
Software Developing: Automating with Low-Code Solutions

CS4991 Capstone Report, 2024

Andrew Shin
Computer Science

The University Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
ajs5qgm@virginia.com

ABSTRACT

As a computer science intern at
Nationwide IT Services, I was given the
option of focusing on migrating the company
website or creating applications to automate
corporate processes. I chose to pursue the
automation project, because it would allow
me to make a positive change in the
company’s internal processes. I spent a few
weeks learning about Microsoft PowerApps,
a tool that lets developers create the base
application from scratch without having to
code a single line of HTML. Using
PowerApps, I implemented a weekly report
application that allowed project managers
and team members to document what they
accomplished that week, and what was to
come the following one. Although I was only
able to finish the primitive version of the
application, one simple yet effective portal
did the job and the team’s process no longer
requires a shared google doc and a string of
emails. By designing a low-code course for
underclassmen, I hope to draw student
insights to the benefits and downsides of a
project-based introductory CS course.

1. INTRODUCTION

What happens when professionals with
little to no programming knowledge are able
to implement full applications from scratch?
The learning curve of application
development flattens and an extensive
understanding of abstract computer science
principles is no longer necessary. The user

can instead focus on learning and
implementing high-level concepts such as
database management and app automation.
Low code development platforms provide
users with an environment to implement
applications through a graphical user
interface (GUI), allowing them to take
advantage of these benefits.

However, simplifying the development
process comes with its tradeoffs. Similar to
picking a theme for a slide deck, the user can
select a color theme for the application before
they start their “drag and drop”
implementation process. They can then select
the size and layouts of the components using
the GUI; but that is the extent. The styling of
the app will not be better than one created by
an expert of web development. This issue,
however, can be overcome as the app can be
viewed in code form, giving those who wish
to make specific changes a direct option.

The University of Virginia does not have
a course that teaches students no/low-code
development platforms. While some courses
like HCI (Human Computer Interaction)
encourage students to use no-code software
to create mock-ups for their ideas, these
applications often have no practical
functionality, limiting the application to a
graphical prototype. Low-code platforms can
be used to introduce CS majors to concepts
critical to software development without
wasting time learning new programming
languages necessary for software
development.

2. RELATED WORKS

In a publication about social computing,
Przegalinska (2024) considered the methods
and impact of teaching low/no-code solutions
to non-IT students. She stated after surveying
various students and instructors that low-
code solutions were easy to utilize even with
a group with low technical literacy. My
proposal utilized Przegalinska’s approach to
using low-code solutions to introduce more
advanced important methodologies, which
mitigates additional difficulties encountered
by students learning multiple concepts at the
same time.

When surveying fellow developers from
my internship about low-code solutions, Ivan
(Zheng, personal communications, March 27,
2024) mentioned that low-code solutions
were incredibly efficient at automating
manual processes, while Sahil (Matre,
personal communications, March 27, 2024)
stated that a low-code application increased
the efficiency of conducting weekly reports
by nearly 300%. These comments helped me
choose low-code platforms as the center
piece of the new course.

3. PROPOSED DESIGN

The purpose of this course will be to
provide exposure to first and second-year
students to basic software development
principles through low-code platforms. As a
result, the course will be named Intro to
Software Development.

3.1 Course Hierarchy

Intro to Software Development provides
a framework for more advanced concepts,
making it more beneficial to take early. Thus,
Intro to Software Development (CS 2240)
would require CS 1110 as a prerequisite and
be a prerequisite to CS 3240 (Advanced
Software Development). CS 3240 is arguably
the most important class for CS majors and
any measures taken to prepare students for
this class are indispensable.

3.2 Course Material
3.2.1 Software Development Principles
 Students enrolled in this course will
only have the minimal skills necessary to
code a basic application in Python. To
introduce the students to the pillars of
software development, the first half of the
semester’s content will be composed of
concepts taught in CS 3240. The principles I
learned from Advanced Software
Development were simple yet valuable.
Understanding critical ideas such as the
Software Development Lifecycle and User
Story management provided me with the
basics I needed to start personal projects.
Students will also be introduced to Git, a
version control system. These are critical
skills utilized by all developers. These skills
can only be improved through practice,
making the earlier the exposure, the better.

3.2.2 Microsoft Power Platform

 The second half of the course will teach
students how to use Microsoft’s Power
Platform. The Power Platform is a collection
of features that can be used collectively to
build awesome applications. Power Apps are
used to create applications, Microsoft Data
Verse for the database, and Power Automate
to automate workflow processes. None of
these features require coding knowledge;
however, they can reinforce the concepts
they’ve learned that semester without having
to create a full Django project.

3.3 Course Assessment
3.3.1 Quizzes
This course isn’t suitable for exams. Instead,
a mini-quiz administered twice a month that
measures concept mastery will sufficiently
gauge the class’s overall concept mastery.

3.3.2 Homework
 Students will work with a partner on
homework assignments, getting more
practice with Git in the process. Whether the

assignment is to create a requirements
document from user stories or to code a
simple automated testing program, these
relatively small tasks would be designed to
provide a manageable method for the
students to practice what they’ve learned in
theory.

3.3.3 Project
 When the students learn about
Microsoft Power Platforms, they will draw
natural connections with concepts they’ve
learned and the Power Platform, allowing
them to create a “full-stack” project without
having to write any code. This project will
likely be the first time they create a full
application and can be the training grounds
they need to learn the software development
process.

3.3.4 Final Exam
 The final exam of this course will be
weighted heavily and assess students’ overall
understanding of software development
principles and proficiency in power platforms.

3.3.4.1 Written Portion

Instead of having a traditional written
exam with multiple choice, true and false, etc.,
students will be given a scenario and be
tasked to draw user stories, create
requirements, and plan their application. This
form of examination better assesses concept
mastery and allows students to forego
studying every little detail.

3.3.4.2 Programming Portion

 This section of the final exam
involves implementing their plan using
Microsoft’s Platform. Given a new set of
instructions, students will create an
application from the ground up. The student’s
application would adequately assess their
mastery of basic Power Platform features.

3.4 Modifications to CS 3240
While CS 3240 will remain a project-

based course that utilizes Django, students
will be taught how to use Django over the
initial stages of the course. The informative
lectures would replace the Django tutorial
assignment that requires the student to self-
learn their first framework. Space for these
new lectures would come from the added
mastery of basic software development
principles from Intro to Software
Development. These lectures will increase
the group members' Django mastery,
mitigating the chance of dysfunctional
project groups.

3.4.1 Modifications to Django Project

 The current project for CS 3240 is well-
formatted but can be optimized to be more
realistic. Since the students have already
experienced applying software development
basics through their CS 2240 project, CS
3240’s project can be reformatted to simulate
a real-world software development scenario.
This can be done by having TAs and the
professor represent relevant roles in the
industry, giving teams a specific application
to build, and assigning teams sprints with the
overall goals. Because of the addition of CS
2240, both the learning curve of Django and
the difficulty of applying SDLC concepts
will be reduced, setting project teams up for
success.

4 ANTICIPATED RESULTS

Results of this project include both
potential benefits and potential negatives.

4.1 Benefits
 Students who take Intro to Software
Development will be stronger candidates
when looking for an internship as a first year.
Most first years in CS have little to no
coursework or projects that are impressive
enough to land an internship. However,
students who take CS 2240 will not only be
able to talk about relevant software

development concepts during their
interviews but also have an impressive
project on their resume. This advantage
cannot be understated because opportunities
are given to those who have previous
experiences and a first-year summer
internship can boost career prospects
drastically.
 Early exposure to software development
environments that utilize frameworks and
platforms creates more curious and well-
rounded software developers. Students who
are motivated, but don’t know where to find
the resources to get started can obtain
inspiration from what they learn in class.

4.2 Negatives

Though software development principles
are easy to understand, learning a whole
service platform may seem daunting at first.
It’ll be of utmost importance to prioritize the
student’s understanding of Microsoft Power
Platform. If the roadblock to application
development comes from the technology
itself, it’ll be impossible to apply the software
development principles to the project.

5 CONCLUSION

I learned at Nationwide IT Services that
different technologies are necessary for
different situations, which helped me realize
that no/low-code alternatives should be
implemented in college CS curriculums. Due
to the simplistic nature of low-code solutions,
it serves a greater value to introduce them
earlier in the student’s academic career. Since
low-code technologies are avidly used by
various companies, it can be easily structured
to complement the learning of software
development principles.

This class will not only better prepare
students for CS 3240, but also equip students
with the necessary experience to find their
first opportunity. Along with that, students
will learn to use unfamiliar technologies, a
skill necessary for a field with constantly
evolving technologies. Universities design

their curriculum to progress and evolve
students’ understanding of core foundations.
From the students’ performance and
feedback about the class structure, professors
can learn about the impacts of introducing
difficult yet relevant concepts in an
introductory course. Using this information,
new emerging technologies that will need to
be considered can be crafted into courses
more easily.

6 FUTURE WORK

Intro to Software Development will need
to be compared to CS 3240 and other similar
courses to minimize content overlap. Along
with this, professors will need to consider
what specific low-code platforms will best
complement the concepts within the software
development lifecycle. After that, professors
will need to hire TAs with specific low-code
experience. This is especially important as a
strong teaching staff is crucial to the success
of a new course. Lastly, it is necessary to
acquire feedback from the students who
complete this class because of its interesting
course structure, especially for a introductory
class. After analyzing and incorporating
student feedback, Intro to Software
Development may become a class that
significantly strengthens the CS curriculum
of UVA.

REFERENCES
Sońta, M., & Przegalinska, A. (2024). Say
‘yes’ to ‘no-code’solutions: how to teach
low-code and no-code competencies to non-
IT students. In Handbook of Social
Computing (pp. 330-342). Edward Elgar
Publishing.

