
Upgrade Alerts: Preventing the Use of Bad App Versions

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Grace Kisly

Spring, 2022

Technical Project Team Members

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Aaron Bloomfield, Department of Computer Science

	

Upgrade Alerts: Preventing the Use of Bad App Versions

CS4991 Capstone Report, 2023

Grace Kisly
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
gck4mwf@virginia.edu

ABSTRACT
Mastercard, a financial services company, had
no way of preventing users from using broken
or outdated versions for their expense tracking
application, which could potentially lead to
app crashes and failures on the user end. In
order to alleviate this, I developed two types of
alerts for iOS to either suggest or force the user
to update their version prior to entering the
app. Through integrating Firebase Remote
Config, the suggested and required app
versions could be set and changed on the
Firebase platform. The alert itself constructed
in Swift, compares the user’s app version to
the Firebase app version parameters. The
feature was tested successfully and deployed
to over 500 users. However, given the
limitation that the users would need to upgrade
to the app version containing the alerts, during
my time at Mastercard I was not able to see the
feature in use. It would be beneficial in the
future to evaluate how the feature functions on
real users once they upgrade and gather user
feedback.

1. INTRODUCTION
Software developers strive to develop the
latest, most innovative, seamless apps for
users, which would not be possible without
software maintenance teams. But what could
happen if these teams’ work was not utilized?
Although software maintenance may not
appear as the most compelling or impressive
job for a software engineer at the surface, it is
all-encompassing and crucial to ensuring the

longevity of an app. Maintenance includes
fixing defects, improving performance,
developing tests, and creating new features to
improve the user experience. However, to
have these improvements implemented,
developers rely on users to update their apps to
the latest versions. Without this, new features
and fixes may become pointless.

In addition, bugs and defects will persist in
the app as users do not upgrade, leading to an
unsatisfactory user experience. As time
progresses, outdated software can cause
problems and even lead to app crashing,
preventing customers from using the app at all.
Left unaddressed, this could ultimately lead to
current users being driven away from an
application, and negative user feedback that
would deter future users. A method for
prompting users to upgrade their app is needed
in order to prevent a poor user experience and
the ineffectiveness of software maintenance
teams’ work.

2. RELATED WORKS
Ivaev (2019) detailed the use of Firebase
Remote Config for iOS to control the state of
an app without having to add code, to hardcode
variables, and to republish the app to the App
Store. The drawback of using Firebase Remote
Config is the potential for throttling, which
occurs when an app retrieves a value from the
Remote Config platform too many times over
a short duration and results in the fetch calls
being halted. Ivaev shows how to incorporate
Firebase Remote Config to dynamically

update a label displayed in an app, which I
utilized to manipulate the minimum app
version as the text field in Firebase instead of
a label. I addressed the throttling concern by
setting the minimum time interval that the
value could be fetched to a low interval only
during testing, so in actual applications it
would take much longer to fetch, preventing
throttling.

For the user interface, Kargopolov (2020)
walks through how to build an alert in Swift
using the UIAlertController class. Although
this is advantageous to create and display an
alert to the user and to handle button selection
actions, there are limited stylistic options, and
he warns that if the button is not created
correctly the user can never dismiss the alert.
Kargopolov’s demonstration of creating an
alert and making an alert button call a function
was helpful for me to implement the UI for the
force and soft update alerts. The default style
sufficed for my work, and I avoided the issue
of the alert never disappearing by having the
click of the button trigger a function that brings
the user to the App Store link.

To connect the Firebase values to the alert,
Memon (2021) describes how to incorporate a
force update alert with Remote Config in
Swift. The major advantage is that a user will
have no way of using the app without updating
their app to the new version. The drawback of
Memon’s work is that the code does not
display how it intertwines within an existing
app’s View classes, just how to build the alert.
This was integral in my project to understand
how to connect the Firebase Remote Config
values to displaying the alert. I addressed the
drawback by using the existing code
repository for the expense tracking app as an
example to weave the update alerts code into
the project. I also only used one Firebase
Remote Config parameter, the minimum app
version instead of three in Memon’s work,
retrieving the two other parameters in the
Remote Config console from the source code.

3. PROJECT DESIGN

To design and create the Force and Soft
Upgrade alerts, I worked with the other
members on my team to outline design
requirements and specifications prior to
coding. During the development process, my
team assisted me with conceptualizing
solutions to the obstacles I encountered,
utilizing the agile software life cycle to
develop and test.

3.1 Requirements
As my team was transitioning to incorporate
Firebase to test and monitor performance for
the expense tracking app, it was required to set
up Firebase Remote Config to set the
minimum app versions. When the app is first
opened, the Remote Config variable needed to
be initialized prior to loading any of the initial
display. The variable must to fetch the
minimum app versions within 3 seconds;
otherwise, the app will load without checking
to see if an alert must be displayed.

For the alerts, they must be in the default
"alert" style provided by Swift. Alerts must
pop up when the Mastercard splash screen is
being displayed. The user should not be able to
interact with anything in the app other than the
alert buttons when displayed. The text for the
alerts must be identical to the approved strings
for each alert. The Force Upgrade alert must
only have one button, the update button. The
Soft Upgrade alert will prompt the user to
either update or dismiss. When the update
button is pressed, the user will be brought to
the expense app’s page in the iOS App Store.
When the dismiss button is pressed, the alert
will disappear and the user will be brought to
their initial display screen.

3.2 Specifications
A minimumAppVersion variable and
targetAppVersion variable were created in the
Remote Config console, set to 1.8.0 and 1.9.0
respectively as the highest available version of
the app was 1.9.0. To connect these variables
to the code repository, the Firebase Remote
Config instance was added to the AppDelegate

file, where the app launch is handled. In the
InitialViewController file, responsible for
creating the first view displayed upon opening
the app, the Remote Config variable fetches
both the minimumAppVersion and the
targetAppVersion from the Firebase console.
If the fetch is successful, these variables are
inputted as parameters to the function that
compares the minimum and target app
versions with the current app version. The
currentAppVersion variable is retrieved from
the Info.plist file, a property list text file where
all iOS apps must store an app version number.
 The compareAppVersions function checks
for the conditions where the Force Upgrade
alert or the Soft Upgrade alert should be
displayed. The Force Upgrade alert is only
shown if the currentAppVersion is less than
the minimumAppVersion variable. The Soft
Upgrade alert is only shown if the
currentAppVersion is greater than or equal to
the minimumAppVersion and less than the
targetAppVersion. In all other cases no alert is
displayed and the app launches to the initial
view. Figure 1 below is the spreadsheet of
edge cases I created to help me determine what
the two conditions are for the alerts to be
displayed.

minAppVersion targAppVersion currAppVersion Result

1.8.0 1.9.0 1.7.9
Force
Upgrade

1.8.0 1.9.0 1.8.0
Soft
Upgrade

1.8.0 1.9.0 1.8.5
Soft
Upgrade

1.8.0 1.9.0 1.9.0 Nothing

1.8.0 1.9.0 1.10.0 Nothing

Figure 1: Example variables for minimum,
target, and current app versions to show the
cases when Force or Soft Upgrade should

appear.

If the compareAppVersion function returns a
flag for the Force or Soft Upgrade alert to be
displayed, then the alert is created in the

InitialViewController file and initial app
display is not shown. If the function returns no
flag, then the app launches the inital app
display.
 When an alert flag is returned, a
UIAlertController class is initialized in the
InitialViewController file. The text strings of
the alert’s required titles and labels for the are
retrieved from the Localized String file. This
allows the alert text to match the language of
the user’s iOS device. The localized strings are
set for the respective UIAlertController text
values, and the buttons are created with
UIAlertAction objects. Only one object is
created for the Force Upgrade
UIAlertController, the "update" button, while
both an "update" and "dismiss" button is
initialized for the Soft Upgrade. The "update"
UIAlertAction handler will call a separate
function to open the iOS App Store when the
button is pressed. The function loads the URL
to the expense app in the App Store and opens
it. The "dismiss" UIAlertAction handler will
remove the alert from the screen and start the
loading the initial view display. A cropped
screenshot of what the Force Upgrade alert
looks like upon opening the app is shown in
Figure 2 below.

Figure 2: The finished Force Upgrade alert
developed for the Mastercard Smart Data

expense tracking app.

3.3 Challenges
One roadblock encountered was that when the
alert was shown on the splash screen, it would
disappear automatically when the splash
screen had finished loading. This rendered the

alert useless, as the app would continue
loading in the background and dismiss without
the user taking an action.

Another challenge I faced was in the case
that the user exitted the app when the alert was
shown. Before I addressed this, leaving the app
would automatically dismiss the alert, so when
the user returned the app would load the initial
view without no alert.

3.4 Solutions
The first issue of the alert disappearing with
the splash screen was originally resolved by an
adjustment to requirements. At first, my team
decided it would be acceptable for the app to
finish loading the initial view and then
displaying the alert, as the alert being shown
would block the user from being able to access
the screen. However, it was later determined
that this undermines the function of the alert,
as it should block outdated software versions
from loading to prevent crashes. Thus, the
issue was resolved by having the alert shown
after the splash screen, instead of the alert on
top of the splash screen, but prior to the initial
view loading.
The next issue of the alert dismissing when
exiting and returning to the app stemmed from
the way the view was displayed upon
reopening. This was addressed by checking for
the alert flags in the function that handles when
the app is reopened.

4. RESULTS
Continuous testing revealed the alert
functioned as expected in the different version
cases. This was done by personal unit testing
and DevOps UI testing where mininum, target,
and current app version values were adjusted.
Tests for each case asserted that the expected
lines of code were run and verified that the UI
was displaying the expected screens. Although
no real user data was collected prior to my
departure from Mastercard, the feature was
launched at the same time as the Android alert
feature to the app’s 1,000+ users.

5. CONCLUSION
Upgrade alerts for the Mastercard expense
tracking app keeps users interacting with new
features and improvements by prompting them
to stay up to date with the latest version. The
alerts also prevent broken and outdated
software from being used, preserving user
satisfaction. This project helped me develop
skills in using XCode to build iOS applications
in Swift. I also learned the value of setting
dynamic parameters remotely with Firebase
Remote Config. Most importantly, I learned
how to adjust for unforeseen issues in app
development environment and think critically
to overcome obstacles.

6. FUTURE WORK
Moving forward it would be beneficial to track
the success rates of users upgrading when the
alert is displayed. Once a significant number
of users are up-to-date on the version that
contains the alerts, it would be worthwhile to
gain insight on the number of people who
receive soft or force upgrade alerts, and
whether they update when they get the soft
alert. It would be useful to get user feedback
on the alert interface from clients, ensuring
there are no difficulties. Beyond tracking real
use, an improvement could be to only repeat
displaying soft updates after a certain interval
of time after dismissal. This would prevent a
bombardment of suggested upgrade alerts
every time the app is opened, but still ensures
the user is frequently reminded to update.

REFERENCES
[1] Ivaev, Z. 2019. How to Implement
Firebase Remote Config with Swift 5. (July
2019). Retrieved Feb 24, 2023 from
https://medium.com/cleansoftware/firebase-
ios-remote-config-minimalistic-step-by-step-
tutorial-using-swift-5-f67cab5a3715.

[2] Kargopolov, S. 2020. How to Show an
Alert in Swift. (April 2020). Retrieved [month,
day, year] from

https://www.appsdeveloperblog.com/how-to-
show-an-alert-in-swift/.

[3] Memon, S. 2021. Implementing Force
Update Feature using Firebase Remote Config
in iOS. (November 2021). Retrieved from
https://medium.com/codechai/implementing-
force-update-feature-using-firebase-remote-
config-in-ios-52beaabebab5.

