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Abstract

The study of free, and more generally, right-angled Artin subgroups of mapping class

groups has a long history in geometric group theory. The goal of this thesis is to

present a general embedding theorem for such subgroups by combining ideas from

Koberda and Clay-Leininger-Mangahas in a unified way, via the hierarchical structure

of curve graphs as laid out by Masur-Minsky. The original mathematics in this

dissertation is contained in the article [45].
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Chapter 1

Introduction

Let 𝑆 be an oriented surface of finite type, 𝑖.𝑒. 𝜋1(𝑆) is finitely generated. The

mapping class group of 𝑆 is the group of homotopy classes of orientation-preserving

homeomorphisms of 𝑆,

𝑀𝐶𝐺(𝑆) := 𝐻𝑜𝑚𝑒𝑜+(𝑆)/ℎ𝑜𝑚𝑜𝑡𝑜𝑝𝑦.

The study of free subgroups of 𝑀𝐶𝐺(𝑆), in a sense, goes back to Klein [34], who

introduced the well-known Ping-Pong Lemma and showed that the matrices

𝐴 =

⎡⎣1 2

0 1

⎤⎦ and 𝐵 =

⎡⎣1 0

2 1

⎤⎦
generate a free subgroup of 𝑆𝐿(2,Z). We may identify 𝑆𝐿(2,Z) with 𝑀𝐶𝐺(𝑇 2), the

mapping class of the torus, and these matrices correspond to the squares of the Dehn

twists about the standard meridian and longitude curves. More generally (i.e. for

hyperbolic surfaces), it follows from Ivanov’s [29] and McCarthy’s [43] proofs of the

Tits alternative for 𝑀𝐶𝐺(𝑆) that there is in fact an abundance of free subgroups.

We wish to broaden our view to the larger class of right-angled Artin groups

(hereafter called RAAGs). Recall that a RAAG has a presentation determined by a
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finite simplicial graph Γ with vertex set 𝑉 (Γ) and edge set 𝐸(Γ):

𝐴(Γ) = ⟨𝑣𝑖 ∈ 𝑉 (Γ) | [𝑣𝑖, 𝑣𝑗] = 1 ⇐⇒ (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(Γ)⟩.

Regarding subgroups of 𝑀𝐶𝐺(𝑆) of this form, Koberda showed that they too can

be found in abundance. All of the terminology below will be defined shortly, and the

author notes that the given restrictions are mild.

Theorem 1 (Koberda, [35] Theorem 1.1). Let {𝑓1, . . . , 𝑓𝑚} be an irredundant col-

lection of pure mapping classes supported on connected subsurfaces 𝑆1, . . . , 𝑆𝑚 ⊆ 𝑆.

There exists some 𝑁 ̸= 0 such that for all 𝑛 ≥ 𝑁 ,

⟨𝑓𝑛
1 , . . . , 𝑓

𝑛
𝑚⟩ ∼= 𝐴(Γ),

where Γ is the co-intersection graph of the subsurfaces {𝑆𝑖}.

Theorem 1 admits two interpretations. The first, as suggested above, is that any

infinite subgroup of a fixed mapping class group contains a RAAG (in fact, infinitely

many). Secondly, given a RAAG, one can embed it in a mapping class group provided

the corresponding surface is complicated enough to contain a collection of subsurfaces

with the appropriate intersection pattern. The relationship between RAAGs and

mapping class groups goes further - via the work of Kim-Koberda in [33], there are

a number of analogies between (subgroups of) RAAGs and (subgroups of) mapping

class groups. These are obtained by comparing the action of a mapping class group on

its corresponding curve graph to the action of a RAAG on its corresponding extension

graph; we will discuss the former in some detail in Chapter 3, and though the theory

of the latter is quite similar, it is beyond the scope of the present discussion.

Koberda’s proof of Theorem 1 goes by playing ping-pong on a space of geodesic

laminations on 𝑆, and relies on certain non-constructive compactness and continuity

arguments, so it is not immediately clear how the number 𝑁 depends on 𝑆 or on the



3

given mapping classes. The goal of this dissertation is to effectivize and strengthen

Koberda’s theorem. The constant in the statement of the theorem below is explicitly

computed in Chapter 5.

Theorem 2. Let {𝑓1, . . . , 𝑓𝑚} be an irredundant collection of pure mapping classes

supported on connected subsurfaces 𝑆1, . . . , 𝑆𝑚 ⊆ 𝑆. There exists an explicit constant

𝑁 = 𝑁({𝑓𝑖}), depending only on certain geometric data extracted from the given

collection of mapping classes, such that for all 𝑛 ≥ 𝑁 ,

𝐻 = ⟨𝑓𝑛
1 , . . . , 𝑓

𝑛
𝑚⟩ ∼= 𝐴(Γ),

where Γ is the co-intersection graph of the subsurfaces {𝑆𝑖}. Moreover, increasing 𝑁

in a controlled way, we can guarantee that 𝐻 is undistorted in 𝑀𝐶𝐺(𝑆).

In the “moreover" statement, we say a finitely generated subgroup 𝐻 of a finitely

generated group 𝐺 is undistorted if, roughly, the intrinsic word metric on 𝐻 agrees

with the extrinsic word metric inherited from 𝐺, up to linearly bounded error. Com-

puting the constant explicitly in the case that all mapping classes in question are

Dehn twists, we have the following corollary.

Corollary 1. Let {𝑡1, . . . , 𝑡𝑚} be a collection of Dehn twists about distinct simple

closed curves {𝛽1, . . . , 𝛽𝑚}, and let

𝑁 = 18 + max
𝑖,𝑗

𝑖(𝛽𝑖, 𝛽𝑗),

where 𝑖(·, ·) denotes geometric intersecion number. Then for all 𝑛 ≥ 𝑁 , we have

⟨𝑡𝑛1 , . . . , 𝑡𝑛𝑚⟩ ∼= 𝐴(Γ),

where Γ is the subgraph of the curve graph 𝒞(𝑆) spanned by {𝛽1, . . . , 𝛽𝑚}.

A similar bound has been found by Seo using methods from hyperbolic and coarse
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geometry, and Bass-Serre theory. It is worth mentioning that if there are more than

two mapping classes involved, the constant 𝑁 necessarily depends on the given map-

ping classes, as the following example illustrates. Let 𝛽1 and 𝛽2 be two non-trivially

intersecting simple closed curves, and consider the Dehn twists

𝑡1 = 𝑡𝛽1 , 𝑡2 = 𝑡𝛽2 , and 𝑡3 = 𝑡2
𝐾

1 𝑡2𝑡
−2𝐾

1

for some 𝐾 > 0. Then for no 1 ≤ 𝑘 ≤ 𝐾 is ⟨𝑡2𝑘1 , 𝑡2
𝑘

2 , 𝑡2
𝑘

3 ⟩ isomorphic to a free group of

rank 3, even though the corresponding twisting curves pairwise intersect.

Using similar methods, we are also able to determine the Nielsen-Thurston type

for all elements of these subgroups.

Theorem 3. Let 𝐻 be as in Theorem 2. Then every ℎ ∈ 𝐻 is pseudo-Anosov on its

support. In particular, if the support of ℎ is all of 𝑆, then ℎ is pseudo-Anosov.

Every RAAG can be embedded in some mapping class group, and moreover there

is always an embedding that satisfies the hypotheses of Theorem 2 - using Crisp-

Wiest’s construction [16], every RAAG can be realized as a subgroup of a mapping

class group satisfying the hypotheses of Theorem 2 by sending the vertex generators

to the 𝑁 ≥ 19 powers of a suitable collection of Dehn twists. The control over the

geometry of this embedding afforded by Theorem 2 allows one to transfer questions

about RAAGs into a topological setting. For example, an immediate consequence

of Theorem 3 is that RAAGs are torsion-free, which was previously known by more

advanced techniques due to Charney (cf. [12]). It would be interesting to explore just

how much of the combinatorial/geometric group theory of RAAGs can be deduced

via such embeddings.

This dissertation is organized as follows: in Chapter 2 we establish the relevant

terminology and some basic notions we will need from coarse geometry, geometric

group theory (including a proof of a new ping-pong lemma for RAAGs), and the

theory of surfaces and their mapping class groups. In Chapter 3 we recall the work
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of Masur-Minsky on the geometry of the curve graph, including the construction of

subsurface projections and other relevant results from [42], which we use to build our

ping-pong table. In Chapter 4 we briefly recall the idea of the proof of Koberda’s

theorem before giving a concise treatment of the Clay-Leininger Mangahas construc-

tion of admissible embeddings; also in this section is a generalization of the famous

Behrstock inequality regarding projection distance bounds between geodesics in the

curve graph and its curve subgraphs. In Chapter 5 we carry out the proofs of the main

theorems and discuss an application to the theory of convex cocompact subgroups of

mapping class groups; this final section is self-contained.
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Chapter 2

Background

2.1 A Bit of Coarse Geometry

For a thorough treatment of coarse geometry, see [10]. Let (𝑋1, 𝑑𝑋1) and (𝑋2, 𝑑𝑋2)

be metric spaces. We say a (not-necessarily-continuous) map 𝑓 : 𝑋1 → 𝑋2 is a (𝐴,𝐵)-

quasi-isometric embedding if there are constants 𝐴 ≥ 1 and 𝐵 ≥ 0 such that for all

𝑥, 𝑦 ∈ 𝑋1,

1

𝐴
𝑑𝑋1(𝑥, 𝑦) −𝐵 ≤ 𝑑𝑋2(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝐴𝑑𝑋1(𝑥, 𝑦) + 𝐵.

If there is a constant 𝐷 > 0 such that any 𝑥2 ∈ 𝑋2 is within a distance 𝐷 of 𝑓(𝑋1),

we further say 𝑓 is a quasi-isometry, and that 𝑋1 and 𝑋2 are quasi-isometric. Though

it might seem like such an equivalence relation on metric spaces is too rough to be

useful, it turns out that many geometric properties of interest are in fact preserved

under quasi-isometries (and quasi-isometric embeddings). One such property that

has played a central role in geometric group theory since its inception is Cannon-

Gromov-Rips’ 𝛿-hyperbolicity, a coarse notion of negative curvature reminiscent of

classical hyperbolic geometry. We say a metric space 𝑋 is 𝛿-hyperbolic if there exists

a uniform constant 𝛿 so that all geodesic triangles are “𝛿-slim", 𝑖.𝑒. each side is
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contained in the union of the 𝛿-neighborhoods of the other two; see Figure 2-1.

Figure 2-1: The geodesic between 𝑦 and 𝑧 is contained in the union of the 𝛿-
neighborhoods of those between 𝑥 and 𝑦 and 𝑥 and 𝑧

We note that there are many other equivalent characterizations of 𝛿-hyperbolicity,

each with their own advantages. While the theory of 𝛿-hyperbolic geometry is vast

and beautiful, of particular use to us will be the constraints it puts on the behavior of

nearest-point projections. We record the following two lemmas for later use. The first

says that nearest-point projections of points are uniformly bounded-diameter sets.

Lemma 1. Let 𝑥 ∈ 𝑋, a 𝛿-hyperbolic space, and let 𝛼 ⊂ 𝑋 be a bi-infinite geodesic.

Denote by 𝜋𝛼 : 𝑋 → 𝛼 a set-valued nearest-point projection. Then

𝑑𝑖𝑎𝑚𝑋{𝜋𝛼(𝑥)} ≤ 4𝛿.

The second says that if the nearest-point projections of two points are far apart,

then the points must have been far apart.

Lemma 2. Let 𝛼 ⊂ 𝑋 be a bi-infinite geodesic and 𝑥, 𝑦 ∈ 𝑋 be distinct points. For

subsets 𝐴,𝐵 ⊂ 𝑋 let 𝑑𝑋(𝐴,𝐵) = 𝑑𝑖𝑎𝑚𝑋(𝐴 ∪𝐵). Then

𝑑𝑋(𝜋𝛼(𝑥), 𝜋𝛼(𝑦)) ≤ 𝑑𝑋(𝑥, 𝑦) + 24𝛿.
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The preceding lemma generalizes to a so-called “distance formula” for hyperbolic

spaces, originally observed by Bestvina-Bromberg-Fujiwara [5], see also [13]. In the

statement, a WPD element is a generalization of a classical hyperbolic (or loxodromic)

isometry, and in particular such an element has a “quasi-axis” on which it acts by

translation.

Theorem 4 (Clay-Mangahas-Margalit, [13] Proposition 7.1). Let 𝐺 be a group acting

by isometries on a 𝛿-hyperbolic space 𝑋, and let {𝑓𝑖} be a finite collectin of WPD

elements. Let 𝒜 be the collection of all quasi-axes of the 𝐺-conjugates of the 𝑓𝑖.

There exists constants 𝐴, 𝐵, and 𝑀 such that for all 𝑥, 𝑦 ∈ 𝑋,

𝑑𝑋(𝑥, 𝑦) ≥ 1

𝐴

∑︁
𝛼∈𝒜

{{𝑑𝑋(𝜋𝛼(𝑥), 𝜋𝛼(𝑦))}}𝑀 −𝐵

where {{𝑧}}𝑀 is equal to 𝑧 if 𝑧 ≥ 𝑀 or 0 if 𝑧 < 𝑀 .

Finally, recall that to a group 𝐺 with generating set 𝑌 we may associate the

Cayley graph 𝐶𝑎𝑦(𝐺, 𝑌 ), and that equipped with the graph metric 𝐶𝑎𝑦(𝐺, 𝑌 ) is a

metric space. Moreover, if 𝐺 is finitely generated, then any two metrics coming from

different finite generating sets 𝑌 and 𝑌 ′ yield quasi-isometric Cayley graphs; see Fig.

2-2 for an example of two generating sets for Z, and observe how the roughly looks

the same “from a distance". In this way, we can view groups themselves as metric

spaces, and the coarse geometry of the Cayley graph has consequences for the algebra

of the group. One example of this phenomenon is hyperbolicity - we say a finitely

generated group 𝐺 is hyperbolic if some Cayley graph for 𝐺 is 𝛿-hyperbolic. This

strong geometric property provides a host of consequences for 𝐺, for example finite

presentability and satisfaction of the Tits alternative.

We may now put a (left-invariant) metric 𝑑𝐺 on 𝐺, the word metric, defined by

𝑑𝐺(𝑔, ℎ) := 𝑑𝐶𝑎𝑦(𝐺,𝑌 )(𝑔, ℎ) = 𝑑𝐶𝑎𝑦(𝐺,𝑌 )(1, ℎ
−1𝑔).
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Figure 2-2: Different finite generating sets yield quasi-isometric Cayley graphs.

Regarding the statement of Theorem 2, we say that a finitely generated subgroup

𝐻 < 𝐺 is undistorted if the inclusion of 𝐻 into 𝐺 is a quasi-isometric embedding

with respect to their respective word metrics. This means that the intrinsic word

metric on the subgroup agrees up to controlled error with the extrensic word metric

inherited from the ambient group. This coarse-geometric property, in some cases,

has algebraic consequences for the subgroup in question- for example, undistorted

subgroups of hyperbolic groups are again hyperbolic. As we will see later, a certain

class of undistorted subgroups of mapping class groups give rise to hyperbolic surface

group extensions.

We end this section with what is sometimes called the “Fundamental Lemma of

Geometric Group Theory”, also known as the Milnor-Schwarz lemma.

Lemma 3 (Milnor-Schwarz, 𝑐𝑓. [19] Theorem 8.2). Suppose a group 𝐺 is acting by

isometries on a geodesic metric space 𝑋, such that the action is properly discontinuous

and cocompact. Then 𝐺 is finitely generated and quasi-isometric to 𝑋.
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2.2 RAAGs

Excellent surveys on right-angled Artin groups can be found in [12] and [36], and

all of the facts stated below can be found therein. Given a finite simplicial graph

Γ with vertex set 𝑉 (Γ) and edge set 𝐸(Γ), the right-angled Artin group on Γ is the

group with the presentation

𝐴(Γ) := ⟨𝑣𝑖 ∈ 𝑉 (Γ) | [𝑣𝑖, 𝑣𝑗] = 1 ⇐⇒ (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(Γ)⟩.

We call the 𝑣𝑖 the vertex generators of 𝐴(Γ). The standard examples of such groups are

free groups (when Γ has no edges), free abelian groups (when Γ is a complete graph),

and free and direct products of such groups (corresponding to disjoint union of graphs

and join of graphs, respectively). Though most RAAGs don’t admit such simple

descriptions, there is enough rigidity present that one can show RAAGs satisfy many

desirable group-theoretic properties. For example, Green provides a normal form

(outlined in the proof of Lemma 4 below) for elements of RAAGs in terms of subgroups

generated by join subgraphs, and Hermiller-Meier showed that any representative of

an element in a RAAG can be put into this normal form using a finite set of moves,

thus providing a solution to the so-called “word problem" for RAAGs.

Figure 2-3: RAAGs with a fixed number of generators are on a spectrum from non-
abelian free groups to free abelian groups.

In many ways, the algebra of a RAAG is tied to various properties of its defining

graph. As mentioned above, free and direct products of RAAGs precisely correspond
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to disjoint unions and joins of graphs. Another deceptively simple fact is that two

RAAGs are isomorphic if and only if their defining graphs are isomorphic. Interesting

properties of graphs, for example colorability and Hamiltonicity, the decidibility of

which are NP-complete problems, have group theoretic characterizations in terms of

homomorphisms between RAAGs and group cohomology, respectively (cf. [37]). A

particular example we wish to highlight is the usefulness of RAAGs in cryptography;

the following example comes from [21], see also [22]. It is known that determining

if two given graphs are isomorphic is computationally difficult, but it is easy enough

to verify if a given map is an isomorphism. Using this with the above fact that

RAAGs are isomorphic if and only if their defining graphs are, one can design a

secure authentication scheme as follows. Alice wants to verify her identity to Bob

in a way that can’t be easily mimicked. She has a private isomorphism between two

RAAGs, as well as a third RAAG isomorphic to the first two, which she sends to

Bob. To verify Alice’s identity, Bob sends Alice a succession of random bits. If a

bit is 0, Alice sends her “public" isomorphism, and if a bit is 1, she sends her public

isomorphism composed with her private one. After each retrieval, Bob verifies that

he’s received an isomorphism, and after enough successful trials, Bob can be confident

that Alice is who she says she is.

From a coarse-geometric point of view, RAAGs also serve as an interpolation

between flat and hyperbolic geometry - indeed, they are prototypical examples of

CAT(0) groups. Because of this, the study of RAAGs and their subgroups is quite

rich and has played a central role in many recent breakthroughs in geometric group

theory, see for example [50]. Further, RAAGs and mapping class groups serve as the

motivating examples of hierarchically hyperbolic groups [2].

The following is an alternate version of the ping-pong lemma for RAAGs at-

tributed to Farb, itself a generalization of the classical ping-pong lemma for free

groups. It is the main tool used in proving Theorem 2.

Lemma 4 (Ping-Pong). Let 𝐴(Γ) be a right-angled Artin group acting on a set 𝑋
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such that there exist non-empty subsets 𝑋 ′
𝑖 ⊆ 𝑋𝑖 ⊂ 𝑋 for each vertex generator 𝑣𝑖

satsifying

1. For 𝑖 ̸= 𝑗, if 𝑋𝑖 ∩ 𝑋𝑗 ̸= ∅, then there exists 𝑥𝑖 ∈ 𝑋𝑖 which does not belong to

𝑋𝑗, and vice versa

2. If 𝑢 is a word in the vertex generators not containing a power of 𝑣𝑗, wherein

every vertex generator commutes with 𝑣𝑗, then 𝑢(𝑋 ′
𝑗) ⊆ 𝑋𝑗

3. If 𝑣𝑖 and 𝑣𝑗 do not commute, then 𝑋𝑖 and 𝑋𝑗 are disjoint and 𝑣𝑟𝑖 (𝑋𝑗) ⊂ 𝑋 ′
𝑖 for

all 𝑟 ̸= 0, and vice versa

Then the 𝐴(Γ) action on X is faithful.

Proof. If Γ decomposes as a join, then 𝐴(Γ) splits as a direct product, and we can

play ping-pong on each factor. Hence, we will assume that Γ is not a join, so that,

in particular, for each vertex generator 𝑣𝑖 there is at least one other vertex generator

𝑣𝑗 which does not commute with it. Let 𝑤 ̸= 1 ∈ 𝐴(Γ) be a word in the vertex

generators. We begin by putting 𝑤 into a normal form called central form, due to

Green [24]. Given a representative of 𝑤 written in the vertex generators, we can

perform two operations which do not change the equivalence class of 𝑤: a shuffle,

where we replace a subword 𝑣𝑟𝑖 𝑣
𝑠
𝑗 with 𝑣𝑠𝑗𝑣

𝑟
𝑖 if 𝑣𝑖 and 𝑣𝑗 commute, and a deletion,

where we remove subwords 𝑣𝑟𝑖 𝑣
−𝑟
𝑖 . Starting with any representative of 𝑤 (in the

vertex generators), we can perform these two operations until 𝑤 may be written as

𝑤 = 𝑢𝑘𝑣
𝑟𝑘
𝑖𝑘
𝑢𝑘−1𝑣

𝑟𝑘−1

𝑖𝑘−1
· · ·𝑢1𝑣

𝑟1
𝑖1

where

∙ each 𝑢𝑗 is a word in the vertex generators of 𝐴(Γ), such that each generator

appearing in 𝑢𝑗 commutes with each other generator appearing in 𝑢𝑗

∙ 𝑣𝑖𝑗 commutes with each generator appearing in 𝑢𝑗
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∙ 𝑣𝑖𝑗 does not commute with 𝑣𝑖𝑗+1
for all 1 ≤ 𝑗 < 𝑘.

We call 𝑘 the central-word length of 𝑤.

We now show that 𝑤 acts non-trivially on 𝑋. First suppose that 𝑘 = 1, so that

𝑤 = 𝑢1𝑣
𝑟1
𝑖1

. By assumption there is some generator 𝑣𝑗 which does not commute with

𝑣𝑖1 , and we choose 𝑥𝑗 ∈ 𝑋𝑗. Applying (3), we have 𝑣𝑟1𝑖1 𝑥𝑗 ∈ 𝑋 ′
𝑖1
, then applying (2) we

have 𝑢1𝑣
𝑟1
𝑖1
𝑥𝑗 ∈ 𝑋𝑖1 . Again by (3), since 𝑋𝑖1 ∩𝑋𝑗 = ∅, we see that 𝑤𝑥𝑗 ̸= 𝑥𝑗 and we

are done. Now suppose 𝑘 ≥ 2 and that 𝑤 is written in central form. If 𝑣𝑖2 and 𝑣𝑖𝑘

are distinct, then either by (1) or (3) we can choose 𝑥𝑖2 ∈ 𝑋𝑖2 which does not belong

to 𝑋𝑖𝑘 ; note that since 𝑣𝑖2 and 𝑣𝑖1 don’t commute by assumption, 𝑥𝑖2 also does not

belong to 𝑋𝑖1 . Repeatedly applying the argument above to this word, we have that

𝑤𝑥𝑖2 ∈ 𝑋𝑖𝑘 , so in particular 𝑤𝑥𝑖2 ̸= 𝑥𝑖2 . Finally, if 𝑣𝑖2 = 𝑣𝑖𝑘 , then we can conjugate

𝑤 by 𝑣𝑟𝑘𝑖2 , choose 𝑥𝑖1 ∈ 𝑋𝑖1 , and apply the same process to

𝑣𝑟𝑘𝑖2 𝑤𝑣
−𝑟𝑘
𝑖2

= 𝑢𝑘𝑣
2𝑟𝑘
𝑖2

𝑢𝑘−1𝑣
𝑟𝑘−1

𝑖𝑘−1
· · ·𝑢1𝑣

𝑟1
𝑖1
𝑣−𝑟𝑘
𝑖2

,

which is indeed in central form.

2.3 Surfaces and their Mapping Class Groups

The standard resource for the theory of mapping class groups is [19]. Let 𝑆 be a

connected, oriented finite-type surface, possibly with punctures; most of the surfaces

we consider will satisfy 𝜒(𝑆) < 0, and thus will admit a hyperbolic metric, though

all of the following definitions work just as well in the remaining cases. The mapping

class group of 𝑆, denoted 𝑀𝐶𝐺(𝑆), is the group of homotopy classes of orientation-

preserving homeomorphisms of 𝑆, and we call elements of 𝑀𝐶𝐺(𝑆) mapping classes.

Mapping class groups play an important role in low-dimensional geometry and topol-

ogy; not only are they the symmetry groups of surfaces, but they are also important

in the construction and general theory of 3- and 4-manifolds. They are also of in-
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terest purely as groups. While 𝐻𝑜𝑚𝑒𝑜+(𝑆) is uncountable and difficult to study,

𝑀𝐶𝐺(𝑆) is, incredibly, fintely presented, and has a solvable word problem. Mapping

class groups also contain many interesting groups: surface and 3-manifold groups (𝑖.𝑒.

𝜋1(𝑀) where 𝑀 is a surface or 3-manifold), RAAGs, and mapping class groups of

other surfaces to name a few.

We frequently study mapping class groups of surfaces via their action on simple

closed curves and subsurfaces. An essential simple closed curve (hereafter just “simple

closed curve") is the free homotopy class of a non-nullhomotopic and non-peripheral

simple closed curve on 𝑆, and an essential subsurface (hereafter just “subsurface")

𝑆 ′ ⊆ 𝑆 is either a regular neighborhood of an essential simple closed curve (𝑖.𝑒.

an annulus), or a component of the complement of a collection of pairwise disjoint

essential simple closed curves (𝑖.𝑒. the complement of a multi-curve). For both simple

closed curves and subsurfaces, we will not distinguish between a representative and

its homotopy class. With respect to the natural action of 𝑀𝐶𝐺(𝑆) on simple closed

curves, there is a trichotomy, due to work of Nielsen and Thurston (𝑐𝑓. [11]): given

𝑓 ∈ 𝑀𝐶𝐺(𝑆), 𝑓 is either

1. finite order,

2. reducible, 𝑖.𝑒. infinite order and preserves a non-empty multi-curve 𝐶, or

3. pseudo-Anosov, 𝑖.𝑒. infinite order and no power of 𝑓 preserves any multi-curve

For a reducible mapping class 𝑓 , it follows from Birman-Lubotzky-McCarthy that

some power 𝑓 fixes a multi-curve 𝐶 point-wise, and restricts to a pseudo-Anosov

mapping class or the identity on each component of 𝑆∖𝐶. We call such “partial

pseudo-Anosov" mapping classes, as well as pseudo-Anosov mapping classes, pure.

The support of a pure mapping class 𝑓 is all of 𝑆 if 𝑓 is pseudo-Anosov, an annulus

about the twisting curve if 𝑓 is a Dehn twist, or the components of 𝑆∖𝐶 where the

action of 𝑓 is non-trivial if 𝑓 is a partial pseudo-Anosov mapping class. A partial

pseudo-Anosov mapping class 𝑓 could also multi-twist about its fixed multicurve - in
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this case we define the support to be the components of 𝑆∖𝐶 where the action of 𝑓

is non-trivial together with the annular neighborhoods of those curves in 𝐶 where 𝑓

is twisting. In particular, if a partial pseudo-Anosov mapping class 𝑓 exhibits such

“boundary twisting", its support is disconnected by definition. Given an element of

the mapping class group written as a product of pure mapping classes, we define its

support as follows: from the list of pure mapping classes appearing in a cyclically

reduced conjugate of the given representative, we extract a list of the supports of

the pure mapping classes that appear, and take their union. We then translate this

subsurface by the word which conjugated the given element to its cyclically reduced

representative.
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Chapter 3

The Foundation

3.1 Curve Graphs and Subsurface Projection

The curve graph of 𝑆, denoted 𝒞(𝑆), is the graph whose vertices are simple closed

curves, and whose edges are spanned by vertices corresponding to pairs of simple

closed curves which can be realized disjointly; see Figure 3-1 for small portion of

the curve graph of a genus 2 surface. We note that almost all curve graphs are

infinite-diameter and locally infinite.

We equip 𝒞(𝑆) with the graph metric. A celebrated theorem of Masur-Minsky

says that with this metric, 𝒞(𝑆) is 𝛿-hyperbolic. Moreover, Aougab [1], Bowditch

Figure 3-1: A collection of simple closed curves on a surface and the subgraph they
span in the curve graph.
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[8], and Clay-Rafi-Schleimer [14] have shown that the hyperbolicity constant 𝛿 can

be made independent of 𝑆, and Hensel-Przytycki-Webb [27] have shown that 𝛿 = 17

suffices. In the sequel, we will use the notation 𝛿 instead of its explicit value to make

clear the dependence on the hyperbolic geometry of 𝒞(𝑆).

Our ping-pong sets will be given in terms of Ivanov-Masur-Minsky’s subsurface

projections of simple closed curves to subsurfaces of 𝑆. For now, we assume 𝜒(𝑆) < 0,

fix a hyperbolic metric on 𝑆, and for each simple closed curve we take its unique

geodesic representative. Given a non-annular subsurface 𝑆 ′ ⊂ 𝑆, we define a coarse

“projection" map 𝜋𝑆′ : 𝒞(𝑆) → 𝒞(𝑆 ′) as follows. Let 𝛾 be a simple closed curve on

𝑆. If 𝛾 is disjoint from 𝑆 ′ entirely, then 𝜋𝑆′(𝛾) = ∅, and if 𝛾 is properly contained is

𝑆 ′ then 𝜋𝑆′(𝛾) = 𝛾. Otherwise, 𝛾 non-trivially intersects 𝜕𝑆 ′, and we define 𝜋𝑆′(𝛾) to

be the set of simple closed curves obtained by considering each arc 𝛼 of 𝛾 ∩ 𝑆 ′ and

taking the boundary of a regular neighborhood of 𝛼 ∪ 𝜕𝑆 ′, see Figure 3-2. Note that

Figure 3-2: The projection of the red curve to the left genus two subsurface consists
of the blue curves.

geodesic simple closed curves are necessarily in minimal position, so that no such arc

can be homotoped out of 𝑆 ′, and thus each simple closed curve obtained this way is

essential.

Given two simple closed curves 𝛽 and 𝛾 with non-empty projection to 𝑆 ′, we define

their projection distance 𝑑𝑆′(𝛽, 𝛾) to be

𝑑𝑆′(𝛽, 𝛾) := 𝑑𝑖𝑎𝑚𝒞(𝒮′){𝜋𝑆′(𝛽) ∪ 𝜋𝑆′(𝛾)}
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Figure 3-3: Projecting a simple closed curve to an annulus involves lifting to the
infinite-sheeted cover corresponding to the core curve of the annulus.

It is a fact that these projections are coarsely Lipschitz, so that in particular the

projection distance between any two disjoint simple closed curves to any subsurface

is uniformly bounded (by, say, 4). Hence, it also makes sense to project a subsurface

𝑆 ′ to another subsurface 𝑆 ′′ when they intersect non-trivially, and the result is a

bounded diameter set containing 𝜕𝑆 ′.

The projection of simple closed curves to annuli is (necessarily) defined differently:

again fix a hyperbolic metric on 𝑆, and let 𝛽 and 𝛾 be (the unique geodesic repre-

sentatives of) intersecting simple closed curves. Consider the (compactified) cover 𝑆𝛽

of 𝑆 corresponding to 𝛽. We define the projection 𝜋𝛽(𝛾) to be the collection of lifts

𝑐 of 𝛾 to the cover 𝑆𝛽 which connect the two boundary components, see Figure 3-3.

We can assemble the set of all homotopy (rel. boundary) classes of such arcs in 𝑆𝛽

into a graph 𝒜(𝛽), the arc complex of 𝛽, with edges representing pairs of vertices

corresponding to homotopy (rel. boundary) classes of arcs which can be realized with

disjoint interiors, and equipped with the graph metric. Given another simple closed

curve 𝛿 which intersects 𝛽, we define the projection distance 𝑑𝛽(𝛾, 𝛿) exactly as above;
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roughly, this distance measures how much 𝛾 “twists" around 𝛿 relative to 𝛽. Though

we chose a hyperbolic metric, it is not hard to see that 𝑑𝛽(𝛿, 𝛾) ≤ 𝑖(𝛿, 𝛾) + 1.

Another useful fact about these projections is that they are coarsely invariant

under mapping classes supported away from the subsurface we’re projecting to.

Lemma 5 (Mousley, Lemma 3.1). Let 𝑓 ∈ MCG(S) be a pure mapping class supported

on a subsurface 𝑆𝑗 ⊂ 𝑆 which is disjoint from a subsurface 𝑆𝑖. If 𝑆𝑖 is an annulus

about a curve 𝛽, we also require that 𝜕𝑆𝑗 does not contain 𝛽. Let 𝛾 and 𝛿 be simple

closed curves on 𝑆. Then

|𝑑𝑆𝑖
(𝛾, 𝛿) − 𝑑𝑆𝑖

(𝛾, 𝑓(𝛿))| ≤ 4.

In order to show that the RAAGs we build are undistorted in 𝑀𝐶𝐺(𝑆), we will

need a way to relate word length in 𝑀𝐶𝐺(𝑆) to the only other available data we

will have, namely projection distances. This relationship is captured by the follow-

ing “distance formula" of Masur-Minsky [42], analogous to the distance formula in

Theorem 4. Before stating it, we establish notation. A (complete clean) marking

𝜇 on 𝑆 consists of a pants decomposition {𝛽𝑖}, called the base of 𝜇, together with

a transversal for each 𝛽𝑖 satisfying certain properties which are unnecessary for the

discussion at hand. Masur-Minsky build a graph ̃︁ℳ(𝑆), called the marking graph

of 𝑆, whose vertices correspond to markings and whose edges are spanned by ver-

tices corresponding to markings related by certain elementary moves. Equipped with

the graph metric, the graph ̃︁ℳ(𝑆) is locally finite and admits a cocompact action

of 𝑀𝐶𝐺(𝑆) by isometries, so that 𝑀𝐶𝐺(𝑆) and ̃︁ℳ(𝑆) are quasi-isometric by the

Milnor-Schwarz lemma. We define the projection of a marking 𝜇 to a non-annular

subsurface 𝑆 ′ ⊆ 𝑆 to be 𝜋𝑆′(𝑏𝑎𝑠𝑒(𝜇)) and we define the projection of 𝜇 to an annulus

to be either 𝜋𝑆′(𝑏𝑎𝑠𝑒(𝜇)) if the core curve of the annulus is not in base(𝜇), and the

projection of the corresponding transversal otherwise.
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Theorem 5 (Masur-Minsky, Theorem 6.10 and Theorem 7.1). There exists 𝐾0 =

𝐾0(𝑆) > 0 with the following property: for all 𝐾 ≥ 𝐾0, there exist constants 𝐴 ≥ 1

and 𝐵 ≥ 0 such that for all pairs of markings 𝜇, 𝜇′ ∈ ̃︁ℳ(𝑆) we have

1

𝐴

∑︁
𝑆′⊆𝑆

{{𝑑𝑆′(𝜇, 𝜇′)}}𝐾 −𝐵 ≤ 𝑑̃︁ℳ(𝑆)(𝜇, 𝜇
′) ≤ 𝐴

∑︁
𝑆′⊆𝑆

{{𝑑𝑆′(𝜇, 𝜇′)}}𝐾 + 𝐵,

where the sums are taken over all subsurfaces (including 𝑆 itself), and {{}}𝐾 is as

in Theorem 4.

In particular, we can approximate the 𝑀𝐶𝐺(𝑆)−word length of a mapping class

𝑓 by looking at the subsurface projections distances between 𝜇 and 𝑓(𝜇).

3.2 The Action on the Curve Graph

We now record a set of results of Masur-Minsky from [41] and [42] concerning the

action on the curve graph of pseudo-Anosov mapping classes. The first tells us that

they act on 𝒞(𝑆) like hyperbolic isometries.

Proposition 1 ([41], Prop. 3.6). There exists a constant 𝑐 = 𝑐(𝑆) > 0 such that, for

any pseudo-Anosov mapping class 𝑓 ∈ 𝑀𝐶𝐺(𝑆), any simple closed curve 𝛾, and any

𝑛 ∈ Z∖{0}, we have

𝑑𝑆(𝑓𝑛(𝛾), 𝛾) ≥ 𝑐|𝑛|.

Masur-Minsky proved the above for the so-called “non-sporadic" surfaces. For

the sporadic cases, namely the once-punctured torus and four-punctured sphere, we

redefine the curve graph in such a way that we obtain the Farey graph, where it is

noted by Mangahas [39] that the same result follows by considering the action of

hyperbolic isometries on the Farey graph embedded in H2. It is easy to show that

Proposition 1 implies that for any simple closed curve 𝛾 and any pseudo-Anosov
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mapping class 𝑓 , the bi-infinite sequence of curves {𝑓𝑛(𝛾)|𝑛 ∈ Z} is an 𝑓 -invariant

quasi-geodesic. By restricting a pure mapping class to a pseudo-Anosov component

𝑆 ′ ⊂ 𝑆, we obtain such a lower bound for the action of 𝑓 on 𝒞(𝑆 ′), and for a power

of a Dehn twist acting on its corresponding arc complex, the quantity 𝑐 can be taken

to be 1.

As noted above, any pseudo-Anosov mapping class 𝑓 preserves many quasi-geodesics

in 𝒞(𝑆). However, later we will want to consider nearest-point projections to honest

geodesics. In order to do so, we will use the following proposition, which says that

pseudo-Anosov mapping classes are the WPD elements for the 𝑀𝐶𝐺(𝑆) action on

𝒞(𝑆).

Proposition 2 ([42], Prop. 7.6). Let 𝑓 ∈ 𝑀𝐶𝐺(𝑆) be pseudo-Anosov. There exists

a bi-infinite geodesic 𝛼 in 𝒞(𝑆) such that for all 𝑗, 𝛼 and 𝑓 𝑗(𝛼) are 2𝛿 fellow travelers,

𝑖.𝑒. for all 𝑥 ∈ 𝛼 there is some 𝑦 ∈ 𝑓 𝑗(𝛼) such that 𝑑𝒞(𝑆)(𝑥, 𝑦) ≤ 2𝛿, and vice-versa.

The geodesic 𝛼 and its 𝑓 -translates are referred to as a quasi-axis for 𝑓 . A straight-

forward computation shows that the nearest point projections of any vertex 𝑥 in 𝒞(𝑆)

to any two geodesics in a quasi-axis are at most 10𝛿 apart. Applying Proposition 2

to the action of 𝑓 on its quasi-axis, we have:

Lemma 6 ([42], Lemma 7.7). Given 𝐴 > 0, let 𝑁 be the smallest integer such that

𝑐(𝑆)𝑁 > 𝐴+10𝛿, where 𝑐(𝑆) is the constant from Proposition 2. Then for all 𝑛 ≥ 𝑁 ,

𝑑𝒞(𝑆)(𝜋(𝑥), 𝜋(𝑓𝑛(𝑥))) ≥ 𝐴,

where 𝜋 denotes a coarse nearest-point projection to the quasi-axis of 𝑓 .

We can now combine Theorem 4 and Theorem 5 to give (half of) a more general

distance formula.
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Theorem 6. Let 𝐺 < 𝑀𝐶𝐺(𝑆) and let {𝑓𝑖} be a finite collection of pure mapping

classes supported on subsurfaces {𝑆𝑖}. Let 𝒜 be the collection of all quasi-axes of

the 𝐺-conjugates of the 𝑓𝑖 (if a given 𝑓𝑖 is reducible, we take its quasi-axis in 𝒞(𝑆𝑖)).

There exist constants A’, B’, and M’ such that for all pairs of markings 𝜇, 𝜇′ ∈ ̃︁ℳ(𝑆),

we have

𝑑̃︁ℳ(𝑆)(𝜇, 𝜇
′) ≥ 1

𝐴′

∑︁
𝑆′⊆𝑆

∑︁
𝛼∈𝒜∩𝒞(𝑆′)

{{𝑑𝛼(𝜇, 𝜇′)}}𝑀 ′ −𝐵′
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Chapter 4

The Inspiration

4.1 Koberda’s Theorem

Recall Koberda’s Theorem from the introduction.

Theorem 7. Let {𝑓1, . . . , 𝑓𝑚} be an irredundant collection of pure mapping classes

supported on connected subsurfaces 𝑆1, . . . , 𝑆𝑚 ⊆ 𝑆. There exists some 𝑁 ̸= 0 such

that for all 𝑛 ≥ 𝑁 ,

⟨𝑓𝑛
1 , . . . , 𝑓

𝑛
𝑚⟩ ∼= 𝐴(Γ),

where Γ is the co-intersection graph of the subsurfaces {𝑆𝑖}.

Here, irredundancy means that no two given mapping classes generate a virtually

cyclic group, 𝑖.𝑒. they don’t share a common power, and the co-intersection graph

has as vertices the subsurfaces 𝑆𝑖 (with multiplicity) and edges between those which

can be realized disjointly. The proof of this theorem is a ping-pong argument on

𝒫ℳℒ(𝑆), the space of projective measured laminations (a certain completion of the

set of simple closed curves) on 𝑆, and goes roughly as follows. Each pure mapping

class 𝑓𝑖 has a pair of preserved laminations 𝜆±
𝑖 , the stable and unstable laminations

of 𝑓𝑖, supported on 𝑆𝑖. It is a classical result of Ivanov that for each pair 𝜆±
𝑖 there
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are open sets 𝑈±
𝑖 so that large positive powers of 𝑓𝑖 take any lamination into 𝑈+

𝑖 and

large negative powers of 𝑓𝑖 take any lamination into 𝑈−
𝑖 . One can take these sets to be

disjoint and play classical ping-pong in the obvious way. However, there are several

technical difficulties that arise when considering reducible mapping classes, which

Koberda overcomes by lifting to the universal cover H2 of 𝑆 and studying angles of

intersection between lifts of leaves of the laminations. Both Koberda’s and Ivanov’s

proofs rely in some way on compactness or continuity arguments, and so the given

constant isn’t computed explicitly (though it would be interesting to try to effectivize

both arguments).

4.2 The Clay-Leininger-Mangahas Construction

We now give a brief review of the Clay-Leininger-Mangahas [15] construction of

so-called “admissible" embeddings of RAAGs into mapping class groups. Our starting

point is the notion of a “nice realization" of a graph (see Figure 4-1 for an example): we

say a pair (𝑆, {𝑆𝑖}), consisting of a surface 𝑆 and a collection of connected subsurfaces

{𝑆𝑖}, nicely realizes a graph Γ if

1. Γ is the co-intersection graph of the collection {𝑆𝑖}, 𝑖.𝑒. two vertices in Γ span

an edge if and only if the corresponding subsurfaces are disjoint

2. each 𝑆𝑖 is a proper, non-annular subsurface

3. if 𝑆𝑖 ∩ 𝑆𝑗 ̸= ∅, then 𝜕𝑆𝑖 ∩ 𝜕𝑆𝑗 ̸= ∅

Note that the conditions for a nice realization are very restricted compared to the

generality of Theorem 1, in particular they exclude annuli, the whole surface, and

nested subsurfaces.
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Figure 4-1: A nice realization of the path on four vertices.

Regardless, the authors are able to draw much stronger geometric conclusions

about the associated RAAG subgroup of 𝑀𝐶𝐺(𝑆).

Theorem 8 (Clay-Leininger-Mangahas). Suppose (𝑆, {𝑆𝑖}) nicely realizes Γ, choose

𝑓𝑖 ∈ 𝑀𝐶𝐺(𝑆𝑖) for each 𝑖, and let

𝜑 : 𝐴(Γ) → 𝑀𝐶𝐺(𝑆)

be the injective homomorphism defined by 𝑣𝑖 → 𝑓𝑁
𝑖 , where 𝑁 is as in Theorem 1.

There exists a constant 𝑅 so that if the translation length of each 𝑓𝑁
𝑖 on 𝒞(𝑆𝑖) is at

least 𝑅, then 𝜑 is a quasi-isometric embedding. Moreover, each element in the image

of 𝜑 is pseudo-Anosov on its support.

We remark that although the authors assume that the map 𝜑 is injective as a

hypothesis, this can be derived almost directly from their version Theorem 9 below,

whose proof we sketch as a convenience to the reader. Though we will use projections

to geodesics in curve subgraphs instead of just subsurface projections, the ideas are

identical, and we highlight the necessary modifications that need to be made. A

key ingredient is the following inequality due to Behrstock [4]; the version below is

attributed to Leininger [39].
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Lemma 7 (Behrstock Inequality). Let 𝑆𝑖, 𝑆𝑗, and 𝑆𝑘 be three pairwise intersecting

essential subsurfaces or simple closed curves. Then

𝑑𝑆𝑖
(𝜕𝑆𝑗, 𝜕𝑆𝑘) ≥ 10 =⇒ 𝑑𝑆𝑗

(𝜕𝑆𝑖, 𝜕𝑆𝑘) ≤ 4.

If 𝑆𝑖 (or 𝑆𝑗 or 𝑆𝑘) is an annulus, we replace 𝜕𝑆𝑖 with the core curve 𝛽𝑖. If all three

are annuli, we may further replace 4 with 3.

In the next section we prove a generalization of this lemma (the Multi-scale Behr-

stock Inequality) to account for not just subsurface projections, but nearest-point

projections to geodesics in curve subgraphs of 𝒞(𝑆). Again, we remark that the

theorem below is a modified version of the cited theorem, suited to our needs.

Theorem 9 ([15], Theorem 5.2). Let 𝐻 be as above, 𝜇 ∈ ̃︁ℳ(𝑆) be a marking on 𝑆,

and let

𝑁 =
5𝐾𝐵𝐺𝐼𝑇 + 𝐾0 + 200𝛿 + 2𝑀3 + 𝑀2 + 𝑀1 + 4

min
1≤𝑖≤𝑚

𝑐(𝑆𝑖)
,

where the constants 𝑀𝑖 are defined in Chapter 5 and are derived from projection data

of the quasi-axes of the generators of 𝐻, and where 𝐾0 is as in the Masur-Minsky

distance formula. Let 𝑤 = 𝑔1 · · · 𝑔𝑘 ∈ 𝐻, where 𝑔𝑖 = (𝑓𝑛
𝑗 )𝑒𝑖 for 𝑛 ≥ 𝑁 . Then

𝑑𝑔1···𝑔𝑖−1𝛼𝑗
(𝜇,𝑤𝜇) ≥ (𝐾0 + 𝐾𝐵𝐺𝐼𝑇 + 48𝛿)|𝑒𝑖|.

Proof. (sketch) First, we remark that while the set of mapping classes considered in

[15] explicitly excludes Dehn twists, pseudo-Anosovs, and mapping classes with the

same or nested supports, the Multi-scale Behrstock Inequality in the next section

allows us to consider them. The proof goes by induction on 𝑘, the (minimal) number

of “syllables" of 𝑤 (note that we are not using central form). The base case is simply
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the claim that

𝑑𝛼𝑗
(𝜇, 𝑔1(𝜇)) = 𝑑𝛼𝑗

(𝜇, (𝑓𝑛
𝑗 )𝑒1(𝜇))

≥ (𝐾0 + 𝐾𝐵𝐺𝐼𝑇 + 48𝛿)|𝑒𝑖|,

which is true by construction of 𝑁 . For the induction, we break 𝑤 into subwords:

𝑤 = (𝑔1 · · · 𝑔ℓ)(𝑔ℓ+1 · · · 𝑔𝑖−1)𝑔𝑖(𝑔𝑖+1 · · · 𝑔𝑘)

= 𝑎𝑏𝑔𝑖𝑐.

Via repeated applications of the triangle inequality, using Lemma 4 where necessary,

the claim reduces to the statement that the distances

𝑑𝛼𝑗
(𝑎−1(𝜇), 𝜇) , 𝑑𝛼𝑗

(𝑐(𝜇), 𝜇)

are both bounded in terms of the constants appearing in the numerator of 𝑁 . This

is also shown via the triangle inequality, using Lemma 4 where necessary, as well as

the Multi-scale Behrstock Inequality.

4.3 A Useful Tool

Below is a generalization of the above Behrstock inequality. The modification we

will make will allow us to not only consider subsurface projections, but also nearest-

point projections to geodesics in 𝒞(𝑆) and its subgraphs 𝒞(𝑆 ′) for subsurfaces 𝑆 ′ ⊂ 𝑆.

For the proof, we will need the following result from [42] concerning distance bounds

in the curve graph, known as the Bounded Geodesic Image Theorem. The uniform

statement below is originally due to Webb [49], and the constant was recently shown

by Jin [30] to be bounded above by 44.
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Theorem 10 (Bounded Geodesic Image Theorem). There exists a constant 𝐾𝐵𝐺𝐼𝑇

with the following property: if 𝑆 ′ ⊂ 𝑆 is a subsurface and 𝛼 is a geodesic in 𝒞(𝑆) with

the property that 𝜋𝑆′(𝑧) ̸= ∅ for all 𝑧 ∈ 𝛼, then

𝑑𝑖𝑎𝑚𝒞(𝑆′){𝜋𝑆′(𝛼)} ≤ 𝐾𝐵𝐺𝐼𝑇 .

Lemma 8 (Multi-Scale Behrstock Inequality). Let 𝛽 be a simple closed curve on 𝑆,

and let 𝛼1 and 𝛼2 be either simple closed curves or geodesics in 𝒞(𝑆1) ⊆ 𝒞(𝑆) and

𝒞(𝑆2) ⊆ 𝒞(𝑆) respectively, where 𝑆1 and 𝑆2 are either proper subsurfaces of 𝑆 or 𝑆

itself. Then

min{𝑑𝛼1(𝑏1, 𝑎2)} ≥ 𝐾𝐵𝐺𝐼𝑇 + 48𝛿 =⇒ min{𝑑𝛼2(𝑏2, 𝑎1)} < 𝐾𝐵𝐺𝐼𝑇 + 48𝛿

The minima are taken over 𝑏𝑖 ∈ 𝜋𝛼𝑖
(𝛽) and 𝑎𝑖 ∈ 𝜋𝛼𝑗

(𝛼𝑖), where by 𝜋𝛼𝑖
we mean

either the previously defined projection to annuli if 𝛼𝑖 is a simple closed curve, or the

composition of subsurface projection to 𝑆𝑖 followed by nearest-point projection to 𝛼𝑖

if 𝛼𝑖 is a geodesic.

Proof. We break the proof into cases depending on the type of each 𝛼𝑖 and the

configuration of the 𝑆𝑖 within 𝑆. The game will be to show that if one of the quantities

is suitably large, the other is bounded. In the arguments below there is repeated

implicit use of Lemma 1 and Lemma 2.

Case 1: 𝛼1 and 𝛼2 are both simple closed curves.

In this case, we can use the original Behrstock Inequality.

Case 2: 𝛼1 is a simple closed curve and 𝛼2 is a geodesic in 𝒞(𝑆2).

We first consider the case that 𝑆2 = 𝑆. If min 𝑑𝛼1(𝑏1, 𝑎2) ≥ 𝐾𝐵𝐺𝐼𝑇 , then by the
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contrapositive of the Bounded Geodesic Image Theorem, a geodesic connecting 𝛽 to

𝜋𝛼2(𝛽) passes through the 1-neighborhood of 𝛼1. If 𝑧 is the vertex on this geodesic

which is adjacent to 𝛼1, then we have

min 𝑑𝛼2(𝑏2, 𝑎1) ≤ 𝑑𝛼2(𝛽, 𝛼1)

≤ 𝑑𝛼2(𝛽, 𝑧) + 𝑑𝛼2(𝑧, 𝛼1).

By construction, the nearest-point projections of 𝛽 and 𝑧 to 𝛼2 overlap. Also, by

Proposition 1 either 𝑑𝛼2(𝑧, 𝛼1) < 8𝛿 + 2 or else 𝑑𝛼2(𝑧, 𝛼1) ≤ 1 + 24. Hence,

min 𝑑𝛼2(𝑏2, 𝑎1) ≤ 8𝛿 + (1 + 24𝛿)

= 1 + 32𝛿.

We now suppose that 𝑆2 is a proper essential subsurface of 𝑆 and that

min 𝑑𝛼1(𝑏1, 𝑎2) ≥ 11. Since each vertex in 𝛼2 represents a curve which is disjoint

from 𝜕𝑆2, we then have 𝑑𝛼1(𝛽, 𝜕𝑆2) ≥ 10. Applying the Behrstock inequality yields

𝑑𝑆2(𝛽, 𝛼1) ≤ 4, and so

min 𝑑𝛼2(𝑏2, 𝑎1) ≤ 𝑑𝛼2(𝛽, 𝛼1)

≤ 4 + 24𝛿.

Case 3: 𝛼1 and 𝛼2 are both geodesics in their respective curve complexes.

We first consider the case that 𝑆1 = 𝑆2. Assume min 𝑑𝛼2(𝑏2, 𝑎1) ≥ 8𝛿 + 2, so that

in particular

𝑑𝛼2(𝛽, 𝜋𝛼2(𝜋𝛼1(𝛽))) ≥ 8𝛿 + 2
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By hyperbolicity (𝑐𝑓. [42], Lemma 7.5), a geodesic in 𝑆2 between 𝛽 and 𝜋𝛼1(𝛽) passes

within 2𝛿 of the geodesic subsegment of 𝛼2 connecting their projections. Let 𝑧 be a

point on the geodesic segment between 𝛽 and 𝜋𝛼1(𝛽) that is at most a distance 2𝛿

from a point 𝑦 on 𝛼2. Then we have

min 𝑑𝛼1(𝑏1, 𝑎2) ≤ 𝑑𝛼1(𝛽, 𝑦)

≤ 𝑑𝛼1(𝛽, 𝑧) + 𝑑𝛼1(𝑧, 𝑦)

≤ 8𝛿 + (2𝛿 + 24𝛿)

= 34𝛿.

Next, if 𝑆1 is nested in 𝑆2 and we assume min 𝑑𝛼2(𝑏2, 𝑎1) ≥ 34𝛿, then each vertex

on the geodesic between 𝛽 and 𝜋𝛼2(𝛽) has distance at least 2 from 𝜕𝑆1. Hence,

𝑑𝑆1(𝛾, 𝜋𝛼2(𝛾)) ≤ 𝐾𝐵𝐺𝐼𝑇 , and thus

min 𝑑𝛼1(𝑏1, 𝑎2) ≤ 𝑑𝛼1(𝛽, 𝜋𝛼2(𝛽))

≤ 𝐾𝐵𝐺𝐼𝑇 + 24𝛿.

Finally, we consider the case that 𝜕𝑆1 and 𝜕𝑆2 intersect. Suppose that

min 𝑑𝛼1(𝑏1, 𝑎2) ≥ 11 + 48𝛿, and let 𝑧 be any vertex on 𝛼2. Then

𝑑𝑆1(𝛽, 𝜕𝑆2) ≥ 𝑑𝛼1(𝛽, 𝜕𝑆2) − 24𝛿

≥ 𝑑𝛼1(𝛽, 𝑧) − 𝑑𝛼1(𝑧, 𝜕𝑆2) − 24𝛿

≥ (11 + 48𝛿) − (1 + 24𝛿) − 24𝛿

= 10.
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Hence, by the Behrstock inequality, we have 𝑑𝑆2(𝛽, 𝜕𝑆1) ≤ 4, and so, choosing 𝑦

on 𝛼1,

min 𝑑𝛼2(𝑏2, 𝑎1) ≤ 𝑑𝛼2(𝛽, 𝑦)

≤ 𝑑𝛼2(𝛽, 𝜕𝑆1) + 𝑑𝛼2(𝜕𝑆1, 𝑦)

≤ (𝑑𝑆2(𝛽, 𝜕𝑆1) + 24𝛿) + (1 + 24𝛿)

= 5 + 48𝛿.

Thus 𝐾𝐵𝐺𝐼𝑇 + 48𝛿 suffices for all cases.



34



35

Chapter 5

Putting it All Together

5.1 Generation

We first show that the group generated by {𝑓𝑛
1 , . . . , 𝑓

𝑛
𝑚} is the expected RAAG.

Proof of generation. Let {𝑓1, . . . , 𝑓𝑚} ∈ MCG(S) be an irredundant collection of

pure mapping classes with connected supporting subsurfaces {𝑆1, . . . , 𝑆𝑚}. For each

1 ≤ 𝑖 ≤ 𝑚, let 𝛼𝑖 be a geodesic in the quasi-axis for 𝑓𝑖 in 𝒞(𝑆𝑖) ⊆ 𝒞(𝑆) or the core

curve of 𝑆𝑖 if 𝑆𝑖 is an essential annulus. As in the proof of Lemma 4 (ping-pong),

we assume that the co-intersection graph of the collection {𝑆𝑖} is not a non-trivial

join, so that for each 𝑓𝑖 there is some 𝑓𝑗 which does not commute with it. We

will explicitly construct a constant 𝑁 and a group action so that for all 𝑛 ≥ 𝑁 ,

{𝑓𝑛
1 , . . . , 𝑓𝑛

𝑚} satisfy the criteria for ping-pong. To this end, set

𝑋 = {𝛽 | 𝛽 an essential simple closed curve in 𝑆},

and for each 1 ≤ 𝑖 ≤ 𝑚, set

𝑋𝑖 = {𝛽 | min 𝑑𝛼𝑖
(𝑏𝑖, 𝑎𝑗) > 𝐾𝐵𝐺𝐼𝑇 + 48𝛿 for all 𝑗 such that 𝑆𝑗 ∩ 𝑆𝑖 ̸= ∅},

𝑋 ′
𝑖 = {𝛽 | min 𝑑𝛼𝑖

(𝑏𝑖, 𝑎𝑗) > 𝐾𝐵𝐺𝐼𝑇 + 48𝛿 + 4 for all 𝑗 such that 𝑆𝑗 ∩ 𝑆𝑖 ̸= ∅},
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where the minima are taken over 𝑏𝑖 ∈ 𝜋𝛼𝑖
(𝛽) and 𝑎𝑗 ∈ 𝜋𝛼𝑖

(𝛼𝑗). Observe that if 𝑆𝑖

and 𝑆𝑗 intersect, then by the Multi-scale Behrstock Inequality their corresponding

sets 𝑋𝑖 and 𝑋𝑗 are disjoint. Moreover, since we assumed the mapping classes were

irredundant, 𝑖.𝑒. no two have a common power, no two preserve the same ending

lamination in the Gromov boundary 𝜕𝒞(𝑆). Hence, no chosen 𝛼𝑖 fellow travels another

chosen 𝛼𝑗, and so these geodesics have bounded diameter projections to one another..

Let 𝑤 be a word in the abstract RAAG generated by {𝑓𝑛
1 , . . . , 𝑓

𝑛
𝑚}. We begin

by putting 𝑤 into central form as in the proof of the ping-pong lemma: using only

shuffles and deletions, we may write 𝑤 as

𝑤 = 𝑢𝑘𝑔𝑘𝑢𝑘−1𝑔𝑘−1 · · ·𝑢1𝑔1,

where each 𝑔𝑗 represents some power of some 𝑓𝑛
𝑖 , and each 𝑢𝑗 is a word in the gener-

ators satisfying the necessary properties of the central form. We possibly make one

further modification to this representative. For each 𝑔𝑗 which is a power of a Dehn

twist, if a power of a generator appearing in the corresponding 𝑢𝑗 is supported on a

subsurface containing the twisting curve as a boundary component, we may shuffle

𝑢𝑗𝑔𝑗 to 𝑢′
𝑗𝑔

′
𝑗, where 𝑔′𝑗 is the aforementioned power of a generator and 𝑢′

𝑗 contains the

original 𝑔𝑗 instead. To see that this modification does not violate the central form,

note that since 𝑔𝑗−1 and 𝑔𝑗+1 don’t commute with 𝑔𝑗, their supports intersect the

twisting curve of 𝑔𝑗, which is the boundary of the support of 𝑔′𝑗. Hence the supports

of 𝑔𝑗−1 and 𝑔𝑗+1 both intersect that of 𝑔′𝑗.

We may now play ping-pong. Up to relabelling, we assume 𝑔1 = 𝑓𝑛𝑟1
1 ,

𝑔2 = 𝑓𝑛𝑟2
2 , and 𝑔𝑘 = 𝑓

𝑛𝑟𝑗
𝑗 for some 𝑗. Choose 𝛽 ∈ 𝑋2∖(𝑋2 ∩ 𝑋𝑗); either 𝑔2 and 𝑔𝑘

don’t commute, so their corresponding sets 𝑋2 and 𝑋𝑗 are disjoint, or they commute

and their supports are disjoint, and we can choose a 𝛽 which intersects 𝑆2 but not

𝑆𝑗. If 𝑔𝑘 is also a power of 𝑓𝑛
2 , conjugate 𝑤 by 𝑔𝑘, choose 𝛽 ∈ 𝑋1, and run the same

argument below. Since 𝑔1 and 𝑔2 don’t commute, their corresponding sets 𝑋1 and 𝑋2
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are disjoint. In particular, since 𝛽 ∈ 𝑋2, it satisfies

min 𝑑𝛼1(𝑏1, 𝑎2) ≤ 𝐾𝐵𝐺𝐼𝑇 + 48𝛿.

For each ℓ such that 𝑆ℓ ∩ 𝑆1 ̸= ∅, we have

min 𝑑𝛼1(𝑏1, 𝑎ℓ) ≤ 𝑑𝛼1(𝛽, 𝛼ℓ)

≤ 𝑑𝛼1(𝛽, 𝛼2) + 𝑑𝛼1(𝛼2, 𝛼ℓ)

≤ (𝐾𝐵𝐺𝐼𝑇 + 48𝛿 + 𝑑𝑖𝑎𝑚{𝜋𝛼1(𝛽)} + 𝑑𝑖𝑎𝑚{𝜋𝛼1(𝛼2)}) + 𝑀1

= 𝐾𝐵𝐺𝐼𝑇 + 48𝛿 + 4𝛿 + 𝑀2 + 𝑀1

= 𝐾𝐵𝐺𝐼𝑇 + 52𝛿 + 𝑀2 + 𝑀1,

where

𝑀1 = max
1≤𝑖,ℓ,𝑠≤𝑚

𝑑𝛼𝑖
(𝛼ℓ, 𝛼𝑠),

𝑀2 = max
1≤𝑖,𝑗≤𝑚

𝑑𝑖𝑎𝑚{𝜋𝛼𝑖
(𝛼𝑗)}.

Choosing 𝑏′ ∈ 𝜋𝛼1(𝛽) and 𝑎′ℓ ∈ 𝜋𝛼1(𝛼ℓ) which realize min 𝑑𝛼1(𝑏1, 𝑎ℓ), we have

𝑑𝛼1(𝑓
𝑁
1 (𝑏′), 𝑎ℓ′) ≥ 𝑑𝛼1(𝑓

𝑁
1 (𝑏′), 𝑏′) − 𝑑𝛼1(𝑏

′, 𝑎′ℓ)

≥ 𝑑𝛼1(𝑓
𝑁
1 (𝑏′), 𝑏′) − (𝐾𝐵𝐺𝐼𝑇 + 52𝛿 + 𝑀2 + 𝑀1).

Hence, if

𝑑𝛼1(𝑓
𝑁
1 (𝑏′), 𝑏′) ≥ 2𝐾𝐵𝐺𝐼𝑇 + 110𝛿 + 𝑀2 + 𝑀1 + 4

+ 𝑑𝑖𝑎𝑚{𝜋𝛼1(𝑓
𝑁
1 (𝑏′))} + 𝑑𝑖𝑎𝑚{𝜋𝛼1(𝑏

′)}

= 2𝐾𝐵𝐺𝐼𝑇 + 118𝛿 + 𝑀2 + 𝑀1 + 4,
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we will have 𝑓𝑁
1 (𝑏′) ∈ 𝑋 ′

1. Invoking Lemma 6, we set

𝑁 =
5𝐾𝐵𝐺𝐼𝑇 + 200𝛿 + 𝑀2 + 𝑀1 + 4

min
1≤𝑖≤𝑚

𝑐(𝑆𝑖)
,

which is in fact much larger than we need here, but will be useful later. Thus,

𝑔1(𝛽) ∈ 𝑋1, and by Lemma 2, 𝑢1𝑔1(𝛽) ∈ 𝑋1. Running this process until it terminates

after the application of 𝑢𝑘𝑔𝑘, we see that 𝑤(𝛽) ∈ 𝑋𝑗, and we are done.

If we restrict to the case where all the 𝑓𝑖 are Dehn twists, the constant 𝑁 simplifies

quite a bit.

Corollary 2. Let {𝑡1, . . . , 𝑡𝑚} be a collection of Dehn twists about distinct essential

simple closed curves {𝛽1, . . . , 𝛽𝑚} on 𝑆, and let

𝑁 = 18 + max
𝑖,𝑗

𝑖(𝛽𝑖, 𝛽𝑗).

Then for all 𝑛 ≥ 𝑁 , we have

⟨𝑡𝑛1 , . . . , 𝑡𝑛𝑚⟩ ∼= 𝐴(Γ),

where Γ is the subgraph of 𝒞(𝑆) spanned by the curves {𝛽𝑖}.

Proof. As we are dealing only with essential annuli, we don’t need to account for the

constant 𝑐(𝑆𝑖) from Proposition 2 (since for Dehn twists, 𝑐 = 1), and we can use the

original Behrstock inequality. Following the proof of Theorem 2, for each 1 ≤ 𝑖 ≤ 𝑚

we set

𝑋𝑖 = {𝛾 | 𝑑𝛽𝑖
(𝛾, 𝛽𝑗) ≥ 10 for all 𝑗 such that 𝛽𝑗 ∩ 𝛽𝑖 ̸= ∅},

𝑋 ′
𝑖 = {𝛾 | 𝑑𝛽𝑖

(𝛾, 𝛽𝑗) ≥ 14 for all 𝑗 such that 𝛽𝑗 ∩ 𝛽𝑖 ̸= ∅},
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and we write 𝑤 = 𝑢𝑘𝑔𝑘 · · ·𝑢1𝑔1, where each 𝑔𝑗 is a power of some 𝑡𝑛𝑖 , in central

form; relabelling, we assume 𝑔1 = 𝑡𝑛𝑟𝑖1 , 𝑔2 = 𝑡𝑛𝑟22 , and 𝑔𝑘 = 𝑡𝑛𝑟𝑘𝑗 for some 𝑗. Choose

𝛽 ∈ 𝑋2∖(𝑋2 ∩ 𝑋𝑗), or in the case that 𝑔𝑘 is also a power of 𝑡𝑛2 , conjugate 𝑤 by 𝑔𝑘,

choose 𝛾 ∈ 𝑋1, and run the same argument below.

Since 𝛾 ∈ 𝑋2, we have 𝑑𝛽1(𝛾, 𝛽2) ≤ 3. For any ℓ such that 𝑖(𝛽1, 𝛽ℓ) ̸= 0, we then

have

𝑑𝛽1(𝛾, 𝛽ℓ) ≤ 𝑑𝛽1(𝛾, 𝛽2) + 𝑑𝛽1(𝛽2, 𝛽ℓ)

≤ 3 + 𝑀1.

Then

𝑑𝛽1(𝑡
𝑁
1 (𝛾), 𝛽ℓ) ≥ 𝑑𝛽1(𝑡

𝑁
1 (𝛾), 𝛾) − 𝑑𝛽1(𝛾, 𝛽ℓ)

≥ 𝑁 − 3 −𝑀1.

Hence, setting 𝑁 = 17+𝑀1 suffices to finish the proof. But we previously noted that

𝑀1 = max
1≤𝑖,ℓ,𝑠≤𝑚

𝑑𝛽𝑖
(𝛽ℓ, 𝛽𝑠)

≤ max
1≤ℓ,𝑠≤𝑚

𝑖(𝛽ℓ, 𝛽𝑠) + 1,

so we set 𝑁 = 18 + max
1≤ℓ,𝑠≤𝑚

𝑖(𝛽ℓ, 𝛽𝑠) so that the constant is independent of any choice

of hyperbolic metric.

This should be compared to the main theorem of [46], where a similar (quadratic)

bound was computed. As an easy application, we state the following.
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Corollary 3. Let {𝛽1, . . . , 𝛽𝑚} be a collection of essential simple closed curves such

that no three curves pairwise intersect. Then the 19𝑡ℎ powers of the corresponding

Dehn twists generate a RAAG.

Proof. Since no three curve pairwise intersect, the projection distances 𝑑𝛽𝑖
(𝛽𝑗, 𝛽𝑘) are

uniformly bounded above by 1.

5.2 Undistortion

We now show that the subgroups generated in the previous section are undistorted

in 𝑀𝐶𝐺(𝑆), after increasing the power 𝑁 by a controlled amount. The proof of

undistortion below is nearly identical to that of Clay-Leininger-Mangahas.

Proof of undistortion. Via the quasi-isometry between 𝑀𝐶𝐺(𝑆) and the marking

graph ̃︁ℳ(𝑆), it suffices to show that there are constants 𝐴 ≥ 1 and 𝐵 ≥ 0 such that

for all 𝑤 ∈ 𝐻

1

𝐴
𝑑̃︁ℳ(𝑆)(𝜇,𝑤𝜇) −𝐵 ≤ 𝑑𝐻(1, 𝑤) ≤ 𝐴𝑑̃︁ℳ(𝑆)(𝜇,𝑤𝜇) + 𝐵.

For any group 𝐺 acting by isometries on a metric space (𝑋, 𝑑𝑋), we always have

𝑑𝑋(𝑥, 𝑔𝑥) ≤ 𝐴𝑑𝐺(1, 𝑔),

where 𝐴 ≥ max 𝑑𝑋(𝑥, 𝑠𝑖𝑥), and 𝑠𝑖 is a generator for 𝐺. Hence, we need only to find

𝐴 and 𝐵 so that for all 𝑤 ∈ 𝐻

𝑑𝐻(1, 𝑤) ≤ 𝐴𝑑̃︁ℳ(𝑆)(𝜇,𝑤𝜇) + 𝐵.

Let 𝐻 be as above and let 𝑁 be as in Theorem 5. Let 𝑤 = (𝑓𝑛
ℓ𝑘

)𝑒𝑘 · · · (𝑓𝑛
ℓ1

)𝑒1 , 𝑛 ≥ 𝑁
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and set 𝑔𝑗 = (𝑓𝑛
ℓ𝑗

)𝑒𝑖 . Then

𝑑𝐻(1, 𝑤) =
𝑘∑︁

𝑖=1

𝑒𝑖

≤
𝑘∑︁

𝑖=1

𝐾0𝑒𝑖

≤
𝑘∑︁

𝑖=1

𝑑𝑔1···𝑔𝑖−1𝛼ℓ𝑖
(𝜇,𝑤𝜇).

Grouping together axes which are in the same subsurface, we can apply the combi-

nation distance formula of Theorem 6 to get

𝑘∑︁
𝑖=1

𝑑𝑔1···𝑔𝑖−1𝛼ℓ𝑖
(𝜇,𝑤𝜇) ≤

𝑘∑︁
𝑖=1

𝐴′(𝑑𝑔1···𝑔𝑖−1𝑆ℓ𝑖
(𝜇,𝑤𝜇)) + 𝐵′

≤ 𝐴′
∑︁
𝑆′⊆𝑆

{{𝑑𝑆′(𝜇,𝑤𝜇)}}𝐾

≤ 𝐴′′𝑑̃︁ℳ(𝑆)(𝜇,𝑤𝜇) + 𝐵′′,

where 𝐾 ≥ 𝐾0, and the last inequality follows from the Masur-Minsky distance

formula (adjusting the coarse constants as necessary).

5.3 Classification

Finally, we show that each 𝑤 ∈ 𝐻 is pseudo-Anosov on its support. This will

follow from showing that for any 𝑤, we can find an essential simple closed curve

whose orbit goes off to infinity in 𝒞(𝑆). We begin by stating a lemma of Bestvina-

Bromberg-Fujiwara [5].

Lemma 9 ([5], Lemma 4.20). Let {𝛽𝑖}𝑘𝑖=0 be a sequence of essential simple closed
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curves in 𝒞(𝑆) such that each consecutive triple of curves satisfies

𝑑𝑆𝑖
(𝛽𝑖−1, 𝛽𝑖+1) ≥ 3𝐾𝐵𝐺𝐼𝑇 ,

where 𝑆𝑖 is an essential subsurface with 𝛽𝑖 ∈ 𝜕𝑆𝑖. Then

𝑑𝒞(𝑆)(𝛽0, 𝛽𝑘) =
𝑘∑︁

𝑖=1

𝑑𝒞(𝑆)(𝛽𝑖−1, 𝛽𝑖) − 2𝑘

We will construct such a sequence so that consecutive curves are distance at least

3 apart, which by the above lemma must go off to infinity.

Proof of Theorem 3. Let 𝐻 be a subgroup as constructed in the previous section.

Without loss of generality, we assume that the support of 𝑤 ∈ 𝐻 is all of 𝑆 (the

same argument holds restricting to the curve graph of the support in the case that

the support is a proper subsurface). Write 𝑤 = 𝑢1𝑔1 · · ·𝑢𝑘𝑔𝑘 in central form, where

each 𝑔𝑖 is a power of some generator 𝑓𝑛
𝑗 , 𝑛 ≥ 𝑁 , of 𝐻.

If each 𝑔𝑖 is a pseudo-Anosov mapping class, then by Theorem 9, there is a genera-

tor such that the appropriate translate of its axis “witnesses" a large distance between

any essential simple closed curve 𝛽 and its image 𝑤𝛽, 𝑖.𝑒. for some 𝑗,

𝑑𝑢1𝑔1···𝑢𝑗−1𝑔𝑗−1𝛼𝑗
(𝛽, 𝑤𝛽) ≥ 𝐾0 + 𝐾𝐵𝐺𝐼𝑇 + 48𝛿.

In this case, it follows from Theorem 4 that 𝑤 takes 𝛽 “off to infinity”, 𝑖.𝑒. 𝑤 is

pseudo-Anosov.

Now assume that at least one 𝑔𝑖 is reducible with support 𝑆 ′; up to conjugation,

we may assume that 𝑔1 is a power of this reducible. We first claim that 𝛽 ∈ 𝜕𝑆 ′ and

𝑤𝛽 fill 𝑆, 𝑖.𝑒. have distance at least 3 in 𝒞(𝑆). As is noted in ([15], Lemma 6.2), the

subsurfaces supporting the 𝑔𝑖 fill 𝑆 if and only if the subsurfaces 𝑢1𝑔1 · · ·𝑢𝑗−1𝑔𝑗−1𝑆𝑗,

where 1 ≤ 𝑗 ≤ 𝑘 and 𝑆𝑗 is the support of 𝑔𝑗, also fill 𝑆. This implies that 𝛽 and 𝑤𝛽

fill 𝑆. Indeed, suppose 𝛾 is another essential simple closed curve. As the subsurfaces
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𝑢1𝑔1 · · ·𝑢𝑗−1𝑔𝑗−1𝑆𝑗 fill 𝑆, 𝛾 has non-trivial projection to at least one of them. But in

this subsurface, 𝛽 and 𝑤𝛽 have large projection, so 𝛾 cannot be disjoint from both

simultaneously. Hence, 𝛽 and 𝑤𝛽 fill 𝑆, 𝑖.𝑒. 𝑑𝒞(𝑆)(𝛽, 𝑤𝛽) ≥ 3, and the same is true of

𝑤ℓ𝛽 and 𝑤ℓ+1𝛽 for all ℓ ∈ Z. It remains to show that the sequence {𝑤ℓ𝛽} satisfies

𝑑𝑤ℓ𝑆′(𝑤ℓ−1𝛽, 𝑤ℓ+1𝛽) ≥ 3𝐾𝐵𝐺𝐼𝑇

which by equivariance of projections is equivalent to

𝑑𝑆′(𝑤−1𝛽, 𝑤𝛽) ≥ 3𝐾𝐵𝐺𝐼𝑇

Using the given expression for 𝑤 and the triangle inequality, we have

𝑑𝑆′(𝑢1𝑔1 · · ·𝑢𝑘𝑔𝑘𝛽, 𝑢
−1
𝑘 𝑔−1

𝑘 · · ·𝑢−1
1 𝑔−1

1 𝛽) ≥ 𝑑𝑆′(𝑢1𝑔1 · · ·𝑢𝑘𝑔𝑘𝛽, 𝑢2𝑔2 · · ·𝑢𝑘𝑔𝑘𝛽)

− 𝑑𝑆′(𝑢2𝑔2 · · ·𝑢𝑘𝑔𝑘𝛽, 𝑢
−1
𝑘 𝑔−1

𝑘 · · ·𝑢−1
2 𝑔−1

2 𝛽).

The subtracted term on the right-hand side satisfies

𝑑𝑆′(𝑢2𝑔2 · · ·𝑢𝑘𝑔𝑘𝛽, 𝑢
−1
𝑘 𝑔−1

𝑘 · · ·𝑢−1
2 𝑔−1

2 𝛽) ≤ 𝑑𝑆′(𝑢2𝑔2 · · ·𝑢𝑘𝑔𝑘𝛽, 𝛼𝑗) + 𝑑𝑆′(𝛼𝑗, 𝛼𝑖)

+ 𝑑𝑆′(𝛼𝑖, 𝑢
−1
𝑘 𝑔−1

𝑘 · · ·𝑢−1
2 𝑔−1

2 𝛽),

where 𝑔2 = (𝑓𝑛
𝑗 )𝑒2 and 𝑔𝑘 = (𝑓𝑛

𝑖 )𝑒𝑘 . Setting

𝑅 = 𝑑𝑆′(𝑢1𝑔1 · · ·𝑢𝑘𝑔𝑘𝛽, 𝑢2𝑔2 · · ·𝑢𝑘𝑔𝑘𝛽),

what we are trying to show reduces to

𝑅 ≥ 𝑑𝑆′(𝑢2𝑔2 · · ·𝑢𝑘𝑔𝑘𝛽, 𝛼𝑗) + 𝑀1 + 𝑑𝑆′(𝛼𝑖, 𝑢
−1
𝑘 𝑔−1

𝑘 · · ·𝑢−1
2 𝑔−1

2 𝛽) + 3𝐾𝐵𝐺𝐼𝑇

By the construction of 𝑁 , 𝑅 is at least {numerator of N}−4. Moreover, the first and
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third terms on the right-hand side are both bounded above by

𝐾𝐵𝐺𝐼𝑇 +48𝛿 (the bound from the Multi-scale Behrstock Inequality) - indeed, we have

by Theorem 9 that

𝑑𝛼𝑗
(𝑢2𝑔2 · · ·𝑢𝑘𝑔𝑘𝛽, 𝛽) ≥ 𝐾𝐵𝐺𝐼𝑇 + 48𝛿

and so

𝑑𝑆′(𝑢2𝑔2 · · ·𝑢𝑘𝑔𝑘𝛽, 𝛼𝑗) < 𝐾𝐵𝐺𝐼𝑇 + 48𝛿

by the Multi-scale Behrstock Inequality; the same argument holds for the other term.

Thus the inequality we are trying to show is

{numerator of N} − 4 ≥ 5𝐾𝐵𝐺𝐼𝑇 + 96𝛿 + 𝑀1

which is true by construction.

5.4 Application

The mapping class group plays an important role in the study of surface group

extensions, 𝑖.𝑒. short exact sequences of groups of the form

1 → 𝜋1(𝑆) → 𝐻 → 𝐺 → 1,

where 𝜋1(𝑆) denotes the fundamental group of a closed surface. Indeed, by general

principles such a short exact sequence gives rise to a homomorphism 𝐺 → 𝑂𝑢𝑡(𝜋1(𝑆)),

the outer automorphism group of 𝜋1(𝑆), and a classical theorem of Dehn-Nielsen-

Baer (𝑐𝑓 [19]) says that 𝑂𝑢𝑡(𝜋1(𝑆)) contains 𝑀𝐶𝐺(𝑆) with finite index. A natural

question to ask is: under what conditions on 𝐺 can we guarantee that the extension

𝐻 is hyperbolic? The study of this question was initiated by Farb and Mosher in [20],
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where they introduced the notion of convex cocompactness for subgroups of mapping

class groups in analogy with the property of the same name for Kleinian groups. Their

original definition concerned the action of 𝐺 on the Teichmüller space of 𝑆, but Kent-

Leininger [32] and independently Hamenstädt [25] proved the following is equivalent:

a subgroup 𝐺 < 𝑀𝐶𝐺(𝑆) is called convex cocompact if the orbit map (𝑔 → 𝑔 · 𝑥)

into the curve graph 𝒞(𝑆) is a quasi-isometric embedding. It follows from general

considerations that 𝐺 is then hyperbolic and purely pseudo-Anosov, 𝑖.𝑒. every infinite-

order element is a pseudo-Anosov mapping class. Combining work of Farb-Mosher

and Hamenstädt, this condition is equivalent to hyperbolicity of the extension 𝐻.

It was later shown by Bestvina-Bromberg-Kent-Leininger [6] that convex cocompact

subgroups are precisely those which are undistorted and purely pseudo-Anosov. Using

this last characterization, we have an immediate corollary to Theorems 2 and 3.

Corollary 4. If every mapping class in the generating set for 𝐻 is pseudo-Anosov,

then 𝐻 is an undistorted, purely pseudo-Anosov free subgroup of 𝑀𝐶𝐺(𝑆), 𝑖.𝑒. H is

a convex cocompact free group.

Such groups have been dubbed “Schottky subgroups" by Farb-Mosher in anal-

ogy with the classical Schottky construction in hyperbolic space. Indeed, that some

power of a collection of pseudo-Anosov mapping classes generate a convex cocompact

subgroup was known to Farb-Mosher, though their argument is not effective.

The Bestvina-Bromberg-Kent-Leininger characterization of convex cocompactness

begs a more general question: what can we say about undistorted subgroups of other

geometrically interesting groups in which every element is loxodromic with respect

to some action on a nice space? This was answered by Koberda-Mangahas-Taylor

[38] in the context of a RAAG acting on its extension graph, an analog of the curve

graph in that setting. In particular, they showed that purely loxodromic subgroups

of a RAAG are precisely those which are undistorted and whose orbit into the ex-

tension graph is a quasi-isometric embedding, and thus are the analogs of convex

cocompact subgroups of mapping class groups in the RAAG setting. Because the
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embeddings we’ve constructed are quasi-isometric embeddings, if we can guarantee

that loxodromic elements of the RAAGs are sent to pseudo-Anosov mapping classes,

we’ll have an (even greater) abundance of convex cocompact subgroups of mapping

class groups. For a general RAAG, it is unknown if such embeddings exist, but in

forthcoming work we construct such embeddings for a few infinite families of graphs.

In the statement below, a graph is of type “anti-P" for a property P if the opposite

graph Γ𝑜𝑝 satisfies P.

Theorem 11. If Γ is a tree of diameter at least 3, an anti-tree, or an anti-cycle,

then there exists a surface 𝑆 and a quasi-isometric embedding 𝐴(Γ) →˓ 𝑀𝐶𝐺(𝑆) as

above with the property that for each 𝜆 ∈ 𝐴(Γ) loxodromic, its image in 𝑀𝐶𝐺(𝑆) is

pseudo-Anosov. In particular, every purely loxodromic subgroup of 𝐴(Γ) is sent to a

convex cocompact subgroup of 𝑀𝐶𝐺(𝑆).
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