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A precision measurement of the rubidium ionic core polarizability has been realized at

The University of Virginia. Development and implementation of a rubidium Rydberg state

spectroscopy apparatus, an appropriate model for interpreting spectroscopic results, anal-

ysis, and conclusions are documented and presented herein. Due to experiment design, the

spectroscopy measurements in this dissertation feature a greater precision and higher fi-

delity due to less pronounced systematic effects when compared to previous experiments.

Furthermore, the implementation of a non-adiabatic core polarization correction leads to

a core polarizability result that is more precise and commensurate with theory, potentially

resolving a long-standing discrepancy between experiment and theory. These results may

prove to be useful in future experiments and interpretation including, but not limited to:

parity non-conservation, black-body radiation shifts in atomic clocks, and quantum com-

putation.
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1|Introduction

1.1 Motivation

The main driving force for this work, like most work in physics, is to better understand our

universe. There are many questions that remain unanswered, and I hope this work serves

to promote future research and understanding to potentially answer some of these ques-

tions. One of the largest motivations in physics at this moment in time is finding physics

beyond the Standard Model. Ultimately, we are in the pursuit of truth and it is important to

push the boundaries of what we currently know. This allows us to learn and form a more

complete knowledge of phenomena in the future. There are countless examples through-

out history where an explanation is improved upon by probing further to facilitate a more

robust theory succeeding.

The Standard Model is the best description of subatomic processes at the moment, but

does not characterize all phenomena. By pushing the boundary of the Standard Model and

further exploring physics that support this goal, we can hope to learn a great deal of novel

physics and improve theories. Some phenomenons that are not well characterized by the

Standard Model include, but are not limited to: dark matter, dark energy, matter/anti-

matter asymmetries, and neutrino oscillations.

The fine details of the Standard Model and its theories and subatomic particles are

outside the scope of this dissertation; however, one may learn more by reviewing Ref. [1,

2]. The main goal of this work is to help facilitate the exploration of physics beyond the

Standard Model by supporting efforts that investigate fundamental symmetries.
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A symmetry is characterized as an invariance of a system under a transformation; and

a fundamental symmetry is characterized as an invariance of the universe under a transfor-

mation. Theories generally encompass observed symmetries, however if a symmetry is

proven to be broken experimentally, the theory is then adapted to take these factors into

account. The fundamental symmetry of interest to this work is parity symmetry. Under a

parity transformation, spatial coordinates (X, Y, and Z) are reflected.




X

Y

Z



→




−X

−Y

−Z




(1.1)

Parity is conserved in electromagnetic, strong, and gravitational interactions; however,

parity is not conserved in weak interactions [3]. Parity violation present in weak interactions

are represented as a chiral process in the Standard Model with left-handed components

for particles and right-handed components for anti-particles. Given the chirality of this

process, parity symmetry is not considered to be a fundamental symmetry of the universe

[4]. This parity asymmetry in the weak interaction may be important in understanding

matter and anti-matter asymmetries in our universe and further testing and potentially

adapting the Standard Model.

One of the major deficiencies of the Standard Model is its inability to explain matter-

antimatter asymmetry, the observed difference between imbalance in baryonic matter in

the observable universe. Within the Standard Model and General Theory of Relativity,

a system remains unchanged under a charge (C) conjugation. Along this line of reason-

ing, special relativity requires charge-parity-time (CPT) symmetry, implying that under a

mirror-image of our universe corresponding to a reversal of charge, parity, and time, the

universe would evolve in the same fashion. Therefore, charge, parity and time are all re-

lated, and studied intensely within the physics community. The primary interest of this

work is to support further research into the violation of parity symmetry.
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FIGURE 1.1: The weak mixing angle, sin2(θw), as a function of particle in-
teraction energy. The Standard Model theory prediction is denoted by the
line and the data points are from experiments [5, 6]. The arrows indicate the
energy region where a new particle is created, also explaining the turning

point in the Standard Model prediction.

Parity violation is characterized in the Standard Model by the weak mixing angle (θw).

The weak mixing angle is the measure of parity conservation, with parity conserved when

θw = 0 and violated when θw = π/2, corresponding to sin2(θw) = 0 and sin2(θw) = 1

respectively. The degree to which parity violating effects are manifested depends upon

the energy of the particle interactions. Figure 1.1 shows the Standard Model prediction

for the weak mixing angle, displayed as the line, and experimental results as data points

[5]. The energy scales at which this process can be observed range from the atomic level to

high-energy nuclear level.

As expected, new experiments, improved theory, simulations, and calculations lead to

reduced uncertainty. However, it is clear from the plot that the Standard Model theory

does not agree with experimental results across all interaction energies. For this reason,

there is a lot of interest in the areas of parity violation and the weak interaction with new
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experiments being proposed and conducted regularly. Most of the experiments to date

have been conducted at high particle interaction energies and are characterized as nuclear

and high energy measurements; however, one experiment was conducted at low particle

interaction energies, labeled atomic parity violation (APV) [7]. In the case of the 1997 APV

measurement shown in Figure 1.1, parity non-conserving effects (PNC) were observed by

measuring a transition rate between the 6s and 7s even parity states in Cesium. To further

explore atomic parity violation and the Standard Model, Carl Wieman presents a concise

review in Ref. [8].

The goal of the work presented here is to help garner interest in motivating another

APV measurement in the future; this time using rubidium (Rb) as the species being in-

vestigated instead of Cesium (Cs). Measurements using each species present advantages

and disadvantages. The main advantage for rubidium is that there have been significant

advances in measurement and theory of electronic dipole moments [9]. The primary dis-

advantage of investigating APV in rubidium is the fact that parity non-conservation effects

scale as Z3, where Z is the atomic number. This means that APV effects are approximately

3 times smaller in Rb compared to Cs, and thus more difficult to measure.

1.2 Atomic Parity Violation

Parity violation in an atomic system is dependent upon the atomic wavefunction and can

be observed as an electric dipole transition between two states of the same parity. In the

case of Cesium presented above, the transition measured is the 6s ground state to the 7s

excited state [7]. For rubidium, APV effects could be observed in the 5s ground state to

6s excited state transition. To get an idea for the energy scale for this transition, Figure 1.2

depicts the energy between the 5s1/2 ground state and 6s1/2 excited state of rubidium. The

transition between these states is forbidden by selection rules, but shown here nonetheless

for scale. Selection rules are discussed further in this section.
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5s1/2

6s1/2

497 nm

Rubidium

FIGURE 1.2: Rubidium 5s1/2 to 6s1/2 states for illustrative purposes of the
energy separation. A transition between these energy levels are forbid-
den by conservation of angular momentum and parity, but can be observed

through an APV experiment.

` Orbital
0 s
1 p
2 d
3 f
4 g
5 h
6 i
...

...

TABLE 1.1: Azimuthal quantum number and corresponding atomic sublevel
orbital.
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Atomic orbitals have (−1)` parity with ` = 0, 2, 4, . . . being even parity and ` = 1, 3, 5, . . .

being odd parity. The azimuthal quantum number, `, corresponding to the orbital angular

momentum, is shown in Table 1.1. The atomic wavefunction for even parity would be

Ψn`m(−r) = Ψn`m(r). (1.2)

And, the atomic wave function for odd parity would be

Ψn`m(−r) = −Ψn`m(r). (1.3)

Ultimately, the even or odd behavior of the wavefunction is dictated by the atomic or-

bitals. The wave function in terms of the radial Rn`(r) and spherical harmonics functions

Y`m(θ, φ) are

Ψn`m(r, θ, φ) = Rn`(r)Y`m(θ, φ) (1.4)

for a hydrogen atom in spherical coordinates. The radial and spherical harmonics are in-

dependent of each other and can be evaluated separately. Appendix B contains a list of

the first few radial functions and spherical harmonics. It follows that under a parity inver-

sion, r → r, θ → π − θ, and φ → φ + π, the radial portion of the wavefunction remains

unchanged Rn`(r) = Rn`(r) as expected. However, the spherical harmonic under a parity

inversion is given by

Y`m(π − θ, φ + π) = (−1)`Y`m(θ, φ). (1.5)

The wavefunction is therefore an eigenfunction of parity with the (−1)` dependence being

evident.

Now that the parity of the Hydrogen wavefunction has been shown, attention can be

turned to the total angular momentum. Total angular momentum and parity are both
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conserved with the following condition is satisfied

Ji = Jf + γ. (1.6)

The angular momentum and parity of the initial atomic state Ji must be the same as the

combined angular momentum and parity of the final atomic state Jf and angular momen-

tum of the interacting photon γ. Angular momentum J = L + S where L is the orbital

angular momentum and S is the spin. For parity to be conserved, |n`〉 → |n′`〉 would be

a forbidden transition based upon the above principles and the ∆` = ±1 selection rule for

an electric dipole transition. Here, n is the principal quantum number, ` is the azimuthal

quantum number, and m the magnetic quantum number. Just as described above, a photon

interacting with an atomic state must exchange at least quantum of angular momentum

for an electric dipole transition, reflected as a change in the ` atomic sublevel.

The PNC transition rate, ATheory
PNC , of parity non-conservation effects in theory is repre-

sented as a second order perturbation and shown in Eqn. (1.7). This process is dependent

upon the electric dipole moment d = er and the parity non-conserving Hamiltonian HPNC.

ATheory
PNC (Rb) =

∞

∑
n′=5

(
〈6s1/2|d|n′p1/2〉〈n′p1/2|HPNC|5s1/2〉

E5s1/2 − En′p1/2

+
〈6s1/2|HPNC|n′p1/2〉〈n′p1/2|d|5s1/2〉

E6s1/2 − En′p1/2

)
(1.7)

APV coupling strength is given by 〈n′p1/2|HPNC|ns1/2〉 and the dipole matrix elements

are given by 〈ns1/2|d|n′p1/2〉. State 5s and 6s transitions are depicted in the atomic parity

violation transition amplitude to reflect Rb as the species being investigated. The PNC

transition rate is in turn related to the weak mixing angle through knowledge of dipole
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matrix elements, either measured or calculated. It is therefore apparent that parity non-

conserving effects are manifested as the mixing of |n′p1/2〉 states into the |ns1/2〉 states

[7].

Unfortunately, atomic theory uncertainties are currently the dominant limiting factor

in evaluating the weak mixing angle from the APV experiment. These theoretical uncer-

tainties stem from additional experimental uncertainties and unknowns when calculating

the dipole matrix elements. In order to relate the measurable APV transition rate APNC to

the motivational goal of further constraining weak mixing angle sin2(θw) to test the Stan-

dard Model, the PNC Hamiltonian HPNC must be determined. To accomplish this, the

electric dipole matrix elements, 〈n′p1/2|d|ns1/2〉, must be known.

1.3 Dipole Matrix Elements

Dipole matrix elements can be experimentally measured both directly and indirectly. A di-

rect measurement of dipole matrix elements can be achieved through spontaneous emission.

The rate of spontaneous emission between two states, i and f is represented in Eqn. (1.8).

Γspn
i→ f =

4αω3
i f |di f |2
3c2 (1.8)

where α is the fine structure constant, c is the speed of light, di f is the dipole reduced matrix

element, and ωi f = (Ei − E f )/h̄ [10].

However, measuring spontaneous emission accurately is challenging. The sponta-

neous emission rate equation, Eqn. (1.8), provides some key insights into these weak

coupling effects. Further analyzing this equation shows that the spontaneous emission

transition rate depends on the transition frequency (ωi f ) and electric dipole moments, dis-

played in this equation as reduced dipole matrix elements di f . For higher frequency transi-

tions, transitions with large energy level separation, the spontaneous transition rate occurs
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more rapidly. For lower frequency transitions, the transition rate is slower. Additionally,

higher spontaneous emission rates are allowed for larger electric dipole matrix elements.

Due to this dependence on electric dipole matrix elements, transitions that are forbidden

by selection rules have a small probability of occurring. The very low probability of the

forbidden 5s → 6s transition occurring for an APV measurement makes measurement of

this effect to better than 10−3 uncertainty a challenge [11, 12].

Indirect measurement of dipole matrix elements using electric polarizability is an alterna-

tive approach with more easily identifiable effects. The relationship between polarizability

and the dipole matrix elements is

α ∼
∞

∑
n′=5

|〈n′p1/2|d|5s1/2〉|2
E5s1/2 − En′p1/2

(1.9)

with d = er being the electric dipole moment introduced above. There is a clear and

evident dependency of electric dipole polarizability on electric dipole matrix elements.

Electric dipole polarizability measurements are accomplished by applying an electric

field and observing the response of the atom. This is known as the Stark effect and shown

in Eqn. (1.10).

∆E = −1
2

α〈E〉2 (1.10)

where α is the electric polarizability and E is an externally applied electric field. This

therefore scales linearly depending upon the electric field intensity I = cε〈E〉2, where c is

the speed of light and ε is relative permittivity.

〈∆E〉 = − 1
2cε

α(ω)I (1.11)

A strong electric field can be achieved with a laser, however it is non-trivial to calibrate

laser intensity accurately; thus this is a limiting factor in polarizability measurement un-

certainty. The polarizability term α was replaced with α(ω) between equations Eqn. (1.10)
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and Eqn. (1.11) to show a dynamic polarizability, or polarizability dependent on external

electric field frequency. There are techniques such as tune-out wavelength spectroscopy uti-

lizing the ac Stark effect in Eqn. (1.11) to better constrain polarizability measurements [13].

The tune-out wavelength is the wavelength where atom polarizability goes to zero. The

polarizability of rubidium between the 5p1/2 and 5p3/2 transitions are shown in Figure

1.3. Since tune-out wavelength spectroscopic measurements are concerned with measur-

ing where atom polarizability is equal to zero, precision measurements are possible. This is

because the tune-out wavelength measurement is independent of laser intensity, the dom-

inant source of uncertainty in polarizability measurements. This is of significant interest to

the Sackett research group with the work presented here in support of the tune-out wave-

length measurements. More information about the tune-out wavelength measurements

can be found in Ref. [14].

Theoretical computation of dipole matrix elements is possible; however, it is difficult

to know the accuracy. Challenges to this calculation accuracy stems from small final calcu-

lated numbers and large correlation corrections required for different contributions. Indi-

vidual dipole matrix elements are able to be calculated to 10−4 with heavy computational

resources required to obtain each individual matrix element value. However, there are an

infinite number of terms, and computation results in a finite number as a result. Addition-

ally, the polarizability has been presented without core contributions. For atoms with a

single valence electron, the total polarizability of the atom can be separated to account for

two contributions: the polarizability of the valence electron and the polarizability of the

core. The core contribution is similar to that of the corresponding ion which is denoted as

αcore. However, there is an additional correction because the ionic polarizability is modified

by the presence of the valence electron. This correction is denoted as αcv [15, 16]. For Alkali

atoms, the valence contribution of the ground state polarizability is primarily dominated

by the contribution from the lowest excited state. In the case of Rb+, the 5s1/2 → 5p1/2

and 5s1/2 → 5p3/2 transitions contribute more than 99% of the Rb valence polarizability
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FIGURE 1.3: Atom polarizability as a function of wavelength between the
5p1/2 and 5p3/2 transitions, illustrated with dotted lines. A tune-out wave-
length is located where the polarizability crosses zero, near 790 nm. Polariz-
abilities are calculated as a function of wavelength given by the polarizabil-

ity contributions in Ref. [9].
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[17]. As for the total polarizability, the Rb ionic core polarizability contributes a significant

portion, approximately 11% [18]. With these additional terms, the polarizability can be

expressed as shown in Eqn. (1.12).

α =
∞

∑
n′=5

|〈n′p1/2|d|5s1/2〉|2
E5s1/2 − En′p1/2

+ αcore + αcv (1.12)

Ultimately, the theories combine with experimental measurements to infer the values

of the dipole matrix elements. Therefore, high-precision measurements better constraining

the matrix elements and contributions from other effects are required [18]. The atomic core

and high-lying valence state manifold effects can be determined, and knowledge of these

are required for relating to atomic parity violation measurements. These contributions

are relatively small; however, they are the dominant source of uncertainty in interpreting

experimental results. And of primary interest herein, the atomic core polarizability contri-

bution αcore is investigated and determined directly by a Rydberg atom experiment.

1.4 Rydberg atoms

A Rydberg atom is an atom in a state of high principal quantum number, n. Generally,

these include atoms of principal quantum number n > 10. Rydberg atoms have long

been of interest due to their exaggerated properties such as size, geometric cross section,

long lifetime, low binding energy, and large dipole moment. These exaggerated properties

lead to a high sensitivity to electric and magnetic fields, long decay times compared to the

ground state, and wavefunctions that can sometimes be approximated by classical orbits.

Table 1.2 shows how some atom properties scale with principal quantum number [19].

Alkali metals, identified in group 1 of the periodic table of elements, have one valence

electron. Due to the large orbit radius of the alkali Rydberg atom, the valence electron is

spatially distant from the core; where the core is defined as the atom nucleus and core elec-

trons with the valence electron excluded. The core electrons effectively shield the valence
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Property n dependence
Binding energy n−2

Energy between adjacent n states n−3

Orbital radius n2

Geometric cross section n4

Dipole moment 〈nd|er|n f 〉 n2

Polarizability n7

Radiative lifetime n3

Fine structure interval n−3

TABLE 1.2: Rydberg atom properties are exaggerated at high principal quan-
tum number, n. This table shows the scaling dependence of various atom

characteristics based on n [19].

Rb+

e-

FIGURE 1.4: Rubidium Rydberg atom with core electrons, depicted as the
shaded region, shielding the valence electron from the electric field of the
nucleus. This figure is not drawn to scale to show the similarity of alkali
metal Rydberg atoms with the hydrogen atom, and accentuating the cloud

of core electrons of finite size.

electron from the electric field of the nucleus. The result is effectively a positive ionic core

with one orbiting valence electron, depicted in Figure 1.4. This therefore resembles the

hydrogen atom and can be approximated as such.

To account for the ionic core of the alkali Rydberg atom when compared to hydrogen,

the resulting potential seen by the valence electron is deeper than that of just the Coulomb

potential for hydrogen. This corrected potential is represented by

P.E. = −1
r
−Vcore(r) (1.13)
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where Vcore is a short range potential difference between the alkali atom and Hydrogen. For

0 < r < r0, the radius of the rubidium core, the potential is non-zero. This is the correction

that accounts for the polarization effects and the valence electron penetrating and the ionic

core. For r > r0, the lower potential of the alkali atom compared to Hydrogen manifests as

a phase shift to the wavefunction and leads to a lower energy when compared to hydrogen.

The energies of the Rydberg states, denoted as W, are given by the Rydberg forumla

W =
−Ry

(n− δ`)2 (1.14)

where Ry is the Rydberg constant and δ` corresponds to the phase shift to the wavefunction

depressing the energies compared to hydrogen. This δ` is known as the quantum defect. The

quantum defect corresponds to the correction to the Coulomb potential introduced earlier

to account for core penetration and polarization effects. Additionally, it is sometimes con-

venient to use the effective principal quantum number n∗ = (n− δ`), and this convention

will occasionally be used throughout this writing; and unlike n, n∗ can be a non-integer

because it is an effective quantum number.

For low orbital momentum states, the valence electron’s orbit is highly elliptical and the

valence electron comes close to or penetrates the core electrons on each orbit. Low orbital

momentum states are characterized as ` < 4 for rubidium. This results in polarization or

penetration of the core and a depression of energy levels when compared to Hydrogen.

For high angular momentum states (` > 3), the orbit path is more circular and the

valence electron is less likely to sample the ionic core. This results in high angular mo-

mentum states being less susceptible to core penetration effects. The dominant effect on

the valence electron is thus due to core polarization. For this reason, it is the intent of this

work to measure core polarization of rubidium αcore, as shown in Eqn. (1.12) by studying

high angular momentum states of rubidium Rydberg atoms.



Chapter 1. Introduction 15

1.5 Core polarization model

The core polarization model makes the assumption that the valence electron is moving in a

hydrogenic orbit around the ionic core and the ionic core is polarized by the electrostatic

interaction with the valence electron [20, 21]. For ` > 3 states of rubidium, where the

valence electron energy shift from Hydrogen is mainly due to core polarization, the energy

levels can be expressed (in atomic units, a.u.) as

Wn` = −
1

2n2 + Wpol (1.15)

where Wpol is the energy shift from Hydrogen due to core polarization. This equation

thus neglects core penetration effects, and Wpol accounts for the energy shift due to core

polarization effects, meaning that the quantum defect is now encompassed in this term.

First introduced by Born, the following equation approximates the polarization energy

Wpol as

Wpol = −
αd

2
〈r−4〉 − αq

2
〈r−6〉 (1.16)

in a multipole expansion, with αd and αq being the dipole and quadruple polarizability,

respectively [20]. Within the concepts and framework presented by Mayer and Mayer, the

octopole and higher order terms in the expansion are treated as negligible [21]. The ex-

pectation values 〈r−4〉 and 〈r−6〉 are for the hydrogen wave functions and are tabulated

analytically in Ref. [22]. Hydrogen wave functions can be used to determine the expecta-

tion values since this model assumes that the Rydberg electron is moving in a hydrogenic

orbit around the ionic core with high ` states having quantum defects which are largely

due to core polarization effects. The first term on the right hand side of Eqn. (1.16) cor-

responds to energy shift due to the static field of the Rydberg electron. The electric field

from the Rydberg electron is given by E = −1/r2 in atomic units, with 〈r−4〉 correspond-

ing to 〈E〉2. The second term on the right hand side of Eqn. (1.16) corresponds the the
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State Quantum Defect
s 3.13
p 2.64
d 1.35
f 0.016
g 0.004
h 0.001

TABLE 1.3: Quantum defects for Rubidium. Due to increasingly circularity
of the valence electron orbit at higher angular momentum states, the valence
electron interacts less with the core. Therefore, core penetration effects de-

crease, and by consequence the quantum defect decreases.

energy shift as a result of the gradient of the field from the Rydberg electron, with 〈r−6〉
corresponding to |∇E|2.

Measurement of the core polarization effects and the quantum defects can be achieved

through spectroscopic methods [23, 24, 25]. The quantum defects for ` = 0− 5 for rubid-

ium are shown in Table 1.3. From this table, it is evident that as the angular momentum

state increases, the quantum defect decreases. This is due to core penetration and core

polarization effects decreasing due to the more circular orbit of the valence electron. This

therefore results in the rubidium energy spectrum beginning to become more similar to

hydrogen.

1.6 Non-adiabatic correction of the core polarization model

Up to this point in the formalism, the core polarization energy shift had been determined

by the electrostatic interaction. Ignoring the time-dependence of the electric field due to the

valence electron is known as the adiabatic approximation. However, the core polarizability is

dynamic and the motion of the valence electron leads to a change in the energy shift. This

dynamic polarizability effect is small, however it has the ability to affect the quadrupole

polarizability term in a non-negligible manner.
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For the adiabatic approximation presented earlier to be a representative approximation,

the orbit of the valence electron must be sufficiently circular around the ionic core and ab-

sorption frequencies of the ionic core must be large compared to the Bohr frequencies of

transitions accessible to the valence electron [26]. Therefore, for the adiabatic approxima-

tion to be applied to Rydberg atoms, the Bohr frequencies of the outer electron must be

negligible compared to the ionic core states. In the case of alkali atoms such as rubidium,

the energy difference between the ionic energy level of the core and the Rydberg electron

states are relatively large, thereby meeting the conditions set forth above. Unlike an alkali

atom, an alkaline earth atom core includes the inner valence electron and the energy dif-

ference between the ion states, and the Rydberg electron states are comparatively smaller.

For example, the lowest lying excited state of the rubidium ionic core is 16.53 eV; whereas

the lowest lying excited state of the Barium ionic core is 0.60 eV, comparable to the Ryd-

berg energy intervals [27, 28]. This rationale has led to the assumption that non-adiabatic

effects were significant for alkaline earth atoms and negligible for alkali atoms.

As introduced previously, the departure from the adiabatic approximation occurs when

the ionic energy spacing is not large compared to the Bohr frequencies of the valence elec-

tron. The non-adiabatic effects thus reduce to the adiabatic approximated core polarization

model when the ionic energy spacing is large. To characterize the non-adiabatic correction,

it is useful to include correction factors, kd,n` and kq,n`, to the adiabatic polarization energy

in Eq (1.16) [19].

Wpol = −
1
2

kd,n`αd〈r−4〉 − 1
2

kq,n`αq〈r−6〉 (1.17)

This equation and the non-adiabatic effect are explained further in Chapter 4, but for

brevity here, only a brief overview is discussed. In the adiabatic approximation, kd,n` → 1

and kq,n` → 1. The adiabatic approximation corresponds to the case where the span of Ry-

dberg energies is small compared to the ionic core energy level separation. Since the range

of Rydberg energies are found to be appreciable compared to the ionic core for rubidium,
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approximately 15%, it would be reasonable to take into account these non-adiabatic effects.

Prior to this work, it had not been realized that non-adiabatic effects were needed for

polarizability determination in alkali atoms. Previously, non-adiabatic corrections had

been applied to two-electron atoms or alkaline earth atoms, but not alkali metals. It has

been believed that the adiabatic core polarization model was sufficient for alkali metal

atoms; however this is found not to be the case. Furthermore, there has been a long-

standing large discrepancy between experiments and theoretical calculations with refer-

ence to the quadrupole polarizability term. Discovering the source of this discrepancy is

often cited as "future work" in publications. Previous experimental work cites dipole and

quadrupole polarizabilities of αd = 9.12± 0.02 a.u. and αq = 14± 3, respectively. The-

ory cites dipole and quadrupole polarizabilities of αd = 9.10 ± 0.45 a.u. and αq = 34,

respectively [24, 18].

1.7 This Work

The Experimental systems and methods chapter details the design, rationale, and limita-

tions of the apparatus used to accomplish the desired spectroscopic measurements. This

experiment is performed under vacuum at a pressure of approximately 10−7 torr, mea-

sured by an ionization gauge. A diffusion pump is used to reach this pressure, with a

mechanical rotary vane backing pump. Rubidium is heated by a home-built oven that

ejects a hot atom vapor beam directed at the center of the experimental region of the vac-

uum chamber. Two home-built dye lasers are pumped by second and third harmonics of

separate pulsed Nd:YAG lasers. These pulsed dye lasers are independently tuned to the

5s→ 6p and 4d→ n f transitions and both focused at the center of the experimental region

within the vacuum system. A microwave field pulse is directed at the center of the exper-

imental region to drive high angular momentum state transitions n f → ng and n f → nh.

The n f → ni transition is accomplished with a simultaneous combination of a microwave
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field pulse and rf field pulse. The Rydberg atoms are ionized and the ions detected by a

spatially integrating multi-channel plate. Ionization signal data is recorded and analyzed

on a computer with a custom LabVIEW™ program.

The Atomic spectra measurements chapter discusses the spectroscopy measurements

of the single-photon n f → ng transition, n f → nh two-photon transition, and n f → ni

three-photon transition. Considerations are made for spectral linewidth broadening due

to transform broadening, the Zeeman effect, and Rabi oscillations. External static electric

fields are minimized within the constraints of the current apparatus with dc Stark shifts

measured for the single, two, and three-photon transitions. AC Stark shifts are present

for the two and three-photon transitions due to a time-dependent oscillating electric field.

These shifts are accounted for by extrapolating the measured transition frequencies to zero

electric field strength. The ng and higher angular momentum states are determined to

be hydrogenic by measuring fine structure splitting for the successful application with

the core polarization model. Upon consideration of these effects and accounting for the

associated errors, spectroscopy results are presented.

Core polarization analysis and results are presented in the Ionic dipole and quadrupole

polarizabilities chapter. The core polarization model in the adiabatic limit is first discussed

[20, 21]. Core polarizability results are calculated with this adiabatic approximation and

quantum defects are determined based on the calculated core polarizability. Compar-

isons to the previous work are discussed, primarily with an emphasis on the fact that

this experiment yields an approximate three-fold improvement in precision. When com-

pared to theoretical calculations, dipole polarizabilities are in reasonable agreement; how-

ever, there had been a relatively large discrepancy for the quadrupole polarizability value.

This quadrupole polarizability discrepancy appears to be resolved upon applying a non-

adiabatic correction to the core polarization model, with the dipole polarizability remain-

ing in reasonable agreement. This approach is novel when applying to alkali metal atoms,

and its successful application features an extrapolation of isoelectronic neutral Kr atomic
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properties are made to the Rb+ ionic core.

Finally, conclusions and future work are presented in the Conclusion and future work

chapter. The dominant source of uncertainty in our results is due to the determination non-

adiabatic effects, because accurate atomic structure calculations for Rb are not available at

this time. Nevertheless, the dipole polarizability precision has been improved by over an

order of magnitude compared to the estimate used in the previous tune-out wavelength

studies [13]. Previously, the uncertainty of the core polarization was the single largest con-

tribution to the the tune-out wavelength analysis. Using the new experimental results, the

relative uncertainty of the tune-out matrix elements have been reduced by 20%. Further

improvements can include better precision of the spectroscopic measurements and more

accurate non-adiabatic calculations. Additionally, the non-adiabatic corrections developed

here can be applied to other alkali metal measurements.
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2|Experimental systems and

methods

It is important to critically design an efficient and functional system to achieve the goals

set forth by the experimental objective. In this case, the objective is to obtain more precise

results for core polarizability than from previous experiments. This reduction in the uncer-

tainty of atom polarizability is useful for theoretical calculations and future experiments,

as expressed in the introduction. To achieve this goal of reduced uncertainty, it is critical to

determine sources of systematic uncertainty in the previous experiment of interest, refer-

enced in Ref. [1]. The identified sources of systematic uncertainties are from background

electric fields due to the high principal quantum number and the limit of the experimental

apparatus to drive higher angular momentum state transitions, mitigated by the fact that

d state energies are known.

In the work by Lee, et al. in Ref. [1], (n+ 1)d to ng and nh state energies are determined

through microwave spectroscopy of 27 ≤ n ≤ 30. As described in the introduction, the

response of an atom to an external electric field is dependent upon atom polarizability,

shown in Eqn. (1.10). Furthermore, atom polarizability scales as n7 as shown in Table

1.2. Reducing sensitivity to external electric fields thereby improves the precision and

reduces systematic uncertainty of spectroscopic measurements. To achieve this, using a

lower principal quantum number is beneficial. For the purposes of this research, n =

17− 19 provides the lowest n values for which the desired high angular momentum state

transition frequencies remain experimentally accessible via microwave technology. When
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comparing n = 17− 19 to n = 27− 30, there is an approximate factor of 25 reduction in

sensitivity to electric fields, including background or stray fields.

Additionally, an increase in the angular momentum state corresponds to less core pen-

etration effects, since the valence electron orbit is more circular and more hydgrogenic.

Core penetration and polarization effects are represented as an energy shift from hydro-

gen, corresponding to a reduction in quantum defect. This is introduced in Eqn. (1.14)

and the quantum defect values are shown Table 1.3. To isolate the core polarization effects

from the core penetration effects, higher angular momentum states are desired. In this

research, relative spectroscopic measurements of ` = 3 → 4− 6 are used, whereas in the

previous experiment, absolute measurements of ` = 2 → 4, 5 are conducted using prior

knowledge of the ` = 2 quantum defect values. This experimental difference is mainly

due to accessibility of angular momentum states with microwave technology, rather than

an advantage.

Experimental improvements have been sufficiently identified in this critical design

phase, however it is equally important to identify potential issues, flaws, and sources of

uncertainty for the proposed experiment. Unfortunately, with the experimental choice to

mitigate energy shifts due to background electric and magnetic fields by selecting n =

17− 19, the ability to drive nd → n f is not present with the given terahertz-scale energy

level separations. Shorter lifetimes of the atoms in the Rydberg states equate to more strict

experiment timings. Smaller dipole moments correspond to smaller transition amplitudes

and thus can contribute a lower signal to noise ratio (SNR), which can be compensated for by

an increased microwave drive amplitude. Large energy spacing between adjacent n states

requires a highly tunable laser. Fine structure is measurable and plays a role in determin-

ing the center of gravity transition frequency, which will be discussed in further detail in

Chapter 3. Additionally, lower n requires a higher ionization field making experiments

more difficult given the higher fields required to strip the valence electron from the ionic

core. An upper limit of applied voltage is present due to the high voltage limitations of the
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field pulse electronics and arcing between the electric field plates in the vacuum system.

In the following sections within this chapter, the vacuum system, dye laser systems,

timing systems, microwave/rf systems, field ionization, and data acquisition systems are

discussed in more detail. To provide a brief overview, this experiment is conducted using

a Rb oven to create a hot rubidium vapor beam. Two laser pulses in quick succession are

focused at the center of the vacuum chamber to drive 5s ground state to n f Rydberg state

transitions. Following these laser pulses, a microwave pulse or combination of microwave

and RF pulses are applied to drive the higher angular momentum state transitions. The

atoms are then ionized using state-selective field ionization techniques and either ions or

electrons are detected, depending upon the sign of the ionizing potential, on a spatially

integrating multi-channel plate (MCP). The current on the MCP is converted to a voltage

reading and sent to a suite of analysis equipment.

2.1 Vacuum system

The experiment is performed under vacuum. The vacuum system consists of a vacuum

chamber, mechanical roughing pump, and diffusion pump. An illustration of this system

is shown in Figure 2.1. What is denoted as the vacuum chamber is the region where the

scientific experiments take place, separate from the vacuum pumping systems. The exper-

imental region of the vacuum chamber consists of a rubidium oven, quartz glass windows

to allow for laser light to pass through, multiple electrical feedthrough connectors on vac-

uum flanges to allow for electrical connections within the chamber, a hot-filament ioniza-

tion gauge to measure vacuum pressure, and a rubidium oven with electrical connections

to create a thermal atom beam.
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FIGURE 2.1: Illustration of the vacuum system. This image from Ref. [2] has
been utilized and adapted since the vacuum systems in both experiments
are similar. The portion of the vacuum system labeled "vacuum chamber" is
the area where scientific experiments are conducted. This is located above
the diffusion pump. The vacuum chamber includes quartz glass windows
for laser light to enter the chamber, electrical feedthrough connections on
vacuum flanges to allow for electrical connections within the chamber, a hot-
filament ionization gauge to measure pressure, and a rubidium oven with
electrical connections to create a thermal atom beam. Below the vacuum
chamber, there is a gate valve to separate the diffusion pump. The intricacies
of the diffusion pump are discussed in more detail in the text and illustrated
in Figure 2.3. Following the diffusion pump, there is a mechanical vane

roughing forepump separated by another valve.
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2.1.1 Pump method

As shown in the vacuum system diagram (Figure 2.1), a diffusion pump is connected di-

rectly to the vacuum chamber, followed by a mechanical roughing pump. The mechanical

roughing pump is capable of reaching pressures of approximately 10−3 torr to reach a suf-

ficient vacuum before the diffusion pump can be safely turned on. The roughing pump is

a rotary vane design. A basic rotary vane pump consists of an outer housing, an eccentric

rotor, vanes that move radially with the rotor under spring tension, and inlet and outlet

valves. This design relies on oil with the outlet valve oil-sealed and closed until the gases

are compressed by the rotor operation to atmospheric pressure where the gas is expelled

and the second vane seals the opposite end of the rotor. A diagram depicting the operation

of this is shown in Fig. 2.2.

Upon reaching approximately 10−3 torr, the diffusion vacuum pump is turned on. A

schematic of the generic operation of the diffusion pump is shown in Fig 2.3. The diffusion

pump used in this experiment is a Varian VHS6. Pump oil is heated using a 208 V heater

assembly below the diffusion pump; these are a set of heater coils connected directly to

the facilities supplied 208 V single-phase AC power and turned on/off by a circuit breaker

on the wall. Santovac diffusion pump oil is vaporized and a jet of oil molecules are sent

upwards through the center stack of metallic surfaces. The oil molecules are then deflected

by the stack geometry disrupting laminar flow and sent downwards where oil and gas

molecules collide. The oil condenses onto the surfaces of the stack, and gas molecules are

driven to the bottom of the pump. To facilitate condensation, coolant is flowed through

coolant lines around the diffusion pump assembly; in this experiment, a continuous flow of

tap water is used. This process results in a pressure gradient between the top and bottom

of the diffusion pump where the forepump removes the trapped air from the bottom of the

diffusion pump. Oil is continuously being boiled so long as the heater is active, making

vacuum pumping continuous with this design. A major drawback of this vacuum pump



Chapter 2. Experimental systems and methods 31

4. Exhaust

3. Compression

2. Isolation

1. Induction

FIGURE 2.2: Illustration of the operation of a rotary vane vacuum pump.
The components of a rotary vane pump usually consist of an outer housing,
an eccentric rotor, vanes that move radially with the rotor under spring ten-
sion, and inlet and outlet valves. This design relies on oil with the outlet
valve oil-sealed and closed until gases are compressed by rotor operation to
atmospheric pressure where the gas is expelled and the second vane seals

the opposite end of the rotor.
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design is the unavoidable use of vacuum oil, coating surfaces within the vacuum system

with oil.

Vacuum pressures are measured in two locations: at the bottom of the diffusion pump

before the forepump and in the vacuum chamber (shown in Figure 2.1). The vacuum pres-

sure gauge between the diffusion pump and forepump is a thermocouple gauge, typically

rated for pressures between 10−3 and 760 torr with approximately 15% accuracy. Within

the vacuum chamber, a hot-filament ionization gauge is used and vacuum pressure is re-

ported with a Granville Phillips 330 Hot Cathode Ion Gauge Controller. Upon initially pulling

a vacuum and pumping down the chamber, pressures will quickly fall to and plateau at

approximately 5× 10−6 torr. There are many sources of contaminants that affect vacuum

performance and applying heat accelerates outgassing. When the chamber is heated by

wrapping heater tape around the chamber and left to sit for an extended period of time,

pressures can fall as low as 5× 10−8 torr after the chamber is left to cool. The outgassing

process explains the higher pressures observed during the heating process and the lower

pressure after allowing the chamber to cool. However, vacuum baking is not always nec-

essary since under normal operation, 3× 10−7 torr is usually observed and found to be

sufficient for data acquisition. This pressure is achieved after a few days of letting the

chamber sit with the diffusion and roughing pumps on. When the rubidium oven is set to

a higher temperature for diagnostic purposes, the pressure in the chamber can rise as high

as 1× 10−6 torr.

2.1.2 Experimental region

The portion of Figure 2.1 that is denoted as the "vacuum chamber" is where the scientific

equipment that makes scientific measurements possible are located. Figure 2.4 shows these

elements and their geometry more clearly, with the main components within this vacuum

system being:
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FIGURE 2.3: Illustration of the fundamental operation of a diffusion pump.
Pump oil is heated using a heater assembly below the diffusion pump. Dif-
fusion pump oil is vaporized and a jet of oil molecules are sent upwards
through the center stack of metallic surfaces. Oil molecules are then de-
flected by the stack geometry disrupting laminar flow and sent downwards
where oil and gas molecules collide. Oil condenses onto the surfaces of the
stack, and gas molecules are driven to the bottom of the pump. To facilitate
condensation, coolant is flowed through coolant lines around the diffusion
pump assembly. A pressure gradient is present between the top and bot-
tom of the vacuum pump where the forepump removes the trapped gases
from the bottom of the diffusion pump. This process is continuous with oil

continuously being boiled so long as the heater is active.
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(a) Rubidium oven where the hot rubidium vapor is created and a beam is directed

towards the center of the vacuum chamber.

(b) Field ionization plates where Rydberg atoms are ionized by stripping the valence

electron from the Rb ionic core.

(c) Laser beams focused at the center of the vacuum chamber, defining this as the exper-

imental region at the center of field ionization plates and aligned with the Rb atom

beam.

(d) Multi-channel plate (MCP) in a spatially integrating configuration to detect an ion-

ization signal, configured either to detect electrons or ions depending upon the po-

larity of the field ionization plates.

(e) Microwave horn facing the atoms to drive ` state transitions.

In the following sections of this chapter, each of these components are discussed in

more detail.

2.2 Atom beam

The heated oven allows for a rubidium thermal beam. Rubidium is contained within a stain-

less steel tube that is heated by flowing current through the tube. The tube design used in

this experiment to accommodate the mounting structure is shown in Figure 2.5. This tube

design was adopted due to readily accessible materials. The design can be altered so long

as the chosen oven design mounts to the existing structure and an electrical connection is

made for current to flow through the metal thereby heating and vaporizing the rubidium

contained within the tube.

The oven assembly is home-built and fabricated using the following process:



Chapter 2. Experimental systems and methods 35

ab

c

d

e

FIGURE 2.4: Vacuum science chamber illustration with (a) rubidium oven
creating a hot thermal atom beam directed toward the center of the vacuum
chamber and collimated by a hole in a plate. At the center of the vacuum
chamber and center of the (b) field ionization plates, (c) two laser beams
are focused. This is the region where the atoms are interacting with the
lasers and microwaves directed at the center of the chamber to drive atomic
transitions with (e) microwave horns. A (d) multi-channel plate (MCP) in
a spatially-integrating configuration is used to detect ions or electrons de-
pending upon the polarity of the field ionization plates. This figure has been

adapted from Ref. [3].
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• Procure a stainless steel tube approximately 7.5 in in length and 0.75 in in diame-

ter with a wall thickness of approximately 1/32 in. Notably, the length of the tube

is longer than shown in Fig. 2.5. Later in the assembly, the ends of the tube will

eventually be crimped and folded.

• Clean the inside and outside of the tube thoroughly with soap and water to remove

contaminants, followed by an acetone wash to prepare for the installation into the

vacuum chamber.

• Pinch/crimp one end with a mechanical press and fold over once for structural in-

tegrity and to make a better seal.

• Drop a glass Rb ampule into the tube.

• Pinch/crimp the other end with a mechanical press and fold over once for structural

integrity and to form a seal.

• Use a Dremel with a cutting tool attachment to cut the four mounting screw holes in

the top and bottom sides of the assembly. A drill press can instead be used for this

step; however, a sturdy mounting mechanism is necessary to ensure that the tube

and Rb ampule are not accidentally crushed and that vibrations from the drill do not

break the ampule.

• On a drill press, use approximately a 0.5 mm drill bit to drill a hole in the tube,

perpendicular to the now flat crimped ends and approximately at the height of the

atoms within the vacuum chamber once installed.

• Clean the outside of the tube once again with soap and water, followed by an acetone

wash, to remove contaminants before installing into vacuum. Prevent water and

acetone from entering the hole.

• Install the fabricated oven into the vacuum chamber mounting bracket.
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• User pliers to crush the stainless steel tube and break the Rb ampule.

• When the glass is heard shattering, quickly reinstall, seal flange, and turn on rough-

ing pump to return the system to vacuum. It is crucial to have this system under

vacuum as quickly as possible to minimize the oxidation of rubidium.

A hot rubidium beam is achieved once the current passing through the oven is set to

an appropriate setting, corresponding to a temperature to reach a desired vapor pressure

of the Rb, generally above 80◦C. The vapor subsequently sprays out of the drilled hole in

a conical fashion and is roughly collimated by a hole drilled in a plate following the initial

atom spray that is aligned with the height of the atoms. The resistance of the stainless steel

tube is R � 1 Ω, so the voltage across the ends of the tube should be relatively small. A

Variac variable transformer is plugged directly into the wall to allow for current adjust-

ment, then a voltage step-down transformer is employed to attain high current and low

voltage across the tube to allow the oven to heat. Good experimental operation is achieved

at an oven current of 15A. However, a maximum of 30A is possible for flooding the cham-

ber with rubidium for diagnostic testing. An even higher current is possible; however,

with the higher current, there is a potential risk of heating the components beyond their

breaking point. Additionally, vacuum performance is degraded when flooding the cham-

ber with rubidium, with a pressure of approximately 1× 10−6 torr, experimentally too high

for data acquisition.

2.3 Dye laser system

Rubidium atoms begin in their ground state of 5s. To excite the Rb atoms to the desired

n = 17− 19 range of Rydberg states, two pulsed Nd:YAG lasers use either second or third

harmonics to pump two home-built dye lasers. An illustration of the atomic transitions

are shown Figure 2.6. Rubidium atoms are first excited to the 6p state using a laser pulse.
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FIGURE 2.5: Rubidium oven schematic to scale. A stainless steel tube with
a wall thickness of approximately 1/32 in is used. Both ends are crimped,
folded, and crimped again, with the screw holes drilled for mounting pur-
poses, a Rb ampule contained within, and a hole approximately 0.5 mm in

diameter drilled for a vaporized atom beam to be expelled.
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FIGURE 2.6: Atomic states used in this experiment. Rubidium atoms begin
in the ground state of 5s and are excited to the 6p state using a laser pulse.
Following this initial laser pulse, sufficient time is allowed for the atoms in
this excited state to spontaneously decay to the 4d state. Once the atoms
are in the 4d state, another laser pulse is applied to drive a transition to a
n f Rydberg state where n = 17− 19 for this experiment. Subsequent mi-
crowave pulses follow to drive higher angular momentum state transitions
later in the experiment, denoted here as dotted lines. Fine structure splitting
is purposely neglected in this illustration. The 5s1/2 ground state transition
to either 6p1/2 or 6p3/2 can be resolved and selected experimentally with the

wavelengths for these transitions shown in Table 2.1.
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Following the 5s → 6p laser pulse, a delay is introduced before switching on the 4d → n f

dye laser pulse. This delay is introduced to wait for the time where spontaneous emission

allows the Rb atoms to fall to the 4d state from the 6p state. The lifetime of the 6p state is

99.3 ns [4]. Another decay path could be back to the ground state. Per the transition prob-

abilities presented in Ref. [4], approximately 33% of the atoms will decay to the 4d state

and approximately 66% decay to the ground state. The lifetime of the 4d state is 85.0 ns

[4]. Knowing that the spontaneous decay rate is increasing the number of atoms to the 4d

state and the lifetime is decreasing the number of atoms in the 4d state, it is experimen-

tally found that a 250 ns delay results in the maximum number of atoms detected in the

desired n f states. Thus, the experimental systems must operate with strict timings. Atoms

must remain in the experiment interaction region, appropriate timings selected between

laser pulses to allow for the spontaneous decay of 6p to 4d, pulse delay and duration of

microwaves for higher angular momentum state transitions, and data acquisition timings.

Experimental timings are explained in more detail in the Experiment timing section later in

this chapter.

Fine structure is purposely neglected in this illustration, although the 5s1/2 ground

state transition to either 6p1/2 or 6p3/2 can be resolved and selected experimentally. The

wavelengths for these transitions are shown in Table 2.1. By exciting to the 6p1/2 state,

the atoms are allowed to decay to the 4d3/2 state before the second laser pulse excites the

atoms to the n f5/2 state. Alternatively, tuning the first laser on resonance with the 6p3/2

state, decay to the 4d3/2 and 4d5/2 states are possible. The next laser pulse drives the atoms

to both n f5/2 and n f7/2 with the inability to directly resolve fine structure for higher-`

states due to transform broadening of the laser pulse.

Dye lasers are chosen for their excellent wavelength tuning abilities. Dye lasers rely on

an organic dye in a solvent to serve as the lasing medium where dye molecules fluoresce

in the presence of a pumping light. The pump light is chosen to excite the dye molecules to

a state where stimulated emission is possible. Organic dyes have a large absorption range
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making the use of an external pump-laser relatively simple [5]. Both laser systems have a

large dye solution reservoir to allow for continued operation since the organic dyes will

eventually decompose and lose their fluorescence properties [6]. Phosphorescence causes

the organic dye to become opaque; therefore, it is beneficial to force the dye to move at

a high velocity to allow for the excitation of fresh dye molecules. For this experiment,

the dye flows through a spectrometer-grade quartz cuvette with a metal insert glued in

with silicone sealant to reduce the cross-sectional area and increase the flow rate where the

dye solution interacts with the pump and final lasing light. Light is fed back allowing for

multiple passes so maximal output light power can be achieved. To tune the wavelength

of the output laser light, multiple configurations can be used to control the feedback light

sent back through the dye. These will be discussed more in subsections that follow. Two

different configurations are used for each laser system.

2.3.1 5s→ 6p laser setup

The first laser pulse is chosen to excite the Rb atoms from the 5s1/2 ground state to either

one of the 6p1/2 or 6p3/2 excited states. The laser wavelengths required to optically drive

this transition are shown in Table 2.1. Stilbene 420 dye is chosen due to maximal absorp-

tion at 353 nm with a wide absorptivity range and wide lasing wavelength, around 421 nm.

The datasheet for Stilbene 420 is shown in Appendix H.1 and provides lasing wavelengths

when pumped by the third harmonic of a Nd:YAG laser. Here, a Quanta-Ray DCR-2A

Nd:YAG laser at a repetition rate of 20 Hz is used to optically pump a home-built dye laser

with the Stilbene 420 dye solution. The Nd:YAG operates at 1064 nm with the third har-

monic being approximately 355 nm. For a target maximal dye laser power at a wavelength

of 421 nm, a 5× 10−4 molar dye solution with an ethanol solvent is used. The laser cavity

was initially in a Littrow configuration due to its simplicity. However, lasing was difficult

to achieve with this configuration, therefore a change to the Littman-Metcalf configuration

was implemented. Both configurations are illustrated in Fig. 2.7. The Littman-Metcalf
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Transition Wavelength (nm)
5s1/2 → 6p3/2 420.2 nm
5s1/2 → 6p1/2 421.5 nm

TABLE 2.1: 5s to 6p transition wavelengths per Ref. [7].

Mirror
Dye Cell

Cylindrical Lens

Diffraction
Grating

Rotation
Mount

Output Beam

Littrow Configuration

Mirror
Dye Cell

Cylindrical Lens

Diffraction
Grating

Rotatable
Mirror

Output Beam

Littman-Metcalf Configuration

FIGURE 2.7: Littrow and Littman-Metcalf laser configurations. Initially, a
Littrow laser configuration was chosen for this laser system due to its sim-
plicity. However, the configuration was changed to a Littman-Metcalf de-
sign to offer laser tuning by rotating the mirror without the output beam di-
rection changing. Additionally, laser feedback is improved with two passes

across the diffraction grating.

configuration offers a couple of notable advantages over the Littrow configuration when

forming a laser cavity. The direction of the output beam remains fixed since the mirror

rotates instead of the diffraction grating feeding back to the laser. This is preferable since

tuning the laser does not affect the direction of the output beam. Additionally, the output

laser light tends to have a smaller linewidth since wavelength-dependent diffraction oc-

curs twice per round trip of the light feeding back to the lasing media, instead of once in

the Littrow configuration.

The duration of the laser pulse is approximately 20 ns, set by laser cavity lifetime; thus

the pulse-broadened linewidth of the laser is minimally 50 MHz. The p-state fine structure

can therefore be optically resolved given the 1.3 nm energy separation between the 6p1/2 or
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Laser
Wavelength

Dye Pump
Wavelength

Dye Concentration Solvent

420 nm Stilbene 420 355 nm 5.0× 10−4 M (0.28 g/L) Ethanol
722 nm LDS 722 532 nm 2.5× 10−4 M (0.09g/L) Methanol

TABLE 2.2: To achieve a lasing wavelength of approximately 420 nm for the
5s → 6p transition, Stilbene 420 dye is selected. This is pumped with the
third harmonic of an Nd:YAG at 355 nm. For the 4d → n f transition, LDS
722 dye is selected and pumped by the second harmonic of an Nd:YAG at

532 nm.

6p3/2 excited states from the 5s1/2 ground state. Rotating the mirror in the Littman-Metcalf

configuration allows for tuning between these wavelengths. The 5s1/2 → 6p1/2 transition

is chosen for this experiment since resolution of fine structure at the higher n and ` states

becomes more difficult to resolve due to the n f state fine structure energy splitting being

less than the laser linewidth. By exciting to the 6p1/2 state, it is guaranteed that only

the 43/2, n f5/2, ng7/2, nh9/2, and ni11/2 states are populated. This removes the ambiguity

resulting from an experimentally unresolved ng fine structure that would accompany the

use of 6p3/2. Tuning to the higher j-state is still important and designed for in this dye

laser system since it is important to compare the fine structure energy level splittings of

rubidium to hydrogen to verify that the core polarization model assumptions can still be

used. Analysis of fine structure splittings are discussed more in Chapter 3.

2.3.2 4d→ n f laser setup

A similar setup to the 5s → 6p is employed for the 4d → n f laser system. The second

harmonic of a Continuum Surelite SLI-20 Nd:YAG pumps another home-built dye laser

cavity. In this case, a LDS 722 dye solution with a molar concentration of 2.5× 10−4 M

in a methanol solvent is used. When pumped with the 532 nm second harmonic of the

Nd:YAG, the output wavelength can be tuned from approximately 705 to 725 nm. The

datasheet for LDS 722 can be found in Appendix H.2. This dye laser cavity is in a single

beam expanding prism configuration. An illustration of this system is shown in Figure 2.8.
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FIGURE 2.8: Dye laser cavity configuration with a single beam expanding
prism to drive the 4d → n f transition. 532 nm pump light is incident on a
dye cell containing a solution of LDS 722 in a methanol solvent. The output
beam comes from a grazing incidence reflection from the prism, which then
gives an expanded beam going through the prism to the grating. The grating
is rotatable allowing for laser wavelength tuning, which is fed back to the

dye cell.
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Transition from 4d→ n f Measured Vacuum
Wavelength (nm)

Theoretical Vacuum
Wavelength (nm)

n = 15 721.7 722.2
n = 16 719.4 719.1
n = 17 716.5 716.6
n = 18 714.6 714.5
n = 19 712.8 712.7
n = 20 711.4 711.2

TABLE 2.3: Measured laser wavelengths for the 4d3/2 → n f5/2 transitions
for n = 15 − 20. These measured are performed with a monochromator
calibrated using Rb 5s1/2 → 6p3/2 = 420.2 nm transition per Ref. [8]. The
purpose of using the monochrometer in this system is to provide a tool to
differentiate between the different n states. The measured wavelength is
correlated to a measured rotation of the diffraction grating mount to make

finding atomic resonances easily repeatable.

Using a Heath Company monochrometer calibrated to the 5s1/2 → 6p3/2 = 420.2 nm

transition per Ref. [8], atomic resonances for the 4d→ n f states are determined. The laser

wavelength for n = 15− 20 are shown in Table 2.3. Although the monochromator is cali-

brated, it is not intended here for precise nor accurate measurements. The monochromator

instead acts as a tool to correlate diffraction grating mount rotation with atomic transitions.

This therefore makes finding atomic resonances easier and more repeatable.

Outputs of the two laser systems are each fed into their own respective beam expanders

where the laser beam is focused at the center of the vacuum chamber with a laser path

distance of approximately 2 meters. For diagnostic purposes and timing calibration, laser

pulses are monitored using a Thorlabs DET025A high-speed, free space, photodiode detector.

The bandwidth of this detector is specified to be 2 GHz with rise and fall times on the order

of 150 ps. Laser pulse durations are observed to be on the order of the expected 20 ns and

detection is used to ensure that the two laser pulses are separated by the 250 ns prescribed

earlier.
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n f → g (MHz) f → h (MHz) f → i (MHz)
15 24115 29065 30618
16 19867 23946 25226
17 16562 19962 21029
18 13950 16815 17714
19 11860 14296 15060
20 10168 12256 12911

TABLE 2.4: Calculated microwave transition intervals using previous ex-
perimental results. Transition frequencies for f → g, f → h, and f → i are
shown for n = 15− 20. These are calculated using previous experimental

measurements from Ref. [1].

2.4 Microwave and rf systems

The goal of this work is to measure the energy spacing between high-` states of Rydberg

atoms. Precision spectroscopy measurements between the excited Rydberg atoms pro-

vide the ability to determine core polarizability, as described in the Introduction. For these

higher-` states, the transition frequencies are calculated for various n values of interest

based on the previous core polarizability experimental results, and the calculated quan-

tum defects for the f , g, h, and i states. The calculated transition intervals for n = 15− 20

f → g, f → h, and f → i are shown in Table 2.4; microwave frequencies range from ap-

proximately 10 GHz to 30 GHz. This table of calculated transition frequencies provides a

region for which to start searching for the atomic transition frequencies experimentally. It

is evident that these frequencies fall in the microwave frequency range so an appropriate

microwave source needs to be used to probe these ` states. This section details the use

of microwave synthesizers and microwave signal transmission. Additionally, a 1 GHz rf

source is applied to help drive the f → i transition. The particular details of how the mea-

surements are conducted and the physics of the processes are reserved for discussion in

the next chapter.
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2.4.1 Synthesizers

Microwaves are produced using an Agilent 83622B synthesized swept-signal generator;

this particular model is capable of outputting microwaves up to 20 GHz. Additionally,

this synthesizer features externally controlled pulse modulation with a pulse generated by a

Berkeley Nucleonics Corporation Model 8010 Pulse Generator. Typical pulses have a du-

ration of 1 µs to provide sufficient time for transitions to be driven to the desired state. Per

the specifications of the Agilent 83622B, the externally controlled pulse modulation has a

minimum pulse duration of 1 µs. A longer pulse duration is programmable with the ex-

isting equipment, however a shorter pulse duration would require an external microwave

switch following the synthesizer.

A single microwave photon carries only one unit of angular momentum. The f → g

transition is characterized as a single-photon transition whereby one photon is absorbed by

the atom. To drive this transition, the microwave frequency equates to the energy differ-

ence between the f and g states. To reach the higher-` states, multi-photon transitions are

used. The f → h transition is a two-photon transition where the microwave frequency is

set to one half of the f → h transition frequency. For the f → i transition, the rf signal is

pulsed on at the same time as the microwaves with the rf frequency applied corresponding

to the the detuned h-state to i-state transition frequency. The microwave frequency is set

to one half of the f -state to detuned h-state transition frequency for this multi-photon pro-

cess. The rf field is produced by coupling a HP 8673C Signal Generator synthesizer to one

of the electric field plates. This synthesizer also has externally controlled pulse modulation

capabilities.

2.4.2 Microwave signal transmission

The microwave pulses are transmitted from the Agilent 83622B synthesizer through an

SMA cable to a SMA electrical feedthroughs on the vacuum system (depicted in Figure
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Waveguide
Name

Recommended
Frequency (GHz)

Cutoff
Frequency

(Lowest Order
Mode)

Cutoff
Frequency

(Next Mode)

Dimensions
(in)

WR90 8.20 to 12.40 GHz 6.557 GHz 13.114 GHz 0.9 x 0.4 in
WR75 10.00 to 15 GHz 7.869 GHz 15.737 GHz 0.75 x 0.375 in
WR62 12.40 to 18 GHz 9.488 GHz 18.976 GHz 0.622 x 0.311 in
WR51 15.00 to 22 GHz 11.572 GHz 23.143 GHz 0.51 x 0.255 in

TABLE 2.5: Waveguide name and characteristics for WR90, WR75, WR62,
and WR51. Two waveguide types and microwave horns are used. Based
on cutoff frequencies, WR90 and WR62 are used to provide microwave fre-

quency transmission between approximately 6.6 GHz and 19 GHz.

2.1). The SMA cables selected for duty in this experiment are rated from DC to 26 GHz. A

vacuum-compatible SMA cable is connected to the other end of the SMA connector feed-

through. The other end of this SMA cable connects to a Pasternack right angle waveguide

adapter, and finally a microwave horn antenna directs the microwaves at the atoms inside

of vacuum chamber. Placing the microwave horn antenna inside of the vacuum system

minimizes microwave scattering [9]. Two different types of waveguides are used to cover

the broad range of microwave frequencies needed for this experiment, WR90 and WR62.

The specifications for these and other waveguides in these microwave bands are shown

in Table 2.5. The use of WR90 and WR62 effectively provides frequency transmission be-

tween 6.6 GHz and 19 GHz. Both of these waveguide and horn antennas are present in the

chamber and connected via separate SMA vacuum feedthroughs. To switch between the

two types of the waveguide and horn antennas in the vacuum chamber, the SMA cable is

manually switched between the two SMA vacuum feedthroughs. Only one waveguide is

used for a particular experimental data set.

Microwave power is adjusted using the built-in attenuation of the synthesizer and op-

tionally precision attenuators rated for DC to 18 GHz operation. These fixed attenuators

are placed at the output of the synthesizer when attenuation beyond the −20 dBm limit

of the synthesizer is required. It is difficult to estimate the microwave power directly at
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the location of the atoms because there are various losses with each electrical connector

and waveguide adapter; additionally, the electric field plates may contribute to scatter-

ing of microwaves. For a single photon transition, an electric field of only a few hundred

µW/cm can drive the n f → ng transition. Typically, the output power of the microwave

synthesizer is set to −20 dBm. Multi-photon transitions rely on varying the microwave

power for the measurements, with the microwave power varied between the −20 dB and

+17 dBm synthesizer limits.

2.4.3 Rf signal application

RF is applied through a SMA feedthrough connector on the vacuum chamber. Similar

to the microwave setup, a vacuum compatible SMA cable is attached to the other end

of the feedthrough connector. However, the other end of the SMA cable is stripped and

the coaxial conductor is attached directly to the electric field plate that does not receive

the high voltage field ionization pulse. To avoid capacitive coupling of the high voltage

pulse to the rf source across the electric field pulse, a bias tee is used to couple the ac signal

generated by the HP 8673C Signal Generator synthesizer to ground, with a wire connecting

the dc input to the vacuum chamber. Figure 2.9 shows the bias tee circuit implemented

here.

RF power is adjusted using the built-in attenuator of rf generator. Unfortunately, due

to poor impedance-matching with the electric field plate, estimation of the power of the rf

signal at the atoms is more difficult with this setup when compared to the microwave case.

Knowing the absolute power of the rf at the atoms is not necessary, so long as power at the

atoms scales with the recorded synthesizer power. Although dependent on the detuning

from the atomic resonance, the rf power required to drive these multi-photon transitions

is greater than in the single-photon case. Typically the rf power output of the synthesizer

is varied between 5 dBm and 13 dBm.
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RF Field plate

Ground

FIGURE 2.9: Bias tee circuit diagram. For the desired configuration, the rf
synthesizer should not be connected directly to one of the electric field plates
due to the voltage spike induced by the other field plate during the field
ionization pulse. Therefore, a bias tee is used to protect the rf synthesizer
with the synthesizer connected to the ac input and a ground wire connected
to the dc input. Knowing the capacitor value and the voltage spike on the
field plates, rf is coupled to the field plate while protecting the rf synthesizer.

For both microwaves and RF, a Narda 4503A crystal detector is used to monitor the

pulse timing and duration on an oscilloscope along with the two laser pulses.

2.5 Detection & data acquisition systems

2.5.1 Field ionization

Using the methods described in this chapter, the atoms are now prepared in the correct

state and the detection of the Rydberg atoms is possible. Rydberg experiments typically

implement a delayed field ionization (DFI) or selective field ionization (SFI) scheme to detect

the Rydberg atoms of interest. In this work, a combination of the two ionization methods

are used and a spatially-integrating multi-channel plate (MCP) is used as a detector.

Delayed field ionization relies on the fact that the higher angular momentum states have

a longer lifetime than the lower angular momentum states. Using data from Ref. [4],

the lifetimes of the Rb 12 f and 12g states and hydgrogen 12 f , 12g, 12h, and 12i states

are provided and presented in Table 2.6. Extrapolating to n = 17 in Rb, the lifetimes of
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FIGURE 2.10: The experiment setup without the vacuum chamber for in-
creased clarity. For consistency, the label designations remain the same: (a)
rubidium oven, (b), field ionization plates, (c) laser beams focused at center
of chamber, (d) multi-channel plate (MCP), and (e) microwave horn. This is

not to scale and the size of the field plates are exaggerated.

` = 3− 6 are shown in Table 2.7. It is evident that higher ` states have greater lifetimes.

With delayed field ionization, this lifetime property can be experimentally leveraged to

provide ` state selectivity knowing that the longer lifetime, higher ` states will outlive

the shorter lifetime, lower ` states. Experimentally, field ionization pulses are typically

delayed on the scale of the lifetimes of the Rydberg states calculated and shown in Table

2.7. Of particular note, the lifetime of the 12 f state is significantly different in rubidium

and hydrogen. This is the first glimpse in this thesis pointing to the fact that the f state in

Rb is not hydrogenic when compared to higher ` states; this fact will be further elaborated

on in the Fine Structure section of the next chapter.

Selective field ionization, on the other hand, relies on the fact that different Rydberg states

ionize at different electric field amplitudes and at different times. This effect is illustrated

in Figure 2.11 whereby field ionization amplitude is ramped in time and at different field

strengths, ionization of different n levels occur. The energy required to ionize a Rydberg
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Species n` Lifetime (ns)
Rb 12 f 1190

12g 3013
H 12 f 1849

12g 3098
12h 4699
12i 6612

TABLE 2.6: Tabulated lifetimes of H and Rb high-` Rydberg states from data
in Ref. [4].

n` Lifetime (ns)
17 f 3379
17g 8557
17h 13345
17i 18778

TABLE 2.7: Calculated lifetimes of high-` Rb Rydberg states for n = 17
extrapolating from the data shown in Table 2.6 sourced from Ref. [4].

atom is given by

E =
1

16n4 (2.1)

where n is the principal quantum number [3]. Intuitively at higher n, the larger orbital

radius of the valence electron results in a lower Coulomb force and a smaller required en-

ergy to strip the valence electron from the ionic core. Experimentally, the field required to

ionize the Rydberg atom for n = 16− 19 is shown in Table 2.8. Discrimination between the

` states is also possible by adjusting the field ionization threshold. As the field required for

ionization increases, the spacing between the ` states also increases [10]. And, distinguish-

ing between ` states is typically on the scale of 10 V/cm. To achieve the greatest signal to

noise ratio for the spectroscopy measurements, a combination of selective field ionization

and delayed field ionization are leveraged.

The Rydberg atoms are ionized between the field ionization plates. The electric field

plates and MCP locations are shown in Figure 2.4, and exaggerated, to be seen more clearly

without the vacuum chamber in Figure 2.10. At the center of the electric field ionization
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FIGURE 2.11: An illustrative example of field pulse amplitude vs. n, not
drawn to scale. This shows a visualization of selective field ionization where
the ionizing field amplitude required to ionize a Rydberg atom is lower for

higher n.

plates (labeled (b) in Fig. 2.10) and separated by 1.8 cm, the Rydberg atoms must be ion-

ized. To accomplish this, a home-built circuit externally connected to the vacuum chamber

with electrical feedthroughs to the inside of the chamber is used.

The field pulse is applied to the lower plate in Figure 2.10 while the upper plate re-

mains grounded. The polarity of the field pulse dictates whether ions or electrons will be

accelerated toward the MCP. With this setup, it is therefore possible to detect either elec-

trons or ions following ionization. The field ionization circuit responsible for the electric

field pulse is drawn in Figure 2.12. A voltage is supplied to Vin of the circuit by a dc Kepco

power supply. The circuit first stores energy in a capacitor, then releases that energy into a

1:30 transformer when triggered by a field effect transistor (FET). A static dc voltage bias can

be applied to the high voltage electric field plate. This is accomplished by applying a dc

voltage bias to the lower magnitude voltage terminal on the output side of the transformer,

connected to the electric field plate. The characteristics of this home-built circuit are a rise

time on the order of 3 µs and a maximum amplitude of just under 7 kV. The maximum

pulse amplitude limit is set by the point where high voltage arcing occurs. Figure 2.11

provides an illustrative view showing that as field ionization amplitude is ramped in time,
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FIGURE 2.12: Home-built field ionization circuit. The circuit first stores en-
ergy in a capacitor, then releases that energy into a 1 : 30 transformer when
triggered by a field effect transistor (FET). The polarity to dictate the direc-
tion to accelerate ions or electrons toward the detector is set with a DPDT
switch before the transformer. A bias can be applied to the field pulse, dic-
tated by an applied voltage to a terminal on the output side of the trans-
former, and enabled with a SPDT switch. The characteristics of this home-
built circuit are a rise time on the order of 3 µs and a maximum amplitude of
just under 7 kV. Specific electronic components used are listed in the legend.
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n Source Voltage (V) Field (V/cm)
16 195 3900
17 162 3240
18 130 2600
19 96 1920

TABLE 2.8: Experimentally determined selective field ionization pulse am-
plitude thresholds vs. n for n = 16− 19. The source voltage is listed in the
second column, a 1:30 transformer is used, and the field plate separation for
this measurement is 1.5 cm. The electric field is computed and listed in the

third column.

ionization of lower n levels occurs.

Table 2.8 and Figure 2.13 show the field ionization pulse amplitude where Rydberg

atom ionization occurs for n = 16− 19. Unfortunately, the limiting factor for measuring

lower n states is the increasing ionization threshold as n decreases. For the electronics

and vacuum feedthrough high voltage ratings used in this apparatus, it is impossible to

measure n = 15 or lower with this setup due to high voltage arcing between the electric

field plates in vacuum and voltage limitations of electrical specifications of the components

in the circuit.

2.5.2 Signal detection and processing

Signal detection is achieved with a multi-channel plate (MCP) in a spatially integrating con-

figuration. A MCP is a glass plate with millions of spatially separated channels that act

as electron multipliers. The multiplication process is achieved through an avalanche effect

where an ion or electron hits a channel wall and causes a cascade of additional electrons to

be emitted and accelerated due to an electric field applied to the MCP. Finally, the cascade

of electrons exits the MCP and get accelerated towards a current collector, or anode. An

illustration of this process is shown in Figure 2.14.

The detector design chosen for this experiment features two MCPs with angled chan-

nels rotated at 180 degrees from each other. This dual MCP plate detector design is shown
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FIGURE 2.13: Measured field ionization pulse amplitude threshold vs. n
plotted using data from Table 2.8.

1750 V

Secondary Electrons

Incident Electrons

Exiting Electrons

FIGURE 2.14: Illustration of the operation of a multi-channel plate. A MCP
is a glass plate with millions of spatially separated channels that act as elec-
tron multipliers. An ion or electron hits the wall of a MCP channel and
causes a cascading avalanche of additional electrons to be emitted and ac-
celerated due to an electric field applied across the MCP. The cascade of the
electrons exits the MCP and gets accelerated towards a current collector, not

shown here. Figure adapted from Ref. [11].
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in Fig. 2.15. Ions pass through a grounded grid, are incident on the first MCP, then the elec-

trons that exit the first plate cascade into the second and the angle between the channels

minimizes feedback while increasing gain. There is a physical separation between the two

plates allowing for charge to spread across multiple channels; this significantly increases

gain, but reduces spatial resolution. For the purposes of this work, spatial resolution is not

of concern and the greater signal is beneficial.

The electronics design implementation for the MCP plates are shown in Figure 2.16. As

mentioned in the previous section, the field ionization pulse can either accelerate electrons

or ions toward the MCP for detection. Therefore, an important design aspect of this circuit

is the ability to accommodate the detection of either ions or electrons. In both of these

cases, the MCP voltages must be set so the appropriate charged particle is subject to an

attractive potential while bearing in mind that only electrons are produced by an MCP.

To detect electrons, approximately +1750 V is applied to the +HV In terminal of the MCP

circuit in Fig. 2.16 and the -HV In terminal is grounded. To detect ions, approximately

−1750 V is applied to the -HV In terminal of the MCP circuit in Fig. 2.16 and the +HV

In grounded. For the experimental measurements, the electronics are configured to detect

ions.

For signal detection, a higher voltage applied across the MCP results in a greater elec-

tric field and thus a greater avalanche effect with more electrons exiting the MCP for de-

tection. This process produces a greater signal; however, the main drawback of the higher

applied voltage is the electrical limitations of the MCP. A maximum voltage of approxi-

mately 2000 V may be applied across the MCP, otherwise irreversible damage to the detec-

tor may occur. Therefore, 1750 V was chosen to provide a relatively high signal without

reaching the threshold of damaging the MCP. The signal following the anode is coupled

through a 100pF capacitor to a BNC cable, then to the data acquisition equipment.
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FIGURE 2.15: Dual MCP detector design with angled channels rotated at
180 degrees from each other. Ions pass through a grounded grid, are inci-
dent on the first MCP, then the electrons that exit the first plate cascade into
the second and the angle between the channels minimizes feedback while
increasing gain. There is a physical separation between the two plates allow-
ing for charge to spread across multiple channels; this significantly increases

gain, but reduces spatial resolution.
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FIGURE 2.16: Multi-channel plate circuit diagram. To accommodate the de-
tection of either electrons or ions depending upon the polarity of the field
ionization plates, MCP voltages must be set for the appropriately charged
particle to be subject to an attractive potential while bearing in mind that
only electrons are produced by an MCP. To detect electrons, approximately
+1750 V is applied to the +HV In terminal and the -HV In terminal is
grounded. To detect ions, approximately −1750 V is applied to the -HV

In terminal and the +HV In grounded.

2.6 Experiment timing

All experimental timing is triggered from the Quanta-Ray DCR-2A flashlamp output. The

flashlamps in the DCR-2A fire at a repetition rate of 20 Hz defined by a switch setting on

the DCR-2A. The DRC-2A flashlamp trigger output feeds into the trigger input of a SRS

DG 535 delay generator to then trigger the Q-Switch of the DCR-2A as well as the flash-

lamps and Q-Switch of the Continuum laser. The Q-Switch of the DCR-2A is triggered

approximately 250 µs following the flashlamp trigger to allow for sufficient time for pop-

ulation inversion to occur in the Nd:YAG laser cavity for maximum laser power. The SRS

delay generator also outputs a trigger for the the flashlamps of the Continuum laser. This

operation is referred to as Direct Access Trigger (DAT) mode in the Continuum laser’s user

manual. The relevant manual pages are shown in Appendix F. The Continuum’s Q-Switch

is triggered by an internal digital delay set using the front panel of its respective laser con-

troller. The parameters for the SRS delay generator are shown in Table 2.9 with an intuitive
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~2μs

FIGURE 2.17: An illustrative representation of the experiment timing. The
first laser pulse drives the 5s → 6p atomic transition. A delay is introduced
to allow the atoms in the 6p state to decay to the 4d state. The next laser
pulse is applied to drive the atoms into the Rydberg n f state. A microwave
pulse or combined microwave and rf pulse with a duration of 1 µs is ap-
plied approximately 1 µs following the second laser pulse. Using delayed
field ionization, an electric field pulse is applied. Not pictured here is the
timing of the detection process. The field ionization and MCP are config-
ured to detect ions and it takes approximately ten microseconds for the ions
to reach the detector. A boxcar integrator integrates the ionization signal

and delivers the result to a data acquisition system.

description of the interpretation of these parameters in the table’s description. Addition-

ally, the electrical connections are shown in Figure 2.18. The ultimate goal of these efforts

is to have the Continuum laser pulse follow the DCR-2A laser pulse by 250 ns, shown in

the timing diagram in Figure 2.17. The purpose of this is a maximal atom population in

the n f Rydberg states, described earlier in this chapter.

Attention can now be turned to the microwave and rf field pulse generation, followed

by the field ionization pulse, and subsequent signal data acquisition. A high-level block

diagram of the instruments in this system and their general configuration is shown in Fig-

ure 2.19. Following the laser pulses, a Berkeley Nucleonics Corporation Model 8010 Pulse

Generator generates the microwave field pulse. This is set to a delay of approximately

1 µs following the laser pulses with a duration of 1 µs for the microwave and rf appli-

cations. This pulse generator is triggered by the C output of the SRS delay generator. A

second Berkeley Nucleonics Corporation Model 8010 Pulse Generator is triggered relative

to the microwave pulse and the pulse delay is adjusted for delayed field ionization. This

delay is adjusted depending on the ` state being measured and experimentally optimized

to maximize the signal to noise. The delay of the field ionization pulse is typically set to
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Parameter Equation
A T + 95 µs
B A + 10 µs
C B + 150 µs
D C + 7 µs

TABLE 2.9: SRS DG 535 delay generator parameters. Intuitively, the T pa-
rameter is the trigger input from the Quanta-Ray DCR-2A flashlamp trigger
output. The A parameter determines the amount of time before triggering
the flashlamps of the Continuum Surelite SLI-20. The B parameter defines
the pulse duration necessary to trigger the flashlamps of the Continuum
specified by the operator’s manual. The C parameter defines the time after
the Continuum flashlamps fire before triggering the DCR-2A Q-Switch; this
is to provide sufficient time for population inversion in the Nd:YAG laser
cavity. The D parameter defines the pulse duration of the DCR-2A Q-Switch

trigger; specified by the DCR-2A operator’s manual.

SRS DG 535

A     B

QR DCR-2A

Flashlamp Trig Out

Q-Switch In
Continuum SLI-20

Trig In

Trig C     D C

Trigger out

FIGURE 2.18: Electrical connection diagram for the laser triggering system.
A SRS 535 DG is responsible for triggering the two laser pulses and the mi-
crowave pulse generator. First the flashlamps on the Quanta-Ray DCR-2A
Nd:YAG trigger (T) the SRS 535 DG. The SRS 535 DG then provides a nega-
tive voltage pulse of duration D to trigger the flash lamps of the Continuum
Surelite SLI-20 Nd:YAG. This laser has a digital delay circuit to switch on
the Q-Switch at a programmed later time. At time A, a B duration positive
voltage pulse triggers the Q-Switch of the DCR-2A. Output C on the de-
lay generator serves as the trigger output to the microwave pulse generator.

Timings for delay parameters T, A, B, C, and D are specified in Table 2.9.
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Quanta-Ray
DCR-2A

SRS DG535
Delay Generator

Continuum
Surelite SLI-20

BNC Model 8010
Pulse Generator

BNC Model 8010
Pulse Generator

Microwave & RF Pulse SRS SR250
Boxcar Integrator

Field Ionization
Pulse

NI BNC-2210
DAQ

FIGURE 2.19: Experimental timing and control block diagram. The arrows
indicate either a trigger or a signal path.

approximately 2 µs following the microwave pulse. The duration of the electric field pulse

is dictated by the electronics of the field ionization circuit in Figure 2.12, and is approxi-

mately 3 µs.

The boxcar integrator, responsible for integrating the ionization signal, is externally

triggered by the field ionization pulse generator. The typical width of the signal to be

integrated is 5 µs with a relatively sizable delay from the field pulse on the order of ten

microseconds being dictated by the speed of the ions being accelerated to the MCP. The Q-

Switch of the DCR-2A triggers the acquisition sequence of the NI BNC-2210 to record the

output of the boxcar integrator. These systems are shown in the block diagram in Figure

2.19 and an abbreviated timing diagram is shown in Fig. 2.17 depicting the laser pulses,

microwave/rf pulse, and electric field pulse.

The experiment data acquisition system consists of a Stanford Research Systems SR250
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Boxcar Integrator, National Instruments (NI) BNC-2210 analog input/output data acquisi-

tion device, and a Windows computer with LabVIEWTM. The analog voltage signal from

the detector is fed to the boxcar integrator which integrates the signal in a specified time

window (or gate) relative to the trigger. The SR250 has an adjustable delay from a few

nanoseconds to 100 ms following an external trigger pulse before an adjustable gate of

2 ns to 15 µs is used to integrate over an analog signal. Lastly, exponential averaging can

be used to reduce noise applying to up to thousands of samples – in this experiment, no

exponential averaging is used since microwave frequencies are swept to find an atomic

resonance. This feature would skew the results in the direction of the previously applied

frequency in the frequency scan.

The output of the boxcar integrator is sent to the National Instruments (NI) BNC-2210

analog input/output device triggered by the DCR-2A. Upon a trigger by the SRS DG 535

delay generator, the voltage on the analog input is recorded by a custom LabVIEWTM pro-

gram. The LabVIEWTM program interfaces with the microwave and rf synthesizers via

GPIB commands to set frequencies and powers. The microwave frequency is swept with

the limits, step size, and total number of scans defined by the LabVIEWTM front panel in-

terface. Typically, limits and step sizes are defined to yield 150 microwave frequency steps

per scan. For each microwave frequency step, the measurement is repeated 15 times and

the average of the 15 signals is recorded. Scanning over the entire frequency range typically

takes 3-5 minutes. Each full scan is repeated 10-15 times. Following the data acquisition,

the frequency spectrum measurements are averaged. Although data is collected at a rate of

20 Hz, each atomic spectra measurement using this process typically take 10-15 minutes.

The LabView custom program interface and block diagram are shown in Appendix G.
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3|Atomic spectra measurements

3.1 Introduction

Spectroscopy measurements of rubidium n f → ng, n f → nh, and n f → ni bound Ryd-

berg states provide a useful means for determining core polarizability. The importance of

these measurements are explicitly described in the Introduction chapter; but to briefly reit-

erate, accurate electric dipole and quadrupole polarizabilities of the ionic core are useful in

calculating atomic dipole matrix elements and PNC effects to aid in theory and future ex-

periments [1, 2]. Spectroscopy of these atomic transitions are achieved by a single-photon

transition in the case of n f → ng, a two-photon transition in the case of n f → nh, and a

three-photon transition in the case of n f → ni. A single photon transition uses one photon

to excite from the initial state to the final state, whereas multi-photon transitions use two

or more photons to drive to a virtual state detuned from the resonance of the intermediate

energy level and ultimately to the final state.

Spectroscopy of high-` states inherently have many experimental challenges. Signal-

to-noise ratio is reduced for high angular momentum states since multi-photon transitions

are more difficult to drive. This is mainly a result of the multi-photon transitions exciting

to a detuned intermediate virtual state. The transition probability is decreased as detun-

ing from transition resonance is increased. However, spectroscopy of high-` states are

desirable given reduced core penetration effects. Core penetration effects are present for

` ≤ 3. Some previous experiments were conducted using Rb n f Rydberg states despite

this limitation [3, 4]. By design, this experiment is constrained to ` > 3 to minimize core
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penetration effects that were present in previous experiments.

Throughout the course of these measurements, systematic effects that limit measure-

ment precision and accuracy are taken into account. These effects include dc Stark shifts,

ac Stark shifts, and Zeeman shifts. DC Stark effect shifting of the energy levels occurs with

even a modestly small stray electric field. This effect is present for both single and multi-

photon transitions and are taken into account in the longitudinal direction of the electric

field plates. However, stray electric fields are uncontrolled in the direction transverse to

the electric field plates. This results in an unknown frequency shift, which must be ac-

counted for. The ac Stark effect shifts the energy levels as a function of microwave and rf

power for multi-photon transitions. This effect can be mitigated by measuring transition

frequencies at multiple microwave and rf powers, then extrapolating to zero microwave

and rf power. Lastly, Zeeman effects present a source of experimental uncertainty due to

energy shifts as a result of a background magnetic field. These systematic effects are taken

into account and final spectroscopic results are tabulated.

3.1.1 Fine structure

For the core polarization results obtained from the spectroscopic measurements in this

experiment to be accurate, the n` state core penetration effects must be negligible. For

rubidium, the n f Rydberg state is known to exhibit an inverted fine structure, indicating

core penetration effects. Typically for alkali metals, the ` state succeeding the one exhibit-

ing an inverted fine structure is non-penetrating [5]. Fine structure measurements of the

ng state are made to confirm that this is the case. The spectroscopic measurements are

conducted relative to the n f state with measurements to ng, nh, and ni. Relative measure-

ments ng→ nh and nh→ ni can thus be determined and are used in the core polarization

model analysis. Furthermore, knowledge of fine structure splitting is necessary for deter-

mining the center of gravity transition frequencies.
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ni13/2

ni11/2

i0 ∆νi

nh11/2

nh9/2

h0 ∆νh

ng9/2

ng7/2

g0 ∆νg

FIGURE 3.1: Doublet fine structure center of gravity. Fine structure splitting
for each ` state measured in this work is shown on the right side as ∆νg, ∆νh,
and ∆νi. Fine structure states are shown on the left hand side of the solid
lines. The center of gravity between the fine structure states are depicted as
dashed lines. Arrows between the solid line fine structure states show the
energies extracted from the measurements in this work. Energies between
the doublet center of gravities, denoted as arrows between the dashed lines,

are calculated.

Due to the Rydberg electron of Rb for ` < 4 penetrating the ionic core, energy levels

are shifted as a result of both core penetration effects and core polarization effects. To

measure mainly core polarization effects and neglect core penetration effects per the core

polarization model, core penetration of the ng Rydberg electron must be negligible. Core

penetration effects impact fine structure since energy levels are shifted due to the Rydberg

electron’s orbit around the ionic core. As expressed in the previous section, the ng state

is expected to be hydrogenic due to the inverted fine structure of the n f state, but also

experimentally verified here.

The consideration must also be made for the fact that the core polarization model omits

the fine structure. Fine structure shifts are thus removed for the analysis by considering

the fine structure doublet center of gravity. Fine structure energy level shifts are due to the
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j EFS ∆EFS
`+ 1/2 fn``/2

(2`+ 1) fn`/2
`− 1/2 −(`+ 1) fn`/2

TABLE 3.1: Spin-orbit interaction energies calculated and tabulated per
equation (3.1) for s = 1/2.

` EFS,j=`+1/2 EFS,j=`−1/2 ∆EFS EFS,j=`+1/2/∆EFS EFS,j=`−1/2/∆EFS
4 4/2 -5/2 9/2 4/9 -5/9
5 5/2 -6/2 11/2 5/11 -6/11
6 6/2 -7/2 13/2 6/13 -7/13

TABLE 3.2: Spin-orbit interaction energy ratios for the 4 ≤ ` ≤ 6 states
of interest. These ratios are applied to find the center of gravity transition

frequencies.

relativistic effects in combination with the valence electron’s spin and angular momentum.

This effect is known as the spin-orbit interaction, with the spin-orbit fine structure energy

shift for hydrogen given by

EFS =
fn`

2
[j(j + 1)− `(`+ 1)− s(s + 1)] (3.1)

where fn` is a function of only n and `. The spin quantum number s is set to s = 1/2

for the spin-1/2 valence electron. Ratios between the fine structure levels and center of

gravity are easily found and calculated (Tables 3.1 and 3.2). A pictorial representation of

the center of gravities for the ng, nh, and ni states is shown in Figure 3.1.

Calculation of the center of gravity transition frequencies are

νg0→h0 = νg7/2→h9/2 −
5
9

∆νg +
6

11
∆νh (3.2)

and

νh0→i0 = νh9/2→i11/2 −
6
11

∆νh +
7

13
∆νi (3.3)
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where ∆νg, ∆νh, and ∆νi are the fine structure splittings of the ng, nh, and ni states, respec-

tively. Since these states are hydrogenic, hydrogen fine structure splittings are used in this

calculation to determine the center of gravity transition frequencies.

3.1.2 Spectral linewidth broadening

Observable linewidth broadening comes from a combination of several effects. The most

pronounced effects include transform broadening dictated by the microwave pulse dura-

tion, Rabi frequency dictated by microwave power, and Zeeman splitting due to external

magnetic fields. The microwave pulse duration is τ = 1 µs. Transform broadening limits

the minimum spectral linewidth that can be measured to approximately the inverse of the

pulse duration, 1/τ = 1 MHz. In principle, transform broadening can be reduced with a

longer microwave pulse, however other sources of error must also be reduced before this

would be an advantage.

Next, a consideration must be made for Rabi frequency, which is defined as

Ωi f =
dif · EEE

h̄
(3.4)

where dif is the transition dipole moment and for the initial to final state i → f transition;

and EEE is the microwave electric field. Rabi frequency is the frequency at which Rabi oscil-

lations occur for an atomic transition. Rabi oscillations are the cyclical oscillations between

the excited state and non-excited state in the presence of an external ac electric field. The

atom will absorb the microwave photons and re-emit them via stimulated emission at the

Rabi frequency defined above. The atom populations in each of the two states in this sys-

tem cyclically fluctuate in time between these two states. Of note, Rabi oscillations are not

observed in this data since state detection occurs after the incident microwave and rf fields

and pulse duration remains constant.
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The requirement is set forth that the Rabi frequency be approximately equivalent to the

inverse of the pulse duration, τ.

Ωi f ≈ 1/τ (3.5)

The Rabi frequency should be less than or equal to the inverse of the duration of the mi-

crowave pulse to keep transform broadening below 1/τ = 1 MHz. For a Rydberg atom

transition for which n′ = n and `′ = `± 1, a small microwave field is required to drive the

transition and the time in which the atoms are exposed to microwaves is on the order of

a few microseconds, depending upon n since the dipole transition moment dif with Rabi

frequency depends on scales as n2. To reduce power broadening where it is no longer a

limiting factor, Ωi f must also be reduced. This is achieved experimentally by reducing

microwave power until a linewidth of 1 MHz is observed.

3.1.3 DC Stark effect

While the linewidth limits the precision with which transition frequency is measured, the

accuracy of the measurement is limited by effects that shift the frequency from its nominal

value. The most important of these is the Stark effect [6]. The dc Stark effect is characterized

by the shifting of energy levels of an atomic state by an externally applied electric field. The

atom’s interaction with the external electric field is described by the interaction energy

Vint = −d · |EEE|ẑ (3.6)

where d is the electric dipole moment operator and EEE is the interacting electric field along

the z-direction. The electric dipole moment scales as n2, thus for Rydberg atoms charac-

terized by high-n, the energy shift due to an external static electric field is relatively large.

Perturbation theory is applied and to second order, the energy shift of the states are given
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by

∆E = −e2|EEE|2 ∑
n′`′ j′ 6=n`j

|〈n, `, j, mj|z|n′, `′, j′, m′j〉|2
En′`′ j′ − En`j

. (3.7)

This shift is known as the quadratic Stark effect. The matrix elements are often zero, but

non-zero for off-diagonal elements according to the selection rules m = m′ and `′ = `± 1

defined by symmetries of the system.

Expressing this energy shift in terms of polarizability is given by

∆E = −1
2

α〈EEE〉2 (3.8)

where polarizability is

α = 2e2 ∑
n′`′ j′ 6=n`j

|〈n, `, j, mj|z|n′, `′, j′, m′j〉|2
En′`′ j′ − En`j

. (3.9)

Due to symmetry, the terms that vary linearly with electric field strength disappear and

the only terms that remain are given by the quadratic Stark effect in Eqn. (3.7).

Stark shifts can be computed directly for hydrogen and rubidium, and serve as a means

to check the experimental results and implement systematic uncertainties. It is understood

that the matrix elements for Rb cannot be computed; therefore, the method to determine

the Stark structure for alkali metal atoms presented by Zimmerman, et al. is implemented

here [7]. For hydrogen, all of the matrix elements are analytically known. To determine

energy shifts in the presence of a given external static electric field, the energy matrix is di-

agonalized and the eigenvalues are the shifted energy values. This calculation is repeated

for each electric field of interest. To calculate the Stark shifts for rubidium, hydrogenic

wavefunctions are used along with Rb energy shifts including fine structure splitting and

quantum defects. It is assumed that the matrix elements are the same as that for hydro-

gen, but the experimentally determined zero field energy values are used. Once again,

the energy matrix is diagonalized and the eigenvalues are the shifted energy values for a
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n α f g (MHz cm2/V2) α f h (MHz cm2/V2) α f i (MHz cm2/V2)
17 23.0 75.4 144.8
18 34.5 113.1 217.2
19 50.2 164.4 315.7

TABLE 3.3: DC Stark shift polarizability coefficients for n = 17− 19 f → g,
f → h, and f → i transitions are calculated using the methods described
herein and tabulated. The polarizability coefficient is the αi f coefficient of

the quadratic Stark effect equation ∆E = −(1/2)αi f 〈E〉2.

given external static electric field. The computed Stark maps for both H and Rb are shown

in Figures 3.2 and 3.3, respectively. Computation of the Stark shifts are performed in this

work by directly diagonalizing the Hamiltonian

H = H0 + Vint, (3.10)

where H0 is the unperturbed Hamiltonian. A basis set of the highest allowable ` values is

used for n = 17− 19.

For the Stark maps in these figures, magnetic quantum number mj = 1/2 and electric

fields up to 5000 V/cm are calculated and displayed to exemplify the effects at higher

fields. For the purposes of this work, lower electric fields on the order of 1 V/cm are of

interest since these lower electric field strengths are applied experimentally. Stark maps

for the n = 17− 19 f → g, f → h, and f → i transitions are calculated for mj = 1/2 at

low fields and transition polarizability coefficients αi f of Eqn. (3.8) and presented in Table

3.3. The calculated energy shifts for each of these transitions are shown in Figure 3.4 for

n = 17, mj = 1/2. These theoretically calculated values are compared to experimental

data in the following sections and play a role in determining systematic uncertainty due

to uncontrolled stray electric fields.

Knowing that the dc Stark effect is present for the spectroscopic measurements in this

work means that is must be accounted for accordingly. The transition frequency at zero

static electric field between the atomic states is principally of interest and needs to be
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n = 19

n = 18

n = 17

FIGURE 3.2: The hydrogen Stark map is calculated by finding energy eigen-
states, diagonalizing the Hamiltonian, then numerically integrating over the
radial part of the wavefunction and evaluating the analytical spherical har-
monics. This calculation is performed for each static electric field strength.
The hydrogen energy levels shown in the plot are centered at n = 17− 19
using mj = 1/2, and an applied static field of 0− 5000 V/cm are computed.
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n = 19

20d

n = 18

19d

20p

n = 17

20s

18d

FIGURE 3.3: The rubidium Stark map is calculated in the same fashion as
the hydrogen case, but now includes core polarization effects. The scale of
energy levels shown in the plot are centered at the Rydberg n = 17 − 19
states, with mj = 1/2, and an applied static field of 0− 5000 V/cm com-

puted.
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FIGURE 3.4: Calculated Stark shifts for the f → g, f → h, and f → i
transitions are plotted as a difference from their zero field value for n =
17, mj = 1/2. The solid black line corresponds to the f → g transition, the
dashed red line corresponds to the f → h transition, and the dotted dashed

blue line corresponds to the f → i transition.

known for accurate measurements. Observations of the dc Stark shifts allow for the re-

duction of this effect by experimentally applying an external static electric field. Unfortu-

nately, stray electric fields limit the accuracy of these measurements, and are present for

various reasons. The main reason being due to charge buildup on the surface of the electric

field plates. Ultimately, the theoretical calculations and experimental observations of the

dc Stark shifts provide the insight into the inclusion of systematic uncertainties due to an

unknown stray electric field that affect the experimental results.

3.1.4 AC Stark effect

An additional source of error present for multi-photon transitions is the ac Stark effect. Like

the static field in the dc Stark effect, the interacting oscillating microwave field induces dis-

tortions to the observed atomic spectra due to the ac Stark effect in multi-photon processes.

These distortions manifest as energy shifts, energy splitting, and linewidth broadening.

A three-level system with the initial state | f 〉, intermediate state |m〉, and final state |r〉
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FIGURE 3.5: Illustration of a three-level system and a two-photon transition.
The levels of this system include an initial state | f 〉, intermediate state |m〉,
and a final state |r〉. A photon of energy E = hν is absorbed by a virtual state
detuned from the |m〉 intermediate state, and a second photon of energy E =
hν is absorbed from the virtual state detuned ∆ from |m〉 and driving to the
final |r〉 state. Rabi frequencies Ω1 and Ω2 are shown for the | f 〉 → |m〉 and
|m〉 → |r〉 transitions, respectively. Detuning from the |r〉 state is denoted
as δ. Energy level spacing depicted in this figure is not drawn to scale for

illustrative purposes.

is considered. A two-photon transition is achieved by first exciting to a virtual interme-

diate state, which is detuned (∆) from a real intermediate state |m〉 and detuned δ from

the final state |r〉. The Hamiltonian of the time-dependent Schrödinger equation for the

three-level, single atom for this case in the rotating wave approximation (RWA) is given by

H =




0 Ω1
2 0

Ω1
2 −∆ Ω2

2

0 Ω2
2 δ




(3.11)

where Ω1 and Ω2 are the Rabi frequencies for the | f 〉 → |m〉 and |m〉 → |r〉 transitions,

respectively. Detuning from the |r〉 state is denoted as δ, and is small compared to the

detuning of the intermediate state. For this two-photon excitation, the microwaves are far

off-resonance from the |m〉 intermediate state, but close to resonant with the final |r〉 state.

To provide energy scales for this experiment, the energy separation between the n f
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initial state and ng intermediate state is between 11.5− 17 GHz and the energy separation

between the ng and nh final states is between 2.5− 3.5 GHz, dependent upon n. The de-

tuning from the intermediate ng state for the n f → nh transition is between 4 and 6 GHz,

also dependent upon n. The two-photon transition for the three-level system in this exper-

iment is depicted in Figure 3.5 with incident photons of energy E = hν, where h is Planck’s

constant and ν is the frequency of the applied microwaves.

This three-level system can be reduced to a two-level system using adiabatic elimina-

tion where the | f 〉 and |r〉 states are coupled by an effective off-resonant Rabi frequency

(Ωe f f ), and the |m〉 state omitted. The effective Rabi frequency is given by

Ωe f f =
Ω1Ω2

2|∆| (3.12)

and can be rewritten in terms of dipole transition matrix elements and the applied mi-

crowave electric field [8]. This expression is given by

d1d2E2

2∆
= Ωe f f (3.13)

where di are the the dipole transition matrix elements corresponding to the two transitions

| f 〉 → |m〉 and |m〉 → |r〉. The Rabi frequency in Eqn. (3.13) is effectively the two-photon

analogy to the single photon case shown in Eqn. (3.4) with the ac Stark shift given by

∆ωAC =
Ω2

e f f

∆
. (3.14)

The measured frequency ac Stark shift is based on the effective Rabi frequency and the

effective detuning from resonance.

Experimentally, the ac Stark shift is observed as a shift in the measured transition fre-

quency as a function of microwave power. To determine the intrinsic transition frequency

with no Stark shift, an extrapolation to zero power is performed. Since the power of an
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electromagnetic wave scales as E2, extrapolating to zero microwave power is performed

by plotting the measured transition frequencies versus applied microwave power and car-

rying out a least squares linear fit of the data. The y-intercept is thus the extrapolated to

zero power intrinsic transition frequency.

3.1.5 Zeeman effect

Another systematic effect and source of uncertainty is considered. The Zeeman effect is

the splitting and shifting of atomic spectral lines based on an external magnetic field [10].

Considerations for the Zeeman effect must therefore be made to assess the precision and

accuracy of spectroscopy measurements. A sufficiently large magnetic field can broaden

the observed linewidth of the spectroscopic measurements and limit precision. Addition-

ally, the observed energy levels between atomic states will shift, thus limiting accuracy.

Ultimately, the final goal is to attain precise and accurate ng → nh and ni spectroscopic

measurements for the core polarization calculations.

The predominant magnetic field present in this experimental setup is the Earth’s field

with a magnitude of approximately 0.5 Gauss. A measurement of the magnetic field at the

location of the atoms has been measured with a magnetometer to account for the structural

steel of the building. The magnitude of the magnetic field is measured to be 0.4 Gauss. For

the purposes of this work, Earth’s magnetic field on the order of 0.5 Gauss is considered

and accounted for as a systematic uncertainty. Attempts to null this field can be explored

in more detail in future work to minimize the Zeeman shifts.

As mentioned previously, the spectral lines are broadened and shifted based on an

applied external magnetic field. The energy shift induced by a weak magnetic field is

given by the Landé formula

∆En`jmj = µBBmjgj (3.15)
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where µB is the Bohr magnetron, B is the applied magnetic field, mj is the magnetic sublevel

quantum number, and gj is Landé g-factor of the the atom. The Landé g-factor is given by

gj = g`
j(j + 1)− s(s + 1) + `(`+ 1)

2j(j + 1)
+ gs

j(j + 1) + s(s + 1)− `(`+ 1)
2j(j + 1)

(3.16)

where g` = 1 and the gyromagnetic ratio of the electron gs ≈ 2 [11, 12]. For the higher an-

gular momentum states of interest in this work, the Zeeman shifts are found to be on the

energy scales of the fine structure splitting. Therefore this energy scale cannot be regarded

as the weak field, and Eqn. (3.15) cannot be accurately used. Instead, experimental mea-

surements of the shifts are performed and used to estimate the systematic uncertainties.

These measurements are shown in Section 3.2.2.

3.1.6 Lineshape analysis

Observed linewidths are mainly dictated by transform broadening due to the microwave

field pulse and Zeeman shifts. These effects lead to a lineshape that is not easily charac-

terized. Although this is the case, the lineshapes resemble a Lorentzian and thus for the

sake of simplicity, the ionization signal versus frequency-swept microwave pulses is fit to a

Lorentzian. Assuming the lineshape is symmetric, this should give an accurate line center

which corresponds to the transition frequency between the atomic states. However, there

are potential sources of asymmetries, such as the Stark effect and quadratic Zeeman effect.

These effects are expected to be less than 10% of the broadening, thus the line center is

constrained to be no less than 10% of the linewidth. For the Zeeman effect, the broadening

is calculated to be 0.07 MHz for the f → g transition, 0.11 MHz for the f → h transition,

and 0.14 MHz for the f → i transition for Earth’s magnetic field. For each line center mea-

surement, the uncertainty used is either the statistical line center uncertainty or 10% of the

linewidth, whichever is greater. Typically, statistical linewidths are on the order of 10%
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FIGURE 3.6: Illustration of a single photon transition for n f → ng. A photon
of energy hν is absorbed driving a transition from the initial bound n f state

to the bound ng state.

of the linewidth, with observed linewidths being approximately 1.0 MHz for the f → g

transition, 1.2 MHz for the f → h transition, and 1.5 MHz for the f → i transition.

3.2 Single-photon transition

The atomic electronic transition of the n f Rydberg bound state energy level to the ng bound

state energy level is characterized as a single photon energy level transition in a two-level

system, depicted in Fig. 3.6 with energy

∆E = hν. (3.17)

When a microwave field at the resonant frequency ν is applied, the transition is driven

and results can be detected using selective and delayed field ionization. Knowing that the

initial and final states of the microwave transition have different lifetimes, adjusting delay

of the field ionization pulse results in discrimination between the n` states. Ionization

signals are recorded for n = 17− 19 f5/2 → g7/2. The typical ionization signals seen for

these single-photon transitions are shown in Figure 3.7.
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The goal is to achieve accurate and precise measurements of the energy difference be-

tween the n f5/2 and ng7/2 states. To find this transition resonant frequency, the ionization

signal amplitude is plotted as a function of microwave frequency. These data are fit to a

Lorentzian lineshape, which provides a statistical least squares fit value for the center fre-

quency, full width at half maximum, and amplitude of the signal. Ultimately, the goal is to

determine the center frequency as precisely and accurately as possible. Signal-to-noise ra-

tios are approximately 10 for the typical single photon measurement. Lorentzian statistical

fits typically yield center frequency uncertainties of 0.05− 0.1 MHz.

Additional factors must be taken into account when assessing precision and accuracy

of these frequency measurements: primarily spectroscopic linewidth broadening and fre-

quency shifts. To account for spectroscopic linewidth broadening due to the Rabi fre-

quency, the microwave power is reduced to where the linewidth is 1 MHz, limited by

transform broadening defined by the microwave pulse duration. Frequency shifts are due

to the dc Stark effect and Zeeman effect, discussed in the following subsections.

3.2.1 DC Stark shift

Frequency shifts due to the dc Stark effect are minimized by reducing external stray electric

fields. Experimentally, this stray electric field is minimized by applying a voltage bias

across the electric field plates. As bias voltage of the ionizing electric field is adjusted,

an energy shift is observed. A typical dc Stark shift measurement is shown in Figure 3.8

for the 17 f5/2 → 17g7/2 transition. For this data set, the bias voltage is set to 0.15 V by

finding the vertex of the parabola fit; subsequently, the microwave transition frequency at

the vertex is 16528.7 MHz.

Long-term drifts in the stray electric fields are observed. Time-dependent variations in

stray electric fields are considered due to charge buildup on the electric field plates. As

a result, dc Stark measurements are conducted at least once per day to account for long-

term drifts. Day-to-day drifts are typically 0.25 V/cm corresponding to Stark shifts of the
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(A) Typical 17 f5/2 → 17g7/2 ionization signal
centered at 16528 MHz.
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(B) Typical 18 f5/2 → 18g7/2 ionization signal cen-
tered at 13945 MHz.
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(C) Typical 19 f5/2 → 19g7/2 ionization signal
centered at 11872 MHz.

FIGURE 3.7: Microwaves are swept across atomic resonance and the spec-
troscopy line profiles are recorded. Shown in these plots are typical ioniza-

tion signals for n = 17− 19 f5/2 → g7/2 single photon transitions.
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FIGURE 3.8: The dc Stark shift for 17 f5/2 → 17g7/2 single photon tran-
sition in the low electric field regime. A bias voltage is applied to one of
the electric field plates corresponding to a static electric field between the
plates separated by 1.8 cm. Varying the static electric field amplitude yields
a shift in measured transition frequency. The bias field voltage is adjusted
to minimize the energy level shift. For this data set, the bias voltage is set to
0.15 V by finding the vertex of the parabola fit; subsequently, the microwave

transition frequency at the vertex is 16528.7 MHz.
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n Frequency shift (MHz)
17 0.12
18 0.17
19 0.25

TABLE 3.4: DC Stark shifts are calculated for n = 17− 19 f5/2 → 19g7/2 with
a 0.1 V/cm external electric field. These calculated values correspond to the
systematic uncertainty of the dc Stark effect for this experimental apparatus.

n f → ng transition on the order of 0.5 MHz.

As previously discussed, only control over the longitudinal direction between the elec-

tric field plates is possible and transverse fields cannot be compensated. However, pre-

vious experiments show that transverse fields are typically below 0.1 V/cm, which corre-

sponds to a shift on the order of the measured statistical uncertainty for each measurement.

To account for the systematic uncertainty due to the dc Stark effect, shifts are calculated

for the uncontrolled 0.1 V/cm electric field.

The theoretically calculated values are suitable to use in determining systematic uncer-

tainties, when compared to the experimental measurements. The transition polarizability

coefficient introduced earlier is determined by the curvature of the parabolic plot fit in

Fig. 3.8 relating to the Stark effect equation ∆E = −(1/2)α f g〈E〉2. The experimentally

determined Stark shift for the 17 f5/2 → 17g7/2 transition has a transition polarizability co-

efficient α f g of 23.7± 1.2 MHz cm2/V2. The lower principal quantum number n = 17 was

used in these measurements to achieve a lower relative uncertainty since the measurement

resolution remains consistent while the energy spacing between these states decreases as

n increases. The theoretically calculated value for the transition polarizability coefficient

is found to be 23.0 MHz cm2/V2. Both the experimental value and the theoretical value

agree to within one standard deviation. The calculated values are then used to determine

systematic uncertainties. Calculated frequency shifts corresponding to a 0.1 V/cm electric

field are shown in Table 3.4.
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3.2.2 Zeeman shift

Measurements of Zeeman shifts are performed to determine the systematic uncertainty

due to Earth’s magnetic field. An external magnetic field is experimentally applied along

the axis of the laser beams (X) and perpendicular to the laser beams intersecting at the

center of the chamber (Y). Coil forms were designed and 3D printed to slip around and

secure to the 8 inch vacuum chamber conflat flanges. The coil form computer aided design

(CAD) drawing is shown in Appendix E. The magnetic field at the atoms due to the current

through the coils is measured with a magnetometer to be 0.42 Gauss/A. The coils are

wound to 250 turns, have a radius of approximately 10 cm, and the current through the

loop of wire can be varied between 0 A to ±3 A. This current limit is present due to the

bench power supply used. The distance between the coil and the atoms is approximately

30 cm along the X and Y axes. The magnetic field in the X and Y directions can be varied

up to approximately 1.25 Gauss, above the 0.5 Gauss magnetic field of Earth. By varying

the magnetic field in each of these directions, the significance of the Zeeman effect in this

experiment can be deduced.

Measurements of the energy shifts due to the Zeeman effect are performed for the

n f5/2 → ng7/2 transition because measurement fidelity is the greatest for this transition

compared to the multi-photon transitions. Experimental results for the Zeeman effect are

shown in Figure 3.9, with the applied magnetic field along the X direction and along the

Y direction in the subplots. A reliable Zeeman shift measurement in the Z direction is not

possible with the current apparatus due to the geometry of the vacuum system. Nonethe-

less, these measurements serve to understand the impact of an observed energy shift as a

result of Earth’s magnetic field. A frequency shift at no experimentally applied external

magnetic field is measured to be approximately 0.1 MHz from the maximal transition fre-

quency, thereby showing that the effect is minimal. This 0.1 MHz frequency shift is thus

taken into account and applied as a systematic uncertainty to all of the measurements.
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(A) Zeeman shift measurement in the X direction;
performed at n = 17 for f5/2 → g7/2.
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(B) Zeeman shift measurement in the Y direction;
performed at n = 17 for f5/2 → g7/2.

FIGURE 3.9: Experimental measurements of Zeeman shifts along the X and
Y axes for the 17 f5/2 → 17g7/2 transition. The magnetic fields are produced
using a coil of wire along each of the axes: along the axis of the laser beams
(X) and perpendicular to the laser beams intersecting at the center of the
chamber (Y). The radius of the coil of wire, around the 3D-printed coil form
shown in Appendix E, is approximately 10 cm, wound to 250 turns, and
the current is varied between 0 A to ±3 A. Along the X and Y axes, the
distance of the coils to the atoms are approximately 30 cm. To determine
the nominal shift from no experimentally applied external magnetic field to
the maximum transition frequency measured, each of the data in these plots
are fit to a function of the form y = A + B

√
(x− x0)2 + a2. A frequency

shift at no experimentally applied external magnetic field is measured to be
approximately 0.1 MHz from the maximal transition frequency per the fit.
Therefore, a 0.1 MHz frequency shift is taken into account and applied as a

systematic uncertainty to all of the measurements.
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Transition Measured Transition Frequency (MHz)
17 f5/2 → 17g7/2 16528.65± 0.03
17 f7/2 → 17g9/2 16561.27± 0.02

TABLE 3.5: Measured transition frequencies for 17 f5/2 → 17g7/2 and
17 f7/2 → 17g9/2 for determination of the fine structure splitting of the

17g7/2 − 17g9/2 states.

3.2.3 Fine structure

Knowledge of the fine structure splittings are necessary to determine whether the ng state

is hydrogenic. To determine whether the ng state fine structure of rubidium is hydrogenic,

a comparison to the hydrogen fine structure energy splittings is made. In principle, a di-

rect measurement is possible by tuning the first laser pulse to be on resonance with the

5s1/2 → 6p3/2 transition. This allows the atoms to decay to the 4d3/2 and 4d5/2 states

where the next laser pulse drives the atoms to both the n f5/2 and n f7/2 states since the

linewidth of the laser is too broad to resolve fine structure. From here, microwaves can be

used to drive the n f7/2 → ng7/2 and n f7/2 → ng9/2 transitions. Using this method and

simply calculating the difference between these two measured spectral lines of ng7/2 and

ng9/2 would yield the fine structure splitting and allow for comparison to hydrogen. Un-

fortunately, a direct measurement of the ng state fine structure splitting is impractical since

small Clebsch-Gordan coefficients suppress the n f7/2 → ng7/2 transition compared to the

n f7/2 → ng9/2 transition, below an observable level for this experimental setup. Instead

an indirect measurement is performed by making a measurement of the n f5/2 → ng7/2

transition followed by the n f7/2 → ng9/2 transition. The measured transition frequencies

for n = 17 are shown in Table 3.5, with n = 17 chosen since the fine structure splitting is

the greatest at lower n and will yield the lowest relative uncertainty.

The n f fine structure is known and calculated based on experimental results obtained

by Han, et al. [3]. Using the extrapolation presented therein, it is found that the n f state

fine structure splitting is 17 f5/2 − 17 f7/2 = 30.83± 0.02 MHz. Subtracting this from the
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difference between the measurements above yields the fine structure splitting of the g state,

Eg7/2→g9/2 = E f7/2→g9/2 − E f5/2→g7/2 − E f5/2→ f7/2 .

The experimental finding of the fine structure splitting of the 17g state is 1.83± 0.06 MHz.

Hydrogen fine structure energy shifts are given by

∆En,`,j = E0
α2

n4

(
n

j + 1/2
− 3

4

)
(3.18)

where E0 is the ground state energy of the hydrogen atom, α ≈ 1/137 is the fine structure

constant, and implementing the fact that j = `± 1/2 for a hydrogen atom. Fine structure

splitting for the hydrogen 17g state is calculated to be 1.78 MHz. Errors are determined

by assigning a 10% uncertainty to the calculated hydrogen fine structure splitting values.

Given the measurement of the 17g fine structure state above, this estimate should be suit-

able.

Both the experimental Rb measurement of the ng state fine structure splitting and ana-

lytically calculated H ng fine structure splitting are in agreement. Therefore, the rubidium

ng state can be regarded as hydrogenic and the spectroscopic measurements of this state

subsequently used in the core polarization model.

3.2.4 Spectroscopy results

Upon minimizing the dc Stark shifts, measurements of the n = 17− 19 f5/2 → g7/2 tran-

sition frequencies are conducted. The dc Stark effect measurements are plotted and fit to a

parabola. The vertex of the parabola is determined corresponding to the static bias voltage

set to maximize transition frequency. These measurements are conducted over two days

to partially account for systematic effects that take place over a long period of time. Once
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n Measured n f5/2 → ng7/2 Transition Frequency (MHz)
17 16528.66± 0.03
18 13945.16± 0.09
19 11872.26± 0.06

TABLE 3.6: Measured transition frequencies for n = 17− 19 f5/2 → g7/2.
Values and errors reported here are from the statistical Lorentzian fits ap-
plied to the data sets. Multiple measurements were taken on multiple days

and dc Stark shifts minimized for each measurement.

n Measured n f5/2 → ng7/2 Transition Frequency (MHz)
17 16528.66± 0.16
18 13945.16± 0.22
19 11872.26± 0.28

TABLE 3.7: Measured transitions frequencies for n = 17− 19 f5/2 → g7/2.
Values and errors reported here take into account both statistical and sys-

tematic uncertainties.

the bias voltage is set corresponding to the vertex of the parabola on a given day, the mea-

surement is repeated at least three times to reduce statistical uncertainty. The final values

reported are displayed in Table 3.6.

Error bars are determined by averaging the 5 to 10 measurements in total for each

transition gathered on at least two separate days. For each individual measurement, if

the measured transition frequency uncertainty is less than 10% of the linewidth per the

Lorentzian fit, 10% of the linewidth is assigned as the uncertainty. Additionally, systematic

uncertainties from Table 3.4 are applied to account for the dc Stark shift as a result of

the unknown 0.1 V/cm electric field in the transverse direction of the electric field plates.

The 0.1 MHz Zeeman effect systematic uncertainty is also applied. Measurement results

including these systematic uncertainties are shown in Table 3.7.

3.3 Two-photon transition

The atomic electronic transition of the n f Rydberg bound state energy level to the nh bound

state energy levels is characterized as a two-photon energy level transition in a multi-level
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FIGURE 3.10: Illustration of a two-photon transition for n f → nh. A photon
of energy hν is absorbed by a virtual state detuned from the ng intermedi-
ate state, and a second photon of hν being absorbed from the virtual state
detuned ∆ from ng and driving to the final nh state. Energy level spacing

depicted in this figure is not drawn to scale for illustrative purposes.

system, depicted in Fig. 3.10. Shown in the illustration, photons of energy

E = hν (3.19)

are absorbed by a virtual state detuned ∆ from the ng intermediate state, and a second

photon with energy E = hν is absorbed driving to the final nh state.

Detection of the transitions are accomplished through the same process in the single-

photon case through selective field ionization. However with the higher-` states, delayed

field ionization techniques are also implemented to leverage the longer lifetimes of these

states for better experimental signal-to-noise ratios. Discrimination between the n` states

is achieved through a combination of selective and delayed field ionization techniques.

Just as with the single-photon measurement, the microwave frequency is swept and the

ionization signal is recorded for n = 17− 19 f5/2 → h9/2. A typical ionization signal for the

two-photon transition is shown in Figure 3.11. The microwave power is reduced to where

the linewidth is 1/τ = 1 MHz, limited by the pulse-broadening dictated by microwave

pulse duration τ = 1 µs. Observed linewidths are typically near 1 MHz, as expected, upon
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FIGURE 3.11: Typical ionization signal versus microwave frequency for the
19 f5/2 → 19h9/2 two-photon transition. The microwave field is swept across
a range of frequencies and power is set to a value that minimizes spectral
linewidth to approximately 1 MHz, like in the single-photon case. How-
ever, for 19 f5/2 → 19h9/2, the applied microwave frequency is half of the

transition frequency to facilitate the two photon transition.

reducing microwave power.

3.3.1 DC Stark shift

The dc Stark shifts for multi-photon transitions are measured in the same fashion as in the

single-photon case by varying the electric field bias and observing a shift in the energy

level of the atomic states. For the higher-` states, dc Stark shifts are more pronounced,

as seen in Table 3.3 and Figure 3.4. DC Stark shift measurements were conducted for the

17 f5/2 → 17h9/2 transition and the results are plotted in Figure 3.12.

Once again, the Stark shift transition polarizability coefficient α f h for 17 f5/2 → 17h9/2 is

compared between the experiment and theory. Upon fitting the parabola in Figure 3.12, the

transition polarizability coefficient α f h is experimentally found to be 80± 2 MHz cm2/V2
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n Frequency shift (MHz)
17 0.38
18 0.57
19 0.82

TABLE 3.8: DC Stark shifts are calculated for n = 17− 19 f5/2 → 19h9/2 with
a 0.1 V/cm external electric field. These calculated values correspond to the
systematic uncertainty of the dc Stark effect for this experimental apparatus.

with the uncertainty being statistical from the least squares parabolic fit. This is approxi-

mately 3 standard deviations larger than the calculated value of 75.4 MHz cm2/V2. This

difference can be explained by the fact that additional systematic uncertainties are not con-

sidered in this data set. Typically, the bias field minimizing the dc Stark shift is set using

measurements of the n f → ng transition and data is not typically obtained for n f → nh.

Therefore, the experimentally measured transition polarizability coefficient may not be an

accurate representation of the effect for the multi-photon transitions. These values are still

close to the calculated values, and the calculated values remain a reasonable representation

for determining the systematic uncertainties.

The systematic uncertainties due to the dc Stark effect are handled similarly to the

single-photon case with dc Stark shifts calculated for the n = 17− 19 n f5/2 → nh9/2 transi-

tions at a 0.1 V/cm electric field. The systematic uncertainties as a result of this calculation

are tabulated in Table 3.8.

3.3.2 AC Stark shift and spectroscopy results

Upon considering the dc Stark shifts, ac Stark shifts, and spectral distortions, measure-

ments of n = 17− 19 f5/2 → h9/2 transition frequencies are conducted. The dc Stark effect

is taken into account in the same manner as with the single-photon transition. Once dc

Stark shifts are minimized, ac Stark shifts are also minimized. Five to ten measurements

are conducted at differing microwave powers to perform a least squares linear fit to extrap-

olate to zero microwave power. A typical ac Stark shift measurement for 19 f5/2 → 19h9/2
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FIGURE 3.12: The dc Stark shift for 17 f5/2 → 17h9/2 two-photon transi-
tion in the low electric field regime. A bias voltage is applied to one of the
electric field plates corresponding to a static electric field between the plates
separated by 1.8 cm. Varying the static electric field amplitude yields a shift
in measured transition frequency. The bias field voltage is adjusted to mini-
mize the energy level shift. For this data set, the bias voltage is set to 0.22 V
by finding the vertex of the parabola fit; subsequently, the microwave tran-

sition frequency at the vertex is 19929.7 MHz.
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FIGURE 3.13: Typical ac Stark shift measurement for 19 f5/2 → 19h9/2. An
ac Stark shift is observed as a function of microwave power. An extrapo-
lation to zero field is performed to determine the transition frequency with
no Stark shift. Since the power of an electromagnetic wave scales as E2, ex-
trapolating to zero field is simply a matter of fitting the measured transition
frequency versus microwave power data points to a line and determining
the y-intercept. These data are collected for n = 19, but the same treatment

may apply to n = 17 and n = 18.

is shown in Figure 3.13.

Uncertainties are determined in a similar manner to the single-photon transition with

as little as 10% linewidth uncertainties for each measurement at a given microwave power.

The entire data set is fit to a line and a statistical uncertainty is obtained for the y-intercept.

Measurement results with statistical uncertainties are presented in Table 3.9. Statistical un-

certainties are then added in quadrature with the estimated 0.1 V/cm transverse dc Stark

shifts in Table 3.8 and a Zeeman shift of 0.1 MHz. The measurement is typically repeated

on a different day to account for slowly-varying effects. The spectroscopic measurements

and reported errors are shown and displayed in Table 3.10.
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n Measured n f5/2 → nh9/2 Transition Frequency (MHz)
17 19929.54± 0.26
18 16815.55± 0.14
19 14316.99± 0.13

TABLE 3.9: Measured transition frequencies for n = 17− 19 f5/2 → h7/2.
Transition frequencies and errors reported here are due to the statistical
Lorentzian fits applied to the data sets. Multiple measurements were taken

on multiple days and the dc Stark shifts minimized.

n Measured n f5/2 → nh9/2 Transition Frequency (MHz)
17 19929.54± 0.47
18 16815.55± 0.59
19 14316.99± 0.84

TABLE 3.10: Measured transitions frequencies for n = 17− 19 f5/2 → h9/2.
Values and errors reported here take into account both statistical and sys-

tematic uncertainties.

3.4 Three-photon transition

The approach for the four-level n f → ni three-photon transition is similar to the n f → nh

two-photon transition. For this case, there are two virtual intermediate states, each de-

tuned from the real intermediate ng and nh states, with a final rf field applied on reso-

nance with the ni transition. An illustration of this is shown in Figure 3.14. The ac Stark

shift follows a similar approach to the two photon description above. With the additional

interacting field added to the Hamiltonian, the ac Stark shifts are also additive for both mi-

crowave and rf power. Therefore, the the ac Stark shift applied to the measured microwave

frequency for the n f5/2 → ni11/2 transition is also fit to a line and shown in Figure 3.17 for

n = 19. Just as before, this applies to n = 17 and n = 18 in the same fashion.

Notably, a difference between the two and three-photon cases is the detuning from

the nh state. The detuning from the nh state is much less than the detuning from the

ng state and an rf signal is applied to excite from the virtual detuned nh state to the ni

state. Equations (3.13) and (3.14) show that the ac Stark shift is inversely proportional to
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FIGURE 3.14: Illustration of a three-photon transition for n f → ni. A photon
of energy hν is absorbed by a virtual state detuned from the ng intermediate
state, and a second photon with energy hν excites to another virtual interme-
diate state detuned from nh. Finally, the applied rf field drives the transition
from the virtual state detuned from nh to the final ni state. The dashed lines
in the illustration depict virtual states. Energy level spacings depicted in this
figure are not drawn to scale for illustrative purposes, but labeled to express

energy scales.
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FIGURE 3.15: Typical ionization signal versus microwave frequency for a
19 f5/2 → 19i11/2 three-photon transition. Applied microwave frequency is
half of the transition frequency detuned from the 19h9/2 virtual state with a

constant rf field at 1015 Mhz.
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detuning, with the three-photon energy shift given by

∆ωAC =
Ω2

1
∆1

+
Ω2

2
∆2

(3.20)

where the 1 subscript denotes the effective Rabi frequency and detuning corresponding

to the microwave driven n f to detuned nh virtual state, and the 2 subscript denotes the

effective Rabi frequency and detuning corresponding to the rf driven detuned nh to res-

onant ni state. These ac Stark shifts are additive since each field Hamiltonian component

is treated separately and added. Due to the detuning from the nh state being much less

than the detuning from the ng state, the ac Stark shift measurements are more pronounced

for an applied rf power compared to microwave power. This effect can be readily seen by

comparing the two plots in Figure 3.17.

The n f → ni spectroscopy measurement is typically repeated four times, with two

measurements taken for detunings on either side of the nh state resonance. For a single

measurement, the rf frequency remains constant corresponding to the detuned nh virtual

state to the target ni state and the microwave frequency is swept with a resonance mea-

sured at half of the frequency of the two-photon n f to nh detuned virtual state. Each

measurement is taken at a detuning of at least ±50 MHz from the nh state to avoid the

effects of measurements on-resonance. Extrapolations to zero microwave and rf power

are performed for each of these measurements to determine the true transition frequency.

Another methodology can be employed where the microwave frequency remains constant

and the rf frequency is swept. However, given the poor impedance matching of the rf out-

put to the electric field plate in the current experimental setup, the rf power at the atoms

may fluctuate as the rf frequency is varied leading to an uncertainty. Therefore, the mi-

crowave frequency is varied as the rf frequency remains constant for these measurements.
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FIGURE 3.16: The dc Stark shift for 17 f5/2 → 17i11/2 three-photon transi-
tion in the low electric field regime. A bias voltage is applied to one of the
electric field plates corresponding to a static electric field between the plates
separated by 1.8 cm. Varying the static electric field amplitude yields a shift
in measured transition frequency. The bias field voltage is adjusted to mini-
mize the energy level shift. For this data set, the bias voltage is set to−0.15 V
by finding the vertex of the parabola fit; subsequently, the microwave tran-

sition frequency at the vertex is 20997.0 MHz.

3.4.1 DC Stark shift

Similar to the single and two-photon transition cases, dc Stark shift measurements were

conducted for the 17 f5/2 → 17i11/2 transition and the results are plotted in Figure 3.16.

Systematic uncertainties due to the dc Stark effect are handled similarly to the single and

two-photon cases with dc Stark shifts calculated for the n = 17− 19 n f5/2 → ni11/2 tran-

sitions at a 0.1 V/cm electric field. The results of this calculation are tabulated in Table

3.11.

Once again, the Stark shift transition polarizability coefficient α f i for the 17 f5/2 →
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n Frequency shift (MHz)
17 0.72
18 1.09
19 1.58

TABLE 3.11: DC Stark shifts are calculated for n = 17− 19 f5/2 → 19i9/2
with a 0.1 V/cm external electric field. These calculated values correspond
to the systematic uncertainty of the dc Stark effect for this experimental ap-

paratus.

17i11/2 transition is compared between the experiment and theory. Upon fitting the parabola

in Figure 3.16, the transition α f i is experimentally found to be 130± 4 MHz cm2/V2. This

measurement is found to be just below 4 standard deviations of the calculated value of

145 MHz cm2/V2. Systematic uncertainties are not accounted for in this measurement,

and dc Stark shift measurements are not typically performed for multi-photon transitions.

Nevertheless, since the 17 f5/2 → 17g7/2, 17 f5/2 → 17h9/2, and 17 f5/2 → 17i11/2 are rea-

sonably close to the theoretical calculations, it can be concluded that calculated dc Stark

shifts are sufficient to estimate the systematic uncertainties for each of these transitions.

The calculated systematic uncertainties as a result of a 0.1 V/cm dc Stark shift are shown

in Table 3.11.

3.4.2 AC Stark shift and spectroscopy results

Similar considerations for n f5/2 → ni11/2 are made as with n f5/2 → nh9/2. However, there

are now two ac Stark shifts – one from each detuned virtual state. Measurements are taken

on at least two separate days with dc Stark shifts minimized on each day. Typically two

measurements are conducted with detunings on either side of the nh resonance, totaling

four separate measurements. Uncertainties are determined in a similar fashion to the two-

photon case with the linear fit extrapolations to zero microwave and rf power, and adding

the error of a possible transverse electric field of 0.1 V/cm corresponding dc Stark shifts.

The spectroscopic measurements with statistical uncertainties are reported and displayed

in Table 3.12 and measurements with systematic uncertainties shown in Table 3.13.
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(A) Typical ac Stark shift measurement for 19 f5/2 →
19i11/2. The ac Stark shift is measured as a function
of microwave power with rf power left at a constant
20 mW. The fit y-intercept is 7182.5± 0.1 MHz and the

fit slope is 0.012± 0.005 MHz/mW.
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(B) Typical ac Stark shift measurement for 19 f5/2 →
19i11/2. The ac Stark shift is measured as a function
of rf power with microwave power left at a constant
50 mW. The fit y-intercept is 7182.1± 0.2 MHz and the

fit slope is 0.10± 0.01 MHz/mW.

FIGURE 3.17: Typical ac Stark shift measurements for 19 f5/2 → 19i11/2 with
respect to microwave and rf power. An extrapolation to microwave and rf
power are performed to determine the transition frequency with no Stark
shift. As with the microwave case, rf power scales as E2 so an extrapola-
tion to a zero power is accomplished through a linear fit and finding the
y-intercept. These data are collected for n = 19, but the same treatment may
apply to n = 17 and n = 18. Due to the detuning from the nh state being
much less than the detuning from the ng state, the ac Stark shift is more

pronounced for the applied rf field.

n Measured n f5/2 → ni11/2 Transition Frequency (MHz)
17 20992.54± 0.62
18 17713.23± 0.56
19 15082.91± 0.84

TABLE 3.12: Measured transitions frequencies for n = 17− 19 f5/2 → i7/2.
Values and errors reported here are on the statistical Lorentzian fits applied
to the data sets, followed by the ac Stark shift measurements and an ex-
trapolation to zero microwave power and zero rf power. Measurements are
taken on at least two separate days with dc Stark shifts minimized on each
day. Typically two measurements are conducted with detunings of at least
50 MHz on either side of the nh resonance, totaling four separate measure-

ments.
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n Measured n f5/2 → ni11/2 Transition Frequency (MHz)
17 20992.5± 1.0
18 17713.2± 1.2
19 15082.9± 1.8

TABLE 3.13: Measured transitions frequencies for n = 17− 19 f5/2 → i11/2.
Values and errors reported here take into account both statistical and sys-

tematic uncertainties.

n f5/2 → g7/2 fcg → gcg f5/2 → h9/2 fcg → hcg f5/2 → i11/2 fcg → icg
17 16528.66(3) 16547.27(7) 19929.5(3) 19947.8(3) 20992.5(6) 21010.6(6)
18 13945.16(9) 13960.90(10) 16815.6(1) 16831.0(2) 17713.2(6) 17728.5(6)
19 11872.25(6) 11885.69(7) 14317.0(1) 14330.2(1) 15082.9(8) 15096.0(8)

TABLE 3.14: Measured transition frequencies for the measured f5/2 → g7/2,
f5/2 → h9/2, and f5/2 → i11/2 transitions are tabulated, along with the the
frequencies referenced to the center of gravity of the fine structure doublet
with the "cg" notation. Transition frequencies shown here are in MHz. Un-
certainties are statistical and cg calculations include the uncertainties per-

taining to knowledge of fine structure splittings [3].

3.5 Summary of results

Measured transition frequencies are summarized, along with center of gravity calculations

and systematic uncertainties. Center of gravity transition frequencies are used in the core

polarizability analysis, as described earlier. Shown in Table 3.14 are the measured tran-

sition frequencies for n = 17 − 19 f5/2 → g7/2, f5/2 → h9/2, and f5/2 → g11/2 and the

calculated center of gravity transition frequencies fcg → gcg, fcg → hcg, and fcg → icg.

Center of gravity transition frequencies after taking into account systematic uncertainties

due to the dc Stark effect and Zeeman effect are shown in Table 3.15. These transition

frequencies are used in the core polarization model analysis with systematic uncertainties

considered.



Chapter 3. Atomic spectra measurements 103

n fcg → gcg fcg → hcg fcg → icg
17 16547.3(2) 19947.8(5) 21010.6(10)
18 13960.9(2) 16831.0(6) 17728.5(12)
19 11885.7(3) 14330.2(8) 15096.0(18)

TABLE 3.15: Transition frequencies calculated for the center of gravity of the
fine-structure doublet with the "cg" notation. Systematic uncertainties are
considered, for use in the core polarization model. Transition frequencies
shown here are in MHz for n = 17− 19, fcg → gcg, fcg → hcg, and fcg → icg.
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4|Ionic dipole and quadrupole core

polarizabilities

4.1 Core polarization model

Improved spectroscopic measurements between high-lying ` states has been achieved com-

pared to previous work. These spectroscopic measurements are relative to the n f5/2 state,

and thus these measurements cannot be used to calculate the absolute energy of the state

relative to the ionization energy. If absolute energies of the states were known, polariz-

ability could be determined using the ideas presented in the Introduction. Previously de-

termined state energies for the n f states can be used to calculate core polarizability, with

a similar approach seen in Ref. [1]. The energy shifts in Eqn. (4.2) correspond to the en-

ergy shift from hydrogen due to core polarization and are related to quantum defects and

absolute energy level values compared to hydrogen. In the absence of core penetration

and core polarization, the Rydberg energies are the same as hydrogen, up to a small mass

correction. Unfortunately, sufficiently accurate energy measurements of the n f states are

not available, thus a comparison to hydrogenic values is not possible. A second, more

self-contained approach is taken here whereby relative spectroscopic results are used to

calculate core polarization, and quantum defects are then extracted from the core polariz-

ability results.
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4.1.1 Theory

Reiterated from the Introduction, applying the core polarization model first introduced by

Born, a Rydberg electron with sufficiently high-` orbiting an alkali metal atom ionic core

exhibits minimal core penetration allowing for core polarization to be measured [2, 3]. The

electrostatic interaction between the Rydberg electron and the alkali metal atom ionic core

exhibits mainly the core polarization effect due to the field of the valence electron polariz-

ing the ionic core, leading to an energy shift. The resulting energy shift is a reduction of

the observed energy spectrum when compared to hydrogen

Wn` = −
1

2n2 + Wpol , (4.1)

expressed in atomic units. In this model, the energy level for a given n` state can be ex-

pressed in terms of the hydrogen energy level −1/(2n2) and the core polarization effect

shift to the hydrogen energy level

Wpol = −
αd

2
〈r−4〉n` −

αq

2
〈r−6〉n`. (4.2)

Using the relative energy difference between two states of an alkali metal atom with dif-

ferent angular momentum and a given principal quantum number, n` and n`′, the polar-

ization energy difference can be expressed as

∆Wn``′ = Wpoln`′ −Wpoln` . (4.3)

The approach presented by Edlén in Ref [4] is followed to evaluate dipole and quadrupole

polarizability terms, αd and αq. The expectation values 〈r−4〉n` and 〈r−6〉n` correspond to

the hydrogen wavefunction, dependent on n and `. The hydrogen wavefunction is used

to approximate these expectation values since the states investigated are non-penetrating.
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The analytical expressions to these expectation values are given by

〈r−4〉 = G4(n, `)[3n2 − f1(`)] (4.4)

and

〈r−6〉 = 3G6(n, `)
{

35
3

n4 − 10n2[ f1(`)−
5
6
] + f2(`)

}
(4.5)

where GP(n, `) and fr(`) are

GP(n, `) =
2PZP(2`− P + 2)!
nP+1(2`+ P− 1)!

(4.6)

and

fr(`) =
(`+ r)!
(`− r)!

(4.7)

with Z being the nuclear charge; and for hydrogen, Z = 1. These analytical solutions

are presented in Ref. [5] with additional analytical expressions for expectation values 〈rs〉
shown in Appendix C.

By introducing two new variables dependent the expectation values, polarizability can

be expressed in terms of a line. These variables are defined as

Pn` = 〈r−4〉n` (4.8)

and

Qn` =
〈r−6〉n`
〈r−4〉n`

. (4.9)

Substituting these values into Eqn. (4.2) yields the following equation

∆W = αd (Pn` − Pn`′) + αq (Pn`Qn` − Pn`′Qn`′) (4.10)
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which can then be expressed in a more compact fashion following the presentation by

Safinya, et al. in Ref [6], as

∆W = αd∆d + αq∆q (4.11)

where

∆d = Pn` − Pn`′ (4.12)

and

∆q = Pn`Qn` − Pn`′Qn`′ . (4.13)

Using hydrogen wavefunctions and analytically calculated expectation values, both ∆d

and ∆q are known. The resulting expression takes the form of a line when dividing each

side of Eqn. (4.11) by ∆d.
∆W
∆d

= αd + αq
∆q

∆d
(4.14)

The polarization energy, ∆W is obtained through spectroscopic measurements correspond-

ing to the center of gravity transition frequencies shown in Table 3.14. Therefore, with two

∆W measurements, this becomes a matter of solving the two equations for the two un-

knowns αd and αq.

4.1.2 Results and analysis

Given Eqn. (4.14), just two pairs of n` → n`′ state spectroscopic measurements are neces-

sary to fit to a line. Once the data points are fit to a line, dipole and quadrupole polarizabil-

ities are the intercept and slope of the resulting fit. For this, the observed difference in the

n`→ n`′ energy levels in this analysis are ngcg → nhcg and nhcg → nicg are used since core

penetration effects are minimal and core polarization effects are dominant for ` ≥ 4. As a

reminder, transition frequencies involving n f states cannot be used since core penetration

effects are present and thus non-hydrogenic. These two pairs of n` → n`′ transitions are

plotted and shown in Figure 4.1, with the data points listed in Table 4.1. Upon plotting,
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n Transition ∆q/∆d (×10−2) 2∆W/∆d
n = 17 g→ h 1.28587 9.3046(7)

h→ i 0.52185 9.159(5)
n = 18 g→ h 1.29104 9.3053(10)

h→ i 0.52508 9.157(7)
n = 19 g→ h 1.29540 9.3067(17)

h→ i 0.52781 9.168(12)

TABLE 4.1: Determination of core polarizabilities in the adiabatic approxi-
mation. In the main plot, ∆W is the measured energy interval between states
n` and n`′. The parameters ∆d and ∆q depend on n, ` and `′, and are given
by Eqns. (4.12) and (4.13). The side plots show expanded views of the data
for the (a) g− h and (b) h− i transitions. The line is an error-weighted best
fit, with intercept and slope corresponding to αd and αq, respectively. The

present values are αd = 9.059(6) a3
0 and αq = 19.1(5) a5

0.

these data are fit to a line using the least squares method. The resulting intercept and slope

of the fit to the line are αd = 9.059(6) a3
0 and αq = 19.1(5) a5

0, respectively. Uncertainties

reported here are a result of the statistical fit of the line best fit to the data with errors

weighted. Systematic uncertainties, such as lineshape of the spectrum, are accounted for

prior to plotting the data. This analysis neglects the non-adiabatic correction that plays

an important role in accurate polarizability results, and that will be discussed later in this

chapter.

4.1.3 Comparison to previous work

The polarizability measurements here are in reasonable agreement with previous experi-

mental work. Previous measurements yielded dipole and quadrupole polarizabilities of

αd = 9.12(2) a3
0 and αq = 14(3) a5

0 [1], with the core polarizability plot provided in the ref-

erence shown in Figure 4.2. The dipole polarizability results agree to within three standard

deviations with the previous measurement and quadrupole polarizabilities agree within

two standard deviations. However, results reported here are approximately 6 times more

precise for the dipole polarizability term and an order of magnitude more precise for the

quadrupole polarizability term.
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FIGURE 4.1: Determination of core polarizabilities in the adiabatic approxi-
mation. In the main plot, ∆W is the measured energy interval between states
n` and n`′. The parameters ∆d and ∆q depend on n, ` and `′, and are given
by Eqs. (4.12) and (4.13). The side plots show expanded views of the data
for the (a) g− h and (b) h− i transitions. For the inset plots, the horizontal
axis is more expanded than the vertical axis to better show the different n
measurements and uncertainties. As drawn, this difference in scales leads
to an apparent change in slope. The line is an error-weighted best fit, with
intercept and slope corresponding to αd and αq, respectively. The present

values are αd = 9.059(6) a3
0 and α

(a)
q = 19.1(5) a5

0.
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al. in Ref [1]. Therein, measurements of (n + 1)d5/2 → n f , ng are performed
for n = 27− 30. Core polarizability is extracted from the quantum defects
reported and plot, then fit to a line with least squares. The resulting fit pa-

rameters are αd = 9.12(2) a3
0 and αq = 14(3) a5

0.
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When considering theory, dipole and quadrupole polarizabilities are calculated to be

αd = 9.1 a3
0 and αq = 34 a5

0 [7]. No error bars are provided by the theory calculation, but the

dipole polarizability appears to be within reasonable agreement with this and the previous

experiment. However, a large discrepancy is present for the quadrupole polarizability

term when comparing these theoretical values to the experimental results found here. This

discrepancy has been previously noted by Lee, et al. as a motivation for future work [1].

And, this discrepancy has been resolved by considering non-adiabatic effects.

4.2 Non-adiabatic core polarization model

The core polarizability analysis presented earlier uses the adiabatic approximation. The

polarization energy in the adiabatic approximation does not account for the motion of

the valence electron, and an associated polarization energy shift. In an effort to resolve

the quadrupole polarizability value discrepancy between experiment and theory and to

obtain the most best value for the dipole polarizability, a non-adiabatic effect is applied

to the core polarization model. This approach has been used previously for alkaline earth

atoms, but was not thought to be necessary for alkali atoms. To the contrary, however, it is

found in this work that the non-adiabatic correction is quite significant for Rb.

4.2.1 Theory

The core polarization model presented by Mayer and Mayer derives the energy shift from

the polarization of the atom core for an alkali metal atom using perturbation theory [3].

However, the non-adiabatic effect due to the motion of the valence electron is not considered.

In the treatment by van Vleck and Whitelaw that is followed here [8, 9, 10, 11], an energy

correction due to possible excitation of the core electrons is included in the derivation of

polarization energy using perturbation theory. The second-order correction to the polar-

ization energy involves a sum over all states including the core, Rydberg bound states, and
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a
an`

aε`

b
bn′`′

bε′`′

∆

(Wb −Wa)

FIGURE 4.3: Energy level diagram showing ion states a and b, Rydberg
bound states (denoted by horizontal solid lines –) for the ion ground state
an` and the ion excited state bn′`′, and respective continua aε`′ and bε′`′

(denoted by the slashed lines ///). For dynamic polarization of the core to
be negligible, and hence an adiabatic approximation to be sufficient, energy
spacing over the Rydberg bound states and continuum must be very small

compared to the ionic core energy levels, ∆� (Wb −Wa).
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the continua. In the adiabatic limit, it is assumed that the Bohr frequencies of the ionic core

are very large compared to the Bohr frequencies associated with transitions of the Rydberg

atom [8].

Non-adiabatic effects must therefore be taken into account if the energy spacing be-

tween the ionic energy level separation (Wb −Wa) is not much larger than the Rydberg

state energies ∆. Figure 4.3 shows an energy level diagram with two ionic core states la-

beled as a and b. The Rydberg atom states with a ground-state core are labeled an`, while

Rydberg states with an excited core are bn′`′. The respective continua states corresponding

to each of the core states are labeled as aε` and bε′`′. The atom is prepared in a particular

an` state, but the Coulomb interaction with the core electrons can virtually drive a transi-

tion to a bn′`′ or bε′`′ state. The range of valence electron energies that can be accessed via

this transition is labeled ∆. In the adiabatic approximation, ∆ is supposed to be negligible

compared to (Wb−Wa). This is reasonable since the spacing between nearby Rydberg lev-

els is often many orders of magnitude smaller than the core excitation energy. However,

it is found in this work that the energy range ∆ is not limited to nearby Rydberg states,

but in fact extends over an energy range that is only somewhat smaller than (Wb −Wa).

We deal with this by including the effect of a non-zero ∆ to first order in the perturbation

theory expansion.

The details of this calculation are presented below, following Refs. [8, 12]. The final

result is that the polarization energy of Equation (4.2) becomes

Wpol,n` = −
1
2

kd,n`αd〈r−4〉n` −
1
2

kq,n`αq〈r−6〉n` (4.15)

where non-adiabatic correction factors to the core polarizability kd,n` and kq,n` for the dipole

and quadrupole polarizability terms are introduced. In the adiabatic approximation, kd,n` =

1 and kq,n` = 1. The dipole and quadrupole polarization energy contributions, Wd,n` and
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Wq,n`, are separately considered

Wpol,n` = Wd,n` + Wq,n`. (4.16)

First the dipole polarization energy term is considered. The non-adiabatic correction

to the dipole term arises from the polarization shift of the rubidium n` state due to the

dipole polarization energy contribution Wd,n` [8, 13]. To develop this model, the Rb+ core

is treated as if it has one electron. This consideration is reasonable since the distribution of

the oscillator strengths from the ground state is of primary interest. The Hamiltonian for

the ionic core electron and the Rydberg electron is given by

H = −
[∇2

1
2

+
∇2

2
2

+ f (r1) + f (r2)−
1

r12

]
(4.17)

where− f (r) is the Coulombic potential of an electron at a distance of r from the remaining

Rb++ ionic core and r12 is the distance between the core electron (denoted as electron 1)

and Rydberg valence electron (denoted as electron 2). This Hamiltonian can be separated

into two parts

H = H0 + H1 (4.18)

where

H0 = −
[∇2

1
2

+
∇2

2
2

+ f (r1) +
1
r2

]
(4.19)

and

H1 = − f (r2) +
1
r2

+
1

r12
. (4.20)

Conceptually, H0 is the time-independent unperturbed Hamiltonian and the Hamiltonian

H1 is a perturbation on H0 due to the Rydberg electron’s interaction with the core electron.

The electron interaction term 1/r12 is then expanded in terms of r1 and r2 and Legendre

polynomials. For high-`, r2 � r1 so the potential f (r2)→ 2/r2. The Hamiltonian H1 is then
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rewritten as

H1 = − 2
r2

+
1
r2

+

[
1
r2

+
r1

r2
2

P1(cos θ12) +
r2

1

r3
2

P2(cos θ12) + . . .
]

(4.21)

with the 1/r12 expansion in the brackets. Simplifying this expression,

H1 =
r1

r2
2

P1(cos θ12) +
r2

1

r3
2

P2(cos θ12) + . . . (4.22)

where θ12 is the angle between r1 and r2, the two electrons to the core. The Legendre

polynomials in terms of spherical harmonics are

P`(cos θ12) =
4π

2`+ 1 ∑
m

Y∗`m(θ1, φ1)Y`m(θ2, φ2) (4.23)

where θi and φi are the angular coordinates of electron 1 to electron 2 relative to the Rb+

core.

Applying the time-independent Schrödinger equation to Hamiltonian H0 yields

−
[∇2

1
2

+ f (r1) +
∇2

2
2

+
1
r2

]
Ψ(r1, r2) = WΨ(r1, r2) (4.24)

where r1 is the vector of the core electron in relation to the core center of mass and r2 is

the vector of the valence electron to the Rb+ core center of mass. Equation (4.24) can be

separated into two independent equations, one for the core electron wavefunction

−
[∇2

1
2

+ f (r1)

]
ψ1(r1) = W1ψ1(r1) (4.25)

and one for the Rydberg electron wavefunction

−
[∇2

2
2

+
1
r2

]
ψ2(r2) = W2ψ2(r2). (4.26)
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It follows that the atom wavefunction is a direct product between the ion wavefunction

ψ1(r) and the hydrogenic wavefunction ψ2(r) for the Rydberg electron.

Ψ(r2, r1) = ψ1(r1)ψ2(r2) (4.27)

The total energy is therefore the sum of these energies

W = W1 + W2, (4.28)

where W1 is the ionic core energy and W2 is the Rydberg electron energy.

The solution to the core electron wavefunction from equation (4.25) is φn′`′m′(r1), which

is difficult to calculate since f (r) is unknown. The solution to the hydrogenic wavefunction

for the Rydberg electron from equation (4.26) is un`m(r2), which is able to be analytically

calculated. Equation (4.27) becomes

Ψ(r1, r2) = φn′`′m′(r1)un`m(r2) (4.29)

and equation (4.28) is then expressed as

W = Wn′`′ −
1

2n2 (4.30)

where Wn′`′ is the energy of the Rb+ n′`′ state with respect to the Rb+ ionization limit.

For the actual Rb atom, the Rydberg electron interacts with all 36 electrons in the core.

To account for this, the single electron core state ψ1 is replaced by a multielectron state.

The ground state of the core has the 4p6 configuration and is labeled as state a. In this

calculation, an arbitrary excited state of the core is considered and labeled as b. The cor-

responding Rydberg states are therefore labeled as an` and bn′`′, according to the state of

the Rydberg electron.
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The second-order energy correction to the Rb an` state is evaluated first. The generic

formula for a second-order energy shift in perturbation theory is given by

W(2)
i = ∑

i′ 6=i

|〈Ψ0
i′ |H1|Ψ0

i 〉|2
E0

i − E0
i′

(4.31)

with a sum over all linear combinations of orthonormal states i and i′. The superscript 0

denotes the unperturbed values. Dipole and quadrupole second-order corrected energy

terms can also be separated

W(2)
n` = Wd,n` + Wq,n` (4.32)

along with the dipole (r−2
2 ) and quadrupole (r−3

2 ) components of H1 in Eqn. (4.22). Eigen-

functions of the wavefunction in Eqn. (4.29) are spherical harmonics. Therefore, diagonal

matrix elements of H1 vanish for the Rb+ 4p6 states with no first order correction. The

dipole second-order energy correction is thus

Wd,n` = ∑
b,n′`′

〈a|r1|b〉2〈n`|r−2
2 P1(cos θ12)|n′`′〉2

(Wan` −Wbn′`′)
. (4.33)

The matrix elements with the Legendre polynomials are found by evaluating the spherical

harmonic scalar products of the tensor operators using the methods in Ref. [14] and ap-

plying the selection rule `′ = `± 1. Upon this evaluation, the second-order dipole energy

correction expression becomes

Wd,n` =
1
3 ∑

b,n′
〈a|r1|b〉2

[
`〈n`|r−2

2 |n′(`− 1)〉2
(2`+ 1)(Wan` −Wbn′(`−1))

+
(`+ 1)〈n`|r−2

2 |n′(`+ 1)〉2
(2`+ 1)(Wan` −Wbn′(`+1))

]
(4.34)

where the matrix elements 〈n`|r−2
2 |n′(` − 1)〉 and 〈n`|r−2

2 |n′(` + 1)〉 matrix elements are

hydrogen radial dipole matrix elements.

Excited states of the ion that are dipole coupled to the ground state are first considered

with the an` state coupled to the bn′`′ state as well as the non-negligible continua states
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bε`′. The dipole energy term Wd,n` correcting for the energies of the Rb+ 4p6 state (denoted

as an`) expressed in Eqn. (4.34) contains the summation over n′ which includes the con-

tinua above the Rydberg and ionization limits. Although the r−2 matrix elements are over

hydrogenic states, they are not analytically known, and therefore computed numerically

using Numerov’s method. Accuracy of the obtained values are verified using the sum rule

[8].

∑
n′
〈n`|rs|n′`′〉2 = 〈n`|r2s|n`〉 (4.35)

To evaluate Eqn. (4.34), all of the core energies Wb and matrix elements 〈a|r|b〉 need to

be known. Unfortunately, these are not available, so an approximation is used to simplify

the sum over b with a single effective excited state. This approximation is supported given

that the non-adiabatic correction is small and Rydberg energies are small compared to the

ion energies. To achieve this simplified expression, the denominator of Equation (4.34) is

expressed as

Wan` −Wbn′`′ = Wa −Wb + Wn` −Wn′`′ (4.36)

In further accordance with finding a simplified expression for Eqn. (4.34) by finding an

effective excited ion state, a Taylor expansion is performed by treating (Wn` −Wn′`′)/(Wa −
Wb) as a small parameter. The Taylor expansion of Eqn. (4.34) is explicitly carried out as

Wd,n` = ∑
b

〈a|r1|b〉2
3(Wa −Wb)

∑
n′

[
`〈n`|r−2

2 |n′(`− 1)〉2
(2`+ 1)

(
1−

Wn` −Wn′(`−1)

Wa −Wb

)

+
(`+ 1)〈n`|r−2

2 |n′(`+ 1)〉2
(2`+ 1)

(
1−

Wn` −Wn′(`+1)

Wa −Wb

)]
. (4.37)
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Combining this with the sum rule in Eqn. (4.35), Eqn. (4.37) is rewritten as

Wd,n` = ∑
b

〈a|r1|b〉2
3(Wa −Wb)

[
〈n`|r−4

2 |n`〉 −∑
n′

(
`(Wn` −Wn′(`−1))〈n`|r−2

2 |n′(`− 1)〉2
(2`+ 1)(Wa −Wb)

+
(`+ 1)(Wn` −Wn′(`+1))〈n`|r−2

2 |n′(`+ 1)〉2
(2`+ 1)(Wa −Wb)

)]
. (4.38)

The common denominator (Wa −Wb) can be treated as a weighting factor in the n′ sum.

This yields a center of mass of the Rydberg matrix elements

Wcg,n` =
1

〈n`|r−4
2 |n`〉

∑
n′

[
`(Wn` −Wn′(`−1))〈n`|r−2

2 |n′(`− 1)〉2
(2`+ 1)

+
(`+ 1)(Wn` −Wn′(`+1))〈n`|r−2

2 |n(`+ 1)〉2
(2`+ 1)

]
(4.39)

which has no excited ion state b dependence. Rewriting Eqn. (4.38) in terms of Eqn. (4.39)

yields the simplified expression

Wd,n` = ∑
b

〈a|r1|b〉2〈n`|r−4
2 |n`〉

3(Wa −Wb)

[
1− Wcg,n`

Wa −Wb

]
. (4.40)

The polarizability αd in terms of dipole matrix elements is known to be

αd = −∑
b

〈a|r1|b〉2
6(Wa −Wb)

. (4.41)

Using this definition of αd, allows Eqn. (4.40) to be expressed as

Wd,n` = −
αd

2
〈n`|r−4

2 |n`〉
(
1− χn`

)
(4.42)

where χn` is introduced as

χn` =
∑b

〈a|r1|b〉2
(Wa−Wb)2 Wcg,n`

∑b
〈a|r1|b〉2
Wa−Wb

. (4.43)
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In the adiabatic limit, Wn` −Wn′`′ → 0 and is negligible compared to Wa −Wb. For

Wn` −Wn′`′ → 0, Wcg,nl → 0 and χn` → 0. For this case, the energy shift from the core

electron is regarded as negligible and with the energy expression above, core polarizability

reduces to the adiabatic expression shown in Equation (4.2).

To determine whether the second-order, non-adiabatic effects need to be considered,

the energy distribution of the Rydberg atom is calculated. This calculated energy distri-

bution is plotted versus the 〈18g|r−2
2 |n′`〉 Rydberg squared matrix elements and shown

in Figure 4.4. These axes are chosen to better correspond with the traditional convention

of an energy level diagram and Fig. 4.3. The Rydberg bound states bn`′ and continuum

bε`′ span a range of energies ∆ that are not very small compared to the energy difference

between the ground state and excited state of the ion (Wb −Wa). The energy spacing be-

tween the ground state and first-excited 4p55s state of the Rb+ ion is (Wb −Wa) = 16.5 eV,

compared to ∆ = 2.5 eV calculated for n = 18. For the energies calculated for n = 18, ∆

spans an energy range approximately 15% that of (Wb −Wa). Given the fact that ∆ is not

negligible compared to (Wb −Wa), non-adiabatic effects are non-negligible and must be

accounted for to derive accurate core polarizability results.

The expressions for dipole polarizability energy in Eqns. (4.15), (4.16) , and (4.42) are

set equal to each other giving

Wd,n` = −
1
2

kd,n`αd〈r−4〉n` = −
1
2

αd〈r−4〉n`
(
1− χn`

)
; (4.44)

and therefore,

kd,n` = 1− χn`. (4.45)

In an effort to simplify the sum over all of the ion states b, a single effective ion state energy

WId is introduced. The single effective ion state energy WId is defined as the energy above
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FIGURE 4.4: Energy distribution of the 〈18g|r−2
2 |n′`〉2 Rydberg matrix el-

ements calculated for the non-adiabatic corrections factors. The vertical
axis is the energy of the Rydberg atom, with the core ion ground state a
and excited state b indicated by arrows. The energies for matrix elements
〈18g|r−2

2 |n′(` − 1)〉2 and 〈18g|r−2
2 |n′(` + 1)〉2 bound states are plotted as

boxes. A dashed line is used to show the normalized energies for the matrix
elements for the continuum state bε(`− 1) and a solid line for the normal-
ized energies for the matrix elements for the continuum state bε(`+ 1). The
continuum states are normalized per unit energy. Ultimately, the energy
range over which the matrix elements remains appreciable ∆ is approxi-
mately 15% of the energy difference between (Wb −Wa). Although small,
dynamic core polarizability is not negligible. For clarity, the difference be-
tween the a and a18g coupled state is omitted on this plot. The energies are

too close to distinguish on the plot.
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the ground state and subject to a weighted average of 1/(Wa −Wb).

1
WId

=

∑
b

〈a|r1|b〉2
(Wa −Wb)2

∑
b

〈a|r1|b〉2
Wa −Wb

, (4.46)

The sum over all ion states b is replaced with this single excited state ion energy WId and

it follows from Eqn. (4.40) that the non-adiabatic energy shift is

∆Wd,n` =
1
3
〈a|r1|I〉2 ∑

n′

[
`〈n`|r−2

2 |n′(`− 1)〉2
(2`+ 1)(Wan` −WIn′(`−1))

+
(`+ 1)〈n`|r−2

2 |n′(`+ 1)〉2
(2`+ 1)(Wan` −WIn′(`+1))

]
(4.47)

where I is the single ion state and 〈a|r1|I〉 is the matrix element corresponding to the single

effective ion state, replacing the sum over all b excited states. The expression relating

dipole polarizability to dipole matrix elements is given by

〈a|r1|I〉2/3 = 2αdWId. (4.48)

Because of the relationship in Eqn. (4.48), the direct evaluation of 〈a|r1|I〉 is not nec-

essary for determining the non-adiabatic energy shift. Instead, the value for the effective

ion excitation energy WId needs to be determined. This is done by an empirical estimate,

as opposed to a theory calculation. Empirical values for low-lying Wb states are available

from ion spectroscopy. In this empirical estimate, the method prescribed here introduces

oscillator strengths which describes the total oscillating potential of an atomic transition

[15], defined as

fa→b =
2
3
(Wb −Wa)|〈a|r1|b〉|2. (4.49)
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It follows from Eqn. (4.46) with WId in terms of oscillator strength fa→b between ion states

a and b that

1
WId

=

∑
b

fa→b

(Wa −Wb)3

∑
b

fa→b

(Wa −Wb)2

. (4.50)

If the oscillator strength distribution for Rb+ is known, kd,n` is solved for by using Eqn.

(4.44) and Eqn. (4.48).

kd,n` =
WId

〈n`|r−4
2 |n`〉

∑
n′

[
`〈n`|r−2

2 |n′(`− 1)〉2
(2`+ 1)(Wan` −WIn′(`−1))

+
(`+ 1)〈n`|r−2

2 |n′(`+ 1)〉2
(2`+ 1)(Wan` −WIn′(`+1))

]
(4.51)

Experimental data for the oscillator strength distribution of Rb+ is not well known.

Therefore, to determine oscillator strengths, comparing photoionization cross-section which

is well known for rubidium to another atom where both oscillator strengths and photoion-

ization cross-section are well known can be used to extrapolate Rb+ oscillator strengths.

Photoionization cross-section is introduced as σPI where the cross-section for exciting to

above the ionizing limit is

σPI =
2π2

c2
d fa→b

dW
(4.52)

Consequently, photoionization cross-section is proportional to d fa→b/dW, following Eqn.

(4.49).

An atom identified to have well known photoionization cross-sections and oscillator

strengths with a closed 4p6 atomic orbital shell, like the Rb+ ionic core, is isoelectronic

neutral krypton. Photoionization cross-sections for isoelectronic neutral Kr are determined

and compared to the Rb+ ion and found to be similar per References [16, 17]. Oscillator

strengths for Kr are known for both the bound states and the continuum, found in Ref.

[18]. To make a comparison between Kr and the ionic core of Rb, known energies between

each must be considered. One of these quantities is the first ionization limit, or the amount

of energy required to remove the most loosely bound electron from the atom. The first
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Species Ionization Limit (cm−1) First Excited State Energy (cm−1) Ref.
H 109 700 82 260
Kr 112 900 80 500 [19, 21]

Rb+ 220 100 134 000 [20]

TABLE 4.2: Ionization limits and first excited state energies for H, Kr, and
Rb+.

ionization limit of Kr is approximately 112 900 cm−1 [19]. Using the oscillator strengths

of Kr from these references and using Eqn. (4.50), WId for Kr is found to be 119 700 cm−1,

approximately 6% larger than the first ionization limit. This result is applied to Rb+ to

estimate the value of WId. It is estimated to be 6% larger than the first ionization limit at

WId = 232 300 cm−1 where the first ionization limit of Rb+ is 220 100 cm−1 [20].

This calculation of the Rb+ oscillator strengths serves as an estimate, and is thus un-

certain. To estimate the uncertainty, comparisons between oscillator strength distributions

and ionization limits between H, Rb+, and Kr are performed. Oscillator strengths for hy-

drogen can be calculated, and WId can be determined directly. Calculating WId in atomic

hydrogen yields a value just above the lowest 1s → 2p transition energy, indicating that

the lower-lying transitions contribute greatly to the total oscillator strength distribution.

Unlike H, the isoelectronic neutral Kr oscillator strength distribution is disproportionately

biased above the ionization limit. Oscillator strengths for the bound states are approx-

imately 6 times less when compared to the continua for the first 160 000 cm−1 above the

ionization limit [18]. This provides a rationale for why WId for Rb may be more comparable

to the ionization limit for Kr, when compared to H.

The single effective ion state energy WId for Kr is 6% above the ionization limit, while

WId for H is 25% below. The reasonable energy scale of variation for WId is therefore

approximately 50% of the ionization energy. Since it is reasonable to assume that Kr is a

more accurate analog for Rb than H, the scale factor is reduced by a factor of approximately

2.5, and an estimate for the uncertainty is ±10%. This scale is determined by comparing

the first excited state transition energy to WId, with the first excited state energy of Rb+ at
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134 000 cm−1 [20]. This ±10% uncertainty applied to WId correlates to a ±10% uncertainty

in (1− kd,n`), per Eqns. (4.44) and (4.45). It is understood that this is an ad hoc approach

and there is a need for a more justified calculation of WId and related uncertainties. This

will hopefully provide motivation for future work.

Attention is now turned to the quadrupole term, following the dipole polarizabil-

ity non-adiabatic correction considered earlier. The treatment for the quadrupole non-

adiabatic correction factor kq,n` is very similar to the approach for kd,n`, however the

〈n`|r−3
2 |n′`′〉 matrix elements are required for quadrupole correction calculation, as op-

posed to the 〈n`|r−2
2 |n′`′〉 matrix elements for the dipole correction. These quadrupole

matrix elements are calculated numerically in a similar way to the dipole matrix elements

using hydrogen wavefunctions. Applying the same treatment as above, an equivalent ex-

pression to Eqn. (4.51) for kq,n` is [13].

kq,n` =
WIq

〈n`|r−6
2 |n`〉

3(2`+ 1)(`+ 1)(`+ 2)
10(4`2 − 1)(2`+ 3)

[
∑
n′

〈n`− 2|r−3
2 |n`〉2

Wan` −WIq,n′(`−2)

+
2(`2 + `)(2`+ 1)

3 ∑
n′

〈n`|r−3
2 |n`〉2

Wa,n` −WIq,n′`
(2`+ 3)(`2 − `)∑

n′

〈n`+ 2|r−3
2 |n`〉2

Wa,n` −WIq,(n′`+2)

]

(4.53)

where the effective quadrupole excited state ion energy is

1
WIq

=

∑
b

〈a|r2
1|b〉2

(Wa −Wb)2

∑
b

〈a|r2
1|b〉2

Wa −Wb

. (4.54)

Unfortunately for the quadrupole non-adiabatic correction, knowledge of the Rb+ ion

state quadrupole energy WIq is less straight-forward. This is because an analogy cannot be

made using oscillator strengths and photoionization cross-section, given the 〈a|r2
1|b〉 ma-

trix elements in Eqn (4.54). Therefore, an estimation is performed based on a comparison
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kd kq
n ` = 4 5 6 4 5 6

17-19 0.978(2) 0.990(1) 0.994(1) 0.919(15) 0.966(7) 0.984(3)
27-30 0.977(2) 0.990(1) 0.919(15) 0.966(7)

TABLE 4.3: Non-adiabatic correction factors, calculated as in Eqn. (4.51). The
lower-n values are relevant to the data taken here, and the higher-n values

are for the data of Ref. [1].

to hydrogen. Since the quadrupole oscillator strength distribution for H is not as heavily

concentrated to a single state transition, this treatment is suitable. For hydrogen, WIq is

calculated to be 112 465 cm−1, approximately 12% above the ionization limit. Applying

the same ratio to the Rb+ ion, WIq is evaluated to be 248 000 cm−1. No comparison to the

Kr oscillator strengths can be made in this case, so a ±20% uncertainty is applied to WIq

according to the 50% energy range discussed previously. This ±20% uncertainty directly

corresponds to a ±20% uncertainty in (1− kq,n`).

4.2.2 Non-adiabatic corrected results

Upon calculating dipole and quadrupole matrix elements, the dipole and quadrupole non-

adiabatic correction factors kd,n` and kq,n` are calculated, respectively. These correction

factors are calculated for n = 17 − 19, ` = 4 − 6, commensurate with this experiment.

Additionally, kd and kq are calculated for n = 27− 30 to use in conjunction with previous

work by Lee, et al. [1]. The calculated kd and kq correction factors corresponding to these

n` states are shown in Table 4.3.

The measured energy differences between the n` states remains ∆W, and Eqn. (4.11)

remains true, now with kd,n` and kq,n` correction factors applied to ∆d and ∆q, respectively.

Redefining ∆d and ∆q with these correction factors yield

∆d =
1
2

kd,n`〈r−4〉n` −
1
2

kd,n`′〈r−4〉n`′ (4.55)
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and

∆q =
1
2

kq,n`〈r−6〉n` −
1
2

kq,n`′〈r−6〉n`′ (4.56)

between n` and n`′ states. Just as applied before the non-adiabatic correction, ∆W is the

fine structure corrected transition frequencies shown in Table 3.14. Plotted in Figure 4.5

is 2∆W/∆d vs. ∆q/∆d with the n = 17− 19 g → h and h → i measured transitions from

this work along with the results of Lee, et al. with n = 27 − 30 d → g and d → h [1].

The data collected in this experiment are plotted as dots and data collected in the previous

experiment are plotted as circles. Upon fitting the data points, which do not take into

account uncertainty in kd,n` and kq,n`, the linear least squares fit y-intercept is found to be

αd = 9.068(6) a3
0 and the slope to be αq = 42.2(5) a5

0.

Uncertainties for the non-adiabatic correction factors kd,n` and kq,n` must be incorpo-

rated. The usual approach of adding a horizontal error bar to the data points, then rean-

alyzing does not work here since the y-intercept and slope of the least squares linear fit

are not mutually exclusive of a change in the non-adiabatic correction factors. Instead, to

take these into account, WId and WIq are varied by their respective uncertainties of ±10%

and ±20%. A ±10% change in WId leads to a ±0.004 a3
0 change in αd and a ±1.7 a5

0 change

in αq. A ±20% change in WIq leads to a ∓0.003 a3
0 change in αd and a ±1.0 a5

0 change in

αq. Adding the changes in αd and αq in quadrature with the statistical fit uncertainties

yields the following dipole and quadrupole core polarizability values: αd = 9.068(8) a3
0

and αq = 42(2) a3
0. The gray band in the plot of Figure 4.5 graphically shows how the

intercept αd and slope αq change as WId and WIq are varied by their uncertainties.

The adiabatic approximation core polarizability results are compared to the non-adiabatic

corrected values. The dipole polarizability αd is increased by 0.004 a3
0 and the uncertainty

is more than doubled, remaining in agreement with αd found in the adiabatic approxima-

tion. A significant change is seen in the quadrupole polarizability αq, which is more than

double when factoring in the non-adiabatic correction. Uncertainty for the quadrupole



Chapter 4. Ionic dipole and quadrupole core polarizabilities 129

9

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

0.0 0.2 0.4 0.6 0.8 1.0 1.2×10−2

2∆
W

/
∆

d

∆q/∆d

FIGURE 4.5: Core polarizability with non-adiabatic correction factors kd and
kq. Both data acquired in this experiment are plotted and fit along with the
data of the previous experiment in Ref. [1]. The data in this experiment
are plotted as dots and previous experiment plotted as circles. Note that
the previous work reports quantum defects from which core polarization
energies are determined. Therefore, polarization energies are plotted for
each state, not the difference between states as is done here. This is seen
in Figure 4.2. Upon accounting for the non-adiabatic correction factors, the
intercept and slope of the statistical fit of the line are αd = 9.068(6) a3

0 and
αq = 42.2(5) a5

0, respectively. These statistical uncertainties do not take into
account the uncertainties of WId and WIq, ±10% and ±20%, respectively.
The gray band on this plot shows the range of values that are encompassed
by varying WId and WIq by their uncertainties. The intercept αd is slightly
affected, but the slope αq is mostly effected. Upon updating the uncertainties
by adding the change in αd and αq as a result of varying WId and WIq in
quadrature, the core polarizability results are: αd = 9.068(8) a3

0 and αq =

42(2) a3
0.



Chapter 4. Ionic dipole and quadrupole core polarizabilities 130

term is also increased by a factor of 6. The large increase in uncertainties stem from the

relatively high uncertainties for WId and WIq.

4.2.3 Comparison to theory

Comparisons between these experimental results and theoretically calculated dipole and

quadrupole polarizabilities can be made. The dipole polarizability remains within reason-

able agreement with theoretical calculations (9.076 a3
0 < αd < 9.11 a3

0) [7, 22, 23]. And, the

inclusion of a non-adiabatic correction leads to a quadrupole polarizability result which are

in reasonable agreement with theoretically calculated values (35.41 a5
0 < αq < 38.37 a5

0), to

within approximately two standard deviations [7, 22, 24]. By including the non-adiabatic

correction to the core polarization model for the measurements made in this experiment,

the discrepancy with theoretical calculations have been resolved.

4.3 Quantum defects

As introduced earlier, the quantum defect is the bound state energy level difference between

a hydrogen atom and the bound state energy level for a hydrogen-like Rydberg atom.

Quantum defects are calculated with knowledge of the core polarization energies for alkali

metals. This energy of a n` state is given by the Rydberg formula

Wn` = −
1

2(n− δ`)2 (4.57)

where n is the principal quantum number and δ` is the quantum defect. The quantum

defects reduces the energy levels of the hydrogen-like atom compared to hydrogen for a

given angular momentum state, `.

Using quantum defect theory, a direct comparison of the reduction in energy levels due

to core polarization effects can be similarly expressed. The energy of an n` state in the core
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polarization model is given by

Wn` = −
1

2n2 + Wpol (4.58)

with Wpol being the polarization energy expressed in Eqn. (4.2). Calculating quantum

defects is now simply a matter of setting Equations (4.57) and (4.58) equal to each other

then solving for δ`. Sparing algebraic steps, the expression for quantum defect in terms of

the polarizability energy is found to be

δ` = n−
√

n2

1− 2n2Wpol
. (4.59)

The linear least squares fit parameters αd and αq from the adiabatic approximation are used

to find the polarization energy using Eqn. (4.2) with hydrogenic expectation values for the

n = 17− 19 g, h, and i states. Quantum defects are then calculated and tabulated in Table

4.4. Notably, the states presented in the table reflect the same states for which experimental

measurements were performed. In theory, quantum defects for other hydrogenic n` states

can be calculated in this manner. Quantum defects for additional n and ` states are shown

in Appendix D.

Furthermore, this method uses the core polarizability determined with the adiabatic

approximation. The reason for this is that the spectroscopic measurements made in this

experiment correspond to relative measurements of the polarization energy Wpol , defined

in Eqns. (4.2) and (4.3). Since a measured quantity is used in this analysis, applying

the non-adiabatic corrected polarizabilities would introduce an unnecessary uncertainty

to quantum defect results.

The quantum defect has a n dependence that is introduced to account for the motion

of the Rydberg electron. Solving for the eigenvalues of a Hamiltonian with a Coulombic
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n` δ

n = 17 g 0.003908(2)
h 0.0013697(5)
i 0.0005762(2)

n = 18 g 0.003918(2)
h 0.0013750(5)
i 0.0005794(2)

n = 19 g 0.003927(2)
h 0.0013794(5)
i 0.0005821(2)

TABLE 4.4: Quantum defects for n = 17 to 19 g, h, and i states

potential and a short-range spherically symmetric correction, results in Equation (4.57) ex-

actly with an introduction of even power harmonic terms of 1/(n− δ). These energy terms

were first described by Ritz [25], and it was later applied using older quantum theory by

Sommerfeld [26], then Hartree [27] using wave mechanics [28]. This expansion is known

as the Ritz expansion described by Equation (4.60) with Ritz coefficients δ0, δ2, δ4, δ6, etc.

δn` = δ0 +
δ2

(n− δ0)2 +
δ4

(n− δ0)4 +
δ6

(n− δ0)6 + . . . (4.60)

The Ritz coefficients are determined by fitting the results in Table 4.4 using least squares

to the Ritz formula in Eqn. (4.60). Ritz coefficients are reported for δ0 and δ2 since higher

order terms in the Ritz expansion are negligible for higher ` states given the n and δ0

dependence. The Ritz coefficients δ0 and δ2 are calculated by fitting the quantum defects

for n = 17− 19 reported in Table 4.4 and quantum defects for n = 27− 30 reported in Ref.

[1] to this form. Ritz coefficients per this least squares fit are reported in Table 4.5.

4.3.1 Comparison to previous work

Quantum defect Ritz expansion terms reported in the previous work for the Rb g state are

in agreement with the calculated values here. Notably for the Rb g state, δ0 reported in this

work is approximately 20 times more precise and δ2 reported in this work is approximately
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Ritz Coefficient ` Value
δ0 g 0.004011(1)

h 0.001424(3)
i 0.000606(1)

δ2 g -0.0299(6)
h -0.0156(8)
i -0.0086(4)

TABLE 4.5: Quantum defect Ritz expansion coefficients of Eqn. (4.60) per
the polarization energies calculated, plotted, and fit using least squares to

the Ritz formula.

25 times more precise. Quantum defect Ritz expansion parameters for the Rb h state are

not reported in Ref. [1]; however, quantum defects for n = 28− 30 nh states are provided.

Upon fitting these to the Ritz expansion, Ritz expansion parameters for the Rb h state are

found to be δ0 = 0.00143(5) and δ2 = 0.02(4) for the previous work. Ritz expansion terms

calculated in this work for nh are consistent with the previous experimental values, but are

approximately 17 times more precise for δ0 and approximately 50 times more precise for

δ2.
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Dipole
Polarizability (αd)

Quadrupole
Polarizability (αq) Reference

This Work
(Adiabatic Approximation)

9.059(6) 19.1(5) [1]

Previous Work
(Adiabatic Approximation)

9.12(2) 14(3) [2]

This Work
(Non-Adiabatic Correction)

9.061(8) 43(2) [1]

Previous Work
(Non-Adiabatic Correction)

9.12(3) 36(4)

This & Previous Work
(Non-Adiabatic Correction)

9.068(8) 42(2) [1]

Other Experiments 9.1(2) 0 < αq < 43 [3]

9.1(6) 0 < αq < 55 [4]

8.98 [5]

Theory 9.1 35.4 [6]

9.076 35.41 [7]

10.22 [8]

38.43 [9]

TABLE 5.1: Compiled core polarizability results with the non-adiabatic cor-
rected experimental results in this work, along with the adiabatic approxi-

mated results, as well as previous experimental results and theory.
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5.1 Summary of results

A more precise measurement and more accurate analysis of core polarizability has been

achieved using microwave spectroscopy of high-` Rydberg states of Rb. The improved

precision and persistent discrepancy with theory has led to the consideration of the non-

adiabatic effect in this work. Table 5.1 shows a compilation of dipole and quadrupole

polarizability results of previous work and theory, including both adiabatic approximated

result and non-adiabatic corrected result found here.

The improved experimental results provide a valuable insight into core polarizabil-

ity when comparing to theoretical calculations. Theoretical calculations show a dipole

polarizability term commensurate with these experimental results; and the previous dis-

crepancy between the theoretically calculated and experimentally determined quadrupole

polarizability term has been resolved. The cogent inclusion of dynamic core polarization

effects due to the motion of the Rydberg electron are presented through a formulation

and application of non-adiabatic corrections treated as a perturbation to the adiabatic-

approximated core polarizability. Typically, this effect is large for alkaline-earth metal

atoms when compared to alkali metal atoms. For alkali metals, the ionic core has a closed

electronic shell with energy spacing between the ion ground state and excited state ap-

proximately 20 times larger than the Rydberg electron states. Previously, the assumption

had been made that the adiabatic approximation was sufficient for alkali metals; however,

it is found here that this effect is non-negligible. The energy span of the Rydberg electron

states and continua are approximately 15% that of the energy difference between the Rb+

ionic core ground and effective excited state. For a sense of energy scales, the lowest lying

excited state of the Rb+ ionic core is 16.53 eV, the effective ionic core energy spacing is

28.76 eV, and the energy span of the Rydberg electron states and continua are 4.31 eV. To

account for non-adiabatic effects, correction factors kd,n` and kq,n` are introduced to the adi-

abatic polarization energy. For the adiabatic approximation, kd,n` → 1 and kq,n` → 1 when
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the energy span between the Rydberg electron radial matrix elements is small compared

to the ionic core.

This approach requires determination of a single effective ion state energy above the

ground state, dependent upon knowledge of oscillator strengths for the Rb+ ion. Unfortu-

nately, oscillator strengths for the Rb+ ion are not well known, and a novel methodology is

employed to calculate the effective single ion excited energy state with limited knowledge.

This approach involves comparing the well-known photoionization cross-sections for the

rubidium ionic core to well-known photoionization cross-sections and oscillator strengths

for isoelectronic neutral krypton. Photoionization cross-sections are proportional to the

derivative of oscillator strengths with respect to energy; thereby, a rough estimate for os-

cillator strengths are obtained.

Taking this non-adiabatic correction into account and finding correction factors kd,n`

and kq,n` yields core polarizability results of αd = 9.068(8) a3
0 and αq = 42(2) a5

0. Dipole

polarizability is minimally affected by the non-adiabatic correction; however, quadrupole

polarizability is greatly impacted. Core polarizability obtained in this experiment and

analysis is now in agreement with theory with the inclusion of non-adiabatic corrections,

and the prior discrepancy between previous experiments and theory is resolved. Given the

successful results by including the non-adiabatic effects leading to an agreement between

experiment and theory, credence is lent to the theory.

5.2 Comparison to previous work

Core polarizability results in the adiabatic limit measured in this work are approximately

three times more precise for the dipole polarizability term and six times more precise

for the quadrupole polarizability term when compared to the previous experiment [2].

The improvement in precision is largely due to experimental design choices to reduce

systematic effects that greatly impact spectroscopic measurement precision and accuracy



Chapter 5. Conclusion and future work 142

– namely sensitivity to external stray electric fields. Along the same vein of improve-

ment over the previous experiment, the previous experimental data was re-analyzed in

the same fashion performed in this research. Using the same methodology of calculat-

ing uncertainty in the adiabatic approximated core polarization model here, dipole and

quadrupole polarizability results of the previous research are found to be αd = 9.12± 0.04

and αq = 13.7± 3.7. This uncertainty is approximately two times greater than what was

reported for both the dipole and quadrupole polarizability terms. Therefore, it is possible

that the experiment described in this thesis is six times more precise when considering

dipole polarizability and twelve times more precise when considering quadrupole polar-

izability compared to previous experimental results.

The core polarizability analysis with the non-adiabatic correction is performed for both

this work and the previous experiment to obtain a further comparison. The results are dis-

played in Table 5.1. The results are still more precise in this experiment and in reasonable

agreement, with αd differing by 1.6 standard deviations and αq differing by 1.2 standard

deviations. When comparing these results to theoretical calculations, the result of the pre-

vious experiment is in better agreement with theory with respect to the quadrupole polar-

izability term.

5.3 Future work

Improvements to measurements will only be useful if non-adiabatic correction calculations

can be made. Improving experimental precision and reducing sources of systematic un-

certainty are important; however, the dominant source of uncertainty is the knowledge of

kd,n` and kq,n`. Therefore, the ideal scenario to reduce uncertainty and improve accuracy

would be a more sophisticated theoretical atomic structure calculation to account for non-

adiabatic effects, or at the very least a better knowledge of Rb+oscillator strengths. This
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would allow for improved core polarizability results using the existing measurements pre-

sented here.

Although this experiment resulted in a marked improvement in measurement accu-

racy, additional improvements can be made. Background electric and magnetic fields

present the largest source of systematic uncertainty. To improve measurement fidelity,

Stark shifts can be better controlled with an improved mechanism in the apparatus to ad-

just electric field in the transverse direction to the existing electric field plates. The most

straightforward method would be to place additional electric field plates perpendicular to

the existing plates or electrodes of a differing geometry to better null background electric

fields [10]. To reach a precision of 100 kHz for the n f → ni transition, there would need to

be a factor of 4 improvement of stray electric fields. Another method to reduce Stark shifts

is to use a lower principal quantum number n. However, several additional experimental

challenges present with this approach. Lower n would require a higher amplitude field

ionization pulse and higher microwave frequencies.

If systemic shifts such as dc Stark shifts are reduced, statistical error can also be im-

proved by reducing the spectroscopic linewidth. This can be achieved by using a longer

microwave pulse duration. To achieve this, a mechanism to better control linewidth broad-

ening from Zeeman effects would also be necessary. In the current configuration, Zeeman

spectral line splitting is not resolved, but with longer microwave pulses resulting in lower

transform spectral broadening, magnetic shielding or bias coils would be required to re-

duce Zeeman energy shifts. To achieve the same 100 kHz target, magnetic fields would

have to be reduced by a factor of 3. Another method to reduce linewidths may include

using cold atoms with continuous wave lasers. Narrower lineshapes and improvements

in fine structure resolution may be possible over the current apparatus.

Another possibility to improve upon the current experiment is to excite to higher `

states. Core penetration effects will be further diminished and there would be additional

points on the polarizability plot to fit to a line. This would also provide another method



Chapter 5. Conclusion and future work 144

for determining whether the ng states are penetrating. Accuracy of the core polarizability

analysis would also be improved. These measurements pose additional challenges within

the current experimental setup. The signal-to-noise ratio for n f → nj state transitions

will be lower than the other ` states measured in this work, knowing that SNR decreases

as ` increases. Furthermore, the measurement uncertainty δW is limited by the factors

presented above and remains fairly consistent, but the level spacing ∆W decreases at `

increases. Therefore, the relative uncertainty δW/∆W increases with the decreased energy

spacing between the higher ` states.

A possible method to alleviate the need for spectroscopy measurements of higher `

states would be an absolute spectroscopy measurement of the n f state. The current ap-

paratus does not allow for nd → n f transitions due to inaccessible microwave transition

frequencies; however, absolute measurements of the n f states are possible given existing

precise spectroscopic measurements for the nd states [11]. To support this method, either

direct optical spectroscopy of the n f states or high frequency microwave spectroscopy of

the nd→ n f transition can be performed.

5.4 Impact of this work

The broader impact of this work is also considered. An explicit motivation for this work

is to improve atom polarizability results from previous tune-out wavelength experiments

and hopefully provide incentives for another atomic parity violation experiment. The orig-

inal tune-out wavelength spectroscopy analysis presented in Ref. [12] used a dipole polar-

izability value of αd = 9.08(10) a3
0 to determine the ratio of dipole matrix elements between

the 5s1/2 and 5p3/2 states. Considering the improved measurements obtained in this anal-

ysis, the relative uncertainty in the dipole matrix element ratio is reduced by 20%, from

18 ppm to 14 ppm. Several factors that contribute to the uncertainty ratio are difficulty

calibrating polarizability with an incident electric field, core polarization, and a correction
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accounting for core-valence interactions. Significantly, the core polarization contribution

uncertainty was the single largest; however, this is no longer the case. This reduction in

uncertainty allows motivation to shift to constraining additional valence dipole matrix el-

ements for Rb to support an atomic parity violation experiment with Rb.
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We present a precise measurement of the rubidium ionic core polarizability. The results can be
useful for interpreting experiments such as parity violation or black-body radiation shifts in atomic
clocks since the ionic core electrons contribute significantly to the total electrical polarizability of
rubidium. We report a dipole polarizability αd = 9.063±0.007 a30 and quadrupole polarizability αq =
43±2 a50 derived from microwave and radio-frequency spectroscopy measurements of Rydberg states
with large angular momentum. By using a relatively low principal quantum number (17 ≤ n ≤ 19)
and high angular momentum (4 ≤ ` ≤ 6), systematic effects are reduced compared to previous
experiments. We account for non-adiabatic corrections to the polarizability model, which resolves
a previous discrepancy with theory but limits the accuracy of our results.

I. INTRODUCTION

The electric polarizability of an atom is of significant
interest and importance. Accurate polarizability val-
ues are needed for many experiments, including atomic
clocks, quantum computation, parity-nonconservation,
thermometry, and studies of long-range molecules [1–
5]. Polarizability measurements are also useful as bench-
marks for theoretical calculations since the polarizability
depends on the dipole matrix elements of the atomic wave
functions, which are difficult to obtain using conventional
spectroscopy. Calculation of matrix elements from first
principles is very challenging for multi-electron atoms, so
comparisons to experimental quantities, like polarizabil-
ities, provide important checks. These motivations have
prompted a series of improving polarizability measure-
ments over the past several decades [6–13]. One promis-
ing new approach is tuneout spectroscopy [14], where
the ac electric polarizability of an atom vanishes and the
wavelength at which that occurs is measured. This tech-
nique can provide orders of magnitude improvement in
the accuracy of the dipole matrix elements [10, 11, 13, 15].

Theoretical interpretation of the polarizability is sim-
plest for alkali atoms, where most of the effect comes
from the single valence electron. However, the contribu-
tion of the core electrons cannot be ignored. For instance,
the core contributes about 3% to the total polarizability
of a Rb atom [3], which is large compared to the 0.2%
accuracy of a measurement such as in Ref. [9]. It can
be useful to evaluate and subtract the core contribution
from a measurement to obtain the valence polarizability
alone since this provides the most direct connection to
the matrix elements of the valence wave functions. This

∗Electronic address: sackett@virginia.edu

approach has been used with both dc and tuneout mea-
surements [10], but it is limited by the accuracy to which
the core polarizability is known. We present here a new
experimental measurement of the core polarizability of
Rb, with an accuracy approximately three times better
than previously achieved. We expect this to be useful as
tune-out spectroscopy and other polarizability measure-
ment techniques continue to improve.

The core polarizability is obtained in our experi-
ment through microwave spectroscopy of atomic Ryd-
berg states. When the valence electron is far from the
core, the atom behaves much like hydrogen; however, the
field from the electron polarizes the core and lowers the
atomic energy. By comparing the energy of the actual
atom to hydrogen, the core polarizability can be deter-
mined [16, 17]. This method was previously used in Rb
with Rydberg states having principle quantum number n
in the range of 27 to 30 [12]. The accuracy of the spec-
troscopy measurements was principally limited by Stark
shifts from stray dc electric fields. The dc polarizabil-
ity of a Rydberg atom as a whole is very large, so even
fields below 1 V/cm can be significant [12]. To address
this problem, the work here uses lower principal quantum
numbers: n = 17 to 19. Since the atomic polarizability
scales as n7, this reduces the electric field sensitivity by
a factor of about 25 compared to previous work.

Because the valence electron produces a non-uniform
field at the ion core, the energy of the Rydberg atom
depends on both the dipole polarizability αd and the
quadrupole polarizability αq of the core [18]. We use
microwave spectroscopy to determine both of these pa-
rameters, and our results are consistent with previous
measurements and theory [3, 12].

The Rydberg electron is moving, so its energy shift
involves the dynamic, not just the static, polarizability
of the core [19]. Since the Rydberg Bohr frequencies are
much lower than the excitation frequencies of the core,
this effect is small. We nonetheless find that it has a
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2

5s1/2

6p1/2

4d3/2

nf5/2

ng7/2

nh7/2

ni9/2

FIG. 1: Atomic states used in the measurement. Rubidium
atoms in the 5s1/2 ground state are optically excited to 6p1/2,
allowed to spontaneously decay to 4d3/2, and are then opti-
cally driven to the nf5/2 Rydberg state for n = 17− 19. The
expanded diagram on the right shows microwave transitions
from nf to ng, nh, and ni states using one, two, and three
photon excitations, respectively. The f − g interval is about
15 GHz, the g − h interval is about 3 GHz, and the h − i
interval is about 1 GHz; the precise values depend on n.

significant impact on the quadrupole polarizability term.
We develop an empirical approximation to account for
this non-adiabatic effect, and using it we obtain good
agreement with theoretical estimates for both the dipole
and quadrupole core polarizabilities.

In the sections that follow, we describe the principle
and setup of the experiments, the spectroscopic results,
the analysis of the polarizabilities, and finally our con-
clusions.

II. EXPERIMENTAL APPROACH

In order to interpret the energy shifts of the Rydberg
state in terms of the core polarizability, it is necessary
for the valence electron to remain far from the core at all
times. In addition to large n, this also requires the use
of large angular momentum quantum number `. Core
penetration in a Rydberg state causes its fine structure
splitting to differ significantly from that of hydrogen.
Such distortions are observed in Rb for ` ≤ 3, so we
use only states with ` ≥ 4. The atoms are excited us-
ing the scheme shown in Fig. 1 where a laser pulse first
excites atoms from the 5s1/2 ground state to the 6p1/2
excited state. About a third of the excited atoms spon-
taneously decay to the long-lived 4d3/2 state, from which
they are excited by a second laser pulse to the nf5/2 Ry-
dberg state. From there, microwave and radio frequency
pulses drive transitions to the ng, nh and ni states. We
use the g − h and h− i intervals to determine the dipole
(αd) and quadrupole (αq) polarizabilities of Rb+.

The experiment is performed in an atomic beam appa-
ratus, shown in Fig. 2. The Rydberg atoms are produced
between two electric field plates separated by 1.5 cm. A

(a)

(b)

(c)

(d)

(e)

FIG. 2: Experimental apparatus (not to scale). A rubidium
atomic beam is emitted from oven (a) and passes between
electric field plates (b), which are separated by 1.5 cm. Two
pulsed laser beams (c) excite the atoms into Rydberg states,
and microwave horn (d) drives Rydberg state transitions. An
electric field is applied to ionize the Rydberg atoms, and the
ions are detected with microchannel plate (e).

potential difference of up to 6 kV can be applied between
the plates. After the microwave pulse is applied, the
electric field is ramped to a value sufficient to ionize the
Rydberg states. By carefully controlling the timing and
amplitude of the ramp, the atom ionization process can
be made state selective such that atoms in ` ≥ 4 states
are ionized while the nf atoms remain neutral. Any ions
produced are detected using a microchannel plate oper-
ating in analog mode with spatially integrated channels.
The resulting signal current is accumulated using a gated
integrator to produce the spectroscopy signal.

The laser excitation pulses are produced by a pair
of home-built dye lasers. The first pulse is at a wave-
length of 420 nm, and is produced using Stilbene 420
dye pumped by the third harmonic of a Quanta Ray
Nd:YAG laser. The second pulse is tuned between 713
nm and 720 nm to populate the desired nf state. This
laser uses LD720 dye, pumped by the second harmonic
of a Continuum Nd:YAG laser. Both laser pulses have
20 ns duration, and the second pulse is delayed by 250 ns
with respect to the first. Both lasers are linearly polar-
ized perpendicular to the field plates. While the 6p fine
structure is resolved by laser tuning, the nf fine structure
is not.

The lifetimes of the nf states are about 4 µs with an
n3 dependence, and the microwave spectroscopy pulses
are applied 1 µs after the second laser pulse. In the
case of the nf to ng transition, a single-photon tran-
sition is driven with a microwave frequency ranging from
11 to 17 GHz, depending on n. For the nf to nh
transition, a two-photon transition is driven with mi-
crowaves at half the transition frequency, between 7 and
10 GHz. For the three-photon nf to ni transition, the
two-photon microwave frequency is detuned from the nh
state, and apply an RF frequency near 1 GHz to couple
nh to ni. These three excitation schemes are illustrated
in Fig. 1. The microwaves are produced by an Agilent
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FIG. 3: Example spectroscopy line profiles. (a) Single-
photon 19f5/2 → 19g7/2. (b) Two-photon 19f5/2 → 19h9/2.
(c) Three-photon 19f5/2 → 19i11/2.

83622B frequency synthesizer coupled to one of two mi-
crowave horns. The RF field is produced by coupling a
HP 8673C synthesizer to one of the electric field plates.
In all cases, the duration of the spectroscopy pulse is 1 µs.

For each measurement, the microwave frequency was
swept across the resonance. Each frequency step in the
sweep was repeated at least ten times, and the sweep
in its entirety was repeated five times. The resulting
signals were averaged to produce a line profile, such as
the example data shown in Fig. 3. The profiles were least-
squares fit to Lorentzian functions to determine the line
centers. Uncertainty in the line center was taken from the
uncertainty estimate of the fit. However, in cases where
the line center uncertainty from the fit was below 10% of
the fit linewidth, we instead assigned an uncertainty of
10% of the linewidth to reflect the fact that the actual
lineshape is not well characterized.

Several sources of systematic uncertainty must be
taken into account, including dc Stark shifts, ac Stark
shifts, Zeeman shifts, and fine structure splitting.

Although dc Stark shifts are reduced by operating at
relatively low n, they must still be accounted for. The
conducting field plates suppress electric fields parallel to
the plates, but any residual voltage difference produces
a significant field normal to the plates. We are able to
apply a bias voltage across the plates during the exper-
iment, and Fig. 4(a) shows how the nf → ng transition
frequency varies as a function of the bias voltage. We fit
such data to a parabola and then set the bias voltage to
the vertex of the fit. We perform this calibration daily,
and observe day-to-day variations of about 0.25 V/cm,
corresponding to Stark shifts of the nf → ng transition
on the order of 0.1 MHz. The apparatus provides no di-
rect way to measure or control the transverse electric field
components, but other experiments with similar geome-
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FIG. 4: a) Measurement of the dc Stark shift on the 19f5/2 →
19g7/2 transition. For spectroscopy, the bias voltage is set to
the vertex of the curve. b) Measurement of the ac Stark shift
on the two-photon 19f5/2 → 19h9/2. The line is a linear
fit showing the extrapolation to zero microwave power. d)
Measurement of the ac Stark shift due to the rf field on the
three-photon 19f5/2 → 19i11/2 transition, for a two-photon
microwave detuning of 45.9 MHz. The line is again a linear
fit.

tries show that the transverse fields are typically below
0.1 V/cm [12], corresponding to a shift here of less than
0.04 MHz.

There are no ac Stark shifts on the single-photon nf
to ng transitions, but there are on the multiphoton tran-
sitions. These shifts are manifested as a linear variations
of the transition frequency as a function of microwave
or rf power. We compensate for it by taking data over
a range of powers and extrapolating the results to zero
power. Example data are shown in Fig. 4(b) and (c).
The ac Stark shift is largest for the three-photon nf → ni
transition, and the shift depends on the two-photon de-
tuning from the nh state. For these measurements, the
microwave and rf powers were independently varied and
extrapolated to zero. In addition, for each n we used
at least two different two-photon detuning values, with
at least one on each side of the h state resonance. The
values obtained were consistent with the estimated un-
certainties. In all cases, the extrapolation to zero power
was performed using an error-weighted least squares fit
to the data, and the uncertainty from this fit is reported
as the uncertainty in the transition frequency measure-
ment. The resulting values are reported in Table I. For
the majority of transitions reported here, at least two
measurements were completed on different days, and the
results agreed within the stated uncertainty.

Zeeman shifts are nominally zero, since the linearly po-
larized laser beams produce a symmetric distribution of
m levels, and the microwave and rf fields are also lin-
early polarized. In this case, a magnetic field would only
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broaden the transition to first order. We computed the
second-order Zeeman shift and the second-order coupling
between the Zeeman and dc Stark shift, and found both
to be negligible for our environmental field of about 1 G.
We experimentally verified these conclusions by applying
a dc field of 1 G and observed no linear shift on the 17f
to 17g transition. On this basis, we ignore the Zeeman
effect as a source of uncertainty.

In hydrogen, the fine structure (FS) splittings of the
ng, nh and ni states range from 3.0 MHz to 0.6 MHz.
This is comparable to or less than our experimental
linewidth, so the fine structure is not well resolved, but
it is significant compared to our measurement accuracy.
To avoid uncertainty due to unresolved FS we take ad-
vantage of the fact that the excitation scheme of Fig. 1
ensures that the Rydberg atoms are always in the lower
j fine structure state, j = `− 1/2. Accordingly, we have
measured the intervals given in Table I.

We expect the ` ≥ 4 FS splittings in Rb to be sim-
ilar to those of hydrogen, because the ` ≥ 4 states
should not penetrate the core and the core polariza-
tion effect is independent of j. To verify this, we re-
tuned the initial laser excitation pulse to the 6p3/2 state,
which then allowed excitation of both the nf5/2 and nf7/2
states. The nf7/2 → ng7/2 transition is suppressed due to
small Clebsch-Gordan coefficients, but we observed the
nf7/2 → ng9/2 transition. Using the known f -state FS
splitting [20], we obtained a value for the 17g FS split-
ting of 1.83 ± 0.06 MHz. This is in agreement with the
hydrogenic value of 1.78 MHz and is consistent with the
g-states being non-penetrating [21]. We therefore use the
hydrogen FS values for the ` > 4 states. For the anal-
ysis described below, we use transition frequencies from
which the FS shift has been removed by referencing the
transition to the center of gravity of the FS manifold.
These frequencies are listed in Table I.

III. ANALYSIS & DISCUSSION

In the adiabatic core polarization model the electric
field from the quasistatic charge distribution of the Ry-
dberg n` electron polarizes the ion core, which results
in the polarization energy shift of the Rydberg n` state
relative to the hydrogenic n` energy. The shift is given,
in atomic units, by [17, 22]

W = −1

2
α
(a)
d

〈
1

r4

〉

n`

− 1

2
α(a)
q

〈
1

r6

〉

n`

, (1)

where α
(a)
d and α

(a)
q are the dipole and quadrupole core

polarizabilites of Rb+, and r is the distance of the valence
electron from the nucleus. The superscript denotes the
use of the adiabatic approximation, which will be subse-
quently relaxed. If we assume the n` wavefunctions to
be hydrogenic, there are closed form expressions for the
required expectation values [17, 22, 23]. As a result, it

is a straightforward matter to extract α
(a)
d and α

(a)
q from

the high ` Rydberg energies.
Equation (1) gives the energy shift of a state relative

to the the corresponding state of hydrogen, but we do
not have accurate values for the absolute energies of the
nf states, so we cannot evaluate the energies of the high-
` states relative to hydrogen. Instead, we consider the
energy difference between two states n` and n`′. Since
the hydrogenic energies are independent of `, the energy
difference is

∆W = −1

2
α
(a)
d ∆

(a)
d −

1

2
α(a)
q ∆(a)

q , (2)

where

∆
(a)
d ≡

〈
1

r4

〉

n`

−
〈

1

r4

〉

n`′
(3)

and

∆(a)
q ≡

〈
1

r6

〉

n`

−
〈

1

r6

〉

n`′
(4)

The energy difference ∆W corresponds to the FS-
corrected transition frequencies reported in Table I.

To obtain the polarizabilities, we plot 2∆W/∆
(a)
d vs.

∆
(a)
q /∆

(a)
d , for (`, `′) pairs (4, 5) and (5, 6), with the re-

sults shown in Fig. 5. The subfigures detail the n de-
pendence and show the least squares fit along with the
data. The points are fit to a line, and the resulting in-

tercept and slope correspond to α
(a)
d = 9.059(3) a30 and

α
(a)
q = 19.1(3) a50. These are in reasonable agreement (3

standard deviations) with previous results α
(a)
d = 9.12(2)

and α
(a)
q = 14(3) [12], but with reduced uncertainty.

However, we find that the adiabatic approximation is
inadequate here and must be corrected to incorporate
non-adiabatic effects [19, 24–27]. The non-adiabatic cor-
rection arises because Eq. (1) is an approximation to the
second-order shift from the multipole expansion of the
Coulomb interaction between the Rb+ ion core and the
Rydberg electron. The same method of analyzing the
experimental data can be used if we introduce correction
factors kd,n` and kq,n` into Eq. (1), which then reads [22]

W = −1

2
kd,n`αd

〈
1

r4

〉

n`

− 1

2
kq,n`αq

〈
1

r6

〉

n`

. (5)

In the adiabatic approximation, kd,n` = kq,n` = 1
To show the origin of the non-adiabatic correction we

consider the contribution of the dipole polarizability to
the polarization shift of a Rb n` state [25, 28]. The
atomic wavefunction is taken to be a direct product of
the ion wavefunction and a hydrogenic wavefunction for
the Rydberg electron. Consequently, the total energy is
simply the sum of the ion and Rydberg energies. In a
bound Rb n` state, the Rydberg electron is coupled to
the ground 4p6 state of Rb+, which we denote as a, so
the bound Rydberg state is denoted an`. Similarly, a Ry-
dberg n′`′ electron coupled to an excited state b of Rb+
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TABLE I: Measured transition frequencies and frequencies referenced to the center of gravity of the fine-structure doublet in
MHz for n = 17− 19, f → g, f → h, and f → i.

n f5/2 → g7/2 fcg → gcg f5/2 → h9/2 fcg → hcg f5/2 → i11/2 fcg → icg

17 16528.66(3) 16547.27(7) 19929.5(3) 19947.8(3) 20992.5(6) 21010.6(6)

18 13945.16(9) 13960.90(10) 16815.6(1) 16831.0(2) 17713.2(6) 17728.5(6)

19 11872.25(6) 11885.69(7) 14317.0(1) 14330.2(1) 15082.9(8) 15096.0(8)
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FIG. 5: Determination of core polarizabilities in the adiabatic
approximation. In the main plot, ∆W is the measured energy

interval between states n` and n`′. The parameters ∆
(a)
d and

∆
(a)
q depend on n, ` and `′, and are given by Eqs. (3) and (4).

The side plots show expanded views of the data for the (a)
g − h and (b) h− i transitions. The line is an error-weighted

best fit, with intercept and slope corresponding to α
(a)
d and

α
(a)
q , respectively. The present values are α

(a)
d = 9.059(3) a30

and α
(a)
q = 19.1(3) a50.

is denoted bn′`′. We restrict our attention to ion states
which are dipole coupled to the ground state. In the Ry-
dberg atom, the an` state is coupled by the dipole term
of the Coulomb expansion to the bn′(`−1) and bn′(`+1)
states, as well as the bε(`−1) and bε(`+1) continua. The
resulting dipole energy shift of the 4p6n`, the an`, state
is given explicitly by

∆Wd,n` =
1

3

∑

b,n′

[
`〈a|r1|b〉2〈n`|r−22 |n′(`− 1)〉2
(2`+ 1)(Wan` −Wbn′(`−1))

+
(`+ 1)〈a|r1|b〉2〈n`|r−22 |n′(`+ 1)〉2

(2`+ 1)(Wan` −Wbn′(`+1))

]
,

(6)

where the sums are understood to include the continua
above the Rydberg and ion limits. Here r1 represents
a core electron and r2 the Rydberg electron. The r−22
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FIG. 6: Energy distribution of the 18g Rydberg matrix ele-
ments. The vertical axis is the energy of the Rydberg atom,
with the core ion ground state a and excited state b indicated
by arrows. The energy difference between the ion states and
the Rydberg atom states a18g and b18g is too small to resolve.
The horizontal axis shows the square matrix elements to the
bn′f and bn′h states, and also to the bεf and bεh continua.
The continuum states are normalized per unit energy and the
bound states are plotted as boxes normalized per unit energy.
Values for the h states are shown with dashed lines, but the f
state matrix elements are generally much larger. The energy
range over which the matrix elements remains appreciable is
seen to be small, but not very small, compared to Wb −Wa.
Here we take Wb = 232 000 cm−1, corresponding to the effec-
tive ion excitation energy WId discussed in the text.

matrix elements are computed using Numerov’s method,
and their accuracy is verified using the sum rule [25]

〈n`|r2s|n`〉 =
∑

n′

〈n`|rs|n′`′〉2. (7)

The energy denominators of Eq. (6) can be rewritten
as

Wan` −Wbn′`′ = Wa −Wb +Wn` −Wn′`′ (8)

The adiabatic expression of Eq. (1) is the result of taking
Wn` − Wn′`′ = 0, since it is much smaller than Wb −
Wa. However, the squared 〈n`|r−22 |n′`′〉 matrix elements
actually do cover a substantial energy range, as shown
by the 18g example of Fig. 6. Here the matrix elements
cover an energy range that is about 15% of Wb −Wa.

Rather than neglecting Wn` −Wn′`′ entirely, we con-
sider Taylor expanding Eq. (6) with |Wn`−Wn′`′ |/|Wa−
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Wb| as a small parameter. In first order, it is possible
to show that the sum over the ion transitions can be re-
placed by an effective transition to a single ion state at
energy WId above the ground state, with WId given by

1

WId
=

∑

b

〈a|r1|b〉2
(Wa −Wb)2

∑

b

〈a|r1|b〉2
Wa −Wb

, (9)

which is an appropriately weighted average of 1/(Wa −
Wb). Similarly, we can obtain an effective matrix element

〈a|r1|I〉2 =

(∑

b

〈a|r1|b〉2
Wa −Wb

)2

∑

b

〈a|r1|b〉2
(Wa −Wb)2

. (10)

Replacing the sum over the excited states of the ion
with the effective state I allows the ion dipole matrix
element to be removed from the sum, leaving

∆Wd,n` =
1

3
〈a|r1|I〉2

∑

n′

[
`〈n`|r−22 |n′(`− 1)〉2

(2`+ 1)(Wan` −WIn′(`−1))

+
(`+ 1)〈n`|r−22 |n′(`+ 1)〉2

(2`+ 1)(Wan` −WIn′(`+1))

]
,

(11)

In practice, it is not necessary to evaluate 〈a|r1|I〉2 since
in this approximation, the ion polarizability is itself sim-
ply 〈a|r1|I〉2/6WId.

We do need to determine WId, which requires a knowl-
edge of the distribution of oscillator strength fa from the
ion ground state. Unfortunately, this is not well known.
However, the photoionization cross section, proportional
to dfa/dW , is known and similar to to the photoioniza-
tion cross section of the isoelectronic neutral Kr [29, 30].
For Kr the oscillator strengths are known for both the
bound states and the continuum [31], and using then we
computed WId for Kr. We find a value 6% higher in en-
ergy than the first ionization limit of Kr at 112 900 cm−1.
We estimate the value for Rb+ to also be 6% higher
than the ionization limit at 220 100 cm−1, resulting in
WId = 232 300 cm−1.

Using 〈a|r1|I〉2/3 = 2αdWId, we can obtain an expres-
sion for kd as

kd,n` =
WId

〈n`|r−42 |n`〉
∑

n′

[
`〈n`|r−22 |n′(`− 1)〉2

(2`+ 1)(Wan` −WIn′(`−1))

+
(`+ 1)〈n`|r−22 |n′(`+ 1)〉2

(2`+ 1)(Wan` −WIn′(`+1))

]
. (12)

The values of kd computed in this way are given in Table
II.

TABLE II: Non-adiabatic correction factors, calculated as in
Eq. (12). The lower-n values are relevant to the data taken
here, and the higher-n values are for the data of Ref. [12].

kd kq

n ` = 4 5 6 4 5 6

17-19 0.978(2) 0.990(1) 0.994(1) 0.921(15) 0.967(7) 0.984(3)

27-30 0.977(2) 0.990(1) 0.921(15) 0.967(7)

To obtain an estimate of the uncertainty in kd, we note
that WId is roughly bounded by the lowest ionic excited
state energy and the second ionization energy. For in-
stance, a calculation of WId in atomic hydrogen give a
value just above the 1s− 2p transition energy, which re-
flects the fact that this transition contains over half of
the total oscillator strength. In contrast, neutral Kr has
six times as much oscillator strength in the first 20 eV
above the ionization limit as in the bound states [31],
which explains why WId is comparable to the ionization
energy in that case. The first excited state of Rb+ lies at
134 000 cm1 , about 40% below the ionization limit. This
sets the scale for the uncertainty range, but we believe
the isoelectronic analogy to Kr to be reasonably sound,
so we estimate an uncertainty of ±10% for WId. This
translates directly to a 10% uncertainty in (1 − kd,n`)
and provides the uncertainties shown in Table III.

The quadrupole correction factor kq,n` is calculated in

much the same way as kd,n`. In this case the 〈n`|r−32 |n′`′〉
matrix elements are required, and they are similarly eval-
uated numerically for hydrogenic wave functions. To
assign an effective energy WIq accounting for the ionic
quadrupole transitions, we use an expression analogous
to Eq. (9). Lacking better information, we calculate WIq

for hydrogen and obtain 122 465 cm−1, which is 12% over
the ionization limit. Taking the same to be true for Rb+

we obtain WIq = 254 000 cm−1. Using this value of WIq

in the quadrupole analog of Eq. (12), we calculate kq,n`.
Since there is no analog to the Kr oscillator strength dis-
tribution for comparison, we assign a ±20% uncertainty
to WIq and thus to 1− kq,n`. The results are also shown
in Table III.

Since we measure energy differences ∆W , we again use
Eq. (2), but the definitions of ∆d and ∆q now include
kd,n` and kq,n`′ and are given by

∆d ≡
1

2
kd,n`

〈
1

r4

〉

n`

− 1

2
kd,n`′

〈
1

r4

〉

n`′
(13)

and

∆q ≡
1

2
kq,n`

〈
1

r6

〉

n`

− 1

2
kq,n`′

〈
1

r6

〉

n`′
. (14)

As before, we plot ∆W/∆d vs. ∆q/∆d, for (`, `′) pairs
(4, 5) and (5, 6), with the result shown in Fig. 7. We also
include higher-n results for (`, `′) = (4, 5) taken from
Ref. [12]. The points are fit to a line, and the resulting
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FIG. 7: Determination of core polarizabilities including non-
adiabatic corrections. The plot is analogous to that of Fig. 5,
but now using Eqs. (13) and (14) for the ∆ variables. The
data reported here are plotted as filled circles. We also include
previous data at higher n from Ref. [12] as open circles. The
higher-n data consist of energy shifts relative to hydrogen,
rather than energy differences, so for those points we instead
plot 2W/(kd,n`〈r−4〉n`) vs. (kq,n`〈r−6〉n`)/(kd,n`〈r−4〉n`). All
of the points are fit to a line, whose slope and intercept give αd

and αq. The dark gray band is a graphical representation of
line fit errors. The light gray band shows the range of values
obtained when kd and kq are varied by their uncertainties
from Table III.

intercept and slope correspond to αd = 9.063(5) au and
αq = 42.5(4) au, where the uncertainties are the statis-
tical uncertainties returned by the fit. These values are
obtained using the values of kd and kq given in Table
III, assuming them to be perfectly accurate. We take
the uncertainties in the non-adiabatic terms into account
by varying WId and WIq by their uncertainties and fit-
ting the data again. A ±10% change in WId leads to
a ±0.004 au change in αd and a ±1.7 au change in αq.
A ±20% change in WIq leads to a ∓0.003 au change in
αd and a ±1.0 au change in αq. Taking these uncertain-
ties in WId and WIq into account, we assign the values
αd = 9.063(7) au and αq = 43(2) au. Compared to the
adiabatic result, the αd value is slightly increased and the
uncertainty is doubled. In contrast, the αq value is sub-
stantially increased and the uncertainly is larger by an
order of magnitude. This uncertainty is almost entirely
due to the imprecision of WId and WIq. The gray band
in Fig. 7 illustrates these uncertainties graphically.

Our results can be compared to theoretical estimates.
Calculations of the core dipole polarizability range from
9.076 to 9.11 au [3], in reasonable agreement with our re-
sult. Estimates of the quadrupole term αq range from
35.4 to 38.37 au [3], which are again reasonably con-
sistent. This consistency lends support to the approx-
imations made for our non-adiabatic corrections, and it
resolves the large discrepancy between theory and the

TABLE III: Quantum defects for n = 17 to 19 g, h, i states,
and the Ritz expansion coefficients of Eq. (16).

` δ

n = 17 g 0.003908(2)

h 0.0013697(5)

i 0.0005762(2)

18 g 0.003918(2)

h 0.0013750(5)

i 0.0005794(2)

19 g 0.003927(2)

h 0.0013794(5)

i 0.0005821(2)

δ0 g 0.004011(1)

h 0.001424(3)

i 0.000606(1)

δ2 g -0.0299(6)

h -0.0156(8)

i -0.0086(4)

adiabatic αq of value 14(3) reported in [12].
Although we measure transition frequencies, we can

use the extracted polarizabilities to calculate the abso-
lute energy of the Rydberg states, and thus obtain the
quantum defects. For this we use Eq. (1) and the adia-

batic polarizability values α
(a)
d and α

(a)
q , since that avoids

the uncertainty in the non-adiabatic correction factors.
The quantum defects are then found by setting

Wn` =
1

2n2
− 1

2(n− δn`)2
. (15)

The results are listed in Table III. The variation of the
quantum defect with n can be parameterized using the
Ritz expansion [32]

δ(n) = δ0 +
δ2

(n− δ0)2
. (16)

By combining our data with those of Ref. [12], we obtain
the δ0 and δ2 values shown.

IV. CONCLUSIONS

We have demonstrated microwave spectroscopy of the
high-` states of Rb with precision improved by a factor
of ten compared to previous results, and extending the
measurements to ` = 6. Using these data, we deter-
mined the dipole and quadrupole polarizabilities of the
Rb+ ionic core, including corrections for non-adiabatic
effects. These corrections significantly impact and re-
solve discrepancies between previous work and theory,
particularly for the quadrupole term.

We can consider methods to obtain yet higher accu-
racy. A straightforward improvement would be to use
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a more sophisticated atomic structure calculation to ac-
count for the non-adiabatic effects, which would allow
more precise polarizability values to be extracted from
our existing data. Without such a calculation, improve-
ments to the experiment itself would not be useful.

If the non-adiabatic correction factors can be deter-
mined more accurately, then the measurements could be
improved in several ways. One possibility is to extend
the measurements to higher ` states. This would provide
more points in Fig. 7 and allow a better test of the un-
derlying core polarization model. However, this is chal-
lenging because the signal-to-noise ratio on the nf → nj
transition would be low in our existing apparatus, and
the decreasing value of ∆W makes the relative frequency
uncertainty more significant. A different approach would
be to perform absolute spectroscopy of the nf state so
that the energy shifts relative to hydrogen of the ng, nh
and ni states could be used independently. We cannot
carry out such spectroscopy with our current apparatus:
although precise spectroscopy of the nd states is available
[33], at low n values the nd− nf frequency intervals are
too large to access with our microwave technology.

The precision of the microwave measurements them-
selves could be improved by using a longer microwave
pulse duration to obtain narrower transitions. This
would require magnetic shielding to reduce line broad-
ening from the Zeeman effect, and would benefit from a
more complex field plate structure that allowed adjust-
ment of all three components of the background bias field

to better eliminate dc Stark shifts.

We also hope that the improved core polarizability val-
ues determined here will be useful for precision measure-
ments such as atomic clocks and tune-out spectroscopy.
In regards to our own interest in tune-out spectroscopy,
the core polarizability was a source of uncertainty in
the determination of the ratio of the 5p3/2 to 5p1/2
dipole matrix elements. Our original analysis in [10] used
αd = 9.08(10) au. Using the improved value found here,
we reduce the relative uncertainty in the ratio from 18
ppm to 14 ppm, where the core contribution is no longer
a significant factor in the uncertainty. The value of the
ratio, 1.992 17, remains unchanged. Ultimately, we hope
to further use tune-out spectroscopy to constrain all the
valence dipole matrix elements of Rb and support a fu-
ture parity non-conservation measurement [10].
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B|Hydrogen Radial Functions and

Spherical Harmonics

Radial Functions for n = 1− 3, ` = 0− 2
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Spherical Harmonics for ` = 0− 2
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C|Expectation values for

hydrogenic states

GP(n, `) =
2PZP(2`− P + 2)!
nP+1(2`+ P− 1)!

(C.1)

fr(`) =
(`+ r)!
(`− r)!

(C.2)

〈r−2〉 = G2(n, `)/2

〈r−3〉 = nG3(n, `)

〈r−4〉 = G4(n, `)[3n2− f1(`)]

〈r−5〉 = 6G5(n, `)
{
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3

n3− n
[

f1(`)−
1
3

]}
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n4− 10n2
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〈r−7〉 = 30G7(n, `)
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n5− 14
3

n3
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3
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+ n
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4
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D|Calculated quantum defects for

n = 10− 40, ` = 4− 8

Calculated quantum defects for n = 10− 40 and ` = 4− 8 using the core polarizability

results in this work.

n ` δ` Error
10 4 0.00372727 0.00000163
10 5 0.00127567 0.00000044
10 6 0.00052043 0.00000017
10 7 0.00023848 0.00000008
10 8 0.0001185 0.00000004
11 4 0.00377506 0.00000166
11 5 0.0013006 0.00000045
11 6 0.00053523 0.00000018
11 7 0.00024802 0.00000008
11 8 0.00012501 0.00000004
12 4 0.00381144 0.00000169
12 5 0.00131956 0.00000046
12 6 0.00054648 0.00000018
12 7 0.00025527 0.00000008
12 8 0.00012996 0.00000004
13 4 0.00383977 0.00000171
13 5 0.00133433 0.00000047
13 6 0.00055525 0.00000019
13 7 0.00026091 0.00000009
13 8 0.00013382 0.00000004
14 4 0.00386226 0.00000173
14 5 0.00134605 0.00000047
14 6 0.0005622 0.00000019
14 7 0.00026539 0.00000009
14 8 0.00013687 0.00000005



Appendix D. Calculated quantum defects for n = 10− 40, ` = 4− 8 162

n ` δ` Error
15 4 0.00388042 0.00000174
15 5 0.00135551 0.00000047
15 6 0.00056781 0.00000019
15 7 0.000269 0.00000009
15 8 0.00013934 0.00000005
16 4 0.00389529 0.00000175
16 5 0.00136325 0.00000048
16 6 0.0005724 0.00000019
16 7 0.00027196 0.00000009
16 8 0.00014136 0.00000005
17 4 0.00390762 0.00000176
17 5 0.00136966 0.00000048
17 6 0.00057621 0.00000019
17 7 0.00027441 0.00000009
17 8 0.00014303 0.00000005
18 4 0.00391797 0.00000177
18 5 0.00137504 0.00000048
18 6 0.0005794 0.00000019
18 7 0.00027646 0.00000009
18 8 0.00014443 0.00000005
19 4 0.00392672 0.00000177
19 5 0.00137959 0.00000048
19 6 0.0005821 0.0000002
19 7 0.0002782 0.00000009
19 8 0.00014562 0.00000005
20 4 0.0039342 0.00000178
20 5 0.00138348 0.00000049
20 6 0.0005844 0.0000002
20 7 0.00027969 0.00000009
20 8 0.00014663 0.00000005
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n ` δ` Error
21 4 0.00394064 0.00000179
21 5 0.00138683 0.00000049
21 6 0.00058638 0.0000002
21 7 0.00028096 0.00000009
21 8 0.00014751 0.00000005
22 4 0.00394623 0.00000179
22 5 0.00138973 0.00000049
22 6 0.0005881 0.0000002
22 7 0.00028207 0.00000009
22 8 0.00014826 0.00000005
23 4 0.0039511 0.00000179
23 5 0.00139226 0.00000049
23 6 0.0005896 0.0000002
23 7 0.00028304 0.00000009
23 8 0.00014892 0.00000005
24 4 0.00395538 0.0000018
24 5 0.00139448 0.00000049
24 6 0.00059092 0.0000002
24 7 0.00028389 0.00000009
24 8 0.0001495 0.00000005
25 4 0.00395916 0.0000018
25 5 0.00139644 0.00000049
25 6 0.00059208 0.0000002
25 7 0.00028463 0.00000009
25 8 0.00015001 0.00000005



Appendix D. Calculated quantum defects for n = 10− 40, ` = 4− 8 164

n ` δ` Error
26 4 0.00396251 0.0000018
26 5 0.00139818 0.00000049
26 6 0.00059311 0.0000002
26 7 0.0002853 0.00000009
26 8 0.00015046 0.00000005
27 4 0.0039655 0.0000018
27 5 0.00139973 0.00000049
27 6 0.00059403 0.0000002
27 7 0.00028589 0.00000009
27 8 0.00015087 0.00000005
28 4 0.00396818 0.00000181
28 5 0.00140111 0.00000049
28 6 0.00059485 0.0000002
28 7 0.00028642 0.0000001
28 8 0.00015123 0.00000005
29 4 0.00397058 0.00000181
29 5 0.00140236 0.00000049
29 6 0.00059559 0.0000002
29 7 0.00028689 0.0000001
29 8 0.00015155 0.00000005
30 4 0.00397275 0.00000181
30 5 0.00140348 0.00000049
30 6 0.00059626 0.0000002
30 7 0.00028732 0.0000001
30 8 0.00015184 0.00000005
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n ` δ` Error
31 4 0.00397472 0.00000181
31 5 0.0014045 0.0000005
31 6 0.00059686 0.0000002
31 7 0.00028771 0.0000001
31 8 0.00015211 0.00000005
32 4 0.0039765 0.00000181
32 5 0.00140542 0.0000005
32 6 0.00059741 0.0000002
32 7 0.00028806 0.0000001
32 8 0.00015235 0.00000005
33 4 0.00397812 0.00000181
33 5 0.00140626 0.0000005
33 6 0.0005979 0.0000002
33 7 0.00028838 0.0000001
33 8 0.00015257 0.00000005
34 4 0.00397961 0.00000182
34 5 0.00140703 0.0000005
34 6 0.00059836 0.0000002
34 7 0.00028867 0.0000001
34 8 0.00015277 0.00000005
35 4 0.00398097 0.00000182
35 5 0.00140773 0.0000005
35 6 0.00059877 0.0000002
35 7 0.00028894 0.0000001
35 8 0.00015295 0.00000005
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n ` δ` Error
36 4 0.00398222 0.00000182
36 5 0.00140838 0.0000005
36 6 0.00059916 0.0000002
36 7 0.00028919 0.0000001
36 8 0.00015312 0.00000005
37 4 0.00398336 0.00000182
37 5 0.00140897 0.0000005
37 6 0.00059951 0.0000002
37 7 0.00028941 0.0000001
37 8 0.00015327 0.00000005
38 4 0.00398442 0.00000182
38 5 0.00140952 0.0000005
38 6 0.00059983 0.0000002
38 7 0.00028962 0.0000001
38 8 0.00015342 0.00000005
39 4 0.0039854 0.00000182
39 5 0.00141002 0.0000005
39 6 0.00060013 0.0000002
39 7 0.00028981 0.0000001
39 8 0.00015355 0.00000005
40 4 0.00398631 0.00000182
40 5 0.00141049 0.0000005
40 6 0.00060041 0.0000002
40 7 0.00028999 0.0000001
40 8 0.00015367 0.00000005
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E|3D printed coil forms

Coil forms to fit around and secure to 8" vacuum chamber flanges. Additive
manufacturing (3D printing) was employed to fabricate these custom parts
for this experiment. Wires are wound to 250 turns around this coil form and

the coil form is secured to the outer diameter of the vacuum flange.
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F|Continuum Surelite SLI-20

Trigger Setup

 Section 3:  System Operation 

996-0207 43 

Table 6  ASCI response 
Returns Description 

00 Normal return 

01 Surelite not in serial mode 

02 Coolant flow interrupted 

03 Coolant temperature over temp 

04 (not used) 

05 Laser head problem 

06 External interlock 

07 End of charge not detected before lamp 
fire 

08 Simmer not detected 

09 Flow switch stuck on. 

The response to SC (Shot count) is a 9 digit ASCII code terminated by a Carriage 
Return. An example is shown in Table 7 below. 
Table 7  SC response 

Returns Description 

000123456 shot count = 123,456 

To disable RS232 

1. With system running, transmit the ASCII code ST 0. 

2. Press START/STOP button to off. 

3. Press SELECT button to Son. 

4. Press ARROW DOWN button to SoF. 

5. Resume normal operation. 

Direct Access Triggering (DAT) 

Stanford Research Pulse Generator Setup 

NECESSARY EQUIPMENT 
• 1 ea. Delay Generator model #DG535 
• 2 ea. Standard BNC cables 
• 1 ea. 9 pin “ D” connector, male 

STEPS 

1. Make up a special cable consisting of 2 BNC cables and a 9 pin D male. 

• Label one of the BNC cables FIRE and the other Q-SWITCH. 
• Take the FIRE and Q-SWITCH BNC cables and remove the connetor 

from one end and expose the center conductor and shield. 
• Solder center conductor of the FIRE BNC to pin 7 of the 9 pin D 

connector. 
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Continuum Surelite Laser 

44 996-0207 

• Solder the shield of the FIRE BNC to pin 2 of the 9 pin D connector. 
• Solder the center conductor of the Q-SWITCH BNC to pin 6 of the 9 

pin D connector. 
• Solder the shield of the Q-SWITCH BNC to pin 3 of the 9 pin D 

connector. 

2. Program the DG535 as follows: 

• TRIGGER - set to internal and 10 Hz or desired rep rate. 
• OUTPUTS - set all outputs to High Z, TTL and NOR-MAL 
• DELAYS - 

− A = T = + 0 

− B = A + 10 µs 

− C = A + 150 µs 

− D = C + 10 µs 

3. Connect the special cable 9 pin D to the external connector on front of 
PCU. 

4. Connect the FIRE BNC to AB\Bar (positive going to negative). 

5. Connect the Q-switch BNC to CD/Bar (positive going to negative). 

6. At the rear of the PCU flip the Q-SWITCH SELECT toggle to the EXT 
position (for lowest jitter). 

7. Start up the Surelite as follows: 

• Toggle on AC power 
• Turn keyswitch to ON 
• Press SELECT button until “ Eof” is displayed 
• Press UP ARROWS so that display reads “ Eon” 
• Press on the START/STOP button 

 

LASER RADIATION! 

Lasing output occurs at next step! 

• Press on the SHUTTER button. 

8. Adjust the Delay of “ C” on the DG535 to maximize laser power. Final “ 
C” delay is normally between 100 µs and 300 µs. 

To enable DAT 

The Surelite laser may be directly controlled by user provided TTL level signals.  
Select this mode of operation when the application requires laser output be 
synchronized with other occurrences.  Listed below are the steps necessary to 
externally trigger your Surelite. 
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NECESSARY EQUIPMENT 
• User supplied TTL negative going signal ( 5 V .0 V 10 µs wide) 
• 9 pin D style male connector 
• Shielded cable (suggest RG-174 coaxial cable) 

DAT Mode 1 (± 10 ns jitter) 

In this mode the operator can fire the laser by providing a single negative going 
pulse (5 V .0 V).  Jitter time of the laser output with respect to the input fire 
command will be ±10 ns.  Lead time between the fire command and laser output 
will be ~180 µs. 

1. Flip up external Q-switch toggle located on rear panel of the PCU to INT 
position (see page 24). 

2. Solder center lead of coaxial cable to pin 7 of a D style male connector. 
Solder shield of same coaxial cable to pin 2 of the male D connector. 

3. Plug D connector made in step 2 to the EXTERNAL connector on front 
panel of the PCU. 

4. Plug the Surelite into ac supply and toggle on the AC POWER. 

5. Turn the keyswitch to the ON position. 

6. Press the SELECT button until EoF is displayed on the LED readout. 

7. Press UP ARROW button so that display reads Eon. 

8. Open exit port shutter at front of the laser bench. 

9. Press the START/STOP button located of front panel of the PCU to 
ON. 

10. Press the SHUTTER button located of front panel of the PCU to ON. 

11. Input the Fire Command onto pin 7 of the D connector.  User circuit 
should generate a TTL level pulse that goes from 5V .0V for 10 µs each 
time laser output is desired. 

DAT Mode 2 (±1ns jitter) 

This mode give the lowest possible jitter between input commands and laser 
output. Mode 2 requires the input of 2 TTL level negative going signals (5 V .0 
V, 10 µs wide). 

The first TTL signal called Fire Command will cause the laser head lamps to 
flash. This signal proceeds lasing by ~180 µs. The second TTL signal called Q-
switch Command fires the Pockels cell and precedes lasing by ~170 ns. 

1. Flip down external Q-switch toggle located on rear panel of the PCU to 
EXT position (see Figure facing page 3-1). 
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Continuum Surelite Laser 

46 996-0207 

2. Make the following connections on the D style male connector: 

• Q-switch Command - solder center lead of co-axial cable to pin 6 and 
solder shield of same coaxial cable to pin 3 of the connector. 

• Fire Command - solder center lead of a second coaxial cable to pin 7. 
Solder shield of secondcoaxial cable to pin 2. 

3. Plug D connector made in step 2 to the EXTERNAL connector on front 
panel of the PCU. 

4. Plug the Surelite into ac supply and toggle on the AC POWER.. 

5. Turn the keyswitch to the ON position. 

6. Press the SELECT button until EoF is displayed on the LED readout. 

7. Press UP ARROW button so that display reads Eon. 

8. Open exit port shutter at front of the laser bench. 

9. Press the START/STOP button located of front panel of the PCU to 
ON. 

10. Press the SHUTTER button located of front panel of the PCU to ON. 

11. Input the Fire Command onto pin 7 of the D connector (TTL level 5 V .0 
V, 10µs wide). 

12. Input Q-switch Command onto pin 6 with a delay of ~180 µs with 
respect to Fire Command (TTL level 5 V .0 V, 10 µs wide). 

13. Adjust .T between Fire Command and Q-switch Command for maximum 
energy. 

Note: When running the system in the external mode you must flash 
the laser head lamps at approximately the same frequency that 
the system was optimized at time of purchase.  Changing lamp 
frequency will change thermal lensing of the YAG rod which 
can result in reduced system performance. 

To disable DAT 

1. Press the START/STOP button to stop lamps from flashing. 

2. Press the SELECT button to Eon. 

3. Press the ARROW DOWN button to EoF. 

4. Resume normal operation. 
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Figure 27  Surelite chronograph 

��������������

�������������

�����

������������ ���

���

���������	
��

!� ������	��"#$���
��	���	��%$&����	�����
'�����	��	��������	��

(�)����

���������	��������

!� ������	����	�	
�	
�
���	���*��������	�
	�����	��	����+,�������-
��� ��	��.���������!-��� �/����

�-�����������������0��������1�����
������	�����	�
���	�%$&���	��
�������+2�30���������
	���

�����	
��	���

!� ������	��"#$���
��	���	��%$&����	�����
������	��	��������	���

(������

�����

������������ ���

���

4������	��������	�����
�������������	�.�,�
�!-���5��
����6������������7�����

�����	������
�0/����.8�*

09�����:������

!� ������	����	�	
�	
�
���	������	��	�����	��	���
+,�������-���� ��	�
.�,�
�!-���5���

������������ ���

��������

��������	
��	���

!� ������	��"#$���
��	���	��%$&����	�����
������	��	��������	���

 



174

G|LabView experiment control

software

G.1 Front panel
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G.2 Back panel
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H|Laser dyes

H.1 Stilbene 420

   2150 Bixby Road 
                                                                                                                                                                                 Lockbourne, OH 43137 
                                                                                                    Tel: 614.492.5610 
                                                                 E-mail: info.exciton@luxotticaretail.com 

                                                                                                 www.exciton.luxottica.com 

 

STILBENE 420 
 
Synonym: 2,2”-([1,1’-biphenyl]-4.4’-diyldi-2,1-ethenediyl)bis-benzenesulfonic acid disodium salt; Stilbene 3  
Catalog No.: 04200 
CAS No.:   27344-41-8 
Chemical Name: C28H20O6S2.2Na Molecular Weight: 562.56 
Appearance: Yellow powder 
Molar Absorptivity (in methanol): 270nm-400nm, absorption maximum 353nm  
Structure: 
 

SO3Na

NaO3S  
 

Lasing Wavelength 
Max. Range Pump Source  Concentration Abs  Fl 

(nm) (nm) (nm) Solvent (molar) -max -
max 
 

424 410-454 XeCl(308)114   EtOH/H2O,9/1 1.4 x 10-3 349m 425e 

425 405-467 XeCl(308)118 Ethanol 1 x 10-3 (osc)  402 
425 412-435 XeCl(308)110 Methanol 1 x 10-3 

 450(sh) 
425 412-436 Nd:YAG(355, Methanol 3 x 10-3 
  m-l,QS,100ps)169 
425 412-444 Nd:YAG(355)57 Methanol 3.9 x 10-4(osc), 
     1 x 10-4 (amp) 
425 415-435 Nd:YAG(355)109 Methanol/ethanol,1/1 1.5 x 10-3 
425 420-459 Nd:YAG(355)53 Methanol 5.3 x 10-4 (osc), 
     9.1 x 10-5 (amp) 
424 415-437 N2(337)139 Methanol 1.7 x 10-3 

425 400-460 N2(337)90 EtOH/H2O,1/4 2.1 x 10-3 

425 407-468 N2(337)114 EtOH/H2O,8/2 9 x 10-4 

425 408-453 N2(337)41 Methanol 1.8 x 10-3 

427 400-465 N2(337)183 Methanol 1.8 x 10-3 

431 415-458 N2(337)41 H2O+NP-10 1.8 x 10-3 

445 421-468 N2(337)41 H2O 1.8 x 10-3 

432 406-448 Ar(uv)42 EG/methanol,9/1 2 x 10-3 

432 420-470 Ar(334-364)206 EG 2 x 10-3* 
435 407-466 Ar(334-364)123,187 EG 
449 420-470 Ar(uv)52 EG 1.5 x 10-3 
449 436-493 Ar(uv)42 EG/methanol,9/1 2 x 10-3 

425 400-480 Kr(uv) or Ar(uv)68 EG 80% pump absorption 

 
* This represents a maximum value.  Concentration should be adjusted to 80-85% absorption of the pump light. 
 
m = methanol; e = ethanol; EtOH/H2O = Ethanol/water; EG = Ethylene glycol 
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H.2 LDS 722

   2150 Bixby Road 
                                                                                                                                                                                 Lockbourne, OH 43137 
                                                                                                    Tel: 614.492.5610 
                                                                 E-mail: info.exciton@luxotticaretail.com 

                                                                                                 www.exciton.luxottica.com 

 

LDS 722 
 
Synonym: 4-[4-[4-(dimethylamino)phenyl]-1,3-butadienyl]-1-ethyl-pyridinium perchlorate; Pyridine 2 
Catalog No.: 07220 
CAS No.: 89846-21-9 
Chemical Formula: C19H23N2.ClO4 MW: 378.85 
Appearance: Purple crystals  
Structure: 

ClO4
-

N
+

C
2
H

5
CH)

2
(CH N(CH

3
)
2

 
 
Lasing Wavelength 
Max. Range Pump Source  Concentration Abs  Fl 

(nm) (nm) (nm) Solvent (molar) -max -max 

 

715 686-795 Nd:YAG(532)127c Methanol  494m 702m 

718 691-751 Nd:YAG(532)239 Ethanol 6.6 x 10-4 

722 685-760 Nd:YAG(532)57 Methanol  

724  Nd:YAG(532)F548(544)148 Methanol 3.4 x 10-4(osc), 

     1.3 x 10-4(amp) 

735 700-780 N2(DFDL)162 DMSO 7 x 10-3 

713 680-795 Ar(458-514)206 PC/EG,2/8 4 x 10-3* 

725 690-770 Ar(Blue/Green,SF)68 PC/EG 2.7 x 10-3 

726 688-775 Ar(Blue/Green,bb)68 PC/EG 

745 685-800 Ar(Blue/Green,SF)68 PC/EG 2.7 x 10-3 

747 682-810 Ar(Blue/Green,bb)68 PC/EG 

722 687-755 Cu(511,578)175 Methanol 2.6 x 10-3 
 
* This represents a maximum value.  Concentration should be adjusted to 80-85% absorption of the pump light. 
 
m = methanol, DMSO = dimethylsulfoxide, EG = ethylene glycol, PC = propylene carbonate 
 
REFERENCES: 

 

57. Quanta-Ray, Note:  Quanta-Ray is now incorporated as a part of Spectra-Physics, 1250 W. Middlefield Road, Mountain View, 

CA 94039 

68. Coherent Inc., 3210 Porter Dr., Palo Alto, CA 94304 

127. a. Cw Operation of Laser Dyes Styryl-9 and Styryl-11, J. Hoffnagle, L. Ph. Roesch, N. Schlumpf and A. Weis, Optics Commun., 

42, 267 (1982); b. K. Kato, see Reference 5 in 127 a ; c. K. Kato, unpublished results 

148. Dye Laser Radiation in the 605-725nm Region Pumped by a 544nm Fluorescein Dye Laser, K.D. Bonin and T.J. Mcllrath, 

AppliedOptics, 23(17), 2854 (1984)  

162. Novel Method for Wavelength Tuning of Distributed Feedback Dye Lasers, J. Jasny, Optics Commun., 53(4), 238 (1985)  

175. CVL-Pumped Dye Laser For Spectroscopic Application, M. Broyer, J. Chevaleyre, G. Delacretaz and L. Wöste, App. Phys. B, 

35, 31 (1984)  

206. Coherent Inc., 3210 Porter Dr., Palo Alto, CA 94304; (599 Composite Tuning Curves, 1992; The concentration shown represents 

a maximum value.  The final concentration should be adjusted to obtain 80-85% absorption of the pump light.) 

239. P. Jauernik, private commun., Sirah Laser- und Plasmatechnik, 2003. 

 

For a current list of biology, biological stain, or biochemistry references for LDS 722 from PubMed, click on the following link: 

 

LDS 722 or Pyridine 2 
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ac Stark effect, 76
adiabatic approximation, 16
anode, 55
atomic parity violation, 4

Bohr magnetron, 80

computer aided design (CAD), 86
core polarization model, 15

dc Stark effect, 71
delayed field ionization (DFI), 50
diffusion vacuum pump, 30
dipole matrix elements, 8
Direct Access Trigger (DAT), 59
dynamic polarizability, 10

electric polarizability, 9

field effect transistor (FET), 53
forbidden transition, 7
fundamental symmetry, 2

Granville Phillips 330 Hot Cathode Ion Gauge
Controller, 32

gyromagnetic ratio, 80

ionization gauge, 32

Landé formula, 79
Landé g-factor, 80
Legendre polynomials, 115

mechanical roughing pump, see rotary vane
pump, roughing pump, forepump

microwave horn antenna, 48
monochrometer, 45
multi-channel plate (MCP), 28, 55

non-adiabatic effect, 112

oscillator strength, 123

parity transformation, 2
parity violation, 2, 4
photodiode detector, 45
photoionization cross-section, 124
physics beyond the Standard Model, 1
PNC transition rate, 7
pulse modulation, 47

quadratic Stark effect, 72
quantum defect, 14, 130

Rabi frequency, 70
radial functions, 6
rotary vane pump, 30
rotating wave approximation (RWA), 77
rydberg atom, 12
Rydberg forumla, 14

selection rule, 7
selection rules, 4
selective field ionization (SFI), 50
signal to noise ratio (SNR), 27
single-photon transition, 47
spectroscopy, 66
spherical harmonics, 6
spin-orbit interaction, 69
spontaneous emission, 8
Stark effect, 9, 71

Taylor expansion, 119
The Standard Model, 1
thermal beam, 34
thermocouple gauge, 32
transform broadening, 70, 80
tune-out wavelength spectroscopy, 10

vacuum chamber, 28
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weak mixing angle, 3

Zeeman effect, 79
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