
Smart Suggestions

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Michael Asare

Spring, 2023

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Daniel Graham, Department of Computer Science

Smart Suggestions
Technical Report on Summer 2021 Internship

FirstName Surname†
 Department Name

 Institution/University Name
 City State Country
 email@email.com

Michael Asare
 Computer Science

 University of Virginia
 Charlottesville Virginia USA
 msa8wsy@virginia.edu

ABSTRACT
Amazon, as an old company, had an issue with usability and
security compliance with their outdated internal permissions site. I
was an intern at Amazon working on an AWS Security team, who
was tasked with making smart suggestions to an internal
authorization system to improve Amazonians’ compliance with
security standards. In order to address this problem, two new
suggested features were created for the internal site. This was done
after designing the features fully, analyzing the other potential
approaches, and then altering the model-view-controller model for
the website. Eventually these features were rolled out to
production, with massive usage being seen instantly. Overall, the
project had given me a technical challenge to solve, had improved
the experience of thousands of employees internally, and finally
allowed Amazon to properly evaluate me after the internship was
finished.

1 Nature
Amazon’s influence in modern society cannot be understated --
the company’s valuation has tripled over the last five years,
reaching a peak market cap of 1.73 trillion dollars. As a result of
this swift growth, Amazon has placed an incredible amount of
emphasis on workforce expansion. My internship with Amazon
was curated to put me in the best position possible to convert to a
full-time job offer, with the curated mentor-mentee relationship,
major support structure, and high sense of ownership. Primarily
speaking, the nature of my internship was the equivalent of an
extended interview. I will admit that the internship did have an
underlying focus on learning new technologies, however I would
be lying if I didn’t emphasize that the internship was a test run of
living an Amazon SDE lifestyle.

Regardless of the semantics behind the internship, I still had my
own thoughts on how I viewed the internship’s work. Every day
was a learning experience, which my mentor had highlighted every
day that I had gone to work. The project that I was working on had
very few specifically outlined plans on how I would complete my
project. My manager gave me an end goal (giving suggestions to
our ‘customers’) and told me what the makeup of the systems I was
going to be working on. Outside of that, the suggestions project was
a tale of myself, an inexperienced developer, learning what I should

be doing as I was doing it. The nature of this project, or better yet,
the internship overall, was an experience of me learning to deal
with ambiguity as Amazon vetted me during that process.

2 Purpose
I have a fiery passion to learn. Despite this strong desire and in
ironic fashion, I had not gotten an internship at any company
beforehand. So, when it came to this internship in 2021, I wanted
to learn; learn as much as I possibly could. With that motivation
in mind, working at Amazon felt more like learning at Amazon. I
cherished the opportunity as much as I could as I knew that you
can only be taken as an apprentice for so long. Personally, this
internship had a dual purpose -- to teach me things I couldn’t find
in a classroom textbook and to immerse myself in an unfamiliar
system tasked to understand the tools at hand. I had experienced
work-specific events that simply cannot be properly simulated in a
lecture hall. I had never heard of a daily SCRUM style meeting,
retro, or weekly design meetings. On top of that, many technical
tools were at my disposal, both familiar and unfamiliar. However,
there was an evident learning curve in turning functional
knowledge into real application. Who would have thought that I
would have to fully understand the advantages and disadvantages
of certain git commands, such as rebase, fixup, or a squash, when
I was so accustomed to simply pulling and merging at will? All in
all, this internship had significance to me as a complete learning
experience, from top to bottom.

Additionally, past my own passion to learn, the project I had done
at the internship served the purpose to display what I could do for
Amazon. I was on a security team, which had the job of
authorizing persons to certain roles that would then grant
permissions to certain resources. Having a role meant that the
people who fell underneath a role had access to resources at
Amazon that were deemed vital to the work they were doing for
that role. Authorizations were decentralized, so any Amazonian
was capable of organizing permissions (we called these
organizations teams). This process of organizing permissions had
been at the company for a long time, which would mean that there
were many archaic processes still in use today. The outdated
nature of these processes were then exacerbated by the low
usability of the fundamental service we provided. Many

complaints were made in effort to stir attention towards bettering
the user experience. My project, which was a project to provide
various suggestions to users, was focused on improving that user
experience. Because of the widespread impact of our team, and
the perceived impact found in user experience improvements, my
project had a high potential sphere of influence.

3 Work Accomplished
As stated earlier, I was given a project on a longstanding

security team. On this security team, there was an internal site
based on role-based access control principles. So, someone could
set up a ‘role’ where if you were given that role, you would have
all the bundled permissions with that role. Or to put it simply,
people could make teams, add people to these teams, and then
associate resources and permissions with that team. Our team
handled two services. The first service was an extremely old
service that used a 17-year-old tech stack, which was
unfortunately coupled with a terrible UX. The second service was
modeled after the first service; however, it had a new UX, with
novel features such as automatic team membership rules that
would allow for hands-off management of teams (no more hand
adding!). I was tasked with creating suggestions for people who
used our second service, where we’d suggest making team edits
that would help adhere to security standards, e.g., minimizing
manual management, least-privilege (minimum privileges needed
to complete work), and reducing the number of unneeded
members on teams (reduce redundancies).

Commonly on teams, people were assigned a team

automatically through rules. Rules were a way of automatically
assigning team membership. Rules could be defined by a
multitude of attributes, including location, building, and whom
one reports to. Team owners could also hand manage team
membership by specifying exactly who would be added to a team
list and vice versa. However, automatic rule management was the
heavily favored method of team membership by our team as
membership automation via rule management aligned with many
more of our security standards. For example, people who were by
hand added to a team would also have to be by hand removed
from that team, meaning that there would be possibilities of
people having extra permissions to resources they should not have
(as we tried to adhere to least-privilege whenever possible).

Frequently, people were given overlapping permissions

(granted by both rule management and hand management). These
overlapping permissions were redundant, and did not adhere to
our recommendation of strictly using rule management whenever
possible. As a result, I devised a feature for the internal team
membership site that would suggest removal of the redundant
permissions.

To begin with this redundancy removal suggestion, I created a

design document outlining the feature being proposed. I
documented the potential impact of the feature by finding data on
how many teams or members could be influenced by the feature.

Then, the actual algorithm of determining if a member had
redundant permissions given to them. Because this algorithm was
quite trivial, and only required knowing the set of permissions for
a given team, I did not have to extensively document the potential
resource impact on the current systems if added. This is mostly
because of the fact that many of these checks were already in
place, and I simply had to add another step in the pipeline of steps
to detect redundancies. I then outlined how the model-view-
controller architecture would be altered to allow for http requests
that would check for redundancies in membership. Finally, I
would collaborate with a team of UX designers to come up with
an interface to the frontend of the feature that would both be
consistent with the current design of the internal site and also be
designed to be intuitive to use.

This design stage was then followed by a design review stage

by my teammates, who then approved of the feature after some
minor critiques and future prospects discussion.

Implementation of the actual feature was not too difficult after the
extensive planning of the feature. Testing of the feature was all
done manually, so unfortunately there were no specific unit tests
to test the correctness of my solution. Regardless of the lack of
pure Blackbox testing, there was still extensive testing done
through manual testers and time spent on beta testing. After the
beta stage had ended, the feature was then pushed to production
servers, and was quickly used.

Rule management had been a stressed feature throughout the
internship as my team wanted to make sure that team owners were
using rules whenever possible. Unfortunately, my team ran into a
common issue with rules; people who should have been using
rules, weren’t well educated enough to quickly create clever rules
for team membership. It was simply easier to add an override to a
team that added a member to a team than to make sure that you
can create a consistent rule for all the team’s membership needs.
So, as a result, I proposed a new suggestions feature, that would
suggest rules to add to a team that would match 100% of the
current team membership.

The process of designing, implementing, testing, and

deployment was then repeated for the 2nd of my two features. The
secondary of my two features was planned to be less deterministic
to implement, and focus on setting a clear direction despite
ambiguity. In contrast with the first feature I created, the
implementation of the second feature was much less
straightforward to propose.

There were many roadblocks that I had gone through while

making a design document for the rule suggestions feature. For
one, there was no existing API for rule suggestion creation, so I
was also responsible for making a rule suggestions API that would
interface with the database we had used (which is unlike the first
feature, where there wasn’t necessarily any api changes that
needed to be made). There was an older deprecated suggestions

Smart Suggestions

API that used a brute force approach to suggesting rules for teams,
but I had to go through a vetting process of determining if that
API was even still feasible for use. This meant testing the API on
a large range of team sizes, as team sizes could range from the
tens to the tens of thousands. After testing the runtimes of this
older API, it was clear that this API was not very feasible to be
used on a large scale. However, the alternatives to using this older
API did not look that great as well. Using a complex machine
learning approach was one thing that I had pondered, as this
seemed to be the perfect machine learning problem. However,
after implementing a demo machine learning algorithm for
making a perfect matching rule for a team, there was shown to be
a significant amount of server ram and resources used when
generating the suggestion. Another potential avenue I had went
down was an offline computation of rule suggestions using
machine learning. The issue with this approach however came
from the feasibility of the feature as a feature with very little use
would not be deemed worthy of use at all. This is because of the
offline generation, which would not guarantee generated
suggestions on page load. Team owners already are spending a
short amount of time on the site, so there is no need to try to
optimize for a perfect rule with perfect resources allocation if after
the API eventually generates a rule suggestion that the user would
already be onto another task. Eventually it was clear that the
choices left for my implementation were between making good
rules (very accurate and will not be outdated quickly), fast rules
(very quick to generate), and cheap rules (very easy to generate). I
eventually settled on fast, cheap, and fairly good rules. Generally,
the user experience is done in a fast manner, and the target
audience of these rule suggestions is not one who is experienced
in rule making, but it is for one who hasn’t been introduced to
rules at all, and needs a jump start to becoming a better team
owner by using role management. So, I thought that creating the
most complex rules was not a priority, and that the real priority
was in making good enough rules that can help get the low-
hanging fruit of teams in terms of not abiding by recommended
security standards.

To fulfill this goal, I went with a compromised algorithm for rule
generation. I decided to go with a brute-force based rule
suggestion procedure. Using a metrics-focused approach, I
determined which few attributes were frequently used by teams,
and also what team sizes were commonly used. With this data at
hand, I knew I could optimize the brute force approach API to be
great at brute forcing extremely common team membership
scenarios.

After settling on an algorithm and how I’d use the older not in use
(but soon to be!) API, I would end up designing the UX. Even
though this system was much more complex to create on the
backend, the frontend was far simpler than the frontend for the
first feature, as I simply had to create rule suggestions that the
user may use.

Implementing the algorithm and the design was a fairly short
process with the given template of the last feature I had made in

hand. Once that was done, manual testing was done again, and
then eventually turned into beta stage testing. After that was all
said and done for a week, my feature was pushed to live servers.

4 Significance
The two suggestion features were an integral step in creating an
improved user experience. Both of these features streamlined
processes on the internal site, greatly improving the usability of
the service. On average, just over 18,000 users used any one of
these features per day. Additionally, 76% of people who moved
from the older service to the newer service (named ‘migrators’)
also had used one of the two features during their migration
process. These data points demonstrate the ease of access of these
features, which was one of the main motivators for creating these
features in the first place. Additionally, with the evident frequency
of use by a large portion of the site users, the feature was deemed
successful in promoting clearer resolutions of security concerns.
Technically speaking, the features that I developed were
significant because of their impact on Amazonians’ daily routines.

In terms of personal success, the projects were significant in that
they displayed many attributes that Amazon had looked for in
potential returning candidates. They were able to see my tendency
to tinker, in order to fine tune the project that I was given to its
max potential. My technical expertise was also shown, as I was
able to quickly develop multiple features that were thought to be
significant for the team. This success eventually led to a return
offer back to Amazon, that even though I did not end up
accepting, signified that I was qualified to be a full-time engineer
at a serious software development company.

5 Preparation
Even though all my coursework proved useful to me in preparing
me for this opportunity, there were a few keys stand out courses
that best set myself up for this class. Data Structures and
Algorithms I & II helped prepare me for this opportunity as
fundamental knowledge of algorithms, complexity analysis, data
structure usage, etc. were fundamental in my feature designs and
as well as the actual implementation of my features. Software
Development Essentials was by far the most helpful course, in
terms of preparing myself for Amazon, that I have taken. Version
control basics were almost necessary for all development.
Knowing the gist of the entirety of the development cycle helped
to get me up to speed quickly with day-to-day meetings and stand-
ups. Many of the tools used for Java development specifically
were frequently used by Amazon backends. Knowledge of the
model-view-controller architecture was essential for debriefing
the stack that I was a primary contributor to. Outside of things that
I was actually responsible for creating, classes like Cloud
Computing, Programming Languages for Web Applications, and
Database Systems were essential for basic knowledge for the
systems that I was using. Knowing how different database
systems worked in our specific use case, how the cloud works for
general storage, and also basic web programming were all things

that without prior background knowledge would have taken me a
far longer time to develop and use on a day-to-day basis.

REFERENCES

