
Dynamic Order Generation for Automated Testing

CS4991 Capstone, 2021

Qasim Ali
 Computer Science

 University of Virginia

 Charlottesville, Virginia
 qha4bh@virginia.edu

ABSTRACT

A multinational conglomerate e-commerce business

(Company X) spent an excessive amount of time on the

tedious and repetitive task of creating sample orders for

testing. I decreased the time needed to test systems by

creating several REST APIs that automated test order

generation. I also created APIs to publish test orders to the

proper environment. For other teams that only needed to

generate sample orders, I created a frontend interface.

These improvements significantly reduced pre-deployment

testing time and allowed other teams to easily generate

sample orders. A possible expansion of this project would

be to add the ability to not only generate and publish

sample orders but also track published orders and ensure

they are successfully routed to the correct team.

1 Introduction/Background

Company X is a multinational conglomerate which offers

online shopping services to its customers. Customers can

place orders online and either have the items delivered to

their homes or pick them up in-store. The quality

engineering team in Company X spent a significant portion

of their time creating sample online orders for use in pre-

deployment testing. Online orders are sent through XML

(Extensible Markup Language) files. Each XML file

contains all of the details associated with an order. Creating

each sample order involves creating several layers of XML

and populating their respective fields, requiring a

substantial time commitment from engineers. Furthermore,

once an order is created, it needs to be published to the

development environment. Engineers also performed this

task manually, and needed to publish each sample order

separately. Not only did these inefficient tasks waste the

time and talent of engineers, time spent creating these

orders increased testing time and therefore increased

overall cost for Company X.

My approach to solve this issue was to automate the time-

consuming aspects of order generation. I created an

application that could take as input the parameters for a

sample order and send back the fully completed order file.

This application allowed Company X engineers to

programmatically create orders and eliminated the need to

manually write up the order file. Similarly, the application

had the ability to take in a generated sample order as input

and publish the order to the appropriate development

environment. This also allowed engineers to perform order

publishing programmatically rather than manually.

2 Review of Research

There are three main ways to create a sample order XML

file: manually creating the file or manually writing fields

into a template, programmatically inserting fields into a

template file, or dynamically creating an order file.

Manually writing fields into a template is how Company X

previously created sample order files. Engineers manually

change the order field values in an XML template

depending on the test being run. An advantage of this

approach is that developers have full control over what the

test order should look like, and the process of creating the

order does not require any computing resources. However,

a disadvantage of this approach (and the reason this project

was taken on) is that it is slow and requires a significant

amount of time from engineers that could otherwise be

spent on more productive tasks.

Another method to create sample orders is to have a

program that takes as input all of the fields that are needed

in an order and automatically insert those values into an

order template. This approach would save engineers a

16, November, 2021, Charlottesville, Virginia USA Q. Ali

considerable amount of time, but would still require them

to supply every single field value in an order. This would

still require a time commitment from engineering since

there are a considerable number of fields in an order.

Dynamically creating test order files would solves many of

the problems associated with the first two methods of

sample order generation. In this approach the engineer

would supply only the fields that are important for a

particular test, and then an application would build the

XML file and automatically give all other fields a default

value. This approach has most of the flexibility of the

manual approach while also having most of the time

savings from the template approach1. For these reasons, I

use this approach for sample order creation when building

my application.

3 Project Design

The main goal of this project was to build an application

that could programmatically generate sample orders

quickly and without much manual input from engineers.

The main functional requirement for this application was to

allow engineers to programmatically generate and publish

sample orders. Order generation and order publishing

needed to be performed separately so that orders could be

created but not published and vice versa. The order

generation tool needed to take as input as many or as few

order specifications as the user provided and would in

return give the user a fully completed sample order. The

order publishing tool needed to take a completed sample

order as input along with an environment and publish the

order to the given environment.

Another functional requirement was to have a front-end

website where other users could generate orders. This

website needed to be easy to use for users unfamiliar with

the online order system and clearly show the structure of an

order. Like the order generation tool, users should be able

to supply as many or as few parameters as desired and

should be able to view the generated order. Users should

also have the ability to publish orders and receive feedback

whether or not the order was successfully published.

In terms of non-functional requirements, high availability

of the system was crucial. Requests would be made to this

application to create and publish orders every time tests are

run. Therefore, it is important to have maximum uptime as

tests would be unable to run without this application.

Security was also an important requirement. This

application was intended for internal use only at Company

X and therefore should not be accessible from the internet.

Since this application would receive thousands of requests

during stress and stability testing, it was important to have

low latency to ensure tests were run in a timely manner.

3.1 Overview of System Architecture

The application has three core components: API servers, a

NoSQL database, and an asynchronous background task.

Figure 1: Core System Architecture

Users will interface with the application APIs either

through direct API requests or through the front end. The

publish API will store any valid publish requests in the

database. The asynchronous background task sequentially

processes database entries and publishes entries to the

correct environment.

3.2 API Servers

The API servers are built using Spring Boot. This

framework was chosen because of its vast library support

and high compatibility with other Company X software.

The API servers serve the front end to users and support

two main requests: generate and publish.

The generate API requires a JSON (JavaScript Object

Notation) body. JSON is similar to XML in that it is a

notation to represent information in a computer readable

way. This JSON body will contain all of the order fields the

user would like set in the sample order. The API takes

whichever fields were given in the JSON body and creates

an order object using those fields. Any fields that are not

included are either randomly generated or given a default

value. The API sends back a response containing the

sample order as XML and HTTP status code 200 OK. If

any fields are malformed, a sample order is not returned

and HTTP status code 400 Bad Request is sent.

The published API also requires a JSON body containing a

fully complete sample order, Kafka topic, and an

environment to publish to. If the sample order is

malformed, or the Kafka topic or environment does not

Dynamic Order Generation for Automated Testing CS 4991 Capstone Report, 2021, Charlottesville, Virginia USA

exist, the API responds with HTTP status code 400 Bad

Request. Otherwise, the sample order, Kafka topic, and

environment are stored in the database and HTTP status

code 201 Success is returned.

The API Servers are hosted on Azure which is Microsoft’s

cloud platform. Cloud services were chosen due to their

high stability and reliability. Azure was also chosen based

on its ability to scale resources based on server load. At

times of high traffic, the system can add more servers and

scale up existing servers, and at times of low traffic the

system can scale down and decrease cost. These benefits of

Azure ensured that the application met the requirement of

high availability and low latency. Using Azure also helped

to achieve the security requirement. Microsoft spends a

significant amount of time and money to ensure that Azure

has complete security, far more than Company X could

reasonably spend using custom servers.

3.3 Database Design

Since the data being stored is not relational and queries will

be trivial, a NoSQL database was used to store publish

requests.

Figure 2: Database Diagram

As seen in Figure 2, the Publish Request table is the only

table in the database and simply contains the JSON body

received by the publish API. The sample order XML is

stored in the JSON body as a string.

3.4 Asynchronous Background Task

Whenever the publish API is called, a new publish request

entry is added to the database. The purpose of the

asynchronous background task (ABT) is to process these

publish request entries as they are added to the database.

Each entry is processed in the order it was added to the

database. For each entry, the ABT uses Apache Kafka, a

data streaming platform, to send the sample order to the

appropriate Kafka topic in the given environment2.

4 Results

The application developed for this project is currently being

used by Company X engineers. When quality engineers

write tests, they make requests to the generate and publish

APIs. For example, if an engineer wants to test how the

system reacts when a customer orders three different items,

they can use the application to generate and publish a

sample order matching that description at the beginning of

their test. The engineer can then write the rest of the test

knowing this new order has been published to the

development environment.

Based on the observations of quality engineers at Company

X along with my personal observations, this application

decreased the amount of time needed to complete pre-

deployment testing by twenty to twenty-five percent. This

decrease in testing time, along with the increase in

availability of quality engineers to work on other projects,

is likely saving Company X a significant amount of money.

5 Conclusion

The goal of this project was to decrease the amount of time

spend by Company X engineers creating sample orders.

The application developed to solve this issue successfully

achieved this goal and therefore provided significant value

to Company X. The application also created a front-end

environment for less technically inclined employees at

Company X to interface with order creation and learn more

about online order structure.

6 Future Work

A possible expansion of this project would be to add the

ability to track where a sample order is sent after being

published. Once orders are published to an environment,

they are routed based on details of the order. For example,

an order for in-store pickup will need to be routed to the

store that the customer would like to pickup from.

Similarly, an order for home delivery will need to be sent to

the closest fulfilment center that has the ordered item based

on customer address.

Unfortunately, the application in the current state can only

generate a sample order and publish it to an environment.

Any testing related to where the order is sent must be

performed by quality engineers writing the tests. To add

16, November, 2021, Charlottesville, Virginia USA Q. Ali

this functionality, the publisher API would need the ability

to determine where an order should be sent. This

calculation could be performed by checking the type of the

object being sent. If the order is of type pickup, ensure it is

sent to the store that the customer selected. If the order is of

type delivery, ensure it is sent to the correct fulfilment

center based on customer address.

This additional functionality would have the potential to

fully automate the process at Company X for certain types

of tests. Integration tests that simply check that an order

was routed correctly without errors could be entirely

automated. Scripts could be written that would execute

before each deployment that randomly generate sample

orders and then ensure they are routed correctly. This

would have a substantial impact on Company X because

these forms of tests would no longer need to be written by

quality engineers.

7 UVA Computer Science Program Evaluation

Overall, the computer science department at University of

Virginia (UVA) prepared me for several aspects of this

project. Specifically, CS 3240: Advanced Software

Development was crucial to my completion of this project.

This course provided experience developing software in an

agile scrum team. This project was developed in the same

way. The course also provided introduction to topics such

as REST APIs and web development. Having background

in these topics increased development speed substantially.

However, engineers working on this project were expected

to have an introductory understanding of databases. I did

not have this understanding because I had not taken CS

4750: Database Systems. Students may benefit from

making CS 4750 a required course, and would likely

benefit from opportunities to take the course earlier in their

course of study. This would entail offering additional

sections of the course with additional capacity so that

underclassmen have the opportunity to enroll.

References
[1] Lance Ashdown, Jack Melnick, Steve Muench,

Mark Scardina, Jinyu Wang. 2005. Oracle XML

Developer's Kit: Programmer’s Guide 10g Release 2

(10.2).

https://docs.oracle.com/cd/B19306_01/appdev.102/b14

252/toc.htm

[2] Gwen Shapira, Todd Palino, Rajini Sivaram and

Krit Petty, 2017. Kafka – The Definitive Guide. [S.l.]:

O'Reilly Media, Inc, USA.

