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Abstract

The Bidirectional Reflectance Distribution Function, or BRDF, is used to model the reflectance properties

of opaque materials. BRDFs are used in many fields, including applied physics, remote sensing, computer

vision, and computer graphics. In computer graphics, artists specify BRDFs for each object in a virtual

environment, and then render images of this environment. Traditionally, artists specify BRDFs through

analytical models. However, tuning the parameters of these analytical models is time consuming, and often

appropriate analytical BRDF models are not available. Increasingly, artists are turning to measured BRDF

data to make this process easier. However, most existing measured BRDF data only has 3 color channels.

Very little multispectral BRDF data is available, and the little data that is available has sparse angular

sampling.

We present an image based BRDF measurement system capable of measuring multispectral BRDFs

with dense angular sampling. We have measured several multispectral BRDFs, and we provide numerous

plots, visualizations, and renderings of this data. We also present an analysis of several techniques used for

calibrating BRDF measurement systems and algorithms for evaluating a BRDF from unstructured samples.

Furthermore, we propose a new algorithm for extracting BRDF measurements from a set of images based

on nonlinear optimization. This technique is simpler compared to techniques presented by previous authors.

Additionally, we conducted a large scale statistical analysis of 59 million real world reflectance spectra.

Using Principal Component Analysis(PCA), we validate the work of previous researchers and demonstrate

that the space of real world spectral reflectances is spanned by a low-dimensional linear subspace. We also

analyze this dataset using Non-Negative Matrix Factorization(NMF) and discuss the implications of our

results for future multispectral BRDF measurement systems.
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Chapter 1

Introduction

1.1 Introduction

One of the primary goals of computer graphics is to synthesize, or render, photorealistic imagery of virtual

environments. These environments are instead created by 3D artists. Artists create a scene description, and

then rendering software is used to generate photorealistic images of this scene. Scene descriptions include

placement of light sources, the positioning of a virtual camera, the geometric content of the scene, and the

material properties of the objects in the scene.

Generating this scene description is challenging, and artists require tools to specify how a virtual world

should look. Artists have some idea regarding what visual they would like to create. However, the process of

conveying this via the scene description is challenging. One particularly difficult aspect of the scene to specify

are material properties. There are many varieties of common materials that interact with light in different

ways. Some materials scatter light below the surface, and exhibit what is known as subsurface scattering.

Other materials exhibit varying degrees of transparency. Opaque materials scatter light outward from the

surface. The reflectance of an opaque 1 material is characterized by the Bidirectional Reflectance Distribution

Function, or the BRDF. The BRDF specifies both what is colloquially thought of as the materials color, as

well as its reflectance(shininess, glossiness, mattte-ness). Mathematically, how much light a material reflects

is both a function of the incoming direction of light relative to the surface normal, the outgoing direction,

and the wavelength of light.

Artists need to accurately specify BRDFs in order to generate realistic imagery. Traditionally, artists have

used analytical models to specify BRDFs. Analytical BRDF models are mathematical functions with user

1By opaque, we mean a material that does not exhibit subsurface scattering. Physically, all non-metals exhibit some small
amount of subsurface scattering[1]. However, for many materials this scattering is negligible to the point where it can be ignored.
Therefore, it is useful to measure BRDFs of non-metals.

1



Chapter 1 Introduction 2

settable parameters. By choosing different models, and by altering parameter values, artists are mimic the

appearance of real world materials. However, analytical BRDF models have several drawbacks. First, it is

not always clear which model, if any, suits a particular type of material an artist wishes to create. For certain

classes of materials, no analytical models have been developed. Secondly, the process of tuning parameters for

an analytical BRDF model can be laborious. Therefore, the computer graphics community has increasingly

turned towards measuring BRDFs directly and then using this data in the rendering software.

The BRDF is a function of 4 angular variables(in the anisotropic case) and 1 wavelength variable. As a

5 dimensional function, sampling the BRDF sequentially at a series of points in this 5D domain is very slow.

Therefore, the graphics community has turned to image based BRDF capture to speed up the measurement

process[2][3][4]. Image based BRDF capture systems use cameras as the measurement device, and interpret

each pixel as a separate BRDF measurement. This enables parallelism in the measurment process. Image

based BRDF measurement systems have also enabled other interesting applications. For example, Matusik

et. al. created a database of over 100 measured BRDFs using an image based capture device[4]. Analysis

of this large database allowed new algorithms and techniques to be developed for alternative sparse BRDF

measurement techniques, compression of BRDF data, and editing of measured data.

Due to the tristimulus property of human vision, 3 numbers are sufficient to describe any color stimulus

under normal viewing conditions. Therefore, the final goal of a rendering system is typically the creation of an

accurate RGB image of the scene in question. However, for maximum accuracy the rendering software should

not perform intermediate computations using RGB colors! Intermediate computations should be done with

a spectral representation of color, and conversion to RGB should be a final step. However, spectral rendering

is underutilized because of a lack of spectral reflectance data and analytical spectral BRDF models[5].

1.2 Original Contributions

In this thesis, we describe a new multispectral image based BRDF measurement system. This system

has produced some of the first multispectral BRDFs with both dense angular and spectral sampling. Our

measurement device has several unique aspects to it that make it particularly useful. We employ a new,

novel calibration scheme for determining per-pixel surface normals, view vectors, and light vectors. Our

approach is based on taking silhouette images of our measurement targets and using nonlinear optimization

to determine a scene that produces the correct silhouette. Given a reasonable initial guess, our process

converges quickly and to a global minimum, thus producing correct results. Compared to the approach of

Matusik et al.[6], our approach is simpler and less costly. We present initial results using both measured and

synthetic data to validate our BRDF measurement system.
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Secondly, we present a thorough analysis of the spectral calibration process. Spectral calibration is

necessary in order to extract meaningful radiometric measurements from cameras. While the majority of

this calibration is not new, it has not been evaluated as applied to BRDF measurement.

Finally, we conduct a statistical analysis of a large database of multispectral images previously acquired

by Chakrabarti and Zickler[7]. We perform Principal Component Analysis(PCA) on this large 13 Gigabyte

dataset and confirm previous results of Parkkinen et al.[8]. We also analyze this large dataset using Non-

Negative Matrix Factorization(NMF)[9]. We present several areas of future work in which these analyses

could be applied to new BRDF measurement systems.



Chapter 2

Background

2.1 The Physics of Light and Radiometry

To understand both material measurement systems and rendering algorithms we must have a systematic way

of measuring light. Radiometry is the branch of physics that studies how electromagnetic radiation(light)

propagates in an environment. A full, detailed review of radiometry is outside the scope of this document. For

a well written introduction aimed at a graphics audience, we recommend the book chapter by Hanrahan[10].

For a mathematical and thorough treatment of radiometry, including pointers to relevant historical literature,

we recommend Veach’s thesis[11]. For those not interested in reviewing radiometry, a table of the notation

we use for radiometric units throughout this thesis is shown in table 2.1.

Radiometric Units
Symbol Radiometric Quantity Units

Φ Flux(radiant power) W

E Irradiance W

m2

L Radiance W

m2 sr

Eλ Spectral Irradiance W

m3

Lλ Spectral Radiance W

m3 sr

Table 2.1: Table of radiometric units and associated notation. Note that for spectral quantities the 1

m2 term
in the units becomes 1

m3 . This is because
1

m2 nm
= 1

m310−9 .

2.1.1 Geometric Optics

Light has properties of both particles and waves, through what is referred to as the wave-particle duality

of light. To describe certain observable phenomenon, like diffraction, we must consider the wave nature of

light. In general, wave based models of light(such as Maxwell’s equations) have not found significant usage in

4



2.1 The Physics of Light and Radiometry 5

computer graphics. Wave based effects are normally visible when the wavelength of the light is comparable

in size to the geometry being rendered. Typically, computer graphics is not concerned with rendering such

small scale phenomenon. Instead, in computer graphics we typically use models based on geometric optics.

Geometric optics is simpler than a wave based model, and still accounts for a large variety of observable

phenomenon. Under the geometric optics model, several simplifying assumptions are made that are not true

in the general case, but are good approximations of reality for many scenes we are concerned with.

The first simplifying assumption is that light travels in straight lines. In general, this is not true. For

example, we assume that there is no participating media(fog,dust) present to scatter light. Furthermore,

we assume that the index of refraction of air is constant spatially1. Other effects, like diffraction, violate

the assumption that light travels in straight lines. The next simplifying assumption is that we ignore the

temporal aspect of light. In reality, light takes time to travel to any location. However, we are concerned

with generating an image of the steady-state distribution of light, and therefore we ignore these temporal

aspects.

2.1.2 The Physics of Light

Being a form of electromagnetic radiation, light is a wave formed by both an electric and magnetic field.

These two fields are perpendicular to the direction of travel. The frequency of this wave determines the

wavelength of the light. Light of different wavelengths is perceived by humans as different colors. Every

radiometric quantity we discuss in this section also has a spectral form, which is the quantity in question per

nanometer. However, in the interest of simplifying the discussion we consider only monochromatic(single

wavelength) light in this section and defer the discussion of color and spectral quantities until section 2.2.

2.1.3 Radiometric Quantities

The most fundamental radiometric quantity is flux, or power. Flux is commonly denoted by the symbol

Φ, and is expressed in Watts( J

s
,Joules per second). Flux describes only how much energy flows through a

surface per unit time. The size of the surface is irrelevant to the measurement of flux.

Irradiance, commonly denoted by E, is the radiant power arriving at a surface, per unit surface area. A

corresponding quantity, radiant exitance, describes the energy leaving a surface, and is denoted by M . Being

differential quantities, we express both irradiance and radiant exitance as dΦ
dA

. The units of both quantities

are are W

m2 (Watts per square meter).

1If the index of refraction of air varies smoothly along a ray’s path, mirage-like effects occur.
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The most important radiometric quantity in computer graphics is radiance, denoted by L. Radiance is

fundamental in that all other radiometric quantities can be derived from it. Radiance is defined as flux per

unit projected area, per unit solid angle. Its units are W

m2 sr
. Note that sr stands for steradians, the measure

of solid angle. The radiance at a surface is given by the following equation[12]:

L =
d2Φ

dωdA⊥
=

d2Φ

dωdA cos(θ)
(2.1)

The notation A⊥ denotes projected area. Intuition for why this term is included can come from Lambert’s

cosine law. As a beam of light is shines nearly parallel to a surface(a grazing angle), the light beam is

“smeared” over a larger physical area. This is shown in figure 2.1.

Figure 2.1: Illustration of Lambert’s law. Inspired by figure 5.7 in Physically Based Rendering, by Pharr
and Humphreys[13]. We see as the angle θ approaches 90 degrees, the area of A2 increases.

The definition of radiance initially seems convoluted and unnecessary. However, when defined as shown

above radiance possesses several properties that make it enormously useful. First, radiance has the property

of invariance[12]. The radiance along a straight line from point a to b is the same as the radiance from b to

a.

Secondly, the human eye and most camera sensors are sensitive to spectral radiance Lλ, or radiance per

unit wavelength. Therefore, rendering systems that are simulating either the human eye or a camera aim to

simulate radiance.

2.1.4 Material Properties and the BRDF

When light hits a surface it can be absorbed, transmitted, or reflected. In the case of absorption, light is

dissipated as heat in the surface. For example, asphalt absorbs much of the light across the visible spectrum,

and this is why asphalt feels hotter than white paint which reflects light across the spectrum. In the case of

transmission, light passes through the surface. We do not consider transmission of light through surfaces in

this thesis. We limit our discussion to the BRDFs, which are relevant for opaque surfaces.
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Reflection from an opaque surface can be described by the Bidirectional Reflectance Distribution Func-

tion(BRDF). The BRDF was first described by Nicodemus[14]. The BRDF describes, as a function of

incoming angle, outgoing angle, and wavelength, how a particular material reflects light. In this thesis we

ignore phosphorescence and fluorescence. Phosphorescent materials absorb light and then re-emit it some

small amount of time later. Fluorescent materials take incident light at a wavelength λi and reflect it at

another wavelength λo|λo > λi. Fluorescence accounts for why a white shirt appears purple under a black

light. This is because the UV light from the black light is being reflected(technically, re-radiated) as low-

wavelength(purple) visible light. Fluorescent BRDFs were recently measured for the first time in computer

graphics by Hullin et al[15].

The Bidirectional Reflectance Distribution Function(BRDF)

Typically, the BRDF is written as a function of two unit vectors and of wavelength, as shown in equation 2.2.

These two vectors encode the incident and outgoing directions of reflectance relative to the surface normal.

fr(ω̂i, ω̂o, λ) (2.2)

Here the vector ω̂i represents the direction of incident light, whereas the vector ω̂o represents outgoing

light. The BRDF measures how much light is scattered in direction ω̂o when arriving in direction ω̂i. By

convention, both vectors point outward from the surface and are unit length. If we consider each vector in

spherical coordinates, we can write the angular portion of the BRDF as a function of 4 variables. We refer

to a vector’s angle from the surface normal as the elevation angle, given by either θi or θo for the incident

and outgoing vector, respectively. The angle relative to some tangent vector t̂ is called the azimuth angle,

and is denoted by φi and φo. The angular parameterization of the BRDF is shown in figure 2.2.

Figure 2.2: Angular parameterization of the BRDF in spherical coordinates.
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Properties of the BRDF

There are several properties common to all BRDFs. The first property is related to conservation of energy2.

∀ω̂i ∈ Ω and ∀λ ∈ R
+ :

∫

Ω

fr(ω̂i, ω̂o, λ) cos(θo)dω̂o ≤ 1 (2.3)

In the above equation Ω represents the hemisphere around the surface normal. This integral must be less

than 1 because the surface itself can’t create energy, so less light must be reflected than is incident. The

cos(θo) term in this equation accounts for “foreshortening,” and is related to Lambert’s law. See section 2.1

for more details on the origin of this term.

A second, more interesting property of the BRDF is Helmholtz reciprocity3. Helmholtz reciprocity states

that the BRDF must remain unchanged if we swap the incident and outgoing light directions.

fr(ω̂i, ω̂o, λ) = fr(ω̂o, ω̂i, λ) (2.4)

Isotropic vs Anisotropic BRDFs

Many BRDFs posses the property of isotropy. Isotropic BRDFs, as compared with anisotropic BRDFs, are

symmetric about rotation around the surface normal. Isotropic BRDFs have no “grain direction.” Examples

of anisotropic BRDFs include things like brushed velvet, brushed aluminum, or some milled metal materials.

Isotropic BRDFs can be represented with 3 angular degree of freedom, as opposed to the 4 that are required

for anisotropic materials. Instead of accounting for both φi and φo, we can instead consider just φdiff = φi−φo,

owing to the BRDFs symmetry about the normal. The anisotropic and isotropic parameterizations are

compared in figure 2.3.

2.1.5 Light Measurement Devices

There are many physical devices for measuring radiometric quantities. For our purposes, how these devices

work can be treated largely as a black box. We are only concerned with what these devices measure and

their mathematical properties. Temporarily ignoring wavelength dependence, we state that sensors measure

radiance, if radiance is constant across the field of view of the sensor. Fortunately, the field of view for

individual sensors(usually pixels) is extremely small. Consider an individual pixel on a camera CCD. This

2The property stated in equation 2.3 does not hold for fluorescent materials, since light can be re-radiated from a shorter
wavelength to a longer one. See Hullin et. al[15]. for more details.

3Interestingly, Veach notes[11] that Helholtz himself never actually stated anything related to what is now known as Helmholtz
reciprocity. Furthermore, Veach also notes 2 “exotic” situations that can cause Helmholtz reciprocity to breakdown. The
situations(involving either participating media or magnetic fields) are thankfully not things we commonly wish to render.
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(a) Anisotropic BRDF angular parameter-
ization

(b) Isotropic BRDF angular parameteriza-
tion

Figure 2.3: Comparison of anisotropic and isotropic BRDF angular parameterization

pixel takes of some small area am2. Ignoring the dynamic range of the sensor, the value read off at this

pixel, V , is proportional to the integral of the flux falling upon the sensor.

V ∝

∫

a

∫

Ω

L cos(θ)dωda (2.5)

When a photon of a particular wavelength strikes a pixel, there is a probability that it will bounce off

and not be recorded. The probability that a photon of a particular wavelength will be recorded is given by

the quantum efficiency function, or QE. This is sometimes also called the spectral sensitivity of the sensor.

Quantum efficiency functions are functions Q of the form Q : R+ → [0, 1]. For example, Q(420) = .1 would

indicate that for every 10 photons of wavelength 420 nm, 9 of them bounce off and are not recorded. Camera’s

with multiple color channels will have different quantum efficiency functions for each channel. For a camera

with k channels, there will be k different quantum efficiency functions4.

2.1.6 Polarization

In computer graphics, we do not often consider the polarization of light. However, polarization can be

important when measuring BRDFs. Polarization refers to the orientation of the magnetic field and electric

field vectors relative to the direction of propagation of a ray of light. When the orientation of these vectors

is random, light is said to be unpolarized, or incoherent. Most rendering systems only simulate unpolarized

light. Types of polarization include linear polarization, circular polarization, and elliptical polarization. A

general discussion of the full nature of polarized light is beyond the scope of this document. However,

reflection from arbitrary BRDFs(particularly specular reflection) can linearly polarize incident incoherent

light. Typically this is not an issue, as normal CCD and CMOS image sensors largely work the same

4Some color imaging systems operate with a monochome CCD and thus have 1 quantum efficiency function. Color imag-
ing is achieved by swapping various colored transmission filters in front of the CCD. While the mechanism here is different,
mathematically this is equivalent to multiple quantum efficiency functions.
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regardless of polarization. However, Liquid Crystal Tunable Filters(LCTFs) act as linear polarizers. This

can be an issue in multispectral BRDF measurement systems, as discussed in section ??.

2.2 Color and Human Vision

The human eye is sensitive to electromagnetic radiation(light) from the wavelengths 380 nm to 780nm. Below

380nm is ultraviolet light(UV), and above 780nm exists infrared light(IR). IR and UV light are invisible to

humans. Light near the upper and lower boundary of the visible spectrum is deemed near-UV and near-IR

light, respectively. Light emitted in different regions of the visible spectrum produce different color sensations

in human observers. The familiar color rainbow starts at 380nm with violet light, and progresses through

blue, green, yellow and red. A visualization of the visible spectrum is shown in figure 2.4.

Figure 2.4: The distribution of light across the visible spectrum. At each wavelength λ′ we show the color
of monochromatic light with wavelength λ′.

Light arriving at the human eye along a particular direction posses what is called a spectral power

distribution(SPD), or a spectrum. This spectrum describes the amount of energy present at each wavelength.

Different light spectra produce different color sensations when viewed by a human observer. The study of

how humans perceive color relied on radiometry, psychology, linear algebra, and biology. The study of color

encompasses a field of study in and of itself: color science. A full review of color science is far beyond the

scope of this thesis. We recommend readers to the book Radiosity and Realistic Image Synthesis [10] for an

overview of color for a graphics practitioner. For an encyclopedic, exhaustive review of early color science,

including a detailed description of the color matching experiments, we recommend[16]. Here we describe the

fundamentals of color science so that our research contributions can be appreciated in a larger context.

There are an infinite number of possible light spectra. However, light can(under most conditions) be

described by 3 numbers. This remarkable fact is known as the tristrimulus property of human vision. The

tristimulus property of human vision has a biological basis. Human eyes posses two main types of light

detectors: rods and cones. Rods are only active in low light situations, and cones are only active in “normal”

light situations. The situation when the rods are active is referred to as scotopic vision, whereas the cones

being active is referred to as photopic vision. An interesting effect called the Purkinke shift occurs as we

transition between photopic and scotopic vision. This effect causes colors to shift to be more purple due to
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the interaction of the rods and the cones. Situations in which both rods and cons are active is referred to

as Mesopic vision. However, in graphics we are typically concerned only with photopic vision, since that is

when most images are viewed, and in daily life photopic vision is the common case. Therefore, for the rest

of this thesis we will discuss only photopic vision. Note that, in general, the laws of linearity discussed later

do not hold for scotopic vision[16]!

2.2.1 Grassman’s Laws, The Linearity of Color, and Color Matching

A fundamental concept in color science is color matching. Color matching consists of having a human observer

look at a fixed light spectrum called the “test light”. The user then adjusts the brightness of another set of

lights, the “primaries,” until the mixture of colors produced by the primaries appears the same as the test

light. We denote our test light by the T (λ). We denote our N primaries by P1(λ), . . . , PN (λ). The operation

of altering the brightness of a light is given by multiplying the light’s spectrum by a scalar αi for light Pi(λ).

This scalar is called a “matching weight.” When two lighting configurations look the same to the human

observer, we call this scenario a “color match.” Mathematically, if spectra A(λ) and B(λ) match we denote

this by A(λ) ∼ B(λ). Therefore, the situation described above of matching our test light T (λ) to our N

weighted primaries P1(λ), . . . , PN (λ) is given by:

T (λ) ∼ α1P1(λ) + · · ·+ αNPN (λ) (2.6)

Color science is based off of the fundamental fact that color matching is linear5 This was first noted as

early as 1853 by Hermann Grassmann[16]. Assume we are dealing with two lights A(λ) and B(λ), and N

primaries P1(λ), . . . , PN (λ). Also assume that light A(λ) is matched by α1P1(λ) + · · ·+ αNPN (λ) and light

B(λ) is matched by β1P1(λ) + · · · + βNPN (λ). Grassman’s laws then state that the light A(λ) + B(λ) is

matched according to the following equation:

A(λ) +B(λ) ∼ (α1 + β1)P1(λ) + · · ·+ (αB + βN )PN (λ) (2.7)

Grassman’s laws are profound in terms of what they imply mathematically. Due to the linearity of color

matching, we can apply the tools of linear algebra to color science. The set of all light spectral power

distributions form a vector space.

It is also important to note that the linearity of light holds for light measurement as well as for color

matching. We can compare two light spectra radiometrically by measuring them with a spectroradiometer.

5Note that in general the linearity of color matching only holds in photopic conditions.
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When measuring two lights, linearity holds as well:

α(A(λ) +B(λ)) = αA(λ) + αB(λ) (2.8)

2.2.2 The Color Matching Experiment: A Conceptual Overview

Note that in this section we describe the color matching experiment only conceptually. For practical purposes

the actual color matching experiment was conducted somewhat differently. For basic information on how

the actual experiment took place, see section 2.2.3 and refer to the text “Color Science[16].”

Any SPD T (λ) can be matched by 3 linearly independent primaries P1, P2, P3. The primaries are linearly

independent if the following equation is satisfied for some a, b, c such that all a, b, c are not zero:

∃a, b, c ∈ R such that aP1(λ) + bP2(λ) + cP3(λ) = S0(λ) (2.9)

where S0(λ) denotes the “zero spectrum” S0(λ) = 0. The “zero spectrum” is analogous to the zero vector

in a vector space.

All light spectra can be matched by any 3 independent primaries. This is known as the “principal of

trichromancy.” Mathematically, this can be stated as follows:

∀L(λ)∃a, b, c ∈ R such that L(λ) ∼ aP1(λ) + bP2(λ) + cP3(λ) (2.10)

The principal of trichromany allows us to create colorspaces like sRGB and XYZ. When we wish to

describe the color of a SPD to a display device, 3 numbers is sufficient. However, require a procedure to

determine, for any arbitrary spectrum L(λ), what the matching weights a, b, c are for an arbitrary set of

primaries. Since there are an infinite number of SPDs, we can’t simply experimentally determine all of

them. A fundamental experiment conducted in 1931 by the CIE; the color matching experiment, derived

data that allows us to compute matching weights for any SPD. The experimental setup consists of a human

observer looking at a surface with flat spectral reflectance(such as Spectralon). This surface is divided into

two sides. On the left side, a test light source with spectrum T (λ) is illuminating the surface. On the right

side, a linear combination of the three primaries illuminates the surface. This linear combination is given by

aP1(λ)+ bP2(λ)+ cP3(λ). The human subject has access to a control box and they can adjust the matching

weights a, b and c interactively. The user adjusts the weights until the following condition is satisfied:

aP1(λ) + bP2(λ) + cP3(λ) ∼ T (λ) (2.11)
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This setup is shown from a top-down view in figure 2.5. This experimental setup allows us to generate the

matching weights for any test light T .

Primaries

User matches this color

Control Panel:

Allows user to 

adjust weight 

for each 

primary

Human

subject

who adjusts 

matching 

weights

Figure 2.5: CIE Color Matching Experiment

If we conduct this experiment for a series of monochromatic(single wavelength) light sources T , we can

then use the resulting data to compute the matching weights for any arbitrary light source. This is due to

the linearity of color matching. Mathematically, we denote a monochromatic light emitting only a single

unit of spectral radiance at λ = w by a shifted Dirac delta function: Tw(λ) = δ(w − λ).

Assume we have collected data for a series of monochromatic light sources. These monochromatic sources

emit light at a series of discrete wavelengths w1, . . . , wN . In the actual color matching experiment w1 =

380nm, and wN = 780nm. We denote the matching weights for the ith monochromatic light source by xi, yi,

and zi, where these correspond to primaries P1, P2, and P3, respectively.

Any arbitrary SPD can be constructed via a linear combination of these monochromatic sources. There-

fore, for any arbitrary SPD T ′(λ) we can generate our matching weightsX,Y, Z via the following summations:

X =

N
∑

i=1

T ′(wi)xi

Y =
N
∑

i=1

T ′(wi)yi

Z =

N
∑

i=1

T ′(wi)zi

(2.12)
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In the limit, as N gets very large and samples get closer and closer together we can think of these summations

as integrals. We then have a function x(λ) which gives us the matching weight for primary P1(λ), and similar

functions y(λ) and z(λ) for primaries P2 and P3. Our matching equations then become:

X =

∫ λ=wN

λ=w1

T ′(λ)x̄(λ)dλ

Y =

∫ λ=wN

λ=w1

T ′(λ)ȳ(λ)dλ

Z =

∫ λ=wN

λ=w1

T ′(λ)z̄(λ)dλ

(2.13)

These functions x(λ), y(λ), and z(λ) are known as the color matching functions. They have been

computed by numerous different experimenters with various experimental setups. Typically, these functions

are stored tabulated at 1nm or 5nm intervals, and the definite integrals shown in equation 2.13 are turned

into Riemann summations. With this tabulated data, we can compute the matching weights for any arbitrary

SPD.

2.2.3 Details of the Color Matching Experiment and the CIE XYZ Color Space

The observation conditions in the color matching experiment have an effect on the results. The human

observer typically observes a circular patch of color, but this patch does not fill up the persons full field

of view. As the angle subtended by the human observer’s eye changes, different results are obtained since

the distribution of rods and cones is not uniform across the entire eye. The two main variants of the color

matching functions are 2 degree and 10 degree. The 2 degree CMFs are designed such that the field of view

only covers the fovea of the eye [16]. The two degree CMFs are better to use when designing imagery that

will be viewed on a small device(like a monitor) from a distance. The 10 degree CMFs make more sense for

designing something like imagery shown in a movie.

The astute reader may have noticed a mathematical issue with the color matching experiment described

above. As simply stated, the color matching experiment does not allow for negative matching weights.

Without negative weights, we can’t form an arbitrary linear combination of the primary lights. Mathe-

matically having a primary with a negative weight is equivalent to adding light to the target SPD. This is

how negative weights can be implemented in practice. It turns out that either negative weights or negative

primaries(sometimes called imaginary primaries) are necessary in practice to allow a match for all colors.

A final issue in the color matching experiment is the choice of primary sources P1(λ), P2(λ), and P3(λ).

These SPDs must be linearly independent. However, using we can take data with any arbitrary linearly

independent primaries and then transform the results into a form as if the data was recorded with different
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primaries. This change of basis approach is useful in that we can transform the CMFs into a form where we

have negative values primaries. The change of basis matrix will simply be a 3 by 3 matrix with each element

being the inner product of a pair of an “old” primary with a “new primary.” This process is described

more in section 2.3. This was done with the CIE XYZ color space, and allows the matching functions to be

positive valued. This also has the benefit of allowing whoever is conducting the color matching experiment

to use whatever primary sources are most convenient. The matching functions for the XYZ color space are

shown below in figure 2.6.
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Figure 2.6: CIE XYZ Color Matching Functions(CMFs)

2.3 Color Spaces and Display of Spectral Imagery

A linear color space is defined by 3 known matching primaries. Different color spaces use different matching

primaries. When working with a particular color space, we identify colors by 3 numbers that specify its

coordinates in that three dimensional space.

2.3.1 Linear Transforms Between Color Spaces

Given an arbitrary SPD S(λ) we often with to display this color on a display device. Typically, this is done

as follows. First, we compute the matching weights X,Y, Z using equation 2.13. This tells us what linear

combination of the CIE XYZ primaries could be used to display our spectrum. However, our display will

not match up with the XYZ primaries. Our display will have its own primary spectra. For a computer
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LCD monitor, these corresponds to the SPD of the red, green, and blue phosphors in the display device.

As described above, due to Grassman’s laws, a linear transform can be used to transform our previously

computed XYZ matching weights into matching weights for our display device. These display device matching

weights tell us how what three tuple of numbers will allow our display to best approximate this color. Consider

a color space defined by primaries A(λ), B(λ), C(λ). We have already computed matching weights X,Y, Z

using our tabulated XYZ CMFs. We now wish to compute matching weights a, b, c for our new color space.

The linear transform required to do so is given by the following:













∫

Λ
x̄(λ)A(λ)dλ

∫

Λ
ȳ(λ)A(λ)dλ

∫

Λ
z̄(λ)A(λ)dλ

∫

Λ
x̄(λ)B(λ)dλ

∫

Λ
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∫

Λ
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∫
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∫
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(2.14)

Unfortunately, we usually do now know the primaries of our display device. Common approximations of

display device primaries include those in the sRGB and Adobe RGB color spaces. In these cases, the XYZ

to RGB matrices are available from a reference, and we do not need to compute this matrix ourselves.

2.3.2 Other Display Considerations

The display of computer generated images is complex topic in and of itself. A full discussion of this topic

is outside the scope of this thesis. Therefore, we give a brief description of what needs to be considered,

provide pointers to relevant literature, and describe how each issue is handled in our system. Issues discussed

include tone mapping, gamma correction, and gamut mapping.

When converting a spectral image to an RGB color space for display we can get a large range of values

for each color component. However, display devices typically only allow 8-bit values. Therefore, we must

compress the dynamic range of our HDR image down to 8 bits. This process is called tone mapping.

Another issue is gamma correction. In general, when we double a value passed to a display device, the

resulting radiance does not double. Rather, they obey a non-linear relationship. This can be corrected for

via gamma correction. We refer the interested reader to Hall’s book for information on gamma correction

and other display considerations [17].

An additional issue is that different display devices have different gamuts. A color gamut describes the

range of colors displayable by a particular device. Gamut mapping refers to how to deal with SPDs whose

colors are not displayable(out of gamut) on the current device. Again, there are many gamut mapping

algorithms, and a full discussion is outside the scope of this thesis. We use the approach of desaturating a

color until it is within gamut throughout this thesis.
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Related Work

3.1 Analytical BRDF Models

Many analytic BRDF models have been created. Each model is appropriate for a specific class of materials.

These models range from simple phenomenonological models[18] to more complex physically based models[19].

The most common spectral analytical BRDF model is the dichromatic model[20], in which the BRDF is

written as a linear combination of a diffuse and specular component: fr(ωi, ωo, λ) = g(λ)+h(ωi, ωo). However,

this models separation of angular and spectral effects is too simple to capture many types of materials. For

example, the Fresnel equation predicts the color of a specular highlight should change with the viewing angle.

This can not be described by the dichromatic model. Furthermore, complex iridescent effects, such as those

found in pearlescent pigments, are not describable by the dichromatic model.

3.2 BRDF Measurement Systems

A device for measuring a BRDF is called a gonioreflectometer. Many different designs for gonioreflectormters

exist, each with their own set of strengths and weaknesses. Recall that the anisostropic spectral BRDF is

a function of 5 angular variables and one wavelength variable fr(θi, φi, θo, φo, λ). Early gonioreflectometers

were typically point based. Point based gonioreflectometers measure the BRDF at discrete angular positions

sequentially. However, by using a spectroradiometer, the wavelength dimension(λ) can be captured in parallel.

However, these devices can be very time consuming to use since a sampling device must be moved to many

different points in a 5D domain sequentially. Contrastingly, image based systems use a camera to take many

angular measurements of a BRDF simultaneously. However, image based gonioreflectometers have typically

had low spectral resolution due to the lack of availability of multispectral cameras.

17
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Early work on general purpose multispectral BRDF capture was conducted at the National Institutes

of Standards and Technology(NIST)[21]. Their STARR system is capable of capturing full anisotropic

multispectral BRDFs that ranging from UV to NIR in the spectral domain. However, each of the 4 angular

dimensions is sampled sequentially, and thus dense angular sampling of a BRDF is infeasible due to long

acquisition times. The first spectral BRDFs measured specifically for computer graphics are from the work

of Li et al.[5]. The authors report being able to measure a full multispectral BRDF in 10 hours, with roughly

103 angular samples. In contrast to our approach, the authors capture the wavelength dimension in parallel

since they use a spectroradiometer. We capture the wavelength dimension sequentially, but capture 2 angular

dimensions in parallel.

Until Ward’s seminal paper[22], BRDF capture systems in computer graphics were slow in that the

angular dimension was captured sequentially. In Ward’s work, the imaging gonioreflectometer was introduced.

Ward’s device, using a mirrored dome and a fisheye lens, allows the user to capture 2D angular slices of an

anisotropic BRDF. However, Ward’s device has trouble with both grazing measurements and highly specular

materials. Later, Steve Marchners paper on fast BRDF acquisition[3] made image based capture more

practical. This setup is much simpler to use and more practical than Ward’s. The insight in this work is that

curved material samples(as opposed to planar samples) allow camera based measurement devices to take one

BRDF measurement at each pixel. This allows for faster acquisition. Later, Matusik et al. demonstrated

the usefulness this type of design by capturing 100 RGB BRDFs using a design similar to that described by

Marschner et al.[4].

More recently, Hullin and his collaborators built an image-based system capable of capturing isotropic

bispectral BRDFs[15]. Bispectral BRDFs allow for fluorescence. Hullin and his collaborators also used an

image based design similar to that or Marschner[3] and our own.
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Spectral Camera Calibration

4.1 Camera Calibration Goals

Camera calibration is the general process of determining some qualities about a camera, and then using

these qualities to turn pixel values into an image into meaningful measurements about the real world. The

definition of meaningful varies across applications. In consumer photography, the user simply wishes to

produce an image that has pixel values, which, when displayed on a monitor, evoke a similar sensation to

viewing the original scene. Contrastingly, in scientific applications, the user wishes to calibrate the imaging

system such that pixel values in each spectral channel are proportional to spectral radiance at a particular

point on an object.

Camera calibration is an important aspect of any image based BRDF measurement system. In our case,

since we are using custom optical components to create a multispectral camera, the calibration task is even

more challenging as compared to calibrating a traditional trichromatic camera. Our final goal is to be able

to extract, at any given pixel, the underlying spectral reflectance of object at that location.

Camera calibration techniques fall into two categories: geometric calibration and radiometric calibration.

Geometric calibration allows us to determine how pixels in an image correspond to points in the real world.

Typically these algorithms solve for camera parameters that allow us to place the camera in a world coordinate

system, and then trace rays through individual pixels. Radiometric camera calibration algorithms turn digital

pixel values into meaningful radiometric quantities.

Geometric calibration is concerned with determining the geometric properties of the cameras optical

system, and determining the camera’s location in some world coordinate system. These two ingredients

allow us to find a correspondence between pixels on the image plane and their location in the physical world.

19



Chapter 4 Spectral Camera Calibration 20

Geometric camera calibration consists of determining the camera’s intrinsic and extrinsic parameters[23].

Intrinsic parameters don’t vary as we move the camera, and include the focal length(or equivalently the field

of view), the pixel width and height, and the optical center on the image plane. The extrinsic parameters

of a camera allow us to place the camera in a world coordinate frame. Typically, extrinsic parameters are

given by a translation and a rotation that place a camera at the origin looking down the positive z axis. Our

geometric calibration techniques are not new, and we use standard algorithms and tools[24].

Radiometric calibration is concerned with converting pixel values on an image into a meaningful radio-

metric unit, such as spectral radiance. This process is challenging due to spatial non-uniformities across

the image plane(vignetting), dynamic range limitations of the sensor, and unknown quantum efficiency of

the detector and any optical filters. In this thesis we focus primarily on radiometric calibration, since that

is where we have made a novel contribution. Therefore, throughout the rest of the thesis when the term

camera calibration is used, we refer to radiometric camera calibration unless explicitly noted otherwise.

Careful spectroradiometric calibration is essential if we are to extract meaningful measurements from our

image based capture system. We wish to recover, at each pixel, a spectral reflectance that corresponds to

the spectral reflectance of the material being imaged as closely as possible.

4.1.1 Mathematical Model

Notation Meaning
pj(x, y) Pixel value at location (x, y), tuning wavelength λj .

F Camera transfer function.
t Exposure time.
a Pixel area.

S(x, y) Spatial response of sensor.
L(λ) Light spectrum.
f(λ) Spectral Reflectance of material.
O(λ) Spectral transmission of optics.
Vj(λ) Spectral transmission of LCTF when tuned to λj .
C(λ) Quantum efficiency of CCD.

Hj(x, y) HDR value for LCTF tuned to λj at pixel (x, y).
Λ The visible spectrum. Λ = [400, 720]nm.

Table 4.1: Table of mathematical notation for calibration

In order to develop effective calibration techniques, a mathematical model of image formation must be

developed. Our model specifies the value for a pixel pj(x, y), where (x, y) denotes the pixel’s position on the

sensor, and j denotes the jth tuning wavelength of the Varispec filter. Therefore, pj(x, y) is the pixel value

at spatial location (x, y) when the Varispec filter is tuned to it’s jth tuning wavelength, λj .
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pj(x, y) = F

(

t a S(x, y)

∫

Λ

L(λ)f(λ)O(λ)Vj(λ)C(λ)dλ

)

(4.1)

In this equation, F : irradiance → [0, 212), is the function that maps irradiance at a pixel to a 12 bit

camera pixel value. Because we use a monochrome camera, there is only 1 function responsible for converting

from irradiance to a 12 bit value. Therefore, F is independent of wavelength and spatial location on the

sensor. The variable t represents exposure time, whereas a is the area of a pixel.

The function S models spatial non-uniformity across the sensor, primarily caused by vignetting. We

verified that this vignetting is not wavelength dependent. L(λ) is the spectrum of our light source.

The transmission of the Varispec when tuned to λj is given by Vj(λ), and the transmission of the lens and

other optical components is O(λ). The function C(λ) is the quantum efficiency of our CCD. The quantity

of interest, the materials spectral reflectance, is f(λ). Note that the above equation ignores pixel crosstalk,

which is a common and accepted simplification in multispectral imaging research[25].

We measure relative BRDFs, which, for graphics applications, are typically sufficient. There exists a

single global scale factor that could be solved for to relate our BRDF data to real-world units. This scale

factor could be determined by a method proposed by Hullin[15]. As a result not needing exact units, we can

simplify equation 4.1 by removing a(pixel size) since it is constant for each measurement.

We are limited by the 12 bit dynamic range of our camera. The dynamic range between dark areas of

a BRDF and a bright specular highlight is large. Regardless of what exposure time we choose, some areas

will be saturated and others will be too dark. To remedy this issue we create a single high dynamic range

image(HDR) for each light position/wavelength pair. We take multiple exposures, ranging from 10µs to 10

s. Using these multiple exposures, we then create an HDR image. Our camera has a highly linear response,

and therefore we simply fit a line to our exposure time vs pixel value measurements, and take this slope

as proportional to incident irradiance. We ignore pixel values in the toe and the shoulder of our cameras

response curve, since in this region the response can be non-linear. We validated the linearity of our camera,

we compute the Pearson r coefficient for a set of input images and always found that it was always greater

than .99 over the region of interest. Note that linear response is common in scientific grade cameras, and

this is the same approach taken by Matusik[6]. If our camera’s response curve was non-linear, we could use

methods such as those proposed by Debevec[26] to invert F .

Using the above simplifications, and grouping the spectral response of our system intoRj(λ) = Vj(λ)O(λ)C(λ)

we are left with the following equation:

Hj(x, y) ∝ S(x, y)

∫

Λ

L(λ)f(λ)Rj(λ)dλ (4.2)
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Here Hj(x, y) is the HDR pixel value at location (x, y) for spectral band λj . Our final goal is to obtain

an accurate estimate of f(λ). We divide this process into 3 distinct stages. The spatial calibration stage is

concerned with measuring S(x, y). Spectral calibration is the process of determining Rj(λ). Spatial and

spectral calibration only need to be done once for a given camera. Finally, the process of spectral recovery

corresponds to solving for f(λ) once spatial and spectral calibration have been performed. Spectral recovery

is performed per-pixel.

4.1.2 Spatial Calibration

We use an integrating sphere to produce a uniform field of light. We then image this field of light to determine

S(x, y). The function S(x, y) returns values in [0, 1] where 1 indicates all light passes through, and 0 indicates

that no light passes through. We do this by imaging a flat field of illumination using an integrating sphere.

We do this for each tuning wavelength λj . A single image is produced at each wavelength, with whatever

exposure time allows us to avoid sensor saturation. Our integrating sphere setup is shown in figure 4.1.

(a) Integrating sphere in operation. (b) Integrating sphere with light off(not in
operation).

Figure 4.1: Calibrating the camera using an integrating sphere. This calibration accounts for vignetting
and other spatial(but not spectral) non-uniformities across the sensor. The integrating sphere allows us to
produce a uniform field of illumination across the camera sensor.

Next, for each image, we divide each pixel by the maximum pixel value taken from the center of the

image. Now, each image has values in [0, 1]. Finally, we average the results from each tuning wavelength

together, and manually verify that the vignetting pattern is not wavelength dependent.

One concern is that there will be a low signal to noise ratio in the corner of our images due to vignetting.

While this may be an issue for general multispectral imaging, in our case it is not. This is because, for BRDF

measurement, the spherical targets we measure are all near the center of the image.

4.1.3 Spectral Calibration

The goal of spectral calibration is to find a model for Rj(λ). We have tested several models, including a

delta model and a factored model. The delta model idealizes each Rj(λ) as a delta function centered
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at λj . This model is is conceptually simple, and makes the spectral reconstruction phase very fast. As a

second approach, we propose a factored model. This approach leverages that LCTF transmission data is

provided by the manufacturer, and that CCD quantum efficiency curves are smooth.

For spectral calibration, we take M HDR images of objects of known reflectance. In each image we

know have measured the illuminaint’s spectrum. In our case, M = 5 and we use 5 NIST traceable diffuse

reflectance standards from Labsphere. Our targets are red, green, blue, yellow, and white(Spectralon). We

denote these known spectral reflectances as f ′

1(λ) . . . f
′

M (λ). Our calibration targets, as well as their spectral

reflectance curves at normal incidence, are shown in figure 4.2.

(a) Calibrated diffuse reflectance standards.
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(b) Spectral reflectance of reflectance standards.

Figure 4.2: Spectral calibration targets. Reflectance is plotted at normal incidence(θi = θo = 0), but
materials are close to ideal Lambertian reflectors.

Since each reflectance target takes up a relatively small area in the center of the image plane, we tem-

porarily ignore spatial calibration. Therefore, our image formation equation reduces to the following.

Hij =

∫

Λ

L(λ)f ′

i(λ)Rj(λ)dλ (4.3)
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Here i indexes over our different images/targets of known reflectance and j indexes over tuning wave-

lengths λj .

Delta Model

Our delta model considers the response of each tuning wavelength as an idealized impulse. Formally, we

model R̃j(λ), our estimate of the spectral response, as follows:

Rj(λ) ≈ R̃j(λ) = wjδ(λ− λj) (4.4)

When we insert equation 4.4 into equation 4.3, we see that the integral falls away and we are left with:

Hij = L(λj)fi(λj)wj (4.5)

Therefore, for each single unknown wj we setup an overdetermined system of M equations and solve to

find the parameter wj , the height of the delta function for tuning wavelength λj . A visualization of the

camera response modelled as delta functions is shown in figure 4.3.
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Figure 4.3: Rj(λ), the Spectral transmittance of Varispec multiplied by Quantum Efficiency modelled as
Dirac delta functions.

Factored Model

The factored model takes advantage of the facts that CCD quantum efficiency(C(λ)) and optical transmission

(O(λ)) curves are highly smooth, and that the manufacturer of the our LCTF provides tabulated data for

spectral transmission for certain tuning wavelengths. We then choose to model Rj(λ) as the product of

the manufacturer’s LCTF transmission data and a constant. The manufacturer’s tabulated data is given by

Tj(λ). Our model then becomes:
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Rj(λ) ≈ R̃j(λ) = cjTj(λ) (4.6)

We solve for ci by pulling it out of the integral and using numerical quadrature to find
∫

Λ
Tj(λ)L(λ)f(λ)dλ.

A visualization of the camera response modelled via the factored model is shown in figure 4.4.
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Figure 4.4: Plot of cjTj(λ)∀j. Note the large width of Tj(λ) near j = 28 and above.

4.1.4 Spectral Reconstruction

The process of spectral reconstruction consists of estimating f(λ), the spectral reflectance, given known

calibration parameters. As shown in figure 4.5, the reflectances of real world objects are vary rapidly, and

thus this reconstruction is a challenging process.

Figure 4.5: A screenshot of our spectral image viewer showing the spectral reflectance of a yellow vase. This
application allows a user to move the mouse over the pixels on the right hand side of the image. The spectral
reflectance underneath the mouse is shown on the right hand side in real-time. The black and white image
on the left is a visualization of the intensity at the wavelength represented on the right by a yellow vertical
line.
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4.1.5 Nyström Reconstruction

For any spectral calibration model, the Nyström method can be used to reconstruct the spectral reflectance.

In the Nyström method a numerical quadrature rule is discretized into a system of linear equations. In our

case, this discretization yields the following linear system.
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For Nyström reconstruction, we invert the matrix RL, and multiply this by each spectrum in order to

reconstruct the reflectance spectrum. We exploit the fact that (RL)−1 = L−1R−1. Note that for the delta

model, the matrix RL is a diagonal matrix, so this inversion process is trivial. For the factored model, this

matrix is not a diagonal matrix.

4.1.6 Multispectral Imaging Results and Comparison

Evaluation of calibration and spectral reconstruction methods is challenging. The primary issue is that

limited ground truth data is available on which to test spectral reconstruction techniques. Secondly, the

ground truth data that is available is of very smooth spectral reflectance, which most techniques perform

well on. Finally, the question of what spectral comparison metric to use is highly application dependent [27].

Weighted comparison metrics require knowledge of the lighting in which the spectra will be viewed, and

the spectral response of the viewer. Since we do not know all situations in which our data will be used, we

can not choose a weighted metric. As a result, we choose RMS, which is commonly used in graphics [28].

Our metric to compare two spectra S1 and S2 is given below.

∆RMS(S1, S2) =

√

∑N
i=1

(S1(λi)− S2(λi))2

N
(4.8)

We fit both of our models from data on the blue and white(Spectralon) targets. We then tested them on

the red, yellow, green and blue targets. Despite its simplicity, the delta model was superior on all test data.

Results are shown in figures 4.6, 4.7, 4.8, and 4.9.

Perhaps counterintuitively, the delta model performed better on all input data. This is surprising, since

this model does not account for the width of the LCTF transmission curves. One possibility is that the data

provided by the manufacturer is erroneous, or that our light data measured by the spectrometer is incorrect.

A final possibility is that the CCD QE is not as smooth as expected.
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Figure 4.6: Comparison of spectral calibration techniques using the red target. Results for both the factored
model and the delta model are shown.
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Factored Model | RMS Error 0.040050

Figure 4.7: Comparison of spectral calibration techniques using the green target. Results for both the
factored model and the delta model are shown.
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Figure 4.8: Comparison of spectral calibration techniques using the blue target. Results for both the factored
model and the delta model are shown.
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Figure 4.9: Comparison of spectral calibration techniques using the yellow target. Results for both the
factored model and the delta model are shown.

4.1.7 Multispectral Relighting Results

One important application of multispectral imaging is relighting [28]. Relighting is the process of taking

an image of a scene under one illuminant, and then synthesizing artificial images of the same scene under

a different illuminant. Multispectral images are of paramount importance for accurate relighting. Consider

the situation in which an image is taken under an illuminant with known spectrum L(λ), and one wishes to

relight the scene with a different illuminant L′(λ). The RGB values for the relit image will be R′, G′, B′.

For multispectral data, relighting is given by the following equation: are computed as follows:

R′ =

∫

Λ

r̄(λ)
L(λ)f(λ)

L(λ)
L′(λ)dλ

G′ =

∫

Λ

ḡ(λ)
L(λ)f(λ)

L(λ)
L′(λ)dλ

B′ =

∫

Λ

b̄(λ)
L(λ)f(λ)

L(λ)
L′(λ)dλ

(4.9)

Note that in these equations, r̄(λ), ḡ(λ), and b̄(λ) are the red, green, and blue spectral matching curves,

respectively. With multispectral relighting, we get an accurate result since we can divide out the contribution

of the original light, and factor in the contribution of the new light.

In a typical, tristimulus relighting pipeline, an image is acquired with an RGB camera. The acquisition

process corresponds to integrating with the spectral matching curves. Therefore, relighting can only operate

on RGB values, and not on spectral data. Relighting in RGB is given by the following equation, where
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R,G,B specify the original color values before relighting:

R′ =
R

∫

Λ
L(λ)r̄(λ)dλ

∫

Λ

r̄(λ)L′(λ)dλ

G′ =
G

∫

Λ
L(λ)ḡ(λ)dλ

∫

Λ

ḡ(λ)L′(λ)dλ

B′ =
B

∫

Λ
L(λ)b̄(λ)dλ

∫

Λ

b̄(λ)L′(λ)dλ

(4.10)

The benefits of multispectral relighting are demonstrated in figure 4.10.

(a) Multispectral relighting by CIE F1 flu-
orescent illuminant

(b) sRGB relighting by CIE F1 fluorescent
illuminant

(c) L2 per-pixel difference of multispectral
and RGB relighting

Figure 4.10: Comparison of multispectral and RGB relighting results.
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BRDF Measurement

5.1 Measurement Algorithm Overview

To measure multispectral isotropic BRDFs, we have built an image based gonioreflectometer similar in

principal to the one originally designed by Marschner et. al[3]. Our image based goniorefelctometer is also

similar to that of Matusik et al.[4]. A diagram of our system is shown in figure 5.1. We move the light

source in a 165 degree arc around the sample in 1 degree increments. We are unable to measure a full 180

degree arc due to the light source obstructing the camera, and due to the light source shining directly into

the lens. We could measure a larger range of angles if we had used a half-silvered mirror, but as this cuts

light transmission in half and complicates the system design we opted against it. By capturing only an 165

degree arc, as opposed to 180, we limit our ability to measure retroreflection and grazing configurations of

the BRDF. Both Matusik[4] and Marschner[3] reported the same issue. At each light position, we create an

HDR image at several wavelength bands. Currently we take 31 images, ranging from 420 nm to 720 nm in

10 nm increments. We don’t capture below 420 nm due to the low transmission our LCTF in the near-UV

range.

At each light position, we create an HDR image for each spectral band. We take a series of up to 20

exposures, ranging from 100 microseconds to 8 seconds. In most spectral bands, 8 second exposures are

not necessary. Before measuring a BRDF, the user supplies a series of constraints stating the maximum

exposure time necessary at each wavelength band. We have found that long exposures are typically only

necessary below 480 nm. To compute each HDR image we simply fit a line to our exposure time vs. pixel

value measurements. We use the slope of this line as our radiance estimate. We discard all measurements

with pixel values below 15 and above 240. We are able to use the slope of this line as a radiance estimate

30
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Figure 5.1: Diagram of image based BRDF measurement system using spherical samples.

due to the linearity of our camera’s transfer function(CTF) over the range [15, 240]. If our CTF was not

linear, we could use methods like that proposed by Debevec et. al[26]. to invert the CTF.

Our system is different than that of previous work in a few ways. First, before taking BRDF measure-

ments, we turn off the moving light source and turn on the spotlight. The spotlight illuminates a board

behind the spherical target, and creates an image in which outline of the sphere is dark, and the background

is white. This allow us to separate which pixels are on the sphere versus which are part of the background.

We also use data from this image to derive per-pixel normal vectors, light vectors, and view vectors. This

aspect of our system is described further in section 5.2. Our setup is easier to use and cheaper than that of

Matusik et al[6], who uses an touch-probe to determine the exact distance from the camera to the sphere.

Our system requires no physical measurements of this kind.

5.1.1 Components of BRDF Measurement System

Our system uses a QImaging Retiga 4000R cooled CCD monochrome camera with a Nikon lens to capture

images. We have removed the IR filter from this camera since it limited our ability to capture above 680 nm.

Noise from heat is limited by an IR cut filter on our light source that operates closer to 730 nm. To take

multispectral images we use a Varispec VIS LCTF(10 nm bandwidth) made by Caliper Life Sciences. Our

light source is a 150W Tungsten Halogen stable source produced by Schott-Fostec(Schott Fostec DCR-III).

Images of our physical setup are shown in figure 5.2.
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(a) Photograph of measurement system (b) Photograph of measurement system(back)

Figure 5.2: Photographs of BRDF measurement system.

We were initially concerned with polarization affecting our measurements. Light from our light source

is unpolarized. However, BRDFs will sometimes linearly polarize light. This polarization typically occurs

around the specular highlight. Our LCTF acts a linear polarizer. Light that is linearly polarized with

the correct orientation will have twice the transmission of unpolarized light after passing through a linear

polarizer. If this was to occur, this would cause us to measure the highlight incorrectly. One way to avoid

this, which was done by Hullin et al.[15], is to place an optical depolarizer in front of the LCTF. We tried

this with two depolarizers, but did not get good results. First, these depolarizers cut down on transmission

of light, and thus increase required integration times, which amplifies noise. Furthermore, only small optical

depolarizers are readily available, which then causes severe vignetting and cuts down on the amount of pixels

available as measurements. We had also tried a custom made large aperture depolarizer, but the AR coating

on this component was not effective at reducing internal reflections. These internal reflections corrupted our

data and made the depolarizer unusable.

5.2 Converting HDR values to BRDF Measurements

Once we have captured our data, made HDR images from LDR input, and performed spectral calibration, we

are left with a series of multispectral HDR images for various light positions. Pixels on the sphere itself are

BRDF measurements, but pixels not on the sphere(or in shadow) must be discarded. To initially determine

which pixels are located on the sphere we use the silhouette image taken during the capture process. This

image is taken with a backlight on, and the moving light source off. This results in an image where the

sphere itself is dark, but the background is white. In order to detect the boundaries of the target sphere,
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we need an algorithm for detecting a circle in the image1. We minimize the following expression using the

Nelder-Mead simplex algorithm[29] to determine the center pixel (Cx, Cy) as well as the radius in pixels, r.

f(Cx, Cy, r) = −

N
∑

i=1

(∣

∣

∣

∣

∇I

(

Cx + r sin(
2iπ

N
), Cy + r cos(

2iπ

N
)

) ∣

∣

∣

∣

)

(5.1)

In this minimization f is the objective function to minimize, N is the number of sample points(we use

N = 32), and ∇I is the gradient of the monochromatic silhouette image. This minimization is attempting to

place a circle on the image in a location where the gradient magnitude is large around the edge of the circle.

A step of this minimization is visualized in figure 5.3, where the gradient magnitude is visualized. The green

circles are the N points at which gradient magnitude is evaluated, and the red circle is a visualization of the

current iteration’s best guess.

Figure 5.3: Visualization of non-linear minimization used for circle detection. The green points represent
the N locations at which we sum the gradient magnitude. The gradient magnitude is visualized in black and
white in the backgroud. Note that the 8-bit imagery limits our ability to see subtle variations in gradient
magnitude that are present in the underlying data.

5.2.1 Interpreting Pixel Values as BRDF Measurements

After performing circle detection, we know which pixels lie on the sphere. However, in order to interpret each

pixel value as a BRDF measurement we must know the pixel’s normal vector(n̂) , light vector(ω̂i), and view

vector(ω̂o). Once these vectors are known, we have enough data to interpret each HDR value as a BRDF

1In general, a sphere being imaged under perspective projection does not produce a circle. However, as our camera is near
orthographic and our sphere is near the center of projection, our images are highly circular.
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measurement. We determine surface normals and view vectors via raycasting. We determine the light vector

either by imaging a mirrored sphere.

5.2.2 View Vector Determination

We initially perform geometric camera calibration using the method of Zhang et. al[24]. We take images

of a checkerboard under various configurations and determine the intrinsic properties of our camera. Once

our camera intrinsics are known, we assume the camera COP lies at the origin of a world coordinate system

looking down the positive z axis. Using raycasting with a perspective camera model, we determine per pixel

view vectors for our camera.

5.2.3 Surface Normal Determination

The sphere we are imaging lies down the z axis, roughly near the z axis and likely slightly off center. Once

we know the sphere radius and position we can use raycasting to generate surface normals.

We would like to solve for (Sx, Sy, Sz, r), the center of the sphere, and its radius, in world coordinates. We

supply an initial guess, and use non-linear optimization[29] to minimize a 4 dimensional objective function

g. Our objective function to be minimized is of the following form:

g(Sx, Sy, Sz, r) =

W
∑

x=1

H
∑

y=1

(Ireference(x, y)⊗ Itraced(x, y)) (5.2)

where Ireference and Itraced are binary images where each pixel indicates whether the sphere is visible. The

image Itraced is computed based on raytracing using the sphere given by the current value of (Sx, Sy, Sz, r).

The image Ireference is created using the results from minimizing equation 5.1. The operator ⊗ denotes

exclusive or(xor). Given a reasonable initial guess, this algorithm converges in a fee hundred iterations and

finds a sphere placement and size that, when raytraced, results in exactly the same set of pixels as those

found in the silhouette detection step. Once we have the placement and radius of our sphere we raycast to

determine per-pixel normal vectors.

5.2.4 Light Vector Determination

Determining the light vector(ω̂i) per pixel is more challenging than determining the view vector or the

normals. We idealize our light source as an infinitely distance point source for light vector determination.

With this model, the light vector is constant over the entire sphere. We take an initial set of images of a

mirrored sphere using our moving light source. We manually set the exposure time such that the specular
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highlight on the sphere is under 3 by 3 pixels in size. Next, in each image, we use template matching to

compute the location of the specular highlight. Once we have a particular pixel (x, y) ∈ Z× Z at which the

specular highlight is located, we use the following equation to find our light vector ω̂i :

ω̂ix = (2n̂ · ω̂o)n̂x − ω̂ox

ω̂iy = (2n̂ · ω̂o)n̂y − ω̂oy

ω̂iz = (2n̂ · ω̂o)n̂z − ω̂oz (5.3)

We then store our these values into a precomputed table of values and look them up when processing future

BRDF scans.

5.2.5 Unstructured BRDF Data Results

At this point we have, at each pixel in our image sequence, a value proportional to spectral reflectance.

Furthermore, we have per-pixel light(ω̂i), view(ω̂o), and normal(n̂) vectors, we have enough information to

create BRDF measurements. By simply looping over each pixel on the sphere in our image sequence, we

can store BRDF measurements. However, these measurements are unstructured in that they are scattered

throughout the 3D space (θi, θo, φdiff). However, they are not unstructured in the wavelength dimension, λ,

since we have sampled at regular 10 nm intervals.

Using these unstructured data points, we can create goniometric plots to visualize the BRDF. One form of

goniometric plots is an incidence plane plot. The incidence plane of the BRDF is the 2D slice of the BRDF’s

angular domain shown in figure 5.4. Incidence plane plots are useful as they allow us to visualize many

interesting features of the BRDF(ideal specular reflection, grazing, and retro-reflection) simultaneously.

Figure 5.4: The incidence plane of the BRDF. In this diagram, the incidence plane is shown in light blue.
The vectors n̂, ω̂i and t̂ lie inside the incidence plane, while b̂ is normal to the incidence plane. In our
incidence plane plots, we plot all BRDF samples such that ω̂o is near the incidence plane.
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Each of our unstructured BRDF samples lies at a particular position. None will likely lie exactly in the

incidence plane. Therefore, in our incidence plane plots we plot all BRDF measurements such that they are

within some angular distance ǫ of the incidence plane. Each of our measured BRDFs has a different number

of samples, owing to each sphere taking up different sizes in the images and due to pixels being rejected

due to noise or bloom. Therefore, ǫ must be hand-tuned on many of the plots in order to get illustrative

plots. Also, note that for most of our plots we plot the cube-root of the BRDF, as opposed to the BRDF

itself. This is becuase the specular highlight of many materials is orders of magnitude larger than the diffuse

component. This allows us to inspect both the diffuse and specular component simultaneously. This is the

same practice used by Nagan et al.[30].

Below in figure 5.5 we see incidence plane plots for various angles θi for a glossy red Christmas ornament.

In figure 5.6 we show incidence plane plots for a highly specular red plastic material. Note sharp specular

highlight.

In figure 5.7 we show incidence plane plots for blue racquetball. The BRDF is nearly Lambertian. There

are large amounts of data missing near retro-reflection since this data came from an early version of our

system with a different physical setup.

5.3 BRDF Reconstruction from Scattered Data

After the previous steps are complete, we now have a set of unstructured BRDF samples. Recall that the

isotropic multispectral BRDF is a function of 3 angular variables and one wavelength variable: fr(θi, θo, φdiff, λ).

After the previous steps have completed, we have N scattered BRDF measurements. Each measurement

gives a full spectral sampling of the BRDF at one particular angular orientation (θi, θo, φdiff). This repre-

sentation of the BRDF is not useful for either a rendering system or for efficient analysis. We would like a

representation in which the BRDF is sampled onto a set of predetermined grid points. Such a representation

allow constant time BRDF evaluation in a rendering system, and makes data analysis and visualization

faster. Therefore, a procedure for resampling the BRDF onto a regular grid is required.

We use the non-uniform grid format that is used in the MERL BRDF database[6]. This format stores the

BRDF using a halfangle-difference parameterization originally proposed by Rusinkiewicz[31]. This param-

eterization allows us to vary the sampling density near the specular highlight. This is impossible with the

standard parameterization (θi, θo, φdiff). Using this parameterization, we sample the BRDF at 90× 90× 180

positions, with more samples near the specular highlight. This allows us to reproduce more mirror-like

surfaces.
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(a) Image of the actual material im-
aged by an RGB consumer camera.
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(b) Incidence plane plot for θi = 25
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(c) Incidence plane plot for θi = 45
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(d) Incidence plane plot for θi = 65

Figure 5.5: Incidence plane BRDF plots of a reddish-orange Christmas ornament. Note the glossy highlight.

Formally, we have N samples of the BRDF, fr, at coordinates pj = (θi,j , θo,j , φdiff,j) for j = 1, 2, . . . , N .

At each angular position, we have a corresponding BRDF measurement bj , where bj = fr(θi,j , θo,j , φdiff,j).
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(a) Image of the actual material im-
aged by an RGB consumer camera.
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(b) Incidence plane plot for θi = 25
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(c) Incidence plane plot for θi = 45
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(d) Incidence plane plot for θi = 65

Figure 5.6: Incidence plane BRDF plots of a red highly specular plastic. Note the finely resolved specular
highlight.

We seek a procedure to evaluate fr at arbitrary locations at which we do not already have samples. In
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(a) Image of the actual material im-
aged by an RGB consumer camera.
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(b) Incidence plane plot for θi = 15
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(c) Incidence plane plot for θi = 25
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(d) Incidence plane plot for θi = 45

Figure 5.7: Incidence plane BRDF plots of a blue racquetball. Note that this data came from a very early
version of our scanning system. At this point, we had to stop measurement very far from retro-reflection due
to a large light source housing potentially colliding with the camera. This is why there are “holes” near ω̂i.

general, this type of problem is known as a scattered data interpolation problem[32]. However, our particular

1Interpolation is somewhat of a misnomer. Interpolation typically implies that the approximating function matches the
sample values exactly. In scattered data interpolation this restriction is often relaxed and we instead seek a smooth function
that fits the sample points over the domain in question.
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situation does not allow us to blindly apply techniques from the scattered data interpolation literature. First,

we have a very large number of measurements. Our BRDF measurement system is capable of producing

up to 30 million samples for a single BRDF. Many unstructured data interpolation algorithms inspect all

unstructured measurements to do a single interpolation, and thus are O(N). This is unacceptable since we

need to reconstruct each BRDF at just under 3 million grid points to get our data into the format of Matusik

et. al[4]. A second issue is that Euclidean distance between BRDF angular sample positions does not work

well for reconstruction.

To avoid the first issue of running time, we use a spatial data structure, the KD-Tree, to speed up our

queries when evaluating a BRDF at a new angular position. In our case, the kd-tree is 3 dimensional, since

there are 3 angular coordinates in the isotropic BRDF we are interpolating. KD-Trees allow effecient nearest

neighbor queries(kNN), and this allows us to speed up our search. For worst case complexity for finding the

k-nearest neighbors in a D-dimensional KD-Tree is O(kDN1− 1
D ). In our situation, D = 3 so this algorithm is

fast. However, in very high dimensional spaces KD-Trees perform poorly due to the curse of dimensionality.

We also require a function M : R3 → R
3 that takes an angular sample (θi, θo, φdiff) and returns a 3-

vector. This function is designed such that Euclidean distances between samples(after M has been applied)

corresponds to samples that are nearby in the BRDF domain. This allows us to make k-nearest neighbor

queries into our KD-Tree in order to find k nearby samples to interpolate from. Choices for this function

are discussed in the next section. First, we provide psuedocode for our reconstruction algorithm:

Algorithm 3D BRDF Resample(M,k)

1.

(∗ Using N unstructured BRDF samples, output grid of B brdf measurements ∗)

2. for j ←1 to N

(∗ Add unstructured samples to KD-Tree ∗)

3. a = M(θi,j , θo,j , φdiff,j)

4. kd tree add sample(a, bj)

5. for i ←1 to B

(∗ Evaluate the BRDF at B grid points ∗)

6. (θi, θo, φdiff) = get bin angular pos(i)

7. a = M(θi, θo, φdiff)

8. L = kd tree knn(a, k)

9. b = unstructured data interpolation(L)

10. grid[i] = b

11. return grid
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5.3.1 Distance Metrics for Unstructured BRDF Samples

When resampling the BRDF at a particular position (θi, thetao, φdiff), we first find K BRDF samples nearby this

point. However, defining “nearby” for BRDF measurements is a challenging task. Formally, we seek a continuous

function M : R3 → R
3 that satisfies the following characteristics:

M : R3 → R
3 (5.4)

‖M(s1)−M(s2)‖2 < ǫ for nearby sampless1 and s2 (5.5)

‖M(θi, θo, φdiff)−M(θi, θo, φdiff + iπ)‖2 = 0∀i ∈ Z (The mapping should reflect isotropy) (5.6)

‖M(θi, θo, φdiff)−M(θo, θi, φdiff)‖2 = 0 (The mapping should reflect Helmholtz reciprocity) (5.7)

One choice for M was provided by Marschner in his thesis[33]. He provides the following mapping Mm:

Mm(θi, θo, φdiff) =

(

sin(θi) sin(θo),
φdiff

π
, cos(θi) cos(θo)

)

(5.8)

This mapping has the benefit that it effectively doubles the sampling rate by enforcing Helmholtz reciprocity.

We also consider two other sampler mappings for M . One mapping, Ms simply consists of using the “standard

coordinates” themselves, once we have made sure φdiff is normalized to the range [0, 180]. A third mapping, Mh,

consists of transforming (θi, θo, φdiff) into halfangle-difference coordinates. The equations for this transformation are

included in the work of Rusinkiewicz[31].

5.3.2 Reconstruction Methods for Unstructured BRDF Samples

For this discussion, we can ignore the wavelength dependence of the BRDF. This is because at each angular BRDF

sampling position we have a full set of spectral samples. Therefore, whatever procedures we develop for resampling the

BRDF can be applied to each spectral band independently. The output from our previous BRDF measurement stage

is a set of N BRDF measurements b1, b2, . . . , bN at corresponding angular configurations p1 = (θi1, θo1, φdiff1), . . . pN =

(θiN , θoN , φdiffN ). We can apply a mapping function M to get a set of N points in R
3. Using these points, we lookup

k nearby samples in our KD-Tree in order to evaluate the BRDF. However, once we have k samples we need a way

of combining them into a final measurement. We evaluate two techniques. For the first technique, we compute a

simple average of the k nearby samples. Our second technique uses a weighting scheme to favor nearby samples. This

weighting scheme is given in the following equations:

f(~x) =

K
∑

i=1

biwi

K
∑

i=1

wi

(5.9)
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wi =
1

‖M(~x),M(~xi)‖p
(5.10)

These equations are derived from a method called Shepard Interpolation[32]. Altering the value of p allows the

user to control the amount of smoothing in the reconstruction. In the evaluation below, we only consider the simple

case of p = 1.

5.4 Evaluation of BRDF Resampling

We have outlined several choices for how to reconstruct a BRDF from unstructured samples. In order to determine

which reconstruction methods and parameter settings to use, we tested our system using synthetic data. This

synthetic data was generated by evaluating an analytical BRDF model at a set of predefined sampling locations. We

used the sampling locations generated from an actual BRDF scan using our measurement system. This test allows us

to decouple the aspect of the quality of our data versus the reconstruction algorithm being used. For this evaluation,

we used RGB BRDFs for the sake of speed since the spectral aspect of our system plays no role in the reconstruction

algorithm. The analytic BRDF models we chose were Torrance-Sparrow[34] and Ward[2]. Torrance-Sparrow was

used to simulate glossy BRDFs with a Fresnel component, while Ward was used to simulate more specular materials.

Note that we used the simpler isotropic ward model shown in Walter’s tech report[35](αx = αy).

5.4.1 Torrance Sparrow BRDF Results

The Torrance-Sparrow BRDF is a mircofacet BRDF model, originally developed by Torrance and Sparrow[34], and

first introduced to computer graphics by Cook and Torrance[19]. This model allows us to model glossy surfaces. The

equations comprising the Torrance-Sparrow model are shown below in equation 5.11.

fr =
DGF

π cos(θi) cos(θo)

D =
e

−(tan2(θh))

m2

4m2 cos4(θh)

G = min

{

1,
2 cos(θh) cos(θi)

cos(θd)
,
2 cos(θh) cos(θo)

cos(θd)

}

F =
1

2

[

(

sin(θt − θd)

sin(θt + θd)

)2

+

(

tan(θd − θt)

tan(θd + θt)

)2
]

θt = sin−1

(

sin(θd)

η

)

(5.11)

In the above equations η is the index of refraction for the material in question. The F term is the Fresnel term,

which is the solution of Maxwell’s equations at the interface of the material assuming that the material exists in a

vacuum(ηenv = 1). Here F is the sum of both the solutions for light polarized parallel to the incidence plane and

perpendicular[36]. The Fresnel term accounts for reflectance increasing at near grazing configurations. The terms
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D and G are the microfacet term, and the self-shadowing term, respectively. Note that the parameter m is the

microfacet slope.

Ground truth results for the Torrance-Sparrow model are shown in figure 5.8. The image shown in the ground

truth render corresponds to evaluating the analytic Torrance-Sparrow model whenever we evaluate the BRDF in our

rendering system. For simplicity, we rendered an RGB image with the same BRDF parameters for each color channel.

Figure 5.8: Ground truth render for Torrance-Sparrow BRDF. Compare to figures 5.9, 5.10, 5.11, and 5.12.
The model parameters have been set to have a smooth, glossy, highlight, as well as a slight Fresnel term.

To generate synthetic, unstructured BRDF data, we used a set of samples originally from an actual scan. We

loop over each of the unstructured samples from the scan, and evaluate Torrance-Sparrow with the same parameters

shown in image 5.8. This unstructured data is then used in several reconstruction algorithms, with various parameter

settings. The resulting HDR images are also tone-mapped with the same parameters. The results are shown in figures

5.9, 5.10, 5.11, and 5.12.

In the above plots, we see the average per-pixel L1 error in the final column. Unfortunately, this number does

not correspond with that a human observer might describe as a “good match”

5.4.2 Ward BRDF Results

To evaluate our system, as well as choose parameters for reconstruction algorithms, we need to evaluate using a

specular BRDF as well. For this evaluation, we use the Ward BRDF[2]. Since we deal only with isotropic materials,

we use the simplified isotropic described in Walter’s tech report[35]. The isotropic Ward BRDF we use is given by

the following formula:

fr(ω̂i, ω̂o) =
ρs

4πα2
√

cos(θi) cos(θo)
e
− tan2 θh

(

cos2(φh)

α2 +
sin2(φh)

α2

)

(5.12)
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Torrance Sparrow BRDF - Comparison of Reconstruction Parameters - Nearest Neighbor(k = 1)

Parameters Rendering L1 error per-pixel Avg. L1 Error

Mh 0.000715

Mm 0.001501

Ms 0.000692

Figure 5.9: Comparison of BRDF reconstruction parameters for reconstructing a Torrance-Sparrow BRDF
from unstructured samples. Sample positions were taken from an actual BRDF scan, BRDF values are
generated from an analytic Torrance-Sparrow model. For these results, a nearest neighbor search(k = 1) was
used.

5.4.3 Parameter Choices for BRDF Reconstruction

After looking at our synthetic tests, we found that k > 128 caused excessive smoothing in the results. We also found

that a simple average, as opposed to a weighted average, caused excessive smoothing as well. For our synthetic data,

each mapping function gave similar results.

To evaluate our choices of reconstruction parameters, we also visualized incidence plane slices of the BRDF(see

figure [?]) from a highly specular material. The material is red plastic, shown previously in figure 5.6a. This is a

challenging BRDF to resample due to the delta-like nature of the sharp specular highlight. Here we found, that values

of k > 64 smooth out the highlight excessively. However, values of k < 16 are unable to resolve the highlight accuracy.

We decided that k = 32 works best for this type of highly specular material when reconstructing from noisy data.

Also, we found that a weighted average was necessary here. The non-weighted scheme smooths out the highlight

when using a non-weighted average. We also found that, for this dataset, the “standard” mapping function worked

the best. The MM mapping takes advantage of Helmholtz reciprocity. However, this works to our disadvantage

since we have noisy data. If the highlight is off by a fraction of a degree, when we swap ω̂o and ω̂i, this produces

the effect of smoothing sharp highlights like the one shown. For these reasons, we settled on mapping Ms, k = 32,



5.4 Evaluation of BRDF Resampling 45

and a weighted average. An incidence plane slice using these parameters is shown in figure 5.17. This represents a

challenging BRDF to reconstruct due to the sharp highlight. We see that our reconstruction fits the points well.
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Torrance Sparrow BRDF - Comparison of Reconstruction Parameters - k = 16

Parameters Rendering L1 error per-pixel Avg. L1 Error

Mh, Avg. 0.000851

Mh, Weighted Avg. 0.000564

Mm, Avg. 0.001435

Mm, Weighted Avg. 0.001432

Ms, Avg. 0.000662

Ms, Weighted Avg. 0.000654

Figure 5.10: Comparison of BRDF reconstruction parameters for reconstructing a Torrance-Sparrow BRDF
from unstructured samples. Sample positions were taken from an actual BRDF scan, BRDF values are
generated from an analytic Torrance-Sparrow model. Note that “Avg” refers to a simple mean of all k
nearby samples, whereas “Weighted Avg” refers to using equation 5.9 with p = 1. For these results, a
nearest neighbor search(k = 16) was used.
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Torrance Sparrow BRDF - Comparison of Reconstruction Parameters - k = 64

Parameters Rendering L1 error per-pixel Avg. L1 Error

Mh, Avg. 0.000993

Mh, Weighted Avg. 0.000636

Mm, Avg. 0.001317

Mm, Weighted Avg. 0.001293

Ms, Avg. 0.000666

Ms, Weighted Avg. 0.000612

Figure 5.11: Comparison of BRDF reconstruction parameters for reconstructing a Torrance-Sparrow BRDF
from unstructured samples. Sample positions were taken from an actual BRDF scan, BRDF values are
generated from an analytic Torrance-Sparrow model. Note that “Avg” refers to a simple mean of all k
nearby samples, whereas “Weighted Avg” refers to using equation 5.9 with p = 1. For these results, a
nearest neighbor search(k = 64) was used.
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Torrance Sparrow BRDF - Comparison of Reconstruction Parameters - k = 256

Parameters Rendering L1 error per-pixel Avg. L1 Error

Mh, Avg. 0.002288

Mh, Weighted Avg. 0.001524

Mm, Avg. 0.001688

Mm, Weighted Avg. 0.001542

Ms, Avg. 0.000908

Ms, Weighted Avg. 0.000617

Figure 5.12: Comparison of BRDF reconstruction parameters for reconstructing a Torrance-Sparrow BRDF
from unstructured samples. Sample positions were taken from an actual BRDF scan, BRDF values are
generated from an analytic Torrance-Sparrow model. Note that “Avg” refers to a simple mean of all k
nearby samples, whereas “Weighted Avg” refers to using equation 5.9 with p = 1. For these results, a
nearest neighbor search(k = 256) was used.



5.4 Evaluation of BRDF Resampling 49

Figure 5.13: Ground truth render for isotropic Ward BRDF. Compare to figures 5.14, 5.15, and 5.16. The
model parameters have been set to have a large specular highlight and 0 diffuse reflectance. While this is
physically implausable, it allows us to test our reconstruction of sharp specular highlights.

Isotropic Ward BRDF - Comparison of Reconstruction Parameters - Nearest Neighbor(k = 1)

Parameters Rendering L1 error per-pixel Avg. L1 Error

Mh 0.002207

Mm 0.014700

Ms 0.000455

Figure 5.14: Comparison of BRDF reconstruction parameters for reconstructing an isotropic Ward BRDF
from unstructured samples. Sample positions were taken from an actual BRDF scan, BRDF values are
generated from an analytic isotropic Ward model. For these results, a nearest neighbor search(k = 1) was
used.
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Isotropic Ward BRDF - Comparison of Reconstruction Parameters - k = 16
Parameters Rendering L1 error per-pixel Avg. L1 Error

Mh, Avg. 0.005284

Mh, Weighted Avg. 0.003982

Mm, Avg. 0.013192

Mm, Weighted Avg. 0.013236

Ms, Avg. 0.000387

Ms, Weighted Avg. 0.000369

Figure 5.15: Comparison of BRDF reconstruction parameters for reconstructing an isotropic Ward BRDF
from unstructured samples. Sample positions were taken from an actual BRDF scan, BRDF values are
generated from an analytic isotropic Ward model. Note that “Avg” refers to a simple mean of all k nearby
samples, whereas “Weighted Avg” refers to using equation 5.9 with p = 1. For these results, k = 16 was
used for the nearest neighbor search.
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Isotropic Ward BRDF - Comparison of Reconstruction Parameters - k = 256
Parameters Rendering L1 error per-pixel Avg. L1 Error

Mh, Avg. 0.021284

Mh, Weighted Avg. 0.013984

Mm, Avg. 0.005764

Mm, Weighted Avg. 0.005087

Ms, Avg. 0.001702

Ms, Weighted Avg. 0.001090

Figure 5.16: Comparison of BRDF reconstruction parameters for reconstructing an isotropic Ward BRDF
from unstructured samples. Sample positions were taken from an actual BRDF scan, BRDF values are
generated from an analytic isotropic Ward model. Note that “Avg” refers to a simple mean of all k nearby
samples, whereas “Weighted Avg” refers to using equation 5.9 with p = 1. For these results, k = 256 was
used for the nearest neighbor search.
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Figure 5.17: Incidence plane plot of specular red plastic unstructured data with binned data overlaid. In
this plot, λ = 690 nm. The “standard” mapping was used, along with a weighted average for reconstruction
and k = 32.



Chapter 6

BRDF Measurement Results

Using our system, we have measured the BRDFs of several materials. Our measurements include BRDFs that are

nearly Lambertian, glossy BRDFs, and highly specular BRDFs. We plan on releasing our measurements publicly in

the near future. Similar to Ngan et al.[30], we render spheres under an environment map to verify our BRDFs. To

facilitate comparison, we use the same environment map as Ngan et a., and have attempted to place the camera in

a similar location. However, the envrionemtn map we use(the Grace Cathedral environment map) is only RGB. In

order to create a multispectral environment map, we use the procedure outlined in appendix A. A few renders of

spheres under spectral envrionment maps are shown below in figure 6.1.

To render our images, we use a mutltispectral direct-lighting raytracer that runs on the GPU. This raytracer

uses a deterministic sampling pattern(as opposed to a Monte Carlo approach). We chose this deterministic sampling

approach since our older GPU does not have random number generation easily available. While this removes Monte

Carlo noise, it introduces banding artifacts which are visible near the edges of the spheres.

We also rendered images of our materials on some more interesting models. In figure 6.2, we show some of our

BRDF data applied to the Stanford dragon model.

53
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Material Rendering Photo of Target used for Measurement

Blue rubber

Green glossy Christ-
mas ornament

Red glossy Christmas
ornament

Red specular plastic

Figure 6.1: Renderings of spheres with our measured spectral BRDFs. In column 1, we have a description of
the type of material that was measured. In column 3 we have an photograph, taken with an RGB consumer
camera, of the spherical sample that we measured the BRDF from. In column 2, we have a rendering of
the BRDF on a sphere in a virtual environment. Direct color comparisons from column 3 to column 2 are
not meaningful since our consumer camera performs auto-whitebalancing, and the incident light spectra is
unknown in column 3. The tone mapping strategy also affects the final color.
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(a) Green glossy BRDF from Christmas Orna-
ment

(b) Red glossy BRDF from Christmas Orna-
ment

(c) Red specular plastic (d) Marble

(e) Blue rubber (f) Blue racquetball

Figure 6.2: Renderings of several multispectral BRDFs applied to the Stanford Dragon Model. The few
bright pixels are due to incorrect ray self intersections. The corresponding physical targets here are shown
in figure 6.1.
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Multispectral Image Analysis

7.1 Introduction to Multispectral Imaging

Recent advances in sensor technology have made both multispectral and hyperspectral imaging more affordable and

simple. This has led to numerous published databases of multispectral(or hyperspectral1) scenes[7][37][38]. Large

databases of spectral images allow us to compute various statistical properties of real world spectra. If we assume

that our spectral image database is a reasonable sample of the type of data we expect to encounter in our application,

the results from analyzing a spectral image database can influence the design of spectral imaging systems.

Mathematically, the set of all spectra form a vector space. This vector space is the set of all functions f :

[380, 780]→ R
+. As there are an infinite number of such functions f , this vector space is infinite dimensional. Many

applications are concerned with measuring or storing the reflectance spectra of objects. Reflectance spectra are often

described as smooth, particularly when compared to light emission spectra. In fact, experimental evidence has long

shown that reflectance spectra lie near a low dimensional linear subspace(a hyperplane)[8]. The dimensionality of

this hyperplane is typically reported to be between 4 and 8, depending on the input data and the standards by which

the experimenters define “close.”

The inherent low dimensionality of real world reflectance spectra has profound implications for data compression,

spectral rendering, and sensor design. First, if real world spectra lie near a k dimensional linear subspace we can store

an approximation of any spectrum by storing k numbers. This compression is useful when storing large amounts of

multispectral image data, or when storing spectral data in a memory constrained environment, such as on the GPU.

Spectral rendering systems have also been designed to take advantage of the low dimensional nature of reflectance

spectra. Peercy[39] designed a rendering system in which spectra are represented by a projection onto k basis

functions, as opposed to by point samples. This has the benefit that space is saved, but the process of reflection

1In general, the term hyperspectral indicates that there are more spectral bands than multispectral. However, what con-
stitutes hyperspectral vs multispectral varies depending on the field of study. Computer vision, remote sensing, and optics
practitioners all use these terms in different ways.

56
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now requires a full matrix multiply as opposed to a point-wise multiplication2. Furthermore, the low dimensional

nature of reflectance can be exploited in spectral imaging systems. For example, Park et. al.[28] created a system

for acquiring real-time multispectral video based on illuminating a scene with k rapidly changing basis illuminants.

By synchronizing a camera with this rapidly changing light source, one can measure the projection of the underlying

reflectance spectra onto these k illuminant basis spectra.

7.2 A Database of Multispectral Images

We conducted an analysis of the database of multispectral images capured by Chakrabarti and Zickler [7]. The

images were taken of natural scenes, and do not include human subjects. Areas with human subjects and other

imperfections(dust, motion, etc.) were masked out of the data manually. An image from this dataset, converted to

sRGB for display, is shown in figure 7.1. The areas which have been masked out are shown in red.

Figure 7.1: Example multispectral image from Chakrabarti et. al.’s database[7], converted to sRGB. Areas
masked out are overlaid in with red boxes.

In this dataset 31 spectral bands are present in each image, ranging from 420 nm to 720 nm in 10 nm increments.

Considering each pixel’s spectral data as a vector v ∈ R
31, we can analyze the data using linear algebra to answer

questions about optimal spectral sensors and compression of multispectral images. After removing masked regions

from the spectral image data, we are left with N non-masked pixels, corresponding to N spectra measured from

the natural world. Our analysis was conducted on N ≈ 59 million spectra. We denote this set of spectra by the

set S = {s1(λ) . . . sN (λ)}. Note that through the rest of the document, we use the notation si(λ) to refer to the

ith spectrum as a continuous function, and the notation si to refer to the vector in its point-sampled form, where

si ∈ R
31.

2Mathematically, when using point samples the act of reflection is still a matrix multiplication, but the matrix is diagonal.
Multiplying by a diagonal matrix is O(N), as compared to the typical O(N3) for a general matrix.
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7.3 Principal Component Analysis on Multispectral Images

Using the N spectra from Chakrabarti’s database, we form an 31 by N data matrix, D. Each spectrum si forms

column i in this matrix. There are 31 rows, since each spectrum has been sampled at 31 discrete wavelengths. We

also compute the average spectrum, s̄, and subtract this out from each spectrum in D. This process, commonly

referred to as “whitening,” is necessary because the covariance for two sets of observations becomes a dot product

when both sets of observations have zero mean.

D =













. . . . . .

s1 . . . si . . . sN

. . . . . .













−













. . . . . .

s̄ . . . s̄ . . . s̄

. . . . . .













(7.1)

The data matrix D is large, and takes up over 13 GB on disk. Our goal is to find the principal component spectra

of this data(PCA). Principal component analysis computes an ordered basis {β1(λ), . . . , β31(λ)}. For any k, the first

k basis vectors β1, . . . , βk form a k dimensional plane that, when the original data is projected down onto this plane,

minimize the sum of the L2 projection errors.

Given the first k principal component spectra β1, . . . , βk, and an arbitrary point-sampled spectrum s ∈ R
31 that

we wish to compress, we can represent s as k scalars c1, . . . , ck each given by the following equation:

ci =

j=31
∑

j=1

βijsj (7.2)

Note that this is a simple dot product, which is analogous to a definite integral for a continuous spectrum. The fact

that this is a dot product is a direct result of the fact that PCA forms an orthonormal basis. Given these k values,

ci, . . . , ck we can reconstruct our original spectrum via the following:

s =

(

j=k
∑

j=1

cjβj

)

+ s̄ (7.3)

There are two typical techniques used to compute PCA. The first technique is singular value decomposition(SVD)

of the data matrix. The second technique is through diagonalization of the covariance matrix( 1

N
DDT ). PCA can be

thought of as re-expressing our original data in a new orthonormal basis in which the majority of data’s variance lies

along the new basis vectors.

SVD is typically used for PCA since it avoids having to explicitly compute and store the covariance matrix.

However, in our case an SVD based solution is not tenable since D(the data matrix) is so large it must reside on

disk. All readily available SVD implementations require the matrix to be stored in-core. Therefore, we compute the

covariance matrix,

C =
1

N
DDT (7.4)
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which has a much more manageable size of 31 by 31. Computing the covariance matrix itself is a non-trivial process

due to the large size of our data. Covariance matrix computation takes nearly 3 hours on our data matrix of size 31

by 59 million. This computation runs on all 4 cores of our system, but we are bottlenecked by disk access speed. Our

covariance matrix calculation amounts to multiplying a 13 gigabyte matrix by its transpose. However, the transpose

is not ever stored explicitly.

Once we have the covariance matrix, we find all of its eigenvalue-eigenvector pairs. We sort each of these Eigen-

pairs based on the magnitude of each corresponding eigenvalue. This leaves us with a sorted sequence of vectors

β1, ..., β31. Here β1 is the basis vector that accounts for the most variance in the data for our set of input S. These

vectors form an ordered basis for our data. The first 8 principal components are shown in figure 7.2.
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Figure 7.2: First 8 principal components obtained from PCA of 59 million real world reflectance spectra.

Plotting the eigenvalues of these eigenvectors, we see the there is a plateau around the 6th eigenvalue(see figure

7.3).
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(a) Eigenvalue magnitude. Linear plot.
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Figure 7.3: Eigenvalue magnitude plot from PCA. Note the plateau starting around the 6th principal com-
ponent.
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The plateau here around 6 indicates that our data is well-represented by 6 principal components. More formally,

all of our data lies close to a 6 dimensional linear subspace of R31. This 6 dimensional hyperplane is spanned by the

orthonormal basis {b1, . . . ,b6}.

This analysis is highly useful for spectral compression. We can project each of our spectra onto the first 6 principal

components, and now we only need to store 6 numbers for each spectrum, as opposed to the 31 we stored previously.

In figure 7.4 we show an image projected onto various numbers of principal components, and then converted back to

RGB for viewing. Without careful inspection, it is difficult to see discrepancies between 6 principal components and

31 principal components(ground truth).

Figure 7.4: Images projected onto principal components, and then converted to RGB. 31 principal compo-
nents reconstructs the data perfectly, and with 6 principal components the difference is barely noticeable.

7.3.1 Comparision with the Parkkinen Basis

Our principal components agree very well with the Parkkinen basis [8]. The Parkkinen basis was an early PCA based

statistical analysis of multispectral data. Parkkenin and his collaborators constructed their analysis on 1257 spectra

from a set of photographic color chips. Our analysis is superior in that much more data has been used, and the data

is much more representative of the natural world. Perhaps surprisingly, our results are similar to Parkkinen’s3. This

is evidence that Parkkinen’s comparatively small amount of data was indeed sufficient to draw statistical conclusions

from. Figure contrasts our principal component spectra with that of Parkinnen et al.

7.4 Non-Negative Matrix Factorization on Multispectral Images

PCA is very useful for data compression. However, PCA is of limited utility when designing spectral sensors. Color

imaging systems typically work by recording the definite integrals of the following form:

Pi =

∫

Λ

E(λ)Ci(λ)dλ (7.5)

Here, i indicates the ith color band being recorded by the camera. For an rgb camera, i ∈ {1, 2, 3}. E(λ) is the

incoming SPD, and Ci(λ) is the spectral sensitivity at color channel i. Typically, Ci(λ) is the product of the spectral

transmission of the optics, as well as the quantum efficiency of the CCD or underlying sensor. Ideally we would be

able to fabricate devices with arbitrary spectral sensitivities C1(λ), . . . , Ck(λ) for each of our k channels. In order

3Note that several of our eigenvectors had to be negated to look visually similar to Parkkinen’s. This is not an issue, since
Ax = λx clearly holds for any -x as well.
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(a) Our first 4 principal components, computed from 59 million natural spectra.(b) First 4 principal components from by Parkkinen
et al.

Figure 7.5: Comparison of our PCA results vs that of Parkkinen et al. Our results appears to be qualitatively
similar to that of Parkkinen et. al., despite their results only being computed on 1257 spectra. Note that
Parkkinen’s data begins at 400nm, whereas our data begins at 420nm. Furthermore, Parkkenin expressed
doubts regarding the quality of his data in the near-UV(< 420 nm) wavelengths due to a low signal to noise
ratio.

to be physically realizable, spectral sensitivity functions must be non-negative (Ci : [0,+∞) → [0,+∞)∀i ). In

multispectral iamging, we want our spectral sensitivies(basis functions) to record E(λ) as accurately as possible. We

can’t use our basis obtained from PCA here, since the results from PCA can be negative as well as positive.

In order to enforce a non-negativity constraint on our previous result, we need another type of analysis. One

suitable tool is Non-Negative Matrix Factorization(NMF). In NMF we seek to factor our non-negative data matrix

D into D = WH where W and H are also non-negative. Here, the user is in control of a parameter k, which

corresponds to the number of columns in W and the number of rows in H.

Once this factorization is complete, the k columns of W correspond to a set of strictly positive basis vectors in

which our data is well represented. Similar to PCA, we can project onto these k basis vectors and represent our

original data. However, since these vectors are positive, they can also be thought of as the transmission spectra of

an optical filter or as the QE of a CCD’s response.

One of the downsides of NMF is that it may converge to a solution that is not globally optimal. NMF operates

through an iterative ACLS(alternating constrained least squares) algorithm. The algorithm alternates between hold-

ing W fixes and solving for H, and then holding H fixed and solving for W. An initial guess is supplied by the

user, which can also affect convergence. In our case, the initial guess used was positive white noise in the range [0, 1].

When using NMF we have to be wary that our results might represent a local(as opposed to global) minimum.

Unfortunately, the available NMF implementations require the data matrix D to reside in memory. Our data

matrix is over 13 GB, and thus could not fit into memory. As a result, we were forced to randomly sample the

input images to create a data matrix. We ran each NMF experiment 6 times with a different initial guess and

different random sample positions. The results were similar each run, indicating that our result is insensitive to
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initial conditions and that our sampling is adequate. Our NMF results for various values of k are shown below in

figure 7.6.
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(b) NMF Results for k = 6

Figure 7.6: Results from performing NMF on 50000 input spectra. Each test was conducted 6 times and
similar results were found on each run.

As a simple validation of our NMF results, we took an multispectral image that was excluded from our input

data matrix, and projected it onto the NMF basis functions. We then computed the L2 difference between the

reconstructed spectrum after projection, and the underlying ground truth spectrum. This L2 error, per pixel, is

visualized in figure 7.7. We see that NMF does a good job representing spectral data across the majority of the

image.

Figure 7.7: Per-pixel L2 error between the original spectrum and the reconstructed spectrum after projection
onto the NMF basis.
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7.5 Implications of PCA and NMF Analysis for BRDF Measure-

ment

The results of our analysis presented above have broad implications for BRDF measurement systems. Measured

spectral BRDF data is very large. A single 31 channel measured BRDF, where each spectral channel is stored

similarly to the MERL format[4] takes up 340 Megabytes of space. This storage requirement is prohibitive on

graphics cards, and would only allow us to render using a small amount of BRDFs. Our resulting PCA spectra could

be used to compress this data. If we used 6 principal components, which our analysis suggest is adequate, we could

reduce storage size for a single BRDF to 170 Megabytes.

Our results from NMF have interesting implications in terms of new spectral BRDF measurement systems. Our

existing system uses one camera with a liquid crystal tunable filter(LCTF) in front of the lens. The LCTF allows

us to sample the wavelength domain of the BRDF sequentially. However, if we instead used a series of cameras,

each with a different spectral filter in front, we could sample the wavelength domain in parallel. We could use

narrrowband spectral filters, with transmission properties similar to our LCTF. However, narrowband filters limit

optical throughput and increase required integration time and noise. Broadband spectral filters don’t have these

issues. One option would be to manufacture filters with similar transmission properties to those shown in our NMF

analysis.
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Conclusion

We presented a new system for multispectral image based BRDF measurement. Our system has been carefully

calibrated, and the data generated has already proved useful for rendering. We are able to accurately measure a

wide variety of materials, including Lambertian, glossy, and highly specular materials. Our data is some of the first

multispectral BRDF data with dense angular sampling in computer graphics community. We plan to release our data

publicly in the near future.

We evaluated several different aspects of the calibration process, and compared various reconstruction schemes for

the first time. Furthermore, we considered spectral calibration in more depth than previous authors of multispectral

BRDF measurement work in computer graphics. We also proposed a novel new calibration technique for determining

local per-pixel view and light vectors. This approach is based on solving several non linear optimization problems.

This approach is simpler than those presented by previous authors and still yields high-quality results.

Lastly, we conducted a large statistical analysis of a database of multispectral images using Principal Component

Analysis(PCA) and Non-Negative Matrix Factorization(NMF). This statistical analysis confirmed the low-dimensional

nature of reflectance spectra. Furthermore, our NMF results demonstrated that it may be possible to construct image

based BRDF measurement systems using broadband spectral filters. Such a design would allow measurement of the

BRDFs spectral component in paralllel. We leave the construction of such a system to future work.
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Spectral Environment Map

Generation

In order to render a images with a spectral BRDF, it is necessary to have an environment for the material to interact

with. Previous work on RGB BRDF measurement showed their results using the “Grace Cathedreal[40]” environment

map[6][30]. We chose to use the same environment map in order to facilitate comparison with previous work and

because no multispectral environment maps were readily available. However, the Grace Cathedreal environment map

has RGB data, not multispectral.

In order to use an RGB environment map in a multispectral renderer, we need a process to convert RGB values to

spectra. This problem was previously investigated by Smits[41]. Mathematically, this problem is under-constrained.

Consider a situation in which we would like to convert a RGB triple C ∈ R
3 to a spectrum x ∈ R

N . This can be

posed as solving an under-determined linear system as follows.
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Ax = C

(A.1)

Note that in equation A.1, the vectors r̄, ḡ, and b̄ are the red, green, and blue color matching functions(see figure

2.6), respectively.

Unfortunately, when we want to create an environment map with N > 3(any multispectral environment map),

this linear system is under-determined and has an infinite number of solutions. We add a regularization term to this

system to create a well-posed problem. We regularize the system by penalizing inflection points in the resulting SPD

x. Typically reflection spectra are smooth, so this solution technique favors smooth spectra. Based on simple finite
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differences, the following expression computes the second derivative for an arbitrary function f(x):

f
′′(x) ≈

f(x− h)− 2f(x) + f(x+ h)

h2
(A.2)

We use this rule, with a weighting parameter α, in our linear system as the regularization term. The larger the value

of α, the smoother our solutions becomes. Our regularized system is given by the following linear system:
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(A.3)

Using equation A.3, we can create a spectral environment map from an RGB environment map. We simply invert

the left hand side matrix in equation A.3, and multiply at by the RGB vector at each pixel in the environment map.

However, this still poses issue. Unfortunately, this can produce negative spectra. It is impossible to constrain a linear

system to produce non-negative results without employing quadratic programming or a similar tool. However, we

found that simple clamping the resulting spectra to 0 in the rare case of negative values does not produce objectionable

results. This is an workable solution, since spectral environment map generation is not the focus of our work, and

because when re-converted back to RGB the result looks visually quite similar to the original input.

Examples of spectral BRDFs rendered with our spectral environment map are shown in figures 6.1 and figure 6.2.

When the environment map of these figures are compared visually to the RGB environment map in 5.8, we see little

objectionable visual difference.
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