
Custom Entity Extraction: An End-to-End Machine Learning

Pipeline Tailored to Unique Customer Data

CS4991 Capstone Report, 2023

Madelyn Khoury

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

mgk5ybb@virginia.edu

ABSTRACT

Appian Corporation, a producer of

enterprise software, hoped to improve the

performance of its intelligent document

processing (IDP) capabilities, particularly for

documents that are uniquely formatted, such

as documents used by their high-volume

customers. To improve accuracy of the

entities extracted from customer documents,

my team and I developed a custom entity

extraction (EE) feature, allowing clients to

use their own model rather than a model

shared among all Appian customers. I

adapted and streamlined the BROS model—

an open-source EE model capable of better

predictions—for use by customers.

Additionally, I built a Kedro machine

learning pipeline to integrate this new model

into the overall document-processing

workflow. My team and I created an end-to-

end inference workflow using the custom EE

model. Future work required to complete the

custom EE feature includes implementing a

training workflow for the model.

1. INTRODUCTION

Imagine a large company that processes

thousands of invoices per month. This

company hopes to automatically extract

information like the date and purchase

amount (also known as “entities”) from each

invoice so that employees don’t have to spend

dozens of hours doing so manually. The

company uses Appian’s IDP tools to process

the invoices—only to realize that the date

extracted from many of the invoices was

incorrect.

This example reveals the impacts of

inaccurate IDP, specifically inaccurate entity

extraction. When entity extraction fails, a

human must go through all the documents to

verify correctness of information and make

changes if necessary. In the previous

example, one would need to verify/edit the

date field extracted from each invoice. Doing

so defeats the purpose of automated

document processing and prevents customers

from being able to automate a core business

process, which means that Appian cannot

fully deliver its promise of business

automation. This outcome results in frustrated

customers, negative economic impacts for

Appian, and wasted time. In some cases,

errors might not be caught – either because

the customer has not realized that the model

performs poorly or because human verifiers

make mistakes. Such errors could lead to

inaccurate data being saved, putting the

customer’s business processes at risk. To

reduce the number of errors during entity

extraction, my team and I began

implementing a feature to allow customers to

train a custom model.

2. RELATED WORKS

Companies that produce software

products for their customers (called

“Software as a Service”, or SaaS, companies)

have long considered the tradeoff between

training a single, general purpose model and

training a unique model for each customer

[5]. General models may make use of more

training data, finding overall patterns among

all customers’ data and performing well as a

result [7]. However, training with inaccurate

data can decrease model performance; so,

when one customer’s data differs from the

data used to train the general model, a

specialized model may be the best option [5].

There are many models to choose from;

for this case, a language model, which learns

how words are strung together to create

sentences and thus to understand documents,

is relevant. Particularly, the Bidirectional

Encoder Representations from Transformers

(BERT) model achieves good performance

because it encodes an understanding of the

context entirely surrounding a word, not just

an understanding of what comes before or

after the word [4].

The BERT Relying On Spatiality (BROS)

model builds upon BERT to address the issue

of entity extraction. Specifically, BROS

encodes an understanding of document

layout, storing the relative location of one

word to every other word. BROS requires

fewer parameters than other entity extraction

models and achieves better performance on

key information extraction tasks [6].

The training and use of a machine

learning model consists of multiple steps.

Frameworks such as Kedro are intended to

help separate steps into discrete “nodes” in a

pipeline [1]. The Kedro framework has been

employed in industrial software contexts in

the past. For example, scientists at NASA’s

Ames research center chose Kedro as the

basis for a machine learning pipeline because

it allows for “abstract data access” [2].

Amblard, et al. used Kedro to create a

pipeline for model training [2]; in contrast,

this paper discusses the creation of a pipeline

for model inference.

3. PROJECT DESIGN

To implement the ability to perform

inference with a custom EE model, I created a

Kedro pipeline capable of making predictions

with a specified custom model based on the

BROS model. Then, I integrated this pipeline

into the existing document extraction

workflow.

3.1 Document Extraction Workflow

Appian’s existing inference workflow for

document extraction consists of several steps.

First, however, it will be useful to discuss

how the workflow is instigated. Figure 1

shows a flow chart representing the typical

use case for document extraction [3]; this

chart represents a customer business process

in which data is extracted from documents,

manually verified, and then written to a

database. When the “Extract from Document”

node is reached, a request is sent from the

Appian platform that users interact with,

called Appian Enterprise (AE). This request

is sent to the machine learning admin service

(MLAS), which is responsible for starting

workflows for different machine learning

capabilities. Document extraction inference is

just one of these workflows.

Figure 1. Typical Document Extraction

Process Model

The current document extraction

workflow begins with creating a Kubernetes

pod in which to run an optical character

recognition (OCR) model. The model is run,

producing “text extractions,” or the text

contents of a PDF previously unreadable by

computers. Next, the text extractions are

passed to Appian’s general EE model, along

with the desired information to extract.

Another Kubernetes pod is created, and the

general EE model performs inference;

identifying a piece of text (i.e., “extracted

entity”) from the document to match each

desired piece of information. Finally, the

extracted entities are passed back to AE,

where they can be used in later steps in the

process. The steps of the workflow are shown

in Figure 2.

Figure 2. Document Extraction Workflow

3.2 Modifications to Workflow

Implementing inference with a custom EE

model necessitated replacement of the general

EE model with a custom EE model. Thus,

most of the workflow could be preserved, but

it was necessary to create a program to run

inference with the new model and to deploy

that program with Kubernetes. This program

took the form of a data pipeline, implemented

with the Kedro framework. In addition, I

created functions in AE that would read the

results of EE with the new model, since the

results were in a slightly different form than

the EE results from the general model.

3.3 Kedro Pipeline for Inference

The process of running inference with a

machine learning model involves several

steps. My team elected to use the Kedro

framework to create a data pipeline, where

each step of the process could be executed in

a separate node. First, the text extractions

from the OCR model had to be loaded in,

cleaned, and converted to the required format

for use in the custom EE model. Second, I

created a dataset object which would package

the data into sections and make further

changes to the data format so it could be used

by the custom model that we chose, the

BROS model. Next, the model itself had to be

instantiated. As each customer will already

have a trained model, I loaded in the trained

model’s weights from a binary file and

created an object to represent the custom EE

model, which could then be used to make

predictions. Finally, I performed inference

using the model before finishing the process

by converting the BROS model’s predictions

into the format we wanted them to be in. Each

of these steps became a node in my Kedro

pipeline (see Figure3).

Figure 3. Kedro Pipeline

3.4 BROS Model Refactoring

The final design choice I made to

complete the inference workflow was to

refactor and streamline the BROS model. The

BROS model was produced as part of a

research project by Clova AI, an open-source

AI organization. The BROS model code by

itself was not production-ready for several

reasons. First, many functions were long and

hard to understand; I addressed this by

making variable names more descriptive and

decomposing large functions into smaller

ones that each completed only a single

operation. Second, the BROS model was first

created to be used with data in multiple

different formats. However, Appian had

decided on a standard data format, rendering

most of those formats unnecessary. I removed

all code pertaining to data formats that

Appian was not using. Additionally, I

removed other redundant/unused variables.

4. ANTICIPATED RESULTS

There are several anticipated benefits of

the entire custom EE feature. First, the BROS

model performed better than Appian’s current

general model in preliminary tests, achieving

a 27% increase in accuracy, as measured by

the model’s F1 score. We anticipate that

custom BROS models trained and used as

part of the custom EE feature will have a

similar performance increase. This increase

will be particularly beneficial for Appian’s

customers with uniquely formatted

documents, since they have, to date, received

the worst performance with the general EE

model. These customers tend to be the ones

that have the most documents to process, so

the custom EE feature is expected to greatly

reduce the number of manhours required to

process documents.

Additionally, Appian currently performs

about 6,000 extractions per month for over

170 customers, all of whom will be positively

impacted by the option of training a custom

EE model. I anticipate greater adoption of

IDP in general—manifesting as an increase in

both IDP customers and number of

extractions per month—since several

customers currently do not utilize IDP due to

its poor performance.

5. CONCLUSION

In this project, I implemented, integrated,

and tested a machine learning pipeline that

allows customers of Appian Corporation to

process documents using a model trained on

their unique data. Further, I adapted a state-

of-the-art EE model, BROS, to be production

ready for use in this pipeline.

As custom EE is anticipated to isolate

information from documents more accurately,

more customers will be able to adopt

Appian’s IDP functionality and to invest less

human labor into verifying document

processing results. This will allow Appian to

provide true automation of document

processing, in turn causing Appian to gain

more customers, achieve better customer

satisfaction, and see increased profits.

6. FUTUREWORK

Though the inference workflow for

custom EE has been completed, it is untested

in a production environment. For the custom

EE feature to be released to customers, an

additional workflow for training models will

have to be developed, as customers will have

to train their custom model before using it.

Then, further tests will have to be conducted

to verify that the two workflows interact well

with one another.

7. ACKNOWLEDGMENTS

Thank you to Steph Colen from Appian

Corporation for overseeing my technical

project.

REFERENCES

[1] Sajid Alam, Nok Lam Chan, Laura

Couto, Yetunde Dada, Ivan Danov,

Deepyaman Datta, Tynan DeBold,

Jitendra Gudaniya, Jannic Holzer,

Stephanie Kaiser, Rashida Kanchwala,

Ankita Katiyar, Ravi Kumar Pilla,

Amanda Koh, Andrew Mackay, Ahdra

Merali, Antony Milne, Huong Nguyen,

Vladimir Nikolic, Nero Okwa, Juan Luis

Cano Rodriguez, Joel Schwarzmann,

Dmitry Sorokin, Jo Stichbury, and Merel

Theisen. 2023. Kedro. Retrieved from

https://github.com/kedro-org/kedro

[2] Alexandre Amblard, Sarah Youlton, and

William J. Coupe. Real-Time Unimpeded

Taxi Out Machine Learning Service. In

AIAA AVIATION 2021 FORUM.

American Institute of Aeronautics and

Astronautics.

https://doi.org/10.2514/6.2021-2401

[3] Appian. 2023. Build a Doc Extraction

Process with AI Skill. Retrieved from

https://docs.appian.com/suite/help/23.3/d

oc-extraction-tutorial.html

[4] Jacob Devlin, Ming-Wei Chang, Kenton

Lee, and Kristina Toutanova. 2019.

BERT: Pre-training of Deep Bidirectional

Transformers for Language

Understanding.

https://doi.org/10.48550/arXiv.1810.0480

5

[5] Yonatan Hadar. 2021. Should I train a

model for each customer or use one

model for all of my customers? Medium.

Retrieved October 14, 2023 from

https://towardsdatascience.com/should-i-

train-a-model-for-each-customer-or-use-

one-model-for-all-of-my-customers-

f9e8734d991

[6] Teakgyu Hong, Donghyun Kim, Mingi Ji,

Wonseok Hwang, Daehyun Nam, and

Sungrae Park. 2022. BROS: A Pre-

trained Language Model Focusing on

Text and Layout for Better Key

Information Extraction from Documents.

https://doi.org/10.48550/arXiv.2108.0453

9

[7] Samuele Mazzanti. 2023. What Is Better:

One General Model or Many Specialized

Models? Medium. Retrieved October 14,

2023 from

https://towardsdatascience.com/what-is-

better-one-general-model-or-many-

specialized-models-9500d9f8751d

