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Abstract

We investigate the post-quench dynamics of charge-density-wave (CDW) order

in the square-lattice t-V model and Holstein model. Both systems exhibit a ground

state characterized by a checkerboard modulation of electron density at half-filling.

In the t-V model, we employ a generalized self-consistent mean-field method, based

on the time-dependent variational principle, to describe the dynamical evolution of

CDW states. By assuming a homogeneous CDW order throughout the quench pro-

cess, this approach reduces to the Anderson pseudospin method. Quench simulations

using the Bloch equation for pseudospins reveal three canonical behaviors of order-

parameter dynamics: phase-locked persistent oscillation, Landau-damped oscillation,

and dynamical vanishing of the CDW order.

To incorporate dynamical inhomogeneity into quench simulations, we develop an

efficient real-space von Neumann equation method. Large-scale simulations uncover

complex pattern formations in post-quench CDW states, particularly in the strong

quench regime. These emergent spatial textures are characterized by super density

modulations atop the short-period checkerboard CDW order, highlighting the signif-

icance of dynamical inhomogeneity in quantum quenches of many-body systems with

broken Z2 symmetry.

In addition, we address artifacts in time evolution introduced by the time-dependent

mean-field theory by studying the non-adiabatic post-quench dynamics of CDW states

in the Holstein model, which is numerically exact when lattice degrees of freedom are

treated classically. We derive the Anderson pseudospin formulation and Newtonian
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equations of motion for the electronic and lattice degrees of freedom, respectively,

to describe the dynamical evolution of CDW states and lattice distortions. Quench

simulations reveal three canonical behaviors of order-parameter and lattice dynamics,

consistent with those observed in the t-V model.

Real-space simulations in the Holstein model explore two post-quench scenarios.

In the first, the initial state is prepared with vanishing electron-lattice coupling, and

quenching the coupling constant induces the formation of CDW domains, resulting

in either anomalous coarsening or spontaneous glassy states depending on the final

coupling constant. In the second scenario, starting from a checkerboard modulation

of charge density, quenching to a different finite coupling constant results in spatial

inhomogeneity that satisfies parametric instability. The rich physics observed in the

post-quench dynamics of CDW states in the Holstein model arises from the interplay

between electronic and lattice degrees of freedom.

Finally, we investigate the out-of-equilibrium dynamics of a photo-excited CDW

state in the square-lattice Holstein model, similar to the setup in a pump-probe

experiment. Our extensive simulations show that the energy injected by a short

pump pulse results in the reduction of the CDW order and the generation of coherent

phonons. For a pump pulse with a large fluence or a center frequency greater than the

CDW bandgap, the photoexcitation leads to a complete melting of the CDW order.

Furthermore, our simulations reveal a dynamical regime at intermediate fluence where

the pump pulse induces complex pattern formation. These emergent spatial textures

are characterized by super density modulations on top of the short-range checkerboard

CDW order. Our findings highlight the significance of dynamical inhomogeneity in

quantum many-body systems subjected to pump-probe experiments.
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Chapter 1

Introduction

1.1 Background

Quantum quench is a theoretical protocol used to study the non-equilibrium time

evolution of a physical observable in an isolated system. This is realized by preparing

an initial state, such as the ground state of a system Hamiltonian, and then allowing

it to evolve under a different Hamiltonian, achieved by abruptly changing a parameter

of the original Hamiltonian, in a time scale much smaller than the inverse of the mass

gap [2, 3]. The initial state is generally not an eigenstate of the new Hamiltonian.

Consequently, the physical observable, such as the expectation value of local opera-

tors, becomes time-dependent, and its time evolution is referred to as post-quench

dynamics.

The post-quench dynamics of quantum systems has attracted enormous attention

in recent years [3–6]. The interest is partly spurred by tremendous experimental

advances both in cold atom systems [7, 8] and in ultrafast techniques such as pump-
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probe spectroscopy [9–14]. In particular, for cold-atomic gases trapped in an optical

lattice, the parameters of the Hamiltonian, such as interaction strength between par-

ticles and lattice parameters can be tuned rapidly in time, thus providing a near-ideal

platform for studying quench-induced nonequilibrium quantum behaviors. Moreover,

as cold-atom systems can be well isolated from the environment, their post-quench

dynamics is well approximated by a unitary evolution. In pump-probe spectroscopy,

by exciting a sample with a short laser pulse (pump pulse), this technique allows

one to study the ultrafast relaxation dynamics of quasiparticles [15, 16]. Recently,

pump-probe techniques have also been utilized to investigate photo-induced ultrafast

collective behaviors [17–23], for example, by measuring the time-resolved dynamics

of order-parameter fields. Moreover, photo-induced phase transition [24, 25] with an

intensive pump pulse offers an avenue to detect long-lasting meta-stable states or

even the so-called hidden states which are nonequilibrium many-body states without

equilibrium counterpart [26–36].

A central question is whether thermalization can be reached in such closed-system

quantum evolution and, if yes, what are the mechanisms and time-scales [37–49].

Moreover, several nonequilibrium phases and dynamical phase transitions, some of

which have no counterpart in equilibrium systems, have been demonstrated in the

long-lasting prethermal states after a quantum quench [50–60]. Understanding the

nature of such prethermal states is an ongoing active research.
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1.2 Post-quench dynamics in symmetry breaking phases

For post-quench dynamics with spontaneous symmetry breaking phases, the interplay

between the collective modes, as represented by order-parameter fields, and quasipar-

ticle degrees of freedom dominates the nonequilibrium behaviors of the prethermal

states [61, 62]. Extensive theoretical studies, including several pioneering works on

the interaction quench of superconductor pairing field, have revealed three dynamical

phases of the time-dependent order parameter in the collisionless limit [1, 63–66]. In

the phase-locked regime, the dynamics of the collective modes locks with that of the

quasiparticles, giving rise to a persistent oscillation of the order parameter. For inter-

mediate quench amplitudes, the perturbed system relaxes to a state with a reduced

order parameter through the Landau-damping mechanism. The energy transfer from

the collective modes to quasipartiles in this regime leads to a damped oscillation of

the order parameter. Finally, in the third strongly-damped regime, corresponding to

a quench toward reduced interactions, the relaxation of the system is characterized by

dynamically vanishing order parameters. While more complex dynamical behaviors

have also been discussed, most symmetry-breaking phases, including the well-studied

BCS superconductivity (SC) and spin density waves (SDW) as well as more complex

order parameters, exhibit the above three major dynamical regimes [67–80].

It is worth noting that in most previous works the prethermal states induced by

interaction quenches are assumed to be spatially homogeneous, including the three

main dynamical phases discussed above. For example, the Anderson pseudospin ap-
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proach [81], which is widely used in the study of quench dynamics of BCS super-

conductors, precludes the possibility of spatial fluctuation or inhomogeneity. On the

other hand, since thermalization mechanisms are generally local, it is likely that the

post-quench states would develop spatial inhomogeneity through a process similar to

the Kibble-Zurek mechanism [82, 83]. The Kibble-Zurek mechanism, which was de-

veloped to understand the formation of topological defects in early universe, has been

applied to study the post-quench dynamics in the symmetry-breaking phases [84].

For the case of interaction quench, significant amount of energy is uniformly injected

into a system. The relaxation of local regions that are separated from each other

by a distance greater than the coherent length would proceed independently. Such

incoherent local relaxations lead to the generation of topological defects of the order

parameter, giving rise to a heterogeneous post-quench state [84–89].

Even in the collisionless coherent regime, the highly nonlinear post-quench evolu-

tion renders the system susceptible to instabilities that could lead to inhomogeneous

states. For example, it is shown that quench-induced large-amplitude coherent os-

cillations of the SC order parameter are unstable against parametric instability and

the emergence of Cooper-pair turbulence [90]. Spontaneous formation of inhomoge-

neous superconducting states following an interaction quench has indeed been demon-

strated in real-space dynamical simulations based on time-dependent Hartree-Fock-

Bogoliubov theory [91, 92]. Similar scenario has also been observed in the context of

Mott transitions in Hubbard models. Although the Mott metal-insulator transition
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is not characterized by the broken-symmetry scenario, the on-site double occupation

probability serves as an effective order parameter of a Mott transition. Interestingly,

the double-occupancy of a quenched Hubbard model exhibits a coherent oscillation

similar to that of conventional order parameters [93,94]. Real-space dynamical simu-

lations of Mott phases in the coherent collisionless limit also found post-quench states

with a highly inhomogeneous distribution of the double occupancy [95].

While dynamical inhomogeneity in quantum quenches of many-body systems re-

mains to be systematically investigated, pattern formation phenomena are ubiquitous

in nonequilibrium systems with highly nonlinear dynamics. In particular, the mecha-

nisms and characterizations of pattern formation in classical physics, soft-matter, and

biological systems have been intensively studied for decades [96–100]. Several unify-

ing descriptions of pattern forming systems, such as the Swift-Hohenberg equation,

as well as classifications of universal behaviors have also been developed. It remains

to be seen whether some of the general mathematical frameworks can be applied to

pattern formation induced by quantum quenches. However, the physical mechanisms

of pattern-forming instabilities in quantum quenches are intrinsically different. For

most classical examples, the formation of complex patterns often is driven by energy

injection and the subsequent local dissipation in an open system. On the other hand,

the complex textures of order-parameter field in post-quench states result from the

unitary evolution of a closed quantum system.

Based upon the analysis above, it is important to systematically study the post-
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quench dynamics in the symmetry-breaking phases and investigate the mechanism of

pattern formation and emergence of spatial inhomogeneity.

1.3 Post-quench dynamics of charge-density-wave states

Charge density wave (CDW) states are one of the prominent platforms for exploring

ultrafast phenomena associated with a symmetry breaking phase. This is partly

due to the ubiquity of CDW states which have been observed in a wide class of

materials, including metals, semiconductors, and Mott insulators [101–112]. Since

many CDW states are stabilized by electron-phonon coupling, CDW order is often

found to compete or coexist with a proximate superconducting state. Moreover, as the

charge degrees of freedom directly couples to external electric field, CDW materials

are idea candidates for manipulating and tracing photo-excited phase transitions. For

example, photo-induced insulator-to-metal transitions through the melting of CDW

order have been observed in many materials [113–130].

To study the post-quench dynamics of the CDW states, we consider the quantum

quench dynamics of the spinless fermionic t-V model on a square lattice. This model,

which can be viewed as a simplified version of the Hubbard model, describes the

competition between delocalization of fermions on a lattice and the nearest-neighbor

density-density repulsion. For a half-filled t-V model defined on a bipartite lattice,

the ground state in the strong coupling limit V → ∞ is obtained when one sublattice

is fully occupied, while the other sublattice is empty. This staggered arrangement
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of fermions breaks the Z2 sublattice symmetry and can be described by an Ising

order parameter. For the case that the fermionic particles are electrons, the resultant

density modulation corresponds to a CDW order. Although the t-V model is also

often used to describe charge-neutral fermionic cold atoms, we shall refer to a periodic

particle-density modulation as a CDW for convenience. In the case of a square-lattice,

a divergent Lindhard susceptibility due to a perfect Fermi surface nesting at half-filling

indicates that the system is unstable against the formation of a checkerboard CDW

order even in the small V limit. Therefore, t-V model provides an ideal platform for

studying the time evolution of CDW states upon interaction quench.

While a CDW order can be induced through a purely electronic mechanism, as

we will discuss in t-V model, the majority of CDW states are accompanied by a con-

comitant structural distortion. This points to an important role of electron-phonon

coupling in both the static and dynamical behaviors of CDW states. In particular,

the dynamics of CDW order is also intimately related to that of lattice degrees of free-

dom. The interplay between the photo-excited electron-hole pairs and the combined

CDW and lattice dynamics could lead to rich dynamical phenomena. For example, it

has been shown that the melting of a CDW is often accompanied by the generation

of coherent phonons [128–132]. The Holstein model serves as a valuable platform

for investigating the dynamic interplay between electrons and lattice vibrations, en-

capsulated by a localized electron-lattice coupling term. This model facilitates the

exploration of interesting phenomena like CDW states, characterized by periodic al-
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terations in electron density within the material. In the context of the hall-filled

Holstein model on a square lattice, the system manifests as a band insulator, with

the Brillouin zone folded owing to lattice symmetry, thereby confining the system to

a restricted Brillouin zone in reciprocal space. Furthermore, Fermi surface nesting

dictates that wave vectors differing by K = (π, π) are interconnected, consequently

instigating CDW collective excitations. The electron-lattice coupling prompts lattice

distortions, culminating in a gap formation at the nesting vector. This gap plays a

crucial role in stabilizing the CDW phase by diminishing the kinetic energy of the

system, and facilitating electron localization.

1.4 Organization and conventions

Here I make a brief outline of this thesis. In Chapter 2, we discuss the time-dependent

mean-field methods for t-V model and show that it can be reduced to the Ander-

son pseudospin formalism. In Chapter 3, we formulate the real space von Neumann

equation and perform a systematic investigations on the emergence of spatial inhomo-

geneity and pattern formation. After concluding the post-quench dynamics of CDW

states in pure electronic system, we formulate the pseudospin formalism for Holstein

model, and show that the CDW dynamics is described by the Bloch equation of

pseudospin and Newtonian equations for lattice degrees of freedom in Chapter 4,

upon the assumption that CDW states are spatially homogeneous. The real space

dynamics is studied in Chapter 5, where anomalous coarsening is observed in inter-
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action quench from a Fermi liquid state, and parametric instability of CDW order

emerges in quench from an initial with finite electron-lattice coupling. Finally, we

discuss the CDW melting, pattern formation, and generation of coherent phonons in

photo-excitation of Holstein model in Chapter 6.



Chapter 2

Mean-field methods for t-V model

2.1 Introduction

We consider the quantum quench dynamics of the spinless fermionic t-V model on

a square lattice. This model, which can be viewed as a simplified version of the

Hubbard model, describes the competition between delocalization of fermions on a

lattice and the nearest-neighbor density-density repulsion. Its Hamiltonian reads

Ĥ = −tnn
∑
⟨ij⟩

ĉ†i ĉj + V
∑
⟨ij⟩

n̂in̂j, (2.1)

where ĉ†i (ĉi) denotes the creation (annihilation) operator of a spinless fermion at site-

i, n̂i = ĉ†i ĉi is the fermion number operator. The first term above describes particle

hopping between neighboring sites ⟨ij⟩ on a square lattice, with tnn being the transfer

coefficient. The second term with V > 0 represents a nearest-neighbor density-density

repulsive interaction.

For a half-filled t-V model defined on a bipartite lattice, the ground state in the

strong coupling limit V → ∞ is obtained when one sublattice is fully occupied,

10
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while the other sublattice is empty. This staggered arrangement of fermions breaks

the Z2 sublattice symmetry and can be described by an Ising order parameter. For

the case that the fermionic particles are electrons, the resultant density modulation

corresponds to a charge density wave (CDW) order. Although the t-V model is also

often used to describe charge-neutral fermionic cold atoms, we shall refer to a periodic

particle-density modulation as a CDW for convenience. In the case of a square-lattice,

a divergent Lindhard susceptibility due to a perfect Fermi surface nesting at half-filling

indicates that the system is unstable against the formation of a checkerboard CDW

order even in the small V limit.

For a finite repulsive interaction, the t-V model cannot be exactly solved either

for equilibrium states or dynamical evolution. The 1D version of this model can

be efficiently solved with high accuracy using the density matrix renormalization

group (DMRG) [133,134] and its time-dependent generalizations such as time-evolving

block decimation (TEBD) algorithm [135, 136]. Although DMRG or tensor-network

variational wave functions can also be applied to quasi-2D systems, e.g. with a

cylinder geometry, such approaches are computationally more intensive with less well-

controlled accuracy. Large-scale dynamical simulations of higher-dimensional systems

are thus not feasible using such DMRG-based methods.

The rest of this chapter is organized Simulation results based on pseudospin meth-

ods show that the post-quench CDW order exhibits the three canonical dynamical

phases: (I) phase-locked persistent oscillation, (II) Landau-damped oscillation with a
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finite asymptotic value, and (III) dynamical vanishing of the CDW order parameter.

Further characterizations of these dynamical phases will be discussed in the following

sections.

2.2 Time-dependent Hartree-Fock Method for t-V
model

The Hartree-Fock (HF) mean-field method proves an efficient approximation to the

modeling of the emergent CDW states. The central idea of HF approximation, as in

most mean-field type methods, is to reduce a many-body problem into an effective

single-particle problem self-consistently. While such self-consistency can be achieved

via the usual mean-field decoupling of the interaction terms, HF approximation is best

understood as a variational method in which the trial many-fermion wave function has

the form of a Slater determinant. The HF or its extension for superconducting pairing

have also been generalized to include time dependence. Indeed, the time-dependent

HF (TDHF) is widely used to describe dynamics of many-body systems in nuclear

physics and quantum chemistry [137–139]. It is worth noting that the Anderson

pseudospin approaches [1,63–66] to quantum quenches of SC or SDW orders are also

based on TDHF.

Generalization of the mean-field methods to dynamical evolution of interacting

systems can be achieved via the Dirac-Frenkel time-dependent variational principle

(TDVP) [140, 141]. By constraining a quantum state to a specific manifold of the

Hilbert space through a variational wave function, the minimum action equation gives
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an effective dynamical description for the variational parameters. For example, apply-

ing TDVP to variational matrix product states (MPS) offers an alternative approach

to introduce time evolution in DRMG-based methods [142, 143]. The TDHF meth-

ods, or more generally the time-dependent self-consistent field methods for fermions,

can similarly be derived by constraining the many-body wave function to the form

of Slater determinant in the TDVP formalism. Here we outline the approach for a

generalized t-V model with both particle hopping tij and density-density interaction

Vij extended to further neighbor pairs (ij). The derivation can be straightforwardly

generalized to other lattice models.

We start with the Dirac-Frenkel action for a general quantum state |Ψ(t)⟩ whose

dynamics is governed by a Hamiltonian Ĥ.

S[Ψ] =

∫
dt ⟨Ψ(t)|

(
iℏ

d

dt
− Ĥ

)
|Ψ(t)⟩ (2.2)

The equation of motion for the quantum state is given by the least action princi-

ple: ∂S/∂⟨Ψ| = 0. Indeed, the minimum action equation simply reproduces the

Schrödinger equation for an unconstrained wave function. Next we assume that the

many-fermion quantum state is a Slater determinant, which can be expressed as a

filled Fermi sea of self-consistently determined quasiparticles:

|Ψ(t)⟩ =
∏
µ

γ̂†
µ(t)|0⟩, (2.3)

where γ̂†
µ(t) is the time-dependent creation operator of a quasiparticle with quantum

number µ and |0⟩ is the vacuum of the fermions. The quasiparticle operators are
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related to the fermion operators ĉ†i through a time-dependent unitary transformation:

γ̂†
µ(t) =

∑
i

ϕµ
i (t) ĉ

†
i . (2.4)

As will be shown below, the transformation coefficients ϕµ
i play the role of effective

single-particle wave functions. The independence of the quasiparticles further imposes

the orthogonality conditions for the wave functions
∑

i ϕ
µ ∗
i (t)ϕν

i (t) = δµν , which have

to be satisfied at all times. Substituting the Slater determinant wave function into

the Dirac-Frenkel action and using the Wick’s theorem to compute the expectation

values, we obtain

S[{ϕ}] =
∫

dt
∑
µ

∑
ij

[
ϕµ ∗
i

(
iℏδij

d

dt
+ tij

)
ϕµ
j

]
(2.5)

−
∫

dt
∑
µ,ν

∑
ij

Vij

(
|ϕµ

i |2|ϕν
j |2 − ϕµ∗

i ϕν∗
j ϕµ

j ϕ
ν
i

)
The two terms in the second line above correspond to the familiar Hartree and Fock

decoupling, respectively. The least action condition ∂S/∂ϕµ∗ = 0 gives the following

nonlinear single-particle Schrödinger equations

iℏ
dϕµ

i

dt
= −

∑
j

tijϕ
µ
j +

∑
j

∑
ν

Vij|ϕν
j |2ϕµ

i

−
∑
j

∑
ν

Vijϕ
ν∗
j ϕν

i ϕ
µ
j . (2.6)

The coupled differential equations of these single-particle wave functions give a com-

plete dynamical description of the many-fermion systems. Importantly, for a given

set of initial wave functions ϕµ
i (t = 0) that are normalized and orthogonal to each
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other, it can be shown that the orthogonality conditions are maintained by the above

dynamical equations. Therefore, it needs to be awared that the evolution of the sys-

tem is always described by a single Slater determinant, and effectively produces the

behaviors of the system in the collisonless limit, which may not give us the asymptotic

behavior of the true quantum system.

2.3 Anderson pseudospin formulation

In this section, we derive an effective spin formulation for the coherent dynamics of

CDW from the general TDHF equations. For a bipartite lattice, the nearest-neighbor

repulsive density-density interaction naturally leads to a disparity of particles on the

two sublattices. The resultant long-range order corresponds to a commensurate CDW

state with an ultra-short modulation period. In the case of square lattice, this CDW

order is characterized by a checkerboard pattern associated with the wave vector

Q = (π, π). For a time-dependent CDW state, an effective order parameter for the

charge modulation is

∆(t) =
1

N

∑
i

⟨Ψ(t)|n̂i|Ψ(t)⟩eiQ·ri , (2.7)

where n̂i = ĉ†i ĉi is the number operator of fermions at site-i, and the phase factor

exp(Q · ri) = ±1 for the two sublattices. Within the TDHF framework, the time-

dependent many-fermion state |Ψ(t)⟩ is to be approximated by the Slater determinant

state in Eq. (2.3). Assuming that the post-quench system remains in a homogeneous

CDW state, which means the Q = (π, π) checkerboard pattern is the only Fourier
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mode of the particle fluctuations, there are only two different values of the on-site

particle number depending on the sublattices:

nA/B(t) = n±∆(t). (2.8)

Here n = 1/2 is the average number of particles per site. Importantly, the assumption

that the time-evolving post-quench system preserves a homogeneous CDW order in-

dicates an emergent translation symmetry associated with the checkerboard pattern,

which is a 45◦-rotated square lattice with a doubled unit cell. This in turn implies

that wave vectors k, restricted to the reduced Brillouin zone, are good quantum num-

bers of the time-dependent CDW states. We thus introduce the following ansatz for

the wave functions of quasiparticles

ϕk
i (t) =

eik·ri√
N

ηsik (t), (2.9)

where si = A,B denotes the sublattice of site-i. The time evolution of ηsk(t) is

governed by the Fourier transform of the time-dependent Schrödinger equation (2.6):

iℏ
d

dt


ηAk

ηBk

 =


−V∆(t) ϵk

ϵk +V∆(t)




ηAk

ηBk

 , (2.10)

where ϵk = −2tnn(cos kx + cos ky) is the dispersion relation of square-lattice tight-

binding model. Since the CDW order is driven by the Hartree term, we have neglected

the Fock exchange term for simplicity. We have also dropped the constant diagonal

term V n which contributes only to an overall phase of the wave functions. Using the
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ansatz (2.9) for the Slater determinant in Eq. (6.3), the time-dependent CDW order

parameter is given by

∆(t) =
∑
k

(∣∣ηAk (t)∣∣2 − ∣∣ηBk (t)∣∣2) (2.11)

The dynamical equation of the CDW state is then reduced to that of a collection of

two-level systems, each associated with a wave vector k. An intuitive description of

a dynamical two-level system is given by the Anderson pseudospin approach [81]. To

this end, we introduce an effective spin Sk for each wave vector k, with the following

definition:

Sx
k = ηA∗

k ηBk + ηB∗
k ηAk ,

Sy
k = −i

(
ηA∗
k ηBk − ηB∗

k ηAk
)
, (2.12)

Sz
k =

∣∣ηAk (t)∣∣2 − ∣∣ηBk (t)∣∣2 .
Since the A and B sublattices are related by the wave vector Q = (π, π), as will be

shown in the next section, each pseudospin Sk thus represents the dynamical degree

of freedom for a fundamental particle-hole pair with momenta k and k + Q. The

dynamics of these effective spins is governed by the Bloch equation [144],

dSk

dt
= Bk(t)× Sk, (2.13)
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which essentially describes the Landau-Lifshitz precession dynamics with a time-

dependent magnetic field

Bk(t) =
2

ℏ
(ϵk, 0, −V∆(t)) . (2.14)

Note that the Bloch equations for different spins are coupled to each other through

the z-component of the magnetic field. From the definition Eq. (2.11), we have

Bz(t) = −V
∑

k S
z
k(t), which shows that the magnetic field that drives the spin

dynamics originates from individual pseudospins.

In the following, we apply the above coupled Bloch equations to simulate the

interaction quench of the CDW order of the t-V model at half-filling. As discussed

in Sec. 2.1, due to a perfect nesting of the Fermi surface at half-filling, the system is

unstable against the formation of checkerboard CDW order for an arbitrarily small

V . In our interaction quench simulations, the system is initially prepared in the

mean-field ground state of the t-V model with the interaction fixed at an initial value

Vi. At time t = 0, the interaction is suddenly changed to Vf . The quantum quench

simulation can also be viewed as the time evolution of a system which is initialized

in a CDW state stabilized by Vi at t = 0 and is subject to an time-independent

Hamiltonian with Vf for t > 0.

Our simulations summarized in Fig. 2.1 show that the post-quench CDW order

exhibits the three major dynamical behaviors common to order parameters of other

symmetry-breaking phases discussed in Sec. 1.2. First, in the phase-locked regime
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Figure 2.1: The time dependence of the CDW order parameter ∆(t) shows three
main dynamical regimes of a quantum quench: (a) phase-locked regime with
persistent oscillation (Vi = 0.2, Vf = 5.0), (b) Landau-damping regime (Vi = 0.5,
Vf = 1.0), and (c) over-damped regime with a dynamical vanishing of the order
parameter (Vi = 0.5, Vf = 0.1), obtained from pseudospin simulations similar to [1].
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corresponding to a strong quench with Vf/Vi ≫ 1, the CDW order parameter exhibits

a persistent oscillation after a short transient period, as shown in Fig. 2.1(a). In this

regime, the precessional dynamics of individual pseudospins synchronizes with one

another to produce an oscillating B-field that drives their own oscillatory dynamics

self-consistently. Physically, this describes a synchronized oscillation of the collective

CDW order parameter and individual particle-hole pairs.

For intermediate quenches such that the static CDW order parameters before and

after the quench are similar ∆f ∼ ∆i, the sudden change of interaction again results

in an oscillation of the CDW order parameter. Yet, the amplitude of the oscillation

decreases with time and the CDW order gradually settles to a different value at large

time; see Fig. 2.1(b). More specifically, the decay of the oscillation amplitude follows

a 1/
√
t power law, as in the interaction quench of BCS superconductor and SDW.

This dynamical behavior is similar to the Landau-damping phenomena in plasma

physics and numerous other physical systems. The decaying oscillation of the order

parameter results from a dissipationless energy transfer from the collective modes to

quasiparticle excitations [1,145]. This damping can also be understood as a result of

the increasingly incoherent precessional motions of pseudospins which fail to produce

a self-sustaining driving force.

Finally, for quenches toward to a much smaller interaction, Vf ≪ Vi, the post-

quench state exhibits a dynamical vanishing of the CDW order as shown in Fig. 2.1(c).

In this regime, the magnetic field in Eq. (2.14) is dominated by the kinetic energy
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term. As the precession dynamics of individual particle-hole pairs resorts to their

respective natural frequencies, the resultant dephasing leads to an overdamping of

the CDW order. It is worth noting that here the quenched system relaxes to a

state with a vanishing CDW, despite the fact that a finite CDW order is expected

to exist for a nonzero Vf > 0 due to the Fermi-surface nesting instability discussed

above. Although the system cannot really thermalize under the TDHF evolution, the

vanishing CDW order can be intuitively understood as a result of the system being

in a quasi-equilibrium state of a temperature that is higher than the critical Tc of Vf .

Inclusion of dissipative mechanisms in the post-quench evolution is thus expected to

bring the CDW order back to the static ∆f .

We also note that, instead of an exponential decay as in the case of quench dynam-

ics of BCS pairing, the decline of the CDW order, which sometimes is accompanied

by a small oscillation, follows a 1/t power-law, similar to the case of SDW order

in the quantum quench of square lattice Hubbard model [73]. This algebraic decay

could be attributed to the non-analyticity of the density of states of the square-lattice

tight-binding model at half-filling [73].



Chapter 3

Quench-induced pattern formation in
CDW states in t-V model

In this chapter, we demonstrate quench-induced pattern formations in a system with a

broken Z2 symmetry, which is perhaps one of the simplest symmetry-breaking phases,

of a fermionic system. Specifically, we present extensive simulations on the interaction

quench of the square lattice t-V model, which exhibits a checkerboard CDW order at

half-filling. As the checkerboard charge modulation breaks the sublattice symmetry

of the square lattice, the resultant CDW order is characterized by a Z2 Ising order pa-

rameter. A time-dependent mean-field approach is employed to describe the coherent

dynamics of the perturbed t-V model. Assuming homogeneous CDW order through-

out the quench process, the coherent dynamics of the post-quench CDW states can

be modeled by an Anderson pseudospin theory as discussed in Chapter 2, similar

to the ones used for quench dynamics of BCS superconductors [1, 63, 81]. To incor-

porate dynamical inhomogeneities into the quench simulations, we further develop

a real-space nonlinear von Neumann equation formulation that allows for efficient

22
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0.1

Figure 3.1: Phase diagram of post-quench CDW states of the square-lattice t-V
model. Vi and Vf denote the density-density repulsion before and after the sudden
quench. The three dynamical phases are: (I) phase-locked persistent oscillation, (II)
Landau-damped oscillation, (III) over-damped oscillation with a vanishing CDW
order. The data points are obtained from the Anderson pseudospin method based on
the assumption that a homogeneous CDW order persists in the post-quench states.
Large-scale quench simulations based on the real-space von Neumann equation are
used to study quench-induced dynamical inhomogeneity. The color intensity
indicates the spatial inhomogeneity of density-modulation in the post-quench states.

large-scale simulations.

3.1 Real-space von Neumann equation

The Anderson pseudospin approaches discussed in the previous section are widely

used in the study of quantum quenches of various symmetry-breaking phases including

superconductivity and spin-density waves. As the pseudospin methods assume the

persistence of a perfect long-range order after the quench, these previous works thus
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preclude any spatial inhomogeneity in the post-quench states. To go beyond the

pseudospin methods and allow for spatial fluctuations after a quantum quench, here

we discuss an efficient real-space formulation of TDHF in terms of correlation function

ρij = ⟨ĉ†j ĉi⟩, also known as the single-particle density matrix. From the definition of

the Slater determinant in Eqs. (2.3) and (2.4), the density matrix is related to the

time-dependent single-particle wave functions as

ρij(t) = ⟨Ψ(t)|c†jci|Ψ(t)⟩ =
∑
µ

ϕµ
i (t)ϕ

µ∗
j (t), (3.1)

Compared with time-dependent Schrödinger equation (2.6) for the effective wave

functions, the density matrix approach has the advantage that ρij is directly related

to observables and the corresponding equation of motion is amenable to efficient

numerical simulations.

The pseudospins Sk in Sec. 2.3 actually correspond to the Fourier transform of

the density matrix elements, which are given by

ρq′,q =
〈
ĉ†q′ ĉq

〉
, (3.2)

where ĉq = (1/
√
N)

∑
i ĉie

−iq·ri denotes the fermion operator in momentum space.

In the presence of a perfect CDW order, the only nonzero matrix elements are ρk,k

and ρk,k±Q, where wave vectors k are now restricted to the reduced Brillouin zone.

The effective spins are then given by

Sx
k =

1

2
(ρk,k − ρk+Q,k+Q) , (3.3)
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Figure 3.2: The overall CDW order parameter ∆(t) as a function of time in the
regime of spatially inhomogeneous post-quench states. The quench parameters are:
(a) Vi = 0.5 to Vf = 5.0, and (b) Vi = 0.1 to Vf = 1.5. Snapshots of the emergent
patterns are shown in Fig. 3.3 and 3.4.

Sy
k = −Im ρk,k+Q, Sz

k = Re ρk,k+Q.

This simple analysis further highlights the fact that the pseudospin approach pre-

cludes inhomogeneous post-quench states. The onset of spatial fluctuations thus cor-

responds to the emergence of nonzero matrix elements ρk,k+q with incommensurate

wave vectors q ̸= Q.

The dynamical equation that governs the time dependence of ρij can be directly

obtained from the time-dependent Schrödinger equation (2.6). An alternative, which
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Figure 3.3: Snapshots of particle density ni = ρii distributions (top) and local CDW
order parameter ϕi (bottom) at different time steps after a quantum quench from
Vi = 0.5 to Vf = 5.0. The corresponding checkerboard CDW order as a function of
time is shown in Fig. 3.2(a). Note that the Ising order parameter field, while
exhibiting complex patterns, remains positive throughout the relaxation process.

is physically more intuitive, is to use the “first-quantized" formulation of the mean-

field Hamiltonian. To this end, we note that from the standard mean-field decoupling

for the interaction term: n̂in̂j → ⟨n̂i⟩n̂j + n̂i⟨n̂j⟩ = ρiin̂j + ρjjn̂i, one can define a

time-depndent mean-field Hamiltonian

ĤMF(t) =
∑
ij

ĉ†i Hij[ρ(t)] ĉj, (3.4)

where the first-quantized Hamiltonian has a simple form

Hij = −tij + δij vi(t). (3.5)

The first term represents the kinetic energy, and the second term denotes an effective
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on-site potential

vi(t) = V
∑
j

′ρjj(t) (3.6)

where
∑

j
′ indicates summation over sites j that are nearest neighbors to i. This

Hamiltonian can also be read directly from the form of the time-dependent Schrödinger

equation in Eq. (2.6). The single-particle density matrix then satisfies a self-consistent

nonlinear von Neumann equation,

−iℏ
dρ

dt
= [ρ,H(ρ)], (3.7)

where ρ and H denote the N×N matrix of the density matrix and the first-quantized

Hamiltonian, respectively. Using Eq. (3.5), the explicit von Neumann equation for

the density matrix is

−iℏ
dρij
dt

= (vj − vi)ρij +
∑
k

(tikρkj − ρiktkj) . (3.8)

The CDW order parameter in Eq. (2.7) can be straightforwardly computed from the

diagonal matrix elements

∆(t) =
1

N

∑
i

ρii(t)e
iQ·ri . (3.9)

It is worth noting that for a system of N sites, there are N/2 pseudospins, each indexed

by a wave vector k in the reduced Brillouin zone. The computational complexity of

solving the coupled Bloch equations is thus of order O(N). On the other hand, the

number of independent matrix elements of ρ scales as N2 for general Slater determi-
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nant states with potential spatial inhomogeneity. Integration of the von Neumann

equation using a naive matrix-matrix multiplication method would lead to a O(N3)

complexity. The von Neumann equation formulation allows one to take advantage of

efficient sparse matrix multiplication algorithms, thus improving the computational

efficiency. It is worth noting that even though the TDHF approach essentially reduces

the many-body problem to an effective single-particle one, additional complexity is

required for evolving a density matrix or equivalently a Slater determinant in order

to account for the quantum statistics of identical fermions.

Applying the von Neumann equation method to simulate quantum quenches of the

t-V model up to N = 70×70 systems, we first confirm that, for the same system sizes,

the real-space approach exactly reproduces the Landau-damped and over-damped

oscillations when the Vi, Vf parameters are set to those used in Fig. 2.1. Yet, for

most of the strong quench regime where phase-locked oscillation is expected, our

large-scale simulations observe a CDW dynamics that is distinctly different from the

three dynamical regimes discussed above; two such examples are shown in Fig. 3.2.

In both cases, the interaction is quenched from a small Vi to a much larger Vf .

As discussed in Sec. 2.2, the pseudospin simulations for such strong quench regime

predicts a persistent oscillation of the CDW order parameter in the post-quench

states. Instead, the CDW time traces shown in Fig. 3.2 exhibit damped oscillations

and a finite asymptotic value, similar to the Landau-damping behavior.

However, contrary to the algebraic 1/
√
t decay characteristic of the Landau-
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Figure 3.4: Snapshots of particle density ni = ρii distributions (top) and local CDW
order parameter ϕi (bottom) at different time steps after a quantum quench from
Vi = 0.1 to Vf = 1.5. The corresponding checkerboard CDW order as a function of
time is shown in Fig. 3.2(b). The interfaces that separate CDW domains of opposite
signs correspond to the finite green lines with a nearly constant fermion density of
ρii ∼ 0.5 in the top panels.

damping regime, here we observe a much faster decay of the oscillation amplitudes. In

fact, the decline of the oscillation is even accelerated before the CDW order eventually

collapses to a nearly constant value. This seemingly complex dynamical behaviors

in time domain are not caused by a complex order parameter as in some previous

studies. Instead, as we show in the next section, the collapsed oscillation of the CDW

order is due to the emergence of inhomogeneous post-quench states.

3.2 Dynamical inhomogeneity and pattern formation

The CDW order parameter ∆(t) computed in Eq. (3.9) only represents the overall

difference of particles in the two sublattices, ∆(t) =
(
N e

A(t) − N e
B(t)

)
/N , yet gives

no information about the spatial distribution of particles within the sublattices. The
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unusual damped oscillations in the strong quench regime, as shown in Fig. 3.2, thus

could be caused by the onset of spatial inhomogeneity. To examine this scenario,

the top panels in Fig. 3.3 and 3.4 show the snapshots of on-site particle number

ni(t) = ρii(t) at different times after the quench for the two settings in Fig. 3.2(a)

and (b), respectively. As clearly shown in these snapshots, highly complex patterns

develop in the post-quench states.

Careful examinations show that the quench-induced inhomogeneity mostly is in

the form of longer wavelength density modulations on top of the checkerboard CDW

order. To better characterize such super modulations of particle density, it is conve-

nient to introduce a scalar order parameter field for the local CDW order

ϕ(ri) =
(
ni −

1

4

∑
j

′
nj

)
exp (iQ · ri) , (3.10)

where the prime in the second term again indicates that the summation is restricted

to the nearest neighbors of site-i. This local parameter essentially measures the

difference of the particle number at a given site and that of its nearest neighbors.

A nonzero ϕi thus indicates the presence of local particle modulation around site-i.

The phase factor exp(iQi · ri) = ±1 is introduced to account for the short-distance

checkerboard modulation within a CDW domain. In a perfect checkerboard CDW

state, this local order parameter becomes site-independent and is given by the overall

CDW order parameter ∆(t) defined in Eq. (3.9).

Snapshots of this scalar order parameter ϕi corresponding to the particle density
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profiles at the top row of Fig. 3.3 and 3.4 are shown in the respective bottom panels.

These results highlight a super-modulation of particle density, as demonstrated by the

quasi-periodic square-like patterns in the ϕi field, which itself represents a ultrashort-

period checkerboard density modulation.

In the first case where the interaction is quenched from Vi = 0.5 to Vf = 5.0,

the local CDW order parameter ϕi remains positive throughout the whole system as

shown in Fig. 3.3. This overall positive ϕ-field indicates that a long-range coherence of

the initial checkerboard CDW is preserved in the strong quench process. The complex

patterns observed in our real-space simulations thus correspond to additional long-

wavelength density modulations within a coherent checkerboard domain inherent from

the initial CDW state before the quench. This underlying coherent checkerboard

order is also consistent with the nearly constant CDW order parameter after the

collapse of the oscillations shown in Fig. 3.2. If we use the discrete Ising variable

σi = signϕi to characterize such post-quench states, they would be very different

from configurations observed in thermal quenches from a random state to the low-

temperature phase of a broken Z2 symmetry [146,147]. Due to the locality of thermal

relaxations, a temperature quenches typically results in multiple Ising domains of both

signs σ = ±1 that coexist in a heterogeneous state.

On the other hand, for quenches starting from a much smaller Vi as demonstrated

in the bottom panels of Fig. 3.4, Ising domains of opposite signs indeed emerge in

the post-quench states. In this case, the initial state before the quench exhibits a
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homogeneous CDW order with a small positive value ϕ ∼ 10−2. Immediately after

the quench, the collapse of the coherent oscillation gives rise to a heterogeneous state

where multiple CDW domains with σi = signϕi = −1 are embedded in a background

of positive CDW order parameter ϕ; see Fig. 3.4(b) and (c). The interfaces that

separate Ising domains of opposite signs are of a finite width with a nearly constant

particle density of ρii ∼ 0.5. As the system further relaxes, those Ising domains with

a negative ϕ gradually revert back to the positive sign, yet with a rather small particle

modulation as shown in Fig. 3.4(d).

To further characterize the emergent density patterns, we compute the correspond-

ing structure factor

S(q, t) = |ñ(q, t)|2, (3.11)

where ñ(q, t) is the Fourier transform of the time-dependent particle density ni(t) =

ρii(t). In terms of the momentum-space density matrix introduced in Eq. (3.2), the

amplitude of density modulation at wave vector q is

ñ(q, t) =
1√
N

∑
k

ρk,k+q(t). (3.12)

Fig. 3.5 shows the structure factors of the post-quench states at a few selected times

after a quench from Vi = 0.5 to Vf = 5. These figures are obtained by averaging over

90 independent von Neumann dynamics simulations on a N = 70×70 system. In the

early stage of the post-quench relaxation, the coherent oscillation of a spatially homo-

geneous CDW order gives rise to a delta-function peak in the structure factor shown
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Figure 3.5: Structure factors S(k, t) at various time steps after a quantum quench
from Vi = 0.5 to Vf = 5.0 at time t = 0. The simulated system size is N = 70× 70.
The results are obtained by averaging over 90 independent von Neumann dynamics
simulations. The white dot at Q = (π, π) corresponds to a dominant checkerboard
CDW order. The scale of the color bars in panels (b)–(d) is chosen to highlight the
emergent unstable modes.
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Figure 3.6: Post-quench dynamics in the regime with emergent pattern formation
for a quench from Vi = 0.5 to Vf = 5.0: (a) time dependence of the CDW order
parameter ∆(t), (b) Modulation length λ(t), and (c) correlation length versus time.
The two characteristic times t1 and t2 mark the onset of spatial inhomogeneity and
the collapse of coherent oscillations, respectively.
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in Fig. 3.5(a). As the system further relaxes, the emergence of spatial inhomogeneity

corresponds to the gradual growth of a ring-like feature around the delta-peak, as

shown in Figs. 3.5(b)–(d). The higher intensity points on the ring correspond to the

unstable modes that lead to the pattern formation. The ring-like feature is also char-

acteristic of the labyrinthine structures observed in many pattern-forming systems.

Labyrinths are spatial structures where local stripe orders with random orientations

fail to develop into a long-range order [148,149].

In our case, the super modulations of particle densities shown in Fig. 3.3 seem to

be a combination of local stripe and local checkerboard patterns. A domain of local

stripe modulation on top of the ultrashort period checkerboard CDW is represented

by a pair of wave vectors Q ± ηn̂, where η denotes the modulation wave number

and n̂ is a unit vector indicating the orientation of the stripe. Similarly a domain of

checkerboard super-modulation on top of the (π, π) CDW order is characterized by

a quadrupole of wave vectors Q ± ηn̂1 and Q ± ηn̂2, where n̂1 and n̂2 are a pair of

orthogonal unit vectors. The inhomogeneous CDW states obtained in our real-space

simulations can be viewed as consisting of multiple domains with random unit vectors

n̂. The lack of long-range orientational order thus leads to the formation of a ring

centered at Q as shown in Fig. 3.5(d).

The modulations of the local CDW order parameter can be characterized by two

length scales: the modulation period λ of the superstructure (stripes or checkerboard)

and the correlation length ξ, or characteristic size of superstructure domains. These
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two length scales are related to the ring feature in the structure factor S(q) discussed

above. The modulation length is given by the inverse of the radius η, while the

correlation length is proportional to the inverse of the width of the ring. Specifically,

the modulation period can be computed as λ = 2π/⟨|q−Q|⟩, where the angle bracket

indicates average using the structure factor S(q) as the weighting factor. A similar

formula for the averaged width of the ring can be used to compute the correlation

length.

The evolution of these two length scales after a quench from Vi = 0.5 to Vf = 5.0

is shown in Fig. 3.6. Two characteristic times t1 and t2 are introduced to characterize

the initial relaxation of the post-quench states. As a homogeneous CDW order is

preserved in the initial oscillation period, the correlation length is of the order of the

system size and the modulation period is ill-defined. The onset of inhomogeneity is

signaled by a sudden drop of the correlation length at time t1. We also note that

the super-modulation patterns corresponding to a finite λ emerges immediately at

the onset of inhomogeneity at t1. This indicates that the pattern formation here is

generated by a quick growth of the unstable modes that becomes significant at t1.

The emergence of spatial inhomogeneity also accelerates the decline of the oscillation

amplitude, and the CDW order ∆ settles to a constant at time t2, although small

fluctuations can still be seen afterward.

We also note that both length scales λ and ξ of the quasi-steady states at late

stage of the relaxation depend on the depth Vf/Vi of the interaction quench. This



Chapter 3. Quench-induced pattern formation in CDW states in t-V model 37

is demonstrated by the snapshots, shown in Figs. 3.7(a)–(d), of the late-stage local

CDW order parameter ϕi for four different final Vf with the same initial interaction

Vi = 0.5. Long-wavelength super modulations can be clearly seen in an otherwise

overall positive ϕi field. As discussed above, this overall positive CDW order indicates

that a coherent (π, π) checkerboard density modulation persists in the background

for these quench parameters. The modulation period and coherent length of these

superstructures versus the final Vf are shown in Fig. 3.7(e) at time t ∼ 200 after

the quench. Both length scales decrease with an increasing Vf . Overall, the post-

quench system exhibits a higher level of inhomogeneity with a stronger quench. The

dependence of the modulation period on Vf is related to the instability mechanism

for the pattern formation, which will be left in future work. On the other hand, the

reduced correlation length ξ in the presence of a stronger quench is likely due to the

locality of the pattern formation process in a scenario similar to the Kibble-Zurek

mechanism.

3.3 Conclusion

To summarize, we have presented a comprehensive study of quantum quench dynam-

ics of CDW states in the t-V model. For the square-lattice model at half-filling, the

checkerboard CDW order can be well described by a self-consistent mean-field the-

ory, which can be generalized to include dynamics via the time-dependent variational

principle. This approach essentially describes the evolution of a Slater determinant

CDW state and is equivalent to the well-known time-dependent Hartree-Fock (TDHF)
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4
<latexit sha1_base64="KMJ6kVEvOunAZ4fdE5RhwdRbsKg=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaNqEeiF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipXukVS27ZnYOsEi8jJchQ6xW/uv2YpRFKwwTVuuO5ifEnVBnOBE4L3VRjQtmIDrBjqaQRan8yP3RKzqzSJ2GsbElD5urviQmNtB5Hge2MqBnqZW8m/ud1UhPe+BMuk9SgZItFYSqIicnsa9LnCpkRY0soU9zeStiQKsqMzaZgQ/CWX14lzYuyd1Wu1C9L1dssjjycwCmcgwfXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AIPtjMM=</latexit>

5
<latexit sha1_base64="HG1k8xjZ7LaHsYp6pYNnL7yqLms=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaNokeiF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipXukVS27ZnYOsEi8jJchQ6xW/uv2YpRFKwwTVuuO5ifEnVBnOBE4L3VRjQtmIDrBjqaQRan8yP3RKzqzSJ2GsbElD5urviQmNtB5Hge2MqBnqZW8m/ud1UhPe+BMuk9SgZItFYSqIicnsa9LnCpkRY0soU9zeStiQKsqMzaZgQ/CWX14lzYuyVylf1S9L1dssjjycwCmcgwfXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AIVxjMQ=</latexit>

6
<latexit sha1_base64="/5SS48fwz6tKpVlgSMijgq87xhU=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaNikeiF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipXukVS27ZnYOsEi8jJchQ6xW/uv2YpRFKwwTVuuO5ifEnVBnOBE4L3VRjQtmIDrBjqaQRan8yP3RKzqzSJ2GsbElD5urviQmNtB5Hge2MqBnqZW8m/ud1UhPe+BMuk9SgZItFYSqIicnsa9LnCpkRY0soU9zeStiQKsqMzaZgQ/CWX14lzYuyd12+ql+WqrdZHHk4gVM4Bw8qUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AIb1jMU=</latexit>

7
<latexit sha1_base64="htDuQjORXNou1hfoTFX09yID8ig=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaJryPRi0dI5JHAhswOvTAyO7uZmTUhhC/w4kFjvPpJ3vwbB9iDgpV0UqnqTndXkAiujet+O7m19Y3Nrfx2YWd3b/+geHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHssHM07Qj+hA8pAzaqxUr/SKJbfszkFWiZeREmSo9Ypf3X7M0gilYYJq3fHcxPgTqgxnAqeFbqoxoWxEB9ixVNIItT+ZHzolZ1bpkzBWtqQhc/X3xIRGWo+jwHZG1Az1sjcT//M6qQlv/AmXSWpQssWiMBXExGT2NelzhcyIsSWUKW5vJWxIFWXGZlOwIXjLL6+SZqXsXZUv6xel6m0WRx5O4BTOwYNrqMI91KABDBCe4RXenEfnxXl3PhatOSebOYY/cD5/AH9hjMA=</latexit>

2

<latexit sha1_base64="KMJ6kVEvOunAZ4fdE5RhwdRbsKg=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaNqEeiF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipXukVS27ZnYOsEi8jJchQ6xW/uv2YpRFKwwTVuuO5ifEnVBnOBE4L3VRjQtmIDrBjqaQRan8yP3RKzqzSJ2GsbElD5urviQmNtB5Hge2MqBnqZW8m/ud1UhPe+BMuk9SgZItFYSqIicnsa9LnCpkRY0soU9zeStiQKsqMzaZgQ/CWX14lzYuyd1Wu1C9L1dssjjycwCmcgwfXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AIPtjMM=</latexit>

5

<latexit sha1_base64="Nc8JBoLJwLH74YabXkCw/VqIA9Q=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiTia1l047KCtYU2lMlk0g6dTMLMjVBCP8KNC0Xc+j3u/BunbRbaemDgcM65zL0nSKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjLdYIhPdCajhUijeQoGSd1LNaRxI3g5Gt1O//cS1EYl6wHHK/ZgOlIgEo2ildk/aaEj71Zpbd2cgy8QrSA0KNPvVr16YsCzmCpmkxnQ9N0U/pxoFk3xS6WWGp5SN6IB3LVU05sbPZ+tOyIlVQhIl2j6FZKb+nshpbMw4Dmwypjg0i95U/M/rZhhd+7lQaYZcsflHUSYJJmR6OwmF5gzl2BLKtLC7EjakmjK0DVVsCd7iycvk8azuXdYv7s9rjZuijjIcwTGcggdX0IA7aEILGIzgGV7hzUmdF+fd+ZhHS04xcwh/4Hz+AEAFj4c=</latexit>

�
<latexit sha1_base64="5AAere4XsFjLVDnh/zY405Opu8o=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYnvcmQ2dllZlYMSz7BiwdFvPpF3vwbJ8keNFrQUFR1090VJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtB1Sax/LejBP0IzqQPOSMGivddR95r1xxq+4M5C/xclKBHPVe+bPbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmySp+EsbIlDZmpPycyGmk9jgLbGVEz1IveVPzP66QmvPQzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl/+S5onVe+8enZ7Wqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OcJ6dN+d93lpw8pl9+AXn4xtfJY3f</latexit>

⇠

<latexit sha1_base64="VbTJyX9U1DIPFN9O4MttxoxZrZA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQ7MX9soVt+rOQJaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rFU0YgbP5udOiEnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2nZEPwFl9eJs2zqndZvbg/r9Ru8jiKcATHcAoeXEEN7qAODWAwgGd4hTdHOi/Ou/Mxby04+cwh/IHz+QMreI29</latexit>

Vf

<latexit sha1_base64="HurqohqUfz7S3sxITPqOrlCfdXw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lErceiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8M/Pbj6g0j+WDmSToR3QoecgZNVa6r7n9csWtunOQv8TLSQVyNPrlz94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80un5MQqAxLGypY0ZK7+nMhopPUkCmxnRM1IL3sz8T+vm5rwys+4TFKDki0WhakgJiazt8mAK2RGTCyhTHF7K2EjqigzNpySDcFbfvkvaZ1Vvcvqxd15pX6dx1GEIziGU/CgBnW4hQY0gUEIT/ACr87YeXbenPdFa8HJZw7hF5yPb/TQjP8=</latexit>

70

<latexit sha1_base64="BXBIIC8IvRXagjEro2DFG+SsOUE=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKez6Pga9eIxiHpAsYXbSmwyZnV1mZoWw5A+8eFDEq3/kzb9xkuxBowUNRVU33V1BIrg2rvvlFJaWV1bXiuuljc2t7Z3y7l5Tx6li2GCxiFU7oBoFl9gw3AhsJwppFAhsBaObqd96RKV5LB/MOEE/ogPJQ86osdL9qdsrV9yqOwP5S7ycVCBHvVf+7PZjlkYoDRNU647nJsbPqDKcCZyUuqnGhLIRHWDHUkkj1H42u3RCjqzSJ2GsbElDZurPiYxGWo+jwHZG1Az1ojcV//M6qQmv/IzLJDUo2XxRmApiYjJ9m/S5QmbE2BLKFLe3EjakijJjwynZELzFl/+S5knVu6ie351Vatd5HEU4gEM4Bg8uoQa3UIcGMAjhCV7g1Rk5z86b8z5vLTj5zD78gvPxDe68jPs=</latexit>

30

<latexit sha1_base64="KzIBW+59wu/xdX7u0bEC8wzH6+0=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8co5gHJEmYnvcmQ2dllZlYIS/7AiwdFvPpH3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ68NxeueJW3RnIMvFyUoEc9V75q9uPWRqhNExQrTuemxg/o8pwJnBS6qYaE8pGdIAdSyWNUPvZ7NIJObFKn4SxsiUNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa89jMuk9SgZPNFYSqIicn0bdLnCpkRY0soU9zeStiQKsqMDadkQ/AWX14mzbOqd1m9uD+v1G7yOIpwBMdwCh5cQQ3uoA4NYBDCM7zCmzNyXpx352PeWnDymUP4A+fzB+uyjPk=</latexit>

10

<latexit sha1_base64="7ZDD8lv3LdacLDnZ2qd+Rf4YFLo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEqseiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8M/Pbj6g0j+WDmSToR3QoecgZNVa6r7n9csWtunOQv8TLSQVyNPrlz94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80un5MQqAxLGypY0ZK7+nMhopPUkCmxnRM1IL3sz8T+vm5rwys+4TFKDki0WhakgJiazt8mAK2RGTCyhTHF7K2EjqigzNpySDcFbfvkvaZ1VvYtq7e68Ur/O4yjCERzDKXhwCXW4hQY0gUEIT/ACr87YeXbenPdFa8HJZw7hF5yPb/HGjP0=</latexit>

50

<latexit sha1_base64="Nc8JBoLJwLH74YabXkCw/VqIA9Q=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiTia1l047KCtYU2lMlk0g6dTMLMjVBCP8KNC0Xc+j3u/BunbRbaemDgcM65zL0nSKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjLdYIhPdCajhUijeQoGSd1LNaRxI3g5Gt1O//cS1EYl6wHHK/ZgOlIgEo2ildk/aaEj71Zpbd2cgy8QrSA0KNPvVr16YsCzmCpmkxnQ9N0U/pxoFk3xS6WWGp5SN6IB3LVU05sbPZ+tOyIlVQhIl2j6FZKb+nshpbMw4Dmwypjg0i95U/M/rZhhd+7lQaYZcsflHUSYJJmR6OwmF5gzl2BLKtLC7EjakmjK0DVVsCd7iycvk8azuXdYv7s9rjZuijjIcwTGcggdX0IA7aEILGIzgGV7hzUmdF+fd+ZhHS04xcwh/4Hz+AEAFj4c=</latexit>

�
<latexit sha1_base64="5AAere4XsFjLVDnh/zY405Opu8o=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYnvcmQ2dllZlYMSz7BiwdFvPpF3vwbJ8keNFrQUFR1090VJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtB1Sax/LejBP0IzqQPOSMGivddR95r1xxq+4M5C/xclKBHPVe+bPbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmySp+EsbIlDZmpPycyGmk9jgLbGVEz1IveVPzP66QmvPQzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl/+S5onVe+8enZ7Wqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OcJ6dN+d93lpw8pl9+AXn4xtfJY3f</latexit>

⇠

<latexit sha1_base64="KzIBW+59wu/xdX7u0bEC8wzH6+0=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8co5gHJEmYnvcmQ2dllZlYIS/7AiwdFvPpH3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ68NxeueJW3RnIMvFyUoEc9V75q9uPWRqhNExQrTuemxg/o8pwJnBS6qYaE8pGdIAdSyWNUPvZ7NIJObFKn4SxsiUNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa89jMuk9SgZPNFYSqIicn0bdLnCpkRY0soU9zeStiQKsqMDadkQ/AWX14mzbOqd1m9uD+v1G7yOIpwBMdwCh5cQQ3uoA4NYBDCM7zCmzNyXpx352PeWnDymUP4A+fzB+uyjPk=</latexit>

10

<latexit sha1_base64="7H0tUum1bKBh6wSVpqwJiqSNH8o=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEqseiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8M/Pbj6g0j+WDmSToR3QoecgZNVa692r9csWtunOQv8TLSQVyNPrlz94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80un5MQqAxLGypY0ZK7+nMhopPUkCmxnRM1IL3sz8T+vm5rwys+4TFKDki0WhakgJiazt8mAK2RGTCyhTHF7K2EjqigzNpySDcFbfvkvaZ1VvYtq7e68Ur/O4yjCERzDKXhwCXW4hQY0gUEIT/ACr87YeXbenPdFa8HJZw7hF5yPb/NGjP4=</latexit>

15

<latexit sha1_base64="L7op32RVCZxMxkffJGfEpdKWWsM=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpoer2SmW34s5AlomXkzLkqPdKX91+zNKIK2SSGtPx3AT9jGoUTPJJsZsanlA2ogPesVTRiBs/m106IadW6ZMw1rYUkpn6eyKjkTHjKLCdEcWhWfSm4n9eJ8Xw2s+ESlLkis0XhakkGJPp26QvNGcox5ZQpoW9lbAh1ZShDadoQ/AWX14mzWrFu6xc3J+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB+03jPo=</latexit>

20

<latexit sha1_base64="T+9roozo5A7d3qS1aKtbdsmzgtM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgadkVHzkGvXiMaB6QLGF2MpsMmZ1dZnqFEPIJXjwo4tUv8ubfOEn2oNGChqKqm+6uMJXCoOd9OYWV1bX1jeJmaWt7Z3evvH/QNEmmGW+wRCa6HVLDpVC8gQIlb6ea0ziUvBWObmZ+65FrIxL1gOOUBzEdKBEJRtFK955b7ZUrnuvNQf4SPycVyFHvlT+7/YRlMVfIJDWm43spBhOqUTDJp6VuZnhK2YgOeMdSRWNugsn81Ck5sUqfRIm2pZDM1Z8TExobM45D2xlTHJplbyb+53UyjKrBRKg0Q67YYlGUSYIJmf1N+kJzhnJsCWVa2FsJG1JNGdp0SjYEf/nlv6R55vqX7sXdeaV2ncdRhCM4hlPw4QpqcAt1aACDATzBC7w60nl23pz3RWvByWcO4Recj29hWI04</latexit>

0.8

<latexit sha1_base64="2vvzfSXPt1ZplalgWYL42IvMlXk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0hEq8eiF48V7Qe0oWy2k3bpZhN2N0Ip/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvTAXXxvO+nMLK6tr6RnGztLW9s7tX3j9o6iRTDBssEYlqh1Sj4BIbhhuB7VQhjUOBrXB0M/Nbj6g0T+SDGacYxHQgecQZNVa699xqr1zxXG8O8pf4OalAjnqv/NntJyyLURomqNYd30tNMKHKcCZwWupmGlPKRnSAHUsljVEHk/mpU3JilT6JEmVLGjJXf05MaKz1OA5tZ0zNUC97M/E/r5OZ6CqYcJlmBiVbLIoyQUxCZn+TPlfIjBhbQpni9lbChlRRZmw6JRuCv/zyX9I8c/2qe3F3Xqld53EU4QiO4RR8uIQa3EIdGsBgAE/wAq+OcJ6dN+d90Vpw8plD+AXn4xteUI02</latexit>

0.6

<latexit sha1_base64="o6cKXNNEy+FZHv8bm8RBORY/vMo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgadkVX8egF48RzQOSJcxOepMhs7PLzKwQQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrTAXXxvO+ncLK6tr6RnGztLW9s7tX3j9o6CRTDOssEYlqhVSj4BLrhhuBrVQhjUOBzXB4O/WbT6g0T+SjGaUYxLQvecQZNVZ68Nzzbrniud4MZJn4OalAjlq3/NXpJSyLURomqNZt30tNMKbKcCZwUupkGlPKhrSPbUsljVEH49mpE3JilR6JEmVLGjJTf0+Maaz1KA5tZ0zNQC96U/E/r52Z6DoYc5lmBiWbL4oyQUxCpn+THlfIjBhZQpni9lbCBlRRZmw6JRuCv/jyMmmcuf6le3F/Xqne5HEU4QiO4RR8uIIq3EEN6sCgD8/wCm+OcF6cd+dj3lpw8plD+APn8wdbSI00</latexit>

0.4

<latexit sha1_base64="BL86BsFj5L6T7H9LjnPPfd7iuis=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8LbvB1zHoxWNE84BkCbOT3mTI7OwyMyuEkE/w4kERr36RN//GSbIHTSxoKKq66e4KU8G18bxvZ2V1bX1js7BV3N7Z3dsvHRw2dJIphnWWiES1QqpRcIl1w43AVqqQxqHAZji8nfrNJ1SaJ/LRjFIMYtqXPOKMGis9eG6lWyp7rjcDWSZ+TsqQo9YtfXV6CctilIYJqnXb91ITjKkynAmcFDuZxpSyIe1j21JJY9TBeHbqhJxapUeiRNmShszU3xNjGms9ikPbGVMz0IveVPzPa2cmug7GXKaZQcnmi6JMEJOQ6d+kxxUyI0aWUKa4vZWwAVWUGZtO0YbgL768TBoV1790L+7Py9WbPI4CHMMJnIEPV1CFO6hBHRj04Rle4c0Rzovz7nzMW1ecfOYI/sD5/AFYQI0y</latexit>
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Figure 3.7: Local CDW order parameter field at late stage of the quantum quench
for (a) Vf = 2.0, (b) Vf = 2.5, (c) Vf = 4.0, and (d) Vf = 5.0 with the initial
interaction set at Vi = 0.5. (e) The modulation length λ, and the correlation length
ξ versus Vf with a fixed initial Vi = 0.5.
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theory. Assuming that a homogeneous CDW state is maintained throughout the inter-

action quench, we show that the TDHF is reduced to an Anderson pseudospin theory,

which is widely used for the coherent dynamics of order parameter field in the colli-

sionless limit. Our extensive quench simulations produce three dynamical behaviors of

the CDW order, namely, the phase-locked persistent oscillation, Landau-damped os-

cillation, and dynamical vanishing of the order parameter. These are consistent with

previously reported dynamical phases induced by interaction quenches of symmetry-

breaking phases.

To incorporate spatial inhomogeneity into the quench dynamics, an efficient non-

linear von Neumann equation is obtained from the real-space TDHF theory to describe

the evolution of the post-quench CDW state. For strong quenches starting from a rela-

tively small initial interaction, our large-scale real-space simulations uncover complex

pattern formation in the post-quench CDW states. The onset of spatial inhomogeneity

effectively introduces a dephasing mechanism, leading to the collapse of the otherwise

phase-locked oscillations of the CDW order parameter. The quench-induced spatial

patterns are characterized by domains of super modulations of the particle density

in the form of stripes or checkerboards on top of the original ultrashort-period CDW

order. However, the lack of orientational coherence between different domains leads

to overall disordered patterns similar to the labyrinthine structures observed in many

pattern-forming systems. The resultant structure factor is characterized by a ring-like

feature centered at the checkerboard wave vector Q = (π, π). The inverse radius and
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width of the ring correspond to the super modulation period and coherent length,

respectively, of the inhomogeneous CDW state.

The emergence of the super modulation patterns on top of the CDW order is

caused by unstable modes with wave vectors q = Q + (2π/λ)n̂, where λ is the

modulation period. A common mechanism for pattern formation is the parametric

instability where a pair of unstable modes grow spontaneously from the decay of an

initial driver mode through nonlinear interactions. Indeed, the parametric instability

has been shown to result in the decay of a uniform oscillating pairing order parameter

and the emergence of an inhomogeneous Cooper pair turbulence state. A possible

scenario for pattern formation of the quenched t-V model is the decay of the checker-

board CDW order parameter into a pair of such unstable modes q1 and q2 through

the parametric instability mechanism. However, for general modulation period λ,

the momentum is not conserved in this process q1 + q2 ̸= Q. This consideration

thus rules out the instability as the direct decay of the phase-locked oscillation of the

CDW order. On the other hand, detailed examinations of the initial relaxation after

a quench show that the unstable modes indeed appear in pairs, suggesting a modified

version of the parametric instability. A detailed study of the instability mechanism

will be presented elsewhere.

Our work underscores the importance of dynamical inhomogeneity in quantum

quench dynamics of many-body systems. Indeed, here we demonstrate that the post-

quench dynamics of a many-fermion system with a simple broken Z2 symmetry is
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susceptible to pattern-formation instability, even in the collisionless limit. The emer-

gence of complex patterns in this limit is entirely due to the nonlinear dynamics

of order parameter fields. Our results indicate that pattern formation is likely to

be a generic feature of quantum quenches with more complex order parameters. It

is worth noting that while pattern formation in classical physics is a well-studied

subject, quench-induced spatial inhomogeneity in quantum many-body systems is a

relatively unexplored area of research. In addition to the nonlinearity originating

from the many-body interactions, the quantum fermionic statistics could play a cru-

cial role in the instability mechanisms. For symmetry-breaking phases characterized

by complex ordering structures, the associated pattern formation and mechanisms

might be closely related to the topological defects of the corresponding order param-

eter fields. Finally, inclusion of incoherent processes, such as quantum fluctuations,

quasiparticle scattering, and energy dissipation, are expected to produce even richer

spatiotemporal dynamical behaviors of the post-quench states.



Chapter 4

Pseudospin formular for Holstein
model

4.1 Introduction

To explore post-quench dynamics in the symmetry-breaking phase while avoiding the

artifacts and constraints of mean-field theory, we propose to study the time evolu-

tion of the CDW state in the Holstein model following a interaction quench. The

Holstein model [150,151] describes the coupling between electronic charge and lattice

vibrations, which represent local structural distortions. The vibrational degrees of

freedom are akin to the dispersionless phonons in Einstein’s model. In a bipartite

lattice in 2D and 3D at half-filling, the system is rendered to forming a checkerboard

modulation of local electron density, i.e., the CDW order, accompanied by a staggered

arrangement of lattice distortions, due to Fermi surface nesting. As the checkerboard

charge modulation breaks the sublattice symmetry of the square lattice, the resultant

CDW order is characterized by a Z2 Ising order parameter, which is perhaps the

simplest symmetry-breaking phase in fermionic system. The Holstein model has been

42
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extensively used to investigate phenomena related to electron-lattice coupling, such as

polaron dynamics and superconductivity [152–157], making it a canonical model for

studying CDW physics. Notably, the CDW state remains robust even in the classical

limit of the phonons [158]. The Holstein model is numerically exactly solvable when

treating the lattice degrees of freedom classically, and thus, providing a framework

for studying CDW physics without the limitations of mean-field theory.

The Anderson pseudospin approach [81] has found widespread application in

studying the post-quench dynamics of order parameter fields in various symmetry-

breaking phases, including superconductivity and spin-density-wave states [1,63–66].

For example, the dynamical equation of BCS pairings can be packed into the Bloch’s

equation in the pseudospin formulation, which effectively describes a spin precessing

in a magnetic field [1,63]. A pseudospin formalism for CDW states in the t-V model

has been established in Section 2.3, suggesting the potential derivation of a similar

pseudospin formalism for CDW states in the Holstein model.

Unlike superconducting pairing in the BCS model or CDW states in the t-V

model, which are solely based on electronic degrees of freedom, the Holstein model

incorporates electron-lattice couplings. Therefore, one anticipates reproducing dy-

namical regimes for CDW states analogous to the three main dynamical regimes in

the t-V model, however, with additional equations accounting for lattice distortions

and momenta alongside the CDW equations. Of particular interest is the evolution

of CDW in the non-adiabatic limit, where lattice distortions exhibit a checkerboard
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modulation following the electron modulation. In this limit, the dynamical equa-

tions governing lattice distortion and its corresponding momentum, combined with

the pseudospin formalism of CDW states, constitute the dynamics of CDW states in

electron-lattice coupled systems. Interestingly, in the over-damped regime of CDW

dynamics, finite lattice oscillations persist even when CDW is oscillating around zero

with a small amplitude, indicating the emergence of coherent phonons. Therefore, it

is expected that the dynamical behaviors of the CDW order parameter and lattice

distortions go beyond those in pure electronic models.

In this chapter, we demonstrate quench-induced time-evolution of CDW states in

a system with a broken Z2 symmetry of a fermionic system using Holstein model.

We reproduce the three dynamical regimes, i.e., phase-locked oscillation, Landau-like

damping and over-damped regimes in both electronic and lattice degrees of freedom.

Specifically, we present the renormalization of the natural frequency of the lattice

degrees of freedom, induced by the electron-lattice couplings, which is absent in the

pure electronic system.

The rest of the chapter is organized as follows. In Section 4.2, we derive the

pseudospin formalisms for the CDW states, and the dynamical equations for lattice

degrees of freedom, both based on the assumption that the system is under checker-

board modulation. Due to the redundancy of the parameters in the system, we

perform a dimensional analysis and transform the equations to dimensionless to facil-

iate parameter selection. We then discuss the dynamical behaviors in electronic and
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lattice degrees of freedom in Section 4.3. More characterizations of the dynamical

behaviors and physical discussions are analyzed in detail in Section 4.4.

4.2 Model and Methods

A simplified Holstein model [159] which describes half-filled spinless fermions on a

square lattice interacting with lattice degrees of freedom can be written as:

Ĥ = Ĥe + ĤL + ĤeL. (4.1)

The Hamiltonian is devided into three parts: the electronic kinetic term, the lat-

tice degrees of freedom, and the electron-lattice coupling term. The first term, Ĥe,

contains the hopping of electrons between nearest neiboring sites

Ĥe = −tnn
∑
⟨ij⟩

(
c†icj + c†jci

)
, (4.2)

The second term describes the lattice vibrations,

ĤL =
∑
i

(
1

2m
P 2
i +

1

2
mΩ2Q2

i

)
(4.3)

where m is the mass of a phonon, and K ≡ mΩ2 is the force constant. There exists

an on-site coupling between the electronic and lattice degrees of freedom

ĤeL = −g
∑
i

(
c†ici −

1

2

)
Qi (4.4)

Assuming that the quantum state of the Holstein model is represented as a direct

product state: |Γ(t)⟩ = |Φ(t)⟩ ⊗ |Ψ(t)⟩, where |Φ(t)⟩ and |Ψ(t)⟩ denote the phonon
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and electron wave-functions, respectively. The phonon wave-function can be written

as a direct product of single-site phonon states, denoted as |Φ(t)⟩ = ∏
i |ϕi(t)⟩. This

assumption aligns with the mean-field approximation of the phonons. Consequently,

the expectation values of position and momentum operators can be expressed as

Qi = ⟨ϕi| Q̂i |ϕi⟩ and Pi = ⟨ϕi| P̂i |ϕi⟩. To derive the dynamical equation of the

phonon, we employ the Heisenberg equation of motion, dQ̂i/dt = −i⟨[Q̂i, Ĥ]⟩/ℏ,

where ⟨...⟩ is the expectation value computed using the full wave-function |Γ(t)⟩. The

dynamical equations for Qi and Pi can be simplified as

dQi

dt
=

Pi

m
,

dPi

dt
= gni −mΩ2Qi,

(4.5)

which are exactly the Newton’s equations of motion for position and momentum.

For the electron wave-function, given that the Holstein Hamiltonian is bilinear

in fermion operators, the many-body electron wave-function manifests as a time-

dependent single Slater determinant state. This state persists if the system is initially

prepared in such a configuration [160]. However, due to the complexity of integrating

the Slater determinant wave-function, a method that has primarily been employed

in small-scale systems [161, 162], we opt to define the single-particle density matrix

utilizing the Slater determinant wave-function as:

ρij(t) = ⟨Ψ(t)| ĉ†j ĉi |Ψ(t)⟩ . (4.6)

Given that the dynamical equation governing the density matrix is influenced by the
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segment of the Hamiltonian involving the electronic degrees of freedom, specifically

Ĥe and ĤeL, their first quantized formulations can be readily expressed as:

Ĥe(t) + ĤeL(t) =
∑
ij

ĉ†i Hij ĉj, (4.7)

To derive the equation of motion for the single-particle density matrix, ρij, we com-

mence with the Heisenberg equation of motion for the electron operator,dĉi/dt =

−i[ĉi, Ĥ]/ℏ. The resultant equation corresponds to the von Neumann equation, em-

ploying the first quantized Hamiltonian formulation as depicted in Eq. 4.7, and can

be written as:

iℏ
dρij
dt

=
∑
k

(ρiktkj − tikρkj) + g (Qj −Qi) ρij. (4.8)

The von Neumann equation in reciprocal space can be written as

dρp,q
dt

=
i

ℏ
[(ϵ(q)− ϵ(p)) ρp,q

+ gQ(K) (ρp−K,q − ρp,q+K)]

(4.9)

where we have assumed that the Fourier component of Qi has only one dominant

term, Q(K) at K = (π, π). ϵ(k) ≡ −2tnn(cos(kx) + cos(ky)) is the kinetic energy

term. The Hamiltonian in reciprocal space reads:

Ĥ(k) =
∑
k

ϵ(k)
(
c†kck − c†k+Kck+K

)
− gQ(K)

∑
k

(
c†kck+K + c†k+Kck

)
+

P 2(K)

2m
+

KQ2(K)

2

(4.10)

Define S(p) ≡ (Sx(p), Sy(p), Sz(p)), where Sx(p) ≡ R(ρp,p+K), Sy(p) = I(ρp,p+K),

and Sz(p) ≡ (ρp,p−ρp+K,p+K)/2. Then following Eq. (4.9), the dynamical equations
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of the three pseudospin components can be written as

dSz(p)

dt
= 2gQ(K)Sy(p) (4.11)

dSx(p)

dt
= 2ϵ(p)Sy(p) (4.12)

dSy(p)

dt
= −2ϵ(p)Sx(p)− 2gQ(K)R(Sz(p)) (4.13)

Then the above equations can be packed into Bloch equation as

dS(p)

dt
= S(p)×B (4.14)

where B = (2gQ(K), 0,−2ϵ(p)).

The Newtonian equations, Eq. (4.5), in reciprocal space can be written as

dQ(K)

dt
=

P (K)

m
(4.15)

dP (K)

dt
= gn(K)−mΩ2Q(K) (4.16)

where n(K) =
∑

p ρp,p+K/N . Therefore, Eqs. (4.14)-(4.16) are combined to form

closed equations to describe the dynamics of electronic and lattice degrees of freedom.

To facilitate parameter selection for dynamical simulations, we aim to render the

equations dimensionless. We note that there are two time (energy) scales in Eq. (4.5)

and (4.8). To conduct the simulations effectively, we introduce a characteristic time,
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τ = ℏ/tnn, such that the dimensionless time can be defined as t̃ = t/τ . Next, we

define the characteristic position Q0 and its corresponding characteristic momentum

P0 = mΩQ0. Then the dimensionless hopping amplitude is naturally set to one, which

establishes the energy scale for the electronic degrees of freedom. By ensuring that dt̃

is the same for both the von Neumann equation and Newtonian’s equations, we define

the energy scales for the dynamics of electronic and lattice degrees of freedom. The

dimensionless coupling constant and the spring constant are then expressed as g̃ =

gQ0/tnn and K̃ = KQ2
0/tnn respectively. The derivations of the dynamical equations

with dimensionless quantities, as well as the choice of parameters, are detailed in

Appendix A. Our dynamical simulations are conducted based on the dimensionless

parameters defined above.

4.3 Results

The ground state of the system exhibits a checkerboard modulation of local electron

density, i.e., the checkerboard CDW state. We initialize the system in this ground

state using a single Slater determinant state, which remains persistent throughout

the dynamics, as discussed in Sec. 4.2. In the following, we apply the coupled Bloch

equations for pseudospin and Newton’s equations for lattice degrees of freedom to

simulate the interaction quench of the CDW order of the Holstein model at half-

filling. Initially, the system is prepared in the ground state at an initial coupling

constant gi. At time t = 0, the coupling is suddenly switched to gf , and the time

evolution of the initial ground state is subjected to a time-independent Hamiltonian
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at gf in the following.

The CDW order parameter is defined as ∆(t) =
∑

p ρp,p+K. The simulation

results are summarized in Fig. 4.1 and 4.2, for CDW order parameter ∆(t) and lat-

tice distortions Q(K) respectively. The post-quench CDW order parameter exhibits

three main dynamical behaviors that are overall similar to order parameters in other

symmetry-breaking phase. However, in the phase-locked regime, the peak of the os-

cillation contains the overlap of small oscilation with higher frequency, leading to a

deviation from sinusoidal function. In the Landau-like damping regime, we observe

the decay of the oscillation amplitude. However, the oscillation does not disappear

even after a long simulation time before the finite-size effect comes into play. This

can be understood as the non-thermal nature of the Holstein model. The Slater-

determinant state remains throughout the time evolution, which prevents the system

from being thermalized, resulting a possible persistent oscillation of the order param-

eter. In the over-damped regime, the order parameter oscillates with an average value

approximately to zero. Higher frequency oscillations sits on top of the main oscillation

can be observed from the small peaks atop the sinusoidal function. The deviation

of non-adiabatic post-quench dynamics of CDW order parameter in Holstein model

from other symmetry-breaking phase results from the electron-lattice coupling and

the classical limit of the lattice degrees of freedom.

For the dynamical behaviors of lattice distortions Q(K), a sinusoidal persistent

oscillation is observed in the phase-locked regime. In the Landau-like damping regime,
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Figure 4.1: The time dependence of the CDW order parameter ∆(t) in the three
main dynamical regimes of a quantum quench: (a) phase-locked regime with
persistent oscillation (gi = 0.8, gf = 1.6), (b) Landau-damping regime (gi = 0.5,
gf = 0.6), and (c) dynamical vanishing of the order parameter (gi = 1.0, gf = 0.1).
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Figure 4.2: The time dependence of the QK(t) in the three main dynamical regimes
of a quantum quench: (a) phase-locked regime with persistent oscillation (gi = 0.5,
gf = 3.0), (b) Landau-damping regime (gi = 0.8, gf = 0.9), and (c) dynamical
vanishing of the order parameter (gi = 0.8, gf = 0.1).
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the dynamics of Q(K) mirrors that of the CDW order parameter. The dynamical

behaviors of these two regimes are shown in Fig. 4.1 (a)-(b) respectively. Interestingly,

in the over-damped regime, although the CDW order parameter is quickly damped to

an average value around zero, as shown in Fig. 4.1(c), the lattice distortion exhibits

persistent oscillation with a finite amplitude. This indicates the emergence of coherent

phonons. The generation of coherent phonons is unique to systems involving lattice

vibrations. Since the damping of the CDW order parameter, defined as ∆(t) = nK,

occurs rapidly, the driving term on the right-hand side of Eq. 4.16 vanishes early in

the dynamics, resulting in the maintenance of the checkerboard modulation of the

lattice distortions.

To obtain more details in the post-quench dynamics of charge and lattice degrees of

freedom, we can calculate the time evolution of electronic energy, kinetic and potential

energies, of the lattice degrees of freedom, labelled by Ee, Ek, and Ep respectively.

The definition of the three energies can be written as:

Ee =
∑
p

ϵ(p)ρp,p − gQ(K)ρp,p+K,

Ek =
1

2m
P 2(K),

Ep =
1

2
KQ2(K).

(4.17)

The time evolution of the three energies (averaged over the total number of sampled

wave vectors) in different dynamical regimes is plotted in Fig. 4.3. In the phase-locked

regime, the three energies oscillate persistently, indicating the exchange of energy
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Figure 4.3: The time dependence of the potential energy Ep (purple curves), kinetic
energy Ek (green curves), and electronic energy Ee (blue curves) in (a) phase-locked,
(b) Landau-like damping, and (c) over-damped regimes respectively.The inner
panels in (b) and (c) are potential energy Ep and kinetic energy Ek.
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between different degrees of freedom without decay. In the Landau-like damping

regime, the kinetic and potential energies decay over time, suggesting a reduction in

the oscillation amplitude of lattice distortions. Finally, in the over-damped regime,

the kinetic and potential energies exhibit a time evolution characteristic of a harmonic

oscillator, consistent with the observation of coherent phonons.

To conclude this section, we summarize that our simulations reproduce the three

dynamical regimes found in the post-quench dynamics of symetry-breaking phase

in pure electronic systems. On top of that, we also study the dynamical behaviors

of the lattice distortion Q(K). The dynamical behaviors of lattice distortion are

similar to CDW order parameter in phase-locked and Landau-like damping regimes.

However, in the over-damped regime, lattice distortion exhibits persistent oscillation

even after the CDW order is damped to nearly zero. This indicates the emergence of

coherent phonons. The frequency of the lattice degrees of freedom and the electron-

lattice coupling play important roles in the dynamics of the CDW order parameter

and lattice distortion. How does such coupling affects the oscillation frequency and

dynamical behaviors of CDW order parameter and lattice distortion? The detailed

analysis is presented in the next section.

4.4 Discussion

As proposed at the end of Sec. 4.3, we need to study how the electron-lattice coupling

affects the dynamical behaviors of the CDW order parameter and lattice distortion.

A characteristic Q0 for lattice distortions can be estimated from the balance of elastic
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energy and electron-phonon coupling: KQ2
0 ∼ g⟨n⟩Q0. Assuming electron number

⟨n⟩ ∼ 1, we obtain Q0 ∼ g/K. Based on this characteristic scale, the value of

Q(K) in ground state is the same, as determined by the self-consistent condition

d⟨H(k)⟩/dQ(K) = 0, where the expectation value is found using the direct product

state of the electron and phonon wave-functions. If we fixed the values of initial and

final coupling constants, gi and gf respectively, we can determine the initial and final

self-consistent lattice distortions, Qi(K) and Qf (K). Therefore, the value of Qi(K)

and Qf (K) is unchanged if Ω varies. Here we show the time evolution of lattice

distortions quenching from gi = 1.0 to gf = 4.0 at various Ω in Fig. 4.4. For small

Ω, the lattice distortions exhibits persistent oscillation without decay in amplitude.

However, as Ω increases, the oscillatory amplitude decays to a smaller finite values

in later stage of the time evolution. We can calculate the oscillation amplitude, ∆Q,

of the lattice distortion at each Ω, and the relation between ∆Q and Ω is shown in

Fig. 4.5(a). The simulations suggest that the oscillation amplitudes decreases when

the Ω increases. It is important to clarify that the oscillation frequency of the lattice

distortion after quantum quench, Ω̃, is different from the natural frequency Ω for the

classical degrees of freedom. The oscillation frequency of the lattice distortion can be

calculated through the Fourier transformation in time domain, and its relation with

Ω is shown in Fig. 4.5(b). The actual oscillation frequency is smaller than the natural

frequency due to the renormalization by the electron-lattice coupling.
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Figure 4.4: Post-quench dynamics of lattice distortions Q from gi = 1.0 to gf = 4.0,
in which Qi(K) ≃ 0.06 and Qf (K) ≃ 1.94, at various frequencies for classical
degrees of freedom, (a) Ω = 0.1, (b) Ω = 0.5, and (c) Ω = 0.8. Qf (K) is labelled
with a green line.
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Figure 4.5: (a) The relation between the oscillation amplitude of the lattice
distortions and the natural frequency of the classical degrees of freedom; (b) The
relation between the oscillation frequency of the lattice distortions and the natural
frequency of the classical degrees of freedom.



Chapter 5

Possible anomalous coarsening and
spontaneous glassy in CDW states

5.1 Introduction

In this chapter, we investigate the post-quench dynamics of CDW states in Holstein

model that goes beyond the pseudospin method and allows spatial fluctuations af-

ter the quantum quench. The efficient formulation of Newton and von Neumann

equations, Eqs. 4.5 and 4.8 outlined in Section 4.2, are adopted for the real-space

simulations. There are two quench scenarios we would like to investigate. In the first

scanario, the initial state is prepared when the electron-lattice couplings vanish, so

as the lattice distortions and momenta. In other words, the initial state is a non-

interacting fermion system. If the Hamiltonian is quenched to finite electron-lattice

coupling, it is expected that CDW order states emerged during the post-quench time

evolution. Our simulations indicate that, when the final coupling constant gf < 0.6,

there is no significant CDW order emerged. However, if gf ∈ [0.6, 1.4], there exists

an anomalous coarsening in CDW domains. Finally, if gf > 1.4, the system exhibits
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spontaneous glassy states. In the second scenario, instead of zero electron-lattice

coupling, the initial state is prepared in the checkerboard modulated CDW state at a

finite coupling gi. When the system quenched to another finite coupling gf , the emer-

gent modes can be understood with mechanism of the parametric instability. The

systematic numerical and theoretical study of the second scenario are in progress.

We will only present the numerical results in this dissertation.

5.2 Anomalous coarsening of CDW states

We first investigate the post-quench dynamics of starting from a state with vanishing

electron-lattice coupling. The main results of our extensive quench simulations are

summarized in a schematic phase diagram of dynamical regimes shown in Fig. 5.1.

In the first regime in Fig. 5.1(a), quenching to a small final gf gives no CDW order

states. However, if the system is quenched to an intermediate gf , where gf is roughly

in [0.6, 1.4], the system exhibits coarsening of CDW domains as shown in Fig. 5.1(b).

If the system is quenched to a even larger gf , say gf ≥ 1.5, the system relaxes to a

glassy states, as shown in Fig. 5.1(c).

As we learn from the spatial inhomogeneity and patter formation observed in

t-V model in Section 3.2, the quench-induced inhomogeneity mostly is in the form

of longer wavelength density modulations on top of the checkerboard CDW order.

Therefore, it is convenient to use the local lattice distortion order parameter, Φi,
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Figure 5.1: Phase diagram of post-quench CDW states of the square-lattice Holstein
model. gf denotes the strength of electron-lattice coupling constant after interaction
quench. The three dynamical phases are: ((a)) small final gf in which no significant
CDW order states emerged, (b) coarsening of CDW domains after quenching to
intermediate gf , and (c) spontaneous glassy states with large gf .

defined as

Φ(ri) =
(
Qi −

1

4

∑
j

′
Qj

)
exp (iK · ri) , (5.1)

to characterize the super modulation. This scalar order parameter is similar to its

electronic counterpart defined in Eq. 3.10. Snapshots of this local CDW order param-

eter Φi corresponding to the lattice distortion profiles of the coarsening and glassy

regimes are shown by top and bottom row of Fig. 5.2 respectively. These results high-

light a super-modulation of lattice distortions, as demonstrated by the quasi-periodic

square-like patterns in the Φi field, which itself represents a ultrashort-period checker-

board density modulation. We can again use the discrete Ising variable σi = sign(Φi)

to characterize such post-quench state. In the snapshots in Fig. 5.2 (a)-(d), multiple

positive and negative Ising domains emerged, and those domains tend to merge and

form larger domains during the relaxation. In Fig. 5.2 (e)-(h), although the multiple
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Figure 5.2: Snapshots of Φi at various time steps for system quenching from gi = 0
to (a)-(d): gf = 0.8, where coarsening of CDW domains is observed; and (e)-(h):
gf = 1.5, in which a spontaneous glassy state is emerged.

domains are merging to form larger domains in the early stage, this process renders to

the formation of relatively steady patterns with multiple positive and negative Ising

domains, which can be understood as a spontaneous glassy state. Notice that the

interfaces that separate Ising domains of opposite signs are of a finite width with a

nearly vanishing lattice distortions.

To further characterize the coarsening and glassy state, one can we compute the

corresponding structure factor

SQ(q, t) = |Q̃(q, t)|2, (5.2)

where Q̃(q, t) is the Fourier transform of the time-dependent lattice distortions Qi(t),

Q̃(q, t) =
1√
N

∑
i

(
Qi(t)− Q̄

)
expik·ri . (5.3)
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If the lattice distortions exhibit checkerboard modulated pattern, it corresponds to a

peak at wave vector K = (π, π). However, as shown in Fig. 5.3 (a)-(c), the quenched

state exhibits a broad diffusive peak around K due to the existence of multiple CDW

domains with opposite signs in the early stage of the time evolution. The width of the

diffusive peak thus provides an estimation of the typical size of the CDW domains,

defined as L(t) = 2π/⟨|q−K|⟩, where the angle bracket indicates average using the

structure factor S(q) as the weighting factor. In the coarsening regime, the emerged

CDW domains tend to merge and form larger domains, which indicates that L(t)

becomes larger, as shown in Fig. 5.3(d). Similar oscillatory behavior accompanying

the coarsening in the time evolution of L(t), is reported in coarsening in quench

dynamics of ferromagnetic spinor Bose gas [163], As the system becomes more ordered

in the later stage as only two CDW domains remain, the width of the diffusive peak

in the structure factor becomes smaller in the later stage of the dynamics.

It is important to examine whether the coarsening of CDW domains, character-

ized by the characteristic length L(t) according to the kinetics of phase ordering,

follows the well-established power law growth rate [164]. Kinetic Monte Carlo simu-

lations [165,166] of the nearest-neighbor ferromagnetic Ising model on different lattice

systems find that the power-law domain growth satisfies the following expression,

L(t) ∼ t1/z, (5.4)

where z is universal, independent from the lattice geometry and dimensionality. Since
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Figure 5.3: (a)-(c): structure factors at various time steps for systems quenched to
gf = 0.8; (d) the time dependence of characteristic length, L(t), of CDW domains;
inner panel: log-log scale of L(t) , with a power-law growth characterized by an
exponent 1/z = 0.55.



Chapter 5. Possible anomalous coarsening and spontaneous glassy in CDW states65

Figure 5.4: The power-law growth for the coarsening of CDW domains are
characterized by exponent 1/z = 0.55 for different dimensinalities of 50× 50,
60× 60, and 70× 70. The deviation of L(t) from the power-law growth occurs at a
later stage when system size becomes larger, which indicate that such deviation is
likely due to the finite size effect.

the CDW transition belongs to the Ising universality class, the CDW is expected

to have similar coarsening behavior as that in Ising system. In dynamics with non-

conserving Ising order parameter, as in our CDW coarsening dynamics, the power-law

growth obeys the Allen-Cahn law with exponent z = 2. Based on the above analysis,

we fit the power-law growth of L(t) and the exponent is roughly 1/z ∼ 0.55, indicating

a non-Allen-Cahn law growth. The deviation of L(t) from this power-law growth is

possibly due to the finite size effect. To verify this, we conduct simulations for sizes

from 50× 50 to 70× 70. The characteristic lengths calculated from different system

sizes are plotted and fit in Fig. 5.4. The power-law growth for the coarsening of CDW

domains are characterized by exponent 1/z = 0.55 for different dimensinalities. The

deviation of L(t) from the power-law growth occurs at a later stage if the system size

becomes larger, indicating that such deviation is likely due to the finite size effect.
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In conclusion, the coarsening of CDW domains in such post-quench dynamics

is not following the Allen-Cahn law with 1/z = 0.5, which indicates that it is an

anomalous coarsening behaviors. The finite size effect of our simulation is address

by comparing the power-law growth of different L(t) computed from various system

sizes. Quantitative method for determining the exponent can be achieved by the data

collapse method [167] in the future study.

5.3 Spontaneous glassy states

The bottom row in Fig. 5.2 for quenching to large electron-lattice coupling indicates a

different dynamical behavior from coarsening. The CDW pattern becomes relatively

stable at late stage, indicating a spontaneous glassy state. To verify this, we can

calculate the structure factor SQ(q, t) and L(t) for gf = 1.5. The structure factor at

various time steps are shown in Fig. 5.5 (a)-(c). As the system exhibits multiple CDW

domains with different signs, the structure factor exhibits a diffusive peak surrounding

K = (π, π). The fluctuations of the local lattice distortion order parameter Φi in each

domain causes the increase and decrease in the modes other than K. However, the

diffusive peak is maintained in late stage, suggesting the formation of glassy state

and the characteristic length is approaching a finite value, as shown in Fig. 5.5(d).

We label the characteristic length in glassy regime in late stage as ξ. To see the

relation between gf and ξ can be obtained by calculating the characteristic length in

late stage at various gf . The results are shown in Fig. 5.6. The value of ξ becomes

smaller for larger gf , suggesting that the CDW domains are not able to merge to



Chapter 5. Possible anomalous coarsening and spontaneous glassy in CDW states67

Figure 5.5: (a)-(c): structure factors at various time steps for systems quenched to
Vf = 1.5; (d) the time dependent CDW characteristic length.
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Figure 5.6: The gf dependence of characteristic length in late stage in glassy regime.
The light blue region indicates the range of gf without glassy state.

form larger domains for quenching to large gf . However, with the increase of gf , the

decrease of ξ becomes smaller and finally asymtotically approaching a finite value of

ξ.

5.4 Conclusion and outlook

To conclude this chapter, we briefly discuss the scenarios when the system is prepared

in the ground state with finite electron-lattice coupling. In this case, the ground

state is the checkerboard modulation of charge density and lattice distortion, and

only a peak at K = (π, π) is observed. When the system is quenched to a larger

gf , modes other than K emerged during the post-quench dynamics. In the structure

factor of a quench simulation from gi = 0.5 to gf = 5.0, we find that the first

modes other than K emerged around k1 = (π, 0) and k2 = (0, π), as shwon in

Fig 5.7. This can be understood as a decay from mode at K to modes at k1 and k2.
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Figure 5.7: The initial state has only one mode at K = (π, π). In the post-quench
dynamics, modes at k1 = (π, 0) and k2 = (0, π), which suggests a parametric
instability mechanism for the emergence of spatial inhomogeneity.

Such a process obeys the conservation of energy and momentum, and thus is likely a

process of parametric instability [90]. Theoretical understanding of such parametric

instability process can be derived from the Bloch equation and Newton equations

using pseudospin formalism, and the Fermi statistics is possibly playing an important

role in this mechanism. The relevant investigation is in progress.



Chapter 6

Photo-induced pattern formation in
CDW states

6.1 Introduction

In this chapter, we present large-scale real-space simulations of photo-induced ul-

trafast CDW dynamics in a 2D semi-classical Holstein model [159]. This model is

a prototypical system for studying phenomena related to electron-phonon coupling,

such as phonon-mediated superconductivity [168, 169], polaron dynamics [170, 171],

and in particular CDW physics [172–175]. Also notably, CDW orders in Holstein

model are intimately related to lattice distortion, thus providing a platform for inves-

tigating the interplay between collective CDW behaviors and lattice dynamics. To

account for dynamical inhomogeneities induced by laser pulses, an efficient real-space

methods is developed by combining the von Neumann equation for electron density

matrix with the Newton equation for lattice distortions.

We find that while the CDW order is reduced due to the injected energy, the

ultrafast photoexcitation also generates a coherent oscillation of both the CDW order
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and lattice distortion. The melting of the CDW order depends critically on the

amplitude as well as the frequency of the laser pulse. Our large-scale simulations show

that the melting process proceeds through the breakup of the initial uniform CDW

domain into a highly inhomogeneous state with finite CDW order locally. Intriguingly,

we find that while an overall CDW order survives for slightly sub-critical excitations,

the system exhibits stripe modulations of the CDW amplitude. This initial stripe

pattern then breaks into more complex patterns at later times.

The rest of the chapter is organized as follows. In Sec. 6.2, we briefly review the

Holstein model and the Peierls substitution for modeling the laser pulse excitation.

We also discuss the governing equations of the CDW state in the semi-classical Hol-

stein model and the efficient implementation of the real-space method. The ultrafast

dynamics of photo-induced CDW states is summarized in Sec. 6.3. A systematic

analysis of the CDW order on the fluence and frequency of the pump pulse is also

presented. Detailed descriptions of the pattern formation and its structures in some

specific frequency are summarized in Sec. 6.4. Finally, we conclude the paper with a

summary and outlook in Sec. 6.5.

6.2 Model and Methods

We consider a Holstein model [159] with spinless fermions on a square lattice, and

the Hamiltonian is listed in Eq. (4.1)-(4.4). The Newton equations for lattice degrees

of freedom, and von Neumann equation for electronic degrees of freedom are derived

in Chapter 4 in Eqs. (4.5) and (4.8).
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Figure 6.1: Time evoulution of (a) the injected energy per
site ∆ε(t) = [E(t)− E0]/N , (b) the CDW order parameter ∆K(t), and (c)
amplitude of staggered distortion QK(t), for laser pulse excitation with different
center frequencies. The width of the laser pulse is fixed at σ = 2, the peak time is at
t0 = 5, and the amplitude is A = 0.5.

In order to model the laser excitation, the Peierls substitution is employed to

incorporate the coupling to the electric field of a laser pulse. Consider a uniform

linearly polarized electric field E(t) = −∂A/∂t, where A(t) = p̂A(t) is the time-

varying vector potential, and ê is the polarization vector. In the presence of an

electric field, the electron hopping integral acquires a phase factor

tijc
†
icj → tije

iA(t)·(ri−rj)c†icj. (6.1)

In our simulations below, we assume a Gaussian function for the laser pulse

A(t) = A exp
[
(t− t0)

2/σ2
]
cos [ω(t− t0)], (6.2)

where A represents the amplitude of the pulse, t0 is the peak time, σ is the pulse

width, and ω is the center frequency of the pulse.

There are two characteristic time scales for the dynamics of the Holstein model.

First, from the bandwidth of the electron tight-binding model W = 8tnn, one can
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define a time scale τe = ℏ/tnn for the electron dynamics. On the other hand, the

natural frequency Ω of the Einstein phonons gives a characteristic time τL = 1/Ω

for the lattice dynamics. The dimensionless adiabatic parameter is defined as the

ratio r = τe/τL = ℏΩ/tnn. which characterizes the relative time scales of the two

subsystems. A characteristic Q0 for lattice distortions can be estimated from the

balance of elastic energy and electron-phonon coupling: KQ2
0 ∼ g⟨n⟩Q0. Assuming

electron number ⟨n⟩ ∼ 1, we obtain Q0 ∼ g/K. A momentum scale P ∗ = mΩQ0 can

be obtained from Eq. (4.5). Based on this characteristic scale, the electron-phonon

coupling can be characterized by a dimensionless parameter λ = gQ0/W = g2/WK.

For all simulations discussed below, the two dimensionless parameters are set to

r = 0.4 and λ = 1, the simulation time is measured in unit of τe, and the lattice

distortion is expressed in terms of Q0.

6.3 Photo-induced Melting of CDW order

The method discussed in Sec. 6.2, namely the real-space von Neumann equation (4.8)

coupled with Newton equation (4.5), is applied to simulate the photo-induced ultrafast

CDW dynamics in a pump-probe setup. In all simulations below, we consider a

polarization along the symmetric diagonal direction ê = (x̂ + ŷ)/
√
2, and a system

size of 60×60. The system is initially prepared in a ground state with a homogeneous

CDW order and a concomitant checkerboard lattice distortion. This initial CDW state

is then subject to a short laser pulse of the wave form (6.2). It is worth noting that

the square-lattice tight-binding model exhibits a divergent Lindhard susceptibility at
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half-filling due to a perfect nesting of the Fermi surface. As a result, the system is

unstable against the formation of a staggered lattice distortion Qi = Q exp(iK · ri),

where K = (π, π) is the ordering wave vector of the checkerboard pattern and Q is

the distortion amplitude. As detailed in App. B, the staggered distortion induces a

concomitant charge modulation and opens a spectral gap εgap = 2gQ, rendering the

system a CDW insulator. The energy gap is determined by the competition between

the gain of electronic energy through gap opening and the cost of elastic energy;

details can be found in App. B.

The finite spectral gap also means that electron-hole pairs cannot be excited by

photon energies less than the CDW band gap. This implies a threshold frequency

ℏωth = ϵgap = 2gQ for continuous wave excitations. Yet, instead of a sharp thresh-

old transition as a function of frequency, a crossover behavior is expected due to a

combination of nonlinear effects and finite width of the pump pulse. A laser pulse of

width σ comprises photons of energies in a finite range ℏ(ω ± δω) around the center

frequency, where the bandwidth δω ∼ σ−1. Consequently, for a pulse with a sub-

threshold center frequency, photons in the higher energy end of the pulse spectrum

could exceed the CDW gap and excite electron-hole pairs, a process that is further

enhanced by nonlinear effects with a large laser fluence.

A quantitative measure of the above-gap photoexcitation is the average energy

(per site) ∆ε deposited to the system by the laser pulse. Fig. 6.1(a) shows the injected

energy ∆ε(t) as a function of time for various center frequencies. The pulse width is
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Figure 6.2: Time evoulution of (a) the injected energy per
site ∆ε(t) = [E(t)− E0]/N , (b) the CDW order parameter ∆K(t), and (c)
amplitude of staggered distortion QK(t), for laser pulse excitation with different
amplitude A. The width of the laser pulse is fixed at σ = 2, the peak time is at
t0 = 5. The center frequency of the laser pulse is set at ω = 3, which is well below
the threshold ωth = 7.142.

fixed at σ = 2, and the peak time is at t0 = 5. Most of the energy injection occurs

during the pulses width. The total energy remains nearly a constant after the pulse

excitation, indicating a closed-system evolution under the coupled von Neumann and

Newton dynamics. Importantly, although the threshold frequency from the initial

condition is ℏωth = 2gQ = 7.142, significant energy transfer takes place already at

ℏω ∼ 3. The overall energy deposition increases with the center frequency.

To quantify the dynamics of the nonequilibrium CDW state, we introduce time-

dependent order parameters for the checkerboard density modulation

∆K(t) =
1

N

∑
i

⟨Ψ(t)|n̂i|Ψ(t)⟩eiK·ri , (6.3)

where |Ψ(t)⟩ is the single Slater determinant state, and the phase factor exp(iK · ri) =

+1 and −1 for sites in the A and B sublattice, respectively. Fig. 6.1(b) shows the CDW

order versus time for laser pulses of varying center frequencies. The photoinduced
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nonequilibrium CDW states exhibit complex dynamics. Importantly, for most cases

the laser pulse induces a prominent coherent oscillation of the CDW order which

persists for a long time. This oscillation is accompanied by a lattice dynamics as

shown in Fig. 6.1(c), where we plot the time dependence of the order parameter

QK(t) that characterizes the overall staggered distortion

QK(t) =
1

N

∑
i

Qi(t) e
iK·ri . (6.4)

The time evolution of the staggered lattice mode closely follows that of the CDW

order parameter.

As discussed above, sub-threshold excitation results in the reduction of CDW

order already for frequencies as low as ℏω = 4, which is well below the threshold

ℏωth = 7.142. Upon increasing the center frequency of laser pulses, more energy

is injected into the CDW state, giving rise to a reduced average CDW order. The

photoexcitation with a sub-threshold center frequency is further enhanced by an in-

creasing laser intensity due to the nonlinear effects. For example, Fig. 6.2 summarizes

simulation results of laser excitations with a sub-threshold frequency ℏω = 3 and vary-

ing intensities A. Upon increasing the laser intensity, more energy is deposited onto

the system, which in turn results in a reduced average CDW order and an enhanced

coherent oscillation. For laser excitations with large enough fluence, e.g. A = 2.0,

even a pulse with sub-threshold frequency can completely melts the CDW order, as

shown in the case of A = 2.0 in Fig. 6.2(b) and (c).
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The mechanism of photoinduced suppression and melting of the checkerboard

CDW order and the emergence of coherent oscillation can be understood as follows.

Assuming negligible momentum of the incoming photons, the laser pulse excites a

quasi-particle from the filled valence band E−
q to the empty conduction band E+

q of

the initial CDW state, i.e. |±q⟩ ∝ γ̂†
+,qγ̂−,q|CDW0⟩, where γ̂±,q are the quasi-particle

operators. The characteristic frequency of a pair of quasi-particle and quasi-hole is

ℏνq = E+
q −E−

−q = 2
√

ε2q + (gQ)2. In the absence of electron-electron scattering, the

dynamics of a quasi particle-hole pair is an oscillatory motion with their natural fre-

quency. Importantly, the photoexcited quasi-particles will modify the density matrix

in Fourier space ρq,q+K, which in turn contributes to the CDW order parameter

∆K(t) =
∑
q

ρq,q+K(t) (6.5)

=
∑

q,µν=±

Cµν
q ⟨Ψ(t)|γ†

µ,qγν,q|Ψ(t)⟩.

Here ρq,q+K(t) = ⟨Ψ(t)|ĉ†q+Kĉq|Ψ(t)⟩ describes the correlation of a particle-hole pair

with a momentum difference K = (π, π) that characterizes the checkerboard charge

modulation, and C±,±
q are determined by coefficients that relate the quasiparticle op-

erators to the electron operators; see App. B for details. The independent oscillations

of different pairs with their respective natural frequencies give rise to a reduced CDW

order due to destructive interferences in the summation of Eq. (6.5).

Through the electron-phonon coupling, the oscillations of electron-hole pairs also

initiate an oscillation of the checkerboard lattice distortion QK through the displacive
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excitation mechanism. Indeed, from the Fourier transform of Eq. (4.5), the equation

of motion for the staggered distortion is that of a simple Harmonic oscillator driven

by an external force that is proportional to the CDW order parameter

d2QK

dt2
+ Ω2QK =

g

m
∆K (6.6)

In equilibrium, a nonzero CDW order gives rise to a lattice distortion QK = (g/K)∆K.

As the CDW order is reduced from its initial value by the pulse excitation, the sudden

shift to a new equilibrium results in the coherent phonon oscillation. The oscillation

of the checkerboard lattice mode in turn drives the dynamics of electron-hole pairs

ρq,q+K(t) which follows the dynamical equation

iℏ
dρq,q+K

dt
= 2ϵqρq,q+K + gQK (ρq,q − ρq+K,q+K) . (6.7)

Although the oscillation of different electron-hole pairs favor their own natural fre-

quencies, the dynamical coupling to a common checkerboard lattice oscillation pro-

motes partial coherence among the various electron-hole modes and locks them into

a coherent oscillation of the CDW order that lasts for a long time.

Depending on laser fluences, the oscillation amplitude can be seen to decay with

time, although in most of the cases shown here the decay is rather slow. Since

the system is isolated from any reservoir other than the short pulse excitation in

our simulations, the damped oscillations of the CDW or staggered distortion are

not caused by energy dissipations. Such dissipationless damping could result from

a mechanism known as Landau damping where the energy of the collective mode,
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Figure 6.3: The late-stage CDW order parameter ∆K averaged over several
oscillation period versus the center frequency ω of the laser pulse. The dashed line
indicates the threshold frequency ωth = 2gQ = 7.142 determined from the energy
gap of the initial CDW state.

such as CDW order, is transferred to individual quasi-particle excitations. Indeed,

Landau damping of coherent oscillations have been reported in quench dynamics

of various symmetry-breaking phases including superconductivity and CDW [176].

Detailed analysis of the coherent CDW oscillatory dynamics and their damping will

be discussed elsewhere.

The photo-induced melting of CDW order as a dynamical phase transition is

summarized in Fig. 6.3 which shows the late-stage CDW order ∆K, averaged over

several oscillation period, as a function of the center frequency ω. Complete melting

of CDW order occurs for frequencies ℏω ≳ 6.5, which is below the threshold frequency

ℏωth = 7.142. Yet, the dependence of the quasi-steady CDW order ∆K is neither a
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sharp transition nor a smooth crossover. Immediately before the complete melting,

the perturbed CDW state exhibits an intriguing charge-order inversion, indicated by

a sharp dip at frequency ℏω ∼ 6.4 in the ∆k versus ω curve shown in Fig. 6.3. The

corresponding time dependence of the CDW order ∆K(t) and the associated staggered

distortion are shown in Fig. 6.1(b) and (c); see the curves of ℏω = 6.4. After the

short pulse excitation, the CDW order quickly decays to zero, seemingly indicating a

complete melting. However, instead of staying at zero, the CDW order flips sign and

slowly grows to a steady state with a small oscillation around the average value.

Similar photo-induced charge-order inversion phenomena were reported in pre-

vious theoretical studies of Z2 type CDW/lattice order [177–179]. Experimentally,

a laser-induced ultrafast reversal of combined excitonic order and lattice distortion

has been observed in phonon coupled excitonic insulator Ta2NiSe5 [179, 180]. In

general, the reversal occurs when the laser fluence is just large enough to induce a

complete melting of CDW order (or the excitonic order). The physical picture of the

charge-order reversal is as follows. The dephasing effect from different photoexcited

electron-hole pairs quickly reduces the CDW order to zero when the pulse excita-

tion is over. Through the electron-phonon coupling, the lattice distortion follows the

vanishing CDW order with a decreasing amplitude. Yet, when the CDW order is

partially recovered, a nonzero lattice momentum carries the system across the zero

and toward a state that is characterized by a CDW order of opposite sign.

Another interesting feature of the photo-induced dynamical transition in Fig. 6.3
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is a broad dip at the mid-gap frequency ωr ∼ ωth/2. The reduced CDW order

at this sub-threshold frequency indicates an enhanced photo-excitation. A similar

intensified photo-induced dynamics was also reported in the CDW state of the 1D

t-V model [181] and BCS superconductors [20, 182]. Since there is no in-gap state

in the initial homogenous CDW insulator, this mid-gap dip cannot be ascribed to a

linear resonant absorption. On the other hand, as the resonant frequency is roughly

half the CDW band gap, photo-excitations of quasi-particles can be achieved through

a nonlinear two-photon process with 2ℏωr ∼ ϵgap. Moreover, since the electron DOS

exhibits a divergence at the band edge ϱ(E) ∼ E/
√
E2 − (ϵgap/2)2, the resonance

at the mid-gap ωr results from the intensified two-photon absorption assisted by an

enhanced electron density of states at the edge of the CDW band gap.

6.4 Dynamical Inhomogeneity and Pattern Forma-
tion

Interestingly, for the cases immediate preceding the complete melting, e.g. ω ∼ 6.4

or 6.5, the coherent oscillation amplitudes exhibit a significant damping. Yet, for

laser frequency above the threshold such as ω = 7.0, the complete melting of the

CDW order is followed by a pronounced coherent oscillation that lasts for a long time.

Although damped oscillations can be understood as arising from the Landau damping

mechanism discussed above, the strong damping of the CDW order at excitation

frequencies near the threshold is related to the emergence of spatial inhomogeneity.

The real-space simulations discussed in Sec. 6.2 can provide information about
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time

Figure 6.4: The time dependence of global CDW order ∆K(t) and representative
CDW configurations during the photo-excitation process for laser pulses with a
frequency of (a) ℏω = 6.5 and (b) ℏω = 7.0.

the spatial inhomogeneity. In particular, to characterize the emergence of nonuniform

CDW states, we define the following local CDW order parameter

ϕ(ri) =
(
ni −

1

4

∑
j

′
nj

)
exp (iK · ri) . (6.8)

Here, the prime indicates that the summation is restricted to the four nearest neigh-

bors of site-i. This quantity measures the difference in electron density between a
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time

Figure 6.5: The time dependence of global CDW order ∆K(t) and representative
CDW configurations during the photo-excitation process for laser pulses with a
frequency of (a) ℏω = 6.3 and (b) ℏω = 6.4.

given site and its nearest neighbors. The phase factor, exp (iK · ri) = ±1, is intro-

duced to account for the ultra-short range checkerboard modulation within a CDW

domain. A homogeneous CDW state is thus described by a constant local order

parameter, and any inhomogeneity is manifested as a spatially varying ϕ(r) field.

First we compare the two cases where laser excitations result in complete melting

of the CDW order. Fig. 6.4 shows the time dependence of the global CDW order
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parameter ∆K(t) and the real-space configuration of the local CDW order ϕ(r, t) at

various times for frequencies ℏω = 6.5 and 7.0. In the former case, the global CDW

order exhibits a damped oscillation with the oscillation amplitude decays to zero at

late times; see Fig. 6.4(a). As the snapshot at t = 18 shows, the CDW order parameter

ϕ(r) remains roughly homogeneous when ∆K changes to the negative sign. Yet,

when the global CDW order bounces back to the positive side at t = 35, significant

inhomogeneity has developed in the CDW state. As the damped oscillation reaches

a steady state with nearly vanishing global CDW order ∆K ≈ 0 at times t ≳ 125,

the system stays in a highly inhomogeneous state with a standard deviation of the

local CDW as high as σϕ ∼ 0.3. It is worth noting that, since the snapshot shows

the spatial configuration of the local order-parameter field ϕ(r) (instead of the charge

density itself), the observed inhomogeneity corresponds to a super-modulation of

charge density on top of the underlying checkerboard (π, π) charge modulation.

For laser excitation with a center frequency ℏω = 7.0, the snapshots at times

t = 22 and 28 also exhibit noticeable inhomogeneity; see Fig. 6.4(b). In particular,

the inhomogeneous CDW states at t = 22 clearly shows a pattern of stripes running

along the y = −x diagonal direction, which is perpendicular to the direction of

electric field of the laser pulse. The initial CDW state is melted down in the sense

that the time-averaged global CDW order tends to zero at late times. However, a

pronounced coherent oscillation remains. Moreover, in stark contrast to the previous

melting scenario which ends with a rather disordered CDW state, the CDW order
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in this dynamical regime is found to be rather homogeneous, as demonstrated in the

snapshots of t = 100 and 150 in Fig. 6.4(b).

The emergence of this dynamical regime in the ℏω = 7.0 case can be understood as

follows. The pump pulse with a larger center frequency produces electron-hole pairs

at higher energies. While such excitations quickly leads to the destruction of the

static CDW order, a coherent phonon oscillation QK with a larger amplitude is also

generated. The incoherent dynamics of photo-excited quasi-particles manifests itself

not only in the time domain, as described by the Landau-damping mechanism, but

also in the spatial dimension which leads to the inhomogeneous CDW states in the

early stage of the melting process. Yet, the enhanced oscillations of the phonons rein-

force the coherence of the electron-hole pairs both in temporal and spatial domains,

giving rise to a sustained oscillation of CDW order in a relatively homogeneous state.

Indeed, although there is no static global CDW order after averaging over time, the

relatively homogeneous CDW state shown in Fig. 6.4(b), sustained by a coherent

phonon oscillation, can be viewed as a dynamical counterpart of the conventional

CDW state.

As discussed in Sec. 6.3, the photo-excited electron-hole pairs have a relative

momentum K = (π, π), which contribute to the initial checkerboard CDW pattern.

The incoherence of the electron-hole pairs only reduces the amplitude of checkerboard

CDW, which is expected to remain spatially homogeneous. A spatial modulation of

the particle density with a wave vector q requires electron-hole correlations with the
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same relative momentum, i.e.

∆p(t) =
∑
i

ρii(t) e
ip·ri =

∑
k

ρk,k+p(t). (6.9)

Consequently, the emergence of spatial inhomogeneity indicates the spontaneous gen-

eration of electron-hole pairs ρq,q+p = ⟨c†q+pcq⟩ with a relative momentum p ̸= K,

i.e. different from the initial checkerboard K. The generation of such additional den-

sity modulations is often achieved through a pattern formation instability mechanism.

More precisely, the spatial patterns arise from the amplification of initial infinitesimal

density fluctuations of certain wave vectors through nonlinear effects of the dynamical

evolution.

This scenario is illustrated in the two cases shown in Fig. 6.5. For the first case, the

initial CDW order is reduced by the laser pulse with ℏω = 6.3, yet a finite static time-

averaged global CDW order parameter ∆K ∼ 0.28 remains at late times. Importantly,

a spatially inhomogeneous CDW state with stripes running along the y = −x diagonal

can be seen at t = 30. Interestingly, such stripe pattern is similar to those observed

in Fig. 6.4 with larger laser frequencies. The additional density modulations ∆p are

characterized by wave vectors p ∥ E, parallel to the electric field direction. Indeed,

at time t = 60 in Fig. 6.5(a), there are several diagonal streaks where the local CDW

order parameter ϕi changes sign. As the system settles into a self-sustained coherent

oscillation with the phonons, the diagonal patterns are gradually suppressed. This

is another example of restoration of partial homogeneity by the coherent dynamics.
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However, a small residual inhomogeneity remains even at late times.

The nonequilibrium CDW state induced by a laser pulse with ℏω = 6.4 not only

shows the phenomenon of charge-order reversal, but also exhibits the a pronounced

pattern formation as shown in Fig. 6.5(b). Contrary to the previous ℏω = 6.3 case, the

global CDW order ∆K(t) shows nearly indiscernible oscillations and quickly settles

to a steady-state value (with a sign opposite to the initial CDW state). This lack

of late-time coherent oscillation is also intimately related to the emergent dynamical

inhomogeneity. Indeed, stripe modulations of the local CDW order can be seen at

times as early as t = 28 and 40 in the charge-inverted state. As the system further

evolves, more complicated patterns emerge with an even stronger modulation in the

ϕ-field.

It is worth noting that, in terms of the on-site electron numbers ρii, these stripe

patterns correspond to a super modulation of charge density on top of an underlying

ultrashort range checkerboard charge pattern. The more complicated patterns at late

times, e.g. t = 200, seem to originate from the breaking up of the original stripes.

To further characterize this inhomogeneous state, we compute the structure factor of

the charge density

S(p, t) = |∆p(t)|2 , (6.10)

where ∆p(t) is the density modulation defined in Eq. (6.9). The structure factor, as

depicted in of the states with pattern formation is shown in Fig. 6.6, has been derived



Chapter 6. Photo-induced pattern formation in CDW states 88

Figure 6.6: Structure factors S(p, t) at various time steps after the pump-probe
excitations at ω = 6.4. The simulated system size is N = 60× 60. The results are
obtained by averaging over 20 independent von Neumann dynamics simulations.
The white dot at K = (π, π) corresponds to a dominant checkerboard CDW order.
The scale of the color bars in all panels are chosen to highlight the emergent
unstable modes.
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from averaging results over 20 independent von Neumann dynamical simulations.

Initially, the ground state of the Holstein model reveals a prominent delta-peak at

the wavevector K = (π, π), indicative of coherent oscillations in the CDW order

parameter right after the injection of laser pulse. As the system evolves, we observe

a shift in dominant modes away from K towards the diagonal of the Brillouin zone.

These emergent modes correspond to stripe-like structures evident in the early stages

of the ϕ(ri) distributions, as expected due to set up of the direction of the vector

potential (along (x̂+ ŷ) direction). Subsequently, in later stages of the time evolution,

we observe additional modes surrounding the K point, such that the peak at (π, π)

becomes diffusive. This is consistent with the emergence of super-modulations atop

the checkerboard and off-diagonal stripe-like patterns.

6.5 Conclusion and Outlook

In summary, we have conducted a comprehensive investigation into the dynamics of

CDW states following a pump-probe excitation within the framework of the Holstein

model. For the square-lattice model at half-filling, the ground state of the Holstein

model exhibits checkerboard CDW order. Given the bilinear nature of the Holstein

Hamiltonian in fermion operators, the quantum state of the system adopts the form

of a Slater determinant CDW state, presumed to persist throughout the temporal

evolution. To examine the correlation between CDW dynamics and the amplitude

and frequency of the light pulse, we derived an efficient nonlinear von Neumann

equation governing the evolution of the CDW state, along with Newtonian’s equations
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governing the classical degrees of freedom, from the Heisenberg equation of motion.

Our extensive dynamical simulations successfully replicate the observed breakdown

of CDW order in one- [183,184] and two-dimensional systems [177].

Our extensive simulations on the dynamics of CDW order after pump-probe ex-

periments are summarized in the phase diagram depicted in Fig. 6.7. The initial

state of the Holstein model corresponds to its ground state, characterized by checker-

board charge density modulations and lattice distortions. Upon applying a laser

pulse with sufficient frequency or amplitude, the CDW order can be suppressed due

to the excitation by the injection of energy and formation of electron-hole pairs. Con-

sequently, an abrupt decline in the CDW order parameter is observed in the early

stages of the time evolution. Subsequently, the CDW order parameter may either

exhibit persistent oscillations or experience regrowth after several oscillation periods.

In the case of persistent oscillations, defined as Phase I, the system maintains its

checkerboard-modulated CDW order. Notably, in scenarios characterized by CDW

order regrowth, denoted as Phase II, the system tends to form CDW domains with

distinct discretized Ising variable σi. Furthermore, instances of CDW order inversion

are observed, wherein CDW domains with σi = −1 is larger in size than those with

σi = 1. Upon further increasing the frequency or amplitude of the light pulse, the

CDW order parameter exhibits small oscillations around zero following the initial

rapid decline. This scenario, labeled as Phase III, indicates near-complete melting

of the CDW order, with on-site charge density approaching half-filling and the local
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Figure 6.7: Phase diagram that schematically shows the boundary between coherent
oscillating ∆(t) (Phase I) and pattern formation (Phase II), the boundary between
pattern formation and CDW melt down (Phase III).

CDW order parameter nearing zero.

For high-frequency light pulses, whose energy approaches the gap of the Holstein

model, the CDW order parameter weakens to a finite value without exhibiting oscilla-

tions in the later stages of time evolution. Through extensive real-space simulations,

we have unveiled the emergence of complex pattern formations within the CDW

states. In the ealy stage of the time evolution, the system presents a striped phase

on top of the checkerboard initial CDW state, due to the predominant vector poten-

tial aligning along the x̂+ ŷ direction. As the CDW state evolves, additional modes

arise surrounding the K = (π, π) point, causing the peak at K to become diffuse,

indicative of complex pattern formation. These spatial patterns are characterized

by domains featuring super modulations of particle density in the form of stripes or



Chapter 6. Photo-induced pattern formation in CDW states 92

checkerboards atop the original ultrashort-period CDW order. The diagonal orien-

tation between different domains, induced by the orientation of the overall vector

potential, gives rise to an overall striped pattern. However, the lack of orientational

coherence among the modes emerging in the later stages suggests the formation of

disordered patterns long after the effects of the light pulse have dissipated. Analysis

of the resultant structure factor indicates a competition between the striped phase

induced by the orientational vector potential and the disordered patterns induced

by time evolution. It’s conceivable that introducing a spatially inhomogeneous light

pulse into the system could lead to the formation of even more disordered patterns

over time.

The emergence of super modulation patterns on top of the checkerboard and

striped CDW orders is attributed to unstable modes surrounding K. A common

mechanism driving pattern formation is parametric instability, where a pair of un-

stable modes spontaneously grows from the decay of an initial driver mode through

nonlinear interactions. Indeed, parametric instability has been demonstrated to lead

to the decay of a uniform oscillating pairing order parameter and the emergence of

an inhomogeneous Cooper pair turbulence state. In the context of our pump-probe

excitation scenario, a plausible mechanism for pattern formation involves the decay

of the checkerboard and striped CDW order parameters, mixing into a pair of such

unstable modes q1 and q2 through the parametric instability mechanism. However, in

the general modulation observed in our case, momentum conservation does not hold
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for either the decay from the checkerboard CDW order or the decay from the striped

CDW order. Hence, our results suggest a modified version of parametric instability,

which presents an intriguing avenue for future exploration.

Our work underscores the importance of dynamical inhomogeneity in the dynam-

ics of many-body systems after a pump-probe excitation. The emergence of complex

patterns is entirely due to the nonlinear dynamics of order parameter fields. Our

results indicate that pattern formation is likely to be a generic feature of pump-probe

with more complex order parameters. In addition to the nonlinearity originating from

the many-body interactions, the quantum fermionic statistics could play a crucial role

in the instability mechanisms. For symmetry-breaking phases characterized by com-

plex ordering structures, the associated pattern formation and mechanisms might be

closely related to the topological defects of the corresponding order parameter fields.

Finally, inclusion of incoherent processes, such as quantum fluctuations, quasiparticle

scattering, and energy dissipation, are expected to produce even richer spatiotemporal

dynamical behaviors of the post-quench states.
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Appendix A

Derivations of dimensionless von
Neumann and Newton equations

To facilitate parameter selection for dynamical simulations, we aim to transform

the dynamical equations to dimensionless formulations. To initiate this process, we

introduce the characteristic time, τ = ℏ/tnn, and define the dimensionless time t̃ =

t/τ . Subsequently, Eq. (4.8) can be expressed in terms of dimensionless quantities as

i
dρij

dt̃
=

∑
k (ρiktkj − tikρkj) + g (Qj −Qi) ρij

tnn
, (A.1)

Next, we define a characteristic position Q0 and its corresponding characteristic mo-

mentum P0 = mΩQ0, where Ω =
√

K/m is the oscillation frequency. We then intro-

duce dimensionless position and momentum variables as Q̃i = Qi/Q0 and P̃i = Pi/P0.

Thus, Eq. (A.1) can be expressed as

i
dρij

dt̃
=

∑
k

(
ρik t̃kj − t̃ikρkj

)
+ g̃

(
Q̃j − Q̃i

)
ρij, (A.2)
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where t̃kj = tkj/tnn and g̃ = gQ0/tnn. Similarly, the Newtonian’s equations can be

expressed as

dQ̃i

dt̃
= Ωτ P̃i,

dP̃i

dt̃
= ηg̃ni − ΩτQ̃i,

(A.3)

where Ωτ represents the ratio of typical phonon energy to bandwidth, and η =

ℏΩ/KQ2
0 quantifies the ratio of phonon energy to the characteristic energy of lat-

tice vibration. Therefore, for our dynamical simulations of a semi-classical system,

we choose t̃ = 1 if it corresponds to the nearest neighbor hopping, g̃ = 2.0, Ωτ = 0.4,

and η = 0.8. These parameter choices ensure that our results are comparable to

experimental observations. The initial state, i.e., the ground state of the Holstein

model, can be found by solving dE/dQi = 0, where E = ⟨Φ(0)| ˜̂H |Φ(0)⟩, and ˜̂H is

the dimensionless Hamiltonian renormalized with respect to tnn.



Appendix B

Quasiparticles and energy gap of a
charge density wave state

We consider a staggered lattice distortion described by

Qi = Q exp(iK · ri), (B.1)

where Q is the amplitude of lattice distortion and K = (π, π) is the wave vector of

the checkerboard pattern. By introducing electron creation/annihilation operators in

momentum space, e.g. ĉ†q = 1√
N

∑
i ĉ

†
i e

iq·ri , the electron Hamiltonian Ĥe + ĤeL can

be expressed as

ĤCDW =
∑
q

ĉ†qH(q)ĉq, (B.2)

where the summation is restricted to the reduced Brillouin zone, ĉq = (ĉq, ĉq+K)
t is

a column vector of the electron operators, and H(k) is the one-particle Hamiltonian
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given by

H(q) =

 ϵq −gQ

−gQ −ϵq

 . (B.3)

The diagonal elements are given by the dispersion relation of the square-lattice tight-

binding model

ϵq = −2tnn(cos qx + cos qy), (B.4)

and we have used the relation ϵq+K = −ϵq in the matrix equation for H. The CDW

Hamiltonian can be straightforwardly diagonalized by the Bogoliubov transformation.

To this end, we introduce quasi-particle operators

γ̂†
+,q = uqĉ

†
q − vqĉ

†
q+K, γ̂†

−,q = vqĉ
†
q + uqĉ

†
q+K, (B.5)

where the transformation coefficients are given by

uq =
1√
2

1 +
ϵq√

ϵ2q + (gQ)2

1/2

,

vq =
1√
2

1− ϵq√
ϵ2q + (gQ)2

1/2

. (B.6)

The diagonalized Hamiltonian becomes

ĤCDW =
∑
q

∑
µ=±

Eµ
q γ̂

†
µ,qγ̂µ,q. (B.7)
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where the quasi-particle energies are

E±
q = ±

√
ϵ2q + (gQ)2 (B.8)

A spectral gap ϵgap = 2gQ is opened in the excitation spectrum. At half-filling, the

electron energy is obtained by filling up all negative energy states, giving rise to an

energy density of the CDW state

ε(Q) = − 1

N

∑
k

√
ϵ2k + (gQ)2 +

1

2
KQ2, (B.9)

The order parameter of the staggered lattice distortion Q is determined from the

minimum energy condition ∂ε/∂Q = 0.

The electron-hole correlation function ρq,q+K = ⟨ĉ†q+Kĉq⟩ can be expressed in

terms of quasi-particle operators, as shown in Eq. (6.5), with the following expansion

coefficients

C+,+
q = −uqvq, C−,+

q = u2
q,

C−,−
q = uqvq, C+,−

q = −v2q,

(B.10)
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