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Abstract 

The very large number of emerging contaminants entering the water supply makes it 

desirable to assess their environmental fate and behavior without direct measurements. 

Structure-property prediction models are promising in this regard. Although traditional, 

regression-based structure-property relationships have been proven to be accurate for 

prediction of some parameters, these regression models are either too narrowly-defined to 

be of practical benefit for more than one small class of chemicals, or so broad that data 

scarcity compromises their predictive accuracy. Quantitative molecular similarity 

assessment (QMSA) is one particularly appealing alternative to traditional, 

regression-based models. QMSA models are based on the assumption that “similar” 

molecules behave “similarly”, such that parameters of interest for a target chemical can 

be computed based on parameter values for structurally similar chemicals. This is an 

evolving technique, which tends to be particularly appealing for applications in which 

predictive accuracy may be hampered by limited data availability.  

This research has three main objectives: 1) demonstrating that QMSA models can 

accurately predict environmental parameters of interest for highly diverse chemical 

classes, then measuring fundamental fate and transport parameters for several key 

emerging contaminants, to externally validate QMSA hypotheses; 2) applying measured 

fate parameters to predict the fate of emerging contaminants in WWTPs; and 3) assessing 

the extent to which QMSA can help prioritize among unmeasured chemicals and 

determine which additional measurements will result in maximally increased model 

accuracy. 

    The results of this research are promising. Virtual experiments showed that valid 
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QMSA models have been created for accurate prediction of three distinct environmental 

parameters: in vitro estrogenicity, sorption distribution coefficient Kd, and pseudo 

first-order biodegradation rate constant kb. Laboratory experiments for this research have 

focused on the measurement of Kd and kb for three highly-prescribed pharmaceutical (i.e., 

metformin, fluconazole, and benazepril), in wastewater obtained from a municipal 

wastewater treatment plant. Measured Kd and kb values are consistent with QMSA model 

predictions; furthermore, incorporation of these two parameters into simple mass balance 

models accurately predicts the effluent concentrations of studied emerging contaminants 

in WWTPs, demonstrating the usefulness of both QMSA and simple mass balance 

models. Finally we showed that three proposed QMSA-based prioritization approaches 

affords better improvement in QMSA estimation of property values among the remaining 

unmeasured compounds than random selection. This criterion provides additional 

information on selection of unmeasured emerging contaminants in terms of improving 

QMSA models’ accuracy. 
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Chapter 1 – Introduction 

 

1.1 Definition, sources, and adverse effects of emerging contaminants 

The categorization “emerging contaminants” refers to a large number of 

unregulated contaminants in the environment which are either recently developed or 

are recently detected because of advancements of analytical instrument (Richardson 

and Ternes, 2011; Petrović and Barcelo, 2006). There are a wide range of chemicals 

which can be categorized as emerging contaminants. They mainly include: endocrine 

disrupting chemicals (EDCs), hormones, pharmaceuticals and personal care products 

(PPCPs), pesticides, veterinary products, surfactants compounds, plasticizers, various 

industrial additives, food additives, and engineered nano-materials (Lapworth et al., 

2012; Richardson and Ternes, 2005; Petrović et al., 2003).  

Emerging contaminants enter into environment via a number of pathways. The 

major pathway is discharge of wastewater effluents from municipal wastewater 

treatment plants (WWTPs) (Heberer et al., 2004; Koplin et al., 2002). Emerging 

contaminants are discharged from domestic wastewaters or hospital wastewaters, 

entering into WWTPs, and are eventually released to natural water bodies. They can 

also enter into groundwater through septic tank systems (Swartz et al., 2006) or 

landfill systems (Holm et al., 1995). Finally, they can enter into soils via 

land-application of sludge from WWTPs as fertilizers (Ternes et al. 2004) or livestock 

manure (Watanabe et al., 2010). 
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Emerging contaminants have received increasing attention since they may cause 

adverse effects on human or aquatic species, even when they present at very low 

concentrations. For example, EDCs are found to be a group of chemicals which can 

disrupt the normal functioning of the endocrine system resulting in: reproductive 

abnormalities (Fry and Toone, 1981; Fry et al., 1987), population declines and 

reproductive disorders (Gibbs et al., 1991), feminization (Jobling et al., 1998), and 

more significant for humans, decreases in male sperm count and increases in a variety 

of cancers and reproductive malfunctions (Michael, 2001). Antibiotics, a sub-group of 

PPCPs, also show ecotoxicity to aquatic organisms (Sanderson et al., 2004) and 

contribute to development antibiotic-resistant bacteria in aquatic systems (Gilliver et 

al., 1999; Smith et al., 1999). The polar emerging contaminants are highly soluble in 

water and therefore are difficult to removed by typical WWTP processes (Knepper et 

al., 1999). This group of chemicals includes acidic pharmaceuticals, acidic pesticides, 

and acidic metabolites of non-ionic surfactants. Perhaps the most challenging 

characteristic of emerging contaminants is that they will cause continuous exposure 

for humans and animals due to their continuous usages and introduction into 

environment. Therefore their adverse effects, if exist, will never be stopped (Petrović 

et al., 2003). 
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1.2 WWTPs and their functions to remove emerging contaminants 

The importance of WWTPs for removing emerging contaminants has been well 

documented in the scientific literature (Bolong et al., 2009; Petrović et al., 2003). 

Existing WWTPs are generally designed to regulate traditional environmental 

parameters, such as five-day biochemical oxygen demand (BOD), the chemical 

oxygen demand (COD), nitrogen/phosphorus concentration, and suspended solids (SS) 

(Carballa et al., 2004 and Salgado et al., 2012). In contrast, they were not specifically 

designed to remove low-concentration organic contaminants. Thus, they may vary 

widely in their ability to efficiently remove emerging contaminants when they are 

operated as originally designed (Bolong et al., 2009).  

In WWTPs, there are three significant mechanisms responsible for removal of 

emerging contaminants, i.e. volatilization, sorption, and biodegradation (Pomiès et al., 

2013; Joss et al., 2006). These mechanisms are discussed in more detail in the 

following paragraphs. 

 

1.2.1 Volatilization 

Removal of emerging contaminants via volatilization is highly dependent on 

their Henry's law constants and WWTP operating conditions, such as extent of 

aeration, agitation, atmospheric pressure, and temperature. Volatilization can be 

described by two distinct processes, i.e. stripping and surface volatilization (Pomiès et 

al., 2013). Stripping is the any water movement process in WWTPs during which 
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chemicals are removed from wastewater and released into atmosphere via head loss or 

air bubbles, while surface volatilization is defined as release of chemicals from 

wastewater into quiescent or wind driven processes (Mihelcic et al., 1993). In 

WWTPs, stripping can be described as the following equation (Cowan et al., 1993): 

                        
����� = − ��	
×�×��
×�×�                   (1.1) 

where Ct is dissolved emerging contaminant concentration at time t (µg/L); t is 

the time (h); Qair is the air flow rate (L/h); H is the Henry’s Law constant (L·Pa/mol); 

R is the gas constant (L·Pa/(K·mol)); V is the volume (L); T is the temperature (K). 

However, previously published literature indicates that volatilization is not a 

significant removal process for emerging contaminants in WWTPs. For example, Lee 

et al. (1998) concluded that stripping was important relative to total removal in 

WWTPs only if H
’
 was higher than 0.8 and only if the chemicals are not 

biodegradable. The EU project POSEIDON concluded that musk fragrances with H
’
 

greater than 0.005 are slightly volatile (Poseidon, 2005). Results from Byrns (2001) 

suggested volatilization was not significant for chemicals with H lower than 0.1 

Pa·L/mol after he studied a large number of VOCs, PAHs and pesticides. For most of 

emerging contaminants, including PPCPs and EDCs, their dimensionless Henry’s 

Law constants, H
’
 are usually less than 0.005 (Schwarzenbach et al., 2003), making 

their potential volatilization negligible. 
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1.2.2 Sorption 

Sorption is believed to be the most significant removal process for emerging 

contaminants in WWTPs. It is because sorption can happen in any part of a WWTP 

where suspended solids are present For some persistent emerging contaminants, 

sorption could be the single most important removal mechanism (Simonich et al., 

2002). The sorption process can be written as the following equilibrium equation: 

             
����� = −���� × �� × ��� + ���� × ��,�         (1.2) 

where ksor is the sorption kinetic constant (L/(g·h)); kdes is the desorption kinetic 

constant (h
-1

); Xss is the suspended solid concentration (g/L); Cs,t is the sorbed 

emerging contaminant concentration in wastewater (µg/L). 

    However, in most scenarios, sorption can be assumed to reach equilibrium 

instantaneously because sorption processes are much faster the biodegradation (Parker 

et al., 1994). Therefore a simplified parameter, Kd, the sorption distribution coefficient, 

is widely used to describe the WWTP sorption (Ternes et al. 2004). It can be 

expressed as the following equation: 

                    �� = �������
 = ��×�����,�                    (1.3) 

This parameter encapsulates the distribution of a chemical between aqueous and 

suspended solid phase. Kd has been well demonstrated as one of the most significant 

parameters responsible for chemicals’ removal since it can be used to accurately 

predict the sorption process in WWTPs (Schwarzenbach, 2003). However some other 

parameters which have indirect implications with sorption; for example, 

octanol–water distribution coefficient (Kow), but this parameter may not accurately 

quantify sorption for emerging contaminants. This is because specific electrostatic 
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interactions exist for sorption of certain pharmaceuticals (fluorochinolones) which 

have very high Kd but extremely low Kow (Golet et al., 2003). This has also been 

reflected on the increasing research interests on measurement of Kd in WWTPs in 

recent years (Golet et al. 2003; Artola-Garicano et al. 2003; Clara et al. 2005; 

Radjenovic et al. 2009; Barron et al. 2009; Ottmar et al. 2010; Stevens-Garmon et al. 

2011).  

 

1.2.3 Biodegradation 

Biodegradation comprises a series of biological kinetic processes controlled by 

WWTP microorganisms (such as bacteria and fungi), during which emerging 

contaminants are partially removed or completely eliminated from the aqueous phase 

(EUR 20418 EN/2). Biodegradation can be described by two different types of 

models, i.e. a pseudo first-order type (Dionisi et al., 2008; Byrns, 2001) or a  Monod 

type model (Plosz et al., 2010). The pseudo first-order type can be written as the 

following equation: 

                   
����� = −� × �� × ���                  (1.4) 

where kb is the pseudo first-order biodegradation rate constant (L/(g·h)). 

    The Monod type model comprises the following form: 

          
����� = − !" × #$%& × ��,���,�'(� × ����'( × ���        (1.5) 
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where Y is the conversion yield; µmax is the bacteria maximum growth rate (h
-1

); Co,t is 

the oxygen concentration at time t (mg/L); Ko is the oxygen half saturation coefficient 

(mg/L); K is the emeriging contaminant half saturation coefficient (µg/L). 

    In literatures, the pseudo first-order biodegradation rate constant (kb) has been 

widely and conveniently used as the parameter for prediction of biological 

transformation of emerging contaminants in different WWTPs (Salgado et al., 2012; 

Thompson et al., 2011; Joss at al., 2006; Monteith et al., 1995; Melcer et al., 1994; 

Cowan et al., 1993). Therefore in this study, kb was selected as the parameter to 

quantify biodegradation efficiency. 
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1.3 Quantitative Structure-Property Relationship (QSPR) for environmental 

property estimation 

It has been well documented that emerging contaminants are widely detected in 

the US drinking water supply (USEPA, 2006), and there are over 8,400,000 different 

commercially available compounds worldwide (Muir and Howard, 2006). Since a 

significant fraction of these compounds are unregulated and may cause unknown or 

adverse impacts when ingested by humans or animals, the US Toxic Substances 

Control Act (TSCA) Inventory currently contains more than 82,000 chemical 

compounds (Muir and Howard, 2006). Not surprisingly, the amount of work required 

to obtain essential environmental modeling parameters for all of these chemicals can 

overwhelm the capacity of regulatory agencies. In response to a similar crisis overseas, 

the European Union utilized the extensive Registration Evaluation, and Authorization 

of CHemicals (REACH) Program to evaluate the toxicity of some 20,000–30,000 

chemicals (EC, 2006). One shared component of the REACH and TSCA directives 

holds significant emphasis on obtaining essential environmental information of 

emerging contaminants via validated quantitative structure-property relationships 

(QSPRs) to predict environmental fate and behavior for classes of chemicals rather 

than measurement of individual compounds (Saliner et al, 2005; Basak et al, 2002). 

Traditional QSPRs are widely applied for prediction of physicochemical 

properties, biological activities, or toxicity for a class of chemicals on the basis of 

molecular descriptors (Basak et al, 2002). These type of models are usually created 

using multiple linear regressions. The target environmental properties are predicted by 
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linear combinations of all possible independent variables, i.e. descriptors 

(Yangali-Quintanilla et al., 2010). Although a well-validated structure-property model 

can significantly reduce the time and expense required to screen various chemicals of 

regulatory interest, and such models have been used increasingly over the last several 

decades to fill in data needs related to ecological effects (Cronin et al, 2003), a 

well-defined application domain is usually essential to define the applicability of 

QSPRs (Tropsha et al., 2003). 

Another common criticism of traditional, regression-based structure-property 

relationships is related to their scope. In general, these models are either too 

narrowly-defined to be of practical benefit for more than one small class of chemicals 

(Cronin et al, 2003) or so broad that data scarcity compromises their predictive 

accuracy (Basak et al, 2002). Further, when larger quantities of data are available, 

regression-based QSPR models must  be re-built based to incorporate new 

information. These and other criticisms of regression-based structure-property 

relationships have led to interest in alternative structure-property modeling.  

Quantitative molecular similarity analysis (QMSA) is one promising alternative 

to traditional QSPRs for addressing the shortcomings referenced above. The 

fundamental hypothesis of QMSA is that “similar” chemicals will exhibit similar 

environmental properties. Therefore, rather than developing a series of 

regression-based QSPRs, the QMSA approach focuses on finding what compounds 

are most similar to the target chemical for which property values are desired. 

Regression-based QSPRs usually split compounds into small, discrete classes 
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exhibiting good correlation with selected molecular descriptors. A series of linear 

regressions is then used to fit the properties to these molecular descriptors. However, 

QMSA seeks to maximize data utility by pooling all available measured compounds 

into a single dataset. A vast quantity of molecular information comprising empirically 

measured or theoretically calculated descriptors is then assembled for all of the 

chemicals in the pool. This information is culled through various processes, and the 

several remaining critical similarity features are incorporated into a similarity 

assessment algorithm to determine which k compounds within the training dataset are 

most similar to the target chemical. Ultimately, the target’s output property is 

estimated from some linear combination of the measured property values associated 

with its k nearest (i.e., most chemically similar) neighbors (k-NN) (Basak and 

Grunwald, 1995; Basak et al, 2002; Gute et al, 2004).  

To date, QMSAs models have been used to accurately predict various parameters 

related to environmental risk assessment, including: mutagenicity (Basak and 

Grunwald, 1995), hepatoxicity (Gute et al, 2004), and skin sensitization plus various 

other REACH-relevant toxicity endpoints (Estrada et al, 2004). Still, QMSA models 

have not been widely used to predict environmental fate and behavior parameters, and 

it is unknown how much additional data is needed to create valid QMSA models for 

emerging contaminants.  

As discussed before, WWTPs serve as the most significant environmental end 

point for removal of emerging contaminants. And sorption as well as biodegradation 

will be the two most important processes responsible for removal of emerging 
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contaminants in WWTPs. Therefore Kd and kb are crucially important parameters for 

understanding the fate of emerging contaminants in WWTPs. Although there are 

some efforts to apply QSPR for estimation of Kd and kb, these studies have used either 

a machine learning technique (e.g., artificial neural network), which tends to be a 

“black box” for the user and makes it very difficult for them to understand the model 

structure, or they didn’t perform no comprehensive model validation steps to ensure 

those models are accurate (Dickenson et al., 2010). 
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1.4 Hypothesis and Objectives 

This study will evaluate three main hypotheses, each with several sub-hypotheses 

and objectives, as noted below. The results from part of Hypothesis 1 have already been 

published in Separation and Purification Technology. The results from of Hypothesis 3 

have been accepted for publication in SAR and QSAR in Environmental Research. It is 

also proposed that the experimental results from Hypothesis 1 (as pertaining to 

measuring and predicting the sorption distribution coefficient, Kd and pseudo 

first-order biodegradation rate constant, kb of three highly prescribed pharmaceuticals 

to wastewater sludge), will yield another two papers. These two manuscripts will be 

targeted for publication in a traditional environmental engineering journals. 

 

Hypothesis 1:  QMSA models can be used to accurately predict environmental 

engineering parameters of interest. 

Objective 1:  Establish QMSA models for three environmental parameters of 

interest (in vitro estrogenicity, sorption distribution coefficient - Kd, 

and pseudo first-order biodegradation rate constant - kb) and validate 

model predictions using leave-one-out (LOO) cross-validation 

procedures; compute the cross-validation coefficients (q
2
) and 

compare predictions with literature values or laboratory 

measurements. 

 

Hypothesis 2:  Kd and kb of selected emerging contaminants can be useful for 

estimation their effluent concentrations out from WWTPs 

Objective 2:  Use measured Kd and kb values of selected compounds in Hypothesis 

1 and develop a simple mass balance model to predict the effluent 
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concentrations and compare them with measured effluent 

concentrations reported in literatures. 

 

Hypothesis 3:  Prioritizations evaluated by QMSA are critical factors for prioritizing 

among unmeasured chemicals and determining which additional 

measurements will result in maximally increased model accuracy. 

 

Hypothesis 3a:  Addition of chemicals exhibiting high representativeness (as 

parameterized using summation of intermolecular distances among 

all unmeasured chemicals) to the pool of “measured” data will 

increase the accuracy of QMSA models.  In contrast, addition of 

chemicals exhibiting low representativeness to the pool of “measured” 

data will decrease the QMSA model accuracy. 

Objective 3a:  Compare the predictive abilities of QMSA models incorporating 

“new” measurements as selected using a similarity-based “high 

representativeness” or “low representativeness” approach or a 

random (arbitrary) selection approach. 

 

Hypothesis 3b:  Addition of chemicals exhibiting low redundancy (as parameterized 

using summation of intermolecular distances between all measured 

chemicals and each chemical in the unmeasured pool) to the pool of 

“measured” data will increase the accuracy of QMSA models.  

Objective 3b:  Compare the predictive abilities of QMSA models incorporating 

“new” measurements as selected using a similarity-based 

“redundancy” approach or a random (arbitrary) selection approach.  
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Hypothesis 3c: Addition of chemicals exhibiting both high representativeness and low 

redundancy to the pool of “measured” data will maximally increase 

the accuracy of QMSA models. 

Objective 3c:  Compare the predictive abilities of QMSA models incorporating 

“new” measurements as selected using an “intersection” approach, 

which incorporates consideration of both representativeness and 

redundancy approach, or other selection approaches evaluated in this 

study.  

    Figure 1.1 illustrates the general flow of the six chapters in this dissertation.  
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Figure 1.1 Flowchart of research focuses of six chapters in this study. 
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Chapter 1 covers the basic information and motivation on why we perform this 

research. In Chapter 2, QMSA will be first discussed and examined on its ability to 

predict one basis environmental engineering parameter, i.e. in vitro estrogenicity. The 

idea of this chapter is to demonstrate that QMSA can be a useful tool for 

environmental predictions since previously QMSA has not been applied in this area. 

Chapter 2 will only perform internal validation, i.e. examine QMSA’s ability to 

accurately recreate property estimates for previously measured compounds, using the 

estrogenicity dataset. In Chapter 3, QMSA will be comprehensively applied to a Kd 

dataset, with application of both internal and external validation. External validation 

will require us to measure Kd of some chemicals which have never been measured 

before. Finally, QMSA’s application domain will also be discussed to tackle our 

predictions to a reasonable range. Moving forward, Chapter 4 will examine if QMSA 

can be used to predict a more complicated fate parameter, kb. Again both internal and 

external validation will performed. After that, Kd and kb measurements for three 

selected emerging contaminants will be incorporated into a simple mass balance 

model that predicts WWTP effluent concentrations. This will be our final goal 

because it represents the best understanding of emerging contaminant fate in WWTPs. 

Chapter 5 will discuss more conceptual benefit of QMSA related to prioritization of 

unmeasured chemicals, In particular, we will try to show that QMSA procedures can 

be used to determine which chemicals should be measured first to best improve 

prediction accuracy for all other unmeasured chemicals. Finally, in Chapter 6, the 

main conclusions from this study will be summarized. 
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Chapter 2 – Application of QMSA as a tool for estimation of environmental 

engineering parameters of emerging contaminants 

 

2.1 Introduction 

As discussed in Chapter 1, QMSA is an alternative approach to traditional, 

regression-based QSAR models. Rather than directly applying linear regression on all 

possible molecular descriptors, it uses molecular descriptors as a ruler to measure the 

similarities among chemicals. Estimated property values for the “target” chemical are 

made based on the properties of its nearest neighbors. This is an evolving technique, 

which tends to be particularly appealing for applications in which predictive accuracy 

may be hampered by limited data availability (Basak and Gute, 1995). To date, 

QMSA models have been used to accurately predict various parameters related to 

environmental risk assessment, including: mutagenicity (Basak and Gute, 1995), 

hepatoxicity (Gute et al., 2004), and skin sensitization, plus various other 

REACH-relevant toxicity endpoints (Estrada et al., 2004). However, there is still no 

clear evidence that QMSA can be used to predict relevant environmental engineering 

parameters. 

Thus, this chapter has one objective: to validate the use of QMSA in predicting 

one important environmental engineering parameter of interest, i.e. estrogencity of 

emerging contaminants. To achieve this, we need to demonstrate that a QMSA model 

can accurately predict estrogenicity of studied emerging contaminants. 
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2.2 Experimental 

2.2.1 Data Sources 

Estrogenicity data were taken from a paper by Nishihara et al. (2000). 

Measurements were collected using a yeast two-hybrid (Y2H) in vitro estrogenicity 

assay for 517 compounds in municipal and industrial wastes. Since the large majority 

of these estrogenicity measurements were reported using “less than” or “greater than” 

instead of exact numeric values, only 55 of the 517 compounds measured by 

Nishihara et al. could be utilized in this study. Additional Y2H estrogenicity 

measurements were taken from: Hayakawa et al. (2007); Kameda et al. (2008); 

Kawamura et al. (2003); and Nakano et al. (2001). In total, estrogenicity 

measurements were procured for N = 81 unique compounds including plasticizers, 

pesticides, herbicides, surfactants, steroid hormones, and other classes. Values were in 

units of REC10 (10% relative effective concentration); i.e., the concentration of a test 

chemical eliciting 10% of the response associated with a standard solution of 10E-7 

M 17β-estradiol. The common logarithm transformation was applied to all 

estrogenicities, since these values spanned several orders of magnitudes.  

2.2.2 Molecular Descriptors 

Several hundred molecular descriptors were calculated using MolconnZ (Edusoft 

LC) and SYBYL v. 7.3 (Tripos Inc) for the 81 chemical structures evaluated in this 

study. These parameters included information on molecular connectivity, shape, 

quantitative characteristics, etc. To neutralize the dramatic differences in scale among 

computed molecular descriptors, all values were rescaled using a two-step process 
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similar to that of Basak et al. (2003). First, a constant coefficient was added to all 

values of each molecular descriptor type such that no adjusted property value was less 

than or equal to zero. Then, all adjusted values were transformed via the natural 

logarithm. Molecular descriptors for which all compounds exhibited the same 

rescaled value were removed from the data set, resulting in a total of 193 usable 

molecular descriptors.  

 Because many of the descriptors computed by MolconnZ were highly correlated, 

three statistical approaches were used to select which of the 193 indices were most 

appropriate for inclusion in a QMSA model. This was necessary for several reasons: 1) 

use of so much chemical information significantly reduces calculation speeds; 2) 

many indices are highly inter-correlated and thus offer redundant chemical 

information; and, 3) it was expected that use of a smaller number of representative 

indices may provide deeper insight about how chemical structure drives 

environmental behavior.  

The first general approach that was used for data reduction was Principal 

Component Analysis (PCA). Here, PCs (principle components) are composite 

“descriptors” formed via linear combinations of all available indices. The same 

number of PCs is formed as there are unique indices to work with; however, for this 

research, only statistically significant PCs (eigenvalues λ ≥1) were retained in the 

final QMSA models. These retained PCs were used in two ways. For one scenario 

(“PCA”), the entire linear combination comprising each PC was used to make QMSA 

predictions. For the other scenario (“iPCA”), only the best correlated descriptor 
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within each PC was used for QMSA. The best correlated descriptor was determined 

based on the absolute value of correlation coefficient associated with each PC. All 

PCA (and iPCA) calculations were performed using PASW Statistics 18 (SPSS Inc.). 

The third statistical approach for data reduction was ridge regression (iRR), which 

is specifically designed to overcome multi-colinearity among predictors (Crisp et al., 

1998). Similar to ordinary least-squares multiple linear regression, in iRR, all indices 

are utilized as independent predictors to form linear combination predictions of the 

environmental parameter of interest. However, a ridge parameter “beta”, β is 

introduced to reduce multi-colinearity and redundancy among available chemical 

information. A detailed description of iRR calculations and their interpretation are 

provided by Basak et al. (2003). All iRR calculations were performed using Matlab 

(Mathworks Inc., Version 7.0). 

 

2.2.3 Similarity Computation 

Similarity between pairs of molecules was computed using the method of 

Euclidean Distances in an n-dimensional space, according to Eq. 2.1. 

    )*+, = [∑ (�+�0�1! − �,�)3]! 3⁄                 (2.1) 

Here, EDij is the Euclidean Distance between molecules i and j; n is the number of 

statistically significant principal components; and Xik and Xjk are values of descriptor k, 

respectively (Gute et al. 2001). Pairs of molecules separated by smaller ED values are 

said to be more similar than pairs of molecules separated by larger distances, Two 

molecules with ED = 0 must have exactly identical chemical structures. 
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2.2.4 Selection of Nearest Neighbors, Property Estimation, and Model Validation 

The k-nearest neighbor (k-NN) method was employed for estimation of a probe 

chemical’s desired property. This was done in three steps, First, compute the EDs 

between probe chemical and each compound in the estrogenicity dataset, Second, 

identify which k compounds within the estrogenicity dataset exhibit the smallest EDs 

from the probe. Finally, compute the estimated estrogenicity for probe chemical using 

the arithmetic average of the estrogenicity values for the k chemicals that are most 

similar to the probe chemical.. In this study, tested k values ranged from 1 – 10. 

The leave-one-out (LOO) cross validation procedure was used to assess the 

accuracy of QMSA predictions (Hawkins et al. 2003). In this procedure, one 

compound at a time is removed the dataset, and the N – 1 remaining compounds are 

used to predict its value. This is done systematically N times. The resulting N 

predictions are then compared with measured values for their respective compounds 

to enable computation of the cross validation coefficient (q
2
) and the standard 

prediction residual error sum of squares (SPRESS). Following literature precedent, two 

slightly different variations of q
2
 coefficients were computed; i.e., the so-called “naïve” 

and “true” q
2
 coefficients. The difference between these two hinges on whether 

descriptor selection occurs before or after assignment of the training subset. It has 

been demonstrated that selection of one single set of molecular descriptors prior to all 

cross-validation via iterative model fitting results in higher q
2
 estimates (the so-called 

“naïve q
2
”) compared to iterative selection of different molecular descriptors for each 

cross-validation model fitting (as is done in during computation of the so-called “true 
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q
2
”). Since both coefficients are currently reported in the literature (Hawkins et al. 

2004; Basak et al. 2009; Roy and Das 2010, Li et al. 2009; Zhou et al. 2010), both 

were computed for this investigation. The reader is referred to Kraker et al. (2007) for 

a more detailed explanation of the differences between naïve and true q
2
. SPRESS is the 

standard prediction residual error sum of squares, such that smaller values of this parameter are 

indicative of better model accuracy. 
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2.3 Results and Discussion 

2.3.1 Indices Selection for Development of PCA, iPCA, and iRR QMSA Models. 

Table 2.1 summarizes the list of indices (i.e., molecular descriptors) selected for 

use in both types of PCA QMSA models and also the ridge regression (iRR) QMSA 

model.  

PCA revealed that only 15 PCs should be retained on the basis of statistical 

significance (eigenvalue ≥ 1). These were used for PCA QMSA modeling, such that 

less than 10% of the total available chemical information (193 indices) was required 

to generate QMSA predictions. For each of the 15 retained PCs, correlation analysis 

was used to determine which index was best correlated with each retained PC, based 

on highest absolute value of correlation coefficient (R). The best-correlated indices 

were retained for use in so-called “iPCA” QMSA modeling. For cases in which two 

or more PCs had the same top-correlated index, the second-most correlated index 

from one PC was also retained. In this way, a total of 15 most-correlated or 

second-most correlated indices were selected for iPCA modeling of the estrogenicity 

dataset. Ridge regression was also performed for estrogenicity dataset. In order to be 

consistent with iPCA QMSA modeling, only the top 15 most significant indices 

selected by RR were retained for “iRR” modeling.  
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Table 2.1. Indices generated from iPCA and iRR data reduction for both datasets. PCA-selected 

indices were used to construct both PCA and iPCA QMSA models for estrogenicity. RR-selected 

indices were used to construct iRR QMSA models for estrogenicity. Each set of descriptors 

comprises all of the chemical information required to generate a QMSA model for each type of 

environmental parameter. 

iPCA  iRR 

Wp nelem 

nXc4 SsssCH 

k3 SssCH2 

etyp22 Tg 

etyp14 nd1 

SsOH SssO* 

SaasC molweight 

n3Pad34 naasC 

ishape etyp24 

etyp12 muldiam 

mulrad nssCH2 

SHCsatu SHBd 

SssO* dXvp4 

n4Pae13 Hmax 

SssssC Hmaxpos 

*  Single asterisks denote which index was selected by both iPCA and iRR approaches for use 

in QMSA modeling to predict in vitro estrogenicity. 

From Table 2.1, use of the iPCA or iRR indices selection approaches resulted in 

highly distinct sets of molecular descriptors for estrogenicity QMSA modeling. There 

was only one common index among the lists of 15 indices selected by iPCA and iRR; 

namely, SssO. 
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2.3.2 Internal Validation of PCA, iPCA, and iRR QMSA Models.  

Results from leave-one-out (LOO) validation experiments are presented in 

Figure 2.1. All three models (PCA, iPCA, iRR) exhibit excellent predictive abilities. 

In all three cases, highest validation coefficient (q
2
), highest correlation coefficient 

(R), and lowest SPRESS were achieved for the use of k = 1 nearest neighbor. As k 

increases, q
2
 and R decrease while SPRESS increases. All three changes are statistical 

indications of decreased predictive accuracy when larger numbers of nearest 

neighbors are used to make parameter predictions.  

To reiterate from the previous paragraph, all QMSA models for the selected 

environmental parameters exhibit excellent accuracy. The observed magnitudes of q
2
, 

R, and SPRESS are comparable to the best reported literature values for similar types of 

predictive models (Asikainen et al., 2004; Waller 2004). In particular, the k = 1 PCA 

modeling approach seems to outperform all other models (k = ≥ 2, iPCA or iRR). It 

possesses the highest values of q
2
 (0.84) and R (0.92), and the lowest SPRESS (0.64) 

among all three estrogenicity models.  

The superior performance of PCA compared to iPCA and iRR is perhaps not 

unexpected, since PCA incorporates the largest amount of chemical information 

among the three approaches. In particular, PCA employs all principal components 

with eigenvalues equal or greater than 1. In contrast, iPCA and iRR models only 

retain a small portion of the available indices and therefore may be missing some 

important similarity information. Notably, iRR models seem to be more powerful than 
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their corresponding iPCA models. This is consistent with reports by other authors 

(Gute and Basak, 2006).  

 

Figure 2.1.  LOO validation statistics for three indices selection approaches (PCA, iPCA, and 

iRR), using k nearest neighbors ranging from k = 1-10, for QMSA modeling of in vitro 

estrogenicity. From top, statistics are q
2
, R, and SPRESS. 
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Table 2.2 shows the results of true q
2
 and naive q

2
 calculations. As evident in 

Table 2.2, cross-validation coefficients observed for the estrogenicity data set were 

0.45-0.84 for naïve q
2
 and 0.35-0.50 for true q

2
. These indicate good model accuracy, 

as naïve q
2
 values are on par with or slightly higher than naive true q

2 
values observed 

by Asikainen et al. (2004) for prediction of in vitro estrogenicity using a related, but 

slightly different similarity technique (consensus k-NN structure-activity 

relationships). Similarly, true q
2
 magnitudes are consistent with those reported by 

Kraker et al. (2007) for prediction of juvenile hormone activity (0.31-0.57).  

 Also evident in Table 2.2, naïve and true q
2
 values exhibit different trends with 

increasing k. Naïve q
2
 decreases dramatically with increasing k above k = 1 for the 

data utilized in this study; in contrast, true q
2
 decreases with increasing k on the range 

1-4, then decreases for k = 5, and holds roughly steady for k = 6-10. Of these two 

trends, the latter is more similar to a previously published QMSA study by Basak et al. 

(1995), in which increasing k over the range 1-10 mediated increasing q
2
, followed by 

a decrease for k > 10.  

 

Table 2.2. Cross-validation coefficients for leave-one-out (LOO) evaluation of a quantitative 

similarity assessment model to predict estrogenicity for N = 81 chemicals. “Naïve” and “true” 

designations refer to whether or not molecular descriptors were selected before or after subset data 

was removed from sample set, as described in Section 3.2.4. k was evaluated over the range 1-10 

“nearest neighbors”. 

k 1 2 3 4 5 6 7 8 9 10 

Naïve q
2
 0.84 0.75 0.69 0.67 0.61 0.57 0.54 0.51 0.50 0.45 

True q
2
 0.40 0.44 0.46 0.50 0.43 0.41 0.40 0.38 0.40 0.35 
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Improvement in q
2
 with increasing k has generally been observed in datasets that 

are smaller and more structurally homogenous than the estrogenicity dataset used in 

this study; however, the naïve q
2
 values observed here are not significantly less than 

naïve q
2
 values in other QMSA studies or other structure-property studies in general. 

For this particular dataset, it is assumed that QMSA predictions utilizing small k (1-3) 

result in reasonably accurate predictions because they do not require averaging across 

a large number of dissimilar chemical structures. This is critical in so far as it suggests 

that QMSA, when implemented using a small k, can be an appropriate prediction tool 

for datasets encompassing a broadly diverse array of chemical structures, even despite 

scarce data availability (i.e. “nuggets”). Thus, emerging contaminants would seem 

well suited to QMSA predictions for emerging contaminants because these chemicals 

are both diverse in structure and poorly characterized to date. 

Another interesting observation about the estrogenicity predictions summarized in 

Table 2.2, and about QMSA predictions in general, is related to the cases of extreme 

values. Because QMSA predictions rely on arithmetic averaging of property values 

for a compound’s k nearest neighbors, compounds that are most dissimilar from the 

rest of a dataset are difficult to model accurately. In this study, four compounds were 

particularly problematic with respect to predictive accuracy. These include: two 

synthetic estrogens comprising the most strongly estrogenic substances in this dataset, 

17α-ethynylestradiol (log REC10 = 9.70) and diethylstilbestrol (logREC10 = 9.70); 

and two polycyclic aromatic hydrocarbons (PAHs) comprising the most weakly 
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estrogenic substances in this dataset, 3-hydroxybenz(a)-anthracene (log REC10 = 

2.38) and 2-hydroxy-chrysene (log REC10 = 2.38).  

Coincidentally, each of the chemicals with an extreme value had the same exact 

estrogenicity as one other chemical in this dataset. Still, not all of the QMSA models 

generated in this study could correctly identify which chemical should be most similar 

to the strongest or weakest estrogens. Additionally, LOO cross-validation trials in 

which one very strong or very weak chemical was removed from the training set made 

it virtually impossible to assign an accurate estrogenicity for the remaining very 

strong or weak chemical. This is because all of the other values were so much less 

extreme. This is clearly a shortcoming of QMSA models based on PCA; however, 

despite this weakness, excellent q
2
 values were achieved for this highly diverse 

training set.  
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2.4 Conclusions 

In this chapter, we examined the potential application of QMSA models for 

evaluation of a key environmental engineering parameter, in vitro estrogenicity, 

among the rapidly expanding number of emerging contaminants Since this particular 

environmental endpoint has been widely measured over the last twenty-five years, this 

study comprises a “retrospective” validation of QMSA prioritization using an existing, 

relatively rich data set. It has been demonstrated that QMSA can accurately predict 

environmental information for large, highly diverse classes of chemical structures. 

This is made evident by the good q
2
 values (0.84) achieved for prediction of in vitro 

estrogenicity measurements (Table 2.2). Thus, it seems likely that efficient use of 

accurate QMSA models could deemphasize the need for labor-intensive, 

time-consuming analytical measurements to support regulatory agendas related to 

emerging contaminants.  
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Chapter 3 – Molecular Similarity Analysis as a Tool to Predict Sorption 

Distribution Coefficients Emerging Contaminants  

 

3.1 Introduction 

As discussed in Chapter 1, extensive production and application of a wide range 

of unregulated chemicals, usually referred to as “emerging contaminants”, makes 

these compounds widely detected in the environment. It has been demonstrated that 

wastewater treatment plants (WWTPs) are the most significant source of emerging 

contaminants, including estrogens and pharmaceutical compounds, into natural water 

bodies (Kolpin et al., 2002; Daughton, 2004; Richardson and Ternes, 2005). This is 

because municipal WWTPs in the US have been designed to remove biochemical 

oxygen demand (BOD) and nutrients (nitrogen, phosphorus) rather than emerging 

contaminants. As a result, WWTP removal efficiencies for estrogens, pharmaceuticals, 

and other compounds can be quite low or vary widely from plant to plant (Heberer, 

2002; Golet et al., 2003; Wick et al. 2009; Carballa et al. 2004). This inability to 

consistently remove emerging contaminants at high efficient poses potential safety 

risks to the US drinking water supply. 

The two main types of treatment at a municipal WWTP include sorption and 

biodegradation. These treatments are not completely ineffective for removal of 

emerging contaminants, but it is not presently understood how well each type of 

treatment mediates removal of estrogens, pharmaceuticals, and other emerging 

contaminants. Thus there would be great value in understanding fate and transport 

parameters pertaining to these two removal processes. This mechanistic understanding 

could ultimately enable estimation of how these compounds will behave within the 
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WWTP and in the natural environmental following effluent discharge or 

land-application of biosolids (Ternes et al. 2004; Barron et al. 2009). This chapter will 

focus on use of QMSA modeling to estimate sorption distribution coefficient (Kd), 

which is an important parameterization of sorption efficacy.  

Traditional sorption investigations have focused on measurement of the sorption 

distribution coefficient (Kd) (Ternes et al. 2004). This parameter encapsulates the 

distribution of a chemical between aqueous and suspended solid phase. Kd has been 

well demonstrated as one of the most significant parameters responsible for removal 

of organic chemicals, since it can be used to accurately predict the sorption process in 

WWTPs (Schwarzenbach, 2003). This has also been reflected on the increasing 

research interests on measurement of Kd in WWTPs in recent years (Golet et al. 2003; 

Artola-Garicano et al. 2003; Clara et al. 2005; Radjenovic et al. 2009; Barron et al. 

2009; Ottmar et al. 2010; Stevens-Garmon et al. 2011).  

The increasingly large number of emerging contaminants requiring evaluation 

makes it impractical, if not impossible, to obtain direct measurements of the Kd 

parameter for all compounds of interest. This approach would be too expensive and 

time-consuming. Therefore many environmental regulation agencies worldwide, such 

as US Environment Protection Agency (EPA) and European Environmental Agency 

(EEA), encouraged people obtaining such information by applying Quantitative 

Structure-Property Relationships (QSPR) (EC, 2006).  

In Chapter 2, we demonstrated that QMSA can potentially serve as a powerful 

tool to predict an environmental engineering parameter, i.e. in vitro estrogenicity. 

Despite this, there has been almost no research on its sorption and biodegradation 

parameters in wastewater to date.  
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Therefore, this study has three objectives: 1) provide Kd of three emerging 

contaminants which have never been measured before; 2) develop a QMSA model 

that generates accurate estimations of sorption distribution coefficient (Kd) for 

sludge-water systems simulating sorption in primary and secondary treatment in 

WWTPs; and 3) provide a Kd estimation list for 223 unmeasured emerging 

contaminants studied in previous literatures. It is expected that Kd estimations 

generated from this model will be valuable for environmental regulators or 

researchers to obtain Kd of unmeasured emerging contaminants in WWTPs. It is even 

more valuable for understanding and ultimately predicting WWTP removal of 

emerging contaminants. Thus, QMSA-derived estimations are benchmarked against 

existing measurements and estimations from other models. Additionally, laboratory 

measurements for three highly-prescribed but previously unevaluated pharmaceutical 

compounds are presented as external validation of model accuracy.  
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3.2 Experimental 

3.2.1 Data Sources. 

Distribution coefficient (Kd) data were taken from various literature sources for 

municipal wastewater treatment plant (WWTP) biosolids (“sludge”) as sorbent for 

pharmaceuticals, steroid estrogens, fragrance materials, biocides and some other 

classes of emerging contaminants, namely: Barron et al (2009); Ternes et al (2004); 

Feng et al (2010); Andersen et al (2005); Carballa et al (2007); Kupper et al (2006); 

Wick et al (2009); Simonich et al (2002); Zhao et al (2008); and Ottmar et al (2010). 

For chemicals which had more than one reported Kd value, the arithmetic mean was 

taken for all available values. All told, Kd measurements for 80 different chemicals 

were collected from the literature. As with the estrogenicity dataset, the common 

logarithm transformation was applied to reduce significant variability. To sum up, 

there are 81 measured chemicals in estrogenicity dataset and 80 measured chemicals 

in Kd dataset, respectively.  

The total pool of chemical structures used in this study included not only those 

compounds that had been previously measured for estrogenicity and/or Kd but also all 

other emerging contaminants referenced in the papers noted above plus additional 

structures from a list of 200 top-prescribed generic pharmaceuticals (Verispan VONA, 

2007). The total number of chemical structures evaluated, N, including previously 

measured and unmeasured chemicals, was 303. 
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3.2.2 Molecular Descriptors.  

Several hundred molecular descriptors were calculated for the 303 chemical 

structures in the QMSA pool. This was done using MolconnZ (Edusoft LC) and 

SYBYL v. 7.3 (Tripos Inc). Computed descriptors included information on molecular 

connectivity, shape, quantum characteristics, etc. To neutralize dramatic differences 

in scale among the various computed molecular descriptors, all values were rescaled 

using a three-step process modified from Basak et al. (2003). First, a constant was 

added to all values of each molecular descriptor such that all values were greater than 

zero. Second, molecular descriptors for which all compounds exhibited the same 

rescaled value were removed from the data set. Finally, the 303 values of each 

molecular descriptor (the vector corresponding to all compounds in the training data 

set) were normalized by dividing each value by Eculidean length of the vector such 

that the Eculidean length of the normalized vector was one. The total number of 

usable molecular descriptors (“indices”) resulting from this process was 193.  

Three statistical approaches were used to identify which of the 193 indices were 

most appropriate for inclusion in a particular QMSA model. This was necessary 

because many of the molecular descriptors encapsulated redundant chemical 

information and because use of excessively large molecular descriptor sets makes for 

undesirably long calculation times. The first general approach for data reduction was 

Principal Component Analysis (PCA). In this analysis, PCs (principle components) 

are composite “descriptors” formed via linear combinations of all available indices. 

The same number of PCs are formed as there are unique indices to work with; 
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however, for this research, only statistically significant PCs (eigenvalues λ ≥1) were 

retained. These retained PCs were used in two ways. For one scenario (“PCA”), the 

entire linear combination comprising each PC was used to make QMSA estimations. 

For the other scenario (“iPCA”), only the best correlated descriptor within each PC 

was used for QMSA. The best correlated descriptor was determined based on the 

absolute value of correlation coefficient associated with each PC. All PCA (and iPCA) 

calculations were performed using PASW Statistics 18 (SPSS Inc.). 

The third statistical approach for data reduction was ridge regression (iRR), 

which is specifically designed to overcome multi-collinearity among predictors (Crisp 

et al, 1998). Similar to ordinary least-squares multiple linear regression, in RR, all 

indices are utilized as independent predictors to form linear combination estimations 

of the environmental parameter of interest. However, a ridge parameter “beta”, β is 

introduced to reduce multiconllinearity and redundancy among available chemical 

information. A detailed description of RR calculations and their interpretation are 

provided by Basak et al (2003). All RR calculations were performed using Matlab 

(Mathworks Inc., Version 7.0). 

 

3.2.3 Similarity Computation, Property Estimation, and Internal Validation.  

The same procedure was performed according to Chapter 2, Section 2.2.3. 
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3.2.4 Selection of Nearest Neighbors, Property Estimation, and Model Validation. 

The same procedure was performed according to Chapter 2, Section 2.2.4. 

 

3.2.5 Measuring Kd for Three Selected Prioritization Compounds.  

Laboratory measurements were required to for external validation of the QMSA 

model generated in this study; i.e., to demonstrate that the model can make accurate 

Kd estimations for compounds not included in its training set. Metformin, fluconazole 

and benazepril were chosen as the test chemicals since they appear to be among top 

200 most prescribed pharmaceuticals in US (www.pharmacytimes.com) but none of 

their Kd have been reported before. Experimental procedures are summarized in the 

following paragraphs. 

3.2.5.1 Materials and Chemical Reagents.  

12 L Wastewater samples were collected from the secondary aerations basins at 

the Charlottesville WWTP. Samples were then transferred into three 4-L Erlenmeyer 

flasks after immediately transported to the laboratory. A synthetic wastewater solution 

(Ottmar, 2010) was then pumped into each reactor at approximately 1.5 mL/min. The 

composition of synthetic wastewater stock solution was adopted from Pholchan et al. 

(2008). The outlets of all three flasks were connected to a 10-L bucket, to collect 

overflow from each reactor. All outflow (effluent and sludge) collected during the 

first month was discarded, to ensure that all sludge used for sorption experiments was 
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initially drug-free. The outflow was also examined by HPLC to ensure no relevant 

chemicals can be detected. Sludge samples for use in each sorption experiment were 

collected from the reactors after measurement of total suspended solids (TSS) 

according to Standard Method 2540D (Eaton, 1995). Sludge samples were then 

autoclaved at 120 °C for 30 min and dosing with 2% (w/v) sodium azide to 

completely inactivate biological activity. The selected drug compounds were 

purchased from Fisher Scientific, Inc. Stock solutions were prepared by dilution in 

deionized water (DI) generated by NANOpure ultrapure water system (USA).  

3.2.5.2 Kinetic Batch Experiments.  

Preliminary batch kinetic experiments were performed to estimate equilibrium 

time for sorption of each test compounds onto WWTP. These preliminary 

experiments were also helpful for determining what amount of sludge should be used 

for Kd measurement experiments. For each test compound, three 15-mL glass 

centrifuge tubes were used as batch reactors. Each reactor received 5 mL of 

compound stock solution plus enough sludge solution to completely fill the test tube 

(~10 mL). The resulting concentration of the test compound was 500 µg/L. Sludge 

concentrations were 3.2 g/L, 3.0 g/L, and 6.5 g/L for metformin, fluconazole, and 

benazepril, respectively. Two types of controls were also: a positive control, 

comprising only compound stock solution and DI in each tube, without WWTP 

solids; and a negative control, comprising only autoclaved sludge solution and DI in 

each tube, without test compound. All controls were prepared in duplicate. pH was 
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monitored throughout the experimental in all samples and controls for all three test 

compounds. All measurements were roughly 7.0. 

All centrifuge tubes were sealed with Teflon-lined caps and transferred into a 

rotating horizontal shaker for incubation at 20 ºC. Samples were then collected at 

pre-determined times. For metformin, these times were t = 30 min, 5 h, 9 h, 20 h, 80 h, 

120 h, and 288 h. For fluconazole, sampling times were t = 20 min, 5 h, 72 h, 120 h, 

and 150h. For benazepril, sampling times were t = 20 min, 3 h, 26 h, 96 h, and 168 h. 

For each sampling time, the three tubes were removed from the shaker and 

centrifuged at 3,500 rpm for 30 min at the incubation temperature. 600-µL aliquots of 

supernatant were then collected from each tube using a 1-mL syringe and passed 

through a 0.1-µm syringe filter (Millipore Inc.) to remove particulates. Approximately 

200 µL of filtered supernatant was then transferred into glass vials containing 200-µL 

vial inserts. Following each sample collection, the centrifuged reactors were mixed to 

resuspend the autoclaved sludge. They were then returned to the incubating shaker 

until the next sampling interval.  

3.2.5.3 Equilibrium Batch Sorption Isotherm Experiments.  

Equilibrium batch isotherm experiments were designed for each test compound 

on the basis of preliminary results from the kinetic batch experiments. In order to 

obtain sorption isotherms, a series of concentrations was prepared to investigate 

sorption behaviors with different chemical concentration. For metformin, a series of 

eight solutions was created in DI water: 100, 200, 500, 1,000, 2,000, 5,000, 8,000, and 
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10,000 µg/L. For both fluconazole and benazepril, a series of seven solutions was 

created in DI water: 100, 200, 500, 1,000, 2,000, 5,000, and 10,000 µg/L. For each 

concentration, certain volume of chemcial was then loaded into triplicate 15-mL glass 

centrifuge tubes. Roughly 1 mL of autoclaved sludge solution followed by dosed with 

3.0 mg/L sodium azide was also added to each tube, such that the final solids 

concentrations in each experiment were 5.1 g/L for metformin, 5.0 g/L for fluconazle, 

and 6.8 g/L for benazepril, All tubes were then incubated on a rotating shaker at 20 ºC 

for 7 d. Afterwards, all tubes were centrifuged and filtered using the same protocol 

referenced above. Drug concentrations were then analyzed via high pressure liquid 

chromatography (HPLC).  

3.2.5.4 HPLC Measurement.  

Drug concentrations were analyzed using a Shimadzu LC-20AB high 

performance liquid chromatograph (HPLC) with a diode array detector (DAD) set to 

232 nm. Fluconazole and benazepril were analyzed by using the Agilent 1100 series 

HPLC with a DAD set to 210 nm and 235 nm, respectively. An Agilent (Santa Clara, 

CA) C-18 column was used for all of three compounds for chromatographic 

separation. Mobile phase was a mixture of buffer solution and acetonitrile (ACN). 

The buffer solutions used for analysis were 0.01 M sodium phosphate diabasic + 0.01 

sodium dodecyl sulfate, adjusted to pH of 7, 0.01 M potassium phosphate monabaic, 

adjusted to pH 7, and 0.01 M sodium phosphate monabasic for metformin, 

fluconazole, and benazepril, respectively. Gradient methods were used for these three 

compounds. The detailed gradient procedure is listed in Table 3.1 – 3.3. Injection 



 

51 

 

volume was set to 50 µL for all of three compounds. The retention times and detection 

limits for metformin, fluconzole, and benazepril were 18.8 min and 20 µg/ L, 19.0 

min and 40 µg/L, and 20.4 and 40 µg/L, respectively. 

Table 3.1. HPLC mobile phase gradient for analysis of metformin 

Time (min) Flow rate (mL/min) Buffer percentage ACN percentage 

0-12 2.00 82 18 

12-22 2.00 Linear decrease Linear increase 

22 2.00 73 27 

22-23 2.00 Linear increase Linear decrease 

23 2.00 82 18 

23-25 2.00 82 18 

 

 

Table 3.2. HPLC mobile phase gradient or analysis of fluconazole 

Time (min) Flow rate (mL/min) Buffer percentage ACN percentage 

0-2 0.45 95 5 

2-24 0.45 Linear decrease Linear increase 

24 0.45 50 50 

24-29 0.45 Linear increase Linear decrease 

29 0.45 95 5 

29-35 0.45 95 5 

 

Table 3.3. HPLC mobile phase gradient or analysis of benazepril 

Time (min) Flow rate (mL/min) Buffer percentage ACN percentage 

0-8 0.40 83 17 

8-24 0.40 Linear decrease Linear increase 

24 0.40 43 57 

24-27 0.40 Linear increase Linear decrease 

27 0.40 83 17 

27-35 0.40 83 17 
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3.3 Results and Discussion 

As discussed before, the main objective of this study is to demonstrate the 

usefulness of QMSA on estimation of one of the most significant engineering 

property for emerging contaminants in WWTPs, i.e, sorption distribution coefficient. 

To achieve this goal, internal validation was first performed to test if QMSA is 

statistical significant for Kd dataset. After that, Kd of three chemical were measured 

and compared with the estimated values by QMSA to make sure QMSA is able to 

accurately estimate external chemicals. Finally, a list of estimated Kd values of all 303 

chemicals was generated by QMSA to provide reference of Kd for other unmeasured 

chemicals. 

 

3.3.1 Indices Selection for Development of PCA, iPCA, and iRR QMSA Models.  

PCA models use PCs to construct similarity measurement. The PCs are the 

composite “descriptors” formed via linear combinations of all available indices. 

Although they have advantages on incorporating as much useful information as 

possible from a large number of molecular descriptors, the PCs themselves are usually 

complex and present a “black box” for people who are trying to understand it. 

Compared to PCA models, iPCA and iRR only extract a very small number of 

molecular descriptors to construct similarity measurement, which can be potentially 

convenient to understand significant molecular descriptors and molecular structural 

characteristics responsible for accurate prediction of the property of interest. 
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Table 3.4. Indices generated from iPCA and RR data reduction for the Kd dataset. PCA-selected 

indices were used to construct both PCA and iPCA QMSA models for Kd dataset. RR-selected 

indices were used to construct iRR QMSA models for Kd dataset. Each set of descriptors 

comprises the only chemical information required to generate a QMSA model for Kd dataset. 

iPCA  RR  

dX0 Xvp10 

dXvp3 Xc4 

mulrad Xch5 

ishape Xch6 

Pf Xvc4 

WT Xvch5 

Redundancy* Xvch6 

Qsv dX1 

Qv dXv0 

nwHBa knotp 

etyp12 knotpv 

etyp33 IDCbar 

n2Pag11 IDWbar 

n2Pag12 totop 

n4Pae12 Redundancy* 

nHCsatu SssCH2* 

naasC SsssCH 

SssCH2* SssssC 

*  Single asterisks denote which two indices were selected by both iPCA and iRR approaches for use 

in QMSA modeling to predict Kd. 

 

For the Kd dataset, 18 statistically significant PCs were selected for PCA QMSA 

modeling, and 18 top-correlated indices were retained for iPCA QMSA modeling. 

Ridge regression was also applied to the same 193 indices. The 18 most-influential 

indices were retained for iRR QMSA to predict Kd. 

Table 3.4 summarizes the list of indices (molecular descriptors) selected for use 

in both types of iPCA QMSA models and also the ridge regression (iRR) QMSA 
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model. From Table 3.4, use of the iPCA or iRR indices selection approaches resulted 

in highly distinct sets of molecular descriptors for the same dataset. There were two 

common indices (SssCH2 and Redundancy) among the lists of 18 indices selected by 

iPCA and iRR. It should be noted that ridge regression was usually considered as a 

tailored QMSA model since it selected molecular descriptors by taking the target 

properties into account (Basak et al., 2009). Therefore molecular descriptors selected 

by RR should have some connections with the target properties, i.e. Kd in this case. 

The most influential descriptor selected by iRR was SssCH2, which is the sum of 

E-States for methylenes of a molecular. Surprisingly many authors also reported this 

type of indices had considerable contribution on QSAR model development and were 

very useful in evaluating molecular similarity (Hall, 1995). In contrast, iPCA models 

only gave a rank of 16
th

 for SssCH2 out of 18 top correlated molecular descriptors. 

That probably because iPCA models extract molecular descriptors from the overall 

structural characteristics of all molecules but iRR will only extract those related to the 

target property. 

 

3.3.2 Internal Validation of PCA, iPCA, and iRR QMSA Models.  

As noted in Section 3.2.4, leave-one-out (LOO) validation was performed for 

each type of QMSA modeling for Kd dataset. The results from these experiments are 

presented in Figure 3.1. All three models exhibit excellent predictive abilities. In all 

three cases, highest validation coefficient (q
2
), highest correlation coefficient (R), and 

lowest SPRESS were achieved for k = 1 nearest neighbor. Usually q
2
 above 0.5 is 
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considered as a proof of highly predictive model (Golbraikh and Tropsha, 2002). 

Based on this criteria, tt can be seen that our q
2
 for three models are generally very 

good for most of k. SPRESS is the standard prediction residual error sum of squares, 

such that smaller values of this parameter are indicative of better model accuracy. As 

k increases, q
2
 and R decrease while SPRESS increases. All three changes are statistical 

indications of decreased predictive accuracy when larger numbers of nearest 

neighbors are used to make parameter predictions.  

To reiterate from the previous paragraph, all QMSA models for the Kd exhibit 

excellent accuracy. The observed magnitudes of q
2
, R and SPRESS are comparable to 

the best reported literature values for similar types of predictive models (Asikainen et 

al, 2004; Waller 2004). In particular, the k = 1 PCA modeling approach seems to 

outperform all other models (k = ≥ 2, iPCA or iRR). It possesses the highest values of 

q
2
 (0.82), and R (0.91), and lowest SPRESS (0.41) among all three models. The second 

powerful models are iRR models. They generated the highest q
2
 as 0.82 and lowest 

SPRESS as 0.42, which is a little bit bigger than that of PCA models, when k = 1.  

Similar to results in Chapter 2, PCA models seem most powerful of the three 

data reduction strategies evaluated in this study. In general this is perhaps because the 

incorporate the most chemical information, employing all principal components with 

eigenvalues equal or greater than 1. In contrast, iPCA and iRR models only retain a 

small portion of the available indices and therefore may be missing some important 

similarity information. However, in this study, the performance of iRR models seems 

to be comparable to PCA models even though they only used 18 individual molecular 
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descriptors to construct the similarity measurement. Meanwhile iRR models are much 

simpler than PCA models and therefore 18 molecular descriptors selected by iRR 

models will have much more direct relationship with Kd. Notably, iRR models seem 

to be more powerful than their corresponding iPCA models. This is consistent with 

reports by other authors (Gute and Basak, 2006).  
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Figure 3.1. LOO validation statistics for three indices selection approaches (PCA, iPCA, and iRR) 

in QMSA modeling of sorption distribution coeffient (Kd). From top, statistics are q
2
, R, and 

SPRESS. 
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3.3.3 Measurement of Kd of three chemicals.  

The other hypothesis of this study is as follows: QMSA models can be used to 

predict Kd of chemicals which have never been measured before. To test it, we need to 

measure Kd of selected chemicals and compare the measured Kd and predicted Kd. 

Therefore sorption coefficient Kd were measured for three test chemicals (metformin, 

fluconazole, and benazepril) in order to externally validate the accuracy of QMSA 

models for this parameter. This process is called external validation sometimes as in 

comparison to the internal validation we performed before.  External validation is 

generally recommended for evaluation of QMSA (and other statistical modeling) 

predictions because it assesses the extent to which predictions can be accurately made 

for chemicals which were not part of the original training dataset.  

Figure 3.2 – 3.4 show the results of Kd measurement of three chemicals. Figure 

3.2A, 3.3A, and 3.4A depict the kinetic “pre-experiments”, which were required to 

determine equilibrium time for sorption of three chemicals and also to assess what 

quantity of WWTP sludge is required to remove an appreciable (but not overly large) 

fraction of the starting metformin concentration (C0). The duration of these 

“pre-experiments” were 288 h, 150 h, and 168 h for metformin, fluconazole, and 

benazepril, respectively. As evident from Figure 5.2A, 5.3A, and 5.4A, aqueous-phase 

concentration of three chemicals decreased over time. Results from positive controls 

(chemical + DI water without sludge; data not shown) suggest that this removal 

corresponds to sorption of the met onto the sludge since there were no reductions of 

chemical concentration in the absence of the sorbent. It also can be concluded that 
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metformin and benazepril reached their sorption equilibrium within 48 h, which were 

much quicker than fluconazole did. Fluconzole had a slow sorption rate. It reached its 

equilibrium after 120 h approximately. 

According to previous research, the sorption kinetic can be described by the two 

site equilibrium/kinetic model as the following equation (Ottmar et al., 2010; Casey et 

al. 2003; Culver et al. 1997): 

               
���6 = !'���7(�!'���(� + (1 − !'���7(�!'���(� ) × 9(: ;<=��>�;<=��?>�@�)         (3.1) 

Where f is the fraction of equilibrium sites and A is the mass-transfer-rate coefficient. 

Measured metformin concentration (Ce) as a function of time (t) was fit to the 

exponential decay curve corresponding to Eq. 3.2: 

                            
���6 = 0.87 + 0.14 × 9:G.H!!�               (3.2) 

Similar procedures fit to fluconazole and benazepril data, we have fluconazole 

and benazepril as Eq. 3.3 and 3.4, respectively: 

                        
���6 = 0.76 + 0.24 × 9:G.G!K�               (3.3) 

                        
���6 = 0.83 + 0.17 × 9:G.GMK�               (3.4) 

The regression coefficient (R
2
) for these fits of Eq. 3.2, 3.3, and 3.4 were 0.96, 0.99, 

and 0.97, respectively, indicating very good agreement between the sorption kinetic 

model and our measurement. By looking at the graphs directly, the slope approaches 

zero at approximately 50 h, 100 h, and 120 h for metformin, fluconazole, and 
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benazepril, respectively. To be more conservative, 120 h, i.e. 5 days was chosen as the 

equilibrium time for the all three chemicals’ isotherm experiments designed to 

measure their Kd.  

HPLC measurements provided equilibrium aqueous-phase metformin 

concentrations for each concentration. The mass of chemicals sorbed onto WWTP 

sludge (Ms, µg) was computed by subtraction of the equilibrium aqueous-phase 

concentration (Ce, µg/L) from each initial metformin concentration (C0, µg/L) and 

multiplication by tube volume (V = 15 mL). Therefore, Ms can be written as:  

                          			O� = (�G − ��) × P                    (3.5) 

This value was then divided by the known mass of sludge in each tube, to compute 

sorbed-phase metformin concentrations (S, µg/kg sorbent).  

S values were plotted as a function of equilibrium aqueous-phase concentration 

(Ce) for comparison with the Freundlich adsorption isotherm equation (Eq. 3.6).  

                             Q = ��0                         (3.6)	
Plots are depicted in Figure 3.2B, 3.3B, and 3.4B, wherein the regression curves are 

all linear (i.e., n = 0.95, 1.01, 1.05 with R
2
 = 0.96, 0.99, and 0.99 for metformin, 

fluconazole, and benazepril, respectively). Thus, K is defined as the distribution 

coefficient (Kd). Notably, Figure 3.2B, 3.3B, and 3.4B exhibit very good linearity, 

such that the magnitudes of R
2
 are as high as some of the best R

2
 values reported in 

the literature. The resulting slopes were taken as Kd value for metformin, fluconazole, 
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and benazepril as 48.6 L/kg, 65.8 L/kg, 32.6 L/kg, respectively. Kd values of three 

chemicals would be considered as low since the mean and median values of our 80 Kd 

dataset are 1495 L/kg and 105 L/kg, respectively. It can be expected that removal of 

three chemicals via sorption in wastewater treatment plants will be less significant 

than other emerging contaminants we know. 

Figure 3.2. At left (4A), metformin concentration as a function of time during interaction with 

WWTP solids, for determination of equilibrium time. Dash line represents positive control change 

over time. At right (4B), sorbed-phase metformin concentration as a function of equilibrium 

aqueous-phase metformin concentration for determination of Kd. 

Figure 3.3. At left (5A), fluconazole concentration as a function of time during interaction with 

WWTP solids, for determination of equilibrium time. Dash line represents positive control change 

over time. At right (5B), sorbed-phase fluconazole concentration as a function of equilibrium 

aqueous-phase fluconazole concentration for determination of Kd. 
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Figure 3.4. At left (6A), benazepril concentration as a function of time during interaction with 

WWTP solids, for determination of equilibrium time. Dash line represents positive control change 

over time. At right (6B), sorbed-phase benazepril concentration as a function of equilibrium 

aqueous-phase benazepril concentration for determination of Kd. 

 

Measured Kd of three chemicals also allow us to back calculate the 

sorption-kinetic parameters, i.e. f and A. Table 3.5 summarized the calculated f and A 

for three chemicals. Calculated values of A for three chemicals suggested that they 

have relatively low sorption behaviors in wastewater compared to other rapid-sorption 

emerging contaminants (Ottmar et al., 2010). There seems no difference among 

values of f of three chemicals. That is probably because the same wastewater was 

used for all of three chemicals. 

The low sorption extents (small Kd values) and slow sorption rates (small A 

values) of three studied chemicals will potentially make these chemicals very difficult 

removed within WWTPs by sorption processes. Then consider a scenario happened in 

a typical WWTP in United States with the average primary solid concentration around 
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1.4%, 1.9%, and 0.9% of total will adsorb onto the sludge. Therefore sorption process 

can only contribute little to remove these chemicals in WWTPs. 

Table 3.5. Calculated kinetic sorption parameters for three chemicals. 

Chemical f R (h-1) Kd (L/kg) 

Metformin 0.03 0.27 48.6 

Fluconazole 0.04 0.01 65.8 

Benazepril 0.03 0.05 32.6 

 

3.3.4 Comparison between measured and predicted Kd of three chemicals.  

Table 3.5 – 3.13 summarizes Kd predictions for three chemicals as computed 

using PCA, iPCA, and iRR indices selection. These predictions were computed using 

k = 1 – 5 measured nearest neighbors, and resulting values compared to the measured 

value from the laboratory experiments summarized above. To predict the Kd of three 

chemicals, the arithmetic averages of Kd of its nearest neighbors were taken as the 

predicted values when k > 1.  

For metformin (Table 3.5 – 3.7), all of three types of QMSA models yield the 

excellent predictions. Especially for PCA and iRR models, their predictions were 

good enough even when k greater than 1. iPCA seems to be the least effective among 

three types of models. That is because it selected the second measured nearest 

neighbor which has a measured Kd (331.0 L/kg) greatly bigger than Kd of metfmorin. 

However, for k = 3 – 5. iPCA did make reasonable predictions. From the first five 

measured nearest neighbors provided by three types of models, we concluded that the 

PCA and iRR shared two same nearest neighbors out of five. Actually both PCA and 
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iRR assigned 2,4-Dichlorophenol as the most nearest neighbor for metformin. Kd of 

2,4-Dichlorophenol in wastewater were reported as 41.0 L/kg (Severtson and 

Banerjee, 1996) and 49.0 L/kg (Kennedy at al., 1992), compared to Kd of metformin 

as 48.6 L/kg measured in this study. Once again, similar to the results of internal 

validation, performance of iRR was comparable to PCA even though it only used 18 

molecular descriptors. 

For fluconazole (Table 3.8 – 3.10), the general predictive performances of three 

types of models were also excellent. Although the predicted Kd made by PCA and 

iRR are generally 1 – 3 times greater than measured one in this study, they are still in 

the same order of magnititude. In general performance of PCA (k = 1- 3) and iRR (k = 

1- 5) would be acceptable. iPCA did the best predictions for fluconazole. Kd of all of 

the first five measured nearest neighbors selected by iPCA are very close to measured 

Kd of fluconazole. Especially for k =1 iPCA, it predicted Kd of fluconazole as 65.5 

L/kg (Diclofenac) (Carballa et al., 2008) compared to 65.8 L/kg measured in this 

study.  

For benzepril (Table 3.11 – 3.13), the general predictive performances of three 

models were the least accurate among three chemicals. Only PCA (k = 1) did the 

excellent prediction of 27.0 L/kg (warfarin) (Barron et al., 2009) compared to 32.6 

L/kg measured in this study. The nearest measured neighbor for benazepril is warfarin 

as indicated by PCA. Warfarin was also selected by iPCA and iRR. However it is not 

the nearest measured one in iPCA and iRR. 
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The reasons why predictive performances of QMSA varied so much for three 

chemicals are probably as follow: 1) the relative similarity between measured 

neighbors and the target chemicals. In QMSA, the relative similarity was evaluated by 

ED. All the EDs between three target chemicals and their measured nearest neighbors 

were listed in Table 3.5 – 3.13. For all predictions, PCA models usually have the 

largest EDs and iRR models have the smallest EDs when evaluating the similarity 

between the same target chemical and its neighbors. This is because PCA took linear 

combinations of all 193 descriptors but iPCA and iRR only took 18 descriptors to 

establish the similarity space. It is interesting that iRR seems to have a much smaller 

ED measurement compared to iPCA even though both of them selected 18 molecular 

descriptors from 193. To determine how similar between two chemicals, only one 

type of QMSA models should be evaluated. For instance, the first measured nearest 

neighbor for metformin is 2,4-Dichlorophenol, which has an ED to metformin as 0.13 

calculated by PCA. However, the first measured nearest neighbors for fluconazole 

and benazepril are furosemide and warfarin, respectively. The corresponding EDs to 

the target chemicals are 0.17 and 0.24 for fluconazole and benazepril, respectively. 

Therefore benazepril actually does not have the measured similar enough neighbor as 

metformin did in our current dataset. That probably explained why we have excellent 

predictions for metformin, but only the acceptable predictions for benazepril. 2) the 

experimental condition difference between literatures and this study. Kd would be 

greatly affected by experimental conditions, such as pH and temperature. It would be 

ideal to make predictions for Kd of three chemicals by using the literature data 
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measured under the similar conditions as this study. In this study, experiments were 

performed at pH of 7 and temperature of 20 ºC. For metformin, its first measured 

nearest neighbor was identified as 2,4-Dichlorophenol by PCA and iRR. Interestingly 

two reported Kd values of 2,4-Dichlorophenol in wastewater were 41.0 L/kg and 49.0 

L/kg in literatures, which were measured under pH 7 and 7.5, respectively. For 

fluconazole, its first measured nearest neighbor was identified as furosemide, 

diclofenac, and citalopram by PCA, iPCA, and iRR, respectively. No pH and 

temperature data can be found for furosemide (Stuer-Lauridsen et al., 2000). The pH 

for measuring diclofenac and citalopram were reported as approximately 6.5 (Carballa 

et al., 2008; Barron et al., 2009). Therefore they may not serve the better candidates 

for fluconazole as 2,4-Dichlorophenol did for metformin. 

 

 

Table 3.5. PCA Model predictions for metformin Kd based on its first five measured nearest 

neighbors. The laboratory-measured Kd value was 48.6 L/kg. ED is the Euclidean distance, which 

denotes the distance between metformin and its neighbor in similarity space. Note when k = 1, the 

predicted value was obtained by using its first nearest neighbor’s Kd directly. 

k Nearest neighbor with known Kd ED Literature reported Kd Predicted Kd 

1 2,4-Dichlorophenol 0.13 45.0 45.0 

2 Paracetamol 0.15 19.0 32.0 

3 APAP(Acetaminophen) 0.15 0.4 21.5 

4 3,4-Dichlorophenol 0.16 96.0 40.1 

5 4-Chlorophenol 0.18 18.0 35.7 
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Table 3.6. iPCA Model predictions for metformin Kd based on its first five measured nearest 

neighbors. The laboratory-measured Kd value was 48.6 L/kg. ED is the Euclidean distance, which 

denotes the distance between metformin and its neighbor in the similarity space. Note when k = 1, 

the predicted value was obtained by using its first nearest neighbor’s Kd directly. 

k Nearest neighbor with known Kd ED Literature reported Kd Predicted Kd 

1 Atenolol 0.06 37.7 37.7 

2 Propranolol 0.07 331.0 184.3 

3 Salicylic acid 0.07 23.0 130.6 

4 Tramadol 0.08 47.0 109.7 

5 2,4-Dichlorophenol 0.08 41.0 95.9 

 

Table 3.7. iRR Model predictions for metformin Kd based on its first five measured nearest 

neighbors. The laboratory-measured Kd value was 48.6 L/kg. ED is the Euclidean distance, which 

denotes the distance between metformin and its neighbor in the similarity space. Note when k = 1, 

the predicted value was obtained by using its first nearest neighbor’s Kd directly. 

k Nearest neighbor with known Kd ED Literature reported Kd Predicted Kd 

1 2,4-Dichlorophenol 0.01 45.0 45.0 

2 3,4-Dichlorophenol 0.01 96.0 70.5 

3 4-Chlorophenol 0.01 18.0 53.0 

4 Paracetamol 0.01 19.0 44.5 

5 APAP(Acetaminophen) 0.01 0.4 35.7 

 

Table 3.8. PCA Model predictions for fluconazole Kd based on its first five measured nearest 

neighbors. The laboratory-measured Kd value was 65.8 L/kg. ED is the Euclidean distance, which 

denotes the distance between fluconazole and its neighbor in the similarity space. Note when k = 1, 

the predicted value was obtained by using its first nearest neighbor’s Kd directly. 

k Nearest neighbor with known Kd ED Literature reported Kd Predicted Kd 

1 Furosemide 0.17 158.0 158.0 

2 Diclofenac 0.18 65.5 111.8 

3 Oxazepam 0.20 13.0 78.8 

4 Triclocarban 0.20 2754.0 747.6 

5 Nordiazepam 0.21 65.0 611.1 
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Table 3.9. iPCA Model predictions for fluconazole Kd based on its first five measured nearest 

neighbors. The laboratory-measured Kd value was 65.8 L/kg. ED is the Euclidean distance, which 

denotes the distance between metformin and its neighbor in the similarity space. Note when k = 1, 

the predicted value was obtained by using its first nearest neighbor’s Kd directly. 

k Nearest neighbor with known Kd ED Literature reported Kd Predicted Kd 

1 Diclofenac 0.06 65.5 65.5 

2 2,4-Dichlorophenol 0.07 41.0 53.3 

3 Salicylic acid 0.07 23.0 43.2 

4 3,4-Dichlorophenol 0.07 96.0 56.4 

5 Flurbiprofen 0.07 65.0 58.1 

 

Table 3.10. iRR Model predictions for fluconazole Kd based on its first five measured nearest 

neighbors. The laboratory-measured Kd value was 65.8 L/kg. ED is the Euclidean distance, which 

denotes the distance between fluconazole and its neighbor in the similarity space. Note when k = 1, 

the predicted value was obtained by using its first nearest neighbor’s Kd directly. 

k Nearest neighbor with known Kd ED Literature reported Kd Predicted Kd 

1 Citalopram 0.02 282.0 282.0 

2 Furosemide 0.02 158.0 220.0 

3 Sulfamethoxazole 0.02 155.5 198.5 

4 Indomethacin 0.02 121.0 179.1 

5 Nifedipine 0.03 27.0 148.7 

 

Table 3.11. PCA Model predictions for benazepril Kd based on its first five measured nearest 

neighbors. The laboratory-measured Kd value was 32.6 L/kg. ED is the Euclidean distance, which 

denotes the distance between benazepril and its neighbor in the similarity space. Note when k = 1, 

the predicted value was obtained by using its first nearest neighbor’s Kd directly. 

k Nearest neighbor with known Kd ED Literature reported Kd Predicted Kd 

1 Warfarin 0.24 27.0 27.0 

2 Permethrin 0.24 5150.0 2588.5 

3 Glibenclamide 0.24 239.0 1805.3 

4 Indomethacin 0.27 121.0 1384.3 

5 Ciprofloxacin HCl 0.27 471.0 1201.6 
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Table 3.12. iPCA Model predictions for benazepril Kd based on its first five measured nearest 

neighbors. The laboratory-measured Kd value was 32.6 L/kg. ED is the Euclidean distance, which 

denotes the distance between benazepril and its neighbor in the similarity space. Note when k = 1, 

the predicted value was obtained by using its first nearest neighbor’s Kd directly. 

k Nearest neighbor with known Kd ED Literature reported Kd Predicted Kd 

1 Permethrin 0.08 5150.0 5150.0 

2 Warfarin 0.08 27.0 2588.5 

3 Nortriptyline 0.08 600.0 1925.7 

4 Simvastatin 0.08 866.5 1660.9 

5 Amitriptyline 0.09 1049.0 1538.5 

 

Table 3.13. iRR Model predictions for benazepril Kd based on its first five measured nearest 

neighbors. The laboratory-measured Kd value was 32.6 L/kg. ED is the Euclidean distance, which 

denotes the distance between benazepril and its neighbor in the similarity space. Note when k = 1, 

the predicted value was obtained by using its first nearest neighbor’s Kd directly. 

k Nearest neighbor with known Kd ED Literature reported Kd Predicted Kd 

1 Ciprofloxacin HCl 0.02 471.0 471.0 

2 Indomethacin 0.02 121.0 296.0 

3 Warfarin 0.02 27.0 206.3 

4 Glibenclamide 0.02 239.0 214.5 

5 Loratidine 0.02 3321.0 835.8 

 

3.3.5 Importance of ED on QMSA prediction accuracy 

In order to identify the significance of ED values on QMSA estimation accuracy, 

the following test was performed. In this test, a threshold for ED was manually setup. 

For each target chemical, all its nearest neighbors with EDs less than or equal to the 

threshold were retained and considered as the neighbors used to estimate the Kd of this 

chemical. For target chemicals which don’t have any nearest measured neighbors with 

ED less than or equal to the threshold, their first nearest neighbors were used for 

estimation. This process was done for all of 80 measured chemicals (77 from 
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literatures and 3 from this study) for 80 times to calculate the internal validation 

coefficient q
2
. A range of thresholds values from 0.03 to 0.20 was examined to find 

out the effects of thresholds on models’ accuracy. The results were presented in 

Figure 5.5. It can be concluded that q
2
 decreases with increasing threshold values of 

q
2
. This conclusion is obviously reasonable since smaller ED threshold means 

neighbors selected for each target chemical in the dataset are more similar to the 

target chemical. However, in the real situation, since many chemicals usually don’t 

have one or more measured neighbors with very small EDs, the threshold should 

therefore large enough to make sure every target chemical has at least one measured 

neighbor. From Figure 3.5, we recommend 0.13 as the ED threshold used to select 

nearest measured neighbors since q
2
 drops dramatically when threshold greater than 

0.13. 

 

Figure 3.5. Internal cross validation coefficients of Kd dataset with different thresholds of ED 
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3.3.6 Kd Estimations for Unmeasured Chemicals 

The final objective of this study is to provide estimated Kd values of other 

unmeasured chemicals. Therefore a “reliable” estimation list was provided for 63 

unmeasured chemicals. The “reliable” chemicals are defined as those which have 

measured nearest neighbors EDs of which to them are less than 0.13. For each 

unmeasured chemical, its first five nearest measured neighbors were first selected. 

Only those with ED less than 0.13 were retained for predictions. This list could 

provide reference Kd values for these 63 un measured chemicals. 
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Table 3.14. QMSA predictions of Kd of 63 chemicals 

Chemical No. Chemical Name Log (Predicted Kd) 

23 MDMA (N-Methyl-3,4-methylenedioxyamphetamine) 2.33 

34 Ranitidine 1.34 

41 Sulfapyridine 2.19 

43 Temazepam 1.44 

49 Hydrocodone 1.15 

66 Propoxyphene-N 3.71 

67 Lorazepam 1.19 

69 Clonazepam 1.35 

72 Metoprolol Succinate 1.34 

73 Cyclobenzaprine 2.46 

74 Gabapentin 1.36 

76 Citalopram HBR 2.45 

79 Lovastatin 2.94 

86 Allopurinol 1.65 

89 Clonidine 2.33 

90 Promethazine 3.27 

96 Glyburid 2.38 

103 Glipizide 2.38 

105 Metronidazole 1.28 

113 Mirtazapine 2.77 

126 Clotrimazl 3.91 
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132 Felodipine 1.43 

137 Methocarbamol 1.58 

140 Phenazopyridine HCl 2.65 

146 Aspirin 1.28 

154 Baclofen 1.55 

156 Phenobarbital 0.85 

171 Hydralazine 2.33 

172 Morphine Sulfate 1.08 

191 Clopidogrel 2.85 

192 Imipramine HCl 2.75 

194 Hydromorphone HCl 1.08 

196 Betaxolol 1.35 

230 2-Hydroxy benzo[a]pyrene 1.98 

232 3,4-Dichlorophenol 1.53 

235 4,4'-Dihydroxybenzophenone 1.26 

236 4,4'-Dihydroxybiphenyl 2.15 

238 4-(branched)-Nonylphenol 1.26 

239 4-Bromophenol 1.53 

240 4-Chloro-3,5-xylenol 1.67 

241 4-Chloro-3-methylphenol 1.37 

243 4-Ethylphenol 1.37 

245 4-Hydroxyacetophenone 1.28 

247 4-Methylphenol 1.56 

248 4-n-Butylphenol 1.28 
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251 4-n-Propylphenol 1.37 

252 4-sec-Butylphenol 1.28 

259 8-Hydroxy-3,4-dichlorodibenzofuran 1.56 

265 Daidzin 1.11 

270 Equol 2.03 

272 Ethyl 4-hydroxybenzoate 1.55 

274 Methyl 4-hydroxybenzoate 1.37 

275 n-Butyl 4-hydroxybenzoate 2.33 

276 n-Propyl 4-hydroxybenzoate 1.55 

280 2-Hydroxy-4-methoxybenzophenone 1.92 

281 2,2'-Dihydroxy-4-methoxybenzophenone 2.29 

282 2-Hydroxybenzophenone 1.94 

284 4-Hydroxybenzophenone 1.75 

288 2-Hydroxy-5-methylbenzophenone 2.13 

289 4-Hydroxy-4'-chlorobenzophenone 2.05 

291 2,2',3,4'-tetrachlorobiphenyl 1.83 

298 3-hydroxybenzo(k)fluoranthenes 1.98 

299 10-hydroxybenzo(e)pyrenes 1.98 
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3.4 Conclusions 

The results from this chapter provide important guidance related to the use of 

QMSA models for evaluation of significant environmental properties of the rapidly 

expanding number of emerging contaminants. First and foremost, this type of series of 

structural similarity models can accurately predict environmental information for 

large, highly diverse classes of chemical structures. This is proven by the excellent 

internal-validated q
2
 values achieved for prediction of this Kd dataset and good 

external prediction results for Kd of three emerging contaminants which have never 

been measured before. Thus, it seems likely that efficient use of accurate QMSA 

models could deemphasize the need for labor-intensive, time-consuming analytical 

measurements to support regulatory agendas related to emerging contaminants. 

Second, the key success to make accurate external predictions by QMSA models 

depends on the relative similarity between the target chemicals and its nearest 

neighbors which have been measured before. The most ideal candidate to make 

accurate predictions for the target chemicals requires not only it is adequately similar 

to the target chemicals but also its properties of interest have been measured under the 

similar experimental conditions as that for the target chemicals. However, QMSA can 

still give predictions for unmeasured target chemicals by using their next measured 

nearest neighbors and it can be expected the predictive accuracy will be enhanced 

when more and more similar chemicals’ property have been included. Finally, our 

measured Kd of three emerging contaminants also provided useful information of their 
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sorption behaviors in wastewater. It can be expected that the removal of three 

chemicals by sorption process in WWTPs would be negligible. 

The conclusions drawn from this chapter were made evident using Kd as a case 

study. Since this particular environmental endpoint is one of the most important 

parameters in WWTPs responsible for the removal of contaminants and it has been 

widely measured over the last twenty-five years, this study comprises a “retrospective” 

validation of QMSA prioritization using an existing, relatively rich data set. Future 

work will investigate the use of QMSA prioritization and subsequent formulation of 

prediction models for another significant environmental fate or behavior parameter in 

WWTPs that has been less widely studied than Kd; e.g. first-order biodegradation rate 

constants for prescription pharmaceuticals and personal care products. This property 

is more difficult to measure and measurements take more time and money. Therefore 

it is more desirable to get it by models. Additional work is also needed to figure out 

how to best-possible distribute different weight to different nearest neighbors based 

on their ED to the target chemicals such that prediction can be more accurate. In the 

following chapter, prediction of first-order biodegradation rate constants for these 

three chemicals made by QMSA will be examined to see if QMSA can predict this 

another important environmental engineering parameter responsible for removal of 

emerging contaminants in wastewater treatment plants.  
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Chapter 4 – Molecular Similarity Analysis as a Tool to Predict Biodegradation 

Rate Constants for Emerging Contaminants in Wastewater 

 

4.1 Introduction 

    In Chapter 3, we discussed the usefulness of QMSA to predict sorption 

distribution coefficient (Kd), an important environmental fate parameter, which can be 

used to predict removal of emerging contaminants in WWTPs. The internal accuracy 

of QMSA predictions for Kd was first examined by LOO, and the results indicated 

good internal accuracy, with q
2
 = 0.82. R = 0.91, and SPRESS as low as 0.41. External 

accuracy was then examined, by comparing newly measured Kd values for three 

emerging contaminants with their corresponding QMSA predictions. The results of 

this analysis show good consistency between measured values and QMSA-predicted 

values, especially for the PCA QMSA estimates.. Therefore, we demonstrated that 

QMSA can be used to accurately predict Kd.  

In Chapter 3, it was noted that sorption and biodegradation are the two most 

important removal mechanisms for most emerging contaminants (Focazio et al., 2008; 

Glassmeyer et al., 2005). As such, it is desirable to measure or predict critical sorption 

and biodegradation parameters to understand the fate and behavior of emerging 

contaminants during wastewater treatment. Chapter 3 focused on sorption distribution 

coefficient; this chapter will focus on estimation of biodegradation rate constants.  
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Biodegradation, for the purposes of this dissertation, refers to a series of 

biological processes mediated by microorganisms (bacteria and fungi) in a WWTP 

setting, to transform, and thereby, eliminate aqueous phase emerging contaminants 

(EUR 20418 EN/2). Generally, the microorganisms “degrade” the emerging 

contaminants, that is, they break them down into smaller molecules, which can be 

consumed by the microorganism to produce energy and cellular biomass. The cellular 

biomass, which constitutes the microorganism themselves, can be separated from the 

treated effluent by sedimentation (Johnson and Sumpter, 2001). Previous studies on 

the biodegradation of emerging contaminants during typical, aerobic activated sludge 

treatment indicate that the removal of these compounds is highly variable. Some 

compounds are significantly removed (Martin Ruel et al., 2012; Choubert et al., 2011), 

while others pass through largely or completely unchanged and are therefore widely 

detected in the natural water bodies (Kahle et al., 2008; Lapertot et al., 2006; Muñoz 

and Guieysee, 2006). 

Biodegradation has traditionally been described by two environmental 

engineering parameters: removal efficiency (Verlicchi et al., 2012), and 

biodegradation rate constant (Blair et al., 2013). Although removal efficiency, which 

encapsulates the difference in concentration between influent and effluent, as divided 

by either influent or effluent concentration, is more convenient to use, it is difficult to 

tell how much removal is caused by biodegradation alone. Furthermore, removal 

efficiency is highly correlated to WWTP operational parameters, such as hydraulic 

retention time (HRT), solids retention time (SRT), pH, temperature, etc (Verlicchi et 
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al., 2012). This makes it difficult to apply removal efficiencies values from one study 

in one WWTP to any other scenario. In contrast, biodegradation rate constant (kb) is a 

more generic parameter, which can be used to make biodegradation predictions in 

different WWTPs (Salgado et al., 2012; Thompson et al., 2011; Joss at al., 2006). As 

was discussed in Chapter 1, the very large (and increasing) number of emerging 

contaminants present in water systems makes it impractical to measure fate and 

behavior parameters for each individual compound; therefore, it is desirable to use 

numerical predictive tools, here QMSA, to estimate kb (Dickenson et al., 2010).  

Several recent studies have evaluated quantitative structure-activity relationship 

(QSAR) based prediction of kb for emerging contaminants in WWTPs (Dickenson et 

al., 2010; Blair et al., 2013). These studies formulated QSAR models based on U.S. 

EPA's EPI Suite-BIOWIN modeling software. However, no comprehensive validation 

was performed in these studies, and the results were believed to be conservative 

(Dickenson et al., 2010). Additionally, many studies show that predictions made by 

BIOWIN are generally inaccurate (Tunkel et al. 2000; Yu et al. 2006). For example, 

Yu et al. (2006) applied BIOWIN 5 and concluded that models generally under 

predicted the likelihood of the biodegradation of Pharmaceuticals and Personal Care 

Products (PPCPs) in their dataset. However, BIOWIN 1 and 2 generally over 

predicted their biodegradation likelihood. Finally, this study did not attempt to 

incorporate their estimates of kb into a larger WWTP mass balance model. Thus, the 

authors were unable to generate estimates of what typical effluent concentrations for 

these chemicals, even though this is nominally the goal of property estimation studies 
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for emerging contaminants (Salgado et al., 2012; Wick et al., 2009; Joss et al., 2006; 

Joss et al., 2005).  

This study has three objectives: 1) develop a QMSA model that generates 

accurate estimates of biodegradation rate constant (kb) for sludge-water systems 

simulating secondary treatment in a typical municipal WWTP; 2) provide external 

validation of the kB QMSA model by measuring pseudo first-order rate constants for 

three emerging contaminants which have never been measured before; and, 3) 

develop a simple mass balance model, incorporating Kd (from Chapter 3) and kb (from 

this Chapter) as well as key operational parametrs, to predict effluent concentrations 

of the three selected emerging contaminants in a typical, representative WWTP. 
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4.2 Experimental 

4.2.1 Data Sources 

Pseudo first-order biodegradation rate constants (kb) for 62 different chemicals 

were collected from literature sources: Majewsky et al. (2011), Li et al. (2010), Plosz 

et al. (2010), Suarez et al. (2010), Wick et al. (2009), Zeng et al. (2009), Maurer et al. 

(2007), Joss et al. (2006), Andreozzi et al. (2005), Urase et al. (2005) and Li et al. 

(2005). These studies report batch experiments using sludge-wastewater systems to 

mimic biodegradation process in WWTPs. In some instances, authors reported 

first-order biodegradation rate constants instead of pseudo-first order rate constants. 

For these date, the reported values were transformed to kb by dividing by the total 

suspended solid concentrations (TSS) used in each study. For chemicals which had 

multiple reported kb values, the arithmetic average of all reported values was used.  

 

4.2.2 Molecular Descriptors 

Molecular descriptors were computed using the procedure in Section 3.2.2. 

 

4.2.3 Similarity Computation, Property Estimation, and Internal Validation  

These calculations were performed according to the procedures in Section 3.2.3. 

 

4.2.4 Selection of Nearest Neighbors, Property Estimation, and Model Validation 
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These calculations were performed according to the procedures in Section 3.2.4. 

 

4.2.5 External Validation of the QMSA kb Model 

Laboratory experiments were used to measure kb values for three previously 

unmeasured emerging contaminants. This was done to provide external validation of 

the QMSA kb model, that is, to demonstrate that the model yields accurate kb 

estimates for compounds that were not included in its original training set. As 

discussed in Section 3.2.5, metformin, fluconazole, and benazepril were chosen as the 

test chemicals, because they are among top 200 most-prescribed pharmaceuticals in 

the US (www.pharmacytimes.com); 3) their kb values have been previously reported. 

Experimental procedures are summarized in the following paragraphs. 

4.2.5.1 Materials and Chemical Reagents. 

Necessary materials and chemical reagents are summarized in Section 3.2.5.1.  

4.2.5.2 Batch Experiments for Determination of kb 

Batch experiments were used to measure biodegradation rate constants for the 

three selected emerging contaminants. Seven 1000-mL erlenmeyer flasks were used 

as reactors. These seven reactors consisted of: three regular reactors, two sorption 

controls, and two positive controls. For the three regular reactors, each contained 500 

mL of a synthetic wastewater solution spiked with the target chemical. The detailed 

the recipe for the synthetic wastewater solution was obtained from Ottmar (2010). 
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The initial COD (chemical oxygen demand) of the synthetic wastewater was 1200 

mg/L, and the initial concentration of the target chemical was 1 mg/L. Activated 

sludge biomass, from separate reactors, was also added to each flask, initially at a 

concentration of 1 g/L as total suspended solids (TSS). The sorption controls had the 

same contents as the regular reactors; however, the sludge in the sorption controls was 

first autoclaved at 120 °C for 4 h and then dosed with 2% (w/v) sodium azide to 

completely inactivate biological activity. The positive controls contained the same 

synthetic wastewater and target chemical concentrations, but without any sludge 

biomass.. All seven reactors were sparged with air to maintain appropriate dissolved 

oxygen concentrations greater than 2-3 mg/L at all times. A magnetic bar was also 

used to ensure complete mixing in each reactor. All reactors were monitored for pH, 

dissolved oxygen, and temperature every two days. 

Timed sampling was performed to measure changes in the concentration of COD, 

TSS, and target emerging contaminant over time. For metformin, sampling times were 

t = 30 min, 6 h, 12 h, 21 h, 30 h, 42 h, 56 h, 66 h, 80 h, 104 h, and 134 h. For 

fluconazole, sampling times were t = 45 min, 6 h, 24.3 h, 49.5 h, 103.3 h, 144 h, and 

220 h. For benazepril, sampling times were t = 50 min, 3.5 h, 6.5 h, 13.5 h, 20.3 h, 

25.3 h, 41.5 h, 68.5 h, 95.5 h, 125.5 h, 147 h, and 219.5 h. Just before every sample 

was collected, make-up water (DI) was added to each reactor to compensate for 

evaporative losses. For each sampling time, a 5-mL aliquot was collected from each 

reactor. These were filtered through a pre-weighed 0.45-µm Whatman fiberglass filter, 

housed within a Buchner funnel system. The filters were used to measure TSS 
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concentration according to Standard Method 2540D (Eaton et al., 1995). Then, 0.1-1 

mL of each filtrate was transferred into a CHEMetrics COD reagent vial. These were 

used to measure COD concentration according to Standard Method 5220D. Another ~ 

2 mL of each filtrate was transferred into glass vials for measurement of the target 

chemical concentration using an Agilent Technologies 1200 Series high pressure 

liquid chromatography (HPLC) system. 

For the biodegradation experiments involving fluconazole and benazepril, 

approximately 2 mL of synthetic wastewater stock solution was added to each regular 

reactor every day to return the COD concentration to its initial value (1200 mg/L). 

This ensured that the sludge biomass always had an ample amounts of nutrients and 

energy source (i.e., COD). For the metformin biodegradation experiment, the 

re-dosing with synthetic wastewater stock was not performed. As such, the only COD 

available to the sludge biomass was that which was originally loaded into each reactor 

at time t=0. For all three experiments (metformin, fluconazole, and benazepril), 1 mL 

of a 20% (w/v) sodium azide solution was added to the sorption control daily, to 

maintain complete inactivation of biological activity. 

4.2.5.3 HPLC Measurement  

    HPLC procedures for measurement of each selected emerging contaminant 

(metformin, fluconazole, and benazepril) are summarized in Section 3.2.5.4. 

4.2.5.4 QMSA Predictions for the Selected External Validation Chemicals 
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The PCA, iPCA, and iRR QMSA procedures summarized in Section 3.2.2 were 

used to predict kb values for the three selected external validation compounds. 

4.2.5.5 Mass Balance Modeling of the External Validation Chemicals in a WWTP   

A mass balance model was used to predict the effluent concentrations of the 

selected external validation compounds in a typical municipal WWTP. Figure 4.1 

shows an illustration of this simple model. Sorption and biodegradation are presumed 

to be the principal removal mechanisms for emerging contaminants within the plant.  

 

 

Figure 4.1 The simple mass bass balance model for prediction three selected emerging 

contaminants’ effluent concentrations out of WWTPs. C0 is the influent concentration (µg/L); Ci is 

the effluent concentration from Primary Clarifier (µg/L); Ce is the effluent concentration from 

WWTPs (µg/L); Xss represents the suspended solid concentrations in wastewater (g/L); HRT 

represents hydraulic retention time (h) in aerobic basin. 

 

   For the simplified mass balance model, it is assumed that the sorption distribution 

coefficient and sludge biomass concentrations in primary and secondary treatment, 

where sorption occurs, are known, constant values. We also assume sorption is the 

Aerobic Basin & 
Secondary ClarifierPrimary ClarifierC0, Influent Ce, effluent

Removal Mechanism: 
Sorption

Kd , kb, Xss, HRT

Removal Mechanism: 
Sorption/Biodegradation

Kd , Xss

Ci
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only removal mechanism for emerging contaminants in Primary Clarifier and sorption 

reaches equilibrium instantaneously. From Section 3.3.3, sorption can thus be written 

as follow in Primary Clarifier: 

                           �G = (�+ + �+�����)                     (4.1) 

Here, Ci (µg/L) is aqueous phase concentration of the emerging contaminant out of 

the Primary Clarifier, and CiKdXss is the sorbed concentration on the sludge (µg/L). C0 

is the influent concentration of the emerging contaminant (µg/L). 

    It is assumed that sorption and biodegradation are the two dominate removal 

mechanisms in Aerobic Basin and Secondary Clarifier. The whole processes are 

divided into two parts, first sorption and then biodegradation. This is reasonable 

because many studies demonstrated that sorption is fast compared to biodegradation, 

(Ternes et al., 2004; Wang and Grady, 1995). The sorption happened in Aerobic 

Basin and Secondary Clarified can be expressed as follow: 

                   �+ = (�� + �������)                      (4.2) 

where, Ct (µg/L) is aqueous phase concentration of the emerging contaminant at time t, 

and CtKdXss is the sorbed concentration on the sludge (µg/L). Ci is the effluent 

concentration of the emerging contaminant out of Primary Clarifier (µg/L). 

Likewise, it is also assumed that the pseudo first-order biodegradation rate 

constant and TSS concentrations in secondary treatment, where biodegradation occurs, 
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are known, constant values. Thus, biodegradation can be expressed using the 

following pseudo first-order function: 

                           
��	�� = −� �����                       (4.3) 

Here, t is time (h), kb is a pseudo first-order biodegradation rate constant (L/(kg·h)), 

and Xss is the TSS concentration (kg/L). Ct is the concentration of each emerging 

contaminant at time t (µg/L). 

Substituting Eq 4.2 into Eq 4.3, we have: 

  
����� = − �S���!'(���� ��                     (4.4) 

    Then, integrating Eq 4.4, Eq 4.5 is obtained: 

  �� = �+9:��� TS=��;<>�=��                       (4.5) 

Substituting Eq 4.1 into Eq 4.5, we have: 

                  �� = �6(!'(����) 9:��� TS=��;<>�=��             (4.6) 

In above two equations, Ce is the effluent concentration of each emerging contaminant 

(µg/L), and HRT is the hydraulic retention time in the Secondary Treatment (Aerobic 

Basin and Secondary Clarifier) (h). 

Eq 4.6 is the simple mass balance model (SM) for prediction of effluent 

concentration of emerging contaminants in WWTPs. However, since many 

assumptions and simplifications are required for this model to hold, a more detailed 
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model was also used for comparison purposes. This complex model (CM) is based on 

Joss et al (2006). It has the following form: 

        	�� = �+ × !'(�,U���,U!'(�,����.� × !
(!'�)V�WXY TS=��,�(;<X)(;<>�=��,�):!Z' [;<>�,�\�](;<>�,�=��,�)

      (4.7) 

Here, Ci is the influent concentration (µg/L), Ce is the effluent concentration (µg/L), 

Kd,p is the primary sorption distribution coefficient (L/kg), Kd,s is the secondary 

sorption distribution coefficient (L/kg), Xss,p is the primary TSS concentration (kg/L), 

Xss,s is the secondary TSS concentration (kg/L), kb is the pseudo first-order 

biodegradation rate constant (L/ (kg·h)), HRT is the hydraulic retention time (h) in 

secondary treatment, R is the ratio of Qsludge recycle to Qwastewater volumetric flow rates 

(dimensionless), and Ps is the specific sludge production per volume of wastewater 

treated (kg/L). 

    To test if the SM and CM models can accurately predict the effluent 

concentrations of emerging contaminants, predictions from each model were 

compared to several literature sources which have measured the influent and effluent 

concentrations of metformin and fluconazole in WWTPS. These studies are: Benotti 

and Brownawell (2007); Kahle et al. (2008). However, no available influent/effluent 

data in literatures can be found for benazepril. 
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4.3 Results and Discussion 

In this chapter, the main objective is to demonstrate the usefulness of QMSA for 

prediction of a significant, fundamentaly engineering property, i.e, pseudo first-order 

biodegradation rate constant. Similar to Chapter 3, internal validation was first 

performed to test if the QMSA is internally accurate for the kb dataset. The, external 

validity was examined by comparing QMSA predictions with measured kb values that 

had heretofore not been measured.  

 

4.3.1 Indices Selection for Development of PCA, iPCA, and iRR QMSA Models 

For the kb dataset, 18 statistically significant PCs were selected for use in PCA 

QMSA modeling, and 18 top-correlated indices were retained for iPCA QMSA 

modeling. Ridge regression was also applied to the same 193 indices. The 18 

most-influential indices were retained for iRR QMSA to predict kb. Table 6.1 

summaries the sets of indices retained for QMSA models. 

From Table 4.1, and similar to the Kd dataset discussed in the last chapter, use of 

the iPCA or iRR indices selection approaches results in highly distinct sets of 

molecular descriptors for the same kb dataset. There were two indices (SssCH2 and Pf) 

that appeared on the lists for both iPCA and iRR.  
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Table 4.1. Indices generated from iPCA and iRR data reduction for the kb dataset. PCA-selected 

indices were used to construct both PCA and iPCA QMSA models. RR-selected indices were used 

to construct iRR QMSA models.  

iPCA  iRR  

dX0 nvx 

dXvp3 nedges 

mulrad molweight 

ishape nX0 

Pf* nX1 

WT dXv0 

Redundancy dXv1 

Qsv dXv2 

Qv knotp 

nwHBa knotpv 

etyp12 sumI 

etyp33 Pf* 

n2Pag11 IDWbar 

n2Pag12 Si 

n4Pae12 Gmax 

nHCsatu SssCH2* 

naasC SsssCH 

SssCH2* SssssC 

*  Single asterisks denote which two indices were selected by both iPCA and iRR for use in QMSA 

modeling to predict kb. 

 

4.3.2 Internal Validation of PCA, iPCA, and iRR QMSA Models.  

Similar to Section 3.2.4, leave-one-out (LOO) validation was performed for each 

type of QMSA modeling. The results are illustrated in Figure 4.2. All three models 

exhibit excellent predictive abilities, as indicted by validation coefficient (q
2
) values 

greater than 0.5 for all three models (Golbraikh and Tropsha, 2002). In all three cases, 

highest q
2
 and R and lowest SPRESS were achieved for k = 1. Similar to results in 

Chapter 2, PCA models seem to be the most powerful of the three data reduction 
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strategies evaluated in this study. This approach yielded the highest q
2
 (0.78),highest 

R (0.85), and lowest SPRESS (0.45). his is perhaps because PCA models incorporate 

more chemical information than iPCA or iRR models, employing all principal 

components with eigenvalues equal or greater than 1. In contrast, iPCA and iRR 

models retain only a small portion of the available indices, and therefore may be 

missing some important similarity information. It also can be concluded that the iRR 

model performs better than the iPCA model for estimation of kb, as indicated by the 

higher q
2
 value of the iRR model.  
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Figure 4.2. LOO validation statistics for QMSA models using three different indices selection 

approaches (PCA, iPCA, and iRR) to predict kb From top, statistics are q
2
, R, and SPRESS. 
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Based on comparisons among multiple parameters, QMSA is less effective for 

estimation of kb than estrogenicity (Chapter 2) or Kd (Chapter 3). This conclusion is 

based on comparison of highest q
2
 values for each dataset. For kb, the best q

2
 value is 

0.78, while q
2
 values for the estrogenicity and Kd datasets were 0.84 and 0.82, 

respectively. This difference could be because the kb dataset contains fewer measured 

chemicals (62 in total) compared to the other two datasets (81 for estrogenicity, and 

80 for Kd). Regardless, the results from internal validation suggest that QMSA can 

serve as a powerful tool for prediction of the kb parameter. 

 

 

4.3.3 External Validation of the kb QMSA Models  

Another objective of this study was to show that QMSA models can be used to 

predict kb of chemicals which have never been measured before; i.e., external 

validation. Thus, we measured kb of three selected chemicals and compared the 

measured kb values to their predicted kb values The three compounds selected for use 

in external validation were metformin, fluconazole, and benazepril.  

Figures 4.3 – 4.5 show the results of biodegradation experiments for the three 

selected chemicals. Figures 4.3A, 4.4A, and 4.5A show drug concentrations over time 

for at 5 days, which is much longer than the average WWTP retention time. As 

evident from Figures 4.3A, 4.4A, and 4.5A, aqueous-phase concentrations of the three 

selected chemicals decreased over time at different rates. Results from the positive 

controls indicate that the chemical concentrations did not change significant over time  



 

98 

 

in the absence of sludge. Finally, the concentration profiles for the sorption controls 

are quite similar to the positive controls. This suggests that sorption could be very 

minimal for these three chemicals. This observation is consistent with previously 

published work that suggests that sorption of chemicals with Kd less than 300 L/kg is 

not significant (Joss et al., 2005). Recall from Chapter 3, that all three external 

validation chemicals exhibit Kd values that are less than 100 L/kg  

    Figure 4.3A also shows that metformin biodegradation seems to stop after 20 h. 

This observation could reflect the nature of the experimental design, whereby, COD 

was only dosed into the reactor at the very start of the experiment. There was no 

subsequent re-dosing. As such, the COD is mostly consumed within the same amount 

of time during which metformin removal is observed on Figure 4.3B This overlap 

between COD removal and emerging contaminant removal, is sometimes referred to 

as “co-metabolism” in the biodegradation literature, and it is a well-documented 

occurrence for emerging contaminant behavior in WWTPs (Ternes et al., 2004; 

Heberer, 2002; Ternes, 1998).  
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Figure 4.3. At left (4.3A), metformin concentration as a function of time during biodegradation 

experiment. At right (4.3B), corresponding COD concentrations as a function of time. 

Figure 4.4. At left (4.4A), fluconazole concentration as a function of time during biodegradation 

experiment. At right (4.4B), corresponding COD concentrations as a function of time. Note 

synthetic wastewater was added to regular reactors on a daily basis 
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Figure 4.5. At left (4.5A), benazepril concentration as a function of time during biodegradation 

experiment. At right (4.5B), corresponding COD concentrations as a function of time. Note 

synthetic wastewater was added to regular reactors on a daily basis and therefore COD 

concentration showed some increases during the experiment.  

    Figures 4.3B, 4.4B, and 4.5B depict the change of COD over time for the three 

biodegradation experiments. We can conclude from these figures that there was 

minimal biological activity in the sorption controls, because none of these figures 

shows significant drop in COD over the measured timeframe. As such, the sorption 

controls can be used as references, to calculate what fraction of overall emerging 

contaminants removal in the regular reactors should be allocated to sorption versus 

biodegradation. 

    As discussed before, biodegradation of emerging contmainants has, in some 

cases, been well described by a pseudo first-order biodegradation function, as follows: 

                         
����� = −� �����              (4.8) 

    Integration of Eq 4.8, it yields: 

                       ln	 ���6 = −� ���`                (4.9) 
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    In Eq. 4.9, C0 is the initial aqueous phase concentration (µg/L) of an emerging 

contaminant; Ct is the concentration at time t, assuming that the difference between C0 

and Ct is caused only by biodegradation (µg/L); kb is a pseudo first-order 

biodegradation rate constant (L/(kg·h)); and Xss is TSS concentration (kg/L). 

Plotting Ln (Ct/C0) against time for Eq. 4.9 yields a linear relationship with slope 

equal to –kbXss. If we know the concentration change of each contaminant over time, 

we can use Eq. 8 to express decrease in concentration caused only by biodegradation:  

 �� = �a,� − (�%,� − ��,�)                  (4.10) 

where Ct is the decrease  in emerging contaminant concentration caused by 

biodegradation (µg/L); �a,� is the average concentration of the emerging contaminant 

in both positive controls at time t (µg/L); �%,� is the average concentration of the 

emerging contaminant in both sorption controls at time t (µg/L); and, ��,� is the 

concentration in the average regular reactors at time t (µg/L). This formulation is 

plotted in Figures 4.6, 4.7, and 4.8 for each of the three selected external validation 

contaminants.  
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Figure 4.6. Calculation of kb of metformin for the experiment without re-dosing of COD.  

 

Figure 4.7. Calculation of kb of fluconazole for the experiment with re-dosing of COD 

 

Figure 4.8. Calculation of kb of benazepril for the experiment with re-dosing of COD. 

Figures 4.6 – 4.8 show the results for the fitting of Eq. 4.10 to the data in each 

plot. It should be noted that only the first 30-h of data for metformin was used to 
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make Figure 4.6., because it was observed that contaminant removal and COD 

removal stopped after 20 h during the metformin experiment, which did not utilize 

COD non-redosing. In all three figures, the data fit the linear models very well, as 

made evident via visual inspection and calculation of by high regression coefficients, 

R
2
.  

Another interesting, unexpected result from the fluconazole and benazepril 

biodegradation experiments, once it was decided that COD should be re-dosed into 

the reactors every day, is that the TSS concentrations in the regular reactors increases 

over the entire timeframe of the experiment. This did not occur during the 

biodegradation experiment for metformin, because there was no COD re-dosing TSS 

increased from 1 g/L to 3.4 g/L for benazepril, and from 1 g/L to 3.3 g/L for 

fluconazole. To account for this increase when computing kb, the negative regression 

were divided by the average TSS concentration instead of the initial TSS 

concentration. Table 4.2 shows the calculated kb and model fitting results from Eq. 

4.9.  

 

Table 4.2. Calculated kb and model fitting parameters for three chemicals. 

Chemical kb  (L/(g·h)) Average TSS (g/L) R
2
 

Metformin 1.05×10
-2

 1.00 0.94 

Fluconazole 1.86×10
-4

 2.15 0.95 

Benazepril 2.1×10
-3

 2.20 0.93 
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4.3.4 Comparison of Measured and Predicted kb for the Validation Chemicals  

Table 4.3 – 4.5 summarizes kb predictions for the three selected external 

validation chemicals, as computed using the PCA QMSA model. These predictions 

were computed using k = 1 – 3 measured nearest neighbors (which is slightly different 

than in Chapter 3), For k >1, the arithmetic average of the log kb values of its nearest 

neighbors was computed and then log-transformed to yield the predicted log kb value. 

Only PCA QMSA was used here because it was demonstrated as the most accurate 

data reduction approach in Section 3.3.2, and more importantly, because the size of kb 

dataset is so much smaller than the Kd and estrogenicity datasets that use of less 

chemical information (as in iPCA or iRR) does not generate accurate estimates. 

Additionally, because the dataset is quite small, the “nearest” neighbor is frequently 

not that similar 
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Table 4.3. PCA Model predictions for metformin kb based on its first three measured nearest 

neighbors. The laboratory-measured kb value was 1.05×10
-2

 L/(g·h). ED is Euclidean distance, 

which denotes the distance between metformin and its neighbor in similarity space. Note when k = 

1, the predicted value was obtained by using its first nearest neighbor’s kb directly. 

k Nearest neighbor with known kb ED 
Literature reported kb 

L/(g·h) 

Predicted kb    

L/(g·h) 

1 2,4-Dichlorophenol 0.13 1.05×10
-2

 1.05×10
-2

 

2 Paracetamol 0.15 2.87 0.17 

3 4-Chlorophenol 0.18 0.13 0.16 

 

Table 4.4. PCA Model predictions for fluconazole kb based on its first five measured nearest 

neighbors. The laboratory-measured kb value was 1.86×10
-4

 L/(g·h). ED is Euclidean distance, 

which denotes the distance between fluconazole and its neighbor in the similarity space. Note 

when k = 1, the predicted value was obtained by using its first nearest neighbor’s kb directly. 

k Nearest neighbor with known kb ED 
Literature reported kb 

L/(g·h) 

Predicted kb    

L/(g·h) 

1 Diclofenac 0.18 8.30×10
-4

 8.30×10
-4

 

2 Carbamazepine 0.24 4.16×10
-4

 5.88×10
-4

 

3 Primidone 0.24 9.16×10
-5

 3.16×10
-4

 

 

Table 4.5. PCA Model predictions for benazepril kb based on its first three measured nearest 

neighbors. The laboratory-measured kb value was 2.1×10
-3

 L/(g·h). ED is Euclidean distance, 

which denotes the distance between benazepril and its neighbor in the similarity space. Note when 

k = 1, the predicted value was obtained by using its first nearest neighbor’s kb directly. 

k Nearest neighbor with known kb ED 
Literature reported kb 

L/(g·h) 

Predicted kb    

L/(g·h) 

1 Celiprolol 0.17 8.75×10
-3

 8.75×10
-3

 

2 Diltiazem 0.19 1.01×10
-2

 9.40×10
-3

 

3 Primidone 0.45 9.16×10
-5

 2.00×10
-3

 

 

For metformin (Table 4.3), PCA-based QMSA yields excellent predictions for kb. 

For k = 1, PCA gives the exactly same predicted value as was measured in the 

laboratory experiments. Therefore the prediction error (difference between predicted 

value and measured value divided by measured value) equals to zero. The model 
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assigns 2,4-dichlorophenol as the nearest neighbor for metformin, which is same 

measured nearest neighbor selected by the Kd QSAR model that was discussed in 

Chapter 3. Published kb values for 2,4-dichlorophenol include 0.80×10
-2 

L/(g·h) 

(Elkarmi et al., 2009) and 1.3×10
-2

 L/(g·h) (Tomei et al., 2012). Because these values 

are so close on either side of the kb value that was measured for metformin during 

laboratory experiments, there was very little benefit to adding additional nearest 

neighbors. This is why the k = 1 model is better than the other two. 

For fluconazole, the PCA-based QMSA predictions are generally acceptable, 

since predicted values and measured values are within the same order of magnitude. 

The best prediction was achieved for k = 3, which yields a prediction error of 71%. 

Fluconazole’s first measured nearest neighbor is diclofenac, which was also found to 

be its second measured nearest neighbor in Chapter 3. However, diclofenac’s kb value 

(8.30×10
-4

 L/(g·h) (Fernandez-Fontaina et al, 2013) is almost four times greater than 

fluconazole’s kb value. Thus, the relative inaccuracy of the fluconazole predictions 

compared to the metformin predictions can be attributed to fluconazole’s much larger 

degree of dissimilarity with its first measured nearest neighbor. The model is unable 

to yield a good prediction for fluconazole because there are no similar chemicals in 

the pool of previously measured structures. Ultimately, this occurs probably because 

biodegradation of fluconazole is very slow. In a previously published study, Kahle et 

al. (2008) concluded that fluconazole shows no biodegradation at all within first 24 h. 

The timeframe used our study was much longer 220 h (~9 days), yet we still saw only 

very limited fluconazole removal. Because the change in concentration was so small, 
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the calculation of regression slope was very sensitive to slight variability among 

measured replicates. Thus, it is not unsurprising that the kb fit for fluconazole is not 

very good. More broadly, it should be emphasized that QMSA will perform poorly 

when it comes to making predictions for chemicals exhibiting extreme property 

values; i.e., property value that are much greater or much less than the values of “most” 

other chemicals. This is because the chemicals exhibiting extreme property values 

cannot, by definition, have many similar neighbors. 

As for fluconazole, the k = 3 PCA-based QMSA model gives the most accurate 

predictions for benazepril. The relative error of this estimate was 5%. However, this 

prediction incorporates benazepril’s third measured nearest neighbor, primidone, 

which is much more dissimilar from benazepril compared to its two closest neighbors. 

This is evident from the ED values in Table 4.5. The inclusion of primidone’s much 

smaller kb value brings down the average of the first two nearer neighbors, resulting in 

a very good predicted value. 

Generally speaking, the QMSA-based kb predictions for the three selected 

external validation chemicals are very good, especially for metformin. These results 

are very similar to what was observed for Kd predictions using these same three 

chemicals in Chapter 3. This overlap in accuracy between Kd and kb reflects the 

underlying structure of each dataset, whereby metformin has the nearest measured 

neighbor out of the three validation chemicals, such that it is best-predicted for both 

parameters of interest. To reiterate from Chapter 3, EDs magnitudes should served as 

a guide for selecting the best possible nearest neighbors. 
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4.3.5 Prediction of effluent concentrations of three selected chemicals in WWTPs. 

    As mentioned several times now, a key objective of studies measuring or 

predicting environmental fate parameters, such as Kd and kb, is to predict effluent 

concentrations for real-world settings. Therefore, we used two mass balance models 

(SM and CM), to calculate effluent concentrations for the validation chemicals.  

    Table 4.6 summarizes the essential parameters required for estimating effluent 

concentrations of metformin and fluconazole using the SM and CM models. Since no 

literature data can be found for both influent and effluent concentrations of benazepril 

in WWTPs, mass balance calculation was not performed for benazepril. Several 

assumptions were required for the CM calculations. We assume the secondary TSS 

concentration is the same as the primary TSS concentration (i.e.,  Xss,p = Xss,s), and 

that the Kd of the secondary sludge is the same as the Kd of the primary sludge (i.e , 

Kd,s = Kd,p). Also because some of the literature studies that provided influent and 

effluent concentrations failed to provide WWTP operational parameters, some typical, 

default values were used (Joss et al., 2006; Kim et al., 2005). 

    Table 4.7 summarizes the predicted effluent concentrations arising from both 

models. The results are generally very good. Most values of absolute relative error 

(ARE) are less than 20% for the various predictions. The SM model seems to have 

better predictions, based on generally lower ARE values for SM compared to CM. 

The difference in accuracy between the two models is more significant for metformin, 

whereby SM gives ARE = 7%, compared to ARE = 31% for CM. 
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Table 4.6. WWTP operational parameters for effluent concentration calculation 

SM model 

parametersa 
Definition Value 

CM model 

parametersa 
Definition Value 

Xss Total Suspended Solid 3 g/L R Sludge Recycle 2 

Rt Retention Time 24 h Ps Sludge Production 0.03 g/L 

   Xss Total Suspended Solid 3 g/L 

   Rt Retention Time 24 h 

a Values were taken from typical values reported in literatures (Joss et al., 2006; Kim et al., 2005) 

 

Table 4.7. Prediction of effluent concentrations of metformin and fluconazole in WWTPs by SM 

and CM. WWTP operational parameters required in both models were taken from Table 4.6. 

Chemical Effluent (ng/L) 
SM Predicted 

Effluent (ng/L) 
SM ARE (%)c 

CM Predicted 

Effluent (ng/L) 
CM ARE (%)d 

Metformina 11000 11731 7 14483 31 

Fluconazoleb 28  28  0  33  20  

Fluconazoleb 83  73  12  87  5  

Fluconazoleb 52  74  43  89  72  

Fluconazoleb 48  50  5  61  26  

Fluconazoleb 39  38  3  46  17  

Fluconazoleb 63  32  49  39  38  

Fluconazoleb 35  90  157  108  209  

Fluconazoleb 42  35  17  42  1  

Fluconazoleb 36  26  27  32  12  

Fluconazoleb 67  45  33  54  20  

Fluconazoleb 49  49  0  33  20  

a Benotti and Brownawell, 2007; b Kahle et al., 2008; c stands for Simple Model Absolute Relative Error, 

calculated by absolute difference between predicted and actual effluent concentration divided by actual effluent 

concentration; d stands for Complex Model Absolute Relative Error. 

 

There are several important comments that can be made regarding the effluent 

concentration predictions arising from both models. First, in this study, we used 

default values for essential WWTP operational parameters because precise 

information could not be obtained from the literature studies themselves. However, in 

reality, these parameters may be very different from what we assumed here. For 

example, for fluconazole, influent and effluent samples were collected from ten 
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WWTPs in Switzerland (Kahle et al., 2008). The operational parameters may be also 

very different among these ten WWTPs. To test this idea, we performed sensitivity 

analysis for two different operational parameters, HRT and Xss. The metformin data 

was used for this analysis. The HRT parameter was varied over the range 12 to 48 h, 

and the Xss parameter was varied over the range 1 to 10 g/L. 

Figures 4.9 and 4.10 show the results of the sensitivity analysis. As expected, 

these two parameters have significant impacts on ARE values for SM and CM 

predictions. For HRTs, approximately 26 h and 40 h are required to provide the 

exactly same predicted effluent concentration as the actual effluent concentration for 

SM and CM, respectively (Figure 4.9). These HRTs would be possible for some 

WWTPs (Oppenheimer et al., 2007). Additionally, Xss seems to have a more 

prominent impact on model sensitivity. Only by changing Xss from the default 3 g/L 

value to approximately 3.4 g/L, is it possible for the SM model to give ARE = 0. For 

CM, the Xss must be changed to 5 g/L to yield ARE = 0. All of these Xss values are 

typical for WWTPs (Wick et al., 2009); therefore it is highly desirable to obtain 

accurate, plant-specific operational parameters if valid effluent concentrations are 

desired.  
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Figure 4.9. Model sensitivity analysis of metformin effluent prediction ARE on HRT. 

 

Figure 4.10. Model sensitivity analysis of metformin effluent prediction ARE on TSS. 

 

Also related to Table 4.6 and 4.7, it has been demonstrated that many WWTP 

sampling studies fail to apply proper sampling strategies. As a result, short-term 
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variation in influent and effluent concentrations may not be well captured. This will 

lead to the inaccurate estimation of effluent concentrations. Ort et al. (2010) reviewed 

87 peer-reviewed articles and concluded that over 95% of these may not have utilized 

proper sampling campaigns and that the resulting sampling errors can potentially lead 

to wrong conclusions on effluent concentrations. They also recommend several 

specific measures to improve the quality of influent and effluent concentration data 

collected at a typical WWTP. Neither of the two articles we used as sources of 

information for influent/effluent concentrations of the external validation chemicals 

used the comprehensive sampling techniques recommended by Ort et al. Thus, it is 

highly possible that the measured influent/effluent concentrations in Table 4.7 not 

reflect actual real-time concentrations. This could also cause difference between our 

model predictions and measured concentrations. In the future, more comprehensive 

sampling of the three selected validation compounds could help evaluate the accuracy 

of our SM and CM predictions. 
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4.4 Conclusions 

The results from this chapter provide additional, clear evidence that QMSA 

models can be used as powerful tools for prediction of significant environmental 

properties for the numerous emerging contaminants of interest. First and foremost, 

this type of structural similarity models can accurately predict kb for large, highly 

diverse classes of chemical structures. This is proven by the excellent 

internal-validation q
2
 values and the external prediction results for three emerging 

contaminants which have never been measured before. The choice of kb as a test 

parameter for QMSA is especially relevant, because it is one of the most significant 

factors impacting the removal of emerging contaminants in WWTPs. It is also one of 

the most difficult factors to be measured in the laboratory, when considering costs and 

time invested for measurement. 

The results from this chapter also demonstrate that the fate of two selected 

emerging contaminants, metformin and fluconazole, can be well predicted using both 

SM and CM. However, the values of key WWTP operational parameters may have a 

great impact on the accuracy of predicted effluent concentrations. Therefore it is 

essential to obtain WWTP-specific operational parameters to make calculation more 

accurate. To further test the model, it would be greatly preferable to perform more 

comprehensive sampling in the future. 
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Chapter 5 – Improving the Usefulness of Molecular Similarity-Based Chemical 

Prioritization Strategies 

 

5.1 Introduction 

In Chapter 2, 3, and 4, we demonstrated that QMSA can potentially serve as an 

efficient alternative to traditional, regression-based QSAR models for prediction of 

relevant environmental engineering parameters. Specifically, we showed that QMSA 

can be used to estimate in vitro estrogenicity with q
2
 values as high as 0.84 (Section 

2.3.2). 

As discussed in Chapter 3 ED serves as a ruler to parameterize and quantify the 

similarities among chemicals. Chemicals which have smaller ED to the “target” are 

considered as the nearest neighbors for “target” chemicals. Therefore, it can be 

expected that the QMSA model accuracy would be highly dependent on the extent to 

which previously measured chemicals are similar to the “target” chemicals. Although 

it is good to find the nearest possible neighbors for each individual “target”, we 

hypothesized that there should theoretically be some “representative” chemicals 

which are generally similar to many unmeasured chemicals. Identification and 

measurement of the desired property values for these chemicals could add valuable 

data to the QMSA model by inserting molecules that should be near neighbors to 

many other unmeasured chemicals. 

Figure 5.1 depicts a two-dimensional (2-D) conceptualization of the scenario 

motivating the representativeness prioritization hypothesis articulated in the previous 
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paragraph. For this hypothetical scenario, molecular similarity is projected into two 

dimensions. Thus, n-dimensional Euclidean Distances can be represented as the 

geometric (2-D) distance between two points. Numbered (unshaded) circles represent 

the limited number of chemicals for which a parameter of interest has been previously 

measured and reported in the scientific literature. Lettered (shaded) circles represent 

as yet unmeasured chemicals that are candidates for addition to the measured pool.  

 

 

Figure 5.1. A two-dimensional depiction of the way in which QMSA is envisioned to prioritize 

among unmeasured compounds and subsequently streamline development of increasingly accurate 

models to predict environmental fate and behavior properties of emerging contaminants. 

In Figure 5.1, there are eight candidate chemicals, A – F, that could be added to 

the existing data pool. In considering candidate D, it becomes clear that this 

compound will add practically zero predictive accuracy to a QMSA model, because it 

is completely dissimilar from the rest of the chemicals for which information is 
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sought. This makes Candidate D a poor choice for additional research. Candidate E, 

which is also located towards the edge of the chemical space, and thus quite dissimilar 

from the other unmeasured compounds, could offer predictive insight into Chemicals 

F; however, this information is both somewhat redundant with and less helpful than 

information derived from Chemical 1 or Chemical 5. Thus, Candidate E would be a 

better choice than Candidate D, but is still suboptimal compared to other candidates. 

Using this same logic, Candidate A is clearly the best choice for addition to the pool 

of measured chemicals. This is because information about Candidate A will be 

directly useful in formulating predictions for Chemicals C, E, and, F. Since Candidate 

A is located almost directly at the center of the chemical space, it exhibits a “typical” 

or “representative” value. This means that information from Candidate A can also be 

used to make rough predictions about Chemicals B and D or any other new 

contaminants that come to light anywhere in this molecular space. 

Numerically, it can be said that Candidate A is the optimal choice for addition to 

the measured data pool because it is minimizes the sum of two-dimensional distances 

with each other unmeasured point in the dataset. Analogously, maximally 

representative chemicals in an n-dimensional space are those that minimize the sum of 

Euclidean Distances between each unmeasured chemical and all other unmeasured 

compounds. This suggests that most representative unmeasured chemicals selected by 

QMSA should result in formulation of more accurate QMSA models than the random 

ad hoc approach which has been traditionally used to identify which chemicals should 

be measured in a laboratory or field experiment. Given the large amounts of time and 
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money required to make laboratory measurements for emerging contaminants, a 

regulatory agency would like to ensure that resources devoted to elucidating the 

environmental fate and behavior of emerging contaminants are expended in an 

optimally efficient manner. Thus, there is clear incentive to prioritize candidates 

experimental testing based on representativeness, such that each new data point can 

help improve prediction accuracy for many other unmeasured chemicals. 

A key question arising from the previously articulated “maximizing 

representativeness” argument is, “Should “representative” chemicals always be 

valuable to incorporate into a QMSA model? Figure 5.2 illustrates the conceptual 

model for another scenario that should be considered. In Figure 5.2, previously 

measured compounds are shown using un-shaded, numbered circles. Unmeasured 

compounds are shown using shaded, lettered circles. For this example, Chemical J 

would be selected on the basis of maximized representativeness. However, addition of 

Chemical J to the measured dataset is not ideal choice because it adds little new 

information that is not redundant with what could be inferred from chemicals 6-10. In 

contrast, Chemical G exhibits the least amount of redundancy among all possible 

candidate compounds to be measured. This is evident in 2D because Chemical G has 

the largest sum of distances with all previously measured chemicals 
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Figure 5.2. A 2-D illustration of the QMSA redundancy minimization principle. Previously 

measured chemicals are indicated using un-shaded, numbered circles. Previously unmeasured 

chemicals are indicated using shaded, lettered circles. Arrows indicate intermolecular distances 

between G and all measured chemicals. 

In summary, Figures 5.1 and 5.2 purposefully depict different modeling 

scenarios (i.e., different sets of measured and unmeasured compounds); however, 

comparison of both panels together can be useful for illustrating that the 

representativeness maximization and redundancy minimization criteria are sometimes 

at odds with one another. Thus, the representativeness maximization and redundancy 

minimization criteria should be applied together to yield the best possible 

improvement in QMSA accuracy for estimation of all remaining unmeasured 

compounds. 
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In this chapter, we will have two objectives: 1) demonstrating the usefulness of 

QMSA-based representativeness maximization as a criterion for prioritizing among 

unmeasured compounds; and, 2) demonstrating the usefulness of QMSA-based 

redundancy minimization as a second criterion for prioritizing among unmeasured 

compound, in addition to representativeness maximization. We will also explore 

possible tradeoffs that can occur when both criteria are applied simultaneously. Both 

of the datasets from Chapter 2, in vitro estrogenicity and from Chapter 3, sorption 

distribution coefficient (Kd), are used to demonstrate the relative usefulness of both 

prioritization criteria. Finally, results for both datasets are then compared to one 

another to also illustrate how dataset composition impacts QMSA accuracy and the 

practical application of each prioritization criterion. 
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5.2 Experimental 

5.2.1 Data Sources 

Estrogenicity and sorption coefficient data were the same as those used in the 

Chapter 2 and Chapter 3, respectively. Multiple property values for the same chemical 

were averaged together into a single value. The common logarithm transformation 

was applied to all property values.  All told, the final dataset contained Kd 

measurements for 80 different chemicals and estrogenicity measurements for 81 

different chemicals.  

The total pool of chemical structures used in this study included not only those 

compounds that had been previously measured for estrogenicity and/or Kd but also all 

other emerging contaminants referenced in the papers noted above plus additional 

structures from a list of 200 top-prescribed generic pharmaceuticals (Verispan VONA, 

2007). The total number of chemical structures evaluated, N, including previously 

measured and unmeasured chemicals, was 303. 

 

5.2.2 Molecular Descriptors and Similarity Computation 

The same 193 molecular descriptors referenced in Chapter 2 were used in this 

study. Among the three possible types of QMSA models, only PCA models were used 

to examine each of the two hypothesized QMSA prioritization criteria. Molecular 

similarity, using the Euclidean Distances parameterization, was computed using the 

same procedure outlined in Section 3.2.3. 
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5.2.3 Prioritization hypothesis tests 

Reiterating from Section 5.1, the two QMSA-based prioritization criteria to be 

evaluated in this study include, “maximizing representativeness” and “minimizing 

redundancy”. Statistical hypothesis testing was used to formally evaluate the 

usefulness of these two prioritization criteria. In particular, the hypothesis tests were 

used to assess whether or not QMSA-based prioritization using either or both criteria 

results in more accurate QMSA models compared to random selection of compounds 

to be “measured” (i.e., added to the dataset). Mathematically, the representativeness 

and redundancy criteria were parameterized using the Euclidean Distances (EDs) 

referenced in Section 3.2.3. Since ED quantifies the extent of dissimilarity between 

two chemical structures, we characterized maximally representative (MRP) 

compounds as those exhibiting the smallest sum of EDs (minΣEDn) with all other 

measured and unmeasured chemicals. In contrast, the least redundant (LRD) 

compounds were characterized as those exhibiting the largest sum of EDs (maxΣEDm) 

with all previously measured compounds (hence the subscript “m”), because larger 

ΣEDs indicate greater dissimilarity from the compounds for which data already exists. 

Finally, since we want to know how model accuracy is impacted when both 

prioritization criteria are applied at the same time, we characterized intersection (INT) 

compounds as those exhibiting both minΣEDn (representativeness) rankings and 

maxΣEDm (redundancy) rankings. 

 The hypothesis tests used in this study were based on iterative application of a 

modified “leave many out” (LMO) cross-validation procedure put forth in previous 
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studies (Li and Colosi, 2012; Hawkins et al., 2003). This procedure is summarized 

graphically in Figure 5.3. As indicated near the top of the figure, it was assumed that 

n*=30 “measured” property values were initially available based on previous 

measurement, and that 30 additional chemicals were to be selected for additional 

“measurement. Of these additional 30, n** = 29 were selected based on maximized 

representativeness (MRP = minΣEDn) and 1 was selected using LRD, INT, or 

randomly (depending on the particular test being evaluated). Then, the n*+n**+1 

“measured” chemicals were used as the training set to formulate a PCA QMSA model 

and estimate the properties of the remaining n-n*-n**-1 chemicals. This procedure 

was completed twice, once for each of the prioritization strategies being evaluated 

within a particular comparison, and the difference between the resulting q
2
 values (∆) 

was then computed. The statistical significance of the difference in accuracy between 

two prioritization strategies was evaluated using a paired t-test for 10,000 iterative 

trials. The symbol “µ∆” was used to connote the average value of ∆ for one paired 

t-test. The null hypothesis for this test was that there is no difference in the accuracy 

(q
2
) between the two prioritization strategies (i.e., H0: µ∆ = 0). The alternative 

hypothesis was that there is an appreciable difference in accuracy (q
2
) between the 

two strategies (i.e., HA: µ∆ ≠ 0). All P-values corresponded to two-sided tests. 
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Figure 5.3. A visual summary of the iterative sampling procedure underlying the hypothesis tests 

used to compare compound selection strategies. Circled numbers refer to critical steps: 1) random 

assignment of training dataset compounds into one of two groups representing chemicals with 

“measured” or “unmeasured” property values; 2) use of a “prioritization” strategy, based on 

cumulative Euclidean Distances to select 30 additional compounds to be “measured”: 29 of these 

were always based on maximized representativeness (MPR), but the remaining 1 was selected 

based on MRP, LRD, INT, or random; 3) use of the 60 “measured” compounds to build a QMSA 

model; and, 4) use of the resulting QMSA model to make predictions for the remaining “unknown” 

compounds.  

 

 

5.2.3.1 “Representativeness” and “Redundancy Avoidance” versus Arbitrary 

Selection 

For the first comparison, representativeness maximization was compared to 

arbitrary selection. Maximally “representative” compounds (MRP) were selected 

based on minimization of summed cumulative Euclidean Distances (∑ED) between 

each unmeasured chemical and all other unmeasured compounds in the 

302-compound pool. For arbitrary selection, compounds were added to the “measured” 

dataset based on selection using a random number generator.   
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Estrogenicity and Kd predictions produced using both the QMSA 

representativeness prioritization approach and the random prioritization approach 

were assessed using “leave many out” (LMO) cross-validation (Hawkins et al 2003). 

This sampling, prioritization, and validation process depicted in Figure 5.3 was 

repeated 10,000 times. For each iteration, the difference (∆) between correlation 

coefficients for ΣEDn minimization prioritization (q
2
MRP) and random selection (q

2
RAN) 

was computed according to Eq. 5.1. Here, and throughout this chapter, q
2
 corresponds 

to the so-called “naïve q
2
” cross-validation coefficient referenced in last section. 

 

                            ∆ = q
2

 MRP - q
2

RAN               (5.1) 

 

Ultimately 10,000 values of ∆ were used in each paired t-test. The null hypothesis 

was µ∆ = 0; i.e., there is no difference between random and MRP approaches for 

chemical prioritization. The alternative hypothesis was µ∆ ≠ 0; i.e, there is a 

statistically significant difference between random and MRP approaches for chemical 

prioritization. This t-test was repeated for various values of k, the number of nearest 

neighbors used to predict estrogenicity or Kd, ranging from 1 - 3. This was done to 

ensure the arbitrary selection of k did not artificially affect the outcome of this 

experiment.  

The other experiment was also performed to show that prioritization of 

chemicals only by maximizing ΣEDm (we use LRD to represent it) should decrease 

the accuracy of QMSA models compared to random (arbitrary) prioritization. 

Sampling, was repeated 10,000 times. For each iteration, the difference (∆) between 

correlation coefficients for the max ΣEDm prioritization (q
2

LRD) and random selection 

(q
2

RAN) was computed according to Eq. 5.2:  
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                           ∆ = q
2

 LRD- q
2

RAN             (5.2) 

10,000 values of ∆ were used in the test. The null hypothesis was µ∆ = 0; i.e., there is 

no difference between random and LRD approaches for chemical prioritization. The 

alternative hypothesis was µ∆ ≠ 0; i.e, there is a statistically significant difference 

between random and LRD approaches for chemical prioritization. This t-test was 

repeated for various k between 1 – 3 for estrogenicity and Kd. 

5.2.3.2 Representativeness and Redundancy  

A series of paired t-tests was used to assess whether simultaneous consideration 

of both “representativeness” and “redundancy avoidance” during chemical 

prioritization yields better QMSA model accuracy than other prioritization strategies, 

including random selection. Five types of paired t-tests were used for these 

experiments in this category: two involved picking “extreme” values of ΣEDm; and 

three involved picking midrange values of ΣED, at the “intersection” of high 

representativeness and low redundancy. 

The first set of “extreme” paired t-tests was designed to assess whether 

simultaneous consideration of both “representativeness” and “redundancy avoidance” 

during chemical prioritization yields better QMSA model accuracy than arbitrary 

prioritization. Specifically, these tests compared q
2
 values for QMSA models 

incorporating the n** unmeasured chemicals exhibiting smallest values of cumulative 

dissimilarity (minΣEDn) plus one unmeasured chemical exhibiting largest cumulative 

dissimilarity (maxΣEDm) versus QMSA models incorporating n** randomly selected 

chemicals. Sampling was repeated for 10,000 trials. For each iteration, the difference 
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(∆) between correlation coefficients for the “representativeness and redundancy” 

method (q
2

MRP+LRD) and the random method (q
2

 RAN) was computed according to Eq. 

5.3: 

 

∆ = q
2

 MRP+LRD- q
2

RAN            (5.3) 

The null and alternative hypotheses were the same as for other paired t-tests described 

in this section; as were values for k, n*, and n**. 

The second set of “extreme” paired t-tests was designed to assess whether 

simultaneous consideration of both “representativeness” and “redundancy avoidance” 

during chemical prioritization yields better QMSA model accuracy than consideration 

of just “representativeness”. Specifically, these tests compared q
2
 values for QMSA 

models incorporating the n** unmeasured chemicals exhibiting smallest values of 

cumulative dissimilarity (minΣEDn) plus one unmeasured chemical exhibiting largest 

cumulative dissimilarity (maxΣEDm) versus QMSA models incorporating just n** 

chemicals exhibiting minΣEDn. Sampling was repeated for 10,000 trials. For each 

iteration, the difference (∆) between correlation coefficients for the 

“representativeness and redundancy” method (q
2

MRP+LRD) and the “representativeness 

only” method (q
2

 MRP) was computed according to Eq. 5.4:  

 

∆ = q
2

 MRP+LRD- q
2

MRP              (5.4) 
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The null hypothesis was µ∆ = 0; i.e., there is no difference between these two QMSA 

approaches for chemical prioritization. The alternative hypothesis was µ∆ ≠ 0; i.e, 

there is a statistically significant difference between these two QMSA approaches for 

chemical prioritization. The null and alternative hypotheses were the same as for other 

paired t-tests described in this section; as were values for k, n*, and n**. 

The third type of paired t-tests, one of three for assessment of “intersection” 

chemicals, was designed to assess whether simultaneous consideration of both 

“representativeness” and “redundancy avoidance” during chemical prioritization 

yields better QMSA model accuracy than random prioritization. This is the same goal 

as the first type of paired t-test described in this section; therefore, almost the same 

test was used as was described involving Eq. 5.4. Both tests incorporated n** 

chemicals exhibiting minΣEDn; however, one chemical exhibiting midrange 

“representativeness” and “redundancy avoidance” was used in place of the maxΣEDm 

chemical. Sampling was repeated for 10,000 trials, each time collecting n** new 

chemicals from the MRP ranking plus one chemical at the intersection between MRP 

and LRD rankings. For each iteration, the difference (∆) between correlation 

coefficients for the “intersection” method (q
2

MRP+INT) and the random method (q
2

 RAN) 

was computed according to Eq. 5.5.  

∆ = q
2

 MRP+ INT - q
2

RAN          (5.5) 

The null and alternative hypotheses were the same as for other paired t-tests described 

in this section; as were values for k, n*, and n**. 
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The fourth paired t-test required for assessment of simultaneous 

representativeness and redundancy considerations was the second of three tests 

assessing “intersection” prioritization strategies. This test compared the relative 

accuracy of QMSA models embodying the simultaneous “representativeness” and 

“redundancy avoidance” selection strategies referenced in Eq. 5.5 versus just 

“representativeness”. The difference (∆) in accuracy between both methods was 

defined according to Eq. 5.6, wherein q
2

MRP+INT and q
2

 MRP are defined as in Eqs. 5.5 

and 5.1, respectively. Sampling was repeated for 10,000 trials.  

∆ = q
2

MRP+INT - q
2

MRP              (5.6) 

The null and alternative hypotheses were the same as for other paired t-tests described 

in this section; as were values for k, n*, and n**. 

The fifth and final type of paired t-test required for assessment of simultaneous 

“representativeness” and “redundancy avoidance” considerations was the third of 

three tests assessing “intersection” prioritization strategies. This test compared the 

relative accuracy of QMSA models embodying INT strategy referenced in Eq. 5.6 

versus that in Eqs. 5.3 and 5.4. The difference (∆) in accuracy between both methods 

was defined according to Eq. 5.7, wherein q
2

MRP+INT and q
2

MRP+LRD are defined as 

noted above. Sampling was repeated for 10,000 trials.  

∆ = q
2

 MRP+INT- q
2

 MRP+INT          (5.7) 
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The null and alternative hypotheses were the same as for other paired t-tests described 

in this section; as were values for k, n*, and n**. 

 

5.3.3 Recap of Paired t-Test Experiments for Evaluation of Prioritization Strategies.  

Table 4.1 summarizes each of the t-test experiments used for comparison of two 

chemical prioritization strategies. It provides some explanation of the rationale behind 

each test and help differentiate between similar sounding tests and metrics.  

 

Table 5.1. Summary of paired t-tests performed to evaluate various QMSA-based chemical 

prioritization strategies. 

Test Name Test Statistics Comparison
a
 

A ∆ = q
2

MRP - q
2
RAN MRP vs. RAN 

B ∆ = q
2

LRD - q
2

RAN LRD vs. RAN 

C ∆ = q
2

MRP+LRD- q
2
RAN MRP+ LRD vs. RAN 

D ∆ = q
2

MRP+LRD- q
2
MRP MRP+ LRD vs. MRP 

E ∆ = q
2

MRP+INT - q
2
RAN MRP+ INT vs. RAN 

F ∆ = q
2

MRP+INT - q
2
MRP MRP+ INT vs. MRP 

G ∆ = q
2

MRP+INT- q
2

MRP+LRD MRP+ INT vs. MRP+ LRD 

a
 Abbreviations: MRP is most representative compounds (minΣEDn), RAN is random compounds, 

LRD is least redundant compounds (maxΣEDm), INT is “intersection” compounds that are 

simultaneously most representative and least redundant.  
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5.3 Results and Discussion  

5.3.1 Validating the Usefulness of “Representativeness” and “Redundancy Avoidance” 

during Prioritization among Unmeasured Chemicals to Improve Predictive Accuracy 

  The first objective of this chapter was to demonstrate that a QMSA-based approach 

is useful for prioritization among unmeasured chemicals. In particular, we were 

hoping to validate the following hypothesis: If only a limited number of property 

measurements are available, QMSA can be used to determine which “maximally 

representative” unmeasured chemicals will be most useful in developing a QMSA 

model that will make accurate predictions for the rest of the unmeasured chemicals. 

As noted in Section 5.2.3, representativeness was parameterized using ΣEDn, whereby 

compounds exhibiting minΣEDn are said to be, on average, most “similar” to all other 

unmeasured compounds in the pool of 303 available structures.  

A paired t-test was used to compare the accuracy of QMSA models formulated 

using two different prioritization strategies: representativeness maximization versus 

random selection. Table 5.2 summarizes test statistics (t*) resulting from 10,000 

sampling trials of this test for two types of datasets: estrogenicity and Kd. These tests 

were designated Tests A in Table 5.1. 
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Table 5.2. q
2
 test statistics (t*) for hypothesis testing to compare use of representativeness 

maximization (MPR) versus random selection (RAN), for the estrogenicity and Kd datasets. These 

results correspond to Tests A in Table 5.1. All t* values correspond to P-value less than 0.001 

unless footnoted otherwise. 

k 
Estrogenicity Dataset Kd Dataset 

t
*
 Mean q

2
 MRP Mean q

2
RAN

 
t
*
 Mean q

2
 MRP Mean q

2
RAN

 

1 27 0.34 0.24 54 0.29 0.07 

2 28 0.42 0.34 39 0.40 0.28 

3 20 0.41 0.36 13 0.29 0.25 

4 17 0.39 0.36 -2.6
a
 0.18 0.18 

a 
Corresponding P-value is 0.009 

All but one of the t* values in Table 5.2 correspond to P-values less than 0.001. 

Thus, these data indicate that there is a statistically significant difference between 

q
2

MRP and q
2

RAN, whereby minΣEDn yields more accurate QMSA models than random 

selection of additional compounds to be measured. This is an indication that 

representativeness-based prioritization (as parameterized using minΣEDn) could make 

structure-property relationships a more useful and reliable tool for screening the 

environmental fate and behavior of widely diverse emerging contaminants.  

Another observation about Table 5.2 is that the mean q
2

MRP and q
2

RAN values do 

not monotonically decrease with increasing k. This is in contrast to previous QMSA 

analyses with estrogenicity and Kd data, in which smaller k value gave better q
2
 values 

(see Section 2.3.2 and 3.3.2). It’s possible that this discrepancy arises from use of 

“representativeness” in selecting among chemical candidates, because addition of 

chemicals that are most similar, on average, to every other chemical in the test dataset 

could neutralize the “nugget” effect associated with a heterogeneous, sparsely 

populated dataset.  
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Figure 5.4 depicts a subset of the chemical structures utilized in Figure 5.1, to 

demonstrate in 2-D why larger k might be more efficient for datasets with increasing 

numbers of “representative” compounds. In panel A, the error associated with 

prediction of Probe P using k = 1 is the distance between P and its nearest neighbor,

P4 . The error associated with k = 2 is the distance between P and the average of 

Chemicals 2 and 4, Pµ2−4 . Since P4 < Pµ2−4 , k = 1 results in a better prediction than 

k = 2. Panel B represents the same pool of measured data plus one highly 

“representative”, and thus centrally located, compound – Chemical B. The error 

associated with prediction of Probe P using k = 1 is the distance between P and its 

nearest neighbor, either Chemical F or Chemical 4 since P4 ≈ PF . Use of k = 2 

requires averaging these two nearest neighbors. Since µF-4 < (µF ≈ µ4), use of k = 2 

results in a more accurate prediction than k = 1 for the expanded dataset depicted 

Panel B. In this way, adding highly representative structures can improve a model’s 

ability to make predictions for new contaminants by offering them a higher density of 

“nearer” molecular neighbors. 

Figure 5.4. A two-dimensional (2-D) depiction of how representativeness-based QMSA 

prioritization among unmeasured chemicals could increase optimal k compared to k = 1. 
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In working with the available datasets for both selected environmental 

parameters and evaluating the extent of variability within each dataset, the 

effectiveness of representativeness prioritization in overcoming nugget heterogeneity 

was particularly pronounced for the estrogenicity measurements. This dataset was 

highly heterogeneous, and it contained a large number of values that were very 

disparate from the rest of the data. This is why increasing k from 1 to 2 in Table 4.2 

mediates such a dramatic increase in t*.  

The other experiment was also performed to show that prioritization only 

considering LRD should decrease the accuracy of QMSA models compared to 

random (arbitrary) prioritization. This result can be expected since LRD prioritization 

tends to select “unmeasured” chemicals which are not similar to most of “measured” 

chemicals, which is a large portion (30 out of 81 or 80) in the whole datasets. The 

results which correspond to Tests B in Table 5.1, are summarized in Tables 5.3. 

Table 5.3. q
2
 test statistics (t*) for hypothesis testing to compare use of representativeness 

minimization (LRP) versus random selection (RAN), for the estrogenicity and Kd datasets. These 

results correspond to Tests B in Table 5.1. All t* values correspond to P-value less than 0.001 

unless footnoted otherwise. 

k 
Estrogenicity Dataset Kd Dataset 

t
*
 Mean q

2
 LRP Mean q

2
RAN

 
t
*
 Mean q

2
 LRP Mean q

2
RAN

 

1 -84 -0.25 0.24 -4 0.05 0.07 

2 -102 -0.02 0.34 -5 0.27 0.28 

3 -106 0.09 0.36 -6 0.23 0.25 

4 -115 -0.22 0.36 0.1
a
 0.17 0.18 

a Corresponding P-value is 0.761 
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Several observations can be made about the results in Tables 5.3. First, LRD 

selection alone generally does not do a better job than random selection. This is 

evident from the large, negative t* values exhibited for most tests. This indicates 

QMSA prioritization selection should focus on MRP chemicals initially. This is 

logically reasonable since redundancy would only be a problem when the dataset is 

large enough. Initially it is more important to select MRP chemicals to make the 

initial chemicals as similar to all possible chemicals as possible. 

Second, the estrogenicity dataset is much more sensitive to LRD selection than 

the Kd dataset. The t* values for estrogenicity dataset are one order of magnitude 

larger than those of the Kd dataset. This is probably because the estrogenicity dataset 

is more heterogeneous than the Kd dataset. Therefore, addition of LRD chemicals to 

the estrogenicity dataset actually provided the “target” with very dissimilar neighbors 

in estrogenicity dataset. 

 

5.3.2 Validating the Simultaneous Usefulness of Representativeness and Redundancy 

Criteria during QMSA-Based Prioritization  

From Section 5.3.1, “representativeness” is an important consideration during 

chemical prioritization; however, intuitively, it seems reasonable that “redundancy 

avoidance” should also be important. This section thus describes results from several 

experiments designed to probe how representativeness-based selected can be 

improved. All tests involve prioritization of some n compounds exhibiting minΣEDn 
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(to capture representativeness) plus one chemical picked at least partly on the basis of 

redundancy avoidance (as parameterized using max ΣEDm).    

The first of these tests compared q
2
 values for QMSA models incorporating the 

n** unmeasured chemicals exhibiting smallest values of cumulative dissimilarity 

(MRP) plus one unmeasured chemical exhibiting largest cumulative dissimilarity 

(LRD), versus QMSA models incorporating n**+1 randomly selected chemicals. 

These tests were classified as “extremes” selection tests, because minΣEDn was 

evaluated separately from minΣEDn such that both extremes were represented. 

Although it may seem self-evident that application of representativeness and 

redundancy together should be preferable to random selection, because maximized 

representativeness (MRP) is already preferable to random selection, the mathematical 

parameterizations of the representativeness and redundancy criteria make it necessary 

to ensure that the application of both criteria together doesn’t undermine the 

usefulness of MRP alone. Because these mathematical parameterizations are nearly 

opposite to each other, it was necessary to ensure that addition of redundancy 

minimization didn’t invalidate the usefulness of representativeness maximization. 

These experiments were designated as Tests C in Table 5.1. Results are summarized 

in Table 5.4. 
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Table 5.4. q
2
 test statistics (t*) for hypothesis testing to compare simultaneous use of 

representativeness maximization and redundancy minimization versus random selection, for the 

estrogenicity and Kd datasets. These results correspond to Tests C in Table 5.1. All t* values 

correspond to P-value less than 0.001 unless footnoted otherwise. 

k 
Estrogenicity Dataset Kd Dataset 

t
*
 Mean q

2
 MRP+LRD Mean q

2
RAN

 
t
*
 Mean q

2
 MRP+LRD Mean q

2
RAN

 

1 60 0.39 0.04 18 0.20 0.10 

2 49 0.47 0.28 22 0.37 0.29 

3 45 0.42 0.24 7 0.31 0.29 

4 21 0.37 0.30 -1
a
 0.30 0.30 

a 
Corresponding P-value is 0.271 

Table 5.4 contains t* values for the hypothesis tests comparing MRP+LRD 

versus random prioritization, where LRD corresponds to the maxΣEDm 

parameterization. For these tests, 29 of the 30 chemical structures selected for 

addition to the measured data pool were from the low end of the ranked ΣEDn list. 

The other 1 chemical structure was from the high end of the ranked ΣEDm list. All 

P-values are less than 0.001 except k = 4 for the Kd dataset. Thus, the null hypothesis 

is generally rejected for both estrogenicity and Kd, and there is a statistically 

significant difference between the two approaches. These results therefore indicate 

that addition of the redundancy avoidance criterion, as parameterized using maxΣEDm, 

does not undermine the helpfulness of the MRP criterion during QMSA-based 

prioritization, even though the mathematical parameterizations for these two criteria 

are nearly opposites of one another.  

The second set of tests for simultaneous consideration of representativeness and 

redundancy were also categorized as an “extremes” test. These tests correspond to  

Tests D in Table 5.1, and results are summarized in Table 5.5. For both datasets, t* 
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values for all k correspond to P-values less than 0.001. Thus, these data indicate that 

MRP+LRD prioritization yields more accurate QMSA models than just MRP 

prioritization.  

 

Table 5.5. q
2
 test statistics (t*) for hypothesis testing to compare simultaneous use of 

representativeness maximization and redundancy minimization versus representativeness 

maximization only, for the estrogenicity and Kd datasets. These results correspond to Tests D in 

Table 5.1. All t* values correspond to P-value less than 0.001. 

k 

Estrogenicity Dataset Kd Dataset 

t
*
 Mean q

2
 MRP+LRD Mean q

2
MRP

 
t
*
 

Mean q
2

 

MRP+LRD 
Mean q

2
MRP

 

1 52 0.38 0.26 13 0.20 0.18 

2 40 0.44 0.37 21 0.36 0.34 

3 30 0.41 0.37 18 0.31 0.30 

4 16 0.37 0.35 8 0.30 0.29 

 

The t* values for the estrogenicity dataset are consistently higher than those for 

the Kd dataset, when considering the same k value. The difference in trends for t* 

versus k, whereby t* decreases with increasing k for estrogenicity but increases then 

decreases for Kd, may reflect underlying differences in the relative density and 

heterogeneity of the estrogenicity and Kd datasets. For example, the estrogenicity 

dataset exhibits larger heterogeneity (larger ranges of measured property values) with 

significant clustering (spatial “nuggets”), whereby there are several groups of 

structures that are similar to each other but very different from the most 

“representative” structures in the rest of the 303-chemical pool. For all k, forcing the 

model to select an unmeasured chemical from one of the clusters, which tend to be 
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poorly predicted because they are so dissimilar to the bulk of the more “representative” 

chemicals, will improve the model’s ability to make predictions for other 

poorly-predicted chemicals. This likely improves the overall model accuracy, because 

the new chemical will fill an existing “gap” between the well-predicted clusters and 

the poorly-predicted outliers. In contrast, the Kd dataset tends is far more homogenous 

(smaller ranges of measured property values) with more even coverage (less 

clustering). This might make it less important and more difficult to avoid redundancy 

when using max ΣEDm, because there are fewer (if any) “gaps” to fill. It’s currently 

unclear why this effect should decrease at larger k values; however, it might be 

possible to design artificial datasets (with various heterogeneity, coverage, and 

clustering patterns) to explore why this could be and explore this effect in depth. 

 

5.3.3 Validating the Usefulness of Intersection Compounds during Intersection 

Three types of experiments were designed to test the hypothesis that chemicals at 

the intersection between most representative (minΣEDn) and least redundant 

(maxΣEDm ) should be the best candidates for addition to the measured dataset. In 

particular, picking one set of compounds that exhibit midrange values of both 

representativeness and redundancy avoidance could be better than picking sets of 

compounds that exhibit one of either desirable attributes. This is why these tests are 

said to evaluate “intersection” rather than “extreme” selection strategies. These tests 

were designated as Tests E-G in Table 5.1. 
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Table 5.6. q
2
 test statistics (t*) for hypothesis testing to compare INT selection versus random 

selection, for the estrogenicity and Kd datasets. These results correspond to Tests E in Table 5.1. 

All t* values correspond to P-value less than 0.001 unless footnoted otherwise. 

k 
Estrogenicity Dataset Kd Dataset 

t
*
 Mean q

2
 MRP+INT Mean q

2
RAN

 
t
*
 Mean q

2
 MRP+INT Mean q

2
RAN

 

1 44 0.26 0.04 16 0.18 0.10 

2 40 0.37 0.21 22 0.35 0.27 

3 36 0.37 0.24 10 0.32 0.29 

4 15 0.34 0.30 3
a
 0.31 0.30 

a Corresponding P-value is 0.002 

The results in Table 5.6 correspond to Test E in Table 5.1. For these tests, 

compounds were selected from the so-called “intersection” (INT) of the minΣEDn 

(representativeness) rankings and the maxΣEDm (redundancy) rankings. More 

specifically, 29 of 30 chemical structures selected for addition to the measured data 

pool were from the low end of the ranked ΣEDn list while the other 1 was from INT. 

This was done to avoid using mathematically opposite parameterizations for the two 

prioritization criteria of interest; in an attempt to mitigate the possible tradeoff 

associated with the seemingly contradictory criteria. All t* values in the lower half of 

Table 5.6 correspond to P-values less than 0.002. Thus, neither of the evaluated 

redundancy parameterizations undermines the usefulness of the maximized 

representativeness criterion during QMSA-based prioritization. For both the LRD and 

the INT approaches, the combined use of the representativeness and redundancy 

criteria together results in better QMSA accuracy than random selection of 

compounds to be measured. Again, k = 2 ensures that best model accuracy was 

achieved for both datasets. 
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The results in Table 5.7 corresponding to Test F. These results are less clear than 

the results in Table 5.6. Many t* values correspond to statistically significant P-values 

which point to rejection of the null hypothesis (H0), which suggests that there is some 

statistically significant difference in QMSA estimation accuracy for use of MRP+INT 

versus just MPR by itself. However, several of the statistically significant t* values 

are less than zero, which means t hat the MRP + INT approach is sometimes better 

and sometimes worse than just the maximized representativeness approach. As such, 

there is no conclusive evidence to show that there is any difference between the two 

approaches. In light of these conflicting results, we cannot conclusively say that the 

MRP+INT is generally useful as a QMSA-based prioritization strategy. 

Table 5.7. q
2
 test statistics (t*) for hypothesis testing to compare INT selection versus 

represnetativeness selection, for the estrogenicity and Kd datasets. These results correspond to 

Tests F in Table 5.1. All t* values correspond to P-value less than 0.001 unless footnoted 

otherwise. 

k 
Estrogenicity Dataset Kd Dataset 

t
*
 Mean q

2
 MRP+INT Mean q

2
MRP

 
t
*
 Mean q

2
 MRP+INT Mean q

2
MRP

 

1 12 0.27 0.27 -2 b 0.18 0.18 

2 5 0.37 0.37 14 0.38 0.37 

3 -2a 0.37 0.37 24 0.32 0.30 

4 -8 0.34 0.35 -8 0.30 0.31 

a Corresponding P-value is 0.110; b Corresponding P-value is 0.046 

Now the question arises, which prioritization method is better, LRD or INT? The 

inconclusive results in Table 5.6 make it worthwhile to explicitly evaluate the relative 

usefulness of the LRD and INT redundancy minimization parameterizations; however, 

it is emphasized that this is explored as a question of practical implementation rather 

than an investigation of generalized, theoretical usefulness. For this comparison, it 
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was assumed that representativeness maximization and redundancy minimization are 

implemented together (i.e., MRP+LRD vs. MRP+INT). The following hypothesis set 

was used: H0: µ∆ = 0, there is no difference between the LRD versus INT 

parameterizations when using redundancy minimization and representativeness 

maximization; and H0: µ∆ ≠ 0, there is some appreciable difference between the LRD 

versus INT parameterizations when using redundancy minimization and 

representativeness maximization. For these hypotheses, ∆ was defined as q
2

MRP+LRD 

minus q
2

MRP+INT, such that values greater than zero correspond to increased accuracy 

for MRP+LRD compared to MRP+INT. This test corresponds to Test G in Table 5.1 

Results are summarized in Table 5.8. 

From Table 5.8, it is very obvious that the MRP+LRD approach results in more 

increased accuracy for QMSA predictions compared to MRP+INT. All t* values 

correspond to P-values less than 0.001. This is consistent with results from Table 5.5 

and Table 5.7, wherein use of MPR+LRD is shown to improve QMSA accuracy 

compared to representativeness maximization for all tested k values but use of  

MRP+INT exhibited some increases and some decreases in QMSA accuracy.   

Table 5.8. Test statistics (t*) for hypothesis testing to compare use of representativeness 

maximization with either LRD or INT parameterization of the redundancy criterion, for the 

estrogenicity and Kd datasets. These results correspond to Test G in Table 5.1. 

k 

Estrogenicity Dataset
a
 Kd Dataset

a
 

t*
 Mean q2

 MRP+LRD Mean q2
MRP+INT

 t* Mean q2
 MRP+LRD Mean q2

MRP+INT
 

1 16.1 0.377 0.343 45.9 0.192 0.173 

2 58.1 0.465 0.372 19.8 0.356 0.339 

3 75.4 0.416 0.304 15.8 0.307 0.297 

4 89.6 0.369 0.249 6.2 0.294 0.291 
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    Table 5.9 presents a recap of the paired t-tests performed in this chapter. To sum 

up, we conclude that “representativeness maximization” is a very important criterion 

when determining what new “unmeasured” chemicals should be added to a dataset. 

There is also some evidence that “redundancy avoidance” is an important 

prioritization criterion. We expect that redundancy avoidance will become 

increasingly important over time, once sufficient “representative” chemicals have 

been added to datasets of interest  

 

Table 5.9. Recap of the results of hypothesis q
2
 tests for comparisons among selected 

prioritization strategies. 

Test Comparison Conclusion for Estrogenicity
a
 Conclusion for Kd 

a
 

A MRP vs. RAN MRP > RAN MRP > RAN 

B LRD vs. RAN LRD < RAN LRD < RAN 

C MRP + LRD vs. RAN MRP + LRD > RAN MRP + LRD > RAN 

D MRP + INT vs. RAN MRP + INT > RAN MRP + INT > RAN 

E MRP + LRD vs. MRP MRP + LRD > MRP MRP + LRD > MRP 

F MRP + INT vs. MRP MRP + INT > MRP MRP + INT > MRP 

G MRP + LRD vs. MRP + INT MRP + LRD > MRP + INT MRP + LRD > MRP + INT 

a
 based on tests achieving highest q

2
 value for each prioritization strategy. 

 

5.3.4 Additional Observations Regarding the Differences among Datasets  

One common observation about Tables 5.2-5.9 is that, for hypotheses tests 

delivering statistically significant conclusions (i.e., P-values less than 0.05), t* values 

tend to be larger for the estrogenicity dataset than for the Kd dataset. This indicates 

that the QMSA prioritization methods provided better prediction accuracy for the 
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estrogenicity dataset than for Kd dataset, offering potentially improved enhancement 

of QMSA accuracy compared to what can be achieved for the Kd dataset.  

The reason why QMSA-based prioritization achieves different improvement for 

the two datasets is probably related to underlying differences in the structure of the 

two datasets. As noted previously, the estrogenicity dataset exhibits larger 

heterogeneity with significant clustering compared to the relatively more homogenous 

Kd dataset. This is once again demonstrated from the cumulative probability functions 

plotted in Figure 5.5. In Figure 5.5, the measured chemicals in Kd dataset are clustered 

closer together in multi-dimensional space than those in estrogenicity dataset. This 

can be illustrated by comparison of the median ΣED values (i.e., 50% cumulative 

probability, the horizontal line in Figure 5.5) for each dataset: roughly 2600 for Kd 

versus roughly 2750 for estrogenicity. The datasets with smaller median ΣED values 

should be more clustered and therefore more homogenous than those with larger 

values. Therefore, we concluded that the estrogenicity dataset exhibits larger 

heterogeneity with significant clustering, whereby there are several groups of 

structures which are similar to each other but very different from the most 

representative structures in the rest of the 303-chemical pool. 
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Figure 5.5. Cumulative probability analysis for both datasets based on ΣED of each chemical with 

respect to other 302 in the original pool. Medians for two datasets are indicated by the 

intersections between the dash line and cumulative probability curves. 

Within the estrogenicity dataset, for all k values, forcing the model to select an 

unmeasured chemical from one of the clusters, which tend to be poorly predicted 

because they are so dissimilar to the many more “representative” chemicals, will 

improve the model’s ability to make predictions for other poorly-predicted chemicals. 

This likely improves the overall model accuracy, because the new chemical will fill 

an existing “gap” between the well-predicted clusters and the poorly-predicted 

outliers. Therefore, redundancy avoidance should become a higher priority when 

considering incorporation of new chemicals for heterogeneous datasets. In 

comparably homogeneous sets, maximizing representativeness is the most important 

consideration. 
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5.3.4 Selection of External Validation Compounds 

Three “unmeasured” chemicals within the 303 chemical pool were identified as 

good candidates for external validation of Kd predictions based on MRP, LRD, or INT 

prioritization. These are fluconazole, metformin, and benazepril, respectively. These 

chemicals were selected for measurement in order to validate QMSA model 

predictions. More specific, fluconazole is one of MRP chemicals in the 303 chemical 

dataset. Metformin is one of LRD chemicals and benazepril is one of INT chemicals. 

Therefore, once they are added to the Kd dataset, they will novel representative and/or 

non-redundant information compared to other, previously-measured chemicals. This 

is one of reasons why we chose these three selected chemicals for Kd and kb 

measurements in previous two chapters. Another reasons include they are top 200 

prescribed pharmaceuticals in U.S. and their mass loadings to WWTPs (Ottmar et al., 

2010) are very high. However, Kd and kb of these three have never been reported 

before. 
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5.4 Conclusions 

In this chapter, we have demonstrated the usefulness of QMSA as a tool for 

selection of which “unmeasured” candidates should be prioritized for measurement to 

increase a QMSA model’s accuracy. These results suggest that QMSA is indeed a 

potentially powerful tool for prioritization among unmeasured chemicals. In particular, 

we showed that QMSA-based prioritization using some combination of maximized 

representativeness and minimized redundancy approaches affords better improvement 

in QMSA estimation of property values among the remaining unmeasured compounds 

than random selection. This trend was observed for both the estrogenicity dataset and 

the sorption distribution dataset, suggesting that perhaps the two-fold prioritization 

criteria could be used to improve estimation accuracy for a wide variety of 

environmental parameters. The results from this study could be construed as 

motivation for a change in the current paradigm for selection of which compounds 

should be evaluated in a particular research study; i.e., greater emphasis on a 

modeling-based selection strategy given that it is impossible to make individual 

measurements for each and every emerging contaminant of interest.   

This chapter also provided a future research direction by identifying three 

chemicals that are high priorities for experimental evaluation. They are fluconazole, 

metformin, and benazepril. These three chemicals serve as a tool to examine the 

external validity of our QMSA models in subsequent chapters. 

  



 

153 

 

5.5 References 

Andersen, H.R., Hansen, M., Kjolholt, J., Stuer-Lauridsen, F., Ternes, T., and Halling-Sorensen, B. 

(2005) Assessment of the importance of sorption for steroid estrogens removal during 

activated sludge treatment. Chemosphere, 61, 139-146. 

 

Barron, L., Havel, J., Purcell, M., Szpak, M., Kelleher, B., and Paull, B. (2009) Predicting sorption 

of pharmaceuticals and personal care products onto soil and digested sludge using artificial 

neural networks. Analyst, 134, 663-670. 

 

Carballa, M., Omil, F., Ternes, T., and Lema, J.M. (2007) Fate of pharmaceutical and personal 

care products (PPCPs) during anaerobic digestion of sewage sludge. Water Research. 41, 

2139-2150. 

 

Feng, Y., Zhang, Z., Gao, P., Su, H., Yu, Y., and Ren, N. (2010) Adsorption behavior of EE2 

(17α-ethinylestradiol) onto the inactivated sewage sludge: Kinetics, thermodynamics and 

influence factors. Journal of Hazardous Materials. 175, 970-976. 

 

Hawkins, D.M., Basak, S.C., and Mills, D. (2003) Assessing model fit by cross-validation. J. 

Chem, Inf. Comput. Sci. 43, 579-586. 

 

Kupper, T., Plagellat, C., Brändli, R.C., de Alencastro, L.F., Grandjean, D., and Tarradellas, J. 

(2006) Fate and removal of polycyclic musks, UV filters and biocides during wastewater 

treatment. Water Research. 40, 2603-2612. 

 

Li C., and Colosi, L.M. (2012) Molecular similarity analysis as tool to prioritize research among 

emerging contaminants in the environment. Separation and Purification Technology. 84, 

22-28. 

 

 



 

154 

 

Ottmar, K.J., Colosi, L.M., Smith, J.A. (2010b) Development and application of a model to 

estimate wastewater treatment plant prescription pharmaceutical influent loadings and 

concentrations. Bull. Environ. Contam. Toxicol. 84, 507-512. 

 

Pharmacy Times. (2013) Top 200 Drugs of 2011. Last accessed in April 21, 2013. 

http://www.pharmacytimes.com/_media/_pdf/Top_200_Drugs_2011_Total_Rx.pdf 

 

Simonich, S.L., Federle, T.W., Eckhoff, W.S., Rottiers, Webb, A., Sabaliunas, S. D., and de Wolf, 

W. (2002) Removal of fragrance material during US and European wastewater treatment. 

Environ. Sci. Technol. 36, 2839–2847. 

 

Ternes, T.A., Herrmann, N., Bonerz, M., Knacker, T., Siegrist, H., and Joss, A. (2004) A rapid 

method to measure the solid–water distribution coefficient (Kd) for pharmaceuticals and 

musk fragrances in sewage sludge. Water Research, 38, 4075-4084. 

 

Wick, A., Fink, G., Joss, A., Siegrist, H., and Ternes, T.A. (2009) Fate of beta blockers and 

psycho-active drugs in conventional wastewater treatment. Water Research. 43, 1060-1074. 

 

Zhao, J., Li, Y., Zhang, C., Zeng, Q., and Zhou, Q. (2008) Sorption and degradation of bisphenol 

A by aerobic activated sludge. J. Hazard. Mater. 155, 305–311. 

  



 

155 

 

Chapter 6 – Conclusions and Future Work 

 

6.1 Conclusions 

    This research comprehensively investigated the applicability of QMSA as a tool 

for estimation several important environmental engineering parameters that have not 

been previously evaluated by QMSA before. The overall objective was not only to 

develop a series of accurate predictive tools for property estimation but also to apply 

the generated property estimates to characterize the fate of three important emerging 

contaminants in representative WWTP systems. Here we recap the three hypotheses 

proposed in Chapter 1: 

Hypothesis 1:  QMSA models can be used to accurately predict environmental 

engineering parameters of interest. 

The first hypothesis was demonstrated as true in Chapters 2, 3, and 4. In Chapter 

2, we first demonstrated that QMSA can accurately predict environmental information 

for large, highly diverse classes of chemical structures. This is made evident by the 

good q
2
 values (0.84) achieved for prediction of in vitro estrogenicity measurements. 

Thus, it seems likely that efficient use of accurate QMSA models could deemphasize 

the need for labor-intensive, time-consuming analytical measurements to support 

regulatory agendas related to emerging contaminants. In Chapter 3, this hypothesis is 

proven by the excellent internal-validated q
2
 values (as high as 0.82) achieved for 

prediction of this Kd dataset and good external prediction results for Kd of three 

priority emerging contaminants (fluconazole, metformin, and benazepril) which have 
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never been measured before. In Chapter 4, the results once again provide clear 

evidence that QMSA models can be used to predict kb for large, highly diverse classes 

of chemical structures. This is proven by the excellent internal-validated q
2
 values (as 

high as 0.78) achieved for prediction and external prediction results for kb of three 

emerging contaminants which have never been measured before. 

Hypothesis 2:  Kd and kb of selected emerging contaminants can be useful for 

estimation their effluent concentrations out from WWTPs 

The second hypothesis was demonstrated in Chapter 4. The results from Chapter 4 

demonstrate that the fate of two selected emerging contaminants can be well predicted 

using either a simple mass balance model or a slightly more complex model from 

previously published literature. Data in Chapter 4 also provides additional indication 

that WWTP operational parameters may have a great impact on effluent 

concentrations. Therefore it is essential to obtain WWTP-specific operational 

parameters in order to generate accurate calculations. 

Hypothesis 3:  Prioritizations evaluated by QMSA are critical factors for 

prioritizing among unmeasured chemicals and determining which 

additional measurements will result in maximally increased model 

accuracy. 

The last hypothesis is demonstrated in Chapter 5, where we have clearly 

demonstrated the usefulness of QMSA as a tool for selection best possible 

“unmeasured” candidates. Those best possible candidates, once measured, can be 

expected to increase QMSA model’s accuracy. More specificcally, Chapter 5 provides 
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us three QMSA selection criteria, i.e. “representativeness”, “redundancy avoidance”, 

and “intersection”. All of these are demonstrated as effective tools for selection of 

chemicals that can improve QMSA models’ accuracy compared to random selection. 

However, the relative effectiveness among these three is highly dependent on the 

structure of individual investigated dataset.  
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6.2 Future work 

    In general, this research demonstrates that QMSA can be applied for a broader 

prospective, i.e. to predict essential environmental engineering parameters. However, 

more research would be beneficial and highly essential for future consideration. First, 

current QMSA relies on the averaging of property values among several measured 

nearest neighbors for the target chemical. This can sometimes be very problematic, 

since this procedure considers all nearest neighbors to be equally relevant. Therefore a 

more detailed evaluation of different nearest neighbor based on their individual EDs 

to the target chemical should be investigated. The possible distance related algorithms 

which can be applied in this scenario could be Inverse Distance Weighting or Kriging. 

Second, more quantitative parameters should be introduced to tell whether a dataset is 

homogenous or heterogeneous. This is particular important when considering what 

are the best possible unmeasured chemicals to be measured to improve QMSA’s 

accuracy. As discussed in Chapter 5, structural difference among the two case study 

datasets lead to selection of different QMSA prioritization methods for each dataset. 

Third, in this research, QMSA was selected as the primary predictive models and 

PCA coupled with kNN algorithm were the primary statistical methods. In future, it is 

very good to know the predictive performance of traditional regression-based QSPRs 

on the studied datasets. It is also interesting to test if the model accuracy could be 

further improved by some other advanced machine learning techniques, such as 

Artificial Neural Network coupled with kNN. Finally, in Chapter 4, we illustrated the 

significance of the sampling campaign on elimination of actual sampling variation. To 
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further test the two models used in Chapter 4, it would be greatly preferable to 

perform the comprehensive sampling campaign in the future. 
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