System Control. A) (Top) Example of
a membrane voltage trajectory (red) for a Type-I CS model with open-loop control.
Rasters above indicate spike times. The same Iinj(t) used to generate the reference
trajectory was used as the input for the open-loop control. However, the unknown
noise current Inoise(t) into the CS model resulted in the controlled membrane voltage
deviating from the reference trajectory (black). (Middle) Example of a membrane
voltage trajectory for a Type-I CS model controlled via MPC. The controlled mem-
brane voltage tracks the reference trajectory extremely well compared to the open-
loop controller. (Bottom) The unknown noise current (pink) into the CS model, the
Iinj(t) used to generate the reference trajectory and as the open-loop input (black),
and MPC optimized input used to control the CS model (blue). B) The same di-
agrams as in A, but for a Type-II CS model. C) Performance metrics comparing
the open-loop and MPC methods of control. The MSE was calculated for each ref-
erence/control trajectory pair. For both types of CS models, MPC achieved much
better performance than the open-loop controller. ISI-distance and spike-distance
are both on the interval [0,1] where 0 indicates identical spike trains. Once again,
MPC outperformed the open-loop controller. Notice that for all three metrics, the
variances are also much lower for MPC compared to open-loop control, showing that
MPC is not only better on average but is also a consistent controller.

26

2.4.2 Experiment II: Heterogeneous System Control

As a more difficult test of the MPC controller, the CS neuron of one type was forced

to follow the activity of the other type. In other words, could a Type-I neuron be

made to spike like a Type-II neuron? I refer to this as heterogeneous system control

because one dynamical system is being forced to behave as a different dynamical

system. The same MSE and spike train similarity metrics from Experiment I were

used to compare MPC performance with open-loop control. In this case, open-loop

control was performed by taking the Iinj that produced the V ref in a particular CS

model type and using that as the command signal into the other CS model.

Unsurprisingly, open-loop control performed poorly for this task, because each CS

model was a distinct dynamical system and thus responded differently to the same

command signal. Type-I neurons often failed to fire at all when driven by injected

currents used to stimulate Type-II neurons, presumably because the A-type current

in the Type-I model counteracted the depolarizing injected current. Conversely, the

Type-II neurons had a tendency to produce too many spikes when injected with

currents used to stimulate Type-I neurons. Despite the dissimilar intrinsic currents

and dynamical topologies of the two CS models, MPC was able to force each CS

model to follow the trajectory of the other model as seen in Figure 2.5, with almost

the same level of performance seen in the homogeneous system control task.

2.4.3 Experiment III: Spike-Train Control

In many neuroscience studies, the experimenter wants to make a neuron spike at

specific times without caring too much about the subthreshold activity. To see if

MPC could be used in such experiments, I tested whether MPC could force the CS

27

MPC

Open-Loop

Input

Time (ms)
100 500

Vo
lta

ge
 (m

V)
Vo

lta
ge

 (m
V)

C
ur

re
nt

 (μ
A)

MPC

Input

Time (ms)
100 500

Open-Loop

M
SE

Type-I Type-II
MPC Open MPC Open

Type-I Type-II
MPC Open MPC Open

Type-I Type-II
MPC Open MPC Open

500

0

1000

1500

2000

0

0.8

0.6

0.4

0.2

0

0.4

0.3

0.2

0.1

Time (ms)
100 500

Sp
ik

e-
D

is
ta

nc
e

IS
I-D

is
ta

nc
e

0
100

-150

0
100

-150

0

100

-150

Time (ms)
100 500

A B

C

Figure 2.5: Results of Heterogeneous System Control. A) (Top) Example
of a membrane voltage trajectory for a Type-I CS model with open-loop control.
The reference trajectory (black) was obtained from a Type-II CS model. In this
example, the controlled trajectory (red) exhibited no spiking and did not closely
follow the reference trajectory. (Middle) Example of a membrane voltage trajectory
for a Type-I CS model controlled via MPC. Notice that MPC is able to force the Type-
I model to follow a Type-II model reference trajectory. (Bottom) The unknown noise
current (pink) into the CS model, the Iinj(t) used to generate the reference trajectory
and as the open-loop input (black), and MPC optimized input used to control the
CS model (blue). The MPC input drastically deviates from the open-loop control
input in order to make the Type-I model follow the Type-II reference trajectory. B)
The same diagrams as in A, but now a Type-II CS model is controlled to follow
a reference trajectory taken from a Type-I model. In open-loop control (Top), the
Type-II model fires noticeably more than the reference trajectory. However, MPC
is able to control the Type-II neuron into following the Type-I reference trajectory.
C) Performance metrics comparing the open-loop and MPC methods of control. In
all cases, MPC achieved much better control than the open-loop controller. Notice
the change in metric ranges compared to the homogeneous system control condition.
Heterogeneous open-loop control did much worse than the homogeneous condition
for all three metrics, while MPC remained at similar levels and had extremely small
variances across trials compared to open-loop control.

28

models to produce arbitrary spike trains. Spike trains are a point process, whereas

the DDF models forecast a continuous variable. To overcome this mismatch in data

structure, the mean spike waveform from the training data of each CS model was

extracted and embedded it into a time series of constant value chosen to be below the

threshold. The peaks of these embedded waveforms matched the spike times of the

reference spike train. By doing so, any spike train could be converted into a reference

trajectory with units of mV.

Because precise control of the subthreshold activity was not the objective, the per-

formance in this task was quantified using spike jitter instead of MSE. Jitter was

calculated by subtracting the reference trajectory spike times from the controlled

spike times; thus positive values indicate the controlled spikes fired late, and negative

values indicate the spiking was too early. As shown in Figure 2.6, MPC achieved

precise control of spike timing for both CS models. Interestingly, the Type-I model

never fired early while the Type-II model fired both early and late. However, both

models had similar values of jitter, and the absolute maximum value was around 0.2

ms. These results demonstrate how MPC can be used to control a neuron to fire in

accordance with an arbitrary spike train.

2.5 Conclusions

Neural systems can be difficult to control because of their nonlinear dynamics and

many hidden states (Rabinovich et al. 2006). Here I demonstrated that nonlinear

MPC can control the well-characterized Connor-Stevens neuron model via an injected

current using only measurements of the membrane voltage. The controller was able to

force the model to reproduce a previously observed voltage trajectory in the presence

29

Vo
lta

ge
 (m

V)
C

ur
re

nt
 (μ

A)
-50

50

0

0

100

50

Time (ms)
200 300 400

Type-I Type-II

Type-I Type-II Type-I Type-II Type-I Type-II

-0.2

-0.1

0.1

0.2

0

Ji
tte

r (
m

s)

Sp
ik

e-
D

is
ta

nc
e

x
10

-3

2.0

2.5

3.0

3.5

4.0

IS
I-D

is
ta

nc
e

x
10

-3

2.0

2.5

3.0

3.5

1.5

100

-100

-50

50

0

100

-100

Time (ms)
200 300 400

-50

50

0

100

-100

A

B

Figure 2.6: Results of Spike-Train Control. A) Example of membrane voltage
trajectory controlled via MPC for a Type-I (top left) and Type-II model (top right).
The reference trajectory (black) was obtained by taking the average spiking waveform
for the corresponding CS model type and embedding it into a constant valued time
series (-72 mV) at time points where a spike is desired. MPC was able to control CS
models with their resulting membrane voltages (red) closely following the reference
trajectories. B) MPC performance metrics. Since capturing the spike timing was
the goal rather than a strict following of the reference trajectory and subthreshold
voltages, we used spike jitter instead of MSE. Jitter was calculated by subtracting
the spike times of reference trajectory from the controlled trajectory where positive
values indicate the model fired late and negative values indicate the model fired early.
The Type-I model had strictly positive values across all trials, however the maximum
value of jitter was approximately 0.2 ms which is an extremely small time difference in
terms of spike train dissimilarity. The Type-II model had both positive and negative
values of jitter, but with a negative average indicating that MPC produced spikes
earlier on average than desired. The ISI- and spike-distances were similar to the
values of the homogeneous and heterogeneous control conditions and had extremely
small variances. Notice the difference in scale compared to the previous conditions.

30

of unknown intrinsic noise, follow a reference trajectory produced by a model with a

different dynamical topology, and produce an arbitrary spike train with high temporal

precision. Importantly, this was achieved without any knowledge of the biophysical

details of the Connor-Stevens model by using a data-driven forecasting model fit to

a few seconds of noisy current-clamp data.

This study represents one step toward the ultimate goal of controlling biological

networks of neurons in vivo to experimentally probe the mechanisms of neural com-

putations and ameliorate pathological circuit states like epilepsy. The system tested

here involves only a single neuron in the equivalent of a whole-cell patch recording,

which enables an experimenter to make low-noise, high-bandwidth measurements of

membrane potential while injecting current through an access resistance much smaller

than the resting (input) resistance of the cell membrane. This preparation is easily

controllable in practice however, and modern intracellular amplifiers are able to clamp

cell voltage using relatively simple proportional feedback controllers implemented in

analog circuitry (Sherman-Gold 2012). The purpose of this study was not to improve

on amplifier design but rather as a proof of principle for how data-driven nonlinear

MPC can achieve control of a neuron’s membrane voltage without any prior knowl-

edge of the intrinsic ionic currents expressed by a specific neuron. All of the prior

studies applying MPC to conductance-based neuron models have assumed knowledge

about the neuron such as the states of current gating variables or the parameters

and functional forms of their kinetics (Fröhlich and Jezernik 2005; Yue, Tomastik,

and Dutta 2022; Ullah and Schiff 2009; Senthilvelmurugan and Subbian 2023), which

would not be known in a real experiment. The results in this study show that this

information is not necessary, bolstering confidence that data-driven MPC can be ex-

tended to neural networks in which there is likely to be even less knowledge about

31

the full state and parameters of the system.

To illustrate some of the ways in which the principles in this study could be extended

to networks, consider as an example the zebra finch’s HVC, a bilateral premotor nu-

cleus which contains around 36,000 highly interconnected neurons in each hemisphere

(Bottjer, Miesner, and Arnold 1986). Precise patterns of neural activity in HVC col-

lectively result in the bird singing, and the ability to experimentally control HVC

to produce arbitrary trajectories in its state space would produce major insights into

how this system orchestrates vocal communication. Present technology allows simul-

taneous measurement of activity in a few hundred of these cells using calcium imaging

or high-density extracellular electrophysiology, and activity could be manipulated in

a (potentially different) subset of neurons using optogenetic stimulation. The state

of the system would now be a vector, naively with one component for each of the

neurons the experimenter was monitoring. The input would also be a vector corre-

sponding to the neurons the experimenter was manipulating, and the loss function

would generalize to a form along the lines of

J(x0) = e⊺
TSeT +

T−1∑
n=0

e⊺
nQen +∆I⊺n+1R∆In+1, (2.9)

where ei and ∆Ii have the same meaning as in equation (8) but are now vector-

valued with each element corresponding to a individual state and external input

source respectively. The matrices S, Q, and R function largely the same as the

scaling factors s,q, and r in (8), but now allow one to differentially weight the cost

of each of the elements of vectors e and I. For example, there may be a subset of

neurons in a network that have an outsized impact on the population activity as a

whole. By using larger values in the Q and S matrices that correspond to this subset

32

of neurons in error vector e, the controller will view state errors in these neurons as

more costly than the other units in the network. It should be noted that this kind

of loss function could be applied across many different modalities of neural activity.

Similar loss functions for linear MPC have been applied to optogenetics both in vivo

(Bolus et al. 2021) and simulation models (Milias-Argeitis and Khammash 2015; Fox,

Batt, and Ruess 2023). It would be straightforward (at least mathematically) to use

behaviorally derived states in vector e while maintaining cellular inputs in vector

I. This would allow researchers to explore how specific patterns of neural activity

control organism behavior.

Extending control to neural circuits may necessitate the use of more complicated

function approximators to obtain a good forecasting model. However, there are several

advantages of simpler models like the RBFN compared to more complex models. Time

is often a constraint in neuroscience experiments and the ability to estimate and use

a model in a short time frame is a necessity. When controlling a neuron (or neural

circuit) with MPC, the forecasting model would need to be estimated quickly and

in a data-efficient manner. Because neurons exhibit a large diversity of dynamics, a

forecasting model trained on one neuron is unlikely to generalize to a different neuron.

The more complex and time-consuming the forecasting model is to train, the less time

there would be to control the neuron. In this study, DDF models were estimated using

only 5 seconds of data and the training time was negligible compared to the amount

of time for a typical patch-clamp experiment. Modern data-driven models often

have many more parameters and more computationally expensive training algorithms

which limit their ability to be practical in an experimental setting. Additionally,

RBFNs can be estimated in an online setting (e.g., recursive least squares) which

allow the DDF models to adapt to changes in the neural dynamics which can come

33

from many sources such as electrode drift, tissue damage, and intrinsic plasticity.

However, architectures such as RNNs and Transformers routinely achieve state of the

art performance on time-series forecasting benchmarks and may be necessary when

using MPC on large coupled networks. Latent factor models could also be used to

reduce the dimensionality of the cost function thereby reducing the computational

complexity of the optimization. Instead of using MPC to control the activity of every

unit in the network, the latent model could express the coordinates of the network

state and reference trajectory in the lower dimensional space.

34

Chapter 3

Controlling a Spiking Neural

Network

In the previous chapter, I demonstrated how a single neuron could be controlled with

MPC using a data-driven dynamics model. However, an organism’s behaviors often do

not arise from the activity of a single neuron but rather through complex interactions

of large networks of neurons. Understanding the causal pathways between behavior

and neural activity will not be understood by controlling one neuron at a time; in-

stead simultaneous control of many neurons will be required. Although there exist

many techniques to stimulate and silence populations of neurons (e.g. optogenetics,

transcranial magnetic stimulation, drug interventions), achieving precise control over

neural activity is still in relative infancy. One of the main reasons for this is the

diversity of technological constraints imposed by each method of neural control. For

example, controlling the membrane voltage of a single neuron through patch clamp is

an extremely well established closed-loop control technique. It is tempting to assume

that controlling the voltage of multiple neurons could be obtained by patching onto

all the neurons concurrently. With few notable exceptions (Jäckel et al. 2017), this is

currently technologically infeasible. While other methods allow for the simultaneous

measurement and perturbation of networks of neurons, each come with their own

limitations and technological considerations.

35

Notwithstanding these issues, there are also specific challenges with applying the

MPC framework to network-level control. Recall that MPC requires a dynamics

model that can predict the state evolution of the system for a given initial condition

and control input. Unlike individual neurons, few experimentally validated biophysi-

cal models of networks exist. Fortunately, there is a wealth of work showing that the

complex dynamics of populations of neurons can be approximated using data-driven

approaches (Beniaguev, Segev, and London 2021; Sun et al. 2023; Taylor et al. 2024).

In principle, this should allow one to produce a dynamics model for MPC of a network

of neurons. However, neural systems exist in a high dimensional state space both the-

oretically and experimentally with extracellular probes able to simultaneously record

the activity of hundreds to thousands of neurons. This presents a problem for practi-

cal implementation of MPC, because increasing the dimensionality of the state space

can lead to increased computational cost of the optimizer. For example, given the

quadratic loss function

ℓ(ei,ui) = e⊺
i Qei + u⊺

i Rui (3.1)

a large state space would lead to many hyperparameters in Q. In order to overcome

this issue, I propose leveraging recent work in neural manfiolds which can both reduce

the dimensionality of the problem and reframe the control problem in general.

3.1 Neural Manifolds

It has been well documented that activity from neural populations can be embedded

into lower dimensional subspaces that preserve much of the information contained in

the original full observation dimension (Pang, Lansdell, and Fairhall 2016). These

subspaces (termed ‘neural manifolds’) correlate with cognitive, behavioral, and stim-

36

ulus activity across many experimental settings (Chung and Abbott 2021). While the

entirety of the network can be viewed as a high dimensional dynamical system, activ-

ity on the manifold can be expressed as a latent dynamics model. Broadly speaking,

there are two main perspectives on how to model the time evolution of neural man-

ifolds: descriptive or generative modeling. Using linear subspaces with autonomous

dynamics as an illustrative example, the descriptive perspective can be seen as classic

dimensionality reduction with

zt = Gxt (3.2)

where xt is a column vector of the activity of n neurons at time t and zt is a reduced

dimension representation of xt given by the linear transformation G. This model is

descriptive because the latent trajectories zt are largely a recapitulation of the covari-

ances that exist in xt and provide limited information for inference or mechanistic

understanding (Langdon, Genkin, and Engel 2023).

In contrast, the generative perspective can be modeled as a latent factor model of the

form

xt = Fzt + ϵt (3.3)

where xt is a column vector of the activity of n neurons at time t, zt are the latent

factors that span the neural manifold with some smaller dimension k, F are the factor

loadings, and ϵt is a sample from some distribution (often Gaussian). This perspective

views the measured neural activity as a function of the latent dynamics of zt. Early

work on neural manifolds used linear methods such as principal components analysis

(as in equation 3.2) and factor analysis (as in equation 3.3), but there is now a broader

consensus that neural manifolds are nonlinearly embedded in the full state space and

require more sophisticated methods (Fortunato et al. 2023).

37

The nature of these subspaces in relation to neural computation is still debated, and

neural manifolds are viewed either as fundamental units of computation or merely a

convenient representation of high dimensional activity. Much of this debate is due to

the purely correlational nature of most neural manifold studies (Langdon, Genkin,

and Engel 2023). Regardless of the true nature of neural manifolds, we can exploit a

property present in both interpretations: much of the recorded activity is redundant in

describing the computations of the network. We can now reframe our general problem

of controlling a network of neurons to be more specific. Instead of trying to control the

state of each neuron in the network, I will control the latent dynamics obtained from

the activity on the neural manifold. In other words, the desired state trajectory for

the network will be expressed using coordinates in reference to the neural manifold.

This only partially solves the optimization dimensionality problem, however. The

control inputs u in equation 3.1 could be very high dimensional, leading to increased

computational cost and matrix R to require many hyperparameters. Using similar

dimensionality reduction techniques, we could find an optimal set of MPC inputs in a

lower dimensional space and project back into the original dimension of the stimulus

input to drive the network.

3.2 Simulating an Extracellular Recording Exper-

iment

A simulation of an extracellular recording experiment was chosen to demonstrate how

control over latent neural dynamics may be achieved. This modality of experimen-

tation was chosen due to the fact that extracellular probes are able to record from

dozens to hundreds of neurons simultaneously in both anesthetized and awake ani-

38

FR1

FR2

FR3

L1

L2

Figure 3.1: Neural Manifolds. An example of a linear neural manifold. The
simultaneous firing rates (FR) of three neurons can be represented in 3D state-space.
Different trajectories in this state space (colored lines) could arise from differing
initial conditions and/or different external perturbations such as changes in stimuli.
However, this activity often exhibits lower dimensional structure than the original
measurement space. The trajectories can be projected onto a 2D embedding given
by the basis vectors L1 and L2. This linear subspace is often referred to as a neural
manifold and the activity of the neurons is largely preserved in this lower dimensional
space (gray lines).

39

mals. In a typical extracellular experiment, a probe is inserted into neural tissue to

record electrical activity. The recorded signals are complex and noisy mixtures of the

activity in the tissue and must be separated into unique components (Rey, Pedreira,

and Quiroga 2015). This separation is referred to as spike sorting and results in the

continuous electrical signals being reduced into spike trains (time sequences where

each element is a spike time). Each spike train is purportedly from a unique neuron

and both offline and online methods of spike sorting exist (Wouters, Kloosterman,

and Bertrand 2018), with online methods being necessary for real-time monitoring

and control of the neural activity. In this simulation, only a subset of the neurons

simulated were used to fit a latent dynamics model of the whole network since extra-

cellular probes can only measure a fraction of the neurons in the surrounding tissue.

3.2.1 Artificial Circuit

Architecture

The activity of an artificial circuit (AC) evoked by an external visual stimulus was

simulated with a spiking neural network (SNN) composed of three layers: sensory,

reservoir, and output. Each neuron in the AC was modeled with a recurrent leaky

integrate-and-fire (rLIF) model, with the discrete time approximation

Vn+1 =

βVn + wTXn+1 + rTSn, if Vn < Θ

0, if Vn ≥ Θ

(3.4)

40

where

Vn : membrane voltage at the nth time step

Θ : spiking threshold

β : decay parameter

Xn : feedforward input vector at the nth time step

w : feedforward weights

Sn : layer spiking vector at the nth time step

r : recurrent weights

Whenever the V variable was reset to 0, a spike was recorded at that time step. For a

given layer with N neurons, this produced a binary vector Sn = [s1, s2, ..., sN]
T where

the value of each element was either a 0 or 1 indicating if the corresponding neuron

had fired at that time step. This allowed the activity of each neuron in a layer to be

affected not only by its own firing (i.e., spiking inhibition/facilitation), but also to

receive inputs from the other neurons in that layer.

Each neuron in the sensory layer received feedforward input in the form of a grayscale

image reshaped into a 784 dimensional vector. This input served as the external

stimulus that was the primary driver of AC activity. Gaussian noise was also added

to the feedforward inputs of each neuron in every layer to produce stochasticity in

activity. This noise modeled the effects of natural variability in neural firing and the

effects of unknown exogenous inputs. Thus the subthreshold activity of the three

layers was given by the equations

Sensory : V sen
n+1 = βV sen

n + wT
sen(In + ϵ) + rTsenS

sen
n (3.5)

41

A

B
Sensory

Reservoir

Output

Neural Circuit Recorded Spike Trains

Randomly Sampled Spikes

Figure 3.2: Simulation of Extracellular Experiment. A) Simplified model of an
extracellular recording. A visual stimulus (MNIST digit) evokes firing from a neural
circuit of unknown composition. In this example, the circuit contains three distinct
neural subpopulations (colored neurons) whose electrical activity is recorded with an
inserted electrode. Only a random subset of the neural activity is sorted into distinct
spike trains. B) A simulation of the circuit above using an SNN. The artificial circuit
is composed of three compartments: sensory (n = 100), reservoir (n = 600), output (n
= 10). The sensory layer is driven by MNIST digit stimuli in vector form. Each layer
is composed of rLIF neurons and receives all-to-all connections from the previous
layer. Gaussian noise is added to the input of each neuron to produce stochasiticity
in the activity and model the effects of unknown extrinsic and intrinsic inputs. Only
a random subset of the spiking activity of the artificial circuit is recorded to mimic
the results of spike sorting.

Reservoir : V res
n+1 = βV res

n + wT
res(S

sen
n + ϵ) + rTresS

res
n (3.6)

Output : V out
n+1 = βV out

n + wT
out(S

res
n + ϵ) + rToutS

out
n (3.7)

where ϵ ∼ N(0, η2) for each element in the feedforward input and In is the stimulus

image presented at the nth time step.

42

Training the Network

While in principle the feedforward and recurrent weights for each neuron could be

randomly distributed, these weights were trained to perform a classification task.

This was done to ensure that the activity of the AC was strongly correlated on

similar types of images. Using the Python package snntorch (Eshraghian et al.

2023), the AC was trained to accurately classify digits from the MNIST data set

(LeCun et al. 1998). Training SNNs requires additional considerations compared to

traditional artificial neural networks. The resetting of a neuron’s membrane voltage

when it reaches the threshold Θ produces a non-differentiable function (Eshraghian

et al. 2023) making training with gradient descent impossible. One solution to this

problem is to use surrogate gradient descent (Neftci, Mostafa, and Zenke 2019), where

the non-differentiable function is preserved in the forward pass of the network but is

replaced with a sigmoid function during the backward pass. This results in a function

differentiable everywhere and allows the network to be trained with valid gradients.

The MNIST data set is composed of handwritten images of the digits 0 through 9.

Classification of the images was performed by associating the label of the image with

a corresponding neuron in the output layer of the AC (e.g., label 4 with neuron 4).

For time step n, the cross-entropy ℓn was given by

pin =
exp(V i

n)∑9
k=0 exp(V k

n)
(3.8)

ℓn = −
9∑

i=0

yilog(p
i
n), (3.9)

where V i
n is the membrane voltage of the ith neuron which corresponds to the pre-

diction of label i, and y is a one-hot encoded vector of the true label. Due to the

43

inherently temporal nature of SNNs, one must specify how many time steps a stim-

ulus is be presented before class prediction takes place. This can be interpreted as a

combination of reaction time and evidence accumulation. Thus the loss function to

be minimized is given by

LCE =
∑
t

ℓt, (3.10)

where the cross-entropy loss at each time step is summed for some trial time length

t. This forces the neuron of the associated predicted class to have the highest firing

rate compared to the other neurons in the output layer. For the given time window

that the image is presented, the feedforward and recurrent weights in the AC can be

updated using backpropagation through time (BPTT).

The first half of the MNIST data set (n = 35,000) was used for the training and

validation of the AC with an 80/20 split. Due to the stochastic nature of the noise

added to every neuron in the AC, performance after training was assessed by pre-

senting the stimuli 30 times to obtain an accuracy distribution. Accuracy on the

training (n=28,000, M = 43.7%, s = 8.4%) and validation (n = 7,000, M = 43.9%, s

= 8.4%) set were largely similar, indicating there was no overfitting to the training

data. Although the accuracies were far below what would be considered competitive

performance on a classification task, the purpose of training the AC was to ensure

the connections between the neurons were not random. See Appendix.2 for rLIF and

AC training hyperparameters.

44

3.3 Dimensionality Reduction of Stimuli and Neu-

ral States

The dimensionalities of the MNIST digit stimuli and AC neural activity were reduced

using variational autoencoders (VAEs). The fundamental idea behind VAEs is that

an observed data vector xi ∈ Rn is some nonlinear transformation of a latent random

variable zi ∈ Rk with k << n. This latent variable is typically parameterized as a

Gaussian of the form

zi = µi + σi ⊙ ϵ, ϵ ∼ N(0, I), (3.11)

where ⊙ denotes element-wise multiplication. The original data vector can now be

written as

xi = hϕ(zi), (3.12)

where hϕ(.) has parameters that must be learned from the data. Since there are an

infinite set of solutions to this parameterization if µi and σi
2 were any arbitrary value,

an additional nonlinear transformation is learned such that,

µi, σ
2
i = fθ(xi). (3.13)

The functions fθ(.) and hϕ(.) are referred to as the encoder and decoder respectively.

The encoder takes a data vector xi and embeds it into a latent representation zi. This

latent variable can then be projected back into the original dimension by applying the

decoder transformation. The parameters of the encoder and decoder can be found by

minimizing the loss function

ℓV AE = ℓrecon + αℓKL (3.14)

45

ℓrecon =
B∑
i=1

||xi − hϕ(zi)||22 (3.15)

ℓKL =
B∑
i=1

k∑
j=1

(1 + log σ2
ij − µ2

ij − σ2
ij) (3.16)

where α is a hyperparameter that scales the importance the of KL-divergence term

in the loss function and B is the batch size used for gradient descent. Due to the

latent variable z being parameterized by a Gaussian, minimizing this loss function is

equivalent to maximizing the evidence lower bound (ELBO) (Odaibo 2019).

The VAE framework was chosen for two primary reasons. First, VAEs embed high-

dimensional data into nonlinear low-dimensional subspaces. This allows for a flexible

approach for finding the latent dynamics of the AC and obtaining a more generalizable

compression of the data compared to linear transformations (Gomari et al. 2022).

Second, the use of KL-divergence promotes nearby values of z in the latent space

to be decoded into similar values in the original space of x (Kingma and Welling

2013). By doing so, this allows for easier interpolation between a set of training data

points in latent space when constructing the dynamics model and finding the optimal

latent inputs with MPC. If a basic autoencoder (i.e., α = 0) was used instead of a

VAE, nearby points in latent space are not guaranteed to be similar in the original

measurement space.

The control problem can now be expressed as given a latent embedding of the neural

states x and stimulus states u,

zn = E(fneural
θ (xn)),vn = E(f stimulus

θ (un)) (3.17)

46

x x^fθ(x) hФ(z)
μ

σ
z

ε

Encoder Decoder

Latent
Variable

ReconstructionInput Vector

Figure 3.3: Variational Autoencoder Architecture. The VAE encoder produces
a latent representation of input vector x by projecting it in a nonlinear subspace.
This embedding is achieved by learning a parameterization of a normal distribution
where the mean and variance vectors associated with the input x are the outputs of a
multilayer perceptron. The latent representation z is sampled from this distribution
where ϵ ∼ N(0, I). The decoder takes this latent representation and projects it back
into the original dimension of x. Sampling directly from the latent space can produce
novel decoded vectors that will share many of the statistical properties of the x vectors
used to train the network.

we seek to find an optimal set of latent inputs

v∗
1:T = arg min

v1:T

T∑
n=0

ℓ(zn,vn) (3.18)

with the dynamics model

zn+1 = g(zn,vn). (3.19)

The AC can then be stimulated with the decoded latent inputs

un = hstimulus
ϕ (v∗

n) (3.20)

to produce the neural states x at the next time step.

47

3.3.1 Stimulus VAE

A VAE was trained to find a low dimensional representation of MNIST digit stimuli

(sVAE). The sVAE encoder was composed of two single-channel convolutional layers

and a single feedforward layer. Each of the three layers used a ReLU activation

function. The size of the latent space v was chosen to be 2. The sVAE decoder

was symmetric to the architecture of the encoder with one key difference; a sigmoid

activation function was used on the final output layer to ensure that the values of

the reconstructed stimuli were between 0 and 1 (the bounds of all pixel values in the

training images). See Appendix.3.1 for layer hyperparameters.

The second half of the MNIST data set (n = 35,000) was used for training and val-

idation of the sVAE. Eighty percent of this data (n = 28,000) was used for training

and the remaining 20% for validation (n = 7,000). The sVAE was trained via gra-

dient descent in Pytorch using the Adam optimizer. See Appendix.3.2 for training

hyperparameters.

A sequence of latent inputs for latent dynamics model identification was constructed

using the validation set of images. Discrete points in the latent sVAE space were

obtained by running k-means clustering (n=100) on the low dimensional embedding

of the validation images. Half of the centers were used for the dynamics model

training (Vtrain) and half for testing (Vtest). These discrete points were converted to

a continuous time series by one of three methods: step function, fast interpolation,

slow interpolation. The step function method took a sequence of centers and held

each center constant for 500 time steps (ms). The fast and slow methods took the

sequence and linearly interpolated values between each element in the sequence but

at different time scales (200 ms for the fast and 1000 ms for the slow). Both the Vtrain

48

4
2
0

-2
-4

4
2
0

-2
-4

4

2

0

-2

-4
420-2-4

�

��
���

�

��

���

0 20 40
Time (s)

V2

V1

A B C
V1
V2

V

V

VAE Embedding Training Inputs

Testing Inputs

Decoded
Latent Images

Figure 3.4: Latent Embedding of MNIST Digits. A) Each colored dot is one
of the MNIST digits embedded in the 2-dimensional nonlinear subspace of the sVAE
encoder. Notice the clustering of the digits by label (color), indicating that digits with
identical labels were often embedded in nearby latent space. In order to generate a
latent sequence of inputs used to stimulate the artificial circuit, points from this latent
space where sampled using k-means clustering (100 centers). B) Training and testing
latent sequences where each generated using half of the centers from A. C) Three
points from the training inputs decoded into the original stimulus dimension.

and Vtest sequences were 46.3 seconds long (46,300 time steps). The use of these three

methods was to have a input sequence that could show how the latent states of the

AC responded to inputs changing at different time scales and frequencies. See Figure

3.4 for visualization of the latent input sequences and their sVAE decoded values.

3.3.2 Neural VAE

The AC was stimulated using the sVAE-decoded Vtrain and Vtest input sequences

with the resulting spiking activity used to fit a VAE for the neural states (nVAE).

A random sample of 20% of the neurons (n=122) in the AC were used to build the

model. These neurons were the only units in the AC that were measured for the

entire experiment. Recall that in a typical extracellular recording, only a subset of

49

Z1

Z2

0-50 50

50

0

-50

D
at

a
R

ec
on

.

Training

Time (ms)

A

B

nVAE-dec

nVAE-enc

nVAE-dec

nVAE-enc

D
at

a
R

ec
on

.

Z2

50

0

-50

Z1

0-50 50

Testing

Latent Embedding

Latent Embedding

Time (ms)
0 200 400 600 800 1000

0 200 400 600 800 1000

Time (ms)
0 200 400 600 800 1000

Time (ms)
0 200 400 600 800 1000

Figure 3.5: Latent Embedding of Neural Activity. A) Results of the VAE on
training SNN neural activity (nVAE). The exponentially filtered spikes are embedded
in a latent 2D space through the nVAE encoder. Activity in this latent space can be
projected back into the original dimension with the nVAE decoder. B) Results of the
nVAE on the testing SNN neural activity.

50

the neurons are observable. The purpose of this random sampling was to mimic the

incomplete information that would be obtained in a real recording.

The measured binary spiking states were converted to continuous states with an

exponential filter, where the smoothed state xn of spiking state yn is given by

xn+1 = ωyn + (1− ω)xn (3.21)

where ω was chosen to be 0.5 and x0 = y0.

The nVAE encoder and decoder were symmetric, with each having five feedforward

layers. The smoothed state xn was z-scored when entering the first layer of the

encoder. A small value ϵ = 1 × 10−5 was added to the denominator of the stan-

dardization since some time steps had near identical values. Each hidden layer used

a ReLU activation function followed by a batch normalization layer. The size of

the latent dimension z was chosen to be 2. Since the addition of noise to the rLIF

neurons resulted in temporal spiking jitter to the same input stimulus, the variance

of the latent representation z was constrained to be above 1. This was achieved by

having the encoder learn the log of the variance instead of the variance directly and

then applying the softplus function to the estimate. By using this minimum variance,

it acted as a regularizing parameter to the noise present in the training data. See

Appendix.4 for layer and training hyperparameters.

51

Time (s)
0 10 20 30 40

Time (s)
0 10 20 30 40

Training Testing

Z1

Z2

0
-50

50

0
-50

50

0

-50

50

0
-50

50

R = 0.87

R = 0.73

R = 0.87

R = 0.72

Figure 3.6: Forecasting Performance of Latent Dynaimcs Model. (Left) La-
tent state z (red) forecasting on the training data. On top is the forecast for z1
and on bottom z2. In black is the actual latent trajectory of the training data. The
product-moment correlation between the actual and predicted latent states is shown
above each figure. (Right) Same as on the left, but with the testing data. The fits
between the training and testing forecast are largely identical.

3.4 Latent Dynamics Model

A linear latent dynamics model of the form

zn+1 = Azn +Bvn (3.22)

was estimated using ridge regression with the L2-hyperparameter chosen via leave-

one-out cross-validation. All model fitting was performed using the sklearn Python

package. The dynamics model was fit with the data produced by the Vtrain input

sequence. Model performance was assessed by using an initial value of z and fore-

casting for the entire training sequence length. At every time step, the known value

of Vtrain and the model’s previous prediction of z was used to forecast the next value.

An inadequate model would produce a time-series that was a poor approximation of

the actual latent state trajectory produced by Vtrain and could possibly even diverge

due to compounding errors.

The forecasted values of the training data were a close fit to the actual z training

52

ZV sVAE-dec nVAE-enc

Controller

Artificial
Circuit Spike

Trains

Optimized
Stimulus

Zref

Latent
State

Reference
Trajectory

Latent
Inputs

Dynamics
Model

Figure 3.7: MPC Control Loop of Artificial Circuit. Exponentially filtered spike
trains are encoded into the latent state z and is compared to a reference trajectory
zref to produce an error signal. The controller uses a model of the latent dynamics
to find an optimal input that minimizes a loss function of the state error. This input
is then projected back into the original stimulus dimension using the sVAE decoder
which stimulates the artificial circuit.

trajectories as measured with the product-moment correlation (Rz1 = 0.87, Rz2 =

0.73). The possibility of overfitting was assessed by forecasting with the latent states

elicited from Vtest. The resulting predicted trajectory was also similar to the actual

latent trajectory (Rz1 = 0.87, Rz2 = 0.72) indicating that the dynamics model would

be useful for control with MPC. See Figure 3.6 for the forecasted latent trajectories

of the training and testing data.

3.5 Control Loop

After training the VAEs and obtaining the latent dynamics model, MPC could now

be performed. Given some latent input v, the sVAE decoder projects the vector into

the original dimension of the MNIST digits. This image serves as a visual stimulus

that elicits spikes from the AC. These spikes are exponentially filtered to produce a

continuous state x. This state is then projected into a latent representation z with

the nVAE encoder and compared to some reference value zref. The controller uses the

53

latent dynamics model and latent state errors to find an optimal sequence of latent

inputs v1:T for some time horizon T . The process can repeat for as long as control is

desired. See Figure 3.7 for a graphical representation of the control loop.

3.6 Experiment I: Latent Set-Point Control

As a simple first experiment, the latent dynamics were controlled to follow a step

function. This reference trajectory was composed of two set-points in latent space,

each held constant for 500 ms. The values were chosen by running k-means clustering

on the latent state training data and using the resulting centroids as the set-points.

The controller had a predictive time horizon T of 30 time steps and optimized the

loss function

J(z0) = z⊺
TSzT +

T−1∑
i=0

z⊺
i Qzi +∆v⊺

i R∆vi (3.23)

where

Q,S =

150 0

0 150

 ,R =

10, 000 0

0 10, 000

 . (3.24)

Unlike the optimization problem in Chapter 2, no other constraints were included.

Due to the stochastic nature of the AC responses, 50 independent trials of MPC

were performed. The normalized mean square error (nMSE) was used to quantify the

controller performance of the latent state, which normalizes mean square error by the

difference between the maximum and minimum zref values. This was done for ease of

comparing controller performance across dimensions with different scales. See Table

3.1 for the results of control across the 50 trials and the root mean square (RMS) of

the latent inputs used.

54

nMSEz1 nMSEz2 RMSv1 RMSv2

Mean (SD) 1.58 (0.32) 0.96 (0.19) 0.56 (0.02) 1.56 (0.05)

Min/Max 1.03/2.79 0.58/1.39 0.52/0.61 1.43/1.69

Table 3.1: Results of Set-Point Control.

The controller was able to achieve good performance especially when considering

that only 20% of the neurons of the AC were observable and the noise present in

the system. Even though the noise that was added to all neuron inputs was Gaus-

sian, the nonlinearities in the rLIF models propagate highly complex noise structures

throughout the network. See Figure 3.8 for the controller performance in the latent

space.

Although the control problem was formulated in the latent space, it produced infor-

mative activity in the measurement space. As seen in Figure 3.9 (A), the spike count

of the observable neurons abruptly changed when the reference trajectory switched

from set-point 1 to 2. However, the population spike count then returned to approx-

imately the same levels as the first set-point. An inspection of the spike trains from

one of the trials shows that the spiking patterns are qualitatively different between

the two set-points. The set-points also appeared to correspond to two distinct types

of visual inputs with the decoded latent inputs for set-point 1 producing an image

similar to a morph between digits 4 and 9 and the digit 2 for set-point 2 (Figure 3.9

(B).

55

0 200 400 600 800 1000
Time (ms)

20
Z1

Z2

V1

V2

0
-20

-40

0

25

-25

50

0

2

-2

0

5

-5

0 200 400 600 800 1000
Time (ms)

0 20-20-40 40

0

20

-20

-40

40

Z1

Z2

0 20-20-40 40

Z1

0 20-20-40 40

Z1

Vector Field (200 ms) Vector Field (500 ms) Vector Field (800 ms)

A

B

Zref

Z

Latent States Latent Inputs

Figure 3.8: Control of Artificial Circuit in Latent Space. A) (Left) The results
of MPC control of the AC across 50 trials. In black are the reference trajectories
the latent dynamics were forced to follow. The reference trajectories were composed
of two set points that changed at 500 ms. In light red are the controlled latent
trajectories across the 50 trials and the average of these trajectories are shown in
dark red. (Right) The latent inputs produced by the optimizer. In light blue are
the inputs used across the 50 trials and the average input shown in dark blue. B)
At each time step, the latent dynamics model predicts a vector field on the latent
states. Three snapshots of this vector field are shown at 200, 500, and 800 ms. The
desired reference points are shown by black dots and the controlled latent states are
indicated by red dots. Notice the magnitude of the vectors when the reference point
changes at 500 ms.

56

0 200 400 600 800 1000
Time (ms)

A

B
Control Stimulus (200 ms) Control Stimulus (500 ms) Control Stimulus (800 ms)

Smoothed Spikes

Spike Trains

N
eu

ro
n

In
de

x
Sp

ik
e

C
ou

nt

4
6
8

Figure 3.9: Control of Artificial Circuit in Measurement Space. A) (Above)
The smoothed spike trains of the measured AC neurons across the 50 trials are shown
in light blue with the average shown in black. The smoothed spikes of a sample
trial is shown in dark blue. (Below) The measured spike trains of the sampled trial
corresponding to the dark blue curve above. Notice the qualitative changes in the
spike trains when the reference point changes at 500 ms. Interestingly, while there is
an initial drop in the smoothed spike trains at reference point change, it increases back
to a similar value to the previous reference point. This indicates that the latent states
are not just functions of the population firing rate, but are functions of particular
firing patterns and activity from specific neurons. B) Decoded latent inputs from the
optimizer across three time points. These are the visual stimuli that drove activity
in the network. Notice the images corresponding to the second reference point are
similar to the digit ‘2’, but are at different magnitudes and sizes.

57

3.7 Experiment II: Effects of Partial Observation

on Control

To investigate how robust the control strategy was to partial observation of neural

states, the procedure from Experiment I was performed on different proportions of

measurable neurons in the AC. In order to ensure a fair comparison, the architectures

of the nVAEs were kept constant across observation percentages (except for the size of

the input layer). For the case where only 1% of the neurons of the AC were observed

(n=6), the nVAE achieved almost perfect reconstruction for both training and testing

data. The ability of the neural data to be accurately reconstructed is important to

establish that the latent space produced by the nVAE encoder preserves much of the

neural activity. A poor reconstruction could indicate that the latent space is stripping

away important information on the dynamics of the network. As expected, keeping

the number of latent dimensions to 2 for the nVAE reduced the reconstruction perfor-

mance for models with high levels of neural observability (i.e., higher dimensionality).

However, there was a floor to this degradation of performance and the reconstruction

errors plateaued around 40% observability. Interestingly, having a good nVAE re-

construction performance did not guarantee a good dynamics model could be found.

In fact, the models between 1% and 10% had the best nVAE reconstructions but the

worst forecasts with their dynamics models. This is likely due to the observed neurons

not capturing enough of the network dynamics, which include multiple unmeasured

inputs and complex recurrent connections. See Figure 3.10 for nVAE and dynamics

model performance across neuron observability percentages.

As in Experiment I, the latent dynamics of each model was controlled to follow a

step function of two set-points obtained from k-means clustering. Fifty trials of

58

0 40
Time (s)

10 20 30 0 40
Time (s)

10 20 30

Z1 Z2
Obs. 1%

Obs. 10%

Obs. 20%

Obs. 90%

Z1 Z2

Z1 Z2

Z1 Z2

1051 4020 30 7050 60 9080
Percentage Neurons Observed

0

1.0

0.8

0.6

0.4

0.2

Correlations

0

30

-20
0

-10

20

0
50

-50
0

50

-50

0
50

-50

75

0
-50

0
50

-50
0

50

-50

Train
Test

nVAE
Z1 forecast
Z2 forecast

A B

Figure 3.10: Effects of Partial Observation in Measurement Space. A) The
performance of the nVAE reconstructions as a function of percentage of neurons mea-
sured is shown in cyan. For small numbers of measurable neurons, the nVAE finds
transformations that preserve much of the information in the original dimension.
Since the latent dimension for all nVAEs was constrained to two, as the number of
neurons increases more compression is applied, resulting in decreased nVAE recon-
struction performance. The latent dynamics models forecasts are shown for both
states z1 (magenta) and z2 (yellow). B) Forecasting models on testing data for four
of the levels of observation percentage. In black is the true latent trajectory with the
forecasted in red.

59

MPC were run for each of the models using the same previous loss function and

hyperparameters. While in practice, the hyperparameters of the controller would be

tuned to the specific dynamics model used, using the same values allowed for easy

comparisons in performance.

Controller performance suffered in the models with small observation percentages

with 2 of the trials for the 1% observation model diverging. However, the relationship

between controller performance and observation percentage was complex. On average,

the controllers were able to force the latent dynamics to follow the corresponding

reference trajectories, but with differing levels of variability between trials. This

can be seen in Figure 3.11 where the controlled latent states are shown for each

observation level and across all 50 trials. See Tables 3.2 for quantification of the

controlled trajectories and 3.3 of the latent control inputs. Only models up to 60%

observability are shown since even this level is extremely unlikely to occur in an actual

extracellular experiment.

Model Z1 M(SD) Z1 Min/Max Z2 M(SD) Z2 Min/Max

Obs 1% 13.81 (0.62) 12.63/15.44 5.91 (0.64) 4.22/7.63

Obs 5% 7.03 (0.75) 5.58/8.67 6.47 (0.67) 5.25/7.99

Obs 10% 86.88 (12.06) 63.82/109.77 5.28 (1.19) 3.71/7.71

Obs 20% 1.58 (0.32) 1.03/2.79 0.96 (0.19) 0.58/1.39

Obs 30% 2.27 (0.12) 2.03/2.55 3.36 (0.22) 2.91/3.77

Obs 40% 0.39 (0.09) 0.24/0.65 0.34 (0.08) 0.21/0.49

Obs 50% 2.17 (0.33) 1.67/2.89 2.45 (0.32) 1.87/3.42

Obs 60% 0.99 (0.13) 0.77/1.38 0.98 (0.08) 0.80/1.88

Table 3.2: Normalized Mean Squared Error of Latent State Across Models.
Note: Two divergent control paths in Obs. 1% model are omitted.

60

Z1

Z2

0

Obs. 1% (n = 6)

1000
Time (ms)

0

0

20

-20

20

-20
0 1000

Time (ms)

Obs. 5% (n = 30)

0

40

-40

40

-40

0

0 1000
Time (ms)

Obs. 10% (n = 61)

0

30

-30

40

-40

0

0

30

40

0

0 1000
Time (ms)

Obs. 20% (n = 122)

-30

-20

Obs. 30% (n = 183)

0 1000
Time (ms)

Z1

Z2

40

-40

0

40

-40

0

Obs. 40% (n = 244)

0 1000
Time (ms)

40

0

-20

0

30

-20

Obs. 50% (n = 305)

0 1000
Time (ms)

40

0

-20

40

0

-40

0

Obs. 60% (n = 366)

0 1000
Time (ms)

30

-30

60

0

-40

Figure 3.11: MPC Performance Across Observation Percentage. Reference
(black) and controlled (red) trajectories for models with differing proportions of neu-
rons observed. Notice the poor performance of the controllers using dynamics models
estimated with under 20% of neurons observed.

61

Model V1 M(SD) V1 Min/Max V2 M(SD) V2 Min/Max

Obs 1% 28.62 (0.14) 28.34/28.93 6.45 (0.04) 6.37/6.55

Obs 5% 3.49 (0.03) 3.40/3.56 0.85 (0.03) 0.76/0.92

Obs 10% 1.23 (0.05) 1.13/1.33 0.96 (0.11) 0.69/1.18

Obs 20% 0.56 (0.02) 0.52/0.61 1.56 (0.05) 1.43/1.69

Obs 30% 1.30 (0.03) 1.23/1.41 1.60 (0.07) 1.45/1.78

Obs 40% 0.48 (0.03) 0.43/0.55 1.11 (0.07) 0.97/1.26

Obs 50% 1.83 (0.09) 1.60/2.03 1.90 (0.16) 1.58/2.28

Obs 60% 1.31 (0.03) 1.25/1.39 1.77 (0.06) 1.65/1.92

Table 3.3: Root Mean Square of Latent Inputs Across Models. Note: Two
divergent control paths in Obs. 1% model are omitted.

3.8 Experiment III: Comparing Latent Reference

Trajectories

Although the previous experiments demonstrated that the latent states of the network

could be controlled to specific set-points, this offers limited ability to investigate the

structure of the latent dynamics. For a true understanding of the dynamics, it is not

sufficient to characterize the start and end points of a trajectory, but instead what

specific path was taken. As a final experiment, the reference trajectory was replaced

with two time-varying functions (reference trajectory 1 and 2). Each of these reference

trajectories had the same initial (s0) and final values (sf), but took different paths

through state space. Using a parameterized function of a circle passing through points

s0 and sf , trajectories 1 and 2 were the opposite arcs of the resulting circle. This

62

Z1

Z2

40

20

0

-40

-20

40200-40 -20

s0

sf

Reference
Unconstrained

Trajectory 1
Trajectory 2

Figure 3.12: Comparing the Control Performance Between Trajectories. The
controlled paths for the two reference trajectories. Each of the trajectories had the
same initial and final values (s0 and sf respectively). Using these values, the two
trajectories were obtained by fitting a circle between them. The paths for 50 trials
with trajectory 1 as the reference are shown in cyan and in purple for trajectory 2.
For comparison, the paths from Experiment I 200 ms before and after the change in
set-point are shown in red. The set-points were identical to the s0 and sf used here,
but the path between them was not constrained to follow certain values. The dark
colors show the average of the respective path types.

ensured that both trajectories were of equal length through the latent state space.

The observation model from Experiment I was used for this task (20% observability)

and the values of s0 and sf were the set-points from the same experiment. Fifty

control trials were performed for each of the reference trajectories with each trial

having the same MPC hyperparameters from Experiment I and II. See Figure 3.12

for control performance in latent space. As seen in Table 3.4, while there were slight

differences in the average errors in control between the two reference trajectories, there

were large differences in the RMS of the latent inputs used to control the system. In

particular, for both latent inputs v1 and v2 the minimum RMS for trajectory 2 was

63

larger than the maximum RMS for trajectory 1. This indicated that more energy

in the latent space was needed to control the system to follow trajectory 2, even

though the lengths of the two trajectories were the same. Interestingly, both sets of

trajectories had regions of state space that produced large oscillations in the latent

states which can be easily seen in Figure 3.13. The errors in the latent states were

also qualitatively different between the two reference trajectories, producing strikingly

different average controlled paths. Examining the activity in the measurement space,

we see obvious differences in the spiking behavior of the AC (Figure 3.14 A). The

visual stimuli produced from decoding the latent inputs also show distinct differences

between the two reference trajectories (Figure 3.14 B). This demonstrates that not

only do the two trajectories require different spiking patterns to enter different regions

of state space, but qualitatively different stimuli are needed. One implication of this

is that MPC of the latent dynamics could reveal if specific kinds of stimuli correspond

to particular latent trajectories or if the activity in the latent space is driven by the

differences in the stimulus at every time step (e.g. prediction error, Egner, Monti,

and Summerfield 2010).

64

Time (ms)

Z1

Z2

0 200 400 600 800 1000
Time (ms)

0 200 400 600 800 1000

V

Trajectory 1 Trajectory 2

40
20

0

-40
-20

40
20

0

-40
-20

6
4
2
0
-2
-4

V1

V2

Zref

Figure 3.13: Latent States and Inputs Between Trajectories. (Left) The con-
trolled latent states are shown in cyan with reference trajectory 1 (black) across the
50 trials. The corresponding latent inputs obtained from the optimizer are shown in
blue and orange. (Right) The controlled latent states (purple) and inputs for refer-
ence trajectory 2. The dark colors correspond to the average of the respective path
types.

65

Trajectory 1 Trajectory 2

nMSEZ1

M(SD) 0.64 (0.18) 1.05 (0.11)

Min/Max 0.36/1.05 0.84/1.22

nMSEZ2

M(SD) 1.42 (0.11) 1.34 (0.18)

Min/Max 1.13/1.70 0.97/1.80

RMSV1

M(SD) 0.76 (0.04) 1.07 (0.05)

Min/Max 0.69/0.86 0.96/1.15

RMSV2

M(SD) 1.04 (0.05) 1.42 (0.05)

Min/Max 0.93/1.14 1.31/1.53

Table 3.4: Performance of Control Between Trajectories.

3.9 Conclusions

In this chapter, I have demonstrated that MPC can be used to control the latent

states of an SNN using data-driven models of the dynamics. Control is possible even

when there is only a limited number of neurons that are observable and there are

unknown sources of noise in the network. By reducing the dimensionality of the

neural activity and the visual stimuli used to elicit neuron spiking, MPC becomes

more computationally tractable for high-dimensional neural systems. These latent

states can be fixed to certain set-points, across many levels of neuron observability,

66

Time (ms)
0 200 400 600 800 1000

Sp
ik

e
In

de
x

Sp
ik

e
In

de
x

Reference Trajectory 1 Spikes

Reference Trajectory 2 Spikes

A

B
0 ms 200 ms 500 ms 800 ms 1000 ms

R
ef

er
en

ce
Tr

aj
ec

to
ry

 1
R

ef
er

en
ce

Tr
aj

ec
to

ry
 2

Figure 3.14: Comparison of Control Inputs and AC Spiking Across Refer-
ence Trajectories. A) Spike trains of a single trial for the reference trajectory 1
and 2 conditions. Note that the high densities of spiking in the Trajectory 2 condition
correspond to the same time window as the high oscillations in the latent space. B)
The decoded latent inputs that are used to stimulate the neurons in A during spe-
cific time points. The first and last images are largely similar due to s0 and sf being
identical in both reference trajectories. However, in the intermediate times there are
obvious differences in what kinds of images are needed to control the network along
the desired trajectory.

67

and forced to follow time-varying reference trajectories. The results of this simulation

provide a framework for the use of MPC for real-time control of neural activity in an

experimental setting using extracellular recordings.

In a realistic experiment using extracellular recordings, the proportion of neurons in

the circuit that are directly measured is extremely small. The results of Experiment

II show that there is a deleterious effect of limited neuron observation in constructing

a dynamics model and the subsequent application of MPC. However, it should be

noted that only a single sample was used to construct the latent dynamics models for

each level of observation percentage. It is possible that the particular samples from

the lower observation percentage models were not representative of the population

activity. In the case of the 1% observation model this would result in nearly 7× 1013

possible combinations of neurons that could be used to learn the latent subspace and

dynamics models. Future work should examine if this decrease in performance is

mainly due to having too few neurons or if small representative samples are adequate

for controlling the latent activity. It is also well-known that when observing a subset

of states of a dynamical system, time-delay embedding the measurements gives infor-

mation on the full dynamics (Clark, Fuller, et al. 2022). In each of the experiments

here, time-delay embedding was not used to fit the VAEs or latent dynamics models

for simplicity. Although this did not appear to impact the controller performance

for the higher observation percentage models, it may have resulted in poorer perfor-

mance as the percentage decreased in value. It would be interesting to examine if

using time delays would result in increased performance even when the number of

observed neurons is very low. Other work has shown the success of using time-lagged

autoencoders to find latent dynamics models (Wehmeyer and Noé 2018) and methods

exist to find optimal time delays and the number of embedding dimensions (Sugihara

68

and May 1990). This would introduce additional complexity in practice however,

because both the dimensionality reduction and dynamics model need to be fit quickly

when recording from living neurons, otherwise the experiment may not be feasible in

a laboratory setting due to cell death or electrode drift.

The results of Experiment III showed that different trajectories in latent space re-

quired distinct sequences of latent inputs and produced varying levels of control.

There are several reasons that this could be the case and will require extensive work

to investigate. One possibility is the latent dynamics model made better predictions

for certain regions of latent state space. The use of a nonlinear dynamics model

may result in a better approximation of the latent vector field, but at the cost of

complexity in both model fitting and MPC optimization. Other work has shown re-

duced dimension transformations that preserve much of the information in the full

dimensional space may not be optimal for controlling these latent dynamics (Lusch,

J Nathan Kutz, and Steven L Brunton 2018). By fitting the VAEs and latent dynam-

ics models in two distinct phases, this may have produced dynamics models that were

not optimal for the subspaces found by the VAEs. An alternative approach would be

to simultaneously learn the dimensionality reduction and latent dynamics model in a

single step. While this would likely improve the performance of the controller it would

also introduce greater complexity when fitting the model in this manner. Additional

hyperparameters would be needed to scale the influences of the VAE reconstruction,

latent forecasting, and measurement space forecasting. When recording from actual

biological neurons, this may result in a hyperparameter space complexity that is too

prohibitive in practice.

As previously mentioned, the latent subspace of the SNN dynamics can be seen as a

model of a neural manifold. In biological neural networks, neural manifold activity

69

has been found to strongly correlate with organism behaviors across many different

contexts. It is still unknown however if the activity in these latent spaces are causally

connected to these behaviors. The MPC framework in developed in this chapter

provides a method for experimentally probing the activity on these manifolds to

better understand their structure and function. If manifold activity is in fact casual,

it may be possible to produce specific organism behaviors by controlling the latent

neural dynamics. This would be an enormously beneficial tool in furthering the

understanding of how complex large-scale behaviors arise from neural activity.

70

Chapter 4

Conclusions and Future Directions

As our ability to collect vast quantities of neural data has surpassed our theoretical

knowledge of the system dynamics, data-driven methods will be essential in increasing

our ability to control the activity of the nervous system. By using data-driven meth-

ods for approximating system dynamics, MPC has the potential to revolutionize the

field of neural control without needing a deep a priori knowledge of the biophysics.

This would allow for new experimental designs and reduce the need to have hand-

engineered patterns of neural stimulation. Instead of the usual methods where an

input is injected into the system and the resulting behavior recorded, a complex and

precise behavior could be defined in advance with the necessary stimulation found

via MPC. There would be numerous therapeutic uses as well, with applications of

MPC in neuroprosthetics being an especially promising area of research (Lambeth,

Singh, and Sharma 2023; Wolf and Schearer 2022; Singh and Sharma 2023; Bao et al.

2019). Other therapeutic uses include driving neural activity away from a potentially

pathological area in state space (e.g. epilepsy (Chatterjee et al. 2020; Brar et al.

2018)). Since MPC is an anticipatory controller, the dynamics model could forecast

this activity before it happens and preemptively send a control signal to prevent the

pathological state from occurring. The ability to have this level of control over ther-

apeutic and experimental interventions will allow researchers to explore and validate

new theories of neural dynamics as well as the relationship between extrinsic and

71

intrinsic modulation of network activity.

One notable area where closed-loop control has been successfully deployed in opto-

genetic stimulation (Grosenick, Marshel, and Deisseroth 2015; Bergs et al. 2023).

In (Newman et al. 2015), the collective firing rate of a population of neurons was

controlled using a proportional-integral controller. This work not only demonstrated

that real-time closed-loop control of multiple neurons was possible but necessary to

overcome the unknown exogenous inputs into the network. Further work by (Bolus

et al. 2021) showed through in vivo and in silico experiments that MPC was possible

with optogenetics, however only single neuron control was considered. The results in

Chapter 3 could be extended to this experimental modality; instead of finding latent

inputs that correspond to images, the decoded input would now be a grid of light

intensities over a population of neurons.

Controlling these complex neural systems may require the inclusion of a state esti-

mator in the control loop. In a whole-cell preparation, measurement noise is very low

(Sherman-Gold 2012) and one can assume that the measured values of the membrane

voltage and injected current are the true values. In a neural circuit, it is not possible

to achieve whole-cell access to more that a couple neurons at best, so it is necessary to

use extracellular electrophysiology, which only reveals the timing of action potentials,

or optical signals of calcium concentration, which tend to be slow and much noisier.

Similarly, optogenetic stimulation of neural activity is much less precise than direct

current injection. These sources of variability can corrupt the measurements of the

system’s state, leading to incorrect calculations of the optimal control inputs. If the

structure of the noise can be assumed, techniques from robust MPC may lead to im-

proved performance (Bemporad and Morari 1999). Robust MPC can provide a safer

control scheme since the effect of disturbances is explicitly modeled and the controller

72

tries to ensure the system does not enter a region of state space that is infeasible or

potentially dangerous (Hewing et al. 2020). State estimators can also transform the

spike times arising from extracellular recording into estimates of a continuous latent

state (Smith et al. 2010).

The work presented here is an incremental step toward the larger goal of precise con-

trol of the nervous system. The interdisciplinary collaboration between neuroscien-

tists, engineers, and control theorists will be essential for translating future advance-

ments into practical applications that can benefit both basic research and clinical

interventions. Achieving a comprehensive understanding of neural control mecha-

nisms holds immense potential for advancing our ability to treat neurological dis-

orders, enhance brain-computer interfaces, and unlock new frontiers in neuroscience

and neurotechnology.

73

Bibliography

Lorenz, Edward N (1963). “Deterministic nonperiodic flow”. In: Journal of atmo-

spheric sciences 20.2, pp. 130–141.

Bottjer, Sarah W., Elizabeth A. Miesner, and Arthur P. Arnold (1986). “Changes

in neuronal number, density and size account for increases in volume of song-

control nuclei during song development in zebra finches”. In: Neuroscience Letters

67.3, pp. 263–268. ISSN: 0304-3940. DOI: https://doi.org/10.1016/0304-

3940(86)90319-8. URL: https://www.sciencedirect.com/science/article/

pii/0304394086903198.

Sugihara, George and Robert M May (1990). “Nonlinear forecasting as a way of

distinguishing chaos from measurement error in time series”. In: Nature 344.6268,

pp. 734–741.

Park, J. and I. W. Sandberg (June 1991). “Universal Approximation Using Radial-

Basis-Function Networks”. en. In: Neural Computation 3.2, pp. 246–257. ISSN:

0899-7667, 1530-888X. DOI: 10 . 1162 / neco . 1991 . 3 . 2 . 246. URL: https : / /

direct.mit.edu/neco/article/3/2/246-257/5580 (visited on 10/29/2023).

Johnston, Daniel and Samuel Miao-sin Wu (1995). Foundations of cellular neurophys-

iology. Cambridge, Mass: MIT Press. ISBN: 978-0-262-10053-3.

LeCun, Yann et al. (1998). “Gradient-based learning applied to document recogni-

tion”. In: Proceedings of the IEEE 86.11, pp. 2278–2324.

Bemporad, Alberto and Manfred Morari (1999). “Robust model predictive control:

A survey”. In: Robustness in identification and control. Ed. by A. Garulli and A.

Tesi. London: Springer London, pp. 207–226. ISBN: 978-1-84628-538-7.

74

Destexhe, A et al. (Nov. 2001). “Fluctuating synaptic conductances recreate in vivo-

like activity in neocortical neurons”. en. In: Neuroscience 107.1, pp. 13–24. ISSN:

03064522. DOI: 10.1016/S0306-4522(01)00344-X. URL: https://linkinghub.

elsevier.com/retrieve/pii/S030645220100344X (visited on 10/29/2023).

Stefani, Raymond T., ed. (2002). Design of feedback control systems. 4th ed. The

Oxford series in electrical and computer engineering. New York: Oxford University

Press. ISBN: 978-0-19-514249-5.

Qin, S.Joe and Thomas A. Badgwell (July 2003). “A survey of industrial model pre-

dictive control technology”. en. In: Control Engineering Practice 11.7, pp. 733–

764. ISSN: 09670661. DOI: 10 . 1016 / S0967 - 0661(02) 00186 - 7. URL: https :

//linkinghub.elsevier.com/retrieve/pii/S0967066102001867 (visited on

10/29/2023).

Fröhlich, Flavio and Sašo Jezernik (Sept. 2005). “Feedback control of Hodgkin–Huxley

nerve cell dynamics”. en. In: Control Engineering Practice 13.9, pp. 1195–1206.

ISSN: 09670661. DOI: 10.1016/j.conengprac.2004.10.008. URL: https://

linkinghub . elsevier . com / retrieve / pii / S096706610400214X (visited on

10/29/2023).

Pedrocchi, Alessandra et al. (Dec. 2006). “Error mapping controller: a closed loop

neuroprosthesis controlled by artificial neural networks”. en. In: Journal of Neu-

roEngineering and Rehabilitation 3.1, p. 25. ISSN: 1743-0003. DOI: 10.1186/1743-

0003-3-25. URL: https://jneuroengrehab.biomedcentral.com/articles/

10.1186/1743-0003-3-25 (visited on 10/29/2023).

Rabinovich, Mikhail I. et al. (Nov. 2006). “Dynamical principles in neuroscience”. en.

In: Reviews of Modern Physics 78.4, pp. 1213–1265. ISSN: 0034-6861, 1539-0756.

DOI: 10.1103/RevModPhys.78.1213. URL: https://link.aps.org/doi/10.

1103/RevModPhys.78.1213 (visited on 10/29/2023).

75

Skinner, Frances K (2006). “Conductance-based models”. In: Scholarpedia 1.11, p. 1408.

Wächter, Andreas and Lorenz T. Biegler (Mar. 2006). “On the implementation of an

interior-point filter line-search algorithm for large-scale nonlinear programming”.

en. In: Mathematical Programming 106.1, pp. 25–57. ISSN: 0025-5610, 1436-4646.

DOI: 10.1007/s10107-004-0559-y. URL: http://link.springer.com/10.1007/

s10107-004-0559-y (visited on 10/29/2023).

Ullah, Ghanim and Steven J. Schiff (Apr. 2009). “Tracking and control of neuronal

Hodgkin-Huxley dynamics”. en. In: Physical Review E 79.4, p. 040901. ISSN: 1539-

3755, 1550-2376. DOI: 10.1103/PhysRevE.79.040901. URL: https://link.aps.

org/doi/10.1103/PhysRevE.79.040901 (visited on 10/29/2023).

Egner, Tobias, Jim M Monti, and Christopher Summerfield (2010). “Expectation and

surprise determine neural population responses in the ventral visual stream”. In:

Journal of Neuroscience 30.49, pp. 16601–16608.

Holkar, KS and Laxman M Waghmare (2010). “An overview of model predictive

control”. In: International Journal of Control and Automation 3.4, pp. 47–63.

Smith, Anne C et al. (2010). “State-space algorithms for estimating spike rate func-

tions”. In: Computational Intelligence and Neuroscience 2010, pp. 1–14.

Cunningham, John P. et al. (Apr. 2011). “A closed-loop human simulator for inves-

tigating the role of feedback control in brain-machine interfaces”. en. In: Jour-

nal of Neurophysiology 105.4, pp. 1932–1949. ISSN: 0022-3077, 1522-1598. DOI:

10.1152/jn.00503.2010. URL: https://www.physiology.org/doi/10.1152/

jn.00503.2010 (visited on 10/28/2023).

Pedregosa, Fabian et al. (2011). “Scikit-learn: Machine learning in Python”. In: The

Journal of Machine Learning Research 12, pp. 2825–2830.

76

Sterratt, David, ed. (2011). Principles of computational modelling in neuroscience.

OCLC: ocn690090171. Cambridge ; New York: Cambridge University Press. ISBN:

978-0-521-87795-4.

Toth, Bryan A. et al. (Oct. 2011). “Dynamical estimation of neuron and network

properties I: variational methods”. en. In: Biological Cybernetics 105.3-4, pp. 217–

237. ISSN: 0340-1200, 1432-0770. DOI: 10.1007/s00422-011-0459-1. URL: http:

//link.springer.com/10.1007/s00422-011-0459-1 (visited on 10/29/2023).

Gilja, V. et al. (Aug. 2012). “A brain machine interface control algorithm designed

from a feedback control perspective”. In: 2012 Annual International Conference

of the IEEE Engineering in Medicine and Biology Society. San Diego, CA: IEEE,

pp. 1318–1322. ISBN: 978-1-4577-1787-1 978-1-4244-4119-8. DOI: 10.1109/EMBC.

2012.6346180. URL: http://ieeexplore.ieee.org/document/6346180/ (vis-

ited on 10/28/2023).

Kostuk, Mark et al. (Mar. 2012). “Dynamical estimation of neuron and network prop-

erties II: path integral Monte Carlo methods”. en. In: Biological Cybernetics 106.3,

pp. 155–167. ISSN: 0340-1200, 1432-0770. DOI: 10.1007/s00422- 012- 0487- 5.

URL: http://link.springer.com/10.1007/s00422-012-0487-5 (visited on

10/29/2023).

Sherman-Gold, R (2012). “The axon guide, a guide to electrophysiology and bio-

physics laboratory techniques”. In: San Jose: Molecular Devices, LLC.

Kingma, Diederik P and Max Welling (2013). “Auto-encoding variational bayes”. In:

arXiv preprint arXiv:1312.6114.

Afram, Abdul and Farrokh Janabi-Sharifi (Feb. 2014). “Theory and applications of

HVAC control systems – A review of model predictive control (MPC)”. en. In:

Building and Environment 72, pp. 343–355. ISSN: 03601323. DOI: 10.1016/j.

77

buildenv.2013.11.016. URL: https://linkinghub.elsevier.com/retrieve/

pii/S0360132313003363 (visited on 10/28/2023).

Knowlton, Chris et al. (June 2014). “Dynamical estimation of neuron and network

properties III: network analysis using neuron spike times”. en. In: Biological Cy-

bernetics 108.3, pp. 261–273. ISSN: 0340-1200, 1432-0770. DOI: 10.1007/s00422-

014-0601-y. URL: http://link.springer.com/10.1007/s00422-014-0601-y

(visited on 10/29/2023).

Meliza, C Daniel et al. (Aug. 2014). “Estimating parameters and predicting membrane

voltages with conductance-based neuron models.” English. In: Biol Cybern 108.4,

pp. 495–516. DOI: 10.1007/s00422-014-0615-5. URL: http://link.springer.

com/10.1007/s00422-014-0615-5.

Nowotny, Thomas and Rafael Levi (2014). “Voltage-Clamp Technique”. en. In: En-

cyclopedia of Computational Neuroscience. Ed. by Dieter Jaeger and Ranu Jung.

New York, NY: Springer New York, pp. 1–5. ISBN: 978-1-4614-7320-6. DOI: 10.

1007/978-1-4614-7320-6_137-2. URL: http://link.springer.com/10.1007/

978-1-4614-7320-6_137-2 (visited on 10/27/2023).

Grosenick, Logan, James H. Marshel, and Karl Deisseroth (Apr. 2015). “Closed-Loop

and activity-guided optogenetic control”. en. In: Neuron 86.1, pp. 106–139. ISSN:

08966273. DOI: 10.1016/j.neuron.2015.03.034. URL: https://linkinghub.

elsevier.com/retrieve/pii/S0896627315002585 (visited on 10/27/2023).

Milias-Argeitis, Andreas and Mustafa Khammash (Dec. 2015). “Adaptive Model Pre-

dictive Control of an optogenetic system”. In: 2015 54th IEEE Conference on

Decision and Control (CDC). Osaka: IEEE, pp. 1265–1270. ISBN: 978-1-4799-

7886-1. DOI: 10.1109/CDC.2015.7402385. URL: http://ieeexplore.ieee.org/

document/7402385/ (visited on 10/29/2023).

78

Newman, Jonathan P et al. (July 2015). “Optogenetic feedback control of neural

activity”. en. In: eLife 4, e07192. ISSN: 2050-084X. DOI: 10.7554/eLife.07192.

URL: https://elifesciences.org/articles/07192 (visited on 10/28/2023).

Rey, Hernan Gonzalo, Carlos Pedreira, and Rodrigo Quian Quiroga (2015). “Past,

present and future of spike sorting techniques”. In: Brain research bulletin 119,

pp. 106–117.

Mulansky, Mario and Thomas Kreuz (2016). “PySpike—A Python library for analyz-

ing spike train synchrony”. en. In: SoftwareX 5, pp. 183–189. ISSN: 23527110. DOI:

10.1016/j.softx.2016.07.006. URL: https://linkinghub.elsevier.com/

retrieve/pii/S2352711016300255 (visited on 10/29/2023).

Pang, Rich, Benjamin J Lansdell, and Adrienne L Fairhall (2016). “Dimensionality

reduction in neuroscience”. In: Current Biology 26.14, R656–R660.

Shanechi, Maryam M., Amy L. Orsborn, and Jose M. Carmena (Apr. 2016). “Robust

Brain-Machine Interface Design Using Optimal Feedback Control Modeling and

Adaptive Point Process Filtering”. en. In: PLOS Computational Biology 12.4. Ed.

by Olaf Sporns, e1004730. ISSN: 1553-7358. DOI: 10.1371/journal.pcbi.1004730.

URL: https://dx.plos.org/10.1371/journal.pcbi.1004730 (visited on

10/28/2023).

Wright, James et al. (July 2016). “A Review of Control Strategies in Closed-Loop

Neuroprosthetic Systems”. In: Frontiers in Neuroscience 10. ISSN: 1662-453X. DOI:

10 . 3389 / fnins . 2016 . 00312. URL: http : / / journal . frontiersin . org /

Article/10.3389/fnins.2016.00312/abstract (visited on 10/28/2023).

Jäckel, David et al. (2017). “Combination of high-density microelectrode array and

patch clamp recordings to enable studies of multisynaptic integration”. In: Scien-

tific reports 7.1, p. 978.

79

Shanechi, Maryam M., Amy L. Orsborn, Helene G. Moorman, et al. (Jan. 2017).

“Rapid control and feedback rates enhance neuroprosthetic control”. en. In: Nature

Communications 8.1, p. 13825. ISSN: 2041-1723. DOI: 10.1038/ncomms13825. URL:

https://www.nature.com/articles/ncomms13825 (visited on 10/28/2023).

Willett, Francis R et al. (Feb. 2017). “Feedback control policies employed by people

using intracortical brain–computer interfaces”. In: Journal of Neural Engineering

14.1, p. 016001. ISSN: 1741-2560, 1741-2552. DOI: 10.1088/1741-2560/14/1/

016001. URL: https://iopscience.iop.org/article/10.1088/1741-2560/14/

1/016001 (visited on 10/28/2023).

Brar, Harleen K et al. (2018). “Seizure reduction using model predictive control”. In:

2018 40th Annual International Conference of the IEEE Engineering in Medicine

and Biology Society (EMBC). IEEE, pp. 3152–3155.

Chen, Andrew N. and C. Daniel Meliza (Mar. 2018). “Phasic and tonic cell types in

the zebra finch auditory caudal mesopallium”. en. In: Journal of Neurophysiology

119.3, pp. 1127–1139. ISSN: 0022-3077, 1522-1598. DOI: 10.1152/jn.00694.2017.

URL: https://www.physiology.org/doi/10.1152/jn.00694.2017 (visited on

10/29/2023).

Kaiser, E., J. N. Kutz, and S. L. Brunton (Nov. 2018). “Sparse identification of

nonlinear dynamics for model predictive control in the low-data limit”. en. In:

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sci-

ences 474.2219, p. 20180335. ISSN: 1364-5021, 1471-2946. DOI: 10.1098/rspa.

2018.0335. URL: https://royalsocietypublishing.org/doi/10.1098/rspa.

2018.0335 (visited on 10/29/2023).

Lusch, Bethany, J Nathan Kutz, and Steven L Brunton (2018). “Deep learning for

universal linear embeddings of nonlinear dynamics”. In: Nature communications

9.1, p. 4950.

80

Wehmeyer, Christoph and Frank Noé (2018). “Time-lagged autoencoders: Deep learn-

ing of slow collective variables for molecular kinetics”. In: The Journal of chemical

physics 148.24.

Wouters, Jasper, Fabian Kloosterman, and Alexander Bertrand (2018). “Towards

online spike sorting for high-density neural probes using discriminative template

matching with suppression of interfering spikes”. In: Journal of neural engineering

15.5, p. 056005.

Andersson, Joel A. E. et al. (Mar. 2019). “CasADi: a software framework for nonlinear

optimization and optimal control”. en. In: Mathematical Programming Computa-

tion 11.1, pp. 1–36. ISSN: 1867-2949, 1867-2957. DOI: 10.1007/s12532-018-0139-

4. URL: http://link.springer.com/10.1007/s12532-018-0139-4 (visited on

10/29/2023).

Bao, Xuefeng et al. (Oct. 2019). “Model Predictive Control of a Feedback-Linearized

Hybrid Neuroprosthetic System With a Barrier Penalty”. en. In: Journal of Com-

putational and Nonlinear Dynamics 14.10, p. 101009. ISSN: 1555-1415, 1555-1423.

DOI: 10.1115/1.4042903. URL: https://asmedigitalcollection.asme.org/

computationalnonlinear/article/doi/10.1115/1.4042903/632790/Model-

Predictive-Control-of-a-FeedbackLinearized (visited on 10/29/2023).

Bieker, Katharina et al. (2019). “Deep Model Predictive Control with Online Learning

for Complex Physical Systems”. In: Publisher: arXiv Version Number: 1. DOI:

10.48550/ARXIV.1905.10094. URL: https://arxiv.org/abs/1905.10094

(visited on 10/29/2023).

Bjoring, Margot C. and C. Daniel Meliza (Jan. 2019). “A low-threshold potassium

current enhances sparseness and reliability in a model of avian auditory cortex”.

en. In: PLOS Computational Biology 15.1. Ed. by Arthur Leblois, e1006723. ISSN:

81

1553-7358. DOI: 10.1371/journal.pcbi.1006723. URL: https://dx.plos.org/

10.1371/journal.pcbi.1006723 (visited on 10/29/2023).

Bourdeau, Mathieu et al. (July 2019). “Modeling and forecasting building energy

consumption: A review of data-driven techniques”. en. In: Sustainable Cities and

Society 48, p. 101533. ISSN: 22106707. DOI: 10.1016/j.scs.2019.101533. URL:

https://linkinghub.elsevier.com/retrieve/pii/S2210670718323862 (vis-

ited on 10/29/2023).

Brunton, Steven L. and Jose Nathan Kutz (2019). Data-driven science and engineer-

ing: machine learning, dynamical systems, and control. Cambridge: Cambridge

University Press. ISBN: 978-1-108-42209-3.

Neftci, Emre O., Hesham Mostafa, and Friedemann Zenke (2019). “Surrogate Gradi-

ent Learning in Spiking Neural Networks: Bringing the Power of Gradient-Based

Optimization to Spiking Neural Networks”. In: IEEE Signal Processing Magazine

36.6, pp. 51–63. DOI: 10.1109/MSP.2019.2931595.

Odaibo, Stephen (2019). “Tutorial: Deriving the standard variational autoencoder

(vae) loss function”. In: arXiv preprint arXiv:1907.08956.

Plaster, Benjamin and Gautam Kumar (Sept. 2019). “Data-Driven Predictive Mod-

eling of Neuronal Dynamics Using Long Short-Term Memory”. en. In: Algorithms

12.10, p. 203. ISSN: 1999-4893. DOI: 10.3390/a12100203. URL: https://www.

mdpi.com/1999-4893/12/10/203 (visited on 10/29/2023).

Raković, Saša V. and William S. Levine, eds. (2019). Handbook of Model Predictive

Control. en. Control Engineering. Cham: Springer International Publishing. ISBN:

978-3-319-77488-6 978-3-319-77489-3. DOI: 10.1007/978-3-319-77489-3. URL:

http : / / link . springer . com / 10 . 1007 / 978 - 3 - 319 - 77489 - 3 (visited on

10/29/2023).

82

Chatterjee, Sarthak et al. (2020). “Fractional-order model predictive control as a

framework for electrical neurostimulation in epilepsy”. In: Journal of Neural En-

gineering 17.6, p. 066017.

Hewing, Lukas et al. (May 2020). “Learning-Based Model Predictive Control: Toward

Safe Learning in Control”. en. In: Annual Review of Control, Robotics, and Au-

tonomous Systems 3.1, pp. 269–296. ISSN: 2573-5144, 2573-5144. DOI: 10.1146/

annurev-control-090419-075625. URL: https://www.annualreviews.org/

doi/10.1146/annurev-control-090419-075625 (visited on 10/29/2023).

Beniaguev, David, Idan Segev, and Michael London (2021). “Single cortical neurons

as deep artificial neural networks”. In: Neuron 109.17, pp. 2727–2739.

Bolus, M F et al. (June 2021). “State-space optimal feedback control of optogenet-

ically driven neural activity”. In: Journal of Neural Engineering 18.3, p. 036006.

ISSN: 1741-2560, 1741-2552. DOI: 10 . 1088 / 1741 - 2552 / abb89c. URL: https :

//iopscience.iop.org/article/10.1088/1741- 2552/abb89c (visited on

10/28/2023).

Chung, SueYeon and Larry F Abbott (2021). “Neural population geometry: An ap-

proach for understanding biological and artificial neural networks”. In: Current

opinion in neurobiology 70, pp. 137–144.

Schwenzer, Max et al. (Nov. 2021). “Review on model predictive control: an engineer-

ing perspective”. en. In: The International Journal of Advanced Manufacturing

Technology 117.5-6, pp. 1327–1349. ISSN: 0268-3768, 1433-3015. DOI: 10.1007/

s00170-021-07682-3. URL: https://link.springer.com/10.1007/s00170-

021-07682-3 (visited on 10/28/2023).

Zhang, Qiaosheng et al. (June 2021). “A prototype closed-loop brain–machine inter-

face for the study and treatment of pain”. en. In: Nature Biomedical Engineer-

ing 7.4, pp. 533–545. ISSN: 2157-846X. DOI: 10.1038/s41551- 021- 00736- 7.

83

URL: https://www.nature.com/articles/s41551-021-00736-7 (visited on

10/28/2023).

Clark, Randall, Luke Fairbanks, et al. (Nov. 2022). Data Driven Regional Weather

Forecasting. preprint. Predictability, probabilistic forecasts, data assimilation, in-

verse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big

data and artificial intelligence. DOI: 10.5194/egusphere-2022-1222. URL: https:

//egusphere.copernicus.org/preprints/2022/egusphere-2022-1222/ (vis-

ited on 10/29/2023).

Clark, Randall, Lawson Fuller, et al. (June 2022). “Reduced-Dimension, Biophysical

Neuron Models Constructed From Observed Data”. en. In: Neural Computation

34.7, pp. 1545–1587. ISSN: 0899-7667, 1530-888X. DOI: 10.1162/neco_a_01515.

URL: https://direct.mit.edu/neco/article/34/7/1545/111332/Reduced-

Dimension-Biophysical-Neuron-Models (visited on 10/29/2023).

Emiliani, Valentina et al. (July 2022). “Optogenetics for light control of biological

systems”. en. In: Nature Reviews Methods Primers 2.1, p. 55. ISSN: 2662-8449. DOI:

10.1038/s43586-022-00136-4. URL: https://www.nature.com/articles/

s43586-022-00136-4 (visited on 10/27/2023).

Gomari, Daniel P et al. (2022). “Variational autoencoders learn transferrable repre-

sentations of metabolomics data”. In: Communications Biology 5.1, p. 645.

Pandarinath, Chethan and Sliman J. Bensmaia (Apr. 2022). “The science and en-

gineering behind sensitized brain-controlled bionic hands”. en. In: Physiological

Reviews 102.2, pp. 551–604. ISSN: 0031-9333, 1522-1210. DOI: 10.1152/physrev.

00034.2020. URL: https://journals.physiology.org/doi/10.1152/physrev.

00034.2020 (visited on 10/28/2023).

Wolf, Derek N. and Eric M. Schearer (Apr. 2022). “Trajectory Optimization and

Model Predictive Control for Functional Electrical Stimulation-Controlled Reach-

84

ing”. In: IEEE Robotics and Automation Letters 7.2, pp. 3093–3098. ISSN: 2377-

3766, 2377-3774. DOI: 10.1109/LRA.2022.3145946. URL: https://ieeexplore.

ieee.org/document/9691884/ (visited on 10/29/2023).

Yue, Rongting, Ryan Tomastik, and Abhishek Dutta (May 2022). Non-linear Model-

based Control of Neural Cell Dynamics. preprint. In Review. DOI: 10.21203/

rs.3.rs-580874/v2. URL: https://www.researchsquare.com/article/rs-

580874/v2 (visited on 10/29/2023).

Zaaimi, B. et al. (Oct. 2022). “Closed-loop optogenetic control of the dynamics of

neural activity in non-human primates”. en. In: Nature Biomedical Engineering 7.4,

pp. 559–575. ISSN: 2157-846X. DOI: 10.1038/s41551-022-00945-8. URL: https:

//www.nature.com/articles/s41551-022-00945-8 (visited on 10/27/2023).

Zhao, Cheng and Lei Guo (Aug. 2022). “Towards a theoretical foundation of PID

control for uncertain nonlinear systems”. en. In: Automatica 142, p. 110360. ISSN:

00051098. DOI: 10.1016/j.automatica.2022.110360. URL: https://linkinghub.

elsevier.com/retrieve/pii/S0005109822002102 (visited on 10/29/2023).

Bergs, Amelie C. F. et al. (Apr. 2023). “All-optical closed-loop voltage clamp for

precise control of muscles and neurons in live animals”. en. In: Nature Commu-

nications 14.1, p. 1939. ISSN: 2041-1723. DOI: 10.1038/s41467-023-37622-6.

URL: https://www.nature.com/articles/s41467-023-37622-6 (visited on

10/27/2023).

Eshraghian, Jason K. et al. (2023). “Training Spiking Neural Networks Using Lessons

From Deep Learning”. In: Proceedings of the IEEE 111.9, pp. 1016–1054. DOI:

10.1109/JPROC.2023.3308088.

Fehrman, Christof and C Daniel Meliza (2023). “Nonlinear Model Predictive Control

of a Conductance-Based Neuron Model via Data-Driven Forecasting”. In: arXiv

preprint arXiv:2312.14274.

85

Fiedler, Felix et al. (Nov. 2023). “do-mpc: Towards FAIR nonlinear and robust model

predictive control”. en. In: Control Engineering Practice 140, p. 105676. ISSN:

09670661. DOI: 10.1016/j.conengprac.2023.105676. URL: https://linkinghub.

elsevier.com/retrieve/pii/S0967066123002459 (visited on 10/29/2023).

Fortunato, Cátia et al. (2023). “Nonlinear manifolds underlie neural population ac-

tivity during behaviour”. In: bioRxiv.

Fox, Zachary R, Gregory Batt, and Jakob Ruess (Sept. 2023). “Bayesian filtering for

model predictive control of stochastic gene expression in single cells”. In: Physical

Biology 20.5, p. 055003. ISSN: 1478-3967, 1478-3975. DOI: 10.1088/1478-3975/

ace094. URL: https://iopscience.iop.org/article/10.1088/1478-3975/

ace094 (visited on 10/29/2023).

Lambeth, Krysten, Mayank Singh, and Nitin Sharma (May 2023). “Robust Control

Barrier Functions for Safety Using a Hybrid Neuroprosthesis”. In: 2023 Amer-

ican Control Conference (ACC). San Diego, CA, USA: IEEE, pp. 54–59. ISBN:

9798350328066. DOI: 10 . 23919 / ACC55779 . 2023 . 10155862. URL: https : / /

ieeexplore.ieee.org/document/10155862/ (visited on 10/29/2023).

Langdon, Christopher, Mikhail Genkin, and Tatiana A Engel (2023). “A unifying

perspective on neural manifolds and circuits for cognition”. In: Nature Reviews

Neuroscience, pp. 1–15.

Lin, Linyu et al. (Feb. 2023). “Development and assessment of a model predictive

controller enabling anticipatory control strategies for a heat-pipe system”. en. In:

Progress in Nuclear Energy 156, p. 104527. ISSN: 01491970. DOI: 10.1016/j.

pnucene.2022.104527. URL: https://linkinghub.elsevier.com/retrieve/

pii/S0149197022004012 (visited on 10/28/2023).

Martinez, Sebastian et al. (2023). “Dynamical models in neuroscience from a closed-

loop control perspective”. In: IEEE Reviews in Biomedical Engineering 16, pp. 706–

86

721. ISSN: 1937-3333, 1941-1189. DOI: 10.1109/RBME.2022.3180559. URL: https:

//ieeexplore.ieee.org/document/9791075/ (visited on 10/27/2023).

Salzmann, Tim et al. (Apr. 2023). “Real-Time Neural MPC: Deep Learning Model

Predictive Control for Quadrotors and Agile Robotic Platforms”. In: IEEE Robotics

and Automation Letters 8.4, pp. 2397–2404. ISSN: 2377-3766, 2377-3774. DOI: 10.

1109/LRA.2023.3246839. URL: https://ieeexplore.ieee.org/document/

10049101/ (visited on 10/29/2023).

Senthilvelmurugan, Nambi Narayanan and Sutha Subbian (Aug. 2023). “Active fault

tolerant deep brain stimulator for epilepsy using deep neural network”. en. In:

Biomedical Engineering / Biomedizinische Technik 68.4, pp. 373–392. ISSN: 0013-

5585, 1862-278X. DOI: 10.1515/bmt-2021-0302. URL: https://www.degruyter.

com/document/doi/10.1515/bmt-2021-0302/html (visited on 10/29/2023).

Singh, Mayank and Nitin Sharma (May 2023). “Data-driven Model Predictive Control

for Drop Foot Correction”. In: 2023 American Control Conference (ACC). San

Diego, CA, USA: IEEE, pp. 2615–2620. ISBN: 9798350328066. DOI: 10.23919/

ACC55779.2023.10156600. URL: https://ieeexplore.ieee.org/document/

10156600/ (visited on 10/29/2023).

Sun, Weinan et al. (2023). “Learning produces a hippocampal cognitive map in the

form of an orthogonalized state machine”. In: bioRxiv, pp. 2023–08.

Zheng, Yingzhe and Zhe Wu (Feb. 2023). “Physics-Informed Online Machine Learning

and Predictive Control of Nonlinear Processes with Parameter Uncertainty”. en.

In: Industrial & Engineering Chemistry Research 62.6, pp. 2804–2818. ISSN: 0888-

5885, 1520-5045. DOI: 10.1021/acs.iecr.2c03691. URL: https://pubs.acs.

org/doi/10.1021/acs.iecr.2c03691 (visited on 10/29/2023).

Taylor, Luke et al. (2024). “Temporal prediction captures retinal spiking responses

across animal species”. In: bioRxiv, pp. 2024–03.

87

Appendices

88

.1 Connor-Stevens Model Parameters

Parameter Type-I (Type-II) Unit

C 1 µFcm-2

ENa 50 mV

EK -77 mV

EA 80 mV

El -22 (-72.8) mV

gNa 120 mScm-2

gK 20 mScm-2

gA 47.7 (0) mScm-2

gl 0.3 mScm-2

.2 Artificial Circuit Hyperparameters

η β Trial Length (ms) Learning Rate Number of Epochs Batch Size

0.5 0.99 50 5× 10−4 3 128

Table 1: Training Hyperparameters

89

.3 sVAE Hyperparameters

.3.1 sVAE Layers

Layer Filters Kernel Size Stride Padding Output Size

Conv1 32 4 2 1 14x14

Conv2 64 4 2 1 7x7

Linear Layer - - - - 256

Table 2: Convolutional VAE Layer Hyperparameters

.3.2 sVAE Training

Learning Rate Batch Size Number of Epochs

1× 10−3 64 20

Table 3: Training Hyperparameters

.4 nVAE Hyperparameters

Hidden Layer Sizes Learning Rate Batch Size Number of Epochs

[128, 256, 1024, 256, 128] 1× 10−5 256 2000

Table 4: Training Hyperparameters

