
Advanced Algorithms for Undergraduate Computer Science Students

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Edward Lue

Spring, 2024

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rosanne Vrugtman, Department of Computer Science

Advanced Algorithms for Undergraduate Computer Science

Students

CS4991 Capstone Report, 2024

Edward Lue

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

eyl4qaq@virginia.edu

ABSTRACT

Companies’ expectations of students’

algorithmic knowledge grows every year. To

keep up with this demand, I propose an

Advanced Algorithms course that expands upon

the currently existing Algorithms class taught at

UVA, which is now called Data Structures and

Algorithms 2 (DSA2). The class will focus on 3

topics that are important in coding interviews

and are currently not taught in the Algorithms

course: range query data structures, randomized

techniques, and string algorithms. The success

of the class can be evaluated by examining the

performance of students in algorithmic coding

interviews. We would expect that students in the

class would be more likely to pass an interview.

After the class is created, the class must be kept

up-to-date. The algorithms taught in the class

should be updated with the evolving needs of

the students and demands of employers.

1. INTRODUCTION

For many UVA Computer Science students,

an important goal for their undergraduate

education is to prepare for job interviews. Most

software engineering jobs will have several

algorithmic interviews throughout the interview

process. It is common for students to prepare

heavily for these interviews as they are

generally considered the most challenging

rounds in the interview process. To assist in the

study process, websites that provide practice

questions such as Leetcode have exploded in

popularity.

At UVA, one of the required classes for

undergraduate students is Algorithms. Ideally,

this class provides the necessary algorithmic

knowledge for algorithmic interviews.

However, over time, UVA has fallen relative to

other universities in coding ability. We can see

this in UVA’s performance in international

competitions such as the International

Collegiate Programming Contest (ICPC). From

2009 to 2016, UVA qualified for the world

finals, the highest level of the competition, in six

of the eight years. However, since 2016, UVA

is yet to have another appearance on the world

finals stage (cphof.org, n.d.). In addition, in the

most recent CodeSignal report, UVA does not

rank in the top 50 US universities for

algorithmic coding ability (CodeSignal, 2023).

To keep up with the competition, UVA needs a

higher level algorithms class.

2. RELATED WORKS

Several universities have higher level

algorithms classes to draw inspiration from. The

MIT “Design and Analysis of Algorithms” class

(MIT OpenCourseWare, 2015), which is their

second level Algorithms course, contains a large

three-lecture unit on randomization. Besides

this, the primary units for the class are advanced

dynamic programming, divide and conquer,

incremental improvement algorithms such as

max flow and matching. There also are several

lectures at the end of the class on non-traditional

algorithmic topics such as distributed

algorithms or cryptography.

Stanford has an introductory Algorithms

class with several potential follow-up classes.

The most relevant of these classes for my class

would be “Advanced Data Structures”

(Stanford.edu, 2023). This class contains

significant units on range queries, balanced

trees, advanced heaps, hashing, and dynamic

connectivity.

3. PROPOSED COURSE DESIGN

The Advanced Algorithms course will

center around 3 units: range query data

structures, randomized techniques, and string

algorithms. Compared with higher-level

algorithms courses at other universities, this

class will have fewer units. I have made this

choice because the current algorithms class at

UVA already covers a reasonably wide breadth

of topics. In fact, many of the topics covered in

DSA2 are higher level topics at other schools

such as max flow or the disjoint set union data

structure. In addition, the primary goal for this

class would be to prepare students for potential

interview questions. Many algorithms taught in

higher-level algorithms courses are very niche

and are unlikely to appear in an interview. The

chosen units for my course would describe

general techniques and strategies likely to be

used on a wide variety of problems.

3.1 Range Query Data Structures

 I have chosen to start the course with a unit

on range query data structures. Range query

problems are algorithmic problems with

multiple repeated queries that ask to compute

some function on an interval of a large array. A

common example of such a problem would be

to compute range sum queries where a program

is given an array of integers. Then the program

is given several left and right boundaries

defining an interval on which the program must

return the sum of all elements in the interval.

Range queries are included in the class because

they cover a wide range of problems and teach

students how algorithms can be adjusted to

support additional functionality. Last, range

queries can be used as an example to

demonstrate different classes of algorithmic

problems such as online vs. offline and dynamic

vs. static.

 Initially students would be presented with

the static range sum query problem described

previously. Students would learn about prefix

sum arrays, which solve this problem with O(n)

pre-computation and answer a query in O(1).

Prefix sum arrays compute the sum of every

prefix of an array, a contiguous segment of the

array that contains the first element of the array.

Then a query interval defined by some left and

right indices, L and R, can be computed by

returning 𝑝𝑟𝑒𝑓𝑖𝑥(𝑅) − 𝑝𝑟𝑒𝑓𝑖𝑥(𝐿 − 1).

 The rest of the course will describe

modifications to the static range sum query

problem. First, the sum function can be replaced

by a non-invertible function such as MAX.

Students would learn about sparse tables and

square root decomposition as potential solutions

to this problem. Next, the problem would be

modified to be dynamic instead of static. In the

dynamic version of the range sum problem,

additional queries that update an element in the

array must be supported. Students would be

taught about segment trees, a divide and

conquer data structure, to efficiently handle

these queries. Finally, students would learn

about offline range mode queries. Range mode

queries ask for the most frequent element on the

requested interval. Offline queries are given in a

batch all at once. This is different than all

previous queries which would be given online,

meaning that each query response must be given

before receiving the subsequent query. To solve

this problem, students will learn Mo’s algorithm

which uses the offline property of the problem

to sort the queries in a clever way that allows

efficient amortized computation.

3.2 Randomized Techniques

 The second unit of the class would be

randomized techniques. I chose randomized

techniques because it is a very general technique

that can be applied to many kinds of problems.

In addition, the topic is not covered very well in

the current algorithms class at UVA.

 To transition from unit 1 to unit 2, students

would be presented with another range query

problem. The problem would be online range

mode queries where the mode only needs to be

returned if the mode is a majority of the

elements on the queried interval. First, the

students would be told a segment tree solution

that maintains the most frequent and second

most frequent elements within intervals.

Afterwards, students would be given a

randomized solution where a random element is

chosen on the interval. Because the mode only

needs to be returned if it is a majority element,

if an answer exists, the random guessing will

find the answer at worst 50% of the time. If this

process is repeated multiple times, the

probability of failure will drop exponentially.

Guessing around 60 elements will find the mode

with negligible probability of failure. The

purpose of this problem would be to introduce

students to randomized algorithms and

demonstrate how randomized algorithms can be

significantly simpler relative to their

deterministic counterparts.

 The next randomized topic would be the

birthday paradox. The general statement of this

paradox is to imagine a categorization that has

N different potential categories. If we randomly

choose people who fall in a single category,

approximately how many people do we need to

take before two of them fall in the same

category? The answer to this is 𝑂(√𝑁) because

the number of pairs and thus potential collisions

grows at a rate of 𝑂(𝑁2). A motivating

algorithmic problem would be to find two

strings of a given string that have the same

polynomial hash where the hash is computed

with a modulus of 109 + 7. Because hashes will

be roughly random, choosing around 100000

random strings will almost always find a

collision if one exists.

3.3 String Algorithms

 I chose string algorithms as a topic for this

course because they are a common algorithmic

problem type and are not taught thoroughly in

the current algorithms class at UVA. We would

start with string hashing, which is a review topic

from previous classes and was discussed at the

end of the randomized unit. Students would be

taught useful techniques to manipulate string

hashes such as prefix hashes to compute

arbitrary substring hash queries.

 Next the class would cover the Knuth-

Morris-Pratt (KMP) algorithm and Z-function

algorithms. These functions allow for efficient

string matching queries with very few lines of

code. The class would compare string hashing

with these algorithms. Hashing is very powerful

and can solve many problems with good

asymptotic complexity, but it also requires more

code and has chances for hash collisions that

produce incorrect results.

 The last topic in the string algorithm section

would be suffix arrays. Suffix arrays efficiently

sort the suffixes of a string, which allows for the

efficient computation of many counting queries

such as counting the number of distinct

substrings of a string.

4. PROPOSED COURSE EVALUATION

As the goal of the course is to improve

student interview preparation, evaluation for the

course would measure its ability to improve

interview results. It would be difficult to directly

measure this; however, it would be possible to

administer a test containing a random set of

interview questions at the beginning and end of

the course. Although there would be variance in

this metric due to the random selection of

problems, given a few semesters and enough

students, it should give a fairly good

representation of the improvement of students

through the class. A potential issue of this

evaluation would be the potential for students to

put very little effort for these tests assuming

they are not graded. Potentially, this could be

resolved by giving extra credit points based on

the test results. However, this may produce

further confounding variables where students

who have secured an A in the course will not try

as hard or not participate in the test at all.

Two other potential evaluation methods

would be to ask for student feedback. A similar,

more quantitative metric would be the

enrollment statistics for the class over several

semesters. If enrollment remains high for

several semesters and has a long waitlist, it

would indicate that the class is doing a good job

of improving student algorithmic knowledge.

However, there are several reasons for high

enrollment, such as instructor reputation or

workload, that could invalidate this metric.

Overall, we would want to combine these

metrics to gauge the success of the course.

Because all of the metrics have noise and

confounding variables, it would be important to

gather as much data as possible so that the noise

can cancel out. Through the combination of

data, we would want to see that students have

improved algorithmic capabilities after the

course.

5. CONCLUSION

As industry requirements for algorithmic

programming have increased, UVA has fallen

behind in algorithmic preparation of its students.

A new Advanced Algorithms course would be

able to fill in many of the holes of the current

Algorithms course and give UVA students a leg

up in coding interviews. My proposed course

would focus on range query data structures,

randomized techniques, and string algorithms.

These topics will supply students with very

general techniques that can be used to solve a

large variety of problems, especially those

found in coding interviews.

6. FUTURE WORK

Many steps can be taken to further strengthen

the design of an Advanced Algorithms course.

One of the most important is to develop a

systematic way for determining the most useful

techniques to teach. I chose the current topics in

my proposal primarily from personal experience

and some research on other schools. Other

potential methods could be to search through

problem websites or databases for common

topics or conduct surveys to ask students what

topics they have seen in interviews. It is very

important to have a systematic method for

determining course topics because course topics

must vary with industry needs to best prepare

students for their interviews. To do this

effectively, we need a consistent method to

evaluate the state of industry.

REFERENCES

Stanford.edu. (2023). Advanced Data

Structures Schedule. CS166: Advanced

Data Structures. (2023).

https://web.stanford.edu/class/cs166/

codesignal.com. (2023). CodeSignal’s 2023

University Ranking Report. CodeSignal.

(2023, August 16).

https://codesignal.com/university-ranking-

report-2023/

MIT OpenCourseWare. (2015). Calendar:

Design and analysis of algorithms:

Electrical engineering and computer

science. MIT OpenCourseWare.

https://ocw.mit.edu/courses/6-046j-design-

and-analysis-of-algorithms-spring-

2015/pages/calendar/

cphof.org. (n.d.) Profile of University of

Virginia - Competitive Programming Hall

of Fame.

https://cphof.org/university/University%20

of%20Virginia

https://web.stanford.edu/class/cs166/
https://codesignal.com/university-ranking-report-2023/
https://codesignal.com/university-ranking-report-2023/
https://ocw.mit.edu/courses/6-046j-design-and-analysis-of-algorithms-spring-2015/pages/calendar/
https://ocw.mit.edu/courses/6-046j-design-and-analysis-of-algorithms-spring-2015/pages/calendar/
https://ocw.mit.edu/courses/6-046j-design-and-analysis-of-algorithms-spring-2015/pages/calendar/

