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Abstract 

While mathematical modeling and engineering design are both seen as a means to 

promote deeper, more integrated, and more applied student understanding, there has been little 

focus on leveraging their synergistic use in K-12 classrooms. This study explores how to support 

mathematical modeling and engineering design coherently in mathematics classrooms. We 

present two cycles of a design-based research study that used a web-based learning environment 

to support students in an engineering design project. In the first cycle, students (n = 44) used 

mathematical models in their designs, and in the second cycle students (n = 66) created 

mathematical models from testing prototype designs. We examined the impact of the projects on 

student understanding of geometry, mathematical modeling, and engineering design in K-12 

classrooms. We draw on pretest and posttest data, embedded assessments, learning environment 

log-data, student explanations and artifacts, as well as classroom observations to support our 

results. Results indicate significant gains for connected mathematical understanding and that 

technology supports for mathematical modeling and engineering design can have a positive 

impact on the student understanding of these practices.       

Keywords: mathematical modeling, engineering design, geometry, K-12, technology 
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Introduction 

Nationally, there have been concurrent calls to increase the use of mathematical modeling 

(e.g., NGA, 2010) and to increase the use of engineering design (e.g., NRC, 2012) in K-12 

classrooms. Both calls cite similar goals—to promote deeper, more integrated, and more applied 

student understanding—but because these calls originate in different disciplinary areas 

(mathematics and science, respectively) there has been little focus on their synergy (NRC, 2009), 

and there has been little focus on the possible benefits of concretely connecting these approaches 

in K-12 classrooms.  

Mathematical modeling is “a process that uses mathematics to represent, analyze, make 

predictions or otherwise provide insight into real-world phenomena” (Bliss & Libertini, 2016, 

p.8). Mathematical modeling is an iterative process that involves “using mathematics or statistics 

to describe (i.e., model) a real world situation and deduce additional information about the 

situation by mathematical or statistical computation and analysis” (Common Core Standards 

Writing Team, 2013, p. 5). These definitions make clear that while modeling is firmly grounded 

in a real-world context, its role is to better understand or make predictions by creating abstract 

mathematical representations of a real-world context (Cirillo, Pelesko, Felton-Koestler, & Rubel, 

2016). Engineering design is also an iterative process that is grounded in a real-world context; 

however, engineering design typically takes the insights developed from mathematical modeling 

or elsewhere to build prototype designs, test them, and refine them not in an abstract 

mathematical sense, but within the real-world context itself (e.g., Burghardt & Hacker, 2004). 

Mathematical modeling might predict how a rocket’s dimensions impact its flight path, and 

engineering design uses these predictions to build and test the actual rocket. While mathematical 
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modeling and engineering design are distinct, they have much in common and complement each 

other (see Figure 1).  

 

 

Figure 1. The similarities and synergy between engineering design and mathematical modeling. 

Similar colors indicate where engineering design and mathematical modeling stages align, with 

multiple mathematical modeling stages aligning with engineering design and vice versa. Circular 

arrows indicate where iteration most commonly occurs within engineering design and 

mathematical modeling.  

 

This synergistic relationship between engineering design and mathematical modeling has been 

highlighted in studies of the practice of both professional engineers (Gainsburg, 2006) and 

college student engineers (Cardella, 2010). These studies noted that in practice, the iterative 

refining and testing of mathematical models is used to inform the iterative refining and testing of 
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prototype designs, which can in turn inform future refinements of the mathematical models. 

Given that this relationship exists, several studies have investigated how to include mathematical 

modeling into engineering curricula at the undergraduate level (Diefes-Dux et al., 2004; 

Hamilton, Lesh, Lester, & Brilleslyper, 2008; Wedelin & Adawi, 2014; Carberry & Mckenna, 

2014).  

However, in pre-college settings, the integration of engineering design and mathematical 

modeling is rare (Becker & Park, 2011). A few studies have integrated mathematics and 

engineering, some by using mathematics content knowledge to inform design projects (e.g., 

Burghardt, Hecht, Russo, Lauckhardt, & Hacker, 2010; Narode, 2011), and others by using 

design projects to contextualize or motivate mathematics learning (e.g., Jacobson & Lehrer, 

2000; Schroeder, Lee, & Mohr-Schroeder, 2015; Chou, Chen, Wu, & Carey, 2017; Kertil & 

Gurel, 2016). However, only a few projects incorporate the interconnected relationship between 

engineering design and mathematical modeling, likely due to the difficulties implementing such 

projects (Roehrig, Moore, Wang, & Park, 2011). 

This study aims to explore how to support the synergistic use of both engineering design 

and mathematical modeling in pre-college geometry classrooms. Specifically, we will seek to 

answer these questions: 

• How might interweaving mathematical modeling and informed engineering design help 

students develop a more connected understanding of geometry? 

• What kinds of supports help students to engage in mathematical modeling in the context 

of engineering design?  
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This paper uses a design-based research approach to investigate these questions. Design-

based research, or design research (Sandoval, 2014) seeks to study learning environments in the 

settings for which they are designed (e.g., real classrooms) and ideally contribute to fundamental 

research on teaching and learning (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003; Design-

Based Research Collective, 2003). By testing theoretically-driven hypotheses about learning 

environments in authentic classroom settings (as opposed to a more clinical or contrived setting), 

design research seeks to articulate what works under what circumstances. In this paper we 

present two cycles of a design-based research study. The first cycle examines students using 

mathematical models within an engineering design project. The second cycle examines students 

creating the mathematical models within an engineering design project using data they collect 

during the project. We structure this paper by describing the first cycle of the project, its results, 

and how we used these results to inform our revisions of the project for the second cycle. We 

then describe how the second cycle of the project was implemented, its results, and discuss the 

overall implications and limitations this study.  

 

Literature Review 

Informed Engineering Design 

Informed Engineering Design (IED) emphasizes engineering design practices that can 

support learning in K-12 classrooms (Burghardt & Hacker, 2004). IED builds upon the many 

models of engineering design (e.g., Crismond & Adams, 2012) with a specific focus on 

supporting understanding and application of relevant mathematics and science principles through 

alignment with design criteria. For example, a design project that asks students to build a bridge 

with specific materials to hold a certain amount of weight is unlikely to encourage students to 
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consider how to mathematically model a bridge if they are able to successfully meet project 

criteria through trial and error. In contrast, design criteria that call for students to explain where 

and why their design will break can encourage students to investigate and apply their 

understanding of forces and material science by creating mathematical models of the prototypes.   

The IED approach is based the experience of having implemented engineering design 

projects in precollege classroom with hundreds of students (Akins & Burghardt, 2006; Burghardt 

et al., 2010; Burghardt & Krowles, 2006). IED involves giving students opportunities to 

understand the real-world problem or design challenge, to develop relevant knowledge and new 

ideas that relate to the problem, to generate designs that incorporate both their new and prior 

ideas, to conduct tests and experiments of their designs, and to evaluate their designs and the 

ideas that underpinned their designs (see Figure 2). 

 

 

Figure 2. Stages of Informed Engineering Design (Chiu et al., 2013). 

 

Mathematical Modeling  
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Mathematical modeling is a major area of focus for mathematics educators and 

researchers (e.g., NGA, 2010; Hirsch & Roth McDuffie, 2016). While there are a variety of 

definitions for mathematical modeling, there is a broad consensus, summarized by Bliss and 

Libertini (2016, p.8; see Figure 3), that it is “a process that uses mathematics to represent, 

analyze, make predictions or otherwise provide insight into real-world phenomena.” This 

definition of mathematical modeling emphasizes that the process begins in a real-world context 

and involves mathematizing or formulating the context by identifying variables, making 

assumptions, and choosing what is important (e.g., Bliss, Fowler, & Galluzo, 2014). In addition, 

mathematical modeling involves interpreting or testing the mathematical model that has been 

created. Typically, the model is judged by its validity, or how well it is able to “construct, 

describe, explain, manipulate, predict or control systems that occur in the world” (Lesh, Doerr, 

Carmona, & Hjalmarson, 2003, p. 225). Furthermore, the processes of mathematical modeling—

of mathematizing the real-world context into a mathematical model and using predictions from 

the model in real-world decisions—are cyclical and iterative, where the limited validity of a 

model motivates further cycles and further revisions to the model (Cirillo, Pelesko, Felton-

Koestler, & Rubel, 2016). 
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Figure 3. Mathematical Modeling Processes as outlined by Bliss and Libertini (2016). 

 

This definition of mathematical modeling emphasizes that it is a process and that students 

are engaged in modeling practices. As such this definition aligns with that of other authors who 

have distinguished mathematical modeling from models or manipulatives to help communicate 

mathematical ideas (Cirillo, Pelesko, Felton-Koestler, & Rubel, 2016). For example, the “area 

model” can be used to help students find the product 13 x 27 by considering (10 + 3)(20 + 7). 

But this same model can be used to help students correctly expand (x + 3)(2x + 7). The definition 

of mathematical modeling using in this paper is also in contrast to mathematics application 

questions that take a mathematical rule and ask students to use it in a context. This application 

approach is common in many “word-problems” or “real-world problems” found in traditional 

mathematics textbooks (Meyer, 2015). Mathematical modeling is also defined to be broader than 

mathematical problem solving, with the later tending to pose mathematical problems that require 

students to recognize patterns and find answers within the realm of mathematics (Pollak, 2011). 
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For example, when students are asked to derive the area of a triangle formula they often start and 

end with mathematical phenomena. The application of a mathematical rule and the recognition of 

patterns are both important mathematical enterprises and can form elements of the mathematical 

modeling process, but by themselves are not sufficient to define mathematical modeling as used 

in this paper. 

Model-eliciting activities (MEAs) can be used to support the practice of Mathematical 

Modeling in the classroom. In coining the term, Lesh and colleagues (2000) argue that for 

students, an MEA should “reveal explicitly the development of constructs (conceptual models) 

that are significant from a mathematical point of view and powerful from a practical point of 

view” (Lesh et al, 2000, p.608). To do this they argue that an MEA should involve students 

creating a model that symbolically describes a meaningful situation, and also allow students to 

judge the value of the model themselves (Lesh et. al., 2000). Lesh and colleagues distinguish 

MEAs from other types of mathematical problems where “the problem solver’s goal is merely to 

produce a brief answer to a question that was formulated by others (within a situation that was 

described by others, getting from givens to goals that are specified by others, and using strings of 

facts and rules that are restricted artificially by others)” (p.594). Lesh and colleagues also 

advocate MEAs because the process of mathematical modeling is able to reveal students’ “ways 

of thinking” (p. 594) and because they “provide the conceptual foundations for deeper and higher 

order understandings” (p.592).  

Challenges to Implementation  

Although research suggests that implementing engineering design projects into 

mathematics classes can help students develop a more connected understanding of mathematical 

concepts, this also creates challenges for educators. First, mathematics teachers who implement 
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these projects may not have engineering expertise and need support implementing informed 

engineering design projects in their classrooms (e.g., Purzer, Moore, Baker, & Berland, 2014), 

especially when these projects use new technologies and materials (e.g., Wang, Moore, Roehrig 

& Park, 2011). Many K-12 students and teachers have little exposure to engineering (Katehi, 

Pearson, & Feder, 2009) and as a result, classroom design projects may focus heavily on building 

products to the detriment of other design practices. In addition, engineering design projects differ 

from typical mathematical problems in that there is no one right answer; every student group can 

have a distinct, successful solution. Thus, teachers need support to provide differentiated 

guidance, feedback, and troubleshooting to help students develop understanding through design. 

Many of these challenges have also been highlighted when teachers implement mathematical 

modeling projects into mathematics classes (e.g., Anhalt, Cortez, & Bennett, 2018). 

To address these challenges, computer-based learning environments have been used in K-

12 settings. Such learning environments can help students engage in engineering design and 

mathematical modeling practices (e.g., White & Frederiksen, 2005) and can encourage student 

collaboration and knowledge building (Slotta & Linn, 2009).  They can also provide “distributed 

scaffolding” that can support students throughout the designing and modeling process 

(Puntambekar & Kolodner, 2005) and they can incorporate simulations and visualizations to help 

students develop connections between ideas.  

Supporting Engineering Design and Mathematical Modeling with WISE 

The Web-based Inquiry Science Environment (WISE; Slotta & Linn, 2009), is a free, 

web-based, open-source learning environment that provides explicit supports for inquiry learning 

and engineering design projects (Chiu et al., 2013). WISE includes a diversity of tools such as 

drawing and simulation technologies, advanced assessment tools, collaboration tools, and 
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reflection supports. WISE provides teacher functionality such as monitoring of student progress, 

automated scoring of student work, and the ability to build and customize projects. WISE also 

provides logging of students’ interactions within the environment as part of researcher tools.  

In the past, WISE has been used to support engineering design projects by using its 

functionality to make practices accessible, make thinking visible, and help students learn from 

others, as well as promote reflection, and support multiple representations of solutions (Chiu, 

Gonczi, Fu, & Burghardt, 2017). This functionality is likely to also support the implementation 

of mathematical modeling activities, however, this has yet to be explored.  

Making practices accessible. WISE supports students and teachers with little 

engineering or modeling experience to engage in these practices. For example, by making 

informed engineering design processes (see Figure 4) explicit, and by connecting each step of the 

project with a corresponding design stage we are able to orientate students are during the design 

process (Cordray, Harris, & Klein, 2009; Cunningham, 2009; Martin, Rivale, & Diller, 2007). In 

addition, some steps in the project will ask students to reflect on their current stage in the design 

cycle. For example, one activity in the Specifications and Constraints design stage may ask 

students to articulate what the specifications and constraints are (Figure 4). Although steps are 

presented in a sequential manner, students are able to skip ahead or revisit steps as needed to 

during the project.  
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Figure 4. Students articulate specifications and constraints during a project challenge activity in 

WISE. 

 

Making thinking visible. The Idea Manager (see Figure 5; Matuk et al., 2012) helps 

make students’ thinking visible across multiple contexts by using two connected tools, the Idea 

Basket and the Explanation Builder. The Idea Basket allows students to document and “add 

ideas” over the course of a WISE project and makes those ideas visible in a persistent repository. 

Students add ideas to their basket by typing in a short description and specifying other attributes 

through flags or tags. The WISE Explanation Builder (Figure 5) provides a scaffold for students 

constructing evidence-based explanations and arguments by leveraging the ideas gathered in the 

basket. Students can drag and drop their ideas from their basket into an organizing space, 

supporting the distinguishing and sorting of ideas. Students then use their organized ideas to 

construct an explanation or argument. The tool helps students bring together multiple sources of 
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evidence to support a coherent explanation or argument. The Idea Manager has been classroom 

tested in science inquiry units (e.g., McElhaney et al., 2012; Tate, Feng, & McElhaney, 2016) 

but not in engineering design or mathematical modeling contexts.  

 

      

Figure 5. Students can add ideas to their Idea Basket (left) and then sort ideas to build a design 

explanation with the Explanation Builder (right). 

 

Helping students learn from others. To help students create and share representations 

of ideas, students use a Design Wall (see Figure 5) where they can post images or text and get 

feedback from their peers. The Design Wall is similar to blog or social networking websites in 

functionality. Students can post images for inspiration in the ideation phase, share pictures of 

initial or revised prototypes and models and get feedback through commenting functionality 

from other students in or outside of their class.  
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Figure 5. Students can post pictures and comments to a “wall” to share designs. 

 

Promote reflection. WISE uses a Notebook to help students record and reflect upon 

design processes. All student work within WISE is recorded in the Notebook, including 

drawings, open responses, pictures, and critiques of others’ work. From the Notebook, students 

can select and annotate specific artifacts to include in their Portfolio, which is used to share with 

teachers or their peers. Both the Notebook and Portfolio support practices of communication as 

well as promoting reflection. 

Support multiple representations of solutions. Building upon research demonstrating 

the benefit of providing multiple representations for learning (e.g., Ainsworth, 2006), WISE 

projects support both virtual and physical representations of solutions. As WISE is computer-

based, it can scaffold the use of rich simulations, visualizations, or computer-aided design 
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technologies to represent solutions. Studies demonstrate that manipulating 3-d visualizations of 

objects can positively benefit student understanding of geometry concepts (Sung, Shih, & Chang, 

2015; Schroeder, Lee, & Mohr-Schroeder, 2015; Chou, Chen, Wu, & Carey, 2017). WISE also 

enables data tables and graphing tools to be embedded into the project to encourage modeling 

practices. However, because physical representations also provide unique affordances such as 

dealing with tolerances or error and offer comparisons for virtual solutions (e.g., Blikstein et al., 

2012), we aimed for the design project in this study to leverage both virtual and physical 

representations. 

This study used WISE technologies to support students’ synergistic incorporation of 

mathematical modeling into informed engineering design projects in geometry classrooms. The 

next section presents the first iteration of this project and discusses how the results informed the 

subsequent project revision. The following section describes the second cycle of the project, its 

results, and a discussion of the overall implications and limitations for this study. 

 

Project Cycle 1: Using Models 

Participants and Context 

Participants (n = 44) were students from two classes of 8th grade geometry taught by the 

same teacher. School demographics consisted of 19.1% Black, 20.2% Hispanic, and 46.8% 

White students with 44.9% students receiving free or reduced lunch and 21.6% of students 

classified with Limited English Proficiency. The teacher had over 5 years of experience and an 

advanced degree in mathematics.  

The Ice Cream Cone Project 
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The project was co-developed with the participating teacher. After an initial meeting with 

researchers, the teacher provided concepts that she felt needed connection to each other and to 

authentic contexts. Together the team devised the ice cream cone project to address circle 

geometry concepts. The project challenged students to create a waffle cone to hold a given 

volume of ice cream using the least area of waffle (see Figure 6).  

 

 

Figure 6. The waffle maker (left) and a student made waffle cone (right). 

 

Connecting mathematical ideas. The mathematical ideas that this project aimed to help 

students to connect were the dimensions, area, and volume of circles, sectors, and cones. Table 1 

shows the Common Core Standards for Mathematics Content addressed by the project. The 

project addresses standards for both 8th grade geometry and high school geometry. 

 

 

Table 1 

Common Core State Standards for Mathematics Content targeted in the Ice Cream Cone Project 

CCSS Standard Description Project Context 

CCSS.MATH. 

CONTENT.HSG. 

GMD.A.3 

Use volume formulas for cylinders, 

pyramids, cones, and spheres to solve 

problems.* 

Calculate maximum volume of ice 

cream held by various prototypes of 

cones. 
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and 

CCSS.MATH. 

CONTENT.8.G.C.9 

 

Know the formulas for the volumes of 

cones, cylinders, and spheres and use them 

to solve real-world and mathematical 

problems. 

CCSS.MATH. 

CONTENT.8.G.B.7 

 

Apply the Pythagorean Theorem to 

determine unknown side lengths in right 

triangles in real-world and mathematical 

problems in two and three dimensions. 

Translate a two-dimensional sector into 

a three-dimensional cone by applying 

the Pythagorean theorem. 

CCSS.MATH. 

CONTENT.HSG.C.B.5 

 

Find arc lengths and areas of sectors of 

circles 

 

Calculate arc length of sector and 

connect to circumference of cone, 

calculate area for cost. 

CCSS.MATH. 

CONTENT.HSG.GMD

.B.4 

Visualize relationships between two-

dimensional and three-dimensional objects 

Connect two-dimensional waffle sector 

with a three-dimensional ice cream 

cone. 

CCSS.MATH. 

CONTENT.HSG.MG.

A.3 

 

Apply geometric methods to solve design 

problems (e.g., designing an object or 

structure to satisfy physical constraints or 

minimize cost).* 

Design an ice cream cone to maximize 

volume and minimize cost within 

constraints of waffle maker. 

*Note: Asterisks on CCSS Content standards represent places of intersections with modeling practices.  

 

This project aimed to help students connect the properties of sectors and cones. 

Typically, students learn about cones alongside other three-dimensional shapes such as prisms 

and pyramids. Students often study sectors within two-dimensional circle topics. However, 

because the net of a cone (excluding the circular base) is a sector (see Figure 7) the area of a 

sector can be connected with the curved surface area of the cone, the radius of the sector can be 

connected to the slant height of the cone, and the arc length of the sector can be connected to the 

circumference of the base of the cone. In addition, since the volume of a cone is usually 

expressed in terms of the vertical height of the cone rather than the slant height of the cone, we 

use the Pythagorean theorem to help students distinguish between slant and vertical height, and 

to understand how the slant height, vertical height and cone base radius relate to each other. 

Figure 8 shows how we intended students to connect the sector properties of arc length and 

radius with cone properties of base radius and slant height.  
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Figure 7. The net of a cone (excluding the circular base) is a sector. 

 

 

Figure 8. The connections between sectors and cones that this project intended to give 

opportunities for students to make. 

 

Supporting engineering design and mathematical modeling. The project supported 

students to engage in engineering design by creating activities that aligned with the informed 

engineering design stages (see Figure 2). A detailed list of the steps in the project and how they 

align to each of these stages can be found in Appendix A. Some of the steps that were aligned 

with the “develop knowledge” engineering design stage also involved students engaging with 

mathematical modeling. For example, in order for students to learn about how the properties of 

cones and sectors were connected, the students were able to manipulate Geogebra visualizations 
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(e.g., Hohenwarter & Hohenwarter, 2009) that we created for this project to investigate how the 

variables such as slant height, vertical height and cone base radius relate to each other (Figure 9). 

 

 

Figure 9. Students work with interactive GeoGebra visualization within WISE. 

 

Activities in the project that were connected with the “ideate solutions” engineering 

design stage encouraged students to create multiple solutions informed by mathematical models. 

Students were encouraged to draw plans for their cones and use the mathematical models to 

calculate the necessary dimensions of the sector for their design. Students were prompted to 

justify their designs by asking how their designs meet the requirements of the challenge, and to 

reflect on potential problems with their design. The WISE project steps guided reflection by 

asking students to add the ideas that they considered important while making their initial designs 

into their Idea Baskets.  
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Students used their plans to build physical prototypes of their ice cream cone designs 

with paper (see Figure 10). To test their designs, students filled their paper cones with dried rice 

and measured the volume of rice with a graduated cylinder. They could then compare their 

results with their calculations to see how well their prototype designs performed. Students posted 

pictures or drawings of their prototypes, annotated with the volume they held, on the Design 

Wall to share with the class. After looking at other designs both in person and within WISE, 

students reflected on their designs using the Idea Basket. Students were prompted to explain and 

justify future changes that they would like to make to their designs. After making necessary 

revisions to their designs, the project guided students to another iteration of “develop 

knowledge” that focused on how to calculate the area of a sector. Students were again prompted 

to reflect and add any ideas about their designs into their Idea Basket. Students were able to 

make multiple iterations on their paper prototypes if needed. Students then built their final 

prototype out of sheet metal and used it to shape an edible flat waffle into an ice cream cone 

shape, which they filled with ice cream. The teacher created a chart on the whiteboard in front of 

the class for students to put in their final values for the dimensions, cost, and volume of ice 

cream for each group’s design. Consequently, throughout the engineering design stages of 

ideating, building, testing and refining stages, there was a strong interconnectedness with the 

mathematical models of the properties of sectors and cones.   
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Figure 10. In the Ice Cream project, students created paper prototypes of cones, tested 

calculations by filling the cone with rice and measuring volume with graduated cylinders, and 

then created a metal prototype used to make an actual waffle cone. 

 

Data Sources 

Pretest and posttest. The pretest and posttest assessments were identical and each 

consisted of six open-response questions (see Appendix B). The first three items were adapted 

from a set of released state mandated assessment questions and required students to use discrete 

pieces of mathematical knowledge. The first test item assessed knowledge of arc length of a 

sector, the second assessed knowledge of area of a sector and the third assessed volume of a cone 

from direct measurements. Students could answer these questions correctly by identifying and 

using an appropriate formula. For clarity, we will refer to these items that assess discrete 

mathematics knowledge as DM1, DM2, and DM3. 

The next three items were created by the researchers to capture integrated mathematical 

knowledge of sectors, cones and/or the Pythagorean theorem. The fourth test item assessed 

ability to distinguish between slant height and vertical height and use the Pythagorean 
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relationship between them and the cone’s base radius to calculate cone volume. The fifth test 

item assessed connections among properties of a cone related to the properties of a sector, for 

example, that the circumference of the cone base equals the arc length of the sector, or the slant 

height of the cone equals the radius of a sector. The sixth and final test item assessed the 

students’ ability to explain how to calculate the volume of a cone given the dimensions of a 

sector that is its net. Correctly answering this question required multiple steps and ideas to be 

connected with each other. For example, to correctly explain the solution students need to 

articulate how to calculate the arc length of the sector, equate it to the cone base circumference 

and use the circumference to find the cone base radius. In addition, students need to explain that 

the sector radius must be equated to the cone slant height and combined with the cone base 

radius, using the Pythagorean theorem, to find the vertical cone height, which can be used in the 

standard cone volume formula. For clarity, we will refer to these items that assess connected 

mathematics knowledge as CM1, CM2, and CM3. 

Embedded assessments. Four embedded assessment items specifically targeted students’ 

understanding of the relationship between slant height and vertical height. In order for students 

to integrate ideas about sectors and cones, students need to understand that when a sector is 

formed into a cone, the sector radius becomes the slant height. Combined with the cone base 

radius, students can use the Pythagorean theorem to find the vertical cone height. Two embedded 

items targeted students’ conceptual understanding by explaining relationships. For example, after 

working with interactive visualizations that allowed students to change the dimensions of the 

cone (Figure 10), students were asked “Why is the slant height always bigger than the vertical 

height?” (EA1). Students were also asked to explain calculations of their cone designs. For 

example, prompts asked students, “How did you calculate the radius of the sector from your cone 
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dimensions r and h?” (EA3). Two embedded items targeted students accompanying procedural 

understanding of calculating the values, asking students to calculate the radius and central angle 

of the sector needed to make a specific cone (EA2) and the area and cost of a sector (EA4). 

WISE log data. WISE recorded each student’s progress throughout the project. Log data 

included how long and when students clicked on specific steps, how long they were on that step, 

any student responses to questions asked during that step, how many times the step had been 

visited, and how many revisions to responses the student had made, along with the content of 

those revisions. 

Classroom observations/video. Two student groups were videotaped during the study to 

triangulate log data. Researchers also took written observations during project implementation.  

Paper packet. To capture students’ handwritten mathematical calculations, a paper 

packet accompanied the project. This packet contained the same questions from the WISE 

project where students needed to perform mathematical calculations and provided space for 

students to sketch their cone designs.  

Procedures 

About a week prior to the start of the project, the paper pretest was administered 

individually to students. Students were given access to a formula sheet that was the same as that 

used by the students during their state mandated assessments. The posttest was administered in 

an identical manor a few days after the project was completed.   

The project lasted for three 85-minute blocks on consecutive days during their normal 

scheduled mathematics instruction, in their normal mathematics classroom. All students had a 

personal laptop provided by the school district that they were familiar with using. Students sat in 

pairs and were allowed to discuss their ideas with each other, to ask each other questions and 
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seek assistance from the classroom teacher or researchers if needed. But students were expected 

to answer the questions within WISE and the accompanying paper packet independently. Both 

the teacher and the researchers acted as additional resources for students who needed additional 

support. This assistance usually took the form of referring students back to the information or 

instructions within the WISE project, but also included asking students the same or similar 

questions verbally, listening to the verbal response and encouraging the student to then write 

their response. 

Data Analysis 

The test items that assessed discrete mathematics knowledge (DM1-3) were scored using 

a 5-point rubric developed for each question (see Appendix D). Higher scores were assigned to 

responses that accurately identified and applied the knowledge necessary to answer the given 

question. For example, on item DM1 students received a 0 for a blank or irrelevant comment, a 1 

for using formulas for the circumference of a circle or indicating some portion of the circle is 

needed. Students scored a 2 for writing an expression for the arc length as a proportion of the 

circumference. Students scored a 3 for correctly calculating the numerical value for the arc 

length with appropriate justification, and a 4 for correctly calculating the numerical value for the 

arc length with appropriate justification and correct units. 

The test items that assessed connected mathematics knowledge (CM1-3) were scored 

using an adapted 5-point Knowledge Integration (KI) rubric developed for each question (e.g., 

Liu, Lee, & Linn, 2011). Higher scores were assigned to responses that accurately identified and 

integrated relevant ideas. Adapting a KI rubric involved coding for irrelevant, alternative, partial, 

and normative ideas. For example, on item CM1 students received a 0 for a blank or irrelevant 

idea. Students scored a 1 for alternative ideas, such as incorrectly identifying the vertical height. 
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Students scored a 2 for a partial link, writing an expression for the arc length as a proportion of 

the circumference (partial link). Students scored a 3 for correctly calculating the numerical value 

for the arc length with appropriate justification (normative link). Students scored a 4 for correctly 

calculating the numerical value for the arc length with appropriate justification and correct units 

(multiple links). Twenty percent of the test items were randomly selected and independently 

scored by two graders until ninety percent agreement was reached, after which the entire set of 

responses were scored by one researcher.  

The four embedded assessment items were coded using a 4-point rubric specifically 

designed to capture if students were able to distinguish the relationship between the slant and 

vertical height.  The rubric was used for both open response explanations and procedural 

questions. Twenty percent of the student responses to these questions were randomly selected 

and coded independently by two researchers. One hundred percent agreement was obtained, after 

which the entire set of responses were scored by one researcher.  

The log data were initially cleaned as some students left browser tabs open after leaving 

class. To correct for this problem, log records with times that extended outside of the class time 

were shortened to end at the end of class. Records were categorized into engineering design 

stages based on the project step. The total duration for how long students spent in each stage 

were calculated from time stamps in the log data. The average time per step was calculated as 

various activities had different numbers of steps. The number of visits to each step and revisions 

to embedded assessments and returns to steps were also calculated.  

Results 

Research Question 1: How might interweaving mathematical modeling and informed 

engineering design help students develop a more connected understanding of geometry? 
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Pretest and posttests. After excluding missing data or those missing consent forms, data 

from 40 students were analyzed. Overall, average pretest and posttest scores significantly 

improved from pretest to posttest with a large effect size (see Table 2). Breaking down the 

results by test item, no significant gains were found for questions DM1 and DM2, but significant 

gains were found for items DM3, and CM1, 2, and 3 with large effect sizes.  

 

 

Embedded assessments. Means and standard deviations for embedded assessments, 

along with the accompanying pretest and posttest item score are presented in Table 3. Scores 

represent students making progress distinguishing between slant height and vertical height over 

time, with all students answering correctly for the second embedded assessment question (EA2).  

 

 

 

 

Table 2 

Pretest and posttest means and their differences by item 

Item 
Mean 

Pretest 

Mean 

Posttest 

Mean 

Difference 

(Post Test 

- Pre Test) 

t df 
Sig. (2-

tailed) 

Cohen's d 

effect size 

DM1 3.025 2.950 -0.075 -0.301 39 0.765 -0.048 

DM2 3.450 3.425 -0.025 -0.105 39 0.917 -0.017 

DM3 3.375 3.825 0.450 5.152 39 0.000 0.815 

CM1 1.125 2.775 1.650 7.840 39 0.000 1.240 

CM2 2.600 3.800 1.200 6.000 39 0.000 0.949 

CM3 1.650 2.925 1.275 5.855 39 0.000 0.926 

Total 15.225 19.700 4.475 9.643 39 0.000 1.525 

Table 3  
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Research Question 2: What kinds of supports help students to engage in mathematical modeling 

in the context of engineering design?  

Duration of steps and practices. Figure 11 displays the average time per step within 

each design practice and the total time for each design practice. The average time a student spent 

on the project was 185 minutes (see Table 4). Log data show students spent the most total time in 

Develop Knowledge and Ideate Solutions phases. Students generally spent almost half the time 

of the project on steps that involved developing mathematical knowledge, about a quarter of the 

time ideating design solutions, and a quarter of the time building, testing and refining their 

design solutions. 

 

 

 

Mean and standard deviation for student embedded assessment scores 

Embedded assessment item Mean 
Standard 

Deviation 

EA1 2.11 0.83 

EA2 3.00 0.00 

EA3 2.77 0.65 

EA4 2.83 0.71 
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Figure 11.  The time per step visit and the total time that students were logged, for each design 

stage.  

 

Table 4  

Mean and standard deviation for the time per step visit and the total time that students 

were logged, for each design stage (minutes) 

 Time per step 

(minutes) 

 Total time 

(minutes) 

Design Stage 
Mean 

Standard 

Deviation 
Mean 

Standard 

Deviation 

Specifications and Constraints 0.91 0.56  19.68 16.82 

Develop Knowledge 3.94 1.56  75.56 23.83 

Ideate Solutions 6.88 6.19  45.72 25.11 

Build Prototype 5.76 7.62  19.81 22.70 

Test and Evaluate Solutions 2.13 1.51  14.93 11.50 

Refine Solution 3.68 5.73  13.93 19.18 

 

Visiting Steps. Figure 12 displays the total number of visits made to each step. As 

students were able to return and review prior steps within WISE, students visited some steps 

more frequently than other steps. With an n = 40, 40 steps would roughly correspond to students 

progressing through the project without returning to or revisiting steps. Students visited steps 3,4 
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and 5 most often. These steps described the details of the design challenge (steps 3 and 4) 

including the project specifications and constraints (step 5). The next most frequent steps visited 

were Develop Knowledge steps (steps 8 through 14).  

Looking specifically into the Develop Knowledge steps, log data showed some students 

(n = 17) revisiting the interactive visualizations (steps 11 and 12) and around half (n = 23) of 

students proceeding without revisiting the visualizations (see Figure 13 for examples). The 

connected mathematics pretest scores (items CM1-3) for students who revisited the visualization 

steps were significantly less than those that did not revisit the visualization steps (Revisit: M(SD) 

= 4.65(1.50); No Revisit: M(SD) = 5.91(1.98); t = 2.31, p = 0.026) suggesting that students with 

higher prior connected mathematics knowledge were less inclined to revisit the visualizations. 

However, the connected mathematics scores for these same groups was not significantly 

different (Revisit: M(SD) = 9.41(1.62); No Revisit: M(SD) = 9.57(2.37); t = 0.24, p = 0.81), 

indicating that the group that did revisit the visualizations were able to make increased integrated 

knowledge gains. 

  

 

Figure 12. The total number of visits made to each step by all students.  

 



SUPPORTING STUDENTS’ MODELING AND DESIGN  31 

 

 

Figure 13. The transitions between Develop Knowledge steps for two example students. The 

student on the left revisits the visualization steps (steps 11 and 12) many times. The student on 

the right does not revisit any steps and proceeds through the steps incrementally.  

 

Discussion  

The first cycle of this study explored how a project to support a synergistic use of 

engineering design and mathematical modeling to help students develop a connected 

understanding of circles, sectors, and cones. Overall, student scores from pretest to posttest 

improved significantly. Embedded assessments captured how students were able to use WISE to 

support engineering design and mathematical modeling practices to connect and apply 

mathematical knowledge. Students engaged in the engineering design and mathematical 

modeling practices synergistically, with log data reflecting that the students spend most of their 

time on those steps where designing and modeling informed each other, that is, the Developing 

Knowledge and Ideating Solutions activities. 

Developing connected mathematical understanding. From pretest to posttest, most of 

the total learning gain was from the connected mathematics items (CM1-3) rather than the 
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discrete mathematics items (DM1-3). The lack of gain on the discrete mathematics items could 

potentially be due to a ceiling effect, as scores started relatively high. Students began the project 

able to perform well on items that assessed standard, discrete, well-defined knowledge. 

However, the pretest scores for questions that required student to connect this knowledge began 

low, reflecting the isolated nature of students’ ideas. By the posttest, students made significant 

progress connecting ideas about cones and sectors. For example, although many students were 

able to find the volume of a cone by directly applying a formula (DM3), when given a slant 

height instead of a vertical height (CM1) many students did not make the correct connections 

among ideas on the pretest, but were able to connect ideas about right triangles and cones and 

solve for the correct volume by the posttest. These results point to the utility of using our 

informed engineering design and mathematical modeling project to help students develop a 

connected mathematical understanding.  

The use of mathematical modeling with the engineering design project could have 

contributed to these gains. The two interactive geometry visualizations that emphasized the 

relationships between sectors and cones were specifically designed for this project as models for 

the students to use. Students who revisited the visualizations began with significantly lower 

pretest KI scores but ended with no difference on posttest scores. These results suggest that 

students who might have needed extra support were able to use the visualizations to develop 

connections among targeted concepts. These results align with other research showing the 

benefit of interactive geometry visualizations on student understanding (e.g., Hollebrands, 2007; 

Zengin, Furkan, & Kutluca, 2012).  

Engaging in engineering design and mathematical modeling practices. Although 

students had no prior experience conducting engineering design projects in their geometry class, 
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log data and video observations indicated that through the WISE supports, students were able to 

engage in the engineering design practices of defining project criteria, developing knowledge, 

ideating solutions, building, testing, and evaluating prototypes, and refining solutions, as well as 

the mathematical modeling practices of defining variables and finding solutions. That not all the 

mathematical modeling practices were observed is due to the fact that the project focused on 

students using models rather than creating models. These observations informed our revisions of 

the project in Cycle 2. 

Research demonstrates that implementing engineering design projects in mathematics 

classrooms can often focus on trial and error approaches and lack deep connections to 

developing content understanding. This was not observed. In addition to the pre/posttest results, 

the log data suggests that students in the Ice Cream project spent nearly half of their time in the 

Develop Knowledge activities that involved using mathematical models, representing a large 

emphasis on developing integrated understanding of geometry ideas. As many teachers have 

time constraints and engineering design or mathematical modeling projects can be seen as 

something extra, these results align with other research indicating that this “something extra” can 

have a powerful impact on students learning content knowledge (e.g., Jacobson & Lehrer, 2000; 

Puntambekar & Kolodner, 2005).  

Although the participating geometry teacher had very little experience with engineering 

design or mathematical modeling activities, she was able to facilitate the Ice Cream project in her 

classroom. The teacher had little difficulty helping students troubleshoot when needed or 

managing the materials and chaos of students building waffle cones and eating ice cream in her 

class. The teacher was also able to adapt and build upon the WISE project as she created her own 

table on the whiteboard for her students to share their final results with each other at the end of 
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the project. Results point to the potential of WISE to help mathematics teachers implement 

student-centered, project-based projects in their classrooms.  

 

Project Cycle 2: Creating Models 

Participants and Context 

Participants (n = 66) were students from five classes of high school geometry all of which 

were taught by the same teacher. School demographics consisted of 34% Black, 9% Hispanic, 

and 45% White students with 45% of students receiving free or reduced lunch. The teacher had 

one year of prior teaching experience, and this was his first year teaching geometry.  

Revisions to the Ice Cream Cone Project 

The project was revised so that the students were asked to create mathematical models 

from data that they collected. This was a change from the first cycle in which students used 

premade mathematical models to inform their designs. This revision reflects the findings from 

Cycle 1 that not all mathematical modeling practices had been supported. These revisions were 

intended to give better insight into how to support mathematical modeling practices such as 

“identifying variables”. This change in emphasis meant that the project included building and 

measuring steps within the modeling activities so that the data collected informed the 

mathematical models that the students created.  

To collect the data, students first made paper cones, using instructions within WISE to 

draw out a 18cm diameter circle, cut out a sector from the circle and tape the radii of the sector 

together to form a cone (see Figure 14). Next, the project asked students to use string to measure 

the arc length of the sector, a protractor to measure the central angle of the sector, a ruler to 

measure the radius of the sector as well as the slant height of the cone and the radius of the base 
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of the cone, and finally by filling their cones with dry rice and pouring the rice into a graduated 

cylinder they measured the volume of their cone.  

 

   

Figure 14. The revised cycle two WISE project instructed students how to make paper cone 

prototypes that they tested to generate data that could be modelled.  

 

Students were given approximately 60 minutes to make additional sectors and cones, take 

measurements (see Figure 15) and record their measurements in a data table (see Figure 16). 
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Figure 15. Students building and measuring prototype cones 
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Figure 16. Students were encouraged by the project to test their prototype paper cones and 

record their measurements to use for modeling in a later activity. 

 

Following the data collection phase, the student began creating models by looking for 

patterns in their data and describing any relationships they found between the following 

variables: 

• Sector arc length and sector central angle (Relationship 1). 

• Cone slant height and sector radius (Relationship 2). 

• Cone base radius and sector arc length (Relationship 3). 

• Cone volume, cone base radius, and cone slant height (Relationship 4). 

These relationships were the same as those from cycle one of this study. However, in 

Cycle 2 we encouraged students to identify them from their data rather than from visualizations. 
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To support this, students were encouraged to form small groups and share ideas their ideas, to 

use a graphing tool to help them visualize their data (see Figure 17), and to access the scaffolded 

visualizations if needed. The teacher and researchers supported this discussion when needed. 

 

 

Figure 17. Describe that we are now asking student to find the relationship from the data they 

collected (see Figure 16). Students were given a graphing tool to use and the “SUPPORT FOR” 

link took student to the visualizations and models that were the focus of Cycle 1.  
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In addition, the challenge that the project posed to the students in Cycle 2 was changed so 

that students had to maximizing the amount of ice cream that a waffle cone could hold, which 

was considered to be more fun than the Cycle 1 challenge of minimizing the amount of waffle 

used to hold a fixed volume of ice cream. The full Cycle 2 project can be viewed at 

https://wise.berkeley.edu/project/23681. 

Revisions to the Data Sources 

Pretest and posttest. Because our revised project was revised to emphasize 

mathematical modeling and student understanding of the relationship between variables, our 

pretest and posttest were revised by dropping the items that assessed discrete mathematics 

knowledge (DM1-3) and adding items that assessed understanding of mathematical modeling 

and engineering design (see Appendix C). Part (a) of the first two questions (MM1 and MM2) 

asked students to find the relationship between two variables using data provided in a data table. 

Part (b) of each of these questions asked students to describe how they found this relationship. 

This question was intended to assess students’ ability to create mathematical models from data. 

The second new question (ED1) asked students what the next engineering design steps were that 

should be taken in a given scenario. This question was intended to assess students’ ability to 

apply the engineering design practices to new context.  The connected mathematics items (CM1-

3) were kept unchanged. 

Embedded assessments. Given the revisions to the project the embedded assessments 

were also changed. In the first cycle we asked student to use the interactive visualizations and 

models we provided and to describe the patterns or relationships that they noticed between the 

variables. In this cycle we asked similar questions about these same relationships, but rather than 

asking student to notice these patterns by using the models we had provided for the project, we 
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asked student to notice these patterns from the data they had collected in an earlier activity (see 

Figure 16). We continued to make the visualizations from the first cycle available to students as 

optional scaffolded materials that students could access by clicking a link (see Figure 17). Other 

data sources such as the WISE Log Data, Classroom Observations/Video were unchanged. 

Procedures 

The pretest was administered immediately prior to the start of the project, and like in the 

first cycle, the students answered the questions individually and had access to the formula sheet 

used by the students during their state mandated assessments. The posttest was administered in 

an identical manor immediately after the project was completed. As with the first cycle, the 

project occurred during three class blocks (totaling approximately 230 minutes) on consecutive 

days during their normal scheduled mathematics instruction, in their normal mathematics 

classroom. Other procedures from the first cycle were the same:  All students had a personal 

laptop provided by the school district that they were familiar with using; students sat in pairs and 

were allowed to discuss their ideas with each other, to ask each other questions and seek 

assistance from the classroom teacher or researchers if needed.  

Data Analysis 

We analyzed the WISE log data, the embedded assessments, and the pretest and posttest 

data from cycle two using a similar approach as that used in cycle one. Items CM1-3 scored 

using the same 5-point Knowledge Integration (KI) rubric used in Cycle 1 (see Appendix D). 

Higher scores were assigned to responses that accurately identified and integrated relevant ideas. 

The new items MM1, MM2, and ED1 were scored using 5-point rubrics that were developed to 

reward more detailed articulation of models found from datasets, or of future design stages (see 

Appendix E). Twenty percent of each of these test items were randomly selected and 
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independently scored by two graders until at least ninety percent agreement was reached, after 

which the remaining set of responses were divided into two groups, each group was scored by 

one researcher, and the scores combined for analysis.  

The four embedded assessment items for Cycle 2 were coded using a 5-point rubric 

designed reward more detailed articulation of the relationship between variables (see Appendix 

F), and to align to scores given for similar pretest and posttest questions.  All of these responses 

were coded independently by two researchers and any discrepancies were discussed until 

consensus was reached.  

The log data records were categorized into engineering design stages and mathematical 

modeling stages (see Table 5). The total duration for how long students spent in each of these 

stages was calculated from time stamps in the log data. The number of visits to each step and 

revisions to embedded assessments and returns to steps were also calculated.  
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Table 5 

How each step in Cycle 2 maps on to engineering design and mathematical modeling stages.  

Step Step Name Engineering Design Stage Mathematical Modeling Stage 

1 1.1: Ice Cream Stand Project 1. Specifications and 

Constraints 

1. Identify and Specify 

Problem 2 1.2: Your Design Challenge 

3 1.3: Design Notebook 

4 2.1: Sectors 2. Develop Knowledge 2. Identify variables 

5 2.2: Building a paper prototype 

6 2.3: Measure your paper prototype 3. Collect data 

7 3.1: Collect more data 

8 3.2: Finding relationships between variables. 4. Describe relationship 

between variables  9 3.3: Relationship 1 

10 3.4: Relationship 2 

11 3.5: Relationship 3 

12 3.6: Relationship 4 

13 3.7: Cone volume from Sector central angle 

14 4.1: Design your cone 3. Ideate Solutions 5. Implement the model 

15 4.2: Design Calculations 

16 4.3: Build Final Solution 4. Build Prototype 

17 4.4: Test Your Design 5. Test and Evaluate 

18 5.1: Refine Design 6. Refine Design 

 

Results 

Pretest and posttests. Overall, average pretest and posttest scores for questions that 

focused on connected understanding of geometry (CM1-3) significantly improved with a 

medium-large effect size (see Table 6). Breaking down the results by item, no significant gains 

were found for item CM2, but significant gains were found for items CM1 and CM3.  
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Table 6 

Mean and standard deviations for the pretest and posttest scores for questions that focused on 

connected mathematical understanding, and their paired t-test results. 

 Mean (Standard Deviation)     

Item  
Pretest Posttest 

Difference 

(Post-Pre) df t p 

Cohen's d 

effect size 

CM1 0.83 (0.38) 1.41 (0.80) 0.59 (0.88) 45 4.504 0.0000 0.66 

CM2 0.70 (1.19) 1.07 (1.20) 0.37 (1.36) 45 1.849 0.0711 0.27 

CM3 0.39 (0.49) 0.70 (0.70) 0.30 (0.79) 45 2.629 0.0117 0.39 

Overall 1.91 (1.40) 3.17 (1.89) 1.26 (1.88) 45 4.551 0.0000 0.67 

 

Average pretest and posttest scores for questions that focused on mathematical modeling 

and engineering design (MM1, MM2, and ED1) also significantly improved with a medium-

large effect size (see Table 7). 

 

 

Table 7 

Mean and standard deviations for the pretest and posttest scores for questions that focused on 

mathematical modeling and engineering design, and their paired t-test results. 

 Mean (Standard Deviation)     

Item  
Pretest Posttest 

Difference 

(Post-Pre) df t p 

Cohen's d 

effect size 

MM1(a) 1.37 (1.57) 2.24 (1.39) 0.87 (1.85) 45 3.196 0.0025 0.47 

MM1(b) 0.76 (1.06) 0.76 (0.82) 0.00 (1.12) 45 0.000 1.0000 0.00 

MM2(a) 0.50 (1.09) 1.33 (1.45) 0.83 (1.45) 45 3.864 0.0004 0.57 

MM2(b) 0.35 (0.74) 0.61 (0.83) 0.26 (0.80) 45 2.209 0.0323 0.33 

ED1 0.17 (0.38) 0.72 (0.83) 0.54 (0.84) 45 4.412 0.0001 0.65 

Overall 3.15 (3.23) 5.65 (3.63) 2.50 (3.85) 45 4.409 0.0001 0.65 

 

Visits to steps. Figure 18 shows the number of visits to each of the project steps, along 

with the number of students that progresses to each step. The number of students who progress 
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beyond the data collection steadily decreases with very few students completing the project. 

Despite this, there is a large number of visits to the steps that correspond to the engineering 

design “develop knowledge” stage, or the mathematical modeling “collect data” and “describing 

relationships between variables” stages. Table 8 shows the average time that each student spent 

at each engineering design and mathematical modeling stage. This shows that students are both 

visiting these stages most frequently and spending the bulk of their time at these stages. 

Furthermore, the transitions between the mathematical modeling stages show that students 

tended to transition back from the describe relationships steps to the data collection steps much 

more than between other steps (see Figure 19).  

 

 

Step Engineering Design 
Stage 

 Mathematical 
Modeling Stage 

 

Step 

 

1 1. Specifications 
and Constraints 

 1. Identify and 
Specify 
Problem 

2  

3  

4 2. Develop 
Knowledge 

 2. Identify 
variables 5  

6  3. Collect data 

7  

8  4. Describe 
relationship 
between 
variables  

9  

10  

11  

12  

13  

14 3. Ideate Solutions  5. Implement 
the model 15  

16 4. Build Prototype  

17 5. Test and Evaluate  

18 6. Refine Design  
    

Figure 18. The total number of number of visits that all students made to each step of the project 

and the number of students who progressed through the project to each step.  
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Figure 19. Transition frequencies between the mathematical modeling stages are indicated by the 

size of arrows.  

Table 8 

Mean and standard deviation time (minutes) that students were logged at each design or modeling 

stage, and the time (minutes) that students spent per visit to a step within that stage 

Step Engineering Design Stage  Mathematical Modeling Stage 

Name Mean  

(Standard deviation) 

 Name Mean  

(Standard deviation) 

1 1. Specifications and 

Constraints 

6.42 (6.54)  1. Identify and Specify 

Problem 

6.42 (6.54) 

2    

3    

4 2. Develop Knowledge 95.76 (32.42)  2. Identify variables 11.36 (6.86) 

5    

6   3. Collect data 69.97 (25.41) 

7    

8   4. Describe relationship 

between variables  

14.43 (14.35) 

9    

10    

11    

12    

13    

14 3. Ideate Solutions 6.33 (9.81)  5. Implement the model 6.81 (10.37) 

15    

16 4. Build Prototype 0.45 (1.93)   

17 5. Test and Evaluate 0.01 (0.11)   

18 6. Refine Design 0.01 (0.04)   
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Embedded assessments. Means and standard deviations for embedded assessments are 

presented in Table 9. Results show that for the question that asked students the equality between 

two variables (relationship 2), the students scored higher than for linear relationships between 

two variables (relationships 1 and 3), with students scoring lowest for a non-linear, multi-

variable relationship (relationship 4).  

 

Table 9  

Mean, standard deviations, and count of embedded assessment scores 

Relationship 

Mean 

(Standard 

Deviation) 

N 

Relationship 1: Sector arc length and Sector central angle 1.02 (1.17) 41 

Relationship 2: Cone slant height and Sector radius 2.07 (1.36) 30 

Relationship 3: Cone base radius and Sector arc length 1.43 (1.52) 30 

Relationship 4: Cone volume, Cone base radius and Cone slant height 0.79 (1.08) 29 

 

 

Discussion 

The second cycle of this study continued to explore how to support a synergistic use of 

engineering design and mathematical modeling to help students develop a connected 

understanding of circles, sectors, and cones. In the second cycle we placed a greater emphasis on 

mathematical modeling rather than engineering design by asking students to describe the 

relationships between variables from data that they collected rather than from their observations 

of the models with which they were provided.  

Developing connected mathematical understanding. Overall, in Cycle 2, student 

scores on items that assessed the connections between cones and sectors significantly improved. 
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These results reaffirm the utility of using an informed engineering design and mathematical 

modeling project to help students develop these connections.  

Rather than emphasizing that students make these connections by referring to the 

interactive geometry visualizations as we did in Cycle 1, this cycle emphasized students 

collecting data about different size cones that they make from different size sectors. The 

continued improvement in connected mathematical understanding is likely due in part to the data 

collection process which involved lots of hands-on manipulation of sectors and cones that would 

make students familiar with the variables that they measured. 

In addition, results show that the gains in Cycle 1 are greater than in Cycle 2 and also that 

the pretest scores in Cycle 1 are higher than the posttest scores for Cycle 2. These differences are 

likely to be due in part to the different student populations in which the two cycles were 

implemented, but it may also indicate that for building connections between mathematical ideas, 

the Cycle 2 emphasis on data collection and creating mathematical models was less effective 

than the Cycle 1 approach of providing students with models.  

Engaging in engineering design and mathematical modeling practices. As with Cycle 

1, the students and the teacher in the second cycle had no prior experience conducting 

engineering design projects in their geometry class, and the log data results indicate that through 

the WISE supports, students were able to engage in the engineering design practices of finding 

specifications and constraints, developing knowledge, and ideating solutions, as well as the 

mathematical modeling stages of identifying and specifying problems, identifying variables, 

collecting data, describing relationships between variables, and implementing the model. That 

not all the engineering design stages were observed is due to the fact that the project focused on 

students creating mathematical models rather than repeating the engineering design cycles.  
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In addition, pretest to posttest results showed statistically significant gains for items that 

assessed the students’ ability to find mathematical models and their understanding of the 

engineering design cycle stages. Despite this, students scored low and didn’t show gains for 

items that asked them to articulate how they found the mathematical relationships they described, 

perhaps because explaining their understanding was not emphasized during the project.  

Students spent a significant amount of time collecting data during Cycle 2. The data 

collection steps of the project involved extensive hands-on creation of different size cones from 

different size sectors while measuring the values of properties of each such as sector radius and 

arc length, and cone slant height and volume. While not directly part of creating the 

mathematical models, this measuring and data collection process seemed to be valuable for 

students to understand the variables that they would be asked to relate from classroom 

observations. For example, it was common for students to ask “what’s the arc length?” when 

asked to measure arc length, indicating that the process of data collection was not just a means to 

obtain a dataset to analysis but also as a means for students to be able to develop an 

understanding of the variables. In fact, without this knowledge, common means for 

communicating mathematical relationships such as via formulae are likely to be less effective.  

 

Implications 

This study highlights that for mathematics students who have an emerging understanding 

of the mathematics they might use to model a given situation, identifying variables and the 

relationships between those variables is a challenging component of mathematical modeling. 

Common descriptions of mathematical modeling (e.g., Bliss & Libertini, 2016) often make 

assumptions that students have the underlying mathematical knowledge that they can use during 
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the modeling process. From these perspectives, “identifying relationships between variables” or 

“doing the math” involve students selecting the most appropriate mathematical relationship from 

what they currently know rather than learning new mathematical relationships. This study shows 

that for modeling activities that are intended to help students learn about new mathematical 

relationships, it is important to support students to identify the relationships between variables. 

In Cycle 2 we were able to support students to identify relationships between variables through 

data collection. Data collection served to both support student understanding of the variables 

they were measuring, and served to provide empirical data upon which to base descriptions of 

the relationships between variables. Yet the use of data collection for this purpose is not 

commonly emphasized in descriptions of mathematical modeling. One implication of this study 

is that for contexts where mathematical modeling is intended to be used for students to learn 

about mathematical relationships, collecting physical data can be an important component of the 

mathematical modeling process.  

This study also described two examples of the interweaving of engineering design and 

mathematical modeling. While distinct in many ways, their commonalties allow projects that 

draw upon both approaches to move fairly seamlessly from emphasizing one approach to 

emphasizing the other. For example, when it was possible to say that students were at some 

particular stage of mathematical modeling, it was also possible to identify a corresponding stage 

of engineering design. Alternatively, it never seemed that students switched from, say, doing 

engineering design to doing mathematical modeling. Rather, they moved from activities that are 

described well by engineering design into activities articulated well by mathematical modeling. 

For example, the developing knowledge process in engineering design can be elaborated upon by 

iterative mathematical modeling cycles, and the implementing the model stage in mathematical 
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modeling can be elaborated on by iterative engineering design processes (see Figure 1). To some 

extent, this is similar to frameworks that align engineering design and science learning such as 

Learning by Design (Kolodner, Gray, & Fasse, 2003). In addition, while research demonstrates 

that implementing engineering design projects in mathematics classrooms can often focus on 

trial and error approaches and lack deep connections to developing mathematical content 

understanding, this study implies that implementing engineering design with mathematical 

modeling in mathematics classrooms can support connected mathematics understanding.  

The study highlights that the tools within WISE that have been used previously to support 

engineering design and science inquiry can also be used to support engineering design and 

mathematical modeling. In Cycle 2 we added data collection and graphing tools for students to 

use in addition to the visualizations, reflection and self-explanation prompts, and sharing features 

from Cycle 1. Results from both cycles point to the potential of WISE to help mathematics 

teachers implement student-centered, project-based projects in their classrooms. The broad array 

of tools within WISE and their role in supporting mathematical modeling practices illustrates 

how technology can be used to support generative learning opportunities (Fiorella, Mayer, & 

Mayer, 2015) within mathematics. This study also contributes to the growing body of research 

investigating how to support engineering design processes in computer-based environments 

(Chao et al., 2017; Goldstein et al., 2015; Purzer et al., 2015). 

 

Limitations 

This study consisted of two small exploratory cycles with few student participants in each 

cycle, and therefore, our results may not be generalizable to other populations. Additionally, the 

study did not have a control group, and the learning gains we found may not be solely attributed 
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to the ice cream cones project. Future studies involving comparison groups and isolation of 

specific components could provide more detailed understanding of our research questions. 

Another potential limitation of this study is the way the project scaffolds engineering 

design and mathematical modeling. As there are specific steps through which students can 

linearly progress and complete, this could potentially reinforce a linear instead of iterative view 

of design and modeling (despite the cyclical representation and iteration within activities). On 

one hand, having discrete steps offers a way for teachers and students unfamiliar with 

engineering design and mathematical modeling to implement and engage in these practices. On 

the other hand, the stepwise fashion could potentially promote less informed views about these 

practices. Future research can explore how other kinds of environments (e.g., Easterday, Lewis, 

& Gerber, 2013) could support precollege students and teachers to engage in authentic 

engineering design practices. 

 Future research might consider the impact of such projects on the teachers involved in the 

study. For both teachers in this study, this approach was novel and their involvement in the 

development and implementation of the project may have impacted their instructional practices 

in ways that we did not record in this study. In addition, future cycles of investigation might also 

consider the intersecting roles of the digital tools and the physical hands-on manipulatives. 

Results from the two cycles in this study imply that both are important, but greater clarify on 

how they work together to support engineering design and mathematical modeling is needed. In 

addition, revisions to the project challenge itself could be made to allow increased authentic 

student involvement. For example, we could add other factors into the project (such as including 

a dome of ice cream on top of the cone) and let student pick which variables they were most 
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interested in to optimize. Results could then be shared with classmates and combined to find 

solutions to a larger design challenge.  

 

Conclusion 

This study contributes to understanding how to support students’ mathematical modeling 

and engineering design to help students develop integrated mathematics understanding. Results 

from the study illustrate how technology-enhanced supports can help students engage in 

engineering design and mathematical modeling practices. As such, the findings will be of interest 

to both mathematics education researchers as well as engineering education researchers.  
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Appendix A 

Overview of instructional steps in ice cream cones project 

 

*Denotes embedded assessment item 

 

Engineering 

Design Cycle 
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Specifications and 

Constraints 
1 Introduction ✓      

2 Engineering Design ✓      

3 The Challenge ✓      

4 Your Design Challenge   ✓    

5 Specs and Constraints    ✓    

6 Design Cycle    ✓   

7 Design Journal   ✓    

Develop 

Knowledge 
8 Cone Volume ✓   ✓   

9 Extra Volume ✓   ✓   

10 Total Cost     ✓  

11 Sectors as nets of Cones ✓ ✓  ✓   

12 Cones to/from Sectors * ✓ ✓ ✓    

13 Central Angle    ✓ ✓  

14 Sector Dimensions *     ✓  

Ideate Solutions 15 Design Sketch      ✓ 

16 Design Justification   ✓    

17 Design Calculations *   ✓ ✓   

18 Your Design Ideas   ✓    

Build 19 Build Prototype - Paper      ✓ 

Test and Evaluate 20 Test Your Prototype      ✓ 

21 Evaluate Prototype   ✓    

22 Share Your Results   ✓    

23 Reflections   ✓    

Develop 

Knowledge 
24 Area of a Sector ✓   ✓   

25 Cone Cost *     ✓  

26 Reflections   ✓    

Refine 27 Explain Your Design   ✓    

28 Final Design Sketch      ✓ 

29 Justifying Final Design   ✓    

Build 30 Build Final Solution       ✓ 

 31 Present Final Solution   ✓    
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Appendix B 

Pretest and posttest assessment items for Cycle 1 

 

Please answer the following questions as best as you can.  

 

1. An architect used this diagram to design a curved balcony. She 

drew a circle with a radius of 40 feet and a central angle of 70° to 

determine the length of railing needed for the balcony. 

 

What is the length of the railing needed for the curved section of the balcony? Show your 

work. 

 

 

2.  Flowers were planted in a section of a circular garden as shown. 

What is the area of this section of the garden? Show your work. 

 

 

 

 

 

3. The volume of a cone is given by the formula V = ⅓ π r2 h. 

What is the volume of this cone? Show your work. 
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4. The volume of a cone is given by the formula V = ⅓ π r2 h. 

What is the volume of this cone? Show your work. 

 

 

 

 

5. The diagram on the right shows how a cone can 

be cut and flattened into a sector. 

 

Describe which properties of the cone are equal in 

size to properties of the sector. 

 

 

 

6. The following sector will be rolled up into a cone. How would you 

use the dimensions of this sector to find the volume of the cone?  

Describe the steps. 
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Appendix C 

Pretest and posttest assessment items added for Cycle 2 
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Appendix D 

 

Pretest and posttest assessment item rubrics. 

For DM1: 
Score Descriptor Example 

0 Blank or frivolous comment. 

OR 

incorrect formula for circumference alone 

 

idk 

1 Clear indication that the circumference of the circle 

(words or formula, 2πr)  

OR 

some portion (ratio or proportion) of the circle is 

needed 

2 pi r 

OR 

70/360 

2 Writes an expression for the arc length as a portion 

(ratio or fraction) of the circumference  

of the form: 

x /360  * 2 pi r 

3 Correctly calculates the numerical value for the arc 

length (48.87 or 140π/9) with appropriate 

justification (e.g. an expression described in #2 

above) 

 

4 Correctly calculates the numerical value for the arc 

length (48.87 or 140π/9) with correct units (ft or 

feet) and with appropriate justification (e.g. an 

expression described in #2 above) 

 

 

 

For DM2: 
Score Descriptor Example 

0 Blank or frivolous comment. 

 

idk 

1 Clear indication that the area of the circle (words or 

formula, πr2)  

OR 

some portion of the circle is needed 

pr r^2 

OR  

80/360 

2 Writes an expression for the sector’s area as a 

portion of the circle’s area (ratio or fraction) 

or the form: 

x /360 * pi r^2 

3 Correctly calculates the numerical value for the 

sector’s area (118 or 338π/9) with appropriate 
justification (e.g. an expression described in #2 

above) 

 

4 Correctly calculates the numerical value for the 

sector’s area (118 or 338π/9) with correct units (ft2 

or square feet) and with appropriate justification 

(e.g. an expression described in #2 above) 
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For DM3: 
Score Descriptor Example 

0 Blank or frivolous comment. 

 

idk 

1 Makes an effort to use the information in the 

diagram but misidentifies the information. 

 

2 Identifies the radius = r = 3 and the height = h = 7 

and/or substitutes these values into the given 

formula. 

 

3 Correctly calculates the numerical value for the 

cone’s volume (65.97 or 21π) with appropriate 

justification (e.g. an expression described in #2 

above) 

 

4 Correctly calculates the numerical value for the 

cone’s volume (65.97 or 21π) with correct units 

(cm3 or cubic centimeters or cc) and with 

appropriate justification (e.g. an expression 

described in #2 above) 

 

 

 

For CM1: 
Score Descriptor Example 

0 Blank or frivolous comment. 

 

idk 

1 Makes an effort to use the information in the 

diagram but misidentifies the information (such as h 

= 8 cm). 

 

2 Identifies the radius = r = 2cm and attempts to 

calculate the vertical height, h, from the given slant 

height (= 8cm) and r (with correctly or incorrectly) 

and/or substitutes the correct values for r and h into 

the given formula. 

h = √(82 - 22)= √60 = 7.746 

3 Correctly calculates the numerical value for the 

cone’s volume (32.45, NOT 33.5) with appropriate 

justification (e.g. an expression described in #2 

above) 

 

4 Correctly calculates the numerical value for the 

cone’s volume (32.45, NOT 33.5) with correct units 

(cm3 or cubic centimeters of cc) and with 

appropriate justification (e.g. an expression 

described in #2 above) 
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For CM2: 
Score Descriptor Example 

0 Blank or frivolous comment. 

 

idk 

1 Properties of the cone and/or the sector are specified 

without any connections 

OR  

at least one alternative connection that indicates 

equality is made. 

 

2 At least one partial connection that indicates 

equality is made. 

AND 

zero normative connections that indicate equality 

are made 

 

3 One normative connection that indicates equality is 

made. 

(Additional partial connections may be made if they 

don’t contradict the normative connection) 

(Zero alternative connections may be made) 

 

4 Two or more normative connections that indicate 

equality are made. 

(Additional partial connections may be made if they 

don’t contradict the normative connection) 

(Zero alternative connections may be made) 

 

 
Properties of Cones and Sectors that are equal: 

 

Normative: 

 Circumference of base (cone) = Arc length (sector) 

 Slant height (cone) = radius (sector) 

Lateral surface area (cone) = area (sector) 

Lateral surface area (cone) = area (sector) 

 

Partial: 

Circumference of base (cone) = Arc length (sector)  

Height (cone) = radius (sector) 

 Vertical height (cone) = radius (sector) 

Lateral surface area (cone) = area (sector) 

 

Alternative: 

 Area of base (cone) = area (sector) 

 Radius of base (cone) = radius (sector) 

 Lengths are the same (unspecified properties of cone or sector) 

Heights are the same (unspecified properties of cone or sector) 
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For CM3: 
Score Descriptor Example 

0 Blank or frivolous comment. 

 

idk 

1 One step is stated  

2 Two or three steps are stated in a normative order.  

3 Four or five normative steps are stated in a 

normative order. 

a), b), c), f).    [two missing steps] 

a), c), b), d), e), f)   [one out of order] 

4 All six normative steps are stated in a normative 

order.  

 

 
Normative responses involve 6 steps in this order [or with steps c) and d) switched] 

a) Find arc length (of sector) from given radius and central angle (of sector) using proportion of 2πr. 

2π (11)/Arc = 360/240  => Arc = 2π (11)(240)/360 = 44 π /3 = 46.08 inch 

b) Find circumference of base (of cone) from arc length (of sector) using equality property. 

Circumference = 44 π /3 = 46.08 inch 

c) Find radius of base (of cone) from circumference of base (of cone) using C/2π. 

r = (44 π /3 )/ 2π = 22/3 = 7.33 inch 

d) Find slant height (of cone) from radius (of sector) using equality property. 

11 inch 

e) Find vertical height (of cone) from slant height (of cone) and radius of base (of cone) using the 

Pythagorean theorem, h = √(s2 - r2). 

√(112 – 7.332) = 8.20 inch 

f) Find volume of cone) from vertical height (of cone) and radius of base (of cone) using the volume formula, 
1/3 π r2 h = 462 inch3 
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Appendix E 

Pretest and posttest rubrics for Cycle 2. 

For MM1(a): 

0 Blank, idk, etc. 

1 Don’t notice a relationship; “there is no pattern” 

OR  

Notices an alternative relationship 

2 Notice that the number of branches increase 

(without saying thickness increases) 

3 Notice that the number of branches increase 

as thickness increases.  

OR  

Positive relationship between thickness and branches. 

OR 

“Linear” increase.  

4 Notice that the number of branches increase 

By 12 or [11, 13] for every one increase in thickness.  

OR 

that number is about 11 times larger than thickness.  

OR 

Normative mathematical relationship: Thickness = [11-13]*branches + [-2, +2] 

 

For MM1(b): 

0 Blank, idk, etc.  

1 Looked at the table (vague). 

Said a mathematical operation without specific details (e.g. subtraction) 

Said they compared something (vague) 

Restated part a) pattern 

2 Evidence of an attempt to find a model or pattern but didn’t explain the step(s) 

3 Found differences between table values (either said they did or they show differences) 

OR 

Found “multiply by 11” pattern 

OR 

Made a graph (or said they made a graph). (NOT, “looked at the graph” without saying 

that they made the graph) 

4 Three or more clearly explained steps. 
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For MM2(a): 

0 Blank, idk, etc. 

1 Don’t notice a relationship: 

“there is no pattern” 

“It goes up and down” 

OR 

Notices an alternative relationship 

2 Notice that the number of branches increase 

(without saying thickness increases) 

3 Notice that the number of branches increase 

as thickness increases.  

OR  

Positive relationship between thickness and branches.  

4 Notice that the number of branches increase more (or doubles) for each additional one 

increase in thickness (ie. non-linear, quadratic, exponential) 

OR 

Normative mathematical relationship: Thickness = 2*2(thickness) 

 

For MM2(b): 

0 Blank, idk, etc.  

1 Looked at the table (vague). 

Said a mathematical operation without specific details (e.g. subtraction) 

2 Evidence of an attempt to find a model or pattern but didn’t explain the step(s) 

OR 

Evidence of an attempt to reorder the table to make thickness in ascending order but 

didn’t explain the step(s) 

3 Reordered the table to make thickness in ascending order and attempt to find 

mathematical relationship 

OR 

Found multiply by 2 pattern 

OR 

Made a graph (or said they made a graph). (NOT, “looked at the graph” without saying 

that they made the graph) 

4 Three or more clearly explained steps. 

 

For ED1: 

Score = Number of design steps mentioned based on Informed Engineering Design cycle.  
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Appendix F 

 

Embedded Assessment questions from Cycle 2. 

 

Step 3.3. Relationship 1: Sector arc length and Sector central angle 

0 Blank, idk, frivolous, etc.  

OR 

How they measured the variables (string, or protractors) 

OR  

Math facts that involve one of the variables only 

1 Alternative relationship (e.g. “one increases the other decreases”) 

OR 

“They are not related” 

2 Partial relationship identified. 

E.g.: string length and angle 

 

3 As one increases the other increases (positive relationship) 

OR 

Linear relationship 

4 Arc length = central angle * (2*pi*r)/360 

OR 

Central angle = arc length * (360/2pi*r) 

 

Step 3.4. Relationship 2: Cone slant height and Sector radius 

0 Blank, idk, frivolous, etc. 

OR 

How they measured the variables (string, or protractors) 

OR  

Math facts that involve one of the variables only 

1 Alternative relationship (e.g. “one increases the other decreases”) 

OR 

“They are not related” 

2 Partial relationship identified. 

E.g.: string length and ruler 

3 They are (almost or exactly) the same/equal. 
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Step 3.5. Relationship 3: Cone base radius and Sector arc length 

0 Blank, idk, frivolous, etc. 

OR 

How they measured the variables (string, or protractors) 

OR  

Math facts that involve one of the variables only 

1 Alternative relationship (e.g. “one increases the other decreases”) 

OR 

“They are not related” 

2 Partial relationship identified. 

E.g.: string length and ruler 

3 As one increases the other increases (positive relationship) 

OR 

Linear relationship 

4 Arc length = 2*pi*radius 

OR  

Radius = Arc length / (2*pi) 

 

Step 3.6. Relationship 4: Cone volume, Cone base radius and Cone slant height 

0 Blank, idk, frivolous, etc. 

OR 

How they measured the variables (string, or protractors) 

OR  

Math facts that involve one of the variables only 

1 Alternative relationship (e.g “one increases the other decreases”) 

OR 

“They are not related” 

2 Partial relationship identified (between only 2 of the 3 variables) 

Describe a relationship between radius and volume or slant height and volume 

3 Describe a relationship between radius and volume and also slant height and volume 

4 Combined: 

Volume = ⅓ pi r2 sqrt(s2 - r2) 
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