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Abstract
Waste management is a di�cult problem to solve. Unlike
electricity or water management in building spaces, waste
management has remained out of reach of Internet of Things
(IoT) connectivity. This is why we develop the Internet of
Wasted Things (IoWT): to bring intelligence to the overar-
ching goal of monitoring, tracking, managing, and reducing
waste. So far, we have explored two directions for application:
SCRAP and Periop Green.

SCRAP is a closed-loop automated system which uses low
cost cameras to automatically detect the item to be disposed
and then guide the user towards the correct disposal bin in
real-time. In doing so we constructed the Naturalistic Re-
cycling Dataset (NRD), a novel data corpus which contains
annotated videos of building occupants disposing commonly
used waste items captured from multiple camera angles.
Based on the diverse NRD dataset, we then created SCRAP, or
the System for Classifying Recyclables through Automated
Process, an automated waste disposal detection, tracking,
and guidance system. SCRAP uses a customized transfer-
learned deep neural network derived from the YOLOv3 ob-
ject detector for real-time waste detection at the point of
disposal. In our real world experimentation we show that
SCRAP can achieve up to 93% mean average precision com-
pared to baseline object detection networks. We implement
and deploy SCRAP in a building environment in a closed-
loop setting to prototype the system. SCRAP is motivated by
the need to categorize waste at the time of disposal to prevent
messy and manual sorting of recyclables downstream.

Periop Green tackles waste reduction in hospital operating
rooms. During a surgery, most tools used by surgeons are
single-use; that is, they are thrown away after one surgery.
However, many of these tools are tossed out without ever
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being used. Along with the detrimental environmental impli-
cations of such vast amounts of waste, these items can cost
upwards of thousands of dollars each. Therefore, the IoWT
seeks to use computer vision to detect these single-use, ster-
ile surgical supplies on operating room scrub tables. This will
allow targeted suggestions for reducing costs and waste. Like
SCRAP, our SUSS detector is trained used transfer-learning
on a custom dataset derived from the YOLOv4 object detec-
tor. We show a greater than 96% mean average precision on
our test data.

1 Introduction
The world is facing a recycling crisis that is burying cities
and towns in tens of millions of tons of land�ll waste each
day [16]. As recycling costs skyrocket, more waste is end-
ing up in land�lls and incinerators. The problem of waste
management became even worse when in 2018 China, the
world’s largest recyclable processor, stopped accepting most
of the world’s scrap plastic and cardboard due to contam-
ination problems, and a glut of plastics overwhelming its
own processing facilities [8]. China’s 2018 national policy [2]
banned the import of many types of recyclables that the U.S.
previously exported. Prior to the ban, China had received and
processed a nearly 45% of total global plastic waste since; the
U.S. alone had been sending around 4, 000 shipping contain-
ers full of recyclables to China per day [7]. Other countries
have followed suit: Thailand temporarily banned plastic re-
cyclables in June of 2018, followed by similar restrictions
from Malaysia, Taiwan, Vietnam, and India. Waste contami-
nation in the U.S. is high since recyclables are often dumped
"single-stream" into one bin instead of multi-streamed or
separated from the source. Now China has strict standards
for recycling materials it accepts, requiring contamination
levels in a plastic bale, for example, to be no more than 0.1%.
The international markets have resulted in upheaval in the
U.S. recycling industry, with municipalities responding to
the loss of these markets by increasing the cost of recycling,
shutting down programs, storing recyclables inde�nitely, and
incinerating land�ll recyclables. Waste management is a dif-
�cult problem to solve. Individuals, especially in the United
States, don’t think much about where their waste will end
up. However, unlike electricity or water management, waste
management has remained out of reach of Internet of Things
devices and connectivity. The ordeal is still messy, slow, and
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manual and often left to back-of-house processes. The devel-
opment of the Internet of Wasted Things is an overarching
project endeavor that seeks to modernize, automate, and
increase e�ciency of waste management. The umbrella has
developed into two major avenues: �rst, the SCRAP model,
and secondly, Periop Green.

The SCRAP Model
Waste management typically occurs downstream after com-
mingled waste has been collected from buildings. While
single-stream recycling is convenient, it makes the sorting
process more cost- and time-prohibitive with less material
being salvaged [18]. Proper categorization at the point of
disposal itself would ensure cost-e�cient and sustainable
waste management [3].

In buildings, electricity and water management is now
an integral part of real-time operations and planning. This
has led to the development of new methods and tools to
ingest such data and close-the-loop with energy and water
management. However, tracking waste with the same ease
has remained beyond reach. This thesis presents SCRAP,
the System for Classifying Recyclables through Automated
Process: a computer-vision enabled system for waste track-
ing in building spaces. This project is pertinent given UVA’s
2030 Sustainability Plan which includes a goal to reduce
UVA’s waste footprint 70% by 2030 relative to 2010 levels. As
UVA and other organizations seek to meet waste reduction
goals, the research presented lays foundation for building
The Internet of Wasted Things (IoWT).

What is Recycling Contamination? Recycling contam-
ination occurs when materials are sorted into the wrong
recycling bin (for instance placing a glass bottle into a mixed
paper recycling bin), or when materials are not properly
cleaned, such as when food residue remains on a plastic
yogurt container. Recycling these materials is sometimes re-
ferred to as aspirational recycling, as one is simply throwing
material into the recycling bin with the hope that it will �nd
its way to where it needs to be eventually. Unfortunately,
this is rarely the case. When disposed of improperly or in the
wrong bin, even recyclable materials like plastic and paper
can act as contaminants.
Because costs of sorting recyclables adds quickly, even

viable materials will often be sent to the land�ll if contami-
nation levels are too high [13].

Disposal mistakes are often caused by:

1. Confusing categories (often tried and failed to be solved
by complicated posters),

2. Lack of knowledge of whether an item is recyclable,
3. Absent-mindedness or hurried mistakes, and
4. Lack of care, diligence, or discipline.

The pitfalls are many but the consequences of ocean plas-
tics and climate change are very real. The problem is not

just technical (how to sort the waste) but also human. Con-
sequentially it requires an approach where we can leverage
advances in computer vision and object detection to assist
the humans in reducing contamination at the point of dis-
posal. In doing so, we also strive to inculcate good recycling
habits among users over time.

Periop Green
The United States healthcare industry wastes over $2 billion
per day resulting in more than $750 billion wasted per year.
This waste accounts for roughly 25% of healthcare expen-
diture [25]. This cost is hard to tackle due to the sensitive
nature of the environment; it is di�cult to justify poten-
tial cost savings at the expense of healthcare outcomes. For
this reason, hospital administrators are constantly searching
for ways to reduce dollars wasted. One such target area are
hospital operating rooms. During surgeries, doctors have a
variety of tools opened at their disposal for use. However, it
is known anecdotally that the number of items at disposal
is more than what is actually used during surgery. Because
these tools are still open during the perioperative time, they
must be either cleaned, or in the case of single-use items,
thrown away, regardless of whether they were actually used.
Some of these single-use items can range from single digits
dollar amounts to thousands of dollars each. Because surgical
rooms are isolated areas of work, documenting the unused
waste is an almost impossible task—it requires coming in
directly at the end of surgery and before the table is cleaned
by nurses. To tackle this problem of perioperative waste, we
look to the Internet of Wasted Things. With our system, we
seek to use computer vision to detect which items are on the
scrub table and when certain items leave the table during
the surgery, indicating the item has been used.

Research Contributions
We present the following research contributions:

1. A newNaturalisticRecyclingDataset (NRD)which
contains annotated videos of building occupants dis-
posing a variety of everyday items. Such a dataset has
not been explored for waste detection before.

2. The development of SCRAP, the System for Classify-
ing Recyclables through Automated Process. SCRAP is
trained on the NRD using transfer learning applied to
a YOLOv3 model for the customized task of real-time
waste item detection. To close-the-loop, upon identi-
�cation of the item, visual cues are presented to the
human to guide correct disposal to reduce recycling
contamination (Figure 1).

3. Rigorous comparisons between di�erent object detec-
tion approaches for training the neural network and
demonstration of the working closed-loop SCRAP sys-
tem.
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Figure 1. Top Left: Overview of the IoWT concept; Top Right: Examples of common recycling contamination; Bottom: IoWT
automated detection and guidance setup and closed-loop implementation.

4. Creation of the SUSS Detector for detecting single-
use surgical supplies, made as a proof-of-concept work-
�ow for detection and classi�cation of single-use tools
on operating room scrub tables. This model is trained
using transfer-learning on a custom SUSS dataset with
a YOLOv4 base detector (Figure 18).

5. An exploration of adapting the detector results to iden-
tify single-use sterile surgical supplies (SUSSS), i.e.
identifying which items on the scrub table have actu-
ally been used during surgery.

We believe both of these projects are well poised to being
used in the real-world and making real-impact. Both project
seeks to integrate IoT waste management into existing in-
frastructure to prevent hurdles that arise with the need for
disruption. This is what makes our Internet ofWasted Things
work so novel and impactful.

2 Related Work
Automated recycling has received a lot of attention from
researchers in recent years. Authors have proposed inter-
ventions at all stages of the recycling pipeline, from waste
detection and sorting at the building level, to large auto-
mated robots and machines for downstream sorting of waste.
In this section, we present an overview of related work and
compare it to the contributions of this paper.

2.1 Waste-related Datasets
TrashNet [27] is a dataset of over 2500 images of waste items
in the categories: glass, paper, cardboard, plastic, metal, trash.
The dataset is favorable for its breadth of recyclable material
included; however, the images are only of the objects them-
selves against a plain white background as seen in Figure 2.
Therefore, this dataset is undesirable for real-time, real-life
detection of waste objects.
Similar to the TrashNet dataset is the TACO (Trash An-

notations in Context) [19] dataset. TACO is a growing open
source image dataset curated for the purposes of detecting
litter in real life. Therefore, its images are of waste objects
in the context of wildlife surroundings as found in the real
world, as seen in Figure 2. While these could serve as a start-
ing point to train waste speci�c object detectors, they lack
the context of a human approaching a set of bins to dispose
the item o�. Therefore, it is not a su�cient dataset for our
research.

2.2 Automated Waste Detection
A similar project to ours is the Garbage Detection with YOLO
[9] which collects a variety of images of garbage across
Google and then trains a YOLOv3 model to detect garbage
bags, dumpsters, bins, and blobs. The goal of this research
is to monitor and quantify garbage collection for many of
the same reasons as our own research—that is, waste is an
often ignored yet persistent environmental problem that
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Figure 2. Existing waste datasets like TrashNet and Taco
focus only on images of the object itself and do not contain
any naturalistic recycling scenes.

currently eludes IoT management. While the Garbage De-
tection model achieves almost 60% mean average precision
(mAP), it lacks in the exact area where our research excels.
The system only monitors waste after it has already been
disposed and collected at a garbage site, abstracting the IoT
monitoring away from human interaction, i.e. "downstream"
in the waste process. Our research advantageously seeks to
monitor directly at the point of disposal before waste objects
turn into unidenti�able garbage. By sorting, managing, and
monitoring objects upstream, we are left with cleaner, more
productive waste avenues in the recycling process. In addi-
tion, our research compares many training techniques for
YOLOv3 to achieve an even higher �nal mAP than reported
in this project.

Another related research is the Comparison of Deep Learn-
ing and Support Vector Machines for Autonomous Waste
Sorting [24]. This paper compares the performance of CNN
vs. SVM models in detecting waste objects. They use their
own dataset which is again a set of images of various waste
objects themselves, without surrounding context. The labels
for the data are plastic, paper, or metal. This paper �nds that
SVM models perform better at an accuracy of 94.8% com-
pared to the CNN accuracy 83%. This paper succeeds in its
rigorous comparison of model performance but its �ndings
fail to translate to real-world applications, again due to the
fact that objects are not detected in real-world context. As
such, we have decided to train with a CNN model in our
own research. This is because CNNs are generally better at
using surrounding context in the image in its object detec-
tion and we believe that context is more applicable for our
purposes. This research also neglects to imagine the appli-
cation of their developed model; it is unclear at what point
in the waste stream a model like this could be applied for
better waste management. Our research therefore ensures
to clearly de�ne the placement of our model in the waste

disposal pipeline in order to productively monitor, manage,
and sort recyclables.

2.3 Downstream Recycling and Sorting
Recycling "robots" are one form of commercial solution to
sort materials downstream. One example isMax-AI [26]. This
robot identi�es recyclables in a Material Recovery Facility
using multi-layered neural networks and a vision system.
Max-AI seeks to solve the issue of recycling after it has been
disposed and collected. This may be advantageous in some
ways because it prevents humans from getting involved with
the technology, and of course humans are prone to increas-
ing complexity and confusion. But ultimately, downstream
sorting is the messiest point in the waste disposal stream
to intervene. At this point, much of the recyclable material
has already been contaminated and is either impossible or
di�cult to salvage. Therefore, it is more ideal to sort waste
upstream, i.e. with human intervention, as our project seeks
to do. Additionally, robot sorters are not scalable—they are
expensive, large pieces of technology that must be adopted
at recovery facilities in order to make meaningful change.
In contrast, our SCRAP idea is lightweight and portable; it
can be attached to any bin location for instant aid in sorting
recyclables.

ZenRobotics ([28]) is another company who produces sim-
ilar robot waste sorters. ZenRobotics has two sorters, Heavy
Picker and Fast Picker, each designed for a di�erent type of
waste: the former being used for commercial and industrial
waste, construction waste, plastic, and scrap metal, and the
latter being used for municipal solid waste and packaging.
The robots are designed with an AI network called ZenBrain.
These sorters have the advantage of being specialized for
di�erent types of waste. They are also tackling a di�erent
waste set than ours; our SCRAP system is not built to han-
dle industrial or construction waste—for these cases a robot
sorter is likely the better solution. However, the ZenRobotics
sorters have a similar issue of being expensive and hard to
scale, and they are still forced to sort waste downstream
rather than upstream.

3 Naturalistic Recycling Dataset
A major bottleneck for building a waste detection system is
the lack of naturalistic datasets. Most waste-related datasets
only contain images of the items themselves, without any
context of how they are/will be disposed. The ideal dataset
for our purposes is that which includes images and/or videos
of many individuals walking forward towards recycling bins
with a variety of waste objects in hand. This is because the
goal of our object detector is to identify recyclable objects
just as they are being placed into the bins, and so our data
should re�ect the environment in which our model would be
deployed. In the real world, when someone approaches a set
of bins to dispose the object, there are various factors which
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come into play while detecting the object. For instance, the
object can be momentarily occluded behind the person’s
body, the position of the camera may detect di�erent angles
of the object, etc.

Therefore to build our proposed system, we began by creat-
ing a �rst-of-its-kind dataset which captures the naturalistic
actions of the humans as they dispose everyday items in an
o�ce building environment. We call this Naturalistic Recy-
cling Dataset—it contains not a library of images of waste
items, but instead contiguous videos and image sequences
of building occupants disposing these items. In this section,
we provide an overview of the NRD data and how it was col-
lected and organized for the speci�c purpose of automated
waste detection in the real world.

3.1 Data Collection
The collection of the data has its own set of challenges. These
include: determining the ideal position of the camera relative
to the waste bins, choosing which camera is best for our
purposes (small, cheap, and scalable), and selecting a set of
commonly disposed waste items, to include in the dataset.
In order to determine the ideal camera placement, we

conducted trials with cameras positioned at three di�erent
heights above the ground: 3 feet (bin level), 5 feet, and 7 feet
(overhead) as shown in Figure 3. To accurately evaluate the
performance at each height, we varied the distances of the
participants away from the trash bins as well at 3 feet, 5
feet, 10 feet, and 15 feet. At each of the distances, for each of
the cameras, we used the baseline YOLOv3 object detector
for bottle detection as the metric for evaluating the camera
placement performance. Overall, the overhead performed
the best at detection over all distances (due to a wider �eld of
view), and the camera at the bin-level position performed the
second best. Therefore, for our naturalistic data collection,
we chose to place cameras at those two positions, as seen in
Figure 4.
Next, we chose a list of waste objects to include in our

dataset. We selected common waste items that are often re-
cycled incorrectly. In the NRD data, bottle is one of these
categories. In general, plastic bottles are an "easy" recyclable

Figure 3. High and low camera positions during data collec-
tion.

item; however, even they may be destined for the land�ll
if they are contaminated with liquid. The category bottle is
also one of the categories present in the YOLOv3 detector,
and so including it in NRD allows for bench-marking against
YOLOv3. The next item category in the dataset is cup. Co�ee
cups are all too common, especially in work and university
settings, but they vary widely in how to be recycled. Most
commonly, the lid of the co�ee cup falls into plastic, the card-
board sleeve falls into paper, and the waxed-line cup itself
is destined for the land�ll. Proving our ability to detect cup
objects as whole in this research sets the stage for detecting
it in pieces in the future. Lastly we chose to use a variety of
paper items in our dataset. This was to tackle the heteroge-
neous nature of waste items; although paper can take many
forms and likely look very di�erent to a computer vision
model, they are often all still recyclable under the category
paper. So in summary, the set of waste items in NRD are
comprised of a variety of bottle, cup, and paper objects.

The data was collected by having building occupants walk
up to the bin location and disposing the waste items while
being simultaneously recorded from two camera locations.
The identity and faces of individuals is anonymized in the
dataset. Overall the dataset is comprised of 7 total videos.
Each video contains dozens of example clips of several occu-
pants disposing one item at a time (between bottles, paper,
and cups) into the bin location. The natural behavior, motion,
and pose of the occupants gives this dataset its unique prop-
erties. NRD also contains examples of occupants walking
across the �eld of view of the cameras and not disposing any
items at all.

3.2 Data Annotation
The Computer Vision Annotation Tool (CVAT) was used for
adding ground truth annotations to the NRD data. CVAT is
an OpenCV project made for labeling for computer vision
datasets. CVAT provides an easy-to-use interface to make
object detection annotations simple and e�cient. In the NRD,
we have three class labels: Bottle, Cup, and Paper. In object
detection, we usually use a bounding box to describe the
target location of the object in an image. The bounding box
is a rectangular box that can be determined by the G and
~ axis coordinates in the upper-left corner and the G and ~
axis coordinates in the lower-right corner of the rectangle.
Using CVAT, one can draw a box around the object of inter-
est for the annotation. Then we can assign the true object
class, among the de�ned class labels, to the bounding box.
The tool supports the ability to interpolate bounding box
annotations across multiple video frames and the ability to
mark attributes for any labeled object.

Using CVAT, we can then export the ground truth annota-
tions for each image sequence in NRD in a format compatible
with the widely-used YOLO object detection. For each .jpg
image-�le in the data, a .txt �le with the same name is
created. The .txt �le contains the class label number and
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Figure 4. Overview of the novel Naturalistic Recycling Dataset [NRD]. The �rst-of-its-kind dataset contains natural scenes of
occupants disposing three di�erent object types—Bottles, Cups, and Paper. The dataset contains images from multiple camera
positions recording above a waste-bin location in an o�ce building. The data is contiguous in time and allows for a richer
tracking of waste items. The data is anonymized and no personal identi�able information is recorded.

bounding box coordinates for the object(s) in this image. For
each image we annotated, we only had one object of interest.
For each object, the annotation format is:

< >1 942C � 2;0BB >< G >< ~ >< F83C⌘ >< ⌘486⌘C >

Where:
<object-class> is an integer number of object from 0 to

(classes-1) and <x> <y> <width> <height> are �oat values
relative to width and height of the image.

3.3 Image Augmentation
Augmentation of an image dataset is the process of making
minor edits, such as changing blur, contrast, lighting, etc.,
to each image i in the dataset; this creates a larger, more

Figure 5. CVAT tool used for image annotation for NRD.

diverse image dataset without the need for collecting or
annotating more data. We used the augmentation library
imgaug [12], a python library designed for image augmenta-
tion in machine learning applications. We chose this library
for its simplicity and ease-of-use, as well as the variety of
augmentation options provided. Each image was augmented
by varying its brightness, blur, hue, and temperature. These
techniques alter the look of the image and aid the object
detection model for use in new environments due to di�er-
ences in background, lighting, colors, etc. We chose to use
the following augmentation techniques in our dataset:

1. Brightness: The image is converted to a random HSV
color-space, the brightness-related V channel is aug-
mented by adding a random number from -50 to 50
which is then integrated back into the image, and the
image is then converted back into the original color-
space.

2. Blur: A Gaussian blur is applied to the image to with
sigma=2.5.

3. Hue: The hue (H) channel in the image’s original HSV
color-space is extracted and added to a random value
between 0 and 50, then integrated back into the image.

4. Temperature: The temperature of the image is changed
to a random Kelvin value between 1,100 and 10,000
where low values are warm tones and high values are
cool tones.

An example image and its augmentations are shown in Fig-
ure 6.



Building and Applying the Internet of Wasted Things: SCRAP and Periop Green , ,

Figure 6. Examples of image augmentation techniques applied to the NRD dataset.

3.4 Dataset Organization
NRD includes a total of 4,491 annotated images. These in-
clude: 3,472 bottle images, 278 cup images, and 741 paper
images, all derived from the naturalistic waste items dis-
posal scene. To train our custom waste items detector, we
randomly select 80% of the images for training and use the
remaining 20% for testing.

Image augmentation added an additional 4, 491⇤4 = 17, 964
augmented images to the dataset. With the inclusion of the
original images, NRD now has a total of 22,455 images.

The NRD dataset goes beyond other existing datsets to aid
in waste detection and classi�cation. By using naturalistic
video data converted to still images, we have embedded
temporal and spatial properties of how a waste object moves
towards a recycling bin into our data. The contiguous image
sequences could aid with identifying human behavior and
patterns with certain waste objects and/or detecting the
individual’s intention or lack thereof to dispose of the object.
The dataset also has examples of occlusion when the waste
object is hidden behind a person’s body or mostly hidden
within their hand. This could be leveraged to track object
permanence even if it momentarily disappears from the �eld
of view of the camera(s).
Even though the NRD dataset is unique and innovative,

it does have a few limitations. The image sequences were
recorded with the same ambient background and under uni-
form, well-lit conditions. Additionally, the types of objects
used in the dataset are a subset of all of the types of objects
that could be thrown away. In particular, we chose to focus
on plastic bottles, co�ee cups, and various paper products be-
cause they are common and typical waste objects; however,
we can imagine that this limits the potential for recycling
detection, such as with aluminum foil, organic waste, snack

wrappers, etc. Nonetheless, the NRD dataset is extremely use-
ful for training a computer vision-based custom waste items
detector. The authors will release the anonymized dataset in
the public domain.

4 SCRAP - System for Classifying
Recyclables through Automated Process

Creating the NRD dataset allows us to develop an automated
waste detector guidance system which we call SCRAP. We
�rst describe the YOLOv3 detection framework, the back-
bone of our model. Then we describe the creation of our
novel waste object detector model that is used for waste
detection in SCRAP.

4.1 YOLOv3 Object Detection Background
We chose to use YOLOv3 (You only look once) [23] for our
computer-vision detection framework to serve as the back-
bone of our project. YOLO is a state-of-the-art, real-time
object detection system and faster than other comparable
detectors. It has comparable mAP (Section 5.1) to RetinaNet
[14], another high-accuracy object detector, but is about 4x
faster. Because of our need to perform object detection in
real-time, we chose YOLO as a detection framework for its
speed. YOLO processes an entire image with a single neural
network; this is in contrast to other detectors which apply a
classi�er at multiple locations in an image and mark high-
scoring regions as detections.

There are a variety of improvements made to YOLOv1 [21]
and YOLOv2 [22] to create YOLOv3. Most notably is the new
feature extractor named Darknet-53 [20]. This network has
53 alternating 3x3 and 1x1 convolutional layers, an increase
from the 19 convolutional layers in the feature extractor
of YOLOv2. Darknet-53 is also interspersed with shortcut
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layers, as well as an average pool and softmax layer at the
end for classi�cation, for a total of 78 layers in its network.
Darknet-53 is trained for classi�cation on the ImageNet [10]
dataset.
The YOLOv3 detector model is created by removing the

�nal three output layers of Darknet-53 (including the �nal
convolutional layer), i.e. preserving the �rst 75 convolutional
and shortcut layers of Darknet-53; then, appending 23 more
convolutional layers, along with several route, upsample,
and yolo (detection) layers. An abbreviated version of all of
the layers in the YOLOv3 architecture can be seen in Figure 7.
This results in a total of 107 layers in the YOLOv3 object de-
tector model. There are three yolo layers meaning detection
is performed at three scales, and each prediction improves
upon the prior computation to extract more �ne-grained
features from the image. The a visualization of the entire
YOLOv3 architecture is shown in Figure 8.When training the
YOLOv3 object detector, the Darknet-53 ImageNet classi�ca-
tion weights are used for initialization, with the remaining
layers beginning at random weight values. The YOLOv3
baseline model is trained on the COCO (Common Objects

layer     filters    size              input                output
    0 conv     32  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  32
    1 conv     64  3 x 3 / 2   416 x 416 x  32   ->   208 x 208 x  64
    2 conv     32  1 x 1 / 1   208 x 208 x  64   ->   208 x 208 x  32
    3 conv     64  3 x 3 / 1   208 x 208 x  32   ->   208 x 208 x  64
    4 Shortcut Layer: 1
    5 conv    128  3 x 3 / 2   208 x 208 x  64   ->   104 x 104 x 128
    6 conv     64  1 x 1 / 1   104 x 104 x 128   ->   104 x 104 x  64
    7 conv    128  3 x 3 / 1   104 x 104 x  64   ->   104 x 104 x 128
    8 Shortcut Layer: 5

.

.

.
   71 Shortcut Layer: 68
   72 conv    512  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 512
   73 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024
   74 Shortcut Layer: 71
------------------------------------------------------------------------
   75 conv    512  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 512

.

.

.
   81 conv     18  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x  18
------------------------------------------------------------------------
   82 detection
   83 route  79
   84 conv    256  1 x 1 / 1    13 x  13 x 512   ->    13 x  13 x 256
   85 upsample            2x    13 x  13 x 256   ->    26 x  26 x 256
   86 route  85 61
   87 conv    256  1 x 1 / 1    26 x  26 x 768   ->    26 x  26 x 256
   .

.

.
   93 conv     18  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x  18
   94 detection
   95 route  91
   96 conv    128  1 x 1 / 1    26 x  26 x 256   ->    26 x  26 x 128
   97 upsample            2x    26 x  26 x 128   ->    52 x  52 x 128
   98 route  97 36
   99 conv    128  1 x 1 / 1    52 x  52 x 384   ->    52 x  52 x 128
 .

.

.
  105 conv     18  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x  18
  106 detection

Figure 7. An abbreviated description of all 107 layers of
the YOLOv3 architecture. The tuning of these layers for
our transfer-learned model, Model 2, is depicted in Figure 8.
The dotted lines indicate separation between frozen, pre-
initialized, and random weights.

in Context) dataset [15]. The model includes 80 classes for
detection, such as dog, chair, person, etc. It also includes 2
waste related categories - bottles and cups. YOLOv3 has a
mAP of 57.9% on the COCO test-dev benchmark, the default
COCO test dataset consisting of about 20K images.

YOLOv3was trained using the following hyper-parameters:
• Batch = 64
• Subdivisions = 16
• Image width = 416
• Image height = 416
• Momentum = 0.9
• Weight decay = 0.0005
• Learning rate = 0.001
• Number of anchor boxes = 9 (3 per scale)
• Anchor boxes = (10,13), (16,30), (33,23), (30,61), (62,45),
(59,119), (116,90), (156,198), (373, 326)

• Number of batch iterations = 500,200
Additionally, each convolutional layer preceding each of
the three yolo detection layers had a �lter of 255, equal to
(num_classes + 5) * 3.

4.2 SCRAP: NRD-Trained Object Detector
We used a pre-trained o�-the-shelf YOLOv3 on the NRD test
data (see Table 1) as a baseline comparison but found that it
was completely un�t for our application. The model was not
developed to detect our types of waste objects in a building
environment setting—notably, the category paper does not
even exist in YOLOv3’s 80 categories.

Consequentially, we set out to train our own customwaste
object detectors trained on the NRD dataset. In particular we
implement two methods - train the entire YOLOv3 network,
and a transfer-learning method using YOLOv3 as the back-
bone architecture. These techniques allowed us to develop
Model 1 and Model 2, respectively. In addition, for each of
these networks we trained with and without the augmented
image set to study the e�ect of image augmentation.

Before training, we compiled Darknet with CUDA [17] and
OpenCV [6]. Integrating OpenCV with Darknet allows for
support of most image �le formats and real-time detection
on a webcam.

4.2.1 SCRAP: Model 1 - Retrained YOLOv3. The train-
ing approach used for Model 1 is the typical mode of training
any YOLOv3 network from scratch. The feature extractor
Darknet-53 was used for initialization weights for the �rst
three quarters of the architecture layers, with the last quarter
being initialized at randomweight values. Then, the network
was trained using the NRD dataset instead of the COCO
dataset. This training approach was time consuming due
to the fact that all layers required re-tuning, in total taking
around 16 hours for completion.

The number of categories for Model 1 were reduced from
80 in the baseline to 3 for our purposes (cup, bottle, paper).
The hyper-parameters for Model 1 were the same as that
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Layers 0 - 74
Darknet layers, frozen

Layers 75 - 81
Initialized from YOLOv3, 

re-tuned

Layers 82 - 106
Randomly initialized, tuned

Figure 8. Network architecture for SCRAP-Model 2 object detector, transfer-learned from the Yolov3 generic object detector
by freezing Darknet-53 layers and re-tuning the deeper classi�cation layers on the NRD dataset. The layers shown correspond
to the layers de�ned in Figure 7.

for YOLOv3 except for the number of batch iterations which
was adjusted to 6000. Additionally, the number of �lters was
decreased to 24 for the convolutional layer preceding each
yolo layer.

4.2.2 SCRAPModel 2 - Transfer LearningwithYOLOv3.
For Model 2 we trained a new network using a technique
known as transfer learning. Transfer learning allows a model
to retain knowledge from previous training on other datasets
that are applicable to the current use. Datasets such as COCO
on which YOLOv3 is trained contains thousands of images.
For instance, ImageNet has over one million labeled images.
However, we often do not have so much labeled data in
other domains (such as waste items in our case). Therefore,
training deep learning models for object detection on small
datasets can lead to severe over-�tting. Transfer learning is a
technique that addresses this problem. The idea is simple: we
can start training with a pre-trained model, instead of start-
ing from scratch. This is desirable for a number of reasons,
not least: (a) The backbone models (such as YOLOv3) have
learned how to detect generic features from photographs,
given that they were trained on more than hundreds of thou-
sands of images for dozens or hundreds of categories; (b)
The pre-trained models achieved state of the art performance
and remain e�ective on the speci�c image recognition task
for which they were developed; and (c) The model weights
are provided as free downloadable �les and many libraries
provide convenient APIs to download and use the models
directly.

In our case, we would like to retain the learned proper-
ties from the ImageNet and COCO datasets to use in our
waste object detection. We do this by keeping the weights
of those layers constant, or "frozen", during training, instead
of allowing them to be re-tuned under the new data. [4] dis-
cusses the advantages of transfer learning, and from that we
deem transfer learning is a useful technique for our purposes
because:

1. Spatial patterns within images, as related to typical hu-
man environments, can be learned from any set of im-
ages, not just our custom images. These patterns may
include the shapes, shadowing, curvatures, depths, etc.
that are seen in images.

2. Using transfer learning allows a model to develop ro-
bust custom detection without requiring an extremely
large image dataset, as was the case for us.

3. Transfer learning increases the likelihood that a model
will perform well when placed in other environments
because the �rst layers are trained on an entirely dif-
ferent dataset than the last layers.

The full architecture of our transfer-learned Model 2 can
be seen in Figure 8. To implement transfer learning, we �rst
extracted the weights of the �rst 81 layers of the baseline
YOLOv3 model. These are the gray- and brick-colored lay-
ers as shown in Figure 8. Then, we used these weights for
initialization while training (as opposed to only using the
75-layer weights fromDarknet for initialization like in Model
1). Lastly, we froze the Darknet layers of the architecture, i.e.
the �rst 75 layers of the model (shown in gray in Figure 8.
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Weights in layers 82 through 107 were randomly initialized
and fully trained, shown in red in the diagram. With this
setup, we preserved the pre-trained weights from YOLOv3
into our own model, thereby preserving features learned
from both the ImageNet and COCO datasets. This method
of training was much faster because only a quarter of the
layers needed tuning. Training for Model 2 took approxi-
mately 5 hours (compared to the 16 hours for Model 1). The
hyper-parameters used for Model 2 were the same as those
used for Model 1.

5 SCRAP Results and Deployment
The goal of our experiments is to rigorously compare Model
1 and Model 2 (see Section 4.2) to each other and against the
baseline YOLOv3 model. Doing so allows us to:

1. Quantify the waste detection performance for each
model on the NRD test data.

2. Evaluate the e�ects of data augmentation on the net-
work’s performance.

3. Identify the best candidate neural network for use in
SCRAP system deployment.

5.1 Performance Metrics
We present an overview of the evaluation metrics used for
the comparison between the YOLOv3 baseline model and our
Models 1 and 2. Object detectionmodels are evaluatedmainly
through the metric of mean average precision (mAP) [11].
Before de�ning mAP we must understand a key object-
detection metric, the intersection over union (IoU). For de-
tectors that output a correctly-labeled bounding box, the
accuracy of the detection is measured through assessing the
area of overlap with the ground truth bounding box. Let the
coordinates of the ground truth bounding box (as obtained
form the NRD data) be (G16,~16, G26,~26) where (G1,~1) are
the coordinates for the top left corner of the box, and (G2,~2)
are for the bottom right corner. Similarly, let the coordinates
of the predicted bounding box be (G1? ,~1? , G2? ,~2? ). Then,
the IoU calculates the area of intersection of over the area of
union between the two bounding boxes. That is,

8=C4AB42C8>=⌫>G = (G18 ,~18 , G28 ,~28 )
8=C4AB42C8>=�A40 = (G28 � G18 ) ⇤ (~28 � ~18 )

D=8>=�A40 = ((G26 � G16) ⇤ (~26 � ~16))+
((G2? � G1? ) ⇤ (~2? � ~1? )) � 8=C4AB42C8>=�A40

�>* =
8=C4AB42C8>=�A40

D=8>=�A40
Depiction of the bounding boxes and their areas of union
and intersection are illustrated clearly in Figure 9.

IoU is useful in determining the "correctness" of a bound-
ing box prediction. Typically a predicted bounding box is
considered "correct" if it has an IoU of at least 0.5. This is
the number that we also use in our evaluation, however it is
possible to vary to IoU threshold such as to 0.25 or 0.75 and

0 x

y

x1g, y1g

x2g, y2g

x1p, y1p

x2p, y2p

x1i, y1i

x2i, y2i

intersection

union

Figure 9. Example illustration of bounding boxes for object
detection and their areas of intersection and union.

calculate results accordingly. Having de�ned IoU, �nding the
mAP is a function of the precision and recall of the model.
The precision is a measure of the percentage correct pre-

dictions out of all predictions. That is,

?A428B8>= =
)%

)% + �%
(1)

where TP, FP, TN, and FN represent true positive, false posi-
tive, true negative, and false negative, respectively. The recall
is a measure of the number of correct detections found for
all present objects. That is,

A420;; =
)%

)% + �#
(2)

The average precision (AP) is just the area under precision-
recall curve. The precision-recall curve is the plot of ?8=C4A? (A )
against the recall A where ?8=C4A? (A ) is the maximum of all
precisions ? (Ã ) at all recall values above r:

?8=C4A? (A ) = max
Ã :Ã �A

? (Ã ) (3)

Plotting ?8=C4A? (A ) vs. A instead of ? (A ) vs. A is shown in
Figure 10; using the interpolated precision removes the "zig-
zag" nature of the normal graph. This reduces the impact on
the AP of small variations in the ranking.
With this background we can now de�ne mAP. In this

paper, we use the Area Under Curve (AUC) de�nition of
mAP. The AP is calculated by sampling the curve at all recall
values A=+1 where the interpolated precision ?8=C4A? (A=+1) is
less than ?8=C4A? (A=). This means that the average precision
is simply the sums of the areas of each "rectangular block"
in the curve, as seen in Figure 10. Mathematically,

�% =
’

(A=+1 � A=) ⇤ ?8=C4A? (A=+1) (4)
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Then, the mean average precision is the mean of all APs
across all the object classes.

Figure 10. Precision vs. Recall (orange line) and Interpolated
Precision vs. Recall (green line) along with shaded area boxes
de�ned by the AUC method for calculating AP.

5.2 SCRAP - Object Detection Results
Herewe present the results of comparing the Baseline YOLOv3
model to Model 1 (NRD-retrained YOLOv3) and Model 2
(Transfer-learned YOLOv3). We report the overall mAP score
for each of our trained models against the baseline YOLOv3
model as scored on our NRD test set. In addition, we report
the precision, recall, IoU, and average precision scores for
each model for each waste object class.
Table 1 shows the mean average precision score for the

di�erent model types. For Model 1 and 2, we also report
the change in mAP with the augmented images training set.
Right away we see the poor performance of o�-the-shelf
YOLOv3 on the NRD dataset. This is expected, since YOLO
is not trained to detect waste objects in context; instead, it is
trained to detect commonly seen objects like in the ImageNet
and COCO datasets. Consequentially, YOLOv3 outputs a an
extremely low mAP score of 0.1%. A better benchmark is to
look at the mAP for Model 1 (NRD-retrained YOLOv3) which
is at 86.75%. This is evidence that the NRD data is capable
for the tuning the entire YOLOv3 architecture despite the
dataset’s small size.

The most signi�cant takeaway from Table 1 is the superior
performance of Model 2 (Transfer-learned YOLOv3) against
all other trained models. Model 2 is our transfer-learned
model as described in Section 4.2.2. The results demonstrate
the success of transfer learning in our neural network; al-
lowing the network to retain valuable object-detection infor-
mation from large and diverse image datasets lends a more
precise and accurate detection from the model on the NRD
test data.
It is interesting to note that augmentation did not have

a signi�cant e�ect in the mAP scores. This is likely due to
the similarity between the training set and the test set in
their ambient background, lighting conditions etc. In general,

augmentationwill be bene�cial when the networks are tested
in a setting that is di�erent from the training distribution.

Table 1. Mean average precision scores for the baseline
YOLOv3 model and all NRD-trained models on the NRD
test set, which displays the superior performance of the
transfer-learned Model 2.

Model Name Mean Average Precision (mAP)
Baseline 0.10%
Model 1 86.75%
Model 1 w/ Aug 85.06%
Model 2 93.77%
Model 2 w/ Aug 93.24%

Next are Table 2, Table 3, and Table 4 which show themean
precision, recall, IoU, and average precision scores for each
model and for each class cup, bottle, and paper, respectively.
In these tables overall, Model 2 is again a clear winner in
terms of its performance on the NRD test set. For each class,
Model 2 has the consistently highest or almost highest preci-
sion, recall, IoU, and AP. Hence, Model 2’s transfer-learning
has allowed it to better detect objects and be more accurate
in its predictions.

Generally, in each table, the augmented Model 2 performs
second best to Model 2, followed by Model 1 and the aug-
mentedModel 1. There are some instances where this pattern
doesn’t hold, however. For example, the augmented Model 2
has equally good or better recall than Model 2 in the classes
bottle and paper, as seen in Table 3 and Table 4. The success
of its recall may indicate that augmentation allows the model
to better pick up instances of the waste object that may be
out of norm, such as being shaded, hidden, darkened, etc.

Additionally, we see in Table 3 that the baseline YOLOv3
model has a very high precision and IoU for the bottle cate-
gory. We attribute this to the fact that YOLO was trained on
a large, diverse dataset; when it is able to detect the bottle,
it does a good job of doing so. However, the problem is in
its recall—again, since YOLO is not trained for this building-
setting, waste-detection context, it fails to recognize most
instances of the bottle moving towards the bin.

Figure 11 is a compilation of example outputs of YOLOv3
Baseline, Model 1, and Model 2 on test images from each
class. In Figure 11 we see YOLOv3’s misclassi�ed or failed
detection for each object category. Model 1, as would be
expected by the results in Table 1, correctly detects all three
objects. Its con�dence is high for bottle but mediocre for cup
and paper, and has barely-passing IoU scores. Finally we see
the outputs of Model 2: a robust detection of each object
category and at high con�dence. Notably, the con�dence
and IoU has increased signi�cantly from Model 1 in all three
categories.
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Figure 11. Visual inspection examples of the detection accuracy in terms of label, con�dence, and IoU for each of the recycling
items categories. We can see that baseline YOLOv3 works very poorly compared to Model 1 (fully retrained) and Model 2
(Transfer-learned). Model 2 based on Transfer Learning (bottom row) has the best overall performance, making it a suitable
object-detection choice for the SCRAP IoWT system.

Figure 12. Example tracking output from SCRAP (Model 2). The recyclable item (bottle) is detected well in advance - up
to 7-10 feet - as the occupant approaches the location. This gives enough time to activate the visual feedback guidance. In
addition, the item is reliably detected throughout the image sequence.

To round out our experimentation results discussion we
visualize the real-time object detection, and tracking perfor-
mance for Model 2 (Transfer-learned) in Figure 12. Figure 12
shows an image sequence across time from the NRD dataset
of an individual walking towards a recycling bin with a bottle
object in hand. We see that even in the �rst frame, with the
individual about 10 feet away from the recycling bin, Model
2 is able to accurately and con�dently detect her object. This

continues across all frames as the individual walks towards
the bin. For each of the 6 frames in this �gure, Model 2 de-
tected the object in an average of 137.34 ms. With this speed,
we can conclude that real-time waste object-detection will
be possible with SCRAP. The system will be able to detect re-
cyclable objects and then assess that detection to prompt the
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Table 2. CUP - Mean precision, recall, IoU, and average
precision of each model on NRD for the cup class. Model
2 (Transfer-learned) has the greatest performance for all
metrics.

Precision Recall IoU AP
Baseline 0.00 0.00 0.00 0.03%
Model 1 0.89 0.77 0.62 83.89%

Model 1 w/ Aug 0.82 0.78 0.58 78.70%
Model 2 0.93 0.93 0.65 94.35%

Model 2 w/ Aug 0.91 0.88 0.64 90.76%

Table 3. BOTTLE - Mean precision, recall, IoU, and average
precision of each model on NRD for the bottle class. YOLOv3
has high precision and IoU but almost zero recall, and the
the augmented Model 2 (Transfer-learned) has the greatest
performance overall.

Precision Recall IoU AP
Baseline 0.96 0.04 0.73 8.24%
Model 1 0.86 0.81 0.59 78.90%

Model 1 w/ Aug 0.80 0.87 0.55 79.74%
Model 2 0.91 0.91 0.65 87.23%

Model 2 w/ Aug 0.90 0.92 0.65 89.96%

Table 4. PAPER - Mean precision, recall, IoU, and average
precision of each model on NRD for the paper class. Model
2 (Transfer-learned) has the greatest performance for all
metrics.

Precision Recall IoU AP
Baseline N/A N/A N/A N/A
Model 1 0.97 0.92 0.73 97.47%

Model 1 w/ Aug 0.96 0.94 0.71 96.80%
Model 2 0.98 0.96 0.77 99.74%

Model 2 w/ Aug 0.97 0.96 0.73 99.02%

user to dispose of her waste correctly. Ultimately, SCRAP en-
abled with Model 2 was chosen for a closed-loop deployment
test.

For training and testing Model 1 and Model 2 we worked
on a machine with the following con�guration:

• OS: 64-bit Ubuntu 16.04 LTS
• Processor: Intel Core i7-8700 CPU @ 3.20GHz x 12
• Graphics: GeForce GTX 1070/PCle/SSE2
• Memory: 15.6 GB
• Disk: 257.9 GB

5.3 IoWT Closed-Loop Deployment
Having successfully trained and evaluated the SCRAP object
detection DNN, we next designed and implemented a closed-
loop system as the prototype for the Internet of Wasted

Things. The system, as depicted in Figure 13, is comprised
of a bin-level camera which feeds image sequences to the
SCRAP object detector (Model 2) in real-time. The recycling
category labels were removed from the waste bins, meaning
that when a person approaches, they do not know which
bin is reserved for which recycling category (bottles, cups,
and paper). As the SCRAP object detector detects the waste
item type, an I/O trigger is sent to a LED strip to light up
the appropriate bin and provide a visual cue to the person
to guide them towards the correct disposal bin for that item.
This is implemented through an Arduino Uno R3 used to
light up NeoPixel LED strips attached to the bins. As can
be seen from Figure 13 top and bottom examples, as the
object appears in the �eld of view of the camera the LEDs
on the correct bin light up and persist until the object has
been disposed and is out-of-view of the camera. Since the
trained SCRAP detector is lightweight and resource e�cient,
it can be easily run from a NVIDIA Jetson Nano embedded
platform connected to a single machine-vision wide �eld-
of-view camera. With the true labels from the recycling bin
have been removed, we can exclusively study the e�ect of
the LED visual feedback on the e�cacy of the disposal and
the e�ect on minimizing recycling contamination. We are
using the test-bed to conduct long-term longitudinal studies
and audits for measuring the e�ectiveness of SCRAP as part
of the Internet of Wasted Things.

Figure 13. The Internet of Wasted Things Closed-loop Test
Bed. As the occupant approaches an unlabeled set of bins, the
SCRAP object detector automatically detects the correct ob-
ject type and provides visual feedback and guidance through
LEDs to the occupant for minimizing recycling contamina-
tion.
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6 Periop Green Dataset - Single-use
Surgical Supplies

The Periop Green dataset captures a novel collection of
single-use surgical supplies (SUSS) placed on a mock scrub
table. The dataset is representative of a real-life surgical set-
ting where this software is expected to be deployed. It serves
as a proof-of-concept dataset for training models to validate
the computer-vision ability to capture distinct surgical items
on a scrub table as they are present before, during, and after
a surgery.

6.1 Data Collection
Because the Periop Green application does require real-time
detection like the SCRAP project, we had more �exibility
in determining camera placement regarding the scrub ta-
ble. The most important aspect of camera placement was to
minimize disruption to the existing surgical team work�ow.
As one may imagine, the environment of a surgery is very
precise; therefore, the Periop Green application would only
succeed in the real world if it provides virtually zero disrup-
tion to the environment. We decided that a discrete camera
placement hovering above the scrub table for the duration of
the surgery was the most e�ective way to achieve this goal.
In real life, this may look like a camera being attached to an
IV pole that is pointed to the scrub table.
Our mock data was collected in the garage of a doctor

leading our team who had access real surgical tools. This
was especially helpful during COVID-19 where access to real-
life operating rooms was extremely restricted. Items were
placed on a table with a blue hospital cover to accurately and
adequately mock a surgical scrub table. In actuality, there are
upwards of thousands of di�erent item types that could be
present on a surgical table. For our proof of concept dataset,
we choose to capture and annotate only the following six
types:

• Gloves
• Holster
• Knife
• Ligasure
• Stapler
• Suction

As the project expands we seek to incrementally add items
to this list. Figure 14 shows what each item type looks like.
Each of these items are single-use in a surgery; that is, they
are thrown away after surgery if they are opened from their
packaging and inside the operating room, despite whether
they are actually used.
To increase variety in the training data we took images

and videos of each item type individually on the table as well
as in aggregate. In general, we tried to capture the following
types of data to be representative of what may be seen in
an operating room, as well as to test the limits of our model
detection:

Figure 14. The six item types labeled in the working Periop
Green dataset. Each of these items is a single-use surgical
tool, meaning they are thrown away after a single surgery.
These items can be extremely expensive; the ligasure tool
on the bottom left costs $600-$800 each.

1. Images and videos of each item placed individually on
the scrub table and in a variety of directions.

2. Images and videos of multiple types of items together
on the scrub table, with orderliness and no overlap.

3. Images and videos of multiple types of items together
on the scrub table with variety of directional placement
and messy overlap.

4. Images and videos of an empty scrub table and with
objects not part of our de�ned set for negative exam-
ples.

An example of each data type is shown in Figure 15. In com-
parison, we show images from an actual operating room in
Figure 16. While there are some obvious di�erences, mostly
the lack of the number of items we have available at our
disposal and the surrounding environment, our mock data is
still representative enough to test proof of model detection
ability.

One of thewonderful things about the PeriopGreen project
is the lack of HIPAA concerns regarding data collection. Be-
cause our data collection does not seek to capture any faces
or sounds, we are not in violation of any medical privacy
rules. This will remain true even in real-life hospital settings
and bodes well for the future deployment of this project.

6.2 Data Annotation
Annotations for the SUSS dataset were completed on the plat-
form Dataloop [1]. Dataloop was chosen instead of CVAT
(used for the SCRAP project) because it better facilitates
collaborative annotations through an online interface Like
CVAT, Dataloop can be used to draw rectangular bound-
ing boxes, interpolates bounding boxes between frames in
a video, and has YOLO text �le annotations available for
download for images. Figure 17 shows a screenshot from the
Dataloop interface.
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Figure 15. The four types of data examples included in the
Periop Green dataset. Top left: individual items on scrub
table; top right: multiple neatly laid items on table; bottom
left: disorderly assortment of items on table; bottom right:
objects outside item types on scrub table.

6.3 Dataset Organization
The SUSS dataset had a total of 37 videos equalling 7733
images plus 255 pure images. The breakdown of object types
in the dataset are shown in Table 5. For training, 64% of the
entire dataset was used for training, 16% for validation, and
20% for testing.

Table 5. Breakdown of object types and their relative fre-
quency in the SUSS dataset, as well as where instances of
each type were sourced (from video data vs. image data).

Instances From video From images
gloves 8425 97.93% 2.07%
holster 3781 97.46% 2.54%
knife 4093 97.09% 2.91%

ligasure 4131 97.70% 2.30%
stapler 3848 97.56% 2.44%
suction 3672 98.82% 1.17%

7 SUSS Detector
For the Periop Green applicationwe chose to use the YOLOv4
detection model as our baseline instead of YOLOv3. The
newest YOLO version is even more state-of-the-art with
faster performance and greater detection capability. Learning
from the rigorous research done for SCRAP, we have so far
only created one trained model on the our SUSS dataset.

Figure 16. Two photos of the scrub table from a real operat-
ing room post surgery. There are some obvious di�erences
between real-world photos and our mock dataset, but the
layout is similar enough to convincingly establish proof-of-
concept.

Figure 17. Screenshot of the Dataloop [1] annotation plat-
form used for annotating the SUSS dataset.

7.1 YOLOv4 Object Detector Background
We chose to use the newer version of YOLO, YOLOv4 [5],
rather than YOLOv3 as our base model because of its im-
proved performance and speed. YOLOv4 has a much heavier
architecture than YOLOv3. Instead of 107 total layers there
are 162 layers in the YOLOv4 architecture. The architecture
still contains the original darknet layers as seen in Figure 8.
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The YOLOv4 layers can also be frozen or re-tuned as indi-
cated in the description of the SCRAP model.

7.2 SUSS Transfer-learned Trained Model
Based on our trial and error results for the SCRAP project,
we directly proceeded with creating a transfer-learned model
for detection on the SUSS dataset. The reasons for transfer-
learning are the same as those described in Section 4.2.2. To
recap, transfer-learning allows the "freezing" of lower layers
or weights to preserve the feature detection learned from
larger image datasets. For our model, we �rst initialized the
training weights with the �rst 137 layers of the YOLOv4
architecture. Then, we froze the �rst 105 layers of those
before training, and retuned the remaining layers as the
model learned on our dataset.
We used the following hyperparameters for training the

model:

• Batch = 64
• Subdivisions = 32
• Image width = 416
• Image height = 416
• Channels = 3
• Momentum = 0.949
• Decay = 0.0005
• Learning rate = 0.001
• Max batch iterations = 12,000

Additionally, each convolutional layer preceding each of
the three yolo detection layers had a �lter of 33, equal to
(num_classes + 5) * 3.

For training and testing of the SUSS Detector we worked
on the same machine as SCRAP, con�guration repeated here
for convenience:

• OS: 64-bit Ubuntu 16.04 LTS
• Processor: Intel Core i7-8700 CPU @ 3.20GHz x 12
• Graphics: GeForce GTX 1070/PCle/SSE2
• Memory: 15.6 GB
• Disk: 257.9 GB

8 SUSS Detector Results
We present the resulting mAP score of our trained model
and individual precision and average precision scores for
each object type on our test dataset. For the Periop Green
application it did not make sense to compare our trained
model’s results to results from the baseline YOLO weights.
This is because our application and object types are so spe-
ci�c to the healthcare industry that no o�-the-shelf model
comes trained to identify such types of objects. However, this
means that our object detector created is a novel computer
vision application with potentially far-reaching impact. The
metrics shown are the same as de�ned in Section 5.1.
Results for our model are shown in Table 6 and Table 7.

Detection time on the test set took 42 seconds.

Table 6. The mean average precision for our SUSS Detector
given an IoU threshold of 50%.

mAP
SUSS Detector 96.61%

Table 7. The true positive, false positive, precision, and av-
erage precision for each object type as measured on the test
set of the SUSS data using the SUSS Detector.

TP FP Precision AP
gloves 1565 114 93.21% 94.87%
holster 716 60 92.27% 95.09%
knife 760 69 91.68% 96.87%
ligasure 804 124 86.64% 97.54%
stapler 742 36 95.37% 97.62%
suction 711 42 94.42% 97.69%

8.1 SUSS Detection Examples
We tested the SUSS Detector on many examples to evaluate
its performance. Figure 18 shows some images of the detector
in action. It is clear that for images similar to the dataset, our
model performs extremely well. The con�dence scores for
detections are at or near 100% for most of the object types.
Figure 19 shows the model in action on an image from the
real operating room, where our model was able to detect a
suction object on the table. However, generally, our model
did not perform well on real-life OR photos, likely because
of the environment di�erences as discussed previously.

However, there are some interesting patterns we saw with
our model detection. The model performed very poorly on
images outside of our dataset, even if they were seemingly
similar in appearance. This was especially confusing because
these were simple images rather than the ones with messy
overlaps as shown in Figure 18.We determined that the cause
of this was because most of our dataset was sourced from
videos rather than images. Looking at Table 5, we see that
over 97% of all object type instances come from video frames
as images rather than pure images. Thismeans that themodel
learned to detect objects with a high amount of blur present
rather than on a sharp image. To test our theory we ran the
model on an original image and then applied arti�cial blur
to the image and ran the model again. The results are seen in
Figure 20, where it is clear that our detector performs much
better on a blurry photo.

8.2 Tracking Used vs. Unused Supplies
The ideal goal of the Periop Green project is to track single-
use sterile surgical supplies (SUSSS). That is, we’d like to
detect which items on the table have been used or not used
during the surgery. This way, we can provide targeted rec-
ommendations for reducing waste and saving money in op-
erating rooms. Detecting item use with our trained YOLO
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Figure 18. Outputs on the SUSS detector model on images from the SUSS dataset test set. The model performs extraordinarily
well on these images, capturing every object present with high con�dence.

Figure 19. The output of our detector on an image taken in a
real-life operating rooom after a surgery. Themodel correctly
identi�es the suction on the table with some con�dence but
notably misses the stapler.

model outputs is not a trivial endeavor. Our approach, given
a video to analyze, is as follows:

1. Graph the number of instances of each object type at
each frame.

2. Detect, based on some threshold, when the number
of instances of an object has decreased for an interval
long enough to be convinced that the object has left
the table.

3. If an object has left the table during a surgery, then it
is considered to have been used during the surgery.

We are still in the exploratory phases of this approach
and more rigorous analyses must be conducted to determine
whether this is the appropriate path to take, how well it
works on our dataset, etc. An example graph is shown in
Figure 21 for what the above described graph may look like.

9 Future Work
Both of the described applications have many avenues for
future direction. The possibilities only increase with greater
use of IoT connectivity and machine learning integrations.

SCRAP
In the future we envision the following areas of work:

• Field deployment and controlled testing.
• Embedded computing: expanding and re�ning the stan-
dalone working component.

• Preserving privacy in processing.
• Deploy federated learning across many locations.
• Detection contamination of the materials.
• Detection intention of the individual.

Periop Green
For Periop Green, we’d like to tackle the following problems
in the future:

• Re�ning the detection of used vs. unused objects.
• Comparing items on the scrub table with a pre-made
pdf list of items present before all surgeries.

• Prioritizing items of high-yield, i.e. ones that are very
expensive.

• Augmenting the data set through typical augmentation
or 3-D modeling.

• Expanding the dataset of items.

10 Conclusion
The paper presents the foundations of building the Internet
of Wasted Things (IoWT). We have explored two potential
avenues for application of the IoWT: namely SCRAP and
Periop Green.

For SCRAP, we begin with �rst collecting and annotating
a new Naturalistic Recycling Dataset (NRD) which addresses
the limitations of other trash-related datasets by capturing
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Figure 20. Performance of our model on a single image with and without arti�cial blur applied. The detector performs
extremely poorly on the original image, which is quite sharp, but performs markedly better on the blurry photo. This is likely
because the model’s data was sourced from videos converted to images, i.e. blurry photos.

Figure 21. Example output graphs for the SUSS Detector on
each object type to identify used vs. unused items. The graph
shows the number of instances of the object as identi�ed by
the model vs. the frame number of the video. In theory, used
items would see a dip in their number of instances over an
extended period of frames, indicating that the item had left
the table and been used.

the naturalistic occupant behavior as they approach a recy-
cling bin location inside a building. Next, we designed and
implemented our automated waste item detection and guid-
ance system. SCRAP object detection is trained on the NRD

using transfer-learning on top of the Darknet-53 feature de-
tector and YOLOv3 layered architecture. We demonstrate
the e�cacy and performance of SCRAP as compared to two
other object detection methods to �nd that SCRAP (Model
2) performs the best in terms of its mean average precision
of waste object detection, up to 93%. Finally we also design
and implement a closed-loop visual feedback system that
can be used for deploying SCRAP in a low-cost and scalable
manner without modifying any of the existing bins.
Secondly, with Periop Green we also collected and anno-

tated our own custom single-use surgical supplies (SUSS)
dataset, and used that dataset to create a SUSS detector. Both
of these contributions are novel research as this project ap-
proach has never been attempted before. Our detector has
a mean average precision of over 96% on our test data and
shows great promise for detection in real-world operating
rooms.

By combining smart recycling and AI-powered waste man-
agement, organizations can streamline the entire process
from garbage collection to disposal. This has positive e�ects
on sustainability by reducing the volume of incorrectly dis-
posed objects and also minimizing recycling contamination.
We believe our research is a remarkable and instrumental
step in the creation of a IoWT system that can be expanded
in a variety of interesting and impactful avenues.
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