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“What is your ambition? What is your personality?”
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“I support any decision you make.”

—— Mother, in response to “Maybe I should quit.”, May 2014
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Chapter 1

Introduction

1.1 Complex surfaces and symplectic 4-manifolds

Complex surfaces, which are real 4-dimensional manifolds with complex structures,

are one of the more widely studied classes of smooth 4-manifolds. The Enriques-

Kodaira classification is arguably one of the central results in the study of complex

surfaces. We shall briefly review it to motivate our central problem; more details can

be found in [11], for example.

A complex surface S can be assigned a (holomorphic) Kodaira dimension κh,

where κh(S) can take values within {−∞, 0, 1, 2}. The Enriques-Kodaira classification

tells us that the topology of complex surfaces S with κh(S) = −∞, 0 or 1 are rather

restricted, especially with the additional assumptions of simple connectedness and/or

minimality (i.e. S is not the blow-up of another complex surface). To name a few of

such results:

• If κh(S) = −∞ and S is simply connected and minimal, then S is either bi-

holomorphic to CP2 (the 2-dimensional complex projective space) or S admits
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a holomorphic map π : S −→ C to a complex curve C so that π−1(p) is diffeo-

morphic to CP1 for all p ∈ C.

• If κh(S) = 0 and S is simply connected and minimal, then S is a K3-surface.

• If κh(S) = 1 and S is minimal, then S is an elliptic surface.

On the other hand, complex surfaces with κh(S) = 2, called general type complex

surfaces, is considered the generic category. While some particular examples have

been extensively studied, such as Σg×Σh or more generally certain Σg-fibrations over

Σh (where Σg denotes the Riemann surface of genus g and g, h ≥ 2), the κh(S) = 2

category as a whole is far from well understood. For example, the geography prob-

lem, i.e. understanding which pairs of classical topological invariants (c2
1, χh) can be

realized by simply connected general type complex surfaces, is not completely solved.

This thesis aims to study general type complex surfaces from the topological lens.

In particular, our long term goal is to answer the following question:

Question 1.1.1. Is it possible to describe the topology of general type complex surfaces

without relying on their complex structure?

It is a classical result [2] that a general type complex surface S holomorphically

embeds into CPn for some n. In particular, S has an induced Kähler form, which is

a symplectic form compatible with the complex structure.

Definition 1.1.2. A symplectic form ω on a smooth, oriented 4-manifold X is a

smooth, closed, non-degenerate 2-form which satisfies ω2 > 0.
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Symplectic structures capture the global geometric-topological features of smooth

4-manifolds. On the flip side, any symplectic form is locally standard due to a

Darboux-type theorem.

For a minimal Kähler surface S with symplectic form ω and the corresponding

canonical coholomogy class Kω (defined at the end of Section 2.5), it is known [29]

that the signs of Kω · [ω] and Kω ·Kω determine the holomorphic Kodaira dimension

of S. As a result one can assign a symplectic Kodaira dimension κs to a minimal

symplectic 4-manifold based on the signs of Kω · [ω] and Kω ·Kω. It follows that the

notion of κs is an extension of the notion of κh for minimal Kähler surfaces.

Analogously to the Enriques-Kodaira classification, there have been ongoing schemes

of classifying symplectic 4-manifolds by their symplectic Kodaira dimensions. Lists

of manifolds with κs = −∞ and 0, or conjectures of such lists, have been given and

are similar to the lists for κh = −∞ and 0, while the κs = 1 category starts to behave

more wildly; recent progress and conjectures can be found in a survey paper by Li

[17]. The category κs = 2, analogously named general type symplectic 4-manifolds, is

also much less understood than the κs = −∞, 0, 1 categories.

Since all minimal κh = 2 complex surfaces are Kähler and hence symplectic, it

follows that the κs = 2 category is at least as wild as the κh = 2 category. This also

makes the κs = 2 category a natural candidate of topologically characterizing κh = 2

manifolds. However, we shall see in Section 1.2 that there are κs = 2 manifolds whose

4-manifold invariants do not behave like those of κh = 2 manifolds.
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1.2 4-manifold invariants

Starting from the 1980s, powerful invariants were introduced into the study of 4-

manifolds ([4], [30]). The two that are most relevant to this thesis are the Seiberg-

Witten invariant (SW) and the Ozsváth-Szabó 4-manifold invariant (Φ); the latter

will be discussed in detail in Section 2.8. The Seiberg-Witten invariant of a 4-manifold

is defined by counting solutions of certain differential equations on the 4-manifold,

and has been widely used to distinguish pairs of homeomorphic smooth 4-manifolds

which in fact carry distinct smooth structures. In the same spirit, the Ozsváth-

Szabó invariant is defined by counting holomorphic triangles in an associated complex

manifold. It is a longstanding conjecture that the two invariants are identical.

Let X be a closed, oriented 4-manifold satisfying b+
2 (X) ≥ 1, where b+

2 (X) is

the maximal rank of a positive definite subgroup of H2(X) under the intersection

pairing. The invariants SWX and ΦX are functions from the set of spinc structures

on X (which can be identified with H2(X)) to the set of integers:

SWX ,ΦX : Spinc(X) −→ Z

We shall denote SWX(s) and ΦX(s) by SWX,s and ΦX,s respectively. A spinc structure

s where SWX,s (resp. ΦX,s) is non-zero is called a Seiberg-Witten basic class (resp.

Ozsváth-Szabó basic class) of X. It is also a basic property that SW and Φ are

invariant up to sign under conjugation.

We have the following theorem regarding the Seiberg-Witten invariant of minimal
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general type complex surfaces (see the end of Section 2.5 for a discussion on canonical

spinc structures):

Theorem 1.2.1. [30] Let X be a minimal general type complex surface X satisfying

b+
2 (X) > 1. Then X has only two Seiberg-Witten basic classes, namely the canonical

structure and its conjugate.

On the other hand, minimal general type symplectic 4-manifolds can have multiple

Seiberg-Witten basic classes, and such examples were constructed by Fintushel and

Stern [7].

For the Ozsváth-Szabó picture, recall that all symplectic 4-manifolds admit Lef-

schetz fibrations (see Definition 3.1.1) possibly after blow-ups, which is a consequence

of a celebrated theorem by Donaldson [5]. The present work shall study symplectic

4-manifolds through Lefschetz fibrations.

For symplectic 4-manifolds whose symplectic structures are supported by a rela-

tively minimal genus g Lefschetz fibration with g > 1, Ozsváth and Szabó showed

that the canonical spinc structure is always an Ozsváth-Szabó basic class, but there

might be other basic classes:

Theorem 1.2.2. ([24], Theorem 5.1) Let π : X → S2 be a relatively minimal genus

g Lefschetz fibration over the sphere with b+
2 (X) > 1 and g > 1, and denote a generic
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fiber by Σ. Then for the canonical spinc structure k, we have

〈c1(k), [Σ]〉 = 2− 2g,

ΦX,k = ±1.

Moreover, for any other spinc structure s 6= k with ΦX,s 6= 0, we have

|〈c1(s), [Σ]〉| < |〈c1(k), [Σ]〉| = 2g − 2. (1.1)

All in all, we see that the notion of general type symplectic 4-manifolds does not

capture the behaviour of minimal general type complex surfaces as far as 4-manifolds

are concerned, both from Fintushel and Stern’s examples and from Theorem 1.2.2 that

symplectic 4-manifolds may have (non-canonical) basic classes satisfying Equation 1.1.

This motivates us to ask the following question:

Question 1.2.3. Is it possible to impose an additional geometric-topological condition

on a minimal general type symplectic 4-manifold X which would guarantee that X has

only one Seiberg-Witten or Ozsváth-Szabo basic class up to conjugation?

1.3 Main results

One can see Theorem 1.2.1 as saying that if a minimal complex surface is sufficiently

complicated (in the sense that it is general type), then it has the simplest possible set
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of Seiberg-Witten basic classes. Analogously, one can ask if there is a notion of “suf-

ficiently complicated” Lefschetz fibration which would guarantee that the Lefschetz

fibration has only the canonical spinc structure and its conjugate as Ozsváth-Szabó

basic classes.

A tool available to us is cut-and-paste. In particular, Jabuka and Mark [16]

showed that if X is a 4-manifold which decomposes into U and X − U , where U is

a codimension-0 submanifold with boundary, then under mild conditions on U , the

absolute invariant Φ can be seen as a certain pairing of the relative invariants ΨU and

ΨX−U ; see Theorem 2.8.4 for a more precise statement. In particular, the vanishing

of ΨU,s for a spinc structure s on U would force ΦX,s′ to vanish for any spinc structure

s′ on X that restricts to s on U . Therefore, if we can find a Lefschetz fibration U

with boundary so that ΨU,s 6= 0 only when s is the restriction of the canonical spinc

structure or its conjugate, then (with the help of Theorem 1.2.2) any closed symplectic

4-manifold X admitting a relatively minimal Lefschetz fibration and containing U as

a Lefschetz subfibration must have the canonical spinc structure and its conjugate as

the only Ozsváth-Szabó basic classes.

We summarize the discussion with the formal statement of our main result:

Theorem 1.3.1. For g = 4 and 5, there exists a genus g Lefschetz fibration Ug over

D2 with regular fiber Σ, so that the relative invariant ΨUg ,s vanishes for all spinc

structures satisfying |〈c1(s), [Σ]〉| < 2g − 2.

Corollary 1.3.2. Let X be a closed, oriented symplectic 4-manifold which admits a
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minimal genus g Lefschetz fibration over S2, with g = 4 or 5. If X contains Ug as a

Lefschetz subfibration and b+
2 (X−Ug) ≥ 1, then the Ozsváth-Szabo 4-manifold invari-

ant ΦX,s vanishes unless s is the canonical spinc structure of X (or its conjugate).

Conjecture 1.3.3. Theorem 1.3.1 and Corollary 1.3.2 hold for all g ≥ 2.

A natural candidate of such a Ug would be a Lefschetz subfibration of a well-

understood general type complex surface. Our choice of such complex surface is

U(g+ 1, n), defined at the beginning of Section 3.3, which is a classical example from

algebraic geometry. Then U(g + 1, n) is a minimal complex surface of general type

for all g ≥ 2 and n ≥ 2. Furthermore, U(g+ 1, n) admits a genus g singular fibration

which can be perturbed into a genus g Lefschetz fibration. We will choose Ug in such

a manner that U(g + 1, n) contains the Lefschetz subfibration Ug for any n ≥ 2.

With our choice of Ug, our main result immediately verifies the SW = Φ conjecture

for U(m,n) with m = 5, 6 and n ≥ 2. To the best of the author’s knowledge, this is

the first verification of the conjecture in the case of a general type complex surface.

The organization of the thesis is as follows. Section 2 reviews the necessary back-

ground in Heegaard Floer homology, in particular defining the absolute and relative

invariants. Section 3 discusses in detail the topology of U(g + 1, n) and Ug. Section

4 supplies the proofs of Theorem 1.3.1 and Corollary 1.3.2. Section 5 is a further

application of Jabuka and Mark’s pairing theorem in more general gluing situations.
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Chapter 2

Background

Throughout this present work, all 3-manifolds considered are connected, closed and

oriented.

2.1 Integer surgeries

A knot in a 3-manifold Y is a (smooth) embedding of S1 ↪→ Y . A framing of a knot

K ⊂ Y is an identification, up to homotopy, of a tubular neighourhood nbd(K) of K

with S1 × D2, which is equivalent to a choice of parallel copy K ′ of K. If Y is the

3-sphere S3 = R3 ∪ {∞} (or more generally, if K is a null-homologous knot in any

Y ), then we can represent framings with integers which we call framing coefficients,

annotated next to K.

Definition 2.1.1. If K ⊂ S3 is a knot with framing determined by a parallel copy

K ′, then the framing coefficient of K is defined to be lk(K,K ′), the linking number

of K and K ′, with standard sign convention in Figure 2.1. More generally, if K is a

null-homologous knot in a 3-manifold Y , the framing coefficient is defined to be the
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intersection number of K ′ with any Seifert surface of K.

Figure 2.1: Signs of crossings in a link diagram in S3.

Remark 2.1.2. Another natural framing coming from a knot diagram is the blackboard

framing, namely the longitude determined by a unit normal vector field of K which

lies entirely on the paper; see Figure 2.2. The framing coefficient of the blackboard

framing determined by a diagram of K equals the writhe of the diagram of K.

Figure 2.2: Right-handed trefoil knot K and its blackboard framing K ′. Diagram is

taken from [11], p.118.

Definition 2.1.3. Let K be a knot in any 3-manifold Y with framing determined by

K ′. Then the surgery along K is defined to be the 3-manifold Y ′ = (Y − nbd(K)) ∪



11

(S1 ×D2), where the meridian {∗} × S1 = {∗} × ∂D2 of S1 ×D2 is glued to ∂(Y −

nbd(K)) along K ′. Whenever the framing coefficient of K is defined and equals n,

the surgery is also called an n-surgery.

Definition 2.1.4. Continuing from the previous definition, the core of the surgery

torus, S1 × {0} ⊂ S1 ×D2 ⊂ Y ′, is called the induced knot in Y ′.

2.2 Handles and handle diagrams

We shall discuss handles and handle diagrams for 4-manifolds. First, we may assume

a connected 4-manifold has only one 0-handle, a 4-ball D4 whose boundary is the 3-

sphere S3, where S3 represented by the empty diagram. Then, attaching a 1-handle

to a 0-handle is by definition gluing D1×D3 to ∂D4 = S3 along the attaching region

which is a pair of 3-balls D3 tD3. We shall draw the pair of 3-balls in the diagram

so that they are identified by the reflection about the plane perpendicularly bisecting

the segments joining their centers (see Figure 2.3); note that the 1-handle is invisible

from the picture except the attaching region.

Figure 2.3: Gluing map to attach a 1-handle to D4. Diagram is from [11], p.115.
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Next, attaching a 2-handle means gluing D2 × D2 to the union of the 0-handle

and the 1-handles along ∂D2 × D2 = S1 × D2 with a certain framing. The circle

S1×{∗} ⊂ S1×D2 is called the attaching circle and the disk {∗}×D2 ⊂ D2×D2 is

called core of the handle. We shall draw the attaching circle into the diagram, part of

it possibly going through the 1-handles. We shall also extend the definition of framing

coefficient by defining that the framing coefficient of the blackboard framing is the

writhe (cf. Remark 2.1.2). Finally, given the union of a 0-handle, some 1-handles

and some 2-handles, the extension to a closed 4-manifold by attaching 3-handles and

4-handles is unique, if such an extension exists. Therefore, we do not need to keep

track of the 3-handles and 4-handles if the 4-manifold is closed (see [11], Section 4.4).

See Figure 2.4 for an example.

Figure 2.4: The handle diagram of a closed 4-manifold. Diagram is taken from [11],

p.116 and modified.

We also have the following standard fact:
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Fact 2.2.1. A link diagram in S3 labeled with integer coefficients simultaneously

represents a handle diagram of a 4-manifold (with a single 0-handle and some 2-

handles) and a surgery diagram of the boundary of the same 4-manifold.

We recall the basics about cobordisms which will be ubiquitous in the present

work. For an oriented 3-manifold Y , we use −Y to denote Y with the opposite

orientation.

Definition 2.2.2. We say that an oriented 4-manifold W is a cobordism from a

3-manifold Y1 to another 3-manifold Y2 if ∂W = −Y1 t Y2.

In particular, if Y is any 3-manifold and K is a framed knot, the 4-manifold

W = (Y × I) ∪ (D2 ×D2),

where the union means attaching the 2-handle D2 ×D2 to Y × {1} along K, will be

called the cobordism induced by attaching the 2-handle. Then W is a cobordism from

Y to Y ′, where Y ′ is the 3-manifold obtained from the surgery along K.

2.3 Surfaces and mapping class groups

This section provides the necessary preliminaries to discuss the topology of Lefschetz

fibrations. Let Σg,r denote the genus g surface with r boundary components. To

simplify notations, Σg,0 will be written as Σg, or most frequently Σ if the genus is

clear from the context. The mapping class group MCG(Σg,r) is the group of isotopy

classes of orientation-preserving diffeomorphisms of Σg,r fixing the boundary.
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For a simple closed curve α in Σg,r, the right-handed Dehn twist along α is the

self-diffeomorphism of Σ supported in a neighbourhood of α as shown in Figure 2.5.

The right-handed Dehn twist is denoted by Dα, even though we will usually just write

α if there is no possibility of confusion. A left-handed Dehn twist is the inverse of

a right-handed Dehn twist. It is well known that MCG(Σg,r) is generated by Dehn

twists.

Figure 2.5: A right-handed Dehn twist about the curve α.

A word in MCG(Σg,r) is a sequence whose letters are right-handed Dehn twists,

denoted by

α1α2 · · ·αn.

The corresponding mapping class in MCG(Σg,r) is the composition of these Dehn

twists, denoted by

α1 ◦ α2 ◦ · · · ◦ αn.

We also have the following definitions for future reference:

Definition 2.3.1. Let φ : Σg,r −→ Σg,r be a diffeomorphism. Then the mapping
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torus M(φ) is defined to be the quotient space

M(φ) = (Σg,r × [0, 1]) / (φ(x), 0) ∼ (x, 1).

The map φ is called the monodromy of M(φ).

Definition 2.3.2. With the same notations of the previous definition, we can form

the (abstract) open book which is the closed 3-manifold defined by

Y (φ) = M(φ) ∪id (∂Σg,r ×D2),

i.e. the manifold obtained by gluing M(φ) and r solid tori ∂Σg,r × D2 along their

boundary, using the identity map to identify ∂M(φ) = ∂Σg,r×S1 with ∂(∂Σg,r×D2).

Figure 2.6: An open book near one component K of the binding.

The core link L = ∂Σg,r × {∗} of ∂Σg,r × D2 is called the binding of the open

book. Each copy of Σg,r in M(φ) extends to ∂Σg,r × D2 to form a page (or fiber)

whose boundary is L. Thus, the fibration (∂Σg,r ×D2) − L −→ S1, sending a point
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to the angular coordinate of the D2-factor, extends to a locally trivial fibration p :

Y (φ)−L −→ S1, so that p−1(θ)∪L is exactly a page of the open book for any θ ∈ S1.

In this situation, we also say that L is fibered in Y (φ).

It is clear from the definition that performing a page-framed surgery along each

component of the binding of Y (φ) yields M(φ′) where φ′ is the image of φ under the

map MCG(Σg,r) −→MCG(Σg).

2.4 Branched covers

We discuss the construction of new manifolds from old by taking branched cover. A

branched cover X −→ Y can be thought of as an honest covering map except at a

codimension-2 subset, where the behavior of the map is also standard. More precisely,

Definition 2.4.1 ([11], Definition 6.3.1). Let M and N be n-dimensional manifolds.

A d-fold branched covering is a smooth map f : X −→ Y with critical set B ⊂ Y

called the branch locus, such that f |X−f−1(B) : X − f−1(B) −→ Y − B is a covering

map of degree d, and for each p ∈ f−1(B) there are local coordinate charts U, V −→

C×Rn−2
+ about p and f(p) on which f is given by (z, x) 7→ (zm, x) for some positive

integer m. We say that the branched cover is cyclic if f |X−f−1(B) is a cyclic covering.

We shall describe a method by Akbulut and Kirby [1] which constructs an n-fold

cyclic branched cover of D4 along the Seifert surface F of a link in ∂D4 = S3 with

the interior of F pushed into the interior of D4 (while keeping the boundary of F



17

fixed in ∂D4 = S3). First we cut D4 along the track of the isotopy which pushed the

interior of F into the interior of D4. The result is again D4 with a thickened copy of

F in S3 given by

F = {(x, t) ∈ F × [−1, 1]|(x, t) ∼ (x, t′) for x ∈ ∂F and all t, t′ ∈ [−1, 1]}.

Define F
±
i = {(x, t) ∈ F | ± t ≥ 0}. Then we can construct the n-fold cyclic branched

cover X by gluing together n copies of D4, namely D4
i (for 1 ≤ i ≤ n), by the

homeomorphisms hi : F
+

i −→ F
−
i+1 for 1 ≤ i ≤ n−1 defined by hi(x, t) = (x,−t). The

result can be schematically represented by Figure 2.7. Note that it is not necessary

to glue F
+

p to F
−
1 because this does not change X up to homeomorphism (for the

same reason that cutting D4 along the track of the isotopy above does not change D4

up to homeomorphism).

Figure 2.7: A schematic picture of the branched cover. Figure is adapted from [1],

p.113.

It is clear from the construction that X is an n-fold cyclic branched cover of D4
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along F × 0, and that ∂X is an n-fold cyclic branched cover of S3 along ∂F . We

further observe that if ∂F is fibered and F is a fiber of the corresponding open book

Y (φ) (see Definition 2.3), then ∂X is simply the result of “stacking” the mapping tori

together, and it is clear that ∂X is diffeomorphic to Y (φn).

In Section 3.3, we will describe Akbulut-Kirby’s algorithm of producing a handle

diagram of X in the specific example of interest.

2.5 Spinc structures

There are numerous equivalent formulations of Spinc structures, and for the purpose

of working with Heegaard Floer homology, we shall adopt the ones from [23], but

slightly reformulated.

Definition 2.5.1. Let Y be an oriented 3-manifold. Two oriented plane fields on Y

are said to be homologous if they are homotopic in the complement of finitely many

disjoint 3-balls of Y . A spinc structure of Y is a homology class of oriented plane

fields on Y , and the set of spinc structures of Y is denoted by spinc(Y ). If a spinc

structure t is represented by an oriented plane field whose (cooriented) normal vector

field is v, then the conjugate spinc structure t is defined to be the spinc structure

whose normal vector field is represented by −v, which is equivalent to reversing the

orientation on each plane.

There is a natural map spinc(Y ) −→ H2(Y ) given by t 7→ c1(t), where c1(t) is the
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first Chern class of any oriented plane field that represents the spinc structure t. If

H2(Y ) has no 2-torsion (which is true in all of our cases of interest), then this map

is injective. We say that t is torsion if c1(t) is a torsion element in H2(Y ). It also

follows from the definitions that c1(t) = −c1(t).

To define spinc structures on 4-manifolds, we need to recall the definition of almost-

complex structures.

Definition 2.5.2. Let X be a 4-manifold and TX be the tangent bundle of X. An

almost complex structure on X is a smooth, fiberwise linear map J : TX −→ TX

covering idX such that J2 = −idTX .

Definition 2.5.3. Let X be a 4-manifold. We consider (J, P ), where P ⊂ X is a

collection of finitely many points in X and J is an almost complex structure on X−P .

We say that two pairs (J1, P1) and (J2, P2) are homologous if there is a compact 1-

manifold with boundary C ⊂ X containing P1 ∪ P2 so that J1|X−C and J2|X−C are

homotopic. A spinc structure of X is a homology class of such pairs, and the set of

spinc structures of X is denoted by spinc(X).

Given s ∈ spinc(X) represented by (J, P ), the first Chern class of the induced

complex tangent bundle on X−P canonically extends to give a class in H2(X), which

we define to be the first Chern class c1(s) of s. Just like the case for 3-manifolds, there

is a natural map c1 : s 7→ c1(s), and the map is injective if H2(X) has no 2-torsion

(which is true in all of our cases of interest).
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The restriction of s on Y is the spinc structure on Y whose orthogonal complement

is homotopic to the oriented plane field TY ∩ J(TY ) on Y . It follows from the

definitions that we have the following commutative diagram, where the vertical maps

denote restrictions:

spinc(X) H2(X)

spinc(Y ) H2(Y )

c1

c1

We shall explain what it means by the canonical spinc structure on a complex

surface or a symplectic 4-manifold, which was alluded in the introductory chapter.

If X is a complex manifold, then the canonical spinc structure of X is just the one

induced by its complex structure. If X is a symplectic 4-manifold with symplectic

form ω, then it is known that X admits a compatible almost-complex structure J (i.e.

J that satisfies ω(Jv1, Jv2) = ω(v1, v2) for all vectors v1, v2), and moreover, the space

of such J is contractible. Therefore we may define the canonical Spinc structure of

X to be the one induced by any such J . If X is Kähler, then the complex structure

and the symplectic structure induce the same spinc structure.

2.6 Basics of Heegaard Floer homology

Heegaard Floer homology assigns a 3-manifold Y to various flavors of abelian groups

ĤF (Y ), HF∞(Y ), HF+(Y ), HF−(Y ),
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and we shall denote any one of them by HF ◦(Y ). These groups are split by spinc

structures:

HF ◦(Y ) =
⊕

t∈Spinc(Y )

HF ◦(Y, t).

These groups admit group actions by U and H1(Y )/Tor (where Tor stands for the

torsion part), and so could be thought of as (Z[U ]⊗ Λ∗H1(Y )/Tor)-modules, where

Z[U ] is the polynomial ring in U with integer coefficients and Λ∗H1(Y )/Tor is the

exterior algebra generated by H1(Y )/Tor. For any 3-manifold Y , HF+(Y, t) and

ĤF (Y, t) is non-trivial only for finitely many t. Also, HF∞(Y, t) and HF−(Y, t) are

finitely generated Z[U,U−1]-modules, and ĤF (Y, t) is a finitely generated Z-module.

We will also consider Heegaard Floer groups with twisted coefficients. These groups

are denoted HF ◦(Y, t;M), where M is a Z[H1(Y )]-module. If M = Z where the

action of Z[H1(Y )] on M is trivial, then HF ◦(Y, t;M) is the same as the “untwisted”

groups HF ◦(Y, t).

Heegaard Floer groups are invariant under conjugation of spinc structures. In

other words,

HF ◦(Y, t) ∼= HF ◦(Y, t). (2.1)

If s is a spinc structure on a cobordism W from Y1 to Y2, then there exist cobordism

maps [26]

F ◦W,s : HF ◦(Y1, s1)→ HF ◦(Y2, s2),

where ti is the restriction of s to Yi. There are twisted variants F ◦W,s of these maps

between the twisted groups. If the coefficient modules of HF ◦(Yi, ti) are both the
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trivial module Z, then F ◦W,s is the same as F ◦W,s. There is also a variant that takes

into account the H1(W )-action, but we will not need it.

There are U -equivariant long exact sequences relating the different flavors of Hee-

gaard Floer groups which respect cobordism maps:

· · · HF−(Y1, t1) HF∞(Y1, t1) HF+(Y1, t1) HF−(Y1, t1) · · ·

· · · HF−(Y2, t2) HF∞(Y2, t2) HF+(Y2, t2) HF−(Y2, t2) · · ·

ι

F−W,s

π

F∞W,s

τ

F+
W,s F−W,s

ι π τ

(2.2)

· · · ĤF (Y1, t1) HF+(Y1, t1) HF+(Y1, t1) ĤF (Y1, t1) · · ·

· · · ĤF (Y2, t2) HF+(Y2, t2) HF+(Y2, t2) ĤF (Y2, t2) · · ·

F̂W,s

U

F+
W,s F+

W,s F̂W,s

U

(2.3)

There are analogous versions of these sequences for twisted coefficients as well.

In the long exact sequence (2.2), the map τ is the connecting homomorphism. From

this we define the reduced Heegaard Floer groups HF−red(Y, t) = ker ι and HF+
red(Y, t) =

HF+(Y, t)/ im π. It follows from exactness of (2.2) that τ maps HF+
red(Y, t) isomorphically

into HF−red(Y, t). It can be shown that ker(ι∗) = ker(Uk) for sufficiently large k, and

therefore, HF−red(Y, t) (hence HF+
red(Y, t)) is actually finitely generated over Z.

As a fundamental example which will be useful later on, we have the following propo-

sition concerning the Heegaard Floer groups of S3. Notice that S3 has only one spinc

structure, and so we drop it from the notation.
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Proposition 2.6.1. We have the following Z[U ]-module isomorphisms

1. ĤF (S3) = Z

2. HF∞(S3) = Z[U,U−1]

3. HF−(S3) = U · Z[U ] = 〈U,U2, U3, . . .〉

4. HF+(S3) = Z[U,U−1]/U · Z[U ] = 〈1, U−1, U−2, U−3, . . .〉

Furthermore, under these identifications, the maps ι and π defined in long exact sequence

(2.2) are the obvious inclusion map and quotient map respectively. In particular, ι is injec-

tive, so HF−red(S
3) and HF+

red(S
3) are trivial. Also, the map ĤF (S3) −→ HF+(S3) in the

long exact sequence (2.3) sends the generator of ĤF (S3) to 1.

Cobordism maps obey the following composition law:

Theorem 2.6.2. ([26], Theorem 3.4) Let W1 and W2 be a pair of cobordisms so that

∂W1 = −Y1 ∪ Y2 and ∂W2 = −Y2 ∪ Y3, and W = W1 ∪Y2 W2 be the composite cobordism.

For i = 1, 2, let si be spinc structures on Wi so that s1|Y2 = s2|Y2. Then

F ◦W2,s2 ◦ F
◦
W1,s1 =

∑
{s∈spinc(W ),s|W1

=s1,s|W2
=s2}

±F ◦W,s. (2.4)

There is again an analogous statement for twisted coefficients. The cardinality of the

index of the summation can be thought of as the indeterminacy of extending s1 on W1 and

s2 on W2 to s on the whole W .

We shall extensively utilize a variety of gradings on Heegaard Floer groups. In particular,

if t is a torsion spinc structure on Y , then HF ◦(Y, t) carry an absolute Q-valued grading

[26]. The grading is characterized by the following properties:
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(1) The element 1 ∈ HF+(S3) (see Proposition 2.6.1) has grading 0.

(2) The maps ι and π in the long exact sequence (2.2) preserves grading, the map τ

decreases grading by 1 and the U -action decreases grading by 2.

(3) If (W, s) is a cobordism from (Y1, t1) to (Y2, t2) and both c1(t1), c1(t2) are torsion,

then the map F ◦W,s is homogeneous and shifts grading by

(c1(s))2 − 2χ(W )− 3σ(W )

4
, (2.5)

where (c1(s))2 is the square of the first Chern class of s, χ(W ) is the Euler charac-

teristic of W and σ(W ) is the signature of W .

For a general spinc structure t on Y , regardless of whether t is torsion or not, the groups

HF ◦(Y, t) carries a relative Z/dZ-grading, where d is the divisibility of c1(t) (and d is 0

if c1(t) is torsion). Huang and Ramos lifted this relative grading to an absolute grading

by homotopy classes of oriented plane fields [15], which will be discussed and utilized in

Section 5.

There is also a pairing of Heegaard Floer groups:

〈 , 〉 : HF+(Y, t)⊗HF−(−Y, t) −→ Z. (2.6)

This gives us an isomorphism

HF+(Y, t) ∼= HF−(−Y, t), (2.7)

where HF−(−Y, t) denotes the Heegaard Floer cohomology group. In fact, if t is a torsion

spinc structure, the pairing gives the following refinement with respect to the Q-valued
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grading:

HF+
n (Y, t) ∼= HF−n−2

− (−Y, t), (2.8)

where the subscript n and superscript −n−2 denote subgroups with those gradings. In our

applications, all Heegaard Floer groups are torsion-free, soHF−n−2
− (−Y, t) ∼= HF−−n−2(−Y, t)

by universal coefficients.

2.7 Adjunction relation

It is generally difficult to calculate a cobordism map F ◦W,s, but we have the following criterion

on a spinc structure s which relates the maps F ◦W,s and F ◦W,s′ for two different spinc struc-

tures. In our application, we use this criterion heavily to derive conditions on s which guar-

antee that F ◦W,s vanishes. The statement is simplified for our application where H1(W ) = 0;

for the general statement, see [24].

Theorem 2.7.1 (Adjunction Relation). Let W be a cobordism from Y1 to Y2. If Σ is any

smoothly embedded, connected, oriented genus m surface in W and s is a spinc structure on

W satisfying

〈c1(s), [Σ]〉 − [Σ] · [Σ] = −2m, (2.9)

then we have the relation:

F ◦W,s(·) = F ◦W,s+εPD[Σ](Um ⊗ ·), (2.10)

where ε is the sign of 〈c1(s), [Σ]〉.

It is worth noting that the adjunction relations holds for Σ with any genus, including

genus 0.
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2.8 Absolute invariant and relative invariant

The goal of this section is to define Ozsváth-Szabó 4-manifold invariant [26] mentioned

in the introduction (also called the absolute invariant) and the relative invariant defined

by Jabuka and Mark [16] which helps calculating the absolute invariant. For this section,

similar to our discussion of cobordism maps, we shall make the simplification H1(W ) = 0

which will be sufficient for our applications.

First we have this definition which is useful for defining the absolute invariant:

Definition 2.8.1. Let W be a cobordism from Y1 to Y2 with b+2 (W ) ≥ 2. A 3-manifold

N ⊂W is called an admissible cut if N cuts W into two pieces W1,W2 so that

(1) b+2 (W1), b+2 (W2) ≥ 1, and

(2) δH1(N) = 0 in H2(W,∂W ), where δ is the connecting map in the Mayer-Vietoris

sequence.

Remark 2.8.2. .

1. The condition b+2 (W ) ≥ 2 guarantees that an admissible cut exists.

2. Some motivation of condition (2) is as follows. Given spinc structure si on Wi that

have common restriction on N , Mayer-Vietoris argument shows that there exists a

spinc structure s on W that restricts to si on Wi. However, such s is not unique in

general; δH1(N) is exactly the indeterminacy, in the sense that the set of such spinc

structures are those of the form s+ h for any h ∈ δH1(N). Therefore, condition (2)

is equivalent to saying that a spinc structure s on W is uniquely determined by a pair

of spinc structures s1, s2 on W1,W2 with common restriction on N .
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If b+2 (W1), b+2 (W2) ≥ 1, then it can be shown that the image of the map

F−W1,s1
: HF−(Y1, s1) −→ HF−(N, s|N )

lies in HF−red(N, s|N ), and the map

F+
W2,s2

: HF+(N, s|N ) −→ HF+(Y2, s2)

factors through the projection of HF+(N, s|N ) to HF+
red(N, s|N ). Thus we may define

FmixW,N,s : HF−(Y1, s|Y1) −→ HF+(Y2, s|Y2)

to be the composite

F+
W2,s2

◦ τ−1 ◦ F−W1,s1
, (2.11)

where τ is the map defined in the exact sequence 2.2. The map FmixW,N,s is independent of

the choice of the admissible cut N and will be simply called FmixW,s .

Now given a closed 4-manifold X with b+2 (X) ≥ 2, we may remove two disjoint 4-balls

and see X as a cobordism W from S3 to S3. In view of Proposition 2.6.1 and the properties

of the Q-grading, the minimal degree of HF+(S3) is 0 and the maximal degree of HF−(S3)

is −2, so we define Θ+ and Θ− to be the generators of HF+
0 (S3) ∼= Z and HF−−2(S3) ∼= Z

respectively.

Definition 2.8.3. The absolute invariant of X is defined to be the map:

ΦX : spinc(X) −→ Z/± 1

so that ΦX(s), also denoted by ΦX,s, is the coefficient of Θ+ ∈ HF+(S3) in the expression

FmixW,s (Θ−).
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In the situation where the condition in Definition 2.8.1 (2) fails, we have seen from

Remark 2.8.2 that a spinc structure on W1 and a spinc structure on W2 no longer uniquely

determines a spinc structure on W , with indeterminacy δH1(N). The construction above

turns out to only yield one single invariant, which is the value of the sum
∑

h∈δH1(N)

FmixW,s+h

instead of the individual terms of the sum. Jabuka and Mark [16] proved the existence of a

relative invariant which refines Definition 2.8.3 and allows us to understand the individual

terms of the sum regardless of whether the condition in Definition 2.8.1 (2) holds.

To state their result, let us set up some notations. Let X = X1 ∪N X2 be a closed

4-manifold glued along N (so that Xi with a 4-ball D4 removed is Wi). For i = 1, 2, let

MXi be the Z[H1(∂Xi)]-module defined by MXi = Z[ker(H2(Xi, ∂Xi) −→ H2(Xi))], where

H1(∂Xi) acts on MXi by the coboundary homomorphism H1(∂Xi) −→ H2(Xi, ∂Xi). Anal-

ogous to δH1(N), we define K(X,N) = Im[H1(N) −→ H2(X)] and MX,N = Z[K(X,N)].

Theorem 2.8.4. ([16], Theorem 1.5) Let (X1, s1) and (X2, s2) be two spinc 4-manifolds

with spinc boundary ∂X1 = −∂X2 = (N, t), and write X = X1 ∪N X2. If b+2 (X1), b+2 (X2) ≥

1, then there exists relative Ozsváth-Szabó invariants

ΨX1,s1 ∈ HF−red(N, t;MX1), ΨX2,s2 ∈ HF−red(−N, t;MX2)

well-defined up to a multiplication by a unit in Z[H1(N)], where ΨXi,si is simply F−
Xi−D4,si

(Θ−).

Furthermore, there exists an MX,N -valued pairing

〈 , 〉 : HF−red(N, t;MX1)⊗Z[H1(N)] HF
−
red(−N, t;MX2) −→MX,N .

analogous to one given by (2.6), so that for any spinc structure s on X restricting to si on
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Xi, we have an equality of group ring elements

∑
h∈K(X,N)

ΦX,s+he
h = 〈τ−1(ΨX1,s1),ΨX2,s2〉 (2.12)

up to multiplication by a unit in MX,N . Here eh is the formal variable in the group ring

MX,N corresponding to h.

Here we emphasize that equation (2.12) is an equality of group ring elements in MX,N =

Z[K(X,N)], which means the right hand side of the equation determines every individual

term of the left sum. In particular, our main theorem (Theorem 1.3.1) provides sufficient

conditions for one of the relative invariants on the right side to vanish, which then forces

every term on the left side to vanish.

2.9 Knot Floer homology and integer surgeries

There are surgery exact sequences that relate the Heegaard Floer groups of a 3-manifold Y

and those of surgeries on Y , coming in both HF+ and ĤF flavors. A basic version concerns

the case that Y is an integer homology sphere.

Theorem 2.9.1 (Oszváth-Szabó, [22]). Let Y be an integer homology sphere, K ⊂ Y be a

knot and Yn(K) be the result of the n-surgery of K. Then there is a U -equivariant surgery

exact sequence:

· · · −→ HF+(Y )
F1−→ HF+(Yn(K))

F2−→ HF+(Yn+1(K))
F3−→ HF+(Y ) −→ · · · (2.13)

The above theorem holds with HF+ replaced by ĤF . The maps Fi are equal to the

sum of the cobordism maps over all spinc structures on the cobordisms Wi where Wi are



30

the standard cobordisms induced by the surgeries. In particular, spinc(W1) ∼= Z by Mayer-

Vietoris argument. Thus F1 splits as a sum of maps:

F1 =
⊕

s∈spinc(W1)

FW1,s, (2.14)

where FW1 stands for F+
W1

or F̂W1 .

While the long exact sequence (2.13) gives us information about the sum of maps, our

application requires understanding each individual map. To this end, we discuss a powerful

tool that enables us to do so.

Let Y be a 3-manifold, t be a spinc structure on Y and K be a nullhomologous knot in

Y . In [21], Ozsváth and Szabó defined a Z ⊕ Z-bigraded chain complex C = CFK(Y,K),

and the grading (i, j) will be referred to as filtration level so as to distinguish from the

homological grading of C. The subgroup of C with filtration level (i, j) is denoted by

C{i, j}. In our case of interest where Y is an integer homology sphere, C has an absolute

grading. For the calculations in the future, we only need to understand CFK(Y,K) up to

its filtered chain homotopy type.

Properties 2.9.2. The chain complex C has the following properties:

(1) The differential ∂ decreases homological grading by 1. Also, if x ∈ C{i, j} and if a

summand of ∂x has filtration level (i′, j′), then i′ ≤ i and j′ ≤ j.

(2) C has a U -action which sends C{i, j} to C{i− 1, j − 1} and decreases grading by 2.

(3) The quotient complex C{i = 0} = C{i ≤ 0}/C{i < 0} is the chain complex ĈF (Y ),

whose homology is ĤF (Y ), with an extra filtration given by j. In particular, the



31

absolute grading on C{i = 0} gives the absolute grading on ĈF (Y ) ([21], Lemma

3.6). This property is also true if we interchange i and j.

(4) The complex C enjoys a lot of symmetries. In particular, up to filtered chain homotopy

equivalence and assuming Z/2Z-coefficients, we can arrange that:

(a) C{i = 0} is supported between filtration levels (0, k) and (0,−k) for some k ≥ 0,

and the ranks of C{0, j} and C{0,−j} are equal for all 0 ≤ j ≤ k.

(b) C is isomorphic to C{i = 0}⊗Z[U,U−1] as filtered free abelian groups. In other

words, C is generated by the generators of C{i = 0} followed by a power of U .

Also, U respects the differential.

The differential and absolute grading on C{i = 0} and C{j = 0} determine those of

the entire complex C through Property (4b).

As an example, see Figure 4.1 for CFK(S3, T2,9) (up to filtered chain homotopy equiv-

alence) where T2,9 is the positive torus knot (2,9).

The rest of the section discusses Oszváth and Szabó’s work [27] which proved that in

the case that Y is an integer homology sphere, we can form mapping cones out of C whose

homologies provide the Heegaard Floer groups of the surgeries on Y , and more importantly,

certain inclusions of ĤF (Y ) ∼= C{i = 0} into the mapping cones can be identified with the

individual cobordism maps in equation 2.14. Ozsváth-Szabó’s theorem comes with flavors

of HF+ and ĤF , but for our application, we shall only discuss the ĤF version.

Say C{i = 0} is supported between filtration levels (0, k) and (0,−k) for some k ≥ 0.
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We define the following quotient complexes As (for s ∈ Z) and B.

As =
{
C{max(i, j − s) = 0}

}
, B = C{i = 0}. (2.15)

There are two canonical chain maps vs : As −→ B and hs : As −→ B, defined as follows.

The map vs is the projection onto C{i = 0}, while hs is the projection onto C{j = s},

followed by the identification with C{j = 0} (induced by the action of U s), followed by a

canonical chain homotopy equivalence ζ from C{j = 0} to C{i = 0}.

We note that ζ preserves the absolute grading on C, but does not have to map C{i, j}

to C{j, i} in general (even though it does in the case (S3, T2,2g+1)).

Let A =
⊕
s∈Z

As and B =
⊕
s∈Z

Bs (each summand of B is isomorphic to B, but we included

a subscript to distinguish various summands), and let Dn : A −→ B be the chain map

Dn({as}s∈Z) = {bs}s∈Z

where

bs = vs(as) + hs−n(as−n).

A visualization of a finite portion of Dn for n = 0 and n = −1 is as follows:

For n = 0:

A−2

B−2

v−2 h−2

A−1

B−1

v−1 h−1

A0

B0

v0 h0

A1

B1

v1 h1

A2

B2

v2 h2

For n = −1:

A−2 A−1 A0 A1 A2

B−2 B−1 B0 B1 B2

v−2
h−2

v−1
h−1

v0
h0

v1
h1

v2
h2 h3
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Let X(n) denote the mapping cone of Dn, namely the chain complex whose underlying

group is A⊕ B, and whose differential over F, the field of order 2, has the form ∂A 0

Dn ∂B

 .

Now we are ready to state the main theorem of this section:

Theorem 2.9.3 ([27]). Let Y be an integer homology sphere. For any integer n, the

homology of the mapping cone X(n) is isomorphic to ĤF (Yn(K)). Moreover, under this

identification, the map H∗(Bs) −→ H∗(X(n)) induced by inclusion of chain complex is

identified with the cobordism map F̂W,t : ĤF (Y ) −→ ĤF (Yn(K)), where W is the cobordism

induced by the 2-handle, and t is s-th spinc structure on W (for some identification of

spinc(W ) with Z).

In [27], the main theorem (Theorem 1.1) is stated for HF+ and the case n 6= 0; the

analogous result for ĤF as well as the case n = 0 are handled in Chapter 4 of the same

paper.

When n = 0, we have H1(Y0(K)) ∼= Z; let T be a generator of H1(Y0(K)). Then

Theorem 2.9.3 actually calculates the twisted cobordism maps

F̂W,t : ĤF (Y ) −→ ĤF (Y0(K), t|Y0(K);F[T, T−1])

as long as we replace H∗(As) by H∗(As)⊗F F[T, T−1], H∗(Bs) by H∗(Bs)⊗F F[T, T−1] and

the maps hs by T · hs for all s ∈ Z.

When n 6= 0, the absolute grading of ĤF (Yn(K)) can be determined from the mapping

cone as well. In our case of interest n = −1, the grading is determined by giving B0 the
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grading of C{i = 0}, and then shifting the gradings on the other copies of As and Bs so

that the v- and h-maps decrease degree by 1.

Finally, it follows from standard homological algebra that there is an exact sequence

0 −→ coker (Dn)∗ −→ H∗(X(n)) −→ ker(Dn)∗ −→ 0.

If the coefficient ring is F, then the sequence splits, and so

H∗(X(n)) = ker(Dn)∗ ⊕ coker(Dn)∗. (2.16)
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Chapter 3

The topology of Ug

This chapter is devoted to the construction of the Lefschetz fibrations Ug mentioned

in the statement of Theorem 1.3.1. A lot of the contents of this chapter can be found

in [11], most notably Chapter 8.

3.1 Lefschetz fibrations

A Lefschetz fibration can be thought of as a generalization of products of two surfaces,

where a finite number of fibers are allowed to contain singularities of the simplest kind,

and away from the fibers with singularities, there is a surface bundle structure. More

precisely:

Definition 3.1.1 ([11], Definition 8.1.4). Let X and M be compact, connected,

oriented 4- and 2-dimensional manifolds respectively. A smooth map π : X −→M is

called a Lefschetz fibration on X if:

• π−1(∂M) = ∂X,
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• The set of critical points C ⊂ X of π is finite and each critical point lies in the

interior of X,

• For each p ∈ C, there exist complex charts around p and π(p), preserving

orientations of X and M , so that π(z1, z2) = z2
1 + z2

2 .

The preimage of any point in π(C) is called a singular fiber, and the preimage of any

other point in M is called a regular fiber. If a regular fiber is a connected surface of

genus g, then π : X −→M is called a genus g Lefschetz fibration.

By perturbation, we may assume that π is injective on C.

Let D2 be a 2-disk in M . If D2 contains no points from π(C), then π−1(D2) is

the tubular neighborhood of a regular fiber and is diffeomorphic to Σ × D2. If D2

contains one point from π(C), then π−1(D2) is the tubular neighborhood of a singular

fiber whose topology can be described as follows:

Proposition 3.1.2 ([11], p.292-295). π−1(D2) is diffeomorphic to the result of at-

taching a 2-handle along a circle α ⊂ Σ×{pt.} on the boundary of Σ×D2, where the

framing of the attachment is −1 relative to the framing given by Σ. Also, π−1(∂D2)

is the mapping torus whose monodromy is the right-handed Dehn twist Dα along α.

More generally, a Lefschetz fibration with any number of critical points can be

combinatorially described by a monodromy representation Ξ as follows. Choose a

point q in the interior of M away from π(C), and fix an identification of π−1(q) with

Σ. Then a loop λ with λ(0) = λ(1) = q induces a diffeomorphism φ : π−1(λ(0)) =



37

Σ −→ π−1(λ(1)) = Σ. Changing λ by an isotopy only changes φ by isotopy, so

we have a well-defined map Ξ : π1(M − π(C), q) −→ MCG(Σ), where π1 denotes

fundamental group and MCG(Σ) is the mapping class group of Σ (see Section 2.3).

Based on this, we can describe a Lefschetz fibration by a monodromy factorization

([11], p.296). Let C = {p1, p2, . . . , pn}. Then π1(M−π(C), q) is isomorphic to the free

group generated by n elements, and we can choose an ordered basis {λ1, λ2, . . . , λn},

where each λi bounds a disk Di which contains exactly one member of π(C), say π(pi).

Without loss of generality, we index the π(pi) and λi so that the indices increase as

we travel counter-clockwise around q; also let D0 be a small disk containing q but

none of the pi. See Figure 3.1 for an example.

Figure 3.1: A choice of generators of π1(M − π(C), q).

It follows from Proposition 3.1.2 that X is diffeomorphic to π−1(D0) ∼= Σ × D2

with n 2-handles attached along some circles α1, α2, . . . , αn in successive copies of Σ

in Σ × S1 = ∂(Σ ×D2). Using the language of monodromy representation, we have
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Ξ(λi) = Dαi
. We say that the word

Dα1Dα2 · · ·Dαn , or simply α1α2 · · ·αn,

is a monodromy factorization of π. Also, π : ∂X −→ S1 is a mapping torus whose

monodromy is the composition of the letters in the monodromy factorization, namely

α1 ◦ α2 ◦ · · · ◦ αn. In general, the monodromy factorization depends on the choices

of the identification π−1(q) ∼= Σ and the ordered basis of π1(M − π(C), q). We shall

not need to understand the dependence with depth; interested readers are referred to

[11], p.297-298.

It is also clear from the construction that X contains Lefschetz subfibrations whose

monodromy factorizations are subwords of that of X. (A subword of a word is a word

whose letters form a subsequence of the letters of the original word.) For example,

assuming n ≥ 6, let M ′ = D0 ∪ (D1 ∪D3 ∪D6). Then π−1(M ′) −→M ′ is a Lefschetz

subfibration of X whose monodromy factorization is α1α3α6.

We shall often consider relatively minimal Lefschetz fibrations:

Definition 3.1.3 ([11], p.289). A Lefschetz fibration X is relatively minimal if no

fiber of X contains spheres of self-intersection −1.

A Lefschetz fibration is relatively minimal precisely when none of the circles

α1, α2, . . . , αn are trivial in π1(Σ) ([11], p.289).

Now we consider our main case of interest, namely Lefschetz fibrations where the

base space M is S2. We may remove the neighbourhood Σ×D2 of a regular fiber to
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obtain a Lefschetz fibration over D2 with some monodromy factorization α1α2 · · ·αn.

Since ∂(Σ×D2) = Σ×S1 is a bundle over S1 whose monodromy is the identity map,

it follows that α1 ◦α2 ◦ · · · ◦αn must be the identity element in MCG(Σ). Conversely,

given a word in MCG(Σ) in which all letters αi are right-handed Dehn twists, one can

construct a Lefschetz fibration with monodromy factorization α1α2 · · ·αn by attaching

2-handles to Σ×D2 as described before; if α1 ◦ α2 ◦ · · · ◦ αn is the identity, then the

Lefschetz fibration extends over S2. The extension is unique if the genus g of Σ is at

least 2 ([11], p.299).

3.2 Handle diagrams of Lefschetz fibrations

This section provides a way to construct handle diagrams of Lefschetz fibrations based

on a monodromy factorization. To this end, we shall first draw the handle diagram

of Σ×D2, the neighbourhood of a regular fiber, and then attach the 2-handles in the

manner described in Section 3.1. First we give a handle diagram of Σ×D2:

Proposition 3.2.1. We have the following:

1. A handle description of Σ × D2 is given by Figure 3.2(a), consisting of a 0-

handle, 2g 1-handles and a 0-framed 2-handle. Each dashed line connects the

two attaching regions belonging to the same 1-handle.

2. The obvious spanning disk of the 0-framed closed curve drawn in S3 extends over

the 1-handles and the core of the 2-handle to form Σ× {pt.}, and the standard
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fibration of the complement of the closed curve by spanning disks gives the entire

S1-family of Σ. (See Figure 3.2(b) for the picture of Σ minus a 2-disk, whose

bands lie inside the 1-handles and thus are invisible in Figure 3.2(a).)

3. The standard chain γ1, γ2, . . . , γ2g on Σ in Figure 3.2(c) corresponds to the

chains γ1, γ2, . . . , γ2g in Figures 3.2(a) and 3.2(b).

Figure 3.2: A handle description of Σ × D2. Diagram (a) is taken from [11], p.321

and modified.
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The first two parts of the proposition are a direct generalization of [11], Exercise

4.6.6(a); see also Exercise 8.4.1. The third part can be visualized by starting with

Figure 3.2(b) and gluing a disk at its boundary to recover Σ as in Figure 3.2(c).

Given a monodromy factorization α1α2 · · ·αn, we can form a handle description of

the corresponding Lefschetz fibration over D2 by attaching the −1-framed 2-handles

along successive copies of Σ in Σ×S1. By Proposition 3.2.1(2), these successive copies

of Σ can be visualized by starting with the obvious spanning disk, and then gradually

pushing the interior of the disk out of the paper (while keeping the boundary fixed).

Therefore, the handle diagram for the Lefschetz fibration can be drawn by starting

with the diagram of Σ×D2, then add 2-handles whose attaching circles consist of the

curve α1 on the obvious spanning disk, then α2 on a spanning disk pushed slightly

out of paper thus overcrossing α1, then α3 on a further pushed spanning disk thus

overcrossing α1 and α2, and so on. All framings of αi will be −1 relative to the

framing from Σ. If the writhe of αi is 0, for example, when αi is one of the γ-curves

in Proposition 3.2.1, then the framing coefficient would be −1 (see Section 2.2). See

Figure 3.3 in Section 3.3 for the particular example of our interest.

3.3 The definition of Ug

In this section, we shall define the Lefschetz fibration Ug mentioned in the statement

of Theorem 1.3.1.

We begin by defining a classical complex manifold U(g + 1, n). Consider the
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holomorphic line bundle Lk −→ CP1 with Euler number k. Then the Hirzebruch

surface Fk is defined to be the fiberwise projectivization of the C2-bundle Lk⊕C −→

CP1, where C denotes the trivial line bundle. Thus Fk is a CP1-bundle over CP1 with

Euler number k, and in fact, Fk is diffeomorphic to S2 × S2 when k is even.

Definition 3.3.1 ([11], p.263). We define U(g+ 1, n) be the desingularization of the

double branched cover of the Hirzebruch surface F2n branched along the union of

2g + 1 affine sections of self-intersection 2n and one of self-intersection −2n.

We are mainly interested in the Lefschetz fibration structure on U(g + 1, n) and

thus omit details of the algebro-geometric construction; interested readers can find

more facts about the Hirzebruch surface in, for example, [11], p.87-88, and more

discussion of the double branched cover construction in [11], Chapter 7.3.

It is known that U(g + 1, n) is a minimal general type complex surface for g ≥ 2

and n ≥ 2 ([11], p.320 and [28], Proposition 1.3), and U(g + 1, n) admits a natural

genus g singular fibration that becomes a Lefschetz fibration after perturbation. More

precisely, Fuller [8] showed that the handle diagram of U(g + 1, n) is given by Figure

3.3.

By Proposition 3.2.1 and the subsequent discussion, U(g + 1, n) contains a genus

g Lefschetz fibration over D2 with monodromy factorization

(γ1γ2 · · · γ2g)
(4g+2)n, (3.1)

whose handle description consists of the 0-handle, the 2g 1-handles, the 0-framed
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Figure 3.3: The handle diagram of U(g+1, n). Diagram is taken from [11], p.321 and

modified.

2-handle and the (4g + 2)n 2-handles in each half-ring. Because of the well-known

relation (γ1 ◦ γ2 ◦ · · · ◦ γ2g)
4g+2 = 1 in MCG(Σ), we see that this Lefschetz fibration

over D2 extends to one over S2 by gluing a copy of Σ×D2. In fact, the −n-framed

2-handle, the 2g 3-handles and the 4-handle in the diagram correspond to such a copy

of Σ×D2 ([11], p.321). This makes the whole U(g + 1, n) a Lefschetz fibration over

S2 with monodromy given by (3.1).

Definition 3.3.2. We define Ug to be the genus g Lefschetz fibration over D2 with

monodromy factorization (γ1γ2 · · · γ2g)
4g+3.

Since (γ1γ2 · · · γ2g)
4g+3 is a subword of (γ1γ2 · · · γ2g)

(4g+2)n for all n ≥ 2, it follows

from the discussion preceding Definition 3.1.3 that U(g + 1, n) contains Ug as a Lef-

schetz subfibration for all n ≥ 2. The handle diagram of Ug is given by Figure 3.3
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except with only the 0-handle, the 1-handles and 4g + 3 strands in each half-ring.

Fuller [8] showed that after cancelling one 2-handle from each half-ring with the 1-

handles and performing isotopies on the 0-framed knot, we obtain a handle diagram

of Ug with only a 0-handle and 2g(4g + 2) 2-handles, each with framing coefficient

−2, shown in Figure 3.4. The box with the number −1 denotes a full negative twist.

Figure 3.4: A handle description of Ug without 1-handles. Diagram is taken from

[11], p.322 and modified.

The fibration Ug contains Milnor fibers, for which we shall recall some definitions

and facts. For positive integers p, q, r, a Milnor fiber M(p, q, r) associated to the

complex singularity {xp + yq + zr = 0} is defined to be the set {(x, y, z) ∈ C3|xp +

yq + zr = ε}, where ε ∈ C− {0}, and we shall also define V (p, q, r) = M(p, q, r) ∩D6

where D6 is a 6-ball with a sufficiently small radius centered at the origin. Milnor [18]

showed that V (p, q, r) is the r-fold cyclic branched cover of D4 ⊂ C2 branched along
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the surface B = {(x, y)|xp + yq = ε} where B is obtained by pushing the canonical

Seifert surface of the positive torus link Tp,q into D4. We are most interested in the

case p = 2 and q = 2g + 1; see Figure 3.5 for two isotopic drawings of T2,2g+1 with

the standard Seifert surface. Also, Tp,q is a fibered link in S3 and the standard Seifert

surface, whose genus is (p−1)(q−1)
2

, is a page of the open book, so the genus of the

standard Seifert surface of T2,2g+1 is g.

Figure 3.5: The torus knot T2,2g+1 (with g = 1) and the canonical Seifert surface. We

can visualize the isotopy from (b) to (a) as follows: push the two feet in the boxed

region into contact, push the box up to the top of the diagram (creating a “thick

band” in the middle), then perform some untwisting.

As promised in Section 2.4, we shall describe Akbulut-Kirby’s algorithm [1] in

this particular situation to produce a handle diagram of V (2, q, r). First start with

a drawing of the Seifert surface F which consists of a single 0-handle and some 1-

handles, namely Figure 3.5(b). Visualize r copies of thickened copies F i of F (as

defined in Section 2.4) in S3 like the slices of a loaf of bread, with index increasing

from left to right, and so that F
−
i (resp. F

+

i ) is on the left (resp. right) of the slice.
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The gluing of F
+

i and F
−
i+1 is equivalent to attaching 2-handles whose attaching circles

are the union of the cores of the 1-handles in F
+

i and F
−
i+1, and the framing coefficient

of each 2-handle is equal to twice the number of full twists in the corresponding 1-

handle. The result is given by Figure 3.6(a). Also, Figure 3.6(b) shows how F (as

a subset of F 1) sits inside the boundary relative to the arcs in F
+

1 which are the

leftmost arcs in Figure 3.6(a).

Figure 3.6: The handle diagram of V (2, q, r) (where q = 3 and r = 4), and how ∂F

sits inside it. Diagram (a) is taken from [11], p.233 and modified.

Akbulut and Kirby also described a series of isotopies in Figure 3.6(a) collapsing
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the arches to the ring picture (Figure 3.4), except with q−1 strands in each of the r−1

rings and without the 0-framed knot. In other words, the Akbulut-Kirby construction

allows us to decompose Ug into the Milnor fiber V (2, 2g + 1, 4g + 3) and a 2-handle

attachment.

Definition 3.3.3. We define Vg to be V (2, 2g + 1, 4g + 3). We also define Wg to

be Ug − int(Vg), which is the cobordism from ∂Vg to ∂Ug induced by attaching the

0-framed 2-handle in Figure 3.4.

As a result, we can see Ug−D4 as the composition of the cobordism Vg−D4 from

S3 to ∂Vg and the cobordism Wg from ∂Vg to ∂Ug.

We further observe that if one keeps track of F in Akbulut’s and Kirby’s isotopy,

then F is actually isotopic to the obvious surface bounded by the 0-framed knot in

Figure 3.4 through the previously described isotopy from Figure 3.5(b) to 3.5(a) (and

shifting the rings slightly so as to not intersect the obvious surface). As a result,

we do not only understand ∂Vg as an open book abstractly, but also the binding

and a page of the open book relative to our surgery description of ∂Vg. Based on

this observation, we shall give an alternative description of Wg, which will be more

suitable for the Heegaard Floer calculation later on. Let S3
n(K) denote the 3-manifold

resulted from performing an n-surgery on K ⊂ S3.

Proposition 3.3.4. The cobordism Wg is diffeomorphic to:

(1) The cobordism induced by attaching a page-framed 2-handle along the binding
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of a genus g open book with monodromy (γ1 ◦ γ2 ◦ · · · ◦ γ2g)
4g+3 ∈MCG(Σg,1).

(2) The cobordism induced by the 0-surgery on the induced knot in S3
−1(T2,2g+1) (see

Definition 2.1.4).

Proof. We first prove that Wg is diffeomorphic to (1). Our discussion has established

that ∂Vg is a genus g open book which is a (4g + 3)-fold cyclic branched cover of

S3 along the fibered knot T2,2g+1, and the obvious surface bounded by the 0-framed

knot in Figure 3.4 is a page of the open book on ∂Vg. Since the monodromy of the

corresponding open book on S3 is γ1 ◦ γ2 ◦ · · · ◦ γ2g, we know that the monodromy of

the open book on ∂Vg is (γ1 ◦ γ2 ◦ · · · γ2g)
4g+3 (see the end of Section 2.4). It is also

clear from the diagram that the page framing does have framing coefficient 0, so it

follows from definition that Wg is diffeomorphic to (1).

Next we prove that (1) and (2) are diffeomorphic. Let’s start over with the open

book structure on T2,2g+1 ⊂ S3. If we let h be the right-handed Dehn twist along

the boundary of Σg,1, then S3
−1(T2,2g+1) is an open book where the induced knot

is the binding and the monodromy is (γ1 ◦ γ2 ◦ · · · ◦ γ2g) ◦ h (see Etnyre’s lecture

notes [6], Theorem 5.7), which equals (γ1 ◦ γ2 ◦ · · · ◦ γ2g)
4g+3 due to the chain relation

(γ1◦γ2◦· · ·◦γ2g)
4g+2 = h in MCG(Σg,1). On the binding, the page framing is the same

as the Seifert framing (or 0-framing). It follows that (1) and (2) are diffeomorphic.

By performing a handleslide, one can show that the 0-surgery on the induced knot

in S3
−1(T2,2g+1) is actually S3

0(T2,2g+1). By the discussion at the end of Section 2.3,
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S3
0(T2,2g+1) is also a mapping torus.

3.4 The algebraic topology of Vg

We shall record some information of the classical invariants of Vg for future appli-

cation. In the following lemma, χ(Vg) denotes the Euler characteristics of Vg. Also,

b+
2 (Vg), b

−
2 (Vg) and σ(Vg) denote the rank of the maximal positive definite subspace,

rank of the maximal negative definite subspace and the signature of the intersection

form of H2(Vg) respectively.

Lemma 3.4.1. Let g ≥ 1. The rank of H2(Vg) is 8g2 + 4g, and χ(Vg) = 8g2 + 4g+ 1.

Also, b+
2 (Vg) = 2g2, b−2 (Vg) = −6g2 − 4g and σ(Vg) = −4g2 − 4g.

Proof. The handlebody diagram of Vg has one 0-handle and 2g · (4g + 2) = 8g2 + 4g

2-handles, so the statements concerning rank of H2(Vg) and χ(Vg) immediately follow.

To prove the rest, we use the fact (see [19] Remark 4.6, for example) that b+
2 (V (p, q, r))

is equal to twice the number of lattice points in the open tetrahedron spanned by

(0, 0, 0), (p, 0, 0), (0, q, 0) and (0, 0, r).

Claim 3.4.2. The number of lattice points in the open tetrahedron spanned by (0, 0, 0),

(2, 0, 0), (0, 2g + 1, 0) and (0, 0, 4g + 3) is equal to g2.

To prove the claim, first observe that the set of lattice points described in the claim

is the same as the set of lattice points in the open triangle spanned by (0, 0),

(
2g + 1

2
, 0

)
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and

(
0,

4g + 3

2

)
in the x = 1 plane. Then it is easy to check that a lattice point

(y, z) lies inside the open triangle if and only if 1 ≤ y ≤ g and 1 ≤ z ≤ 2g + 1− 2y.

Thus the total number of lattice points is

g∑
y=1

(2g + 1− 2y) which equals g2.

Therefore, b+
2 (Vg) equals 2g2. Also, by the same remark ([19], Remark 4.6), the

triple (2, 2g + 1, 4g + 3) being pairwise relatively prime implies that all eigenvalues

of the intersection form are either positive or negative, so the rank of H2(Vg) equals

b+
2 (Vg) + b−2 (Vg). This implies b−2 (Vg) = 6g2 + 4g, and it follows that σ(Vg) = b+

2 (Vg)−

b−2 (Vg) = −4g2 − 4g.

Since the handle description of Vg (Figure 3.4 without the 0-framed 2-handle)

involves only a 0-handle and some 2-handles, we know that H2(Vg) is free abelian

generated by the cores of the 2-handles union their cap-offs in D4, which is in bijection

to the link components of the handle diagram. We choose an ordered basis of H2(Vg)

based on Figure 3.4. First start with the outermost strand of the leftmost ring, then

the second outermost strand, and so on, until we finish the ring. Next we move on to

the strands in the second leftmost ring, again going from the outermost strand to the

innermost, and we shall repeat with all the rings from left to right. We can choose the

orientations of the basis elements to our convenience; our choice would be equivalent

to orienting all link components counterclockwise. Under these choices, and keeping

track of the criss-crosses carefully, we obtain the following linking matrix which is

also the matrix representation Q of the intersection form:
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Q =



A B

Bt A B

Bt A

. . .

A B

Bt A



, (3.2)

where there are 2g copies of A, and both A and B are (4g+2)-by-(4g+2) matrices,

defined as follows:

• the diagonal entries of A are −2 and the non-diagonal entries of A are all −1,

• all diagonal and lower triangular entries of B are 1 and the remaining entries

of B are zero,

and all remaining entries of Q are 0.
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Chapter 4

Proof of Main Results

This chapter is devoted to proving the main results (Theorem 1.3.1 and Corollary

1.3.2) of the present work, which we restate here for convenience:

Theorem 4.0.1. For g = 4 and 5, there exists a genus g Lefschetz fibration Ug over

D2 with regular fiber Σ, so that the relative invariant ΨUg ,s vanishes for all spinc

structures satisfying |〈c1(s), [Σ]〉| < 2g − 2.

Corollary 4.0.2. Let X be a closed, oriented symplectic 4-manifold which admits

a relatively minimal genus g Lefschetz fibration over S2, with g = 4 or 5. If X

contains Ug as a Lefschetz subfibration and b+
2 (X − Ug) ≥ 1, then the Ozsváth-Szabo

4-manifold invariant ΦX,s vanishes unless s is the canonical spinc structure of X (or

its conjugate).

Let S3
n(K) denote the result of the n-surgery along a knot K in S3. Since ∂Vg =

S3
−1(T2,2g+1) is an integer homology sphere, we have spinc(Ug−D4) ∼= spinc(Vg−D4)⊕

spinc(Wg). The Composition Law (Equation 2.4 and the subsequent discussion) tells

us that
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ΨUg ,s = F−Ug−D4,s(Θ
−) = F−Wg ,s|Wg

◦ F−Vg−D4,s|Vg−D4
(Θ−); (4.1)

note that ∂Vg is an integer homology sphere, so F−Vg−D4 is the same as F−Vg−D4 .

We will devote this chapter to prove the two key properties of F−Wg
and F−Vg−D4 by

some intricate calculations (Proposition 4.1.1 and Proposition 4.2.1). The calculation

of F−Vg−D4 will be performed for all g ≥ 2. The calculation of F−Wg
is done for g = 4

and g = 5, although the author anticipates that the calculation generalizes to all

g ≥ 2. Once these calculations are in place, Theorem 4.0.1 and Corollary 4.0.2 will

quickly follow (Section 4.3).

4.1 Calculation of F−
Vg−D4

We shall prove the following:

Proposition 4.1.1. For all g ≥ 2, the element F−Vg−D4,s(Θ
−) ∈ HF−red(S3

−1(T2,2g+1))

is trivial if s 6= s0, where s0 is the trivial spinc structure.

The proof is a combinatorial argument using the adjunction relation (Theorem

2.7.1).

Recall from Section 3.3 that the handle diagram of Vg consists of 2g rings with

4g + 2 strands in each ring. Continuing from our discussion of choosing a basis for

H2(Vg) at the end of Section 3.4, for all 1 ≤ i ≤ 2g and 1 ≤ j ≤ 4g + 2, we use Li,j

to denote the generator of H2(Vg) represented by the j-th strand in the i-th ring. We
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shall apply the adjunction relation on Vg with the following collection of homology

classes in H2(Vg):

• Singletons, i.e. Li,j for some i and j;

• Doubletons, i.e. Li,j + Li+1,j′ , where 1 ≤ i ≤ 2g − 1 and j ≥ j′.

Notice that all these homology classes can be represented by smooth spheres and have

square −2. Indeed, we can represent each singleton by taking the union of the core of

the 2-handle and the disk that the attaching sphere bounds in S3. For the doubletons,

the condition j ≥ j′ implies that Li,j · Li+1,j′ = +1 (see the linking matrix Q at

Equation 3.2), and in fact, the smooth spheres representing Li,j and Li+1,j′ intersect

geometrically once. Thus we can splice the two spheres at the intersection point to

yield one single smooth sphere, and it is easy to check that (Li,j +Li+1,j′)
2 = −2. An

application of the adjunction relation to these smooth surfaces yields:

Lemma 4.1.2. Let s be a spinc structure on Vg and [Σ] be any of the homology classes

defined above.

(1) If 〈c1(s), [Σ]〉 = −2, then F−Vg−D4,s = F−Vg−D4,s−PD[Σ].

(2) If 〈c1(s), [Σ]〉 ≤ −4, then F−Vg−D4,s = Um · F−Vg−D4,s−PD[Σ] for some m > 0.

Proof of Lemma. For (1), take a smooth sphere that represents [Σ]. Then the condi-

tion of the adjunction relation (Equation 2.9) holds for m = 0:

〈c1(s), [Σ]〉 − [Σ]2 = −2− (−2) = 0 = −2m.
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So adjunction relation applies and F−Vg−D4,s = U0 · F−Vg−D4,s−PD[Σ] = F−Vg−D4,s−PD[Σ].

For (2), since 〈c1(s), [Σ]〉 − [Σ]2 ≤ −4 − (−2) = −2, we may add m > 0 null-

homologous handles to the smooth sphere that represents [Σ] to make the condition

of adjunction relation hold. The result follows.

The statement of Lemma 4.1.2 can be paraphrased as: if the condition in (1)

is met, then transforming s to s − PD[Σ] does not change the F−Vg−D4 map; if the

condition in (2) is met, then transforming s to s − PD[Σ] multiplies F−Vg−D4 by a

positive power of U .

For any spinc structure s in Vg − D4, let li,j = 1
2
· 〈c1(s), Li,j〉. We shall record

these values in the form of a table:

L1,1 · · · L1,4g+2 L2,1 · · · L2,4g+2 · · · L2g,1 · · · L2g,4g+2

s l1,1 · · · l1,4g+2 l2,1 · · · l2,4g+2 · · · l2g,1 · · · l2g,4g+2

Now we describe the effect of applying Lemma 4.1.2 (1) taking [Σ] to be a singleton

Li,j. If the corresponding entry li,j equals −1, then 〈c1(s), Li,j〉 = 2li,j = −2, so

Lemma 4.1.2 (1) applies, and the transformation from s to s − PD(Li,j) preserves

F−Vg−D4 . Utilizing the intersection matrix Q and the facts that 〈c1(s), Li,j〉 = PDc1(s)·

Li,j and PDc1(s−PD(Li,j)) = PDc1(s)− 2Li,j, we see that the transformation from

s to s− PD(Li,j) changes the entries in the following way:

• li,j increases by 2;
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• li,j′ increases by 1 for all j′ 6= j;

• if i ≥ 2, then li−1,j′ decreases by 1 for all j′ ≥ j;

• if i ≤ 2g − 1, then li+1,j′ decreases by 1 for all j′ ≤ j;

• all other entries are preserved.

Definition 4.1.3. We call the above transformation of s to s − PD(Li,j) (through

applying Lemma 4.1.2(1)) an augmentation by Li,j.

Here is an augmentation expressed in tabular form (assuming 2 ≤ i ≤ 2g − 1),

broken into three rows due to editorial constraints:

Li−1,j · · · Li−1,4g+2

s li−1,j · · · li−1,4g+2

Aug. by Li,j li−1,j − 1 · · · li−1,4g+2 − 1

Li,1 · · · Li,j−1 Li,j Li,j+1 · · · Li,4g+2

li,1 · · · li,j−1 −1 li,j+1 · · · li,4g+2

li,1 + 1 · · · li,j−1 + 1 1 li,j+1 + 1 · · · li,4g+2 + 1

Li+1,1 · · · Li+1,j

li+1,1 · · · li+1,j

li+1,1 − 1 · · · li+1,j − 1
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Since the first Chern class of s reverses sign under conjugation (i.e. c1(s) =

−c1(s)), it is clear that conjugation of spinc structure switches the signs of all entries.

Claim 4.1.4. For any non-trivial spinc structure s on Vg −D4, there exists a finite

sequence of augmentations and conjugations, ending with another spinc structure s′

for which at least one entry is −2 or less.

Proof of Proposition 4.1.1 assuming Claim 4.1.4. For any non-trivial spinc structure

s on Vg − D4, let s′ be a spinc structure produced by the claim; we have observed

that F−Vg−D4,s = F−Vg−D4,s′ . If li,j is −2 or less, then 〈c1(s′), Li,j〉 = 2li,j ≤ −4, so

we may apply Lemma 4.1.2 (2) to find m1 > 0 and another spinc structure s′′ so

that F−Vg−D4,s′ = Um1 · F−Vg−D4,s′′ . If s′′ = s0, then F−Vg−D4,s′ = 0 since F−Vg−D4,s0
(Θ−)

belongs to the kernel of U (to be proved in Lemma 4.2.2). If s′′ 6= s0, then we apply

the claim and Lemma 4.1.2 (2) again to obtain another spinc structure s′′′ so that

F−Vg−D4,s′′ = Um2 · F−Vg−D4,s′′′ for some m2 > 0. Since the image of F−Vg−D4,s lies in the

reduced group HF−red(∂Vg) which by definition vanishes under sufficiently high power

of U , this process must yield F−Vg−D4,s = 0 in finitely many steps.

We shall spend the remainder of this section to prove Claim 4.1.4.

Proof of Claim 4.1.4. In the case where any entry has absolute value at least 2, the

claim follows, by a conjugation if necessary. Therefore, it suffices to consider the case

where all entries are −1, 0, 1. Observe that:
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(*) The intersection matrix Q has determinant ±1 because ∂Vg is an integer ho-

mology sphere. Since s is a non-trivial spinc structure, we know that at least

one entry is non-zero.

(**) If there is doubleton Li,j + Li+1,j′ (with j′ ≤ j) defined before Lemma 4.1.2

whose corresponding entries li,j and li+1,j′ are both −1, then we may augment s

by Li,j which makes li+1,j′ equal −2 (or augment s by Li+1,j′ making li,j = −2),

and the claim follows.

Therefore, we will prove the claim by describing an algorithm to augment any

non-zero sequence {li,j} into one that falls into situation (**). We may assume all

entries are −1, 0 and 1 after each step of augmentation. Also, it is possible to augment

by Li,j whenever li,j is non-zero, just that if li,j = 1, then we just have to conjugate

s beforehand in order to change li,j to −1. Such conjugations will often be implicit

in the proof. Therefore, to simplify our language, a generator Li,j will be called

permissible (for the purpose of augmentation) if li,j 6= 0.

The algorithm is as follows. For a fixed value of i, the collection of generators

{Li,j}1≤j≤4g+2 will be called the Li-block, or simply Li. We say that a block Li is

non-zero if at least one corresponding entry li,j is non-zero.

Step 1. Augment so that we have two non-zero blocks with exactly one block in

between (it does not matter whether the block in between is zero or not).
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Any sequence that are not already in the desired form falls into one of the following

five cases:

1. There are two or more non-zero blocks, and any two non-zero blocks have more

than one zero block in between.

2. There are exactly two non-zero blocks Li and Li+1, and neither i = 1 nor

i+ 1 = 2g.

3. There are exactly two non-zero blocks Li and Li+1, and either i = 1 or i+1 = 2g.

4. There is exactly one non-zero block Li with i 6= 1, 2g.

5. There is exactly one non-zero block Li with i = 1 or 2g.

• Case 1. Choose a pair of non-zero blocks Li and L′i (where i′ ≥ i + 3) with

only zero blocks in between. Now augment by any permissible generator in Li′

to make Li′−1 non-zero, then augment by any permissible generator in Li′−1 to

make Li′−2 non-zero, and so on. Repeat this process until Li+2 is non-zero.

• Case 2. Let j be the smallest value so that li,j 6= 0 and j′ be the largest value

so that li+1,j′ 6= 0.

– Case 2(a): If j < j′, then augment by Li+1,j′ to make the Li+2-block non-

zero. Since j < j′, the augmentation preserves li,j, and so the Li-block is

non-zero.
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– Case 2(b): If j > j′, then augment by Li+1,j′ to make the Li+2-block non-

zero. Since j > j′, the entry li,j′ changes from 0 to −1, so the Li-block

remains non-zero.

– Case 2(c): If j = j′, then notice that if any entry between li,j and li+1,j

is non-zero, then we may just augment by any generator strictly between

them. Otherwise, if every entry between Li,j and Li+1,j is zero, then we

consider either li,j if j < 4g + 2, or li+1,j if j > 1. In the first case,

assume li,j = −1 (possibly by a conjugation), augment by Li,j so that

li−1,j = −1 and li,4g+2 = 1, then conjugate and augment by Li,4g+2 so that

li+1,4g+2 = −1 while li−1,j is preserved. As a result, blocks Li−1 and Li+1

become non-zero. Expressed in a table where entries that do not matter

are left blank:

· · · Li−1,j · · · · · · Li,j · · · Li,4g+2 · · · Li+1,4g+2

Start 0 −1 0 0

Aug. by Li,j −1 1 0

Conj. 1 −1 0

Aug. by Li,4g+2 1 −1

The argument of picking li+1,j in the case of j > 1 is completely symmetric.

• Case 3. By symmetry, we may assume that only L1 and L2 are non-zero. Then

we may augment by any permissible generator in L2, so that L3 becomes non-

zero. If L1 remains non-zero, then we are done; if L1 becomes zero, see Case

2.
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• Case 4. If Li (with i 6= 1, 2g) is the only non-zero block, then we may augment

by any permissible generator in Li so that Li−1 and Li+1 are non-zero.

• Case 5. By symmetry, we may assume that L1 is the only non-zero block; then

augment by any permissible generator in L1 so that L2 becomes non-zero. If L1

remains non-zero, see Case 3; if L1 becomes zero, see Case 4.

Step 2. With the two non-zero blocks Li−1 and Li+1 (2 ≤ i ≤ 2g − 1) constructed

in Step 1, augment so that li−1,4g+2 = li+1,1 = −1.

If Li−1,4g+2 is not already ±1, we may augment by any permissible generator in

Li−1 so that li−1,4g+2 = 1 while preserving the absolute value of li+1,1; similarly, if

Li+1,1 is not already ±1, we may augment by any permissible generator in Li+1 while

preserving the absolute value of li−1,4g+2. Thus we have arranged that li−1,4g+2 and

li+1,1 are both ±1. Then:

• If li−1,4g+2 = li+1,1 = −1, then we are done.

• If li−1,4g+2 = li+1,1 = 1, then conjugate.

• If li−1,4g+2 = 1 and li+1,1 = −1, then augment by Li+1,1 and conjugate; if

li−1,4g+2 = −1 and li+1,1 = 1, then augment by Li−1,4g+2 and conjugate.

Step 3. Exhaust the remaining cases. Assume we have arranged that li−1,4g+2 =

li+1,1 = −1 for some 2 ≤ i ≤ 2g − 1, based on Step 2. We make the following

observations:
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(1) Since augmenting by both Li−1,4g+2 and Li+1,1 decreases all entries in Li by 2

and the entries are among −1, 0 and 1 to start with, it suffices to prove the

claim in the case where all entries in Li are equal to 1.

(2) If li−1,4g+1 = 1, then we may augment by Li−1,4g+2 so that li−1,4g+1 becomes 2.

Likewise, if li+1,2 = 1, then we may augment by Li+1,1 so that li+1,2 becomes 2.

Given these observations, we are left with the following four explicit cases, based

on whether li−1,4g+1 and li+1,2 are 0 or −1, which can be handled easily by brute force

(tables only show entries that matter)

• Case 1: li−1,4g+1 = 0 and li+1,2 = 0.

Li−1,4g+1 Li−1,4g+2 Li,1 Li,4g+1 Li+1,1 Li+1,2

0 −1 1 1 −1 0

Conj. 0 1 −1 −1 1 0

Aug. by Li,1 −1 0 1 0 0 −1

Aug. by Li−1,4g+1 −1 −1

This puts us into situation (**).
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• Case 2: li−1,4g+1 = 0 and li+1,2 = −1.

Li−1,4g+1 Li−1,4g+2 Li,1 Li,4g+1 Li,4g+2 Li+1,1 Li+1,2

0 −1 1 1 1 −1 −1

Conj. 0 1 −1 −1 −1 1 1

Aug. by Li,1 −1 0 1 0 0 0 1

Aug. by Li−1,4g+1 1 1 0 −1 0 0 1

Conj. −1 −1 0 1 0 0 −1

Aug. by Li−1,4g+2 −1 −1

Thus we are in situation (**) again.

• Case 3: li−1,4g+1 = −1 and li+1,2 = 0. Augmenting by both Li−1,4g+2 and Li+1,1

then conjugating, we go back to Case 2.

• Case 4: li−1,4g+1 = −1 and li+1,2 = −1. Augmenting by both Li−1,4g+2 and

Li+1,1 then conjugating, we go back to Case 1.

This finishes the proof of the claim.

4.2 Calculation of F−Wg
for g = 4, 5

This section analyzes the behavior of F−Vg−D4(Θ
−) under the map F−Wg

in the special

cases g = 4 and g = 5.

Recall from Proposition 3.3.4 and the subsequent discussion that Wg is a cobor-

dism from S3
−1(T2,2g+1) to S3

0(T2,2g+1) which can be described as the cobordism in-
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duced by performing a 0-surgery on the induced knot K in S3
−1(T2,2g+1). By Mayer-

Vietoris argument, we know that spinc(Wg) ∼= Z and maps isomorphically onto

spinc(S3
0(T2,2g+1)) by restriction. Let [Σ] be a generator of H2(S3

0(T2,2g+1)), and for

each integer s, let ts be the unique spinc structure on S3
0(T2,2g+1) so that 〈c1(ts), [Σ]〉 =

2s, and Ss be the spinc structure on Wg that extends ts. In particular, the canonical

spinc structure k of U(g + 1, n) restricts to S1−g on Wg and satisfies 〈c1(k), [Σ]〉 =

−(2g − 2).

Now we are ready to state the main proposition of this section:

Proposition 4.2.1. For g = 4 or 5, the element F−Vg−D4(Θ
−) vanishes under F−Wg ,Ss

if |〈c1(Ss), [Σ]〉| < 2g − 2.

The proof is an application of the mapping cone theorem (Theorem 2.9.3) with Y

being the integer homology sphere S3
−1(T2,2g+1) and K being the induced knot. The

major steps of the proof and the necessary setup are outlined as follows.

1. Convert Proposition 4.2.1 into one involving ĤF . An upcoming lemma (Lemma

4.2.2) shows that F−Vg−D4,s0
(Θ−) ∈ HF−red(S

3
−1(T2,2g+1)) is non-trivial (so that

Proposition 4.2.1 is actually essential), has degree −g2 + g − 2 and lies in the

kernel of U . It follows from the discussion after exact sequence (2.2) that

τ−1F−Vg−D4,s0
(Θ−) is an element in HF+

red(S
3
−1(T2,2g+1)) with degree −g2 + g −

1. By exact sequence (2.3), we may lift τ−1F−Vg−D4,s0
(Θ−) to an element in

ĤF (S3
−1(T2,2g+1)) with the same degree. Therefore, to prove the proposition, it

suffices to show the following statement:
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Proposition 4.2.1′. The subgroup of ĤF (S3
−1(T2,2g+1)) with degree −g2 +g−1

becomes trivial under the map F̂Wg ,Si whenever |〈c1(Si), [Σ]〉| < 2g − 2.

2. Calculate the chain complex CFK(S3
−1(T2,2g+1), K)) (up to filtered chain homo-

topy equivalence). In general, it is difficult to calculate the CFK complex if the

background 3-manifold is not S3. However, in our special situation that K is

the induced knot in a surgery of S3, one can introduce a new filtration on the

mapping cone that calculates ĤF (S3
−1(T2,2g+1)) to arrive at the desired chain

complex CFK(S3
−1(T2,2g+1), K). This method is due to a work in preparation

by Matt Hedden and Adam Levine [12] which extends the results in [14].

3. For CFK(S3
−1(T2,2g+1), K), extract information of the chain homotopy equiv-

alence ζ in the definition of the h-map (see the paragraph following equation

2.15). We shall do so by studying the mapping cone for the (+1)-surgery on

K, utilizing the absolute grading on CFK(S3
−1(T2,2g+1), K) as well as the fact

that the (+1)-surgery on K results in S3.

4. Use the information from Step 3 to study the mapping cone for the 0-surgery

on K. We will show that the inclusion of ĤF (S3
−1(T2,2g+1)) into Bs is trivial if

|s| < g − 1, thus finishing the proof of the proposition.

Some steps will be done for general values of g and some steps will be specialized

to the g = 4 and 5. After the complete proof for the case g = 4 is done, we will

perform the calculation for g = 5 with less detail.



66

4.2.1 Step 1

Here is the lemma promised by the proof outline.

Lemma 4.2.2. For all g ≥ 2, the element F−Vg−D4,s0
(Θ−) ∈ HF−red(S

3
−1(T2,2g+1)) is

non-trivial, lies in the kernel of U and has absolute grading −g2 + g− 2, which is the

minimal grading in HF−red(S
3
−1(T2,2g+1)).

Proof. To prove that F−Vg−D4,s0
(Θ−) is non-trivial, first observe that ∂Vg is an ad-

missible cut of U(g + 1, n) for n ≥ 3 (see Definition 2.8.1). Indeed, we have seen

that b+
2 (Vg) > 0, and U(g + 1, n) − Vg also contains a copy of Vg implying that

b+
2 (U(g + 1, n)) > 0 as well. Also, ∂Vg is an integer homology sphere, so the second

requirement of admissibie cut is automatically satisfied.

The canonical spinc structure k on U(g+1, n) restricts to s0 on Vg. Then it follows

from Theorem 1.2.2 and the definition of absolute invariant (Definition 2.8.3) that

±1 = ΦU(g+1,n),k = F+
U(g+1,n)−Vg−D4,k′ ◦ τ

−1 ◦ F−Vg−D4,s0
(Θ−).

It follows that F−Vg−D4,s0
(Θ−) is non-trivial (and in fact, primitive).

To prove the remaining assertions, we first set up the notations for some Z[U ]-

modules.

• T − denotes Z[U ] which is 〈1, U, U2, . . .〉.

• T −(n) denotes Z[U ]/(Un · Z[U ]) which is 〈1, U, U2, . . . , Un−1〉.

• T + denotes Z[U,U−1]/(U · Z[U ]) which is 〈1, U−1, U−2, . . .〉.
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• T +(n) denotes the kernel of the action of Un on T +, which is 〈1, U−1, U−2, . . . , U−(n−1)〉.

• A subscript of T +, T +(n), T − and T −(n) means that the module is graded in

such a way that the absolute grading of the element 1 equals the subscript, and

U shifts degree by −2.

By Borodzik and Némethi ([3], Proposition 6.1),

HF+(−S3
−1(T2,2g+1)) = T +

0 ⊕

(
g−2⊕
k=0

T +
(k+1)(k+2)

(
g − bg + k + 1

2
c
)⊕2

)
⊕T +

0

(
g − bg

2
c
)
.

(4.2)

By duality (Equation 2.8) and universal coefficients, we have

HF−(S3
−1(T2,2g+1)) = T −−2⊕

(
g−2⊕
k=0

T −−(k+1)(k+2)−2

(
g − bg + k + 1

2
c
)⊕2

)
⊕T −−2

(
g − bg

2
c
)
.

(4.3)

We claim that for all g ≥ 2, the minimal degree of HF−red(S
3
−1(T2,2g+1)) is −g2 +g−2,

attained uniquely by the summand with index k = g− 2. Indeed, from Equation 4.3,

the minimal degree corresponding to the summand with index k is

f(k) := −k2 − 3k − 2− 2g + 2bg + k + 1

2
c,

and the minimal degree corresponding to the last summand of Equation 4.3 is −2g+

2 · bg
2
c. Then one can check that f(k + 1) < f(k) for all k ≥ 0, and f(g − 2) =

−g2 + g − 2 < −2g + 2 · bg
2
c for all g ≥ 2.

The summand corresponding to k = g − 2 is the Z[U ]-module T −−g2+g−2(1) ⊕

T −−g2+g−2(1) which is clearly in the kernel of U . Therefore, the proof of the lemma
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will be complete once we show that the degree of F−Vg−D4,s0
(Θ−) must be −g2 + g− 2.

But it quickly follows from Lemma 3.4.1 and the degree shift formula (Equation 2.5)

that the degree shift of F−Vg−D4,s0
is given by

c2
1(s0)− 2χ(Vg −D4)− 3σ(Vg −D4)

4

=
0− 2(8g2 + 4g)− 3(−4g2 − 4g)

4

= −g2 + g.

Since Θ− has degree −2, it follows that F−Vg−D4,s0
(Θ−) has degree −g2 + g − 2.

4.2.2 Step 2

Starting from this step, we shall specialize to the case g = 4. We shall write down the

mapping cone for calculating ĤF (S3
−1(T2,9)) in S3 and calculate CFK(S3

−1(T2,9), K)

(up to filtered chain homotopy equivalence) using Hedden-Levine’s work.

Recall that T2,2g+1 is an alternating knot with symmetrized Alexander polynomial
g∑

i=−g

(−1)jT j and signature −2g. Let C = CFK(S3, T2,2g+1). A classical result of

Ozsváth and Szabó ([20], Theorem 1.3) says that up to filtered chain homotopy equiv-

alence, the rank of C{0, j} in C = CFK(S3, T2,2g+1) equals the absolute value of the

coefficient of Ti in the symmetrized Alexander polynomial, and C{0, j} is supported

in absolute grading j − g. Since the homology of C{i = 0} must be ĤF (S3) = Z

with absolute grading 0 (Property 2.9.2 (3)), the homology of C{i = 0} is generated

by C{0, g}. Then the differential ∂ of C is completely determined by the fact that ∂
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decreases grading by 1: if xj is the generator of C{0, j}, then ∂xg = 0 and ∂xj = xj−1

for all j = g− 1, g− 3, . . . ,−(g− 3),−(g− 1). The differential of C on C{j = 0} can

be deduced by the same argument. Then Properties 2.9.2 determine the entire chain

complex C. See Figure 4.1 for part of the chain complex in the case g = 4.

Figure 4.1: The chain complex C = CFK(S3, T2,9). Each solid dot represents Z and

a segment between two dots represents the differential. The absolute grading of C is

only labeled on C{i = 0}, and the grading for the rest of C is determined by U -action.

Now we can form the mapping cone X(−1) of C which would calculate ĤF (S3
−1(T2,9));

see Section 2.9. Due to limitation of Theorem 2.9.3, we will pass to F = Z/2Z coeffi-

cients from now on. For the remainder of this step, consult Figure 4.2.
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Figure 4.2: Part of X(−1) of C = CFK(S3, T2,9).

A description of the complexes As and Bs are as follows:

• For −4 ≤ s ≤ 4, the quotient complex As consists of the generators in the

inverted L-shaped elbow going from (0,−4) up to (0, s), then going left from

(0, s) to (s− 4, s).

• For s ≥ 5, As is C{i = 0}.
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• For s ≤ −5, As is the horizontal complex C{j = s}.

• For all s, Bs is just C{i = 0}.

By Equation 2.16 at the discussion after Theorem 2.9.3, we have to calculate ker

(D−1)∗ and coker (D−1)∗; to do so, we have to first determine the chain homotopy

equivalence ζ : C{i = 0} −→ C{j = 0} in the definition of the h-map (see the

paragraph following equation 2.15). This is easy in this scenario: since filtration levels

(0, k) and (k, 0) are supported by a single absolute grading k− 4 for any −4 ≤ k ≤ 4,

the fact that ζ must preserve absolute grading dictates that ζ maps C{0, k} to C{k, 0}.

Then it is easy to see that (D−1)∗ maps H∗(As) isomorphically onto H∗(Bs) for all

s ≥ 5 and H∗(As) isomorphically onto H∗(Bs−1) for all s ≤ −4; Figure 4.3 shows the

v-maps and h-maps that justify the statement. Therefore, only As for −3 ≤ s ≤ 4

and Bs for −4 ≤ s ≤ 4, which is exactly the portion of X(−1) drawn in Figure 4.2,

can contribute to H∗(X(−1)).

Figure 4.3: A schematic diagram of the mapping cone X(−1). The circled part is the

only part that can contribute to the homology of X(−1).

Each small circle in Figure 4.2 contains one generator of H∗(A)⊕H∗(B). One can
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check that (D−1)∗ is trivial on H∗(A) except on H∗(A4), where the circled generator

is mapped to the circled generator in H∗(B4). As a result, H∗(X(−1)) is generated by

all the circled generators except those in H∗(A4) and H∗(B4). The absolute grading

of ĤF (S3
−1(T2,9)) can be determined by the method described after the statement of

Theorem 2.9.3; they are labeled next to the generators. To summarize, we calculated

that

ĤF (S3
−1(T2,9)) =

(
F(−3)⊕F2

(−5)⊕F2
(−7)⊕F2

(−13)

)
⊕
(
F2

(0)⊕F2
(−2)⊕F2

(−6)⊕F2
(−12)

)
. (4.4)

The same result, except in Z-coefficients, can also be obtained from Equation 4.2 and

the exact sequence 2.3.

We now follow Hedden and Levine to define a new filtration on X(−1) which will

give C ′{i = 0} up to filtered chain homotopy equivalence, where C ′ = CFK(S3
−1(T2,9), K)

and K is the induced knot in S3
−1(T2,9). For −4 ≤ k ≤ 4, define Ãk = Ak ∩C{j < k};

in other words, Ãk is the vertical portion of Ak excluding the corner. Then we define

a nested sequence of subcomplexes Fk of X(−1):

Fk = Ã−k ⊕B−k ⊕

(⊕
s>−k

As ⊕Bs

)
.

Then it is clear that Fk ⊃ Fl if k ≥ l. Some of the subcomplexes are drawn in

Figure 4.2 as well. Hedden and Levine’s work shows that under the identification of

S3
−1(T2,2g+1) with X(−1), the induced knot K in S3

−1(T2,2g+1) induces the filtration

Fk on X(−1). In particular, for each j, the associated complex Fj/Fj−1 generates

C ′{0, j}. Therefore, we have the following:
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Lemma 4.2.3. Let C ′ = CFK(S3
−1(T2,9), K). Then, up to chain homotopy equiva-

lence, C ′{i = 0} at various filtration levels (0, j) are as follows:

j = 4 : F(−12)

j = 3 : F(−13) ⊕ F(−7) ⊕ F(−6)

j = 2 : F(−2)

j = 1 : F(−5) ⊕ F(−3) ⊕ F(0)

j = 0 : F(0)

j = −1 : F(−7) ⊕ F(−5) ⊕ F(−2)

j = −2 : F(−6)

j = −3 : F(−19) ⊕ F(−13) ⊕ F(−12)

j = −4 : F(−20)

and there is a unique differential F(−19) −→ F(−20) in the spectral sequence associated

to the filtration of C ′{i = 0} given by j.

This lemma and Property 2.9.2 then determine the entire C ′.

4.2.3 Step 3

The goal of this step is to extract information of the chain homotopy equivalence ζ for

C ′ (see the paragraph following equation (2.15)) by considering X′(1), the mapping

cone for the (+1)-surgery on K. Instead of drawing the entire X′(1) like Figure 4.2,

we will first make some observations that will reduce the number of generators that

we have to handle. Overall, this step and the next will utilize the grading of C ′
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heavily.

(1) The v-map clearly preserves grading of C ′. Also, the h-map shifts the grading

of C ′ by a multiple of 2 because the action by U s shifts grading by −2s and

ζ preserves grading. Therefore, we may split H∗(A′) ⊕ H∗(B′) into a subcom-

plex with odd gradings of C ′ and a subcomplex with even gradings of C ′. We

use H∗(A′)odd, H∗(A′)even, H∗(B′)odd and H∗(B′)even to denote the corresponding

subgroups of H∗(A′) and H∗(B′).

(2) Recall from Proposition 4.2.1′ that our ultimate goal is to understand how the

degree −13 (= −42 + 4 − 1) subgroup of ĤF (S3
−1(T2,9)) behaves under the

cobordism map F̂ , or by Theorem 2.9.3, the inclusion into the various B′s of

a corresponding mapping cone. Since the inclusion respects grading, we only

need to focus on the odd complex H∗(A)odd⊕H∗(B)odd in terms of analyzing ζ.

For the next two observations, a schematic diagram of the A′s-complexes and the

B′s-complexes (Figure 4.4) will be useful. In the diagram, each box represents one

filtration level. Solid dots represent generators with odd gradings and hollow dots

represent generators with even gradings. Line segments represent differentials; note

how A′s contains one differential for |s| ≥ 4 but two differentials for |s| ≤ 3. The

whole A′−1 is drawn explicitly to clarify the pattern suggested by A′s for −3 ≤ s ≤ 3.
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Figure 4.4: A schematic diagram of X′(1).

(3) Observe that:

• (vs)∗ : H∗(A
′
s) −→ H∗(B

′
s) is trivial if s ≤ −4 and is an isomorphism if s ≥

5. The case |s| ≥ 5 is clear from the definition of vs. The case s = −4 holds

because the only generator of A′−4 that survives the vertical projection is

in C ′{0,−4} (the rightmost box), whose image is the generator of B′−4 in

C ′{0,−4} (the bottom box) which is trivial in H∗(B
′
−4).

• (hs)∗ : H∗(A
′
s) −→ H∗(B

′
s+1) is trivial if s ≥ 4 and is an isomorphism if

s ≤ −5. The case |s| ≥ 5 is again clear from the definition of hs. For

s = 4, the only generator in A′4 that survives the horizontal projection is

C ′{0, 4} = F(−12) (the top box, also see Lemma 4.2.3 for the degree). By

observation (1), h4 shifts degree by −8, so the image of C ′{0, 4} under h4
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is contained in F(−20) (the bottom box by Lemma 4.2.3) which is trivial in

H∗(B5).

Figure 4.5 summarizes the above assertions on the v∗-maps and h∗-maps.

Figure 4.5: A schematic diagram of H∗(X′(1)).

Therefore, only H∗(A
′
s) for −4 ≤ s ≤ 4 and H∗(B

′
s) for −3 ≤ s ≤ 4 (circled in

the figure) can contribute to H∗(X′(1)), and from now on, we shall restrict the

groups defined in the previous observation to these H∗(A
′
s) and H∗(B

′
s).

(4) Now we count the ranks of H∗(A′)odd, H∗(A′)even, H∗(B′)odd and H∗(B′)even, re-

stricted to relevant values of s based on the previous observation.

• For A′, we see that H∗(A
′
s) has 6 odd-degree generators and 7 even-degree

generators for −3 ≤ s ≤ 3. However, H∗(A
′
4) and H∗(A

′
−4) each has 7

generator and 8 even-degree generator (one extra for each parity) because

A′−4 and A′4 have one fewer differential than As for −3 ≤ s ≤ 3. As a result,

rk(H∗(A′)odd) = 6×7+7×2 = 56 and rk(H∗(A′)even) = 7×7+8×2 = 65.

• For B′, we see that H∗(B
′
s) has 7 odd-degree generators and 8 even-degree
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generators for all s, just like H∗(A
′
4). Therefore, rk(H∗(B′)odd) = 7×8 = 56

and rk(H∗(B′)even) = 8× 8 = 64.

Now, the 3-manifold resulting from the (+1)-surgery is S3, and Theorem 2.9.3

tells us that H∗(X′(1)) ∼= ĤF (S3) ∼= Z. It follows from the rank count that the

generator of H∗(X′(1)) is contained in H∗(A′)even (which is consistent with the

fact that ĤF (S3) has absolute grading 0). In particular, H∗(X′(1)) restricted

on the odd-degree complex is trivial.

With these observations in place, we are ready to analyze the chain homotopy

equivalence ζ. We define xi,m to be the generator of C ′{i, 0} with grading m and yj,n

be the generator of C ′{0, j} with grading n (so x0,m and y0,m coincide).

Claim 4.2.4. The chain homotopy equivalence ζ for C ′ maps x−3,−13 to y3,−13.

Proof. Part of X′(1) is drawn in Figure 4.6. The bottom grid of each H∗(A
′
s) and

H∗(B
′
s) (which is empty) represents the filtration level (0,−4).

The grading convention in the figure is as follows. The generators in the vertical

portions of each H∗(A
′
s) and H∗(B

′
s) are labeled with gradings from C ′ (numbers

not contained in parentheses). The generators of the horizontal portions in each

H∗(A
′
s) are labeled with gradings from C ′ but shifted by −2s (numbers contained

in parentheses), which is the degree shift by U s. The generators in the corners of

each H∗(A
′
s) are labeled both gradings. Under this convention, the v-maps preserve

the gradings not contained in parentheses, and the h-maps preserve the gradings
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contained in parentheses. This grading convention is convenient for inspecting the

behavior of v- and h-maps, and will be useful in Section 4.2.4 as well.

Figure 4.6: Part of X′(1), showing only the odd-degree generators.

Now observe that the generator y3,−13 in B′3 is not in the image of v3. We have

seen before that H∗(X′(1)) restricted to the odd complex is trivial, so the y3,−13 in B′3
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must be in the image of h2. Since h2 is only non-trivial at the generator in filtration

level (−1, 2) (circled in A′2) whose image under U2 is x−3,−13, the claim follows.

4.2.4 Step 4

It remains to utilize Claim 4.2.4 to study X′(0), the mapping cone for the 0-surgery

on K, allowing us to calculate the twisted cobordism map F̂Wg
based on the discus-

sion after Theorem 2.9.3. In particular, our goal is to prove that the degree (−13)

subgroup of ĤF (S3
−1(T2,9)), generated by {y−3,−13, y3,−13}, is trivial under the map

ĤF (S3
−1(T2,9)) −→ H∗(B

′
s) ⊗F F[T, T−1] if |s| < 3. It is the same as proving the

following:

Claim 4.2.5. The subgroup 〈y−3,−13, y3,−13〉 ⊗F F[T, T−1] in H∗(B
′
s) ⊗F F[T, T−1] is

trivial in H∗(X′(0)) if |s| < 3.

Proof. Now X′(0) splits as a sum of mapping cones indexed by s (see the visualization

of the mapping cones preceding Theorem 2.9.3). The value s corresponds to the spinc

structure Ss on the cobordism satisfying 〈c1(Ss), [Σ]〉 = 2s; denote the restriction

of Ss on S3
0(T2,9) by ts. Since ĤF (S3

0(T2,9), ts;F[T, T−1]) vanishes whenever |s| > 3

(by adjunction inequality, Proposition 7.1 of [22]), we only need to consider |s| ≤ 3.

While the statement of the claim only requires us to consider |s| < 3, we will also

discuss the case |s| = 3 for the sake of completeness.

See Figure 4.7 for a diagram of X′(0), where each dot now represents F[T, T−1]

instead of F. The complexes H∗(A
′
s)⊗F F[T, T−1] and H∗(B

′
s)⊗F F[T, T−1] are drawn
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horizontally corresponding to Figure 4.6 in the following way: going from left to right

in Figure 4.7 corresponds to going from upper left corner to the lower right corner

for the A′-complexes and going from up to down for the B′-complexes in Figure 4.6.

The generators are labeled with gradings as explained in the proof of Claim 4.2.4.

Figure 4.7: A picture of X′(0).

Now, for |s| < 3, we exhibit a subgroup ofH∗(A
′
s) that surjects onto 〈y−3,−13, y3,−13〉⊗F
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F[T, T−1] under (D′0)∗ = v∗s + T · h∗s:

• Let P denote the submodule represented by the leftmost dot in H∗(A
′
s) ⊗F

F[T, T−1]. Then P is mapped to 〈x−3,−13〉 ⊗F F[T, T−1] under the horizontal

projection and the multiplication by U s. From Claim 4.2.4, ζ sends {x−3,−13}⊗1

to {y3,−13}⊗1 (represented by the slanted segments in Figure 4.7). Combining,

h∗s maps P isomorphically onto 〈y3,−13〉 ⊗F F[T, T−1], and the same is true for

T · h∗s since T is a unit in F[T, T−1]. Also, it is clear that v∗s(P ) is trivial.

Therefore, (D′0)∗(P ) = 〈y3,−13〉 ⊗F F[T, T−1].

• LetQ denote the submodule represented by rightmost dot inH∗(A
′
s)⊗FF[T, T−1].

Obviously, v∗s maps Q isomorphically onto 〈y−3,−13〉⊗FF[T, T−1] (represented by

the rightmost vertical segments). Also, T · h∗s(Q) is trivial because Q vanishes

under the horizontal projection. Therefore, (D′0)∗(Q) = 〈y−3,−13〉 ⊗F F[T, T−1].

Therefore, the image of P ⊕ Q under (D′0)∗ is 〈y−3,−13, y3,−13〉 ⊗F F[T, T−1]. This

proves that the latter is trivial in H∗(X′(0)) and finishes the proof of the claim.

This completes Step 4 and the proof of Proposition 4.2.1.

Remark 4.2.6. .

• For |s| < 3, it is also true that the images under (D′0)∗ of the submodules

represented by the dots other than P and Q in H∗(A
′
s) has no component in

〈y−3,−13, y3,−13〉⊗FF[T, T−1], because those submodules have the wrong gradings.
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• For |s| = 3, at least one of the elements y−3,−13 and y3,−13 must be non-trivial in

H∗(X′(0)). (For s = −3, the rightmost generator of A′s must map non-trivially

to some degree (−7) under h′3.) This is consistent with the fact that the relative

invariant ΨUg ,k|Ug
must be non-trivial (which is a consequence of Theorem 1.2.2).

4.2.5 Sketch of proofs for the case g = 5

The calculations for the case g = 5 is very similar to g = 4. Step 2 has given

a description of CFK(S3, T2,2g+1) for general g. Then we can apply Hedden and

Levine’s method to calculate CFK(S3
−1(T2,11), K):

Lemma 4.2.7. Let C ′ = CFK(S3
−1(T2,11), K). Then up to filtered chain homotopy

equivalence, C ′{i = 0} at various filtration levels (0, j) are as follows:

j = 5 : F(−20)

j = 4 : F(−21) ⊕ F(−13) ⊕ F(−12)

j = 3 : F(−6)

J = 2 : F(−9) ⊕ F(−5) ⊕ F(−2)

j = 1 : F(0)

j = 0 : F(−5) ⊕ F(−5) ⊕ F(0)

j = −1 : F(−2)

j = −2 : F(−13) ⊕ F(−9) ⊕ F(−6)

j = −3 : F(−12)

j = −4 : F(−29) ⊕ F(−21) ⊕ F(−20)

j = −5 : F(−30)
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and there is a unique differential F(−29) −→ F(−30) in the spectral sequence associated

to the filtration of C ′{i = 0} given by j.

The observations and setup in Step 3 apply verbatim except numerical changes.

We still consider X′(1), the mapping cone for the (+1)-surgery on K, since the result

of the surgery is still S3.

• Only H∗(A
′
s) for −5 ≤ s ≤ 5 and H∗(B

′
s) for −4 ≤ s ≤ 5 can contribute to

H∗(X′(1)).

• We are interested in the subgroup of ĤF (S3
−1(T2,11)) with degree −52 + 5 −

1 = −21 instead of −13, so again, we only need to focus on the odd complex

H∗(A)odd ⊕H∗(B)odd.

• The rank count is now:

– rk(H∗(A′)odd) = 8× 9 + 9× 2 = 90, and rk(H∗(B′)odd) = 9× 10 = 90.

– rk(H∗(A′)even) = 9×9+10×2 = 101, and rk(H∗(B′)even) = 10×10 = 100.

So H∗(X′(1)) restricted to the odd-degree complex is still trivial.

Then we can form the odd complex H∗(A)odd ⊕H∗(Bodd), which behave similarly to

that for g = 4. In particular, we observe that the two cases g = 4 and g = 5 have the

following in common:

• H∗(B′s)odd is supported at filtration levels (0, j) where j = g−1, g−3, . . . ,−(g−

3),−(g − 1) and has rank 2 at each of these filtration levels.
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• The degree-(−g2 + g − 1) subgroup of H∗(B
′
s)odd has rank 1 at filtration levels

(0,±(g − 1)). Using the notations preceding Claim 4.2.4, the generators are

y−(g−1),−g2+g−1 and yg−1,−g2+g−1.

• The generator y−g2+g−1,g−1 in H∗(B
′
g−1) is not in the image of vg−1, which

must then be hg−2(p), where p is the generator at filtration level (−1, g − 2)

in H∗(A
′
g−2).

• x−g2+g−1,−(g−1) equals U g−2 · p.

Thus we have established a similar claim to Claim 4.2.4:

Claim 4.2.8. The chain homotopy equivalence ζ for C ′ maps x−4,−21 to y4,−21.

Then we can form the mapping cone X′(0). The argument for Step 4 applies

verbatim except obvious numerical changes.

4.3 Proofs of Theorem 1.3.1 and Corollary 1.3.2

Now we are ready to prove Theorem 1.3.1 and Corollary 1.3.2.

Proof of Theorem. Recall from the beginning of the chapter that

ΨUg ,s = F−Wg ,s|Wg
◦ F−Vg−D4,s|Vg−D4

(Θ−). (4.5)

Proposition 4.1.1 tells us that F−Vg−D4,s|Vg−D4
(Θ−) vanishes except when s|Vg−D4 is

the trivial spinc structure s0, and Lemma 4.2.2 tells us that x := F−Vg−D4,s0
(Θ−)
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has degree −g2 + g − 1. Then, Proposition 4.2.1 tells us that if g = 4 or 5, then

F−Wg ,s|Wg
(x) is trivial if |〈c1(s|Wg), [Σ]〉| < 2g − 2. Combining, ΨUg ,s(Θ

−) is trivial if

|〈c1(s), [Σ]〉| < 2g − 2.

Proof of Corollary. Let Σ be a generic fiber of X and s be any spinc structure on X.

If |〈c1(s), [Σ]〉| < 2g− 2, then Theorem 1.3.1 tells us that ΨUg ,s|Ug
is trivial. Then the

right hand side of Equation (2.12) in Theorem 2.8.4 is trivial. Since Equation (2.12)

is an equality of group ring elements, every individual term on the sum on the left

side is trivial. In particular, ΦX,s is trivial.

Thus we have shown that ΦX,s is trivial unless |〈c1(s), [Σ]〉| = 2g − 2. The result

immediately follows from Theorem 1.2.2.
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Chapter 5

Additional Results

Suppose X = Z1 ∪Y Z2 is the oriented closed 4-manifold formed by gluing Z1 and Z2

along their common boundary Y . If we take Y = Σg × S1, then this would include

the situation of taking fiber sum of two genus g Lefschetz fibrations (i.e. removing

the neighborhood of a regular fiber of each Lefschetz fibration and gluing them by

a fiber-preserving, orientation-reversing diffeomorphism Σg × S1 −→ Σg × S1). The

groups HF+(Σg×S1, t) at all spinc structures t are well understood, and as mentioned

in Section 2.6, while these groups do not admit absolute Q-gradings when t is non-

torsion, they do admit absolute plane field gradings, which shall be reviewed shortly.

We will convert these plane field gradings to Gompf’s Θ-grading [11] and prove a

degree shift formula analogous to Equation (2.5). Based on that, we apply Jabuka

and Mark’s pairing theorem (Theorem 2.8.4) in the same manner as the proof of

Theorem 1.3.1 to obtain a numerical degree shift criterion that Ozsváth-Szabó basic

classes must satisfy. In principle, we can derive degree shift criteria with other choices

of Y provided that we can understand the Θ-gradings of HF+(Y ).

In this chapter, all plane fields considered are oriented.
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5.1 Absolute plane field grading and Θ-grading

Let ξ be an oriented plane field on a 3-manifold Y , [ξ] be the homotopy class of ξ, tξ be

the spinc structure induced by ξ, and ξ be the conjugate of ξ (defined by reversing the

orientation of each plane). Then Huang and Ramos [15] defined an absolute grading

by homotopy classes of oriented plane fields on various flavors of HF -groups which

satisfies these properties (HF ◦ stands for ĤF ,HF+, HF−, HF∞ and HFred):

• HF ◦[ξ](Y ) ⊂ HF ◦(Y, tξ), where HF ◦[ξ](Y ) denotes the subgroup of HF ◦(Y ) with

degree [ξ].

• HF ◦[ξ](Y, tξ) ∼= HF ◦
[ξ]

(Y, tξ). This statement can be seen as a refinement of

HF ◦(Y, tξ) ≡ HF ◦(Y, tξ̄) (Equation (2.1)).

• The absolute plane field grading lifts the relative Z/d(c1(tξ))-grading mentioned

in Section 2.6.

The cobordism map F ◦W,s respects the absolute plane field grading in the following

sense:

Theorem 5.1.1 ([15], Theorem 1.1(d)). If x is a homogeneous element in HF ◦[ξ1](Y1, t1)

and y is a non-trivial homogeneous component of F ◦W,s(x) lying in HF ◦[ξ2](Y2, t2), then

there exists an almost complex structure J on W that induces s on W and induces ξi

on Yi for i = 1, 2 i.e. ξ1 = TY1 ∩ J(TY1) and ξ2 = TY2 ∩ J(TY2).
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We move on to numerical gradings of oriented plane fields. If c1(tξ) is torsion,

then there is a standard Q-valued 3-dimensional invariant (see [11] Chapter 11, for

example):

d3([ξ]) =
c2

1(X, J)− 2χ(X)− 3χ(X)

4
, (5.1)

where (X, J) is any almost-complex 4-manifold bounded by (Y, ξ).

Remark 5.1.2. The plane field grading [ξ] is equivalent to d3([ξ]) + 1
2

in the absolute

Q-grading defined in Section 2.6.

However, if c1(tξ) is non-torsion, then the above definition does not make sense

because there is no canonical way to calculate the square c2
1(X, J). To this end,

Gompf ([10], Chapter 4) devised the following method to calculate such a square.

We start with choosing a smooth 2-cycle z representing PDc1(X, J) ∈ H2(X, ∂X),

so that ∂z is a smooth 1-cycle on ∂X. If we choose a framing ν on ∂z, then we can

attach a 2-handle along ∂z with framing ν to form a new manifold X̂, and extend z

over the core of the 2-handle to form ẑ which is a smooth 2-cycle in X̂. Then we can

define our square to be ε = [ẑ]2 using the intersection pairing in H2(X̂).

Now we explain the dependence of ε on the choices that we have made. First of

all, if we change z within its class in H2(X, ∂X) keeping ∂z fixed, then [ẑ] changes by

a class in H2(∂X), so ε changes by an even multiple of d(∂z), where d(∂z) denotes the

divisibility of ∂z. Secondly, if y is another smooth 1-cycle on ∂X in the same class

as ∂z, then notice that there exists a framing ν ′ on y so that ∂z and y are framed

cobordant, i.e. there exists a surface W in ∂X × [0, 1] so that W ∩ (∂X × {0}) = ∂z,
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W ∩(∂X×{1}) = y, and a parallel pushoff of W induces the framings ν, ν ′ on ∂z and

y respectively. It is then clear that ε is independent of the choice of representative in a

fixed framed cobordism class. Finally, fixing ∂z, Gompf ([10], Prop. 4.1) showed that

the set of framed cobordism classes supporting ∂z is a Z/2d(∂z)-set (with +1 action

meaning adding a right twist to the framing ν of ∂z). Since adding a right twist to ν

increases ε by 1, it follows that adding 2d(∂z) right twists to ν, while preserving the

framed cobordism class, increases ε by 2d(∂z).

Therefore, overall, ε is well-defined modulo Z/2d(ξ) for any fixed choice of framed

cobordism class. (To simplify notations, d(ξ) means d(c1(tξ)).) Gompf defined a

framing f on a class x ∈ H1(∂X) to be a choice of framed cobordism class supporting

x, i.e. a smooth 1-chain that represents x and a framing (in the ordinary sense) on

that 1-chain. Then ε is denoted by Qf (PDc1(X, J)).

With this in place, we are ready to define Gompf’s Θ-invariant ([11], Definition

4.2).

Definition 5.1.3. Let ξ be an oriented 2-plane field on a closed, oriented 3-manifold

M (not necessarily connected). Let (X, J) be an almost complex 4-manifold so that

∂(X, J) = (M, ξ), i.e. ∂X = M and J induces ξ on M . Then for any framing f on

PDc1(ξ), we define

Θf ([ξ]) = Qf (PDc1(X, J))− 2χ(X)− 3σ(X) ∈ Z/2d(ξ).
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Fix a spinc structure t on Y . It is well-known that (see [11], Proposition 4.1 for

example) the set P (Y, t) of homotopy classes of plane fields ξ inducing t has cardinality

d(ξ). Moreover, P (Y, t) is a Z/d(ξ)-set with action defined as follows. Fix a metric on

Y and trivialization TY ∼= Y ×R3; then by taking normal vectors, an oriented plane

field ξ corresponds to a map ξτ : Y −→ S2. By the Pontryagin-Thom construction,

homotopy classes of such maps correspond to cobordism classes of framed links in Y .

The action of 1 ∈ Z/d(ξ) on [ξ], which we shall denote by [ξ] + 1, is given by adding

a left twist to the framing of some component of a link representing [ξ]. Note that

this action implicitly depends on the orientation of Y .

By [11] Proposition 4.16, the Θ-grading satisfies

Θf ([ξ] + 1) = Θf ([ξ]) + 4. (5.2)

Remark 5.1.4. Gompf defined the +1 action to be adding a right twist instead. In

his convention, Θf ([ξ] + 1) = Θf ([ξ]) − 4. Our convention is more customary in the

Heegaard Floer context.

Since Θ takes value in Z/2d(ξ), it follows from Equation 5.2 that Θf ([ξ] + d(ξ)
2

) =

Θf ([ξ]) for all [ξ] ∈ P (Y, t); in particular, Θ is a two-to-one map from P (Y, t) to their

Θ-values. Gompf defined in the same paper a 2-fold lift Θ̃ of Θ which takes value

in Z/4d(t), so that Θ̃ maps bijectively from P (Y, t) to their Θ̃-values. We will not

utilize Θ̃ in the present work, although it might be possible to strengthen the results

in this chapter by utilizing Θ̃ instead of Θ.
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5.2 Degree shift formula

We are now ready to state and prove the degree shift formula for the Θ-grading.

Proposition 5.2.1. Let (X1, J1) be an almost complex cobordism from Y0 to Y1 so

that ∂(X1, J1) = (−Y0, ξ0) t (Y1, ξ1). Let s1 be the spinc structure determined by J1.

For i = 0, 1, let ti be the restriction of s1 to Yi, di be the divisibility of c1(ti) and fi

be a framing on PDc1(ti). Then

Θf0([ξ0]) +Qf0,f1(PDc1(s1))− 2χ(X1)− 3σ(X1) ≡ Θf1([ξ1]) mod gcd(2d0, 2d1).

(5.3)

Proof. Let (X0, J0) be an almost complex manifold so that ∂(X0, J0) = (Y0, ξ0), and

let s0 be the spinc structure determined by J0. Then we may form (X0 ∪X1, J0 ∪ J1)

with the induced spinc structure s0 ∪ s1. By definition, we have

Θf0(ξ0) = Qf0(PDc1(s0))− 2χ(X0)− 3σ(X0) ∈ Z/2d0;

Θf1(ξ1) = Qf1(PDc1(s0 ∪ s1))− 2χ(X0 ∪X1)− 3σ(X0 ∪X1) ∈ Z/2d1.

By additivity of Euler characteristic and signature, we have

Θf0(ξ0)+[Qf1(PDc1(s0∪s1))−Qf0(PDc1(s0))]−2χ(X1)−3σ(X1) ≡ Θf1(ξ1) mod gcd(2d0, 2d1).

Thus the proposition follows once we show that

Qf1(PDc1(s0 ∪ s1)) ≡ Qf0(PDc1(s0)) +Qf0,f1(PDc1(s1)) mod gcd(2d0, 2d1).

(5.4)
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To prove the above equality, let z be a smooth 2-cycle representing PDc1(s0 ∪ s1) ∈

H2(X0 ∪X1, Y1), so that ∂z is a smooth 1-cycle γ in Y1. Then by definition,

Qf1(PDc1(s0 ∪ s1)) ≡ [ẑ]2 mod 2d1

where ẑ is the cap-off defined in the discussion preceding Definition 5.1.3. On the

other hand, we may assume Y0 intersects z at a smooth 1-cycle, which divides z into

z0 and z1, and we can similarly obtain cap-offs ẑ0 and ẑ1. And so

Qf0(PDc1(s0)) ≡ [ẑ0]2 mod 2d0, Qf0,f1(PDc1(s1)) ≡ [ẑ1]2 mod gcd(2d0, 2d1).

To analyze [ẑ0]2 and [ẑ1]2, we consider pushoffs of ẑ0 and ẑ1. If we arrange the pushoffs

of ẑ0 and ẑ1 to be identical near Y0, then we can glue the two pushoffs to form a pushoff

of ẑ. Then it is clear that

[ẑ0]2 + [ẑ1]2 = [ẑ]2,

and Equation (5.4) follows.

5.3 Contact geometry of Σg × S1

We are going to apply Proposition 5.2.1 on cobordisms from S3 to Σg × S1 and

−Σg × S1. While classical results give us a lot of understanding of the algebraic

structure of HF+(±Σg × S1), we will need to fill in the Θ-gradings of these groups.

To this end, we shall:

(1) Construct plane fields on Σg×S1 which are contact structures induced by Stein

structures.
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(2) Identify those plane fields with special gradings in the Heegaard Floer groups.

(3) Combine (1) and (2) to calculate the Θ-gradings of the Heegaard Floer groups.

This section will achieve the first item on the agenda and the next section will achive

the rest. All material in this section are classical results; more detail can be found

in, for example, [10], and also [11], Chapter 11.

Definition 5.3.1. Let Y be an oriented 3-manifold. A (positive) contact structure

is a maximally non-integrable plane field ξ on Y , so that ξ is the kernel of a 1-form

α satisfying α∧ dα > 0. A knot K ⊂ Y is called Legendrian if the tangent vectors of

K all lie in ξ.

S3 = R3∪{∞} has a standard contact structure ξstd which on R3 can be expressed

by the form dz + xdy. A Legendrian knot (x(t), y(t), z(t)) in (S3, ξstd) (assuming it

misses {∞}) can be represented by its front projection (y(t), z(t)) where the positive

x-axis points out of the paper. Since a Legendrian knot in (S3, ξstd) has to satisfy

z′ + xy′ = 0, we see that such projections must not have vertical tangencies, but in

general have horizontal tangencies and cusps. Furthermore, away from cusp points,

one may recover x(s) by using x(s) = −z
′(s)

y′(s)
, which implies that at any self-crossing,

the curve with a more negative slope always crosses in front. See Figure 5.1 for an

example.

Just like how we can construct new smooth 3-manifolds from old by surgery along

knots, we can construct new contact 3-manifolds from old by surgery along Legendrian
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Figure 5.1: The front projection of a Legendrian representative of the right-handed

trefoil. Diagram is adapted from [10], Figure 1.

knots. To this end, we shall recall the following definition of a classical invariant of

null-homologous Legendrian knots L:

Definition 5.3.2. Let L be a null-homologous Legendrian knot in (Y, ξ). The

Thurston-Bennequin number tb(L) is the coefficient of the framing determined by

the normal of ξ along L.

It is a classical fact that if we perform a (tb(L) − 1)-surgery on L by removing

N and gluing back in a solid torus, then the resulting manifold has a unique contact

structure which extends the one on Y − N . Such a surgery is called a Legendrian

surgery.

Contact structures naturally arise from Stein surfaces, i.e. complex surfaces that

admit proper holomorphic embeddings into CN for sufficiently large N . A complex

manifold is Stein if and only if it admits an “exhausting strictly plurisubharmonic

function”, which is essentially characterized as being a proper function f : X −→ R
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that is bounded below and can be assumed a Morse function, whose generic level sets

f−1(c) are “strictly pseudoconvex”. Let S be the complex manifold f−1(−∞, c]; if

S has real dimension 4, then strict pseudoconvexity implies that the induced plane

field T (∂S) ∩ iT (∂S) is a contact structure on ∂S. Contact structures arisen in this

manner are called Stein fillable. For example, the standard complex structure on the

complex 2-ball induces the standard contact structure on S3.

Eliashberg (see [10] Theorem 1.3) provides a method to construct 4-manifolds

made of 0-, 1- and 2-handles which carry Stein structures. We shall give the union of

the 0-handle and the 1-handles the standard complex structure of \n(S1×D3), which

is a Stein structure that extends the standard one on D4. Then Gompf considers a

Legendrian link diagram in standard form ([10], Definition 2.1), which consists of:

1. A rectangular box in R2,

2. n 1-handles with attaching spheres drawn on the vertical edges, where the iden-

tification of the two attaching spheres of a 1-handle is given by the reflection

about the vertical line in the middle, and

3. a Legendrian tangle inside the box.

The left side of Figure 5.2 is a general illustration. The right side of the same figure

is the example of our particular interest, with the only component of the Legendrian

tangle denoted by K.

Eliashberg showed that if we perform a Legendrian surgery along each component
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Figure 5.2: A generic Legendrian link diagram as well as a special example. The left

side of the figure is taken from [10], Figure 8.

Ki of the Legendrian tangle, then the cobordism induced by the surgery carries a

Stein structure that extends the one on \n(S1 ×D3).

Now we go back to our example of interest. Gompf showed that the tb of a

Legendrian knot in standard form can be calculated from their front projections:

tb(K) = writhe of K − number of left cusps of K.

Thus one can check from the diagram that tb(K) = 2g − 1.

Our goal is to produce Stein fillable contact structures on Σg × S1 induced from

Stein structures on Σg×D2. One can check that attaching a 0-framed 2-handle along

K in the right side of Figure 5.2 (illustrated with g = 2) would produce a handle

description of Σg × D2 (which is isotopic to the left side of Figure 3.2). Therefore,

tb(K) is 2g − 2 more than what is required to extend the Stein structure to the 2-



97

handle. To remedy this, we may add 2g − 2 zig-zags to K. See Figure 5.3 for the

two ways to add zig-zags, depending on whether the two extra cusps point upward

or downward. Addition of either type of zig-zag decreases tb(K) by 1, so adding

2g − 2 zig-zags in any combination of the two types would change tb(K) to 1, which

guarantees that the Stein structure extends to the 2-handle.

Figure 5.3: Two different ways of adding zig-zags.

Different combinations of zig-zags generally lead to different Stein structures on

Σg ×D2. In particular, we will be content with stating the following fact, which is a

consequence of Gompf ([11], Proposition 2.3), and omit the proof: if p downward zig-

zags and q upward zig-zags are added to the Legendrian knot K in Figure 5.2, where

p+ q = 2g − 2, then the dual of the first Chern class of the resulting Stein structure

on Σg ×D2 is 2(p− q)[D2], where [D2] is the dual of the generator of H2(Σg ×D2).

By choosing p = 0, 1, . . . , 2g − 2, we have proved the main result of this section:

Lemma 5.3.3. For all −(g−1) ≤ k ≤ (g−1), there exists a Stein structure on Σg×D2

which restricts to a contact structure ξk on the boundary satisfying 〈c1(ξk), [Σg]〉 = 2k.



98

The same result can also be found in [11], Exercises 11.2.5(a) and 11.3.2(a).

5.4 Heegaard Floer homology of Σg × S1

This section completes the agenda stated at the beginning of the previous section.

To this end, we define the following Z-graded group

X(g, d) ∼= H∗(Sym
d(Σg)) ∼=

d⊕
i=0

Λ2g−iH1(Σg)⊗ (Z[U ]/Ud+1−i), (5.5)

where U carries degree −2. Now recall that ([21], Theorem 9.3) for all k 6= 0, we have

an isomorphism of relatively graded groups

HF+(Σg × S1, tk) ∼= X(g, d), (5.6)

where d = g−1−|k| and tk is the spinc structure of Σg×S1 satisfying 〈c1(tk), [Σ]〉 = 2k.

Furthermore, if 3d < 2g − 1, then Equation (5.6) is an isomorphism of (Z[U ] ⊗

Λ∗H1(Σ))-modules, where the action of γ ∈ H1(Σ) on X(g, d) is given by

Dγ(ω ⊗ U j) = (ιγω)⊗ U j + PD(γ) ∧ ω ⊗ U j+1. (5.7)

One can check from Equations 5.5 and 5.7 that X(g, d) is supported in 2d +

1 adjacent gradings, the subgroup supported by the bottom grading of X(g, d) is

generated over Z by B := Ud ⊗ ω, where ω generates Λ2gH1(Σg × S1), and that the

kernel of the H1-action is exactly the integer multiples of B. While HF+(Σg×S1, tk)
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is only relatively Z/2k-graded, we will say “the bottom grading of HF+(Σg×S1, tk)”

to mean the relative grading of HF+(Σg × S1, tk) supported by B′, the image of B

under the isomorphism (5.6). The term “top grading of HF+(Σg × S1, tk) is defined

analogously.

Note that if k is small enough so that 2|k| < 2d + 1, then the relative gradings

supported by HF+(Σg × S1) “roll over”, and in particular, the bottom grading of

HF+(Σg × S1, tk) would no longer be generated by B′. By the same token, gradings

can only provide non-vacuous constraints of the relative invariants if HF+(Σg×S1, tk)

is not supported by all the gradings available in the relative Z/2|k|-grading, that is,

if 2d + 1 < 2|k|. In fact, since we will formulate our constraints of the relative

invariants in terms of Θ-invariants which repeat itself under an increment of |k| in

the relative grading (see the discussion after Equation 5.2), we will assume further

that 2d+ 1 < |k|, i.e. 3d < g− 2, so that Lemma 5.4.2, Lemma 5.4.3 and Proposition

5.5.1 will be non-vacuous. Notice that 3d < g − 2 is stronger than 3d < 2g − 1, and

therefore the isomorphism (5.6) holds as (Z[U ]⊗ Λ∗H1(Σ))-modules.

Our next task is to identify the gradings of the Heegaard Floer groups of Σg × S1

with the plane fields ξk constructed in Lemma 5.3.3.

Recall that, given a contact structure ξ on a 3-manifold Y , Ozsváth and Szabó

defined in [25] a contact invariant c(ξ) ∈ ĤF (−Y, tξ). We will focus on the variant

c+(ξ) which is the image of c(ξ) in HF+(−Y, tξ) in the long exact sequence 2.3.

Properties 5.4.1. c+(ξ) has the following properties:
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1. c+(ξ) is in the kernel of the H1-action. ([25], Remark 4.5)

2. If ξ is a Stein fillable contact structure on Y , then c+(ξ) is non-trivial. (See

Ghiggini, [9] Theorem 2.13, for example.)

3. c+(ξ) is supported by the absolute plane field grading [ξk]−1. (See Hedden-Mark

[13], Corollary 4.6)

These facts together imply that the bottom grading of HF+(−Σg × S1, tk) is

supported by the plane field [ξk] − 1. Since the map τ (see exact sequence 2.2)

decreases relative grading by 1, it follows that the bottom group of HF−(−Σg×S1, tk)

has plane field grading [ξk]− 2.

With this in place, we are ready to calculate the Θ-invariants of the plane field

gradings (which we call Θ-gradings for brevity) supported by HF−(−Σg×S1, tk), by

utilizing the previously constructed Stein structures on Σ × D2. If Sk is the spinc

structure on Σ × D2 that extends tk, then PDc1(Sk) ∈ H2(Σ × D2,Σ × S1) can

be represented by 2k({∗} × D2). We will always choose the framing on the class

PDc1(tk) = 2k[{∗} × S1] (see the paragraph preceding Definition 5.1.3) to be the

product framing on the smooth cycle 2k({∗} × S1) .

Lemma 5.4.2. The bottom group of HF−(−Σg × S1, tk) has Θ-grading

Θ−Σg×S1,f ([ξk]− 2) ≡ −4d− 8. (5.8)

As a result, HF−(−Σg × S1, tk) is supported by Θ-gradings 4m− 8 mod 4|k|, where

−d ≤ m ≤ d.
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Proof. Since PDc1(Sk) can be represented by 2k({∗} × D2), it is easy to see that

Qf (PDc1(Sk)) = 0 for all k. Thus

ΘΣg×S1,f ([ξk]) = Qf (PDc1(Sk))− 2χ(Σg ×D2)− 3σ(Σg ×D2)

= −2(2− 2g)

≡ 4d mod 4|k|.

Since Θ reverses sign when the 3-manifold reverses orientation, it follows from Equa-

tion 5.2 that

Θ−Σg×S1,f ([ξk]) ≡ −4d, Θ−Σg×S1,f ([ξk]− 2) ≡ −4d− 8.

So we have proved the first statement, and the second statement follows immediately

from the fact that HF−(−Σg×S1, tk) takes up 2d+1 adjacent Ozsváth-Szabó relative

gradings.

Similarly, we have the following lemma for cobordisms from S3 to Σg × S1:

Lemma 5.4.3. The top group of HF−(Σg × S1, tk) has Θ-grading 4d− 8 mod 4|k|.

As a result, HF−(Σg × S1, tk) is supported by Θ-gradings 4m − 8 mod 4|k|, where

−d ≤ m ≤ d.

Proof. Recall that the action on the plane fields depends on the orientation of the

ambient manifold. In particular, for any plane field ξ in Y , we have [ξ]+Y n = [ξ]−−Y n,

where the subscripts are to emphasize the ambient orientation of the manifold.
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Now, the bottom grading of HF+(−Σg × S1, tk) is supported by [ξk]−(−Σg×S1) 1,

so by duality ([13], Equation (14)), the top grading of HF−(Σg×S1, tk) is supported

by [ξk]−(−Σg×S1) 1−(Σg×S1) 3 = [ξk]−(Σg×S1) 2. Now

ΘΣg×S1,f ([ξk]− 2) = ΘΣg×S1,f ([ξk])− 8

= 0− 2χ(Σg ×D2)− 3σ(Σg ×D2)− 8

≡ 4d− 8 mod 4|k|,

This proves the first statement, and the second statement immediately follows.

5.5 Degree shift criterion for fiber sums

With these lemmas in place, we are ready to prove a degree shift criterion for the

non-vanishing of the Ozsváth-Szabó 4-manifold invariant ΦX,s.

Proposition 5.5.1. Let X = Z1 ∪Y Z2 be the oriented 4-manifold formed by gluing

Z1 and Z2 along their common boundary Y = Σg × S1, so that ∂Z1 = −Σg × S1 and

∂Z2 = Σg × S1; assume also that b+
2 (Z1), b+

2 (Z2) ≥ 1. Let s be any spinc structure on

X, the restriction of s to Zi be si, the restriction of s to Y be tk where 〈c1(tk), [Σg]〉 =

2k, and f be the framing on PDc1(tk) defined before Lemma 5.4.2. Assume 3d < g−2

(see discussion preceding Properties 5.4.1). If ΦX,s 6= 0, then for i = 1, 2, the shift

terms Si = Qf (PDc1(si))− 2χ(Zi)− 3σ(Zi) must satisfy

S1,S2 ≡ 4m mod 4|k|, where − d ≤ m ≤ d. (5.9)
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and that

S1 + S2 ≡ 0 mod 4|k|. (5.10)

Remark 5.5.2. The simple type conjecture states that if X is a simply connected

closed 4-manifold with b+
2 (X) ≥ 2, then any Ozsváth-Szabó basic class s satisfies

c2
1(s)− 2χ(X)− 3σ(X) = 0. Since Q,χ and σ are all additive, this implies that

S1 + S2 ≡ 0 mod 2d(s).

Equation (5.10) implies the above equation, and equation (5.9) asserts that the indi-

vidual terms S1 and S2 must lie in certain intervals in some Z/m, which the simple

type conjecture does not assert.

Before proving Proposition 5.5.1, let’s give an example of how the degree shift

criterion can be useful in showing that certain spinc structures are not Ozsváth-Szabó

basic classes.

Let X(m,n) be the smooth 4-manifold constructed by taking the double branched

cover of S2 × S2 branched along a surface obtained by smoothing the union of 2m

parallel copies of S2×{pt} and 2n copies of {pt}×S2. The projections S2×S2 −→ S2

to the first and second factor realize X(m,n) as a genus m− 1 fibration and a genus

n− 1 fibration respectively, both of which can be perturbed into Lefschetz fibrations.

Then X(2, n) is the elliptic surface E(n) (cf. [11], Section 8.4), and X(2k, n) is the

k-fold fiber sum of E(n) with respect to the genus n− 1 Lefschetz fibration structure
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(where the gluing map Σn−1 × S1 −→ Σn−1 × S1 is the identity map on each fiber).

Also, X(m,n) is a minimal general type complex surface for m,n ≥ 3 (see [11],

Chapter 8.4 and [28], Proposition 1.3). From now on, we fix m = 6 and denote

X(6, n) by X, so that X is the 3-fold fiber sum of E(n).

Ozsváth and Szabó’s definition of absolute invariant in [26], Chapter 9 is slightly

more general than Definition 2.8.3, in the sense that the former definition allows the

possibility that the image of Θ− ∈ HF−(S3) under Fmix
X−D4−D4 lands on gradings of

HF+(S3) other than the minimal grading 0. Thus, in Ozsváth and Szabó’s definition,

if s is a spinc structure on X so that ΦX,s 6= 0, then Fmix
X−D4−D4 could shift the Q-

degree by any even number at least 2 (instead of just 2). Then it follows from the

degree shift formula for Q-grading (Equation 2.5) that

c2
1(s)− 2χ(X)− 3σ(X) ≥ 0. (5.11)

(Whereas the simple type conjecture (Remark 5.5.2) asserts that only the equality

may hold.)

One can check that 2χ(X) + 3σ(X) = 2(44n − 16) + 3(−24n) = 16n − 32. The

canonical spinc structure s∗ of X(m,n) is characterized by PDc1(s∗) = (2−n)[Σm−1]+

(2 −m)[Σn−1]. Since Σm−1 and Σn−1 intersect as two positive points, we see in our

situation m = 3 that c2
1(s∗) =

(
(2 − n)[Σ5] − 4[Σn−1]

)2

= 16n − 32. Therefore s∗

satisfies both the constraints given by (5.11) and the simple type conjecture.

More generally, consider spinc structures s on X where PDc1(s) is of the form

k[Σ5] + p[Σn−1] for some integers k and p. Then c2
1(s) = 4pk. Therefore, if ΦX,s 6= 0,
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then (5.11) implies that pk ≥ 4n− 8. We shall apply Proposition 5.5.1 to show that

there exist values of p, k that satisfy pk ≥ 4n−8 where ΦX,s still vanishes. To this end,

decompose X into the fiber sum of E(n)#E(n) and E(n), and let Z = E(n)#E(n)−

Σn−1 × D2. Notice that PDc1(s|Z) can be represented by a subset of Σ5 which is

a genus 3 surface with two boundary components, and PDc1(s|Σn−1×S1) = 2k[S1].

With our choice of framing before Lemma 5.4.2, it is clear that Qf (PDc1(s|Z)) = 0 ∈

Z/4|k|. Then one can calculate the shift term S for Z:

S = Qf (PDc1(s|Z))− 2χ(Z)− 3σ(Z)

= 0− 2(30n− 12)− 3(−16n)

= −12(n− 2)

= −12(d+ k) (Recall d = g − 1− k, here with g = n− 1)

= −12d mod 4|k|.

If n and k are sufficiently large and d is sufficiently small compared to k (more

precisely, when 4d < |k|), then S would not satisfy −4d ≤ S ≤ 4d imposed by (5.9),

implying that ΨZ,s|Z = 0, hence ΦX,s = 0.

Proof of Proposition 5.5.1. The bottom generator p of HF+(S3) is supported by the

standard contact structure of S3 which is Stein fillable by D4. So if we choose f ′ to

be the 0-framing of the unknot in S3, then p has Θ-grading

Qf ′(PDc1(D4))− 2χ(D4)− 3σ(D4) = −2. (5.12)
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It follows that the top generator q of HF−(S3) has Θ-grading −10 (with the same

framing f ′). Therefore, by Proposition 5.2.1 and Lemma 5.4.2, we have

−10+Qf ′,f (PDc1(s1))−2χ(Z1−D4)−3σ(Z1−D4) ≡ −8+4m mod 4|k| (−d ≤ m ≤ d).

(5.13)

Thus our assertion on S1 in Equation (5.9) follows from adding Equations (5.12) and

(5.13); the case for S2 can be proved similarly.

To see why Equation (5.10) is true, note that if ΦX,s 6= 0, then the relative

invariants ΨZ1,s1 and ΨZ2,s2 have to pair non-trivially in the pairing mentioned in

Theorem 2.8.4:

HF−(−Σg × S1, tk;MZ1)⊗HF−(Σg × S1, tk;MZ2) −→MX,Σg×S1 .

By definition of the pairing (see [16], Section 10.3 or [26], Section 5.1), the top i-th

group of HF−(−Σg×S1, tk;MZ1) only pairs non-trivially with the bottom i-th group

of HF−(Σg × S1, tk;MZ2). Since the i-th highest possible value of S1 is 4(d− i + 1)

mod 4|k| and the i-th lowest possible value of S2 is 4(−d+ i−1) mod 4|k|, we always

have S1 + S2 ≡ 0 mod 4|k| whenever the pairing is non-trivial.
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