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i

Abstract

This research develops a new adaptive actuator failure compensation algorithm

for control of a cooperative robotic system subject to uncertain actuator failures. The

robotic system has two manipulators to balance a rigid platform, and the right-side

manipulator contains one actuator and the left-side manipulator has two actuators

(one of which may fail during system operation, but it is uncertain how much, when

and which actuator may fail). The developed adaptive actuator failure compensation

scheme, based on adaptive integration of three individual failure comepnsators and

direct adaptation of controller parameters, is capable of ensuring desired closed-loop

stability and asymptotic output tracking, despite the failure uncertainties. A general

design procedure is derived, and simulation results verify the desired adaptive failure

compensation control performance.
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Chapter 1

Introduction

Cooperative manipulator robotic systems play a critical role in many projects

such as search and rescue operations, space explorations, and underwater missions.

In those applications, robotic systems have to operate in extreme environments [1,2],

which actuator failures are likely to occur. Since the robotic systems are used for

important tasks [3,4], failures may cause severe consequences. In order for the system

to be able to function reliably, we need a controller that can still achieve certain

desired properties when failure occurs. There are many ways to design a controller

that can improve the robustness of a robotic system [5,6,7,8,9]. Although literatures

propose different algorithms to solve the problem, most of them rely on knowledge of

the actuator failure. However, it may often be difficult to efficiently identify failures

within robotic systems in real time. Thus, an adaptive actuator failure compensation

scheme, which can operate without the knowledge of actuator failure, is a significant

research topic.

1.1 Literature Review

There are many studies that focus on adaptive actuator failure compensation

schemes such as the neural network control [10,11], sliding-mode control [12,13], and

an adaptive actuator failure compensation scheme for a near space vehicle [14]. Within
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1.2. ORGANIZATION OF THESIS 2

the robotic field, there are also several important literatures that are directly related

to adaptive actuator failure compensation algorithms such as control of a precision

pointing hexapod [15], adaptive coordinated controller scheme [16], redundance ma-

nipulator system [17]. However, those studies only consider increasing redundancy

of the robotic system by using additional manipuilators, which may not be viable in

some robotic systems such as in humanoid robots.

In this thesis, we develop a new adaptive actuator failure compensation scheme

to control a cooperative manipulator robotic system. The algorithm directly use re-

dundancy of the system from additional joints on a manipulator to ensure desired

closed-loop stability and asymptotic output tracking of the system subject to uncer-

tain actuator failure. Since adding joints on a manipulator will significantly change its

dynamic model, we will first derive the dynamic model of a cooperative manipulator

system with an additional joint. Then, we will design an adaptive actuator failure

compensation scheme for the robotic model with redundant actuators.

1.2 Organization of Thesis

The thesis is organized as follows. In Chapter II, we introduce the fundamental

background in robotic and adaptive control. In Chapter III, we study an adaptive

actuator failure compensation scheme based on a cooperative robotic manipulator

system. Chapter III is divided into five sections as follows. In Section I, we begin

our research by formulating the problem with the discussion of actuator redundancy,

control objective, and actuator failure model. In Section II, the dynamic model of

a cooperative robotic system is developed using the Euler-Lagrange equation. In

Section III, we design a nominal controller for the system in a nominal situation in

which the knowledge of actuator failure is known, to construct the controller structure

2



CHAPTER 1. INTRODUCTION 3

and parameterization for failure compensation. In Section IV, the adaptive control

scheme is developed based on the nominal controller structure, for the case of un-

certain actuator failure. Finally in Section V, the simulation results of the control

scheme are presented to confirm the effectiveness of the design. In Chapter IV, we

expand our knowledge of the adaptive actuator failure compensation scheme onto a

generalize model of cooperative robotic systems by developing a design procedure,

which can be used with various cooperative manipulator robotic systems.

3
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Chapter 2

Background

The focus of this thesis is to develop an adaptive actuator failure compensation

scheme to control a cooperative manipulators systems subject to uncertain actuator

failure, which required background knowledge from robotic and adaptive control field

of study. The chapter begin with the discussion of Euler-Lagrange equation, which is

a fundametal principle used for developing a dynamic model of a robotic system. We

then discuss a simple second-link robotic manipulator, which will provide a general

idea about dynamic model of a robotic systems. Finally we will explore the basic

technique used in adaptive control and the robotic field.

2.1 Euler-Lagrange Equation

Euler-Lagrange equation is one of the most important equation in developing

a dynamic model for a robotic system. Because a robotic system is a machanical

system, it must follow the principle of conservation of energy. This mean that if there

is no external enegy applied to the system, the summation of potential and kinetic

energy will always remain the same, regardless of how the system is changed. On the

other hand, if we applied any external energy to the system, the change in potential

and kinetic energy of the system will be equal to the amount of enegy we put into

the system [18].

5



2.1. EULER-LAGRANGE EQUATION 6

In order to understand how can we use the Euler-Lagrange equation to develop

a dynamic model for a robotic system, we start by studying a single-link robotic

manipulator system, which is one of the most fundametal system in the robotic field.

Let consider θl, θm as angles of a link and a motor of a single-link robotic manip-

ulator system. Jm, Jl as the moment of inertia of the motor and the link accordingly.

We clearly can see that the system will has its kinetic energy equation as follows

K =
1

2
Jmθ̇

2
m +

1

2
Jlθ̇

2
l . (2.1)

Now we consider the potential energy of the system. This potential energy will be

depended on the position of the robot. Since we let θm be the angle of the system we

will need to consider the gear ratio in order to get the real angle of the link θl. For n

represent the gear ratio of the robot arm we can calculate the potential energy as

V = Mgl(1− cos
θm
n

), (2.2)

where M is the mass of the link, g is the gravity, and l is the length of the robotic

arm.

With the potential energy and kinetic energy of the system, we can now derive

the total energy of the system. The Lagrangian becomes

L =
1

2
(Jm +

Jl
n2

)θ̇2
m +Mgl(1− cos

θm
n

). (2.3)

In the robotic field we usually write the equation in the following form so that we

can analyze the system more effectively, so we will write the dynamic equation in the

form

τ = D(q)q̈ + C(q, q̇)q̇ + g(q). (2.4)

6



CHAPTER 2. BACKGROUND 7

As a result, the Euler-Lagrange equation becomes

τ = Jm +
Jl
n
θ̈m +

Mgl

n
(sin

θm
n

). (2.5)

Let u be the input of the system, Bmθ̇m and Blθ̇l be the damping torques, we will

have the dynamic equation for single-link robot manipulatior system as

τ = u− (Bm +
Bl

n2
) ˙θm (2.6)

u = Aθ̈m +B ˙θm + C sin (
θm
n

), (2.7)

where

A = Jm +
Jl
n2

(2.8)

B = Bm +
Bl

n2
(2.9)

C =
Mgl

n
. (2.10)

With the dynamic model for a robotic system, we can start develop a control

scheme in order to control the system.

7



2.2. DYNAMIC MODEL OF A MANIPULATOR SYSTEM 8

2.2 Dynamic Model of A Manipulator System

In order to gain a better understanding of the dynamic model of robotic system,

we expand our knowleage of Euler-Lagrange equation to a more complicated robotic

manipulator system, that is the second-link planar elbow robotic manipulator. One

thing that we need to keep in mind is that the system of robot manipulator is a

non-linear system; however, in this case we can define saparate paremeters to obtain

linear relationship between each state of the system [41].

The first step to obtain dynamics of the robot manipulator is to find the Euler-

Lagrange equation for the system. In order to do so, we will need to get kinetic

and potential equation of the system similar to the previous case. For planar elbow

manipulator with joint angle, we will define the parameters in the system as follows.

θi will be the angle of each joint, mass and lenght of each link will be represented as

Mi, and li accordingly. The distance from a joint to the center of mass of that joint

will be lci. With this we can derive kinetic enegy from velocity of each link as

Figure 2.1: second-link planar elbow robotic manipulator.

8



CHAPTER 2. BACKGROUND 9

vci = Jciq̇, (2.11)

where Jci represent the jacobian matrix of the system

Jc1 =


−lc1 sin q1 0

lc1 cos q1 0

0 0

 . (2.12)

For the second link, we have the jacobian matrix as

Jc2 =


−l1 sin q1 − lc2 sin (q1 + q2) −lc2 sin (q1 + q2)

l1 cos q1 + lc2 cos (q1 + q2) lc2 cos (q1 + q2)

0 0

 . (2.13)

We can derive matrix D(q) in the robotic dynamics equation as

D(q) = M1J
T
c1Jc1 +M2J

T
c2Jc2+

I1 + I2 I2

I2 I2

 (2.14)

For potential energy we have the summation of each link in the system

V = V1 + V2 (2.15)

= (M1lc1 +M2lc2)g sin q +M2lc2g sin (q1 + q2). (2.16)

9



2.2. DYNAMIC MODEL OF A MANIPULATOR SYSTEM 10

With this matrix C(q, q̇) becomes

C =

(−M2l1lc2 sin q2)q̇1 (−M2l1lc2 sin q2)(q1 + q2)

(M2l1lc2 sin q2)q̇1 0

 . (2.17)

The dynamic of the second-link planar system can be written in the form

u = D(q)q̈ + C(q, q̇)q̇ + g(q) = Y (q, q̇, q̈)p. (2.18)

If we define p as the saparate variables of the system in order to obtain linear rela-

tionships of each parameter in the system. We define each value of pi as

p1 = M1l
2
c1 p4 = M2l1Lc2 p7 = M1lc1g

p2 = M2l
2
1 p5 = I1 p8 = M2l1g

p3 = M2l
2
c2 p6 = I2 p9 = M2lc2g.

(2.19)

We finally obtain

u = Y (q, q̇, q̈)p, (2.20)

where

Y (q, q̇, q̈) =

 q̈1 q̈2 q̈1 + q̈2 2 cos (q2q̈1) + cos (q2q̈2)− 2 sin (q2q̇1q̇2)− sin (q2q̇2
2)

0 0 q̈1 + q̈2 cos (q2q̈1) + sin q2

q̈1 q̈1 + q̈2 cos q1 cos q1 cos(q1 + q2)

q̈2 q̈2 0 0 cos (q1 + q2)

 . (2.21)

We can notice that because the system is non-linear, we need to use up to nine

10



CHAPTER 2. BACKGROUND 11

parameters in order to create a dynamic model that we can work with. In this case

we assume that we do not know any information of each parameter. However, usually

we can get some information such as the length and mass of each link. With such

information we can reduce order of the dynamic system significantly.

2.3 Simple Joint Control Scheme

Once of the most important factor in robotic is that we need to be able to control

motion of robots, so that it can function properly. In this section, we will investigate

a simple control scheme for a robotic manipulator. First we will start by discussing a

simple control system. In this case, we will control only one joint in the system with

only one motor with a PID controller [41, 49].

A robot system behave similar to any other system that we have learn in control

theory, in which the plant of the system will be a robotic system. As a result, we

will first derive the dynamic equation of the system. When Jm represent the sum of

the actuator and gear inertia, and Bm is the motor friction. A DC motor system will

have its dynamic equation in laplace domain as

1

Jms2 +Bms
(2.22)

We can apply a PID compensator to the system as

C(s) = Kp +
KI

s
+KDs (2.23)

As a result, we get the close loop equation of the system as follow

Y (s) =
KDs

2 +Kps+KI

Jms3 + (Bm +KD)s2 +Kps+KI

R(s). (2.24)

11



2.4. ADAPTIVE CONTROL FOR ROBOTIC SYSTEM 12

We know that in robotic the accuracy and repeatability of the system are the

most important properties of the system. The system must be able to accurately

track the reference signal or reach the desire position as intended. As we can see in

the previous example, a PID controller is good enough to achieve those properties for

a single motor in the system. The closed loop system equation show that the PID

controller will provide the output tracking and it can also reject some disturbance in

the system. However, in a more complicated system with many links, we will need to

use more advance technique to ensure the accuracy and repeatability of the robotic

system.

2.4 Adaptive Control for Robotic System

In this section we discuss a basic adaptive control scheme in robotic. In a robotic

system a robot need to be able to function in real environment subject to some

uncertainties in the system. This mean that many times we do not know information

of one or more parameters in the system; as a result, we have to develop an adaptive

controller in order to compensate for those unknown parameters [41].

The basic idea of adaptive control is to adjust control parameters in a system

according to the feedback signal. Most of the time, we will try to adjust the system

parameters in a way such that the output of the system becomes closer to the reference

signal. With adaptive control we can ensure the system stability, as well as improve

robustness of robotic systems.

In this chapter, we will use second-link robotic manipulater that we derive ealier

as an example in our discussion. From section 2.2 we have the dynamic model of

12



CHAPTER 2. BACKGROUND 13

second-link robot manipulator as

u = D(q)q̈ + C(q, q̇)q̇ + g(q) = Y (q, q̇, q̈)p. (2.25)

Y (q, q̇, q̈) =

 q̈1 q̈2 q̈1 + q̈2 2 cos (q2q̈1) + cos (q2q̈2)− 2 sin (q2q̇1q̇2)− sin (q2q̇2
2)

0 0 q̈1 + q̈2 cos (q2q̈1) + sin q2

q̈1 q̈1 + q̈2 cos q1 cos q1 cos(q1 + q2)

q̈2 q̈2 0 0 cos (q1 + q2)

 . (2.26)

One possibility of an adaptive control scheme that can guarantee the system sta-

bility and tracking could be designed as follows. First we define a controller structure

based on the dynamic equation of the system. We will use θ(t) as the system param-

eter estimators and a constant matrix KD as a design matrix. With s(t) = ė + Λ0e,

e = q − qd, where Λ0 be a constant matrix whose eigenvalue have positive real part,

we have the control law

u = Y (q, q̇, q̈)θ(t)−KDs(t), 0 < KD = KT
D ∈ Rnxn, (2.27)

Since our adaptive controller will need to adapt in order to make the system track

the reference signal, we define an adaptive law that we will use to update θ(t) as

θ̇(t) = −Γ−1Y T (q, q̇, q̈)s(t), 0 < Γ = ΓT ∈ Rnθxnθ (2.28)

With this controller and the adaptive law, its can be proven that the control

scheme can guarantee the stability and asymptotic tracking of the system.

13



2.5. BACKSTEPPING NONLINEAR CONTROL DESIGN 14

2.5 Backstepping Nonlinear Control Design

In order to control a nonlinear system, we need to construct a nonlinear controller

for the system. In this section, we consider using a backstepping design to develop a

controller for a second-order nonlinear system [18, 44].

Consider a second order nonlinear system

ẋ1 = f(x1)x2 (2.29)

ẋ2 = g(x1, x2) + u(t) (2.30)

y = x1, (2.31)

where x1, x2 is the state, y is the output, and u is the input of the system.

The objective is to design a state feedback control u(t) such that all closed-loop

signal are bounded and the system output track a given reference output signal ym(t).

For a second order system, the backstepping design can be done with two design steps.

Step 1: Define z1 = x1 − ym, z2 = x2 − β, where β is a design function to be

determined. From the state equation of the system, we can write ż1 as

ż1 = ẋ1 − ẏm (2.32)

= f(x1)x2 − ẏm (2.33)

= f(x1)(z2 − β)− ẏm. (2.34)

In order to choose β to stablize the system, we consider a Lyapunov candidate function

14



CHAPTER 2. BACKGROUND 15

and its derivative

V1 =
1

2
zT1 z1 (2.35)

V̇1 = z1(f(x1)z2 + f(x1)β − ẏm). (2.36)

With the design function

β = f(x1)−1(−c1z1 + ẏm), (2.37)

where c1 is a positive constant. The derivative of the Lyapunov function becomes

V̇1 = −c1z
T
1 z1 + f(x1)z1z2. (2.38)

We see that the term −c1z
T
1 z1 is always negative.

Step 2: Since z2 6= 0, we continue using backstepping design by considering

ż2 = ẋ2 − β̇ (2.39)

= g(x1, x2) + u(t)− β̇, (2.40)

and the second Lyapunov function

V2 = V1 +
1

2
zT2 z2. (2.41)

The time-derivative of V2 is

V̇2 = V̇1 + zT2 ż2

= −c1z
T
1 z1 + zT2 (f(x1)z1 + g(x1, x2) + u(t)− β̇) (2.42)

15



2.5. BACKSTEPPING NONLINEAR CONTROL DESIGN 16

As a result, the control signal u(t) is chosen as

u(t) = −g(x1, x2)− c2z2 − f(x1)z1 + β̇. (2.43)

With the chosen u(t), equation (2.41) becomes

V̇2 = −c1z
T
1 z1 − c2z

T
2 z2. (2.44)

With a positive constant c2, we have V̇2 is negative semidefinite and only equal to

zero when z1 = z2 = 0. With this design, the nonlinear can guarantee the closed-loop

signal boundedness and asymptotic output tracking of the system: limt→∞(y(t) −

ym(t)) = 0.

16



Chapter 3

Adaptive Actuator Failure Compen-

sation for A Cooperative Manipula-

tor System

The objective of this study is to design an adaptive actuator failure compensation

scheme for a robotic system without the knowledge of failing actuators. In this study

we use a two-dimensional cooperative manipulator system. The system contains two

manipulators, which are attached to each side of a rigid platform as shown in Figure

3.1. We design a controller that can guarantee asymptotic tracking of both height

h(t) and angle θ(t) of the system. The robotic system can be extended to various

robotic applications that use a cooperative manipulator system such as a hexapod

system or the lower part of a humanoid robot.

3.1 Problem Formulation

In this section, we discuss several important topics that are needed in order to solve

the problem, which are actuator redundancy in the system, the control objective, and

the actuator failure model used in the study.

17



3.1. PROBLEM FORMULATION 18

Figure 3.1: The cooperative robotic system controlling a platform.

3.1.1 Actuator Redundancy

A system with two degrees of freedom needs two actuators in order to control the

system; however, for a system to be able to operate when an actuator failure occurs,

redundancy in the system is needed.

In many systems such as a humanoid robot, adding another leg to the robot for

redundancy is not possible without the loss of functionality of the system. In our

robotic system model, the redundancy of the system come from an additional joint

in the left manipulator. As in Figure 3.1, the system uses three actuators q1, q2, q3

to support a rigid platform that links actuator q1 and q3 together. The actuator q2

is added to increase redundancy in the system, so that we can develop an actuator

failure compensation scheme to compensate for possible actuator failure that could

occur on the left side of the platform.

3.1.2 Control Objective

The objective of the control scheme is to guarantee positional tracking of the height

h(t), and angle θ(t) of the system subject to uncertain actuator failure.

18
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Figure 3.2: The height and angle of the platform.

The development of the adaptive control algorithm can be divided into three parts.

First we will find a feedback control signal ωd from a backstepping control design,

which ensures the stability of the system in the absence of actuator failure. Then,

the nominal controller for the system will be developed based on the knowledge of

actuator failure. The nominal control will be designed such that the control signal

matches the signal ωd, so that the output of the system follows the desirable trajectory.

Finally, the adaptive actuator failure compensation scheme is developed based on

the nominal controller structure, using parameter adaptation to handle the actuator

failure uncertainties.

3.1.3 Actuator Failure Model

When an actuator failure occurs in the system, the control input uj(t) associated with

the failing actuator j may become an arbitrary value, which can be denoted as

uj(t) = ūj(t), t ≥ tj, j ∈ {1, 2, ...,m}. (3.1)
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Although we do not know the value of the control input when failure occurs, we can

model the failure based on some knowledge of the structure of the actuator as

ūj(t) = ūj0 +

nj∑
i=1

ūijfaij(t), t ≥ tj, (3.2)

where nj is the number of components in the actuator, faij is a known function

corresponding to each component of the actuator, and j, tj, ūij are unknown actuator,

time, and failure of each component of the actuator. In this study, we consider three

cases of possible actuator failure patterns: no failure occurs, actuator u1 fails, or

actuator u2 fails.

20
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3.2 Derivation of the Dynamic Model

The dynamic model of a redundant manipulator robotic system has been discussed

in various books and published papers [18,19]. There are several approaches that can

be used to obtain a set of dynamic equations of the system such as using Newton’s

second law of motion, or the Euler-Lagrange equation. Newton’s second law of motion

is a well-known method of analyzing movement of an object. However, in order to

calculate the dynamic of an object, one needs to know every force that acts on the

object. In robotic systems, which contain many joints and links, it is complicated

to calculate constraint forces in the system. As a result, using the Euler-Lagrange

equation to develop the dynamic equations is a preferable method.

In this study, the derivation of the dynamic model of the system is divided in three

parts. First we derive dynamic equations of the system using the Euler-Lagrange

equation. After we obtain the dynamic equations, state parameters of the system

are defined and calculated. Finally, the dynamic equation is put into the state space

form, so that it can be used for the development of the adaptive actuator failure

compensation scheme.

3.2.1 Euler-Lagrange Equation

In order to use the Euler-Lagrange equation, we need to determine the generalized

coordinates for the system [18]. There are two sets of independent coordinates that

should be considered. The first set of generalized coordinates is to use height the h(t)

and angle θ(t) of the platform as the generalized coordinates of the system. Although

outputs of the system will be directly related to each coordinate, the dynamic equa-

tions are more complicated because the force of each actuator will act on different

directions to each coordinate. On the other hand, by selecting the position of each

21



3.2. DERIVATION OF THE DYNAMIC MODEL 22

actuator q1, q2, q3 as the generalized coordinates, we can reduce the complexity of the

derivation; as a result, we will use this second set as the generalized coordinates.

Before we derive the dynamic equations of the system, we consider the relationship

between the coordinates and the outputs of the system.

From Figure 2, we can write the height h and the angle θ of the platform in term

of the position of each actuator as

h(q1, q2, q3) =
q1 + q2 + q3

2
(3.3)

θ(q1, q2, q3) = arctan(
q1 + q2 − q3

b0

), (3.4)

where the constant b0 is the lenght of the base of the platform. The derivatives of

(3.3) and (3.4) are

ḣ(q1, q2, q3) =
1

2
(q̇1 + q̇2 + q̇3) (3.5)

θ̇(q1, q2, q3) =
b0(q̇1 + q̇2 − q̇3)

b2
0 + (q1 + q2 − q3)2

. (3.6)

Based on the generalize coordinate qi for i = 1, 2, 3, we consider the Lagrange’s

equation

d

dt
(
∂L

∂q̇i
)− ∂L

∂qi
= τi, (3.7)

where the Lagrangian L = T − V , T is the kinetic energy, V is the potential energy,

qi = [q1, q2, q3] are the vectors of generalized coordinates, and ui is the torque of each

actuator, which acts along each coordinate. If the dependency forces between q1, q2

are small, we can approximate that the generalized coordinates are independant from
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each other. Thus, the kinetic energy and the potential energy can be written as

T =
1

2
(m1q̇

2
1 + (m1 +m2)q̇2

2 +m3q̇
2
3)

+
1

2
mpḣ

2 +
1

2
Ipθ̇

2 (3.8)

V = m1gq1 + (m1 +m2)gq2 +m3gq3 +mpgh,

(3.9)

where g is the scalar value of the gravity, mi is the mass of each actuator, mp is the

mass of the platform, and Ip is the moment of inertia of the platform. We calculate

each term in the Lagrange’s equation as

∂L

∂qi
= −(mig +

1

2
mpg); i = 1, 2, 3 (3.10)

For the term d
dt
∂L
∂q̇i

, we first derive ∂L
∂q̇i

as

∂L

∂q̇1

= m1q̇1 +mpḣ
dḣ

dq̇1

+ Ipθ̇
dθ̇

dq̇1

(3.11)

∂L

∂q̇2

= (m1 +m2)q̇2 +mpḣ
dḣ

dq̇2

+ Ipθ̇
dθ̇

dq̇2

(3.12)

∂L

∂q̇3

= m3q̇3 +mpḣ
dḣ

dq̇3

+ Ipθ̇
dθ̇

dq̇3

. (3.13)

From equation (3.5) we have dḣ
dq̇i

= 1
2
, and

mpḣ
dḣ

dq̇i
=

1

4
mp(q̇1 + q̇2 + q̇3). (3.14)
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Consider θ̇ dθ̇
dq̇i

based on equation (3.6), we have

θ̇
dθ̇

dq̇i
=

αib
2
0(q̇1 + q̇2 − q̇3)

(b2
0 + (q1 + q2 − q3)2)2

, (3.15)

where the constant αi = 1 for i = 1, 2, αi = −1 for i = 3. Define q̄1 = q1 + q2 + q3,

q̄2 = q1 + q2 − q3, and Ψ1, Ψ2,i as

Ψ1 =
1

4
mp( ˙̄q1) (3.16)

Ψ2,i =
αib

2
0Ip ˙̄q2

(b2
0 + q̄2

2)2
. (3.17)

Then, the time derivative d
dt

( ∂L
∂q̇i

) can be written as

d

dt

∂L

∂q̇1

= m1q̈1 + Ψ̇1 + Ψ̇2,1 (3.18)

d

dt

∂L

∂q̇2

= (m1 +m2)q̈2 + Ψ̇1 + Ψ̇2,2 (3.19)

d

dt

∂L

∂q̇3

= m3q̈3 + Ψ̇1 + Ψ̇2,3, (3.20)

where Ψ̇1, Ψ̇1 are expressed as

Ψ̇1 =
1

4
mp(¨̄q1) (3.21)

Ψ̇2,i = αib
2
0Ip(

¨̄q2

(b2
0 + q̄2

2)2
− 4q̄2 ˙̄q2

2

(b2
0 + q̄2

2)3
) (3.22)

Finally, the Lagrange’s equation becomes

m1q̈1 + Ψ̇1 + Ψ̇2,1 + (m1g +
1

2
mpg) = τ1 (3.23)

(m1 +m2)(q̈2 + g) + Ψ̇1 + Ψ̇2,2 +
1

2
mpg = τ2 (3.24)

m3q̈3 + Ψ̇1 + Ψ̇2,3 + (m3g +
1

2
mpg) = τ3. (3.25)

24



CHAPTER 3. ADAPTIVE ACTUATOR FAILURE COMPENSATION FOR A
COOPERATIVE MANIPULATOR SYSTEM 25

3.2.2 Determination of Signals ¨̄q1 and ¨̄q2

In order to put the dynamic equations in the state space form, we need to rewrite the

dynamic equations in term of ¨̄q1 and ¨̄q2. Rewrite equations (3.23)- (3.25) for each qi

as

q̈1 =
τ1 − (Ψ̇1 + Ψ̇2,1 + (m1g + 1

2
mpg))

m1

(3.26)

q̈2 =
τ2 − Ψ̇1 − Ψ̇2,2

m1 +m2

−
((m1 +m2)g + 1

2
mpg)

m1 +m2

(3.27)

q̈3 =
τ3 − (Ψ̇1 + Ψ̇2,3 + (m3g + 1

2
mpg))

m3

. (3.28)

Define a parameter ζ1 = 1 + mp
4

( 1
m1

+ 1
m1+m2

+ 1
m3

). We can combine equation

(3.26)- (3.28)) to get ¨̄q1 as

¨̄q1 =
1

ζ1

((
τ1

m1

+
τ2

m1 +m2

+
τ3

m3

)

−(3g +
mpg

2
)(

1

m1

+
1

m1 +m2

+
1

m3

)

−Ψ̇2,1(
1

m1

+
1

m1 +m2

+
1

m3

)). (3.29)

With a parameter ζ2 = (1 +
b20Ip

(b20+q̄22)2
( 1
m1

+ 1
m1+m2

+ 1
m3

)), we also have ¨̄q2 as

¨̄q2 =
1

ζ2

((
τ1

m1

+
τ2

m1 +m2

− τ3

m3

)− Ψ̇1(
1

m1

+
1

m1 +m2

− 1

m3

)

−(g +
mpg

2
)(

1

m1

+
1

m1 +m2

− 1

m3

)

−4b2
0Ip(q̄2 ˙̄q2

2)

b2
0 + q̄2

2

(
1

m1

+
1

m1 +m2

+
1

m3

)). (3.30)

Let parameters Ma = ( 1
m1

+ 1
m1+m2

+ 1
m3

), and Mb = ( 1
m1

+ 1
m1+m2

− 1
m3

). Since
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Ψ1,Ψ2,1 contain ¨̄q1, ¨̄q2, we rewrite equation (3.29), and (3.30) as

¨̄q1 =
1

ζ1

((
τ1

m1

+
τ2

m1 +m2

+
τ3

m3

)

−(3g +
mpg

2
+

b2
0Ip ¨̄q2

(b2
0 + q̄2

2)2
− 4b2

0Ipq̄2 ˙̄q2
2

(b2
0 + q̄2

2)3
)Ma) (3.31)

¨̄q2 =
1

ζ2

((
τ1

m1

+
τ2

m1 +m2

− τ3

m3

− 1

4
mp(¨̄q1))

−((g +
mpg

2
))Mb +

4b2
0Ip(q̄2 ˙̄q2

2)

b2
0 + q̄2

2

Ma). (3.32)

With ζ3 =
b20Ip

(b20+q̄22)2
Ma, by substitution of ¨̄q2 from (3.31), equation (3.32) becomes

¨̄q1 =
1

ζ1

[(
τ1

m1

+
τ2

m1 +m2

+
τ3

m3

)

−ζ3

ζ2

(
τ1

m1

+
τ2

m1 +m2

− τ3

m3

)

+
ζ3

ζ2

(
1

4
mp(¨̄q1) + (g +

mpg

2
))Mb − (3g +

mpg

2
)

−(
ζ3

ζ2

4b2
0Ip(q̄2 ˙̄q2

2)

b2
0 + q̄2

2

− 4b2
0Ipq̄2 ˙̄q2

2

(b2
0 + q̄2

2)3
)Ma]. (3.33)

With ζ4 = 1 + mpζ3
4ζ1ζ2

Mb, we have

¨̄q1 =
1

ζ4ζ1

[(
τ1

m1

+
τ2

m1 +m2

+
τ3

m3

)

−ζ3

ζ2

(
τ1

m1

+
τ2

m1 +m2

− τ3

m3

)

+
ζ3

ζ2

(g +
mpg

2
)Mb − (3g +

mpg

2
)Ma

−(
ζ3

ζ2

4b2
0Ip(q̄2 ˙̄q2

2)

b2
0 + q̄2

2

− 4b2
0Ipq̄2 ˙̄q2

2

(b2
0 + q̄2

2)3
)Ma]. (3.34)

We solve for ¨̄q2 with a similar approach. With ζ5 = mp
4
Mb, by substitution of ¨̄q1 from
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equation (3.33), equation (3.34) becomes

¨̄q2 =
1

ζ2

(
τ1

m1

+
τ2

m1 +m2

− τ3

m3

)

− 1

ζ2

((g +
mpg

2
)Mb +

4b2
0Ip(q̄2 ˙̄q2

2)

b2
0 + q̄2

2

Ma)

− ζ5

ζ4ζ1ζ2

[(
τ1

m1

+
τ2

m1 +m2

+
τ3

m3

)

+
ζ3

ζ2

(
τ1

m1

+
τ2

m1 +m2

− τ3

m3

)

+
ζ3

ζ2

(g +
mpg

2
)Mb + (3g +

mpg

2
)Ma

+
ζ3

ζ2

(
4b2

0Ip(q̄2 ˙̄q2
2)

b2
0 + q̄2

− 4b2
0Ipq̄2 ˙̄q2

2

(b2
0 + q̄2

2)3
)Ma]. (3.35)

3.2.3 Dynamic Model in State Space Form

The dynamic equations can now be written in the state space form. We define x1 =

[x11, x12]T = [h, θ]T , and x2 = [x21, x22]T = [ ˙̄q1, ˙̄q2].T With q̄1 = 2h, q̄2 = b0 tan θ, we

have

ẋ1 = [
1

2
˙̄q1

1

b0(1 + θ2)
˙̄q2]T (3.36)

ẋ2 = [(q̈1 + q̈2 + q̈3) (q̈1 + q̈2 − q̈3)]T . (3.37)

Let u = [τ1, τ2, τ3]T be the system input, and y = [h, θ]T be the system output. The

state equation can be written as

ẋ1 = f(x1)x2 (3.38)

ẋ2 = g1(x1, x2) + g2(x1, x2)u (3.39)

y = x1, (3.40)
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where the matrix f(x1) is expressed as

f(x1) =

 f11(x1) 0

0 f22(x1)

 . (3.41)

Based on equation (3.36), we obtain

f11(x1) =
1

2
, f22(x1) =

1

b0(1 + x2
12)

(3.42)

Let g1(x1, x2) = [g11(x1, x2), g12(x1, x2)].T From equations (3.34) and (3.35), we have

g11 =
1

ζ4ζ1

[
ζ3

ζ2

(g +
mpg

2
)Mb − ((3g +

mpg

2
)

+
ζ3

ζ2

4b2
0Ip(q̄2x

2
22)

b2
0 + q̄2

2

− 4b2
0Ipq̄2x

2
22

(b2
0 + q̄2

2)3
)Ma] (3.43)

g12 =
1

ζ2

[−(g +
mpg

2
)Mb −

4b2
0Ip(q̄2x

2
22)

b2
0 + q̄2

2

Ma]

− ζ5

ζ4ζ1ζ2

[
ζ3

ζ2

(g +
mpg

2
)Mb + ((3g +

mpg

2
)

+
ζ3

ζ2

4b2
0Ip(q̄2x

2
22)

b2
0 + q̄2

2

− 4b2
0Ipq̄2x

2
22

(b2
0 + q̄2

2)3
)Ma]. (3.44)

Define the matrix g2(x1, x2) as

g2(x1, x2) =

 g211 g212 g213

g221 g222 g223

 . (3.45)
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According to equations (3.34) and (3.35), we have each component of the matrix as

g211 =
1

ζ4ζ1

[(1− ζ3

ζ2

)(
1

m1

)] (3.46)

g212 =
1

ζ4ζ1

[(1− ζ3

ζ2

)(
1

m1 +m2

)] (3.47)

g213 =
1

ζ4ζ1

[(1 +
ζ3

ζ2

)(
1

m3

)] (3.48)

g221 = (
1

ζ2

− ζ5

ζ4ζ1ζ2

(1− ζ3

ζ2

))(
1

m1

) (3.49)

g222 = (
1

ζ2

− ζ5

ζ4ζ1ζ2

(1− ζ3

ζ2

))(
1

m1 +m2

) (3.50)

g223 = (− 1

ζ2

− ζ5

ζ4ζ1ζ2

(1 +
ζ3

ζ2

))(
1

m3

). (3.51)

In this way, we have derived the state space form of the dynamic model of the coop-

erative manipulator robotic system with actuator redundancy, which can be used to

design an adaptive actuator failure compensation scheme.
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3.3 Nominal Control Design

In this section we develop a nominal controller for the system assuming the knowledge

of the actuator failures, such a controller structure can be used to design an adaptive

actuator failure compensation scheme for the system with uncertain actuator failures.

From the dynamic model derived in Section III, we have

ẋ1 = f(x1)x2 (3.52)

ẋ2 = g1(x1, x2) + g2(x1, x2)u (3.53)

y = x1, (3.54)

where y = [h, θ]T is the system output, and f(x1), g1(x1, x2), g2(x1, x2) are known

matrices.

Our goal is to control the trajectory of the height and angle of the platform; that

is, we need to design a control algorithm such that the system output y(t) tracks

a desirable trajectory ym(t) asymptotically. First, we generate a desirable feedback

control signal ωd = g2(x1, x2)u from backstepping control design method, and then we

will develop a nominal failure compensation controller based on the feedback control

signal.

3.3.1 Backsteping Control Design

We will first choose a control signal ωd such that it can guarantee the closed-loop

signal boundedness and asymptotic output tracking of the system in the absence of

actuator failures.
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Define z1 = x1 − ym, z2 = x2 − β, where β is a design function to be determined.

Step 1: From the state equation of the system, we can write ż1 as

ż1 = ẋ1 − ẏm (3.55)

= f(x1)x2 − ẏm (3.56)

= f(x1)(z2 − β)− ẏm. (3.57)

In order to choose β to stablize the system, we consider a Lyapunov candidate function

and its derivative

V1 =
1

2
zT1 z1 (3.58)

V̇1 = z1(f(x1)z2 + f(x1)β − ẏm). (3.59)

With the design function

β = f(x1)−1(−c1z1 + ẏm), (3.60)

where c1 is a positive constant. The derivative of the Lyapunov function becomes

V̇1 = −c1z
T
1 z1 + f(x1)z1z2. (3.61)

We see that the term −c1z
T
1 z1 is always negative.
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Step 2: Since z2 6= 0, we continue using backstepping design by considering

ż2 = ẋ2 − β̇ (3.62)

= g1(x1, x2) + g2(x1, x2)u− β̇, (3.63)

and the second Lyapunov function

V2 = V1 +
1

2
zT2 z2. (3.64)

The time-derivative of V2 is

V̇2 = V̇1 + zT2 ż2

= −c1z
T
1 z1 + zT2 (f(x1)z1 + g1(x1, x2) + ωd − β̇) (3.65)

As a result, the signal ωd is chosen as

ωd = g2(x1, x2)u (3.66)

= −g1(x1, x2)− c2z2 − f(x1)z1 + β̇. (3.67)

With the chosen ωd, equation (3.65) becomes

V̇2 = −c1z
T
1 z1 − c2z

T
2 z2. (3.68)

With a positive constant c2, V̇2 is negative semidefinite and only equal to zero when

z1 = z2 = 0. As a result, the control signal ωd can guarantee the closed-loop signal

boundedness and asymptotic output tracking of the system: limt→∞(y(t)−ym(t)) = 0.
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3.3.2 Nominal Controller Structure

In this section, we develop a nominal controller for the system, with knowledge of

actuator failure in the system. The nominal control law will guarantee that the control

input signal matches the desirable signal ωd when actuator failures occur.

Since the controller needs to handle several cases of actuator failure, we select a

nominal controller structure as a combination of the nominal controller of each actu-

ator failure case. We first design three individual control schemes for each actuator

failure case.

Design for no failure case

In the case of no actuator failure in the system, we have control signal u = v∗. We

need to design v(t) such that ωd = g2(x1, x2)v∗. We consider

v∗(t) = v∗(1)(t) = ha(x1, x2)v∗a(1)(t), (3.69)

where ha(x1, x2) ∈ R3×3, and v∗a(1)(t) ∈ R3×1 are such that

g2(x1, x2)ha(x1, x2)v∗a(1) = ωd.

(3.70)

Notice that in case of no actuator failure, we have some flexibilities when choosing

the matrix ha(x1, x2). We can choose the matrix such that the system is optimized in

some perspectives. With chosen ha(x1, x2), the nominal control signal can be written

as

v∗a(1)(t) = Ka(x1, x2)ωd. (3.71)
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One way to design the controller to have a unique solution is to use only two actu-

ators to control the system. By turning off actuator u1, we can design the controller

by choosing

v∗(t) = v∗(1)(t) = [0 v∗Tb(1)(t)]
T (3.72)

v∗b(1)(t) = h1(x1, x2)v∗0(1)(t). (3.73)

With g2 = [g21, g22, g23] = [g21, g2(2)], we can choose a new matrix h1(x1, x2) ∈ R2×2

such that g2(2)(x1, x2)h1(x1, x2) is invertible. Thus, v∗0(1)(t) ∈ R2×1 can be chosen as

v∗0(1)(t) = K1(x1, x2)ωd, (3.74)

where the matrix K1(x1, x2) ∈ R2×2 is expressed as

K1(x1, x2) = (g2(2)(x1, x2)h1(x1, x2))−1. (3.75)

As a result, we have the nominal control signal v∗(1)(t) that can be used to control

the system with no actuator failure.

Design for u1 failure case

In case of actuator u1 fails, we have the signals u1 = ū1, u2 = v∗2, and u3 = v∗3. The

nominal control signal can be written as

v∗(t) = v∗(2)(t) = [0 v∗Ta(2)(t)]
T . (3.76)
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With g2 = [g21, g22, g23] = [g21, g2(2)], we have

v∗a(2)(t) = h2(x1, x2)v∗0(2)(t), (3.77)

where the matrix h2(x1, x2) ∈ R2×2 and the signal v∗0(2)(t) ∈ R2×1 can be chosen to

satisfy

g21(x1, x2)ū1 + g2(2)h2(x1, x2)v∗0(2)(t) = ωd.

(3.78)

The signal v∗0(2)(t) can be written as

v∗0(2)(t) = K21(x1, x2)ωd +K22(x1, x2)ū1, (3.79)

where K21 ∈ R2×2, K22 ∈ R2×1 are expressed as

K21 = (g2(2)h2(x1, x2))−1

K22 = (g2(2)h2(x1, x2))−1g21(x1, x2). (3.80)

We can see that with this design, the nominal control signal v∗(2)(t) ensures ωd =

g2(x1, x2)v∗(2) for the actuator u1 failure case.

Design for u2 failure case

Similarly, in case of actuator u2 fails. The nominal control signal can be designed as

v∗(t) = v∗(3)(t) = [v∗1(3)(t), 0, v
∗
3(3)(t)]

T . (3.81)
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Defining v∗a(3)(t) ∈ R2×1 as

v∗a(3)(t) = [v∗1(3)(t), v
∗
3(3)(t)]

T . (3.82)

We design the control law from

v∗a(3)(t) = h3(x1, x2)v∗0(3)(t). (3.83)

With g2(1) = [g21, g23], we can choose h3(x1, x2) ∈ R2×2, and v∗0(3)(t) ∈ R2×1 to satisfy

g2(1)(x1, x2)h3(x1, x2)v∗0(3)(t) + g22ū2 = ωd. (3.84)

The signal v∗0(3)(t) can be written as

v∗0(3)(t) = K31(x1, x2)ū2 +K32(x1, x2)ωd, (3.85)

K31 = (g2(1)(x1, x2)h3(x1, x2))−1g22(x1, x2)

K32 = (g2(1)(x1, x2)h3(x1, x2))−1. (3.86)

We can see that the nominal control signal v∗(3)(t) ensures ωd = g2(x1, x2)v∗(3) for the

actuator u2 failure case.

Composite control design

With the control structure for all three cases, we can design a composite control law

for the system as

v∗(t) = ρ∗1v
∗
(1)(t) + ρ∗2v

∗
(2)(t) + ρ∗3v

∗
(3)(t), (3.87)
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where ρ∗1, ρ
∗
2, ρ
∗
3 are the indicator functions of the actuator failure: ρ∗1 = 1 when there

is no actuator failure, ρ∗2 = 1 for u1 actuator failure, and ρ∗3 = 1 for u2 actuator

failure. The indicator functions ρ∗1, ρ
∗
2, ρ
∗
3 = 0 for its noncorresponding cases, e.g.,

ρ∗1 = 0 when actuator u1 fails. Signal v∗(1)(t) is the nominal control signal in case of

no actuator failure in the system, v∗(2)(t) is the nominal control signal for the actuator

u1 failure case, and v∗(3)(t) is the nominal control signal for actuator u2 failure case.

Because of the indicator functions and the nominal control signals, the composite

design ensures ωd = g2(x1, x2)v∗(t) for every case of actuator failure. The composite

control design can control the system with an actuator failure when the information

of actuator failure is known.
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3.4 Adaptive Failure Compensation Design

The nominal control design, which is developed in Section IV, needs information

of the actuator failures. In this section, we develop an adaptive actuator failure

compensation scheme, which can achieve the control objective in the presence of

uncertain actuator failures without the knowledge of the failing actuator and its

signal.

3.4.1 Adaptive Controller Structure

The adaptive control algorithm is developed based on the nominal controller structure.

Since we do not know the values of ρ∗1v
∗
(1), ρ

∗
2v
∗
(2), and ρ∗3v

∗
(3), we first design the adaptive

controller structure as

v(t) = vρ(1)(t) + vρ(2)(t) + vρ(3)(t), (3.88)

where vρ(1)(t), vρ(2)(t), vρ(3)(t) are the estimates of ρ∗1v
∗
(1), ρ

∗
2v
∗
(2), ρ

∗
3v
∗
(3) respectively.

In order to derive vρ(1)(t), we restructure ρ∗1v
∗
(1) ∈ R3×1 from the nonimal controller

(3.69) as

ρ∗1v
∗
(1) = ρ∗1haKaωd

= diag{ρ∗11, ρ
∗
12, ρ

∗
13}haKaωd, (3.89)

where ρ∗11 = ρ∗12 = ρ∗13 = ρ∗1; that is, we will estimate the parameter ρ∗1 three times,

which is needed for achieving a suitable parametrization. With the estimated param-
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eter diag{ρ11, ρ12, ρ13}, we have the adaptive version of ρ∗1v
∗
(1) as

vρ(1)(t) = diag{ρ11, ρ12, ρ13}haKaωd. (3.90)

With vρ(2)(t) = [0, vaρ(2)(t)
T ]T , we now derive vaρ(2)(t) from its nominal version:

ρ∗2v
∗
a(2)(t) = ρ∗2h2K21ωd + ρ∗2ū1h2K22 ∈ R2×1.

(3.91)

From the actuator failure model (3.2), the actuator failure ūi(t) can be expressed as

ūi(t) = χ∗Ti fai(t), (3.92)

where fai(t) = [1, fai1(t), ..., faini(t)]
T are known functions corresponding to the ac-

tuator failure components, χ∗i = [ūi0, ūi1, ..., ūini ]
T contains the paremeters of values

associated with each actuator failure component, and ni is the number of actuator

failure components.

Then, the estimate of ρ∗2v
∗
a(2)(t) is chosen as

vρa(2)(t) = diag{ρ21, ρ22}h2K21ωd +

 χT1(1)fa1(t)φ11

χT1(2)fa1(t)φ12,

 , (3.93)

where, similar to that in (3.90), diag{ρ21, ρ22} is the estimate of diag{ρ∗21, ρ
∗
22} with

ρ∗2 = ρ∗21 = ρ∗22. The terms ρ∗21χ
∗
1 and ρ∗22χ

∗
1 are estimated by χ1(1) and χ1(2), where

φ1 = [φ11, φ12]T = h2K22.

39



3.4. ADAPTIVE FAILURE COMPENSATION DESIGN 40

In order to derive vρ(3), we consider vρ(3) = [vρ(31), 0, vρ(33)]
T . With

vaρ(3) = [vρ(31), vρ(33)]
T , we consider

ρ∗3v
∗
a(3)(t) = ρ∗3h3K31ū2 + ρ∗3h3K32ωd ∈ R2×1. (3.94)

Similar to the derivation of vρa(2)(t), we have

vρa(3)(t) = diag{ρ31, ρ32}h3K32ωd +

 χT2(1)fa2(t)φ21

χT2(2)fa2(t)φ22,

 , (3.95)

where diag{ρ31, ρ32} is the estimate of diag{ρ∗31, ρ
∗
32} with ρ∗3 = ρ∗31 = ρ∗32. The param-

eters χ2(1) and χ2(2) are the estimates of ρ∗31χ
∗
2 and ρ∗32χ

∗
2, where φ2 = [φ21, φ22]T =

h3K31.

The controller structure (3.88) can be written as

v(t) = vρ(1)(t) + [0, vTaρ(2)(t)]
T + [vρ(31)(t), 0, vρ(33)(t)]

T . (3.96)

With this parametrized controller structure, we can develop adaptive laws to up-

date the parameters diag{ρ11, ρ12, ρ13}, diag{ρ21, ρ22}, diag{ρ31, ρ32}, χ1(1), χ1(2), χ2(1),

and χ2(2), so that the system can achieve the control objective in the presence of un-

certain actuator failure.

3.4.2 Error System

In order to design an adaptive law for the system, we consider the system error

caused by an actuator failure. With an uncertain actuator failure, the signal u(t) can
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be written as

u(t) = (I − σ(t))v∗(t) + σ(t)ū, (3.97)

where σ(t) = diag{σ1, σ2, σ3} is the actuator failure pattern matrix such that σi(t) = 1

if the i actuator fails, and σi(t) = 0 otherwise. With g2(x1, x2)u(t) = ωd, we have

g2(x1, x2)((I − σ)v∗(t) + σū) = ωd (3.98)

For an adaptive updated control signal v(t), where g2(x1, x2)v(t) = ω. Based on

equations (3.97) and (3.98), we have an error system between v(t) and v∗(t) as

g2(x1, x2)(I − σ)(v − v∗) = ω − ωd. (3.99)

We consider the backstepping design with a possible actuator failure. With z1 =

x1 − ym, z2 = x2 − β, where β is a design function from equation (3.60), we have

ż1 = −c1z1 + f(x1)z2 (3.100)

ż2 = g1(x1, x2) + g2(x1, x2)u− β̇

= g1(x1, x2) + ω − β̇ + (ωd − ωd)

= −f(x1)z1 − c2z2 + ω − ωd. (3.101)

From equations (3.99) and (3.101), ż2 becomes

ż2 = −f(x1)z1 − c2z2 + g2(x1, x2)(I − σ)(v − v∗). (3.102)
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Define the error signal ṽ = v − v∗, and the error of each estimated parameter as

ρ̃ij = ρij − ρ∗i , χ̃i(j) = χi(j) − (ρ∗i+1jχ
∗
i ). From equations (3.87) and (3.96), the error

signal ṽ can be written as

ṽ = diag{ρ̃11, ρ̃12, ρ̃13}haKaωd + [0, ṽTρa(2)(t)]
T

+ [ṽρ(31)(t), 0, ṽρ(33)(t)]
T . (3.103)

Based on equations (3.93) and (3.95) with ṽρa(3)(t) = [ṽρ(31)(t), ṽρ(33)(t)]
T , we have

ṽρa(2)(t) = diag{ρ̃21, ρ̃22}h2K21(x1, x2)ωd +

 χ̃T1(1)fa1(t)φ11

χ̃T1(2)fa1(t)φ12,


ṽρa(3)(t) = diag{ρ̃31, ρ̃32}h2K32(x1, x2)ωd +

 χ̃T2(1)fa2(t)φ21

χ̃T2(2)fa2(t)φ22,

 . (3.104)

The effect of actuator failure to the nominal controller can be analyzed using the

Lyapunov function

V2 =
1

2
(zT1 z1 + zT2 z2). (3.105)

Based on equation (3.100) and (3.102), the derivative of the Lyapunov function (3.105)

becomes

V̇2 =− c1z
T
1 z1 − c2z

T
2 z2

+ z2g2(x1, x2)(I − σ)(ṽ). (3.106)
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With ṽ from equation (3.103), the derivative of the Lyapunov function can be

written as

V̇2 = −c1z
T
1 z1 − c2z

T
2 z2

+ zT2 g2(x1, x2)(I − σ)diag{ρ̃11, ρ̃12, ρ̃13}haKaωd

+ zT2 g2(x1, x2)(I − σ)[0, ṽTρa(2)(t)]
T

+ zT2 g2(x1, x2)(I − σ)[ṽρ(31)(t), 0, ṽρ(33)(t)]
T . (3.107)

With the possible actuator failure, V̇2 is no longer negative semidefinite; thus, we

cannot guarantee system stability. We need to design an adaptive scheme to update

the parameters diag{ρ11, ρ12, ρ13}, diag{ρ21, ρ22}, diag{ρ31, ρ32}, χ1(1), χ1(2), χ2(1), and

χ2(2); then, new Lyapunov functions will be used to ensure system stability.

3.4.3 Adaptive Laws

In this section, we develop an adaptive scheme for updating the parameter of the con-

troller (3.88). The adaptive laws for diag{ρ11, ρ12, ρ13}, diag{ρ21, ρ22}, and diag{ρ31, ρ32}

can be generically chosen as

ρ̇1j = −γ1jz
T
2 g2jµ1j

ρ̇2j = −γ2jz
T
2 g2(j+1)µ2j

ρ̇31 = −γ31z
T
2 g21µ31

ρ̇32 = −γ33z
T
2 g23µ32, (3.108)
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where γij > 0 is the adaptive gain, and

µ1 = [µ11, µ12, µ13]T = haKaωd

µ2 = [µ21, µ22]T = h2K21ωd

µ3 = [µ31, µ32]T = h3K31ωd, (3.109)

with ha, h2, h3, Ka, K21, and K31 being the design matrices from the adaptive con-

troller structure (3.89), (3.93), and (3.95).

Similarly, the adaptive laws for χ1(1), χ1(2), χ2(1), and χ2(2) can be chosen as

χ̇1(j) = −Γ(1j)fajz
T
2 g2(j+1)φ1j

χ̇2(1) = −Γ(21)fa1z
T
2 g21φ21

χ̇2(2) = −Γ(22)fa2z
T
2 g23φ22, (3.110)

where the parameter Γ(ij) = ΓT(ij) > 0 is the adaptive gain matrix. The function φi is

defined as φ1 = [φ11, φ12]T = h2K22, and φ2 = [φ21, φ22]T = h3K31.

We then use a parameter projection scheme to ensure the boundedness of the esti-

mated parameters in the presence of actuator failure uncertainties. We first consider

the physical range of the indicator functions ρ∗1, ρ
∗
2, and ρ∗3. From the definition of the

indicator functions, we have

0 ≤ ρ∗1 ≤ 1, 0 ≤ ρ∗2 ≤ 1, 0 ≤ ρ∗3 ≤ 1. (3.111)

Because ρ∗11 = ρ∗12 = ρ∗13 = ρ∗1, ρ
∗
21 = ρ∗22 = ρ∗2, and ρ∗31 = ρ∗32 = ρ∗3, we have

0 ≤ ρ∗ij ≤ 1. We can see that the estimated parameters ρij should also have the lower
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bound at 0 and the upper bound at 1.

Let χ∗aik , χ
∗b
ik be the upper and lower bounds of the components χ∗ik of χ∗i for i = 1, 2,

and k = 1, 2, ..., kn, that is,

χ∗a1k ≤ χ∗1k ≤ χ∗b1k, χ∗a2k ≤ χ∗2k ≤ χ∗b2k. (3.112)

The upper and lower bounds χ∗aik , χ
∗b
ik can be obtained from the maximun and minimum

values that each failing actuator can produce based on the actuator failure model (2).

With the upper and lower bounds of each component of χ∗i , we can see that each

component of the estimated parameters χi(j) should also has the same boundaries as

the component of χi because χi(j) is the estimate of χiρj with 0 ≤ ρj ≤ 1.

With the upper and lower bounds of the true parameters, we can modify the adap-

tive laws in (3.108) and (3.110), so that each component of the estimated parameters

stays within its boundaries; and in particular, the initial conditions ρij(0), χi(j)(0) are

chosen inside the boundaries.

The adaptive laws for ρij(t) become

ρ̇1j = −γ1jz
T
2 g2jµ1j + %ρ1j

ρ̇2j = −γ2jz
T
2 g2(j+1)µ2j + %ρ2j

ρ̇31 = −γ31z
T
2 g21µ31 + %ρ31

ρ̇32 = −γ33z
T
2 g23µ32 + %ρ32, (3.113)
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where the projection function %ρij is chosen as

%ρij =



0 if ρij ∈ (0, 1),

or ρij = 0 and %ρij ≥ 0,

or ρij = 1 and %ρij ≤ 0,

−%̄ρij otherwise,

(3.114)

with %̄ρij defined as

%̄ρ1j = −γ1jz
T
2 g2jµ1j

%̄ρ2j = −γ2jz
T
2 g2(j+1)µ2j

%̄ρ31 = −γ31z
T
2 g21µ31

%̄ρ32 = −γ33z
T
2 g23µ32. (3.115)

Similarly, the adaptive laws for χi(j) = [χi(j)(1), ..., χi(j)(ni)]
T become

χ̇1(j) = −Γ(1j)fajz
T
2 g2(j+1)φ1j + %χ1(j)

χ̇2(1) = −Γ(21)fa1z
T
2 g21φ21 + %χ2(1)

χ̇2(2) = −Γ(22)fa2z
T
2 g23φ22 + %χ2(2)

, (3.116)

where the projection function %χi(j) = [%χi(j)(1), ..., %χi(j)(ni)]
T is chosen as

%χi(j)(k) =



0 if χi(j)(k) ∈ (χ∗aik , χ
∗b
ik),

if χi(j)(k) = χ∗aik and %χi(j)(k) ≥ 0,

or χi(j)(k) = χ∗bik and %χi(j)(k) ≤ 0,

−%̄χi(j)(k) otherwise,

(3.117)
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with %̄χi(j) = [%̄χi(j)(1), ..., %̄χi(j)(ni)]
T defined as

%̄χ1(j) = −Γ(1j)fajz
T
2 g2(j+1)φ1j

%̄χ2(1) = −Γ(21)fa1z
T
2 g21φ21

%̄χ2(2) = −Γ(22)fa2z
T
2 g23φ22. (3.118)

It can be verified that the parameter projection schemes have the properties

(ρij − ρ∗ij)%ρij ≤ 0 (3.119)

(χi(jk) − ρ∗ijχ∗ik)%χi(jk) ≤ 0, (3.120)

With the parameter projection scheme and chosen initial conditions 0 ≤ ρij(0) ≤

1, χ∗aik ≤ χi(jk)(0) ≤ χ∗bik , we can guarantee the boundedness of every estimated pa-

rameter used in the adaptive actuator failure compensation scheme.

3.4.4 Performance Analysis

The adaptive actuator failure compensation scheme can ensure the stability and track-

ing of the system in any of the three cases of possible actuator failure patterns: no

failure occurs, actuator u1 failure case, or actuator u2 failure case, as shown by the

following theorem.

Theorem 1. The adaptive actuator failure compensation scheme with the feed-

back control law (3.88) updated by the adaptive laws (3.113)-(3.116), when applied

to the robotic model (3.52)-(3.54), guarantees the closed-loop signal boundedness and

asymptotic output tracking: limt→∞(y(t)− ym(t)) = 0.
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Proof. We first consider the error signals z1 = x1 − ym, and z2 = x2 − β. With

uncertain actuator failures, we have the derivatives of z1 and z2 as

ż1 =− c1z1 + f(x1)z2.

ż2 =− f(x1)z1 − c2z2

+ g2(x1, x2)(I − σ)(v − v∗). (3.121)

Because the derivative of the error signal ż2 contains the actuator failure pattern

σ which changes according to each actuator failure case, we need to consider three

Lyapunov function candidates Va0, Va1, Va2 for analyzing each actuator failure pattern

to ensure the stability of the system. We first consider the case of no actuator failure,

with the Lyapunov function candidate

Va0 =
1

2
zT1 z1 +

1

2
zT2 z2 +

1

2

3∑
i=1

ρ̃2
1iγ
−1
1i

+
1

2
[

2∑
i=1

ρ̃2
2iγ
−1
2i +

2∑
i=1

ρ̃2
3iγ
−1
3i ]

+
1

2
[

2∑
i=1

χ̃T1(i)Γ
−1
1i χ̃1(i) +

2∑
i=1

χ̃T2(i)Γ
−1
2i χ̃2(i)]. (3.122)

With the parameter projection scheme (3.119) and (3.120), we have the derivative of

each term in (3.122) as

d

dt

1

2
(zT1 z1 + zT2 z2) = −c1z

T
1 z1 − c2z

T
2 z2

+ zT2 g2(x1, x2)(I − σ)ṽρ(1)

+ zT2 g2(x1, x2)(I − σ)[0, ṽTρa(2)(t)]
T

+ zT2 g2(x1, x2)(I − σ)[ṽρ(31)(t), 0, ṽρ(33)(t)]
T (3.123)
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d

dt
(

1

2

3∑
i=1

ρ̃2
1iγ
−1
1i )

= −zT2 [
3∑
i=1

ρ̃1ig2iµ1i] +
3∑
i=1

ρ̃1iγ
−1
1i %ρ1i

≤ −zT2 g2(x1, x2)ṽρ(1) (3.124)

d

dt
(

1

2
(

2∑
i=1

ρ̃2
2iγ
−1
2i +

2∑
i=1

χ̃T1(i)Γ
−1
1i χ̃1(i)))

= −zT2 g2(x1, x2)[0, ṽTρa(2)(t)]
T

+
3∑
i=1

ρ̃2iγ
−1
2i %ρ2i +

2∑
i=1

χ̃T1(i)Γ
−1
1i %χ1(i)

≤ −zT2 g2(x1, x2)[0, ṽTρa(2)(t)]
T (3.125)

d

dt
(

1

2
(

2∑
i=1

ρ̃2
3iγ
−1
3i +

2∑
i=1

χ̃T2(i)Γ
−1
2i χ̃2(i)))

= −zT2 g2(x1, x2)[ṽρ(31)(t), 0, ṽρ(33)(t)]
T .

+
3∑
i=1

ρ̃3iγ
−1
3i %ρ3i +

2∑
i=1

χ̃T2(i)Γ
−1
2i %χ2(i)

≤ −zT2 g2(x1, x2)[ṽρ(31)(t), 0, ṽρ(33)(t)]
T . (3.126)

Here we have used the parameter projection property (3.119) and (3.120); that is,

ρ̃ijγ
−1
ij %ρij ≤ 0

χ̃Ti(j)Γ
−1
ij %χi(j) ≤ 0. (3.127)

Based on equations (3.123)-(3.126) with σ = 0, the derivative of the Lyapunov func-

tion (3.122) becomes

V̇a0 ≤ −c1z
T
1 z1 − c2z

T
2 z2 ≤ 0. (3.128)
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For the actuator u1 failure case, we have the actuator failure pattern σ = diag{1, 0, 0}.

We need a new Lyapunov function candidate Va1 as

Va1 =
1

2
zT1 z1 +

1

2
zT2 z2 +

1

2
[

3∑
i=2

ρ̃2
1iγ
−1
1i +

2∑
i=1

ρ̃2
2iγ
−1
2i

+ ρ̃2
32γ
−1
32 +

2∑
i=1

χ̃T1(i)Γ
−1
1i χ̃1(i) + χ̃T2(2)Γ

−1
22 χ̃2(2)] (3.129)

To obtain the derivatives of the Lyapunov function candidates in (3.129), we consider

the derivative of each term similar to the derivation in the case of no actuator failure.

In this case, we have

d

dt
(

1

2

3∑
i=2

ρ̃2
1iγ
−1
1i )

= −zT2 g2(x1, x2)[0, ṽTρa(2)(t)]
T +

3∑
i=2

ρ̃2iγ
−1
2i %ρ2i

≤ −zT2 g2(x1, x2)(I − σ)ṽρ(1) (3.130)

d

dt
(

1

2
(

2∑
i=1

ρ̃2
2iγ
−1
2i +

2∑
i=1

χ̃T1(i)Γ
−1
1i χ̃1(i)))

= −zT2 g2(x1, x2)[0, ṽTρa(2)(t)]
T

+
2∑
i=1

ρ̃2iγ
−1
2i %ρ2i +

2∑
i=1

χ̃T1(i)Γ
−1
1i %χ1(i)

≤ −zT2 g2(x1, x2)(I − σ)[0, ṽTρa(2)(t)]
T (3.131)

d

dt
(

1

2
(ρ̃2

32γ
−1
32 + χ̃2(2)Γ

−1
22 χ̃

T
2(2)))

= −zT2 g2(x1, x2)[0, ṽTρa(2)(t)]
T

+ρ̃32γ
−1
32 %ρ32 + χ̃T2(2)Γ

−1
22 %χ2(2)

≤ −zT2 g2(x1, x2)(I − σ)[ṽρ(31)(t), 0, ṽρ(33)(t)]
T . (3.132)

We can notice that the terms ρ̃2
11γ
−1
11 , ρ̃

2
31γ
−1
31 , and χ̃2(1)Γ

−1
21 χ̃2(1) disappear because

(I − σ) = diag{0, 1, 1}, with σ = diag{1, 0, 0}. We can see that the terms in the
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derivatives of Lyapunov function candidates (3.130)-(3.132) cancel the non-negative

semidefinite parts in (3.123), and the derivatives of the Lyapunov function (3.129)

becomes

V̇a1 ≤ −c1z
T
1 z1 − c2z

T
2 z2 ≤ 0. (3.133)

For the actuator u2 failure case, we have the actuator failure pattern σ = diag{0, 1, 0}.

We use a new Lyapunov function candidate

Va2 =
1

2
zT1 z1 +

1

2
zT2 z2 +

1

2
[
∑
i=1,3

ρ̃2
1iγ
−1
1i + ρ̃2

22γ
−1
22

+
2∑
i=1

ρ̃2
3iγ
−1
3i + χ̃T1(2)Γ

−1
12 χ̃1(2) +

2∑
i=1

χ̃T2(i)Γ
−1
2i χ̃2(i)]. (3.134)

With simular approach as actuator u1 failure case, we can see that the terms ρ̃2
12γ
−1
12 ,

ρ̃2
21γ
−1
21 , and χ̃1(1)Γ

−1
11 χ̃1(1) disappear because (I − σ) = diag{1, 0, 1}. In this case we

have

V̇a2 ≤ −c1z
T
1 z1 − c2z

T
2 z2 ≤ 0. (3.135)

The derivatives of our Lyapunov functions (3.128), (3.133), and (3.135) for all actu-

ator failure cases are negative semidefinite. With the parameter projection schemes,

we can show that all signals in the system are bounded. Since z1(t), z2(t), ż1(t) ∈

L∞
⋂
L2, based on the Barbalat lemma we can conclude that limt→∞ z1 = 0. 555

From Theorem 1, we can see that the adaptive actuator failure compensation

scheme can guarantee the asymptotic tracking of the system subject to uncertain

actuator failure for the system operating in any of the three actuator failure cases.

51



3.5. SIMULATIONS STUDY 52

3.5 Simulations Study

In this section we simulate the adaptive actuator failure compensation control scheme

based on the robotic model subject to uncertain actuator failures.

3.5.1 System Model and Simulation Conditions

The simulations are performed based on the dynamic model of the robotic system

(3.38) - (3.40) as

ẋ1 = f(x1)x2 (3.136)

ẋ2 = g1(x1, x2) + g2(x1, x2)u (3.137)

y = x1, (3.138)

The matrix f(x1), g1(x1, x2), and g2(x1, x2) are calculated from equation (3.42) -

(3.51), where the parameters ζ1, ζ2, ζ3, ζ4, and ζ5 are

ζ1 = 7.25

ζ2 = 1 + 2.5 cos4 x12

ζ3 = 2.5 cos4 x12

ζ4 = 1 +
0.431

tan4 x12 + 2 tan2 x12 + 1.75

ζ5 = 1.25. (3.139)

The simulations assign the mass of each actuator as m1 = m2 = m3 = 1kg, the

mass of the platform mp = 10kg, the moment of inertia of the platform Ip = 1kg·m2,

and the length of the platform b0 = 1m.

In this study we consider three cases of actuator failure as follows:
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(i) No actuator failure case: u(t) = v(t) for 0 ≤ t < 50s

(ii) Actuator u2 failure case: u2 = ū2 = 5 for 50 ≤ t < 100s

(iii) The failing actuator u2 becomes normal again, no actuator failure case: u(t) =

v(t) for 100 ≤ t < 150s

(iv) Actuator u1 failure case: u1 = ū1 = sin(0.1t) for 150 ≤ t < 200s

For simulation we choose c1 = c2 = 2, γij = 0.01,Γi(j) = 0.01I2, fai = [1, sin 0.1t]T .

The initial conditions are chosen as y(0) = [1, 1]T , ρij(0) = 0, and χi(j) = [0, 0]T . The

reference signal is chosen as ym(t) = [2 + sin(0.1t), 0.5]T .

3.5.2 Simulation Results

The simulation results show the output of the system in Figure 3, the tracking error

in Figure 4. The adaptive parameters are presented in Figure 5 - Figure 8. We can

see that the tracking errors always go to zero for all three cases of actuator failures.
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Figure 3.3: System outputs.
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Figure 3.4: Tracking error ym(t)− y(t).
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Figure 3.5: Adaptive indicator function ρ11, ρ12, ρ13.
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Figure 3.6: Adaptive indicator function ρ21, ρ22, ρ31, ρ32.

57



3.5. SIMULATIONS STUDY 58

0 50 100 150 200
−5

0
5

x 10
−3

Adaptive parameter χ
1(1)(1)

(t)

0 50 100 150 200
−2

0
2

x 10
−3

Adaptive parameter χ
1(1)(2)

(t)

0 50 100 150 200
−0.50

0.5
x 10

−19

Adaptive parameter χ
1(2)(1)

(t)

0 50 100 150 200
−5

0
5

x 10
−20

Adaptive parameter χ
1(2)(2)

(t)

Figure 3.7: Adaptive parameters χ1(1)(1), χ1(1)(2), χ1(2)(1), χ1(2)(2).
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Figure 3.8: Adaptive parameters χ2(1)(1), χ2(1)(2), χ2(2)(1), χ2(2)(2).
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The simulation results confirm that the adaptive actuator failure compensation

scheme can guarantee that the tracking error of the system goes to zero as time goes

to infinity for a constant or a sinusoidal desirable trajectory. The adaptive actuator

failure compensation scheme allows one actuator u1 or u2 to fail, but both actuators

cannot fail at the same time. Finally, the simulation results show that adaptive ac-

tuator failure compensation scheme supports both a constant and a sinusoidal failure

signal.
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Chapter 4

Design Procedure for General Cases

A cooperative manipulator robotic system uses multiple manipulators to control

an object. Since the movement of the object depends on the coordination of every

manipulator, an actuator failure in the system may compromise the entire system.

It is important to develop an actuator failure compensation scheme for the system.

Because a cooperative manipulator robotic system contains many manipulators, its

often have enough redundancy which can be used in the adaptive actuator failure

compensation scheme.

In this chapter, we discuss main ideas in developing an adaptive actuator failure

compensation scheme for a general cooperative manipulator robotic system.

4.1 General Dynamic Model

The dynamic model of a cooperative manipulator robotic system can be divided into

two parts, which are the dynamics of each manipulator and the dynamic of the object

that controlled by the manipulators.

In order to derive the dynamic model of a general cooperative manipulator robotic

system, we first consider the dynamic of each manipulator. Since each robotic ma-

nipulator in the system can be view as a rigid robot interacting with environment,
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we have the dynamic model of the ith manipulator as [15]

Di(qi)q̈i + Ci(qi, q̇i)q̇i +Gi(qi) = τi − JTi τ̂i, (4.1)

where qi is the joint angle of robot i, τi is the vector of joint torques, and τ̂i donates

the interacting force between robot endeffector and the object. Di(qi) is the inertia

matrix, Ci(qi, q̇i) is the Coriolis and centrifugal term, Gi(qi) is the gravity term, and

Ji is the jacobian matrix from task space to Cartesian space.

We then obtain the dynamic model of the object. The general form of the dynamic

model of a rigid object, which is interacting with the robotic manipulators, can be

written as

Do(xo)ẍo + Co(xo, ẋo)ẋo +Go(xo) =
m∑
i=1

ATi τ̂i, (4.2)

where xo is the position of the object center of mass, m is the number of the manipula-

tors in the system, Do(xo) is the inertia matrix of the object, Co(xo, ẋo) is the Coriolis

and centrifugal term of the object, Go(xo) is the gravity term of the object, and Ai is

the augmented jacobian matrix of the object from the task space to Cartesian space.

Let yi be the coordinate of the endeffector of each manipulator, we have the

relationship of each coordinate as

Ji(qi)q̇i = ẏi (4.3)

Ai(xo)ẋo = ẏi. (4.4)

The general dynamic model of a cooperative manipulator robotic system can be

obtained by combining (4.1) and (4.2) . With the coordinate transformation, the

dynamic equation of the cooperative robotic system can be written in the task space
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as

Dc(xo)ẍo + Cc(xo, ẋo)ẋo +Gc(xo) = ET (xo)τ, (4.5)

where the combine inertia matrix of the object and manipulators Dc(xo) is assumed

to be a bounded and positive definite matrix, Cc(xo, ẋo) is the Coriolis and centrifu-

gal term, Gc(xo) is the combined gravity term, E = [ET
1 , ..., E

T
m]T with Ei(xo) =

J−1
i Ai, i = 1, 2, ...,m, and τ = [τT1 , ..., τ

T
m]T , τi is the generalized torque vector of the

ith manipulator.

With the general dynamic model of a cooperative manipulator system, we can de-

sign an adaptive actuator failure compensation scheme for the robotic system subject

to uncertain actuator failures.
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4.2 Adaptive Actuator Failure Compensation

When an actuator failure occurs, the joint torque τi produced by that actuator be-

comes unknown. Because the complexity of the cooperative manipulator robotic

system, it is difficult to identify failures in the system. In order to ensure the stability

and tracking property of the system, we use the adaptive actuator failure compensa-

tion scheme developed in this study. We first rewrite the dynamic model in the state

space form as

ẋ1 = x2

ẋ2 = g1(x1, x2) + g2(x1)u

y = x1, (4.6)

where y ∈ Rn is the output of the system, x1 = xo ∈ Rn, x2 = ẋo ∈ Rn, and

u = τ ∈ Rm is the input of the system. With the inertia matrix Dc(xc) nonsingular,

we have

g1(x1, x2) = −D−1
c (x1)(C(x1, x2)x2 +G(x1)) ∈ Rn

g2(x1) = D−1
c (x1)ET (x1) ∈ Rn×m, (4.7)

where n is the degree of freedom of the system, and m is the number of actuator in

the system.

4.2.1 Nominal Control Design

In order to develop an adaptive actuator failure compensation scheme for a general

system subject to an unknown actuator failure, we need to develop a nominal con-
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troller structure similar to what we did in Section 3.3. We can generate a desirable

feedback control signal ωd = g2(x1, x2)u ∈ Rn for general case from backstepping

control design method.

Define z1 = x1 − ym, z2 = x2 − β, where ym ∈ Rn is the desirable trajectory and

β = −c1z1 + ẏm. We have the desirable control signal

ωd = g2(x1, x2)u (4.8)

= −g1(x1, x2)− c2z2 − z1 + β̇, (4.9)

where c1, c2 are chosen to be some positive constants.

The nominal controller structure can be written as

v∗(t) =

np∑
i=1

ρ∗i v
∗
(i)(t) (4.10)

where ρ∗i is the indicator functions associated with each actuator failure pattern, the

signal v∗(i)(t) is the nominal control signal for each case of actuator failure in the

system, and np is the number of the actuator failure patterns that we consider.

The control signal v∗(i)(t) can be designed such that ωd = g2(x1, x2)v∗(i)(t). For each

case of actuator failure, we have

v∗(t) = v∗(i)(t) = Av∗Ta(i)(t), (4.11)

where A ∈ Rm×n is the actuator failure pattern matrix. The nominal control signal

can be written as

v∗a(i)(t) = hi(x1, x2)v∗0(i)(t), (4.12)
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where the matrix hi(x1, x2) ∈ Rn×n. The signal v∗0(i)(t) ∈ Rn×1 can be chosen to

satisfy

g2(i)1(x1, x2)ūi + g2(i)2hi(x1, x2)v∗0(i)(t) = ωd, (4.13)

where g2(i)1 is a column of the matrix g2 associated with the actuator failure pattern,

and g2(i)2 is a part of the matrix g2 without the column in g2(i)1.

The signal v∗0(i)(t) can be written as

v∗0(i)(t) = Ki1(x1, x2)ωd +Ki2(x1, x2)ūi, (4.14)

where Ki1 ∈ Rn×n, Ki2 ∈ Rn×1 are expressed as

Ki1 = (g2(i)2hi(x1, x2))−1

Ki2 = (g2(i)2hi(x1, x2))−1g2(i)1(x1, x2). (4.15)

We can see that with this design, the nominal control signal v∗(i)(t) ensures ωd =

g2(x1, x2)v∗(i) for each actuator failure case.

4.2.2 Adaptive Actuator Failure Compensation Design

The nominal control design, which is developed in previous section, needs information

of the actuator failures. In this section, we develop an adaptive actuator failure

compensation scheme, which can achieve the control objective in the presence of an

uncertain actuator failures, for a general class of robotic system.

From the nominal controller structure (4.10), we design the adaptive controller
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structure as

v∗(t) =

np∑
i=1

vρ(i)(t), (4.16)

where vρ(i)(t) is the estimate of ρ∗i v
∗
(i)(t). In order to derive vρ(i)(t), we consider

vρ(i)(t) = Avaρ(i)(t), (4.17)

where A ∈ Rm×n is the actuator failure pattern matrix. We can derive vaρ(i)(t) from

it nominal version:

ρ∗i v
∗
a(i)(t) = ρ∗ihiKi1ωd + ρ∗i ūihiKi2. (4.18)

With the actuator failure model

ūj(t) = ūj0 +

nj∑
i=1

ūijfaij(t), t ≥ tj, (4.19)

we restructure ρ∗i v
∗
a(i)(t) to obtain the estimate vaρ(i)(t) as

vρa(i)(t) = diag{ρi1, ρi2, ..., ρin}hiKi2ωd +



χ̃Ti(1)fai(t)φi1

χ̃Ti(2)fai(t)φi2

...

χ̃Ti(n)fai(t)φin


. (4.20)

The adaptive laws for updating the parameter ρij of the controller (4.16) can be

generically chosen as

ρ̇ij = −γijzT2 g2jµij, (4.21)
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where γij > 0 is the adaptive gain, and

µi = [µi1, µi2, ..., µin]T = hiKi2ωd, (4.22)

with hi, and Ki2 being the design matrices from the adaptive controller structure

(4.20).

Similarly, the adaptive laws for χi(j) can be chosen as

χ̇i(j) = −Γ(ij)fajz
T
2 g2jφij, (4.23)

where the parameter Γ(ij) = ΓT(ij) > 0 is the adaptive gain matrix. The function φi is

defined as φi = [φi1, φi2, ..., φin]T = hiKi1.

In order to ensure the boundedness of the estimated parameters in the presence of

actuator failure uncertainties, we consider using a parameter projection scheme. We

first consider the physical range of the indicator functions ρ∗i . From the definition of

the indicator functions, we have 0 ≤ ρ∗i ≤ 1. Because ρ∗ij = ρ∗i We can see that the

estimated parameters ρij should also have the lower bound at 0 and the upper bound

at 1.

Let χ∗aij , χ
∗b
ij be the upper and lower bounds of the components χ∗ij that is,

χ∗aij ≤ χ∗ij ≤ χ∗bij . (4.24)

With the upper and lower bounds of each component of χi , we can see that each

component of the estimated parameters χi(j) should also has the same boundaries as

the component of χi because χi(j) is the estimate of χ∗i ρ
∗
j with 0 ≤ ρ∗j ≤ 1.

With the upper and lower bounds of the true parameters, we can modify the

adaptive laws, so that each component of the estimated parameters stays within its
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boundaries; and in particular, the initial conditions ρij(0), χi(j)(0) are chosen inside

the boundaries.

The adaptive laws for ρij(t) becomes

ρ̇ij = −γijzT2 g2jµij + %ρij, (4.25)

where the projection function %ρij is chosen as

%ρij =



0 if ρij ∈ (0, 1),

or ρij = 0 and %ρij ≥ 0,

or ρij = 1 and %ρij ≤ 0,

−%̄ρij otherwise.

(4.26)

with %̄ρij is defined as

%̄ρij = −γijzT2 g2jµij. (4.27)

Similarly, the adaptive laws for χi(j) = [χi(j)(1), ..., χi(j)(ni)]
T becomes

χ̇i(j) = −Γ(ij)fajz
T
2 g2jφij + %χ1(j)

, (4.28)

where the projection function %χi(j) = [%χi(j)(1), ..., %χi(j)(ni)]
T is chosen as

%χi(j)(k) =



0 if χi(j)(k) ∈ (χ∗aik , χ
∗b
ik),

if χi(j)(k) = χ∗aik and %χi(j)(k) ≥ 0,

or χi(j)(k) = χ∗bik and %χi(j)(k) ≤ 0,

−%̄χi(j)(k) otherwise.

(4.29)
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with %̄χi(j) = [%̄χi(j)(1), ..., %̄χi(j)(ni)]
T is defined as

%̄χ1(j) = −Γ(ij)fajz
T
2 g2jφij. (4.30)

With the parameter projection scheme and chosen initial conditions 0 ≤ ρij(0) ≤

1, χ∗aik ≤ χi(jk)(0) ≤ χ∗bik , we can guarantee the boundedness of every estimated pa-

rameter used in the adaptive actuator failure compensation scheme.

It can be proven that the adaptive actuator failure compensation scheme can

guarantee the asymptotic tracking of the system subject to uncertain actuator failure

for the system operating in each actuator failure case.

4.2.3 Design Procedure for General Case

In summary, we can design an adaptive actuator failure compensation scheme by the

following design procedure:

(i) Obtain a desirable signal ωd = g2(x1)u by using the backstepping design

method, which can guarantee the closed-loop signal boundedness and aspmtotic out-

put tracking of the system in the absence of actuators failures.

(ii) Assuming all actuator failures are known, develop a nominal control for the

system, which can produce a control signal v such that ωd = g2(x1)v for every desirable

actuator failure pattern σ.

(iii) Derive the adaptive controller structure for the system subject to uncertain

actuator failure with the controller parameterization based on the nominal controller

structure developed in part (ii).

(iv) Develop an adaptive scheme with parameter projection for updating the es-

timated parameters used in the adaptive controller structure.
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Such an adaptive actuator failure compensation scheme is applicable to specific

system under this general cooperative robotic system model to improve the perfor-

mance of various cooperative manipulator robotic system subject to uncertain actu-

ator failures.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this work we have developed a new adaptive actuator failure compensation

scheme for a nonlinear multi-input multi-output cooperative robotic system subject

to uncertain actuator failure. As shown in Chapter III of this thesis, the adaptive

control scheme can ensure desirable closed-loop stability and asymptotic tracking

of the system subject to three cases of actuator failures. The results show that

the algorithm ensure the tracking of the system with both constant and sinusoidal

desirable trajectory.

The adaptive actuator failure compensation scheme can guarantee desirable closed-

loop stability and asymptotic tracking without the knowledge of which actuator is

failing and how much that actuator fails. If we know the output function that the

failing actuator can produce, we can design an estimated parameter to compensate

for such failure. From the simulation results we can also see that the algorithm can

work with both actuator degradation case and complete failure case.

We also expand the knowledge of the adaptive actuator failure compensation

scheme into a general class of cooperative manipulator robotic system. The research

show that we can design an adaptive controller that can guarantee system stability
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and asymptotic tracking for a class of the system subject to unknown actuator failure

without using an explicit fault identification scheme.

5.2 Future Work

In this study, we only consider using the torque of the motors as inputs of the

system. For the next step of this study, we can consider adding dynamic model of the

motor in the system. By consider using electrical voltage of motors as input of the

system, we can develop a more practical adaptive control scheme that can be used in

various robotic system.

In Chapter four, we only consider a simple class of cooperative manipulator robotic

system. In the future we can study other type of the system in order to extend the

application of the adaptive actuator failure compensation scheme to other classes of

cooperative robotic system. For example, a cooperative robotic system interacting

with geometrically unknown environment is an interesting application that we can

study.

Another aspect that we could consider is how to improve the performance of the

adaptive control algorithm that we had developed. One aspect might be to consider

the effect of other type of uncertainty to the system such as parameter uncertainty or

structure uncertainty, so that we can develop a more robust algorithm for the system.
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