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‭Problem Statement‬

‭There were over 5.4 million people living with paralysis in the United States as of 2013,‬

‭which often leads to a significant reduction in quality of life (Armour et al., 2016). Many‬

‭assistive technologies rely on muscle-based inputs, which are unusable for some patients, such as‬

‭those with neurological conditions such as multiple sclerosis. Our project aims to use‬

‭electroencephalography (EEG), enabling brain-computer interfacing, and reinforcement learning‬

‭algorithms to control a robotic arm, offering a more accessible solution.‬

‭Research‬

‭Convolutional Neural Networks (CNNs) have been researched for EEG analysis, but it‬

‭can often require large datasets, are prone to overfitting, and often operate in offline or‬

‭non-real-time modes (Hosseini et al., 2020). Previous research at the University of Virginia‬

‭focused on using CNNs for EEG-based control in an upper limb rehabilitation exoskeleton, but‬

‭its implementation resulted in limitations during real-time testing (Zare & Sun, 2024). There was‬

‭a lack of research in the application of reinforcement learning in EEG-based systems, despite‬

‭reinforcement learning algorithms being able to adapt over time and not requiring labeled data to‬

‭be accurate, which is the gap our project aimed to address.‬

‭Ideation‬

‭At the beginning of the fall semester, we each presented ten ideas for the project. Much‬

‭of these ideas were more mechanical engineering-related rather than directly machine learning‬

‭related, as can be seen in Tables 1 and 2. Details about our screening and selection process can‬

‭be found in the section below.‬



‭Table 1: Summary of Pre-Screening Ideas (A-E).‬

‭Abbie‬ ‭A: Pattern‬
‭Recognition‬

‭B: 1 DOF Arm.‬
‭This version will‬
‭have the Headset‬
‭attached to a robotic‬
‭sleeve that will‬
‭allow the user to‬
‭move their elbow. A‬
‭one degree of‬
‭freedom motion.‬

‭C: Distinctly‬
‭different thoughts.‬
‭Thinking of‬
‭something like music‬
‭to move left and‬
‭thinking of a tree to‬
‭move right.‬

‭D: 2 DOF.‬‭The arm will‬
‭have 2 degrees of‬
‭freedom. It will allow for‬
‭movement at both the‬
‭Elbow and the shoulder.‬

‭E: Therapy Device.‬
‭Device.‬‭Moves only in a‬
‭certain way to provide‬
‭physical therapy for a‬
‭user‬

‭Hailey‬ ‭A:‬‭Control headset‬
‭through‬
‭microcontroller and‬
‭emergency stop on‬
‭fabric shoulder‬
‭strap.‬‭Put arm‬
‭through bands, with‬
‭wristband controlled‬
‭by a motor with rod‬
‭connections.‬

‭B:‬‭Design A,‬‭but‬
‭the microcontroller‬
‭and emergency stop‬
‭button is on a neck‬
‭attachment.‬

‭C:‬‭Design B,‬‭but the‬
‭microcontroller turns‬
‭a circular “joint,”‬
‭that pushes the arm‬
‭upward or downward‬
‭at the shoulder joint,‬
‭which is attached to‬
‭the user by a secure‬
‭shirt.‬

‭D:  Design B,‬‭but with a‬
‭pulley system stored in a‬
‭backpack the user wears.‬

‭E: Design D,‬‭but with a‬
‭belt with a rod sticking‬
‭out that supports the‬
‭user’s forearm.‬

‭Cayla‬ ‭A:‬‭Survey and test at‬
‭least 5 different‬
‭subjects.‬

‭B:‬‭Study brain‬
‭waves while‬
‭participants move‬
‭dominant arm‬
‭moves during‬
‭sessions. Daily‬
‭sessions for a few‬
‭minutes at a random‬
‭time for a week.‬

‭C:‬‭Study brain‬
‭waves while‬
‭participants are‬
‭sitting still in a‬
‭designated room for‬
‭a few minutes. Ask‬
‭for their mood‬
‭before, during, and‬
‭after.‬

‭D:‬‭While studying brain‬
‭waves, put a camera on a‬
‭stand to film arm to‬
‭connect brain waves to‬
‭arm movements.‬

‭E:‬‭Implement band-pass‬
‭filtering for better‬
‭sorting.‬

‭Josh‬ ‭A: Unsupervised‬
‭Learning Algorithm‬‭.‬
‭Finds patterns,‬
‭similarities,‬
‭differences in data‬
‭without labels. Feed‬
‭EEG data into‬
‭algorithms to find‬
‭patterns to figure out‬
‭user intention.‬

‭B: Reinforcement‬
‭Learning‬
‭Algorithm.‬
‭Program learns to‬
‭take actions in an‬
‭environment by‬
‭receiving feedback‬
‭(rewards or‬
‭punishments) on its‬
‭actions‬

‭C: Clustering‬
‭Algorithm.‬
‭unsupervised‬
‭learning technique‬
‭that groups data into‬
‭subsets based on‬
‭similarity. Program‬
‭would group human‬
‭intentions based on‬
‭EEG signals.‬

‭D‬‭:‬‭Semi-supervised‬
‭Learning Algorithm.‬
‭Trains a program with a‬
‭small amount of labeled‬
‭data, then trains it further‬
‭with unlabeled data.‬

‭E:‬‭Supervised Learning‬
‭Algorithm.‬‭Uses labeled‬
‭training data to predict‬
‭labels‬



‭Table 2: Pre-Screening Ideas (F-J)‬
‭Abbie:‬ ‭F: Super Strength.‬

‭EEG will control an‬
‭exoskeleton device‬
‭that is capable of‬
‭lifting heavy objects‬

‭G: Machine‬
‭Learning.‬‭This‬
‭version uses machine‬
‭learning Artificial‬
‭intelligence to adapt‬
‭the code to be more‬
‭accurate as more tests‬
‭are completed‬

‭H: Sports Trainer.‬
‭Device that helps‬
‭with sports training‬

‭I: Driving Arm.‬
‭This version allows‬
‭people who have‬
‭been paralyzed to‬
‭drive cars.It is set up‬
‭to function with cars‬
‭that have hand‬
‭controls installed so‬
‭the user can drive‬
‭with their thoughts.‬

‭J: Extreme Conditions.‬
‭Heat resistant full sleeve arm‬
‭that protects user from‬
‭activities such as firefighting‬
‭and welding‬

‭Hailey:‬ ‭F‬‭: Design B with‬
‭curved rod from hip‬
‭and stiff rods‬
‭attached by‬
‭armbands and‬
‭wristbands to rotate‬
‭the arm.‬

‭G:‬‭Design B with a‬
‭waistband having a‬
‭curved rod‬
‭attachment to move‬
‭the arm.‬

‭H:‬‭Design B with‬
‭rods supporting the‬
‭arm, allowing it to‬
‭rotate in a limited‬
‭manner.‬

‭I:‬‭Armband and vest‬
‭where the arm is‬
‭controlled by a‬
‭pulley system.‬

‭J:‬‭Armband and vest where‬
‭the arm is controlled by a‬
‭balloon inflation and‬
‭deflation system.‬

‭Cayla:‬ ‭F: Machine train‬
‭programs to note‬
‭maximum forearm‬
‭side movement. If‬
‭arm angle surpasses‬
‭this (which will be‬
‭observed using a‬
‭camera), the‬
‭programs will stop‬
‭immediately‬

‭G: There will be a‬
‭GUI that the tester‬
‭can interface with so‬
‭that in case of‬
‭emergencies, the‬
‭program can stop‬
‭immediately.‬

‭H: To avoid using‬
‭pneumatic actuators‬
‭to imitate arm‬
‭movement, use an‬
‭automated pulley‬
‭system instead.‬

‭I: To avoid using‬
‭pneumatic actuators‬
‭to imitate arm‬
‭movement, tester can‬
‭enable arm‬
‭movement by‬
‭electromagnets.‬

‭J: Safety could also be‬
‭ensured by using touch‬
‭sensors if using a frame for‬
‭the electromagnet system.‬

‭Josh:‬ ‭F: Association‬
‭Rule.‬‭Finds‬
‭associations and‬
‭relationships among‬
‭large sets of data‬
‭items‬

‭G: General‬
‭Adversarial‬
‭Network.‬
‭Autonomously‬
‭identifies patterns in‬
‭input data, enabling‬
‭the model to produce‬
‭new examples that‬
‭resemble the original‬
‭dataset. Could be‬
‭used to create more‬
‭test data to train other‬
‭algorithms‬

‭H: Q-Learning‬
‭Algorithm.‬‭Maps‬
‭states to actions.‬
‭Estimates the‬
‭expected reward for‬
‭taking a particular‬
‭action in a given‬
‭state. Could be used‬
‭to have an algorithm‬
‭examine multiple"‬
‭intentions" which‬
‭would result in the‬
‭biggest reward based‬
‭on the best match .‬

‭I: State‬
‭-Action-Reward-Sta‬
‭te-Action‬
‭Algorithm.‬‭Updates‬
‭the expected reward‬
‭for an action based‬
‭on the action actually‬
‭taken rather than the‬
‭optimal action.‬
‭Makes the labeling‬
‭process more fluid.‬

‭J: Anomaly Detection‬
‭Algorithm‬‭. Identifies‬
‭outliers or anomalies in data.‬
‭could be used to identify‬
‭errors in labels and clean‬
‭them up in order to have‬
‭better predictions‬



‭Selection and Screening‬

‭We decided to first screen initial ideas based on the degrees of freedom allowed by each;‬

‭how reliable data transmission would be; portability; how easy it is to physically put on; novelty;‬

‭practicality, or its ease of use and implementation; and applicability to many people.‬‭The‬

‭selection criteria prioritized efficiency and reliability above all else, with practicality being the‬

‭category with the highest weight. The EEG robot is intended to be an assistive device; therefore‬

‭it was decided that ease of use, reliable data and signal transmission, and applicability needed to‬

‭be heavily considered. Additionally, this robot should be able to be portable, otherwise a user‬

‭would be much more restricted with their movements, and with that, having multiple degrees of‬

‭freedom is also very important. Novelty is important, as there is no use in reinventing the same‬

‭technology, therefore implementing methods of innovation during the design process was heavily‬

‭considered.‬‭A summary table listing the initial ideas‬‭that passed the screening stage can be seen‬

‭in Figure 1.‬

‭Figure 1: Screenshot of summary table.‬

‭After further discussion we further chose ideas best suited for meeting our project‬

‭objective as can be seen in Table 3.‬



‭Table 3: Pre-Scoring Ideas.‬

‭Label‬ ‭Idea Description‬

‭A‬ ‭An emergency stop button is on the top of the microcontroller.‬

‭B‬ ‭Semi-supervised Learning Algorithm. Trains a program with a small amount of labeled data, then trains it‬
‭further with unlabeled data.‬

‭C‬ ‭Anomaly Detection Algorithm. Identifies outliers or anomalies in data. could be used to identify errors in labels‬
‭and clean them up in order to have better predictions.‬

‭D‬ ‭State -Action-Reward-State-Action (SARSA) Algorithm. Updates the expected reward for an action based on‬
‭the action actually taken rather than the optimal action. Makes the labeling process more fluid.‬

‭E‬ ‭Distinctly Different Thoughts. In this version, the user will be asked to think about something like music for‬
‭left and tree for right. This way, the thoughts are more different in hopes it will be easier to decipher.‬

‭We then combined our pre-scoring ideas for further improved ideas, as can be‬

‭seen in Table 4.‬

‭Table 4: Hybrid Ideas.‬

‭Label‬ ‭Idea Description‬

‭A2‬ ‭Semi-supervised algorithm with anomaly detection and an emergency stop‬

‭B2‬ ‭SARSA algorithm with distinctly different thoughts‬

‭C2‬ ‭Distinctly different thoughts with anomaly detection‬

‭D2‬ ‭Semi-supervised algorithm with anomaly detection and distinctly different thoughts with an‬
‭emergency stop‬

‭Our scoring criteria was essentially the same as the screening criteria. The results of our‬

‭scoring can be seen in Table 5.‬



‭Table 5: Scoring Results.‬

‭A.2‬ ‭B.2‬ ‭C.2‬ ‭D.2‬

‭Selection Criteria‬ ‭Weight‬ ‭Weighted Score‬ ‭Weighted Score‬ ‭Weighted Score‬ ‭Weighted Score‬

‭Degrees of Freedom‬ ‭9.00%‬ ‭0‬ ‭0‬ ‭0‬ ‭0‬

‭Reliable Transmitting‬ ‭10.00%‬ ‭0.3‬ ‭0.2‬ ‭0.1‬ ‭0.5‬

‭Portable‬ ‭10.00%‬ ‭0‬ ‭0‬ ‭0‬ ‭0‬

‭Easiness to put on‬ ‭10%‬ ‭0‬ ‭0‬ ‭0‬ ‭0‬

‭Novelty‬ ‭6.00%‬ ‭0.12‬ ‭0.18‬ ‭0.24‬ ‭0.3‬

‭Practicality‬ ‭13%‬ ‭0.39‬ ‭0.325‬ ‭0.325‬ ‭0.26‬

‭Applicability to many people‬ ‭12%‬ ‭0.48‬ ‭0.24‬ ‭0.36‬ ‭0.6‬

‭Total Score‬ ‭1.29‬ ‭0.945‬ ‭1.025‬ ‭1.66‬

‭Rank‬ ‭2‬ ‭3‬ ‭2‬ ‭1‬

‭Continue?‬ ‭NO‬ ‭NO‬ ‭NO‬ ‭Develop‬



‭Initial Specifications‬

‭To guide the development of the project, we decided to establish initial‬

‭specifications based on our selection criteria and project objectives. This can be seen in Table 6.‬

‭Table 6: Initial Specifications.‬

‭Rank‬ ‭Metric‬ ‭Units‬ ‭Means of Testing‬

‭1‬ ‭The arm will interface with human thoughts‬
‭with at least a 65% reliability rate.‬

‭%‬ ‭We will do at least 25 tests of movement and‬
‭count the number of times the robot correctly‬
‭interfaces with the human’s intention.‬

‭2‬ ‭The total cost of assembly of the robot will‬
‭not exceed $800.‬

‭$‬ ‭A spreadsheet will be kept of all costs.‬
‭Planning will be put in place to not exceed‬
‭this value.‬

‭3‬ ‭The arm will be able to move with at least 1‬
‭DOF.‬

‭Binary‬ ‭While testing, it will be checked whether it‬
‭can move with at least 1 DOF or not.‬

‭4‬ ‭The time to execute arm movements will take‬
‭no longer than 60 seconds.‬

‭Seconds (s)‬ ‭The duration of arm movement executions‬
‭will be timed.‬

‭5‬ ‭The transition time between arm movements‬
‭will take no longer than 60 seconds.‬

‭Seconds (s)‬ ‭Time duration between arm movement‬
‭executions will be timed.‬

‭6‬ ‭The device will include an emergency stop‬
‭function.‬

‭Binary‬ ‭The emergency stop function will be tested to‬
‭determine if it will successfully disable device‬
‭functions.‬

‭7‬ ‭The device will be portable.‬ ‭Binary‬ ‭Will be observed to see if a user can move‬
‭freely or not.‬

‭8‬ ‭The time from not having the device on to it‬
‭being in use will be less than 10 minutes.‬

‭Minutes (min)‬ ‭Will time the application and removal time of‬
‭the device on a user.‬

‭9‬ ‭The device will have a minimum battery life‬
‭of 15 minutes.‬

‭Minutes (min)‬ ‭The capacity of the battery will be measured‬
‭by recording its run-time.‬

‭10‬ ‭The sampling rate will be at least 100 Hz.‬ ‭Hz‬ ‭Will be measured in code/serial monitor.‬

‭The specifications above assumed that the system would consist of the EEG headset and‬

‭a robotic arm. The 65% reliability rate specification was chosen as it was lower than the‬



‭accuracy rate in Zare & Sun (2024) trials and an accuracy rate that seemed both achievable and‬

‭reasonable for the project to be considered a success. This specification was ranked highly since‬

‭reliable transmitting was a highly weighted selection criteria. As we were strictly limited to‬

‭$800, specification 2 was ranked high as well. Specifications 3-6 related to the practicality of the‬

‭system and were ranked high as practicality was the highest weighted selection criteria. Ease to‬

‭put on and portability selection criteria were addressed in specifications 7 and 8. Finally,‬

‭specifications 9 and 10 were ranked last as these details did not affect the overall goal of the‬

‭project to the same extent.‬



‭Final Specifications‬

‭Specifications drastically changed between the spring and fall semesters as the project‬

‭shifted to be more aligned with computer-science principles than mechanical engineering.‬

‭Specifically, during the spring semester, we quickly realized how some of our specifications‬

‭were no longer relevant to our project, especially as this project became more focused on‬

‭improving on the previous model’s accuracy rate of 75.3% as based on the results by Zare & Sun‬

‭(2024). This can be seen with Table 7.‬

‭Table 7: Final Specifications.‬

‭Rank‬ ‭Metric‬ ‭Means of Testing‬

‭1‬ ‭The algorithm will be able to identify when the user is‬
‭tense or relaxed at a general accuracy rate 80% - 100%‬
‭in real time.‬

‭We will do at least 25 tests of movement and count the‬
‭number of times the arm correctly interfaces with the‬
‭human’s intention.‬

‭2‬ ‭The arm will be able to fully make a fist or unclench.‬ ‭While testing, it will be checked whether it can do both of‬
‭these actions.‬

‭3‬ ‭The total cost of assembly of the robot will not exceed‬
‭$800.‬

‭We will use spreadsheets to track purchases.‬

‭4‬ ‭The time to execute each arm movement will take no‬
‭longer than 60 seconds.‬

‭The duration of arm movement executions will be timed.‬

‭5‬ ‭The transition time between arm movements will take‬
‭no longer than 60 seconds.‬

‭Time duration between arm movement executions will be‬
‭timed.‬

‭6‬ ‭The device will allow frequencies between 0.5 Hz and‬
‭50 Hz‬

‭Filtering capabilities will be tested during training and actual‬
‭deployment.‬

‭7‬ ‭The algorithm will increase the total reward as the‬
‭number of epochs it undergoes increases.‬

‭We will graph the total reward after training has completed.‬

‭8‬ ‭The algorithm will undergo epsilon decay as the‬
‭number of epochs it undergoes increases.‬

‭We will graph the total decay after training has completed.‬

‭9‬ ‭The arm will be able to identify which brain signals in‬
‭the training data are associated with tensing and‬
‭relaxing.‬

‭We will run each training session with the algorithm and see‬
‭if the arm grasps or unclenches.‬

‭10‬ ‭The EEG headset will be able to calibrate with the‬
‭algorithm in less than ten minutes when in a session.‬

‭We will test this when setting up for tests of movement.‬



‭The importance of the arm’s accuracy rate stayed consistent, as seen in specification 1’s‬

‭ranking being similar to the initial rankings; however, the accuracy rate we wanted to target‬

‭increased as proper implementation of reinforcement learning became more important than a‬

‭structurally optimal arm. Specification 2 was ranked like so as the whole goal of the project was‬

‭to have the arm’s fist clench or unclench; the arm not being able to do so would delay project‬

‭completion. While mechanical design was not a central focus in our project, it was important to‬

‭heed specification 3 as we needed external components, such as a Raspberry Pi, to interface with‬

‭the arm in the most cost effective way possible. Specifications 4 & 5 were ranked like so because‬

‭for the device to be utilized in the real world, the headset needs to be able to quickly identify the‬

‭user’s brain signals, and the arm needs to act accordingly; however, we were more concerned‬

‭with its accuracy regardless of time taken and decided to rank these specifications lower.‬

‭Specification 6 was listed as this range encompasses the different kinds of brain waves.‬

‭Specifications 7-9 concerned training of the algorithm, which is conducive for the algorithm to‬

‭reach our specified accuracy rate. Finally, specification 10 was listed to increase the user’s‬

‭comfortability with the device.‬



‭Analysis & Calculations‬

‭When analyzing which clusters to utilize as triggers‬‭for controlling the prosthetic device,‬

‭we collected data of various binary mental states, such as relaxed vs focused, eyes closed vs‬

‭speed reading, thinking left vs right, and many more. Data was collected from the four of us, and‬

‭the average power spectral density (PSD) from each mental state was compared against its‬

‭opposite. We looked to find significant differences between each mental state’s average PSD‬

‭against the PSD for its opposite state to determine if any of these mental action sets had distinct‬

‭output signals for the DQN to detect and train upon. In doing so, we found that most clusters did‬

‭not have significant enough differences in their average PSD except for when comparing the‬

‭signals the user had when tensing their body vs being relaxed. This tension could be in the form‬

‭of a clenched jaw, raised heel, or flexed muscle. The output average PSD from a tensed state vs‬

‭relaxed state had an average difference of about 240 μV²/Hz.‬

‭Table 8: Band powers for each condition and power band.‬

‭Power Band‬ ‭Untense PSD (μV²/Hz)‬ ‭Tense PSD (μV²/Hz)‬ ‭Difference (μV²/Hz)‬

‭Delta‬ ‭498.87‬ ‭1585.66‬ ‭1086.79‬

‭Theta‬ ‭29.86‬ ‭107.28‬ ‭77.41‬

‭Alpha‬ ‭14.43‬ ‭51.20‬ ‭36.78‬

‭Beta‬ ‭5.09‬ ‭13.23‬ ‭8.14‬

‭Gamma‬ ‭6.00‬ ‭0.60‬ ‭-5.41‬

‭Average‬ ‭110.85‬ ‭351.59‬ ‭240.74‬



‭Testing‬

‭To evaluate our device, we conducted tests of both the training files and real-time‬

‭actuation. During the initial development phases of the code and robotic hand, we recorded data‬

‭that captured spikes in brain activity. This data was then uploaded into the program directly and‬

‭not as a training file to assess whether the hand could successfully clench and unclench. These‬

‭evaluations were performed prior to implementing real-time actuation. Thirty sessions of a user‬

‭completing varying tasks were recorded. These tasks included sitting still with eyes closed,‬

‭sitting with eyes open, making a fist, bicep curls, and concentrating.‬

‭After confirming that the device could reliably perform the intended tasks, the algorithm‬

‭required the training files to be uploaded into the Q-table. Sessions involving relaxation,‬

‭movement, muscle tensing, and concentration were recorded from multiple users. These‬

‭recordings were subsequently imported into an Excel spreadsheet, where the average brainwave‬

‭data for each activity was analyzed and compared (Figure 2). The activities demonstrating the‬

‭greatest differences in brainwave patterns, specifically, full-body relaxation and maximal muscle‬

‭tensing — were selected as the control tasks for the device. For each condition, ten sessions were‬

‭recorded: one involving the user closing their eyes, relaxing, and remaining motionless, and‬

‭another involving the user tensing all muscles. Subsequently, the performance of the‬

‭reinforcement learning algorithm was evaluated by graphing epsilon decay and cumulative‬

‭rewards as functions of epoch (time slice). As illustrated in Figure 2, the epsilon decay exhibited‬

‭a negative exponential trend, while the cumulative rewards displayed a positive exponential‬

‭trend. These results suggest that the algorithm successfully learned from the provided training‬

‭data over time.‬



‭Figure 2: Left graph depicting epsilon decay. Right graph shows rewards per epoch.‬

‭After determining that the algorithm could learn effectively from the training data,‬

‭real-time actuation testing was conducted. In this phase, live brainwave data was fed directly into‬

‭the system to evaluate the device’s ability to respond dynamically. The robotic hand’s‬

‭performance was assessed based on its ability to correctly interpret the user’s brain activity in‬

‭real time and execute the appropriate clenching or unclenching motions. For this test, 25 attempts‬

‭to clench the robotic hand were made per session. The user was asked to tense their entire body‬

‭for this test. Whether the hand successfully carried out the user’s intention, carried it out with a‬

‭delay, or not at all was recorded in an Excel spreadsheet and made into a pie graph (Figure 3). As‬

‭seen from the chart, the model and device successfully carried out the user’s intention 80.9% of‬

‭the time during the first 50 trials. The last 50 trials demonstrated an overall accuracy rate of 96%,‬

‭with the arm detecting tension instantly 46% of the time or with delay 50% of the time. Only 4%‬

‭of tension instances were undetected. No false positives were observed. The data for the last 50‬

‭trials can be seen in Table 9.‬



‭Figure 3: Summary Pie Chart of First Tension Instances.‬

‭Table 9: Results Summary of Last Tension Instances.‬

‭Instant Success‬ ‭Success w/ Delay‬ ‭No Success‬ ‭False Positive‬

‭Trial Set 3 (51-75)‬ ‭10‬ ‭13‬ ‭2‬ ‭0‬

‭Trial Set 4 (76-100)‬ ‭13‬ ‭12‬ ‭0‬ ‭0‬

‭Total‬ ‭23‬ ‭25‬ ‭2‬ ‭0‬

‭Average‬ ‭11.5‬ ‭12.5‬ ‭1‬ ‭0‬

‭Overall‬ ‭46.00%‬ ‭50.00%‬ ‭4.00%‬ ‭0.00%‬



‭Summary and Conclusions‬

‭This project set out to create a system that could pick up EEG signals tied to intentional‬

‭mental commands, process them with a reinforcement learning model, and use them to move a‬

‭robotic arm in real time. The final design used an OpenBCI EEG headset, a Raspberry Pi, and a‬

‭3D-printed robotic arm with one degree of freedom. A Deep Q-Network (DQN) was trained on‬

‭both recorded and live brainwave data, allowing the arm to respond to increases in the user’s‬

‭brain activity.‬

‭During the project’s development, we researched current assistive technologies, many of‬

‭which still rely on muscle signals like EMG or IMU sensors, which can not be used by all users‬

‭depending on the severity of their paralysis. Additionally, most previous research projects that‬

‭did use EEGs, used convolutional neural networks (CNNs) to process the signals. However,‬

‭CNNs often need a lot of labeled data and do not work well in real time. By using reinforcement‬

‭learning, we built a system that could learn with less data, handle noisy signals, and adapt over‬

‭time.‬

‭Once the device was created, our team tested the device on both pre-recorded brainwave‬

‭data and live sessions. Early tests showed that the system could correctly turn mental commands‬

‭into movements. In real-time testing, the robotic arm followed user commands correctly with an‬

‭average accuracy rate of 88.45% for full body tensing. Tracking the model’s epsilon decay and‬

‭reward growth showed that the system kept learning and improving during use. Tests were also‬

‭run to see how little muscle tension was needed to trigger movement. By having users clench just‬

‭their hand, jaw, or toes, we looked at how much tensing was needed to significantly change the‬

‭brainwave signals. These results showed that the system could generalize what it had learned and‬

‭stay reliable even with small differences in how users gave commands.‬



‭Despite these promising results, there were still some challenges. The system was trained‬

‭with few users, as we did not pursue IRB approval to test on human subjects other than ourselves‬

‭due to lack of time. Additionally, we experienced problems with keeping all of the electrodes in‬

‭contact with the user’s head. This caused the brainwaves to not always be measured accurately‬

‭and the robotic hand to not always accurately carry out the user’s intention. There were also‬

‭occasional lags in processing live data. Still, the project showed that reinforcement learning is a‬

‭strong option for controlling prosthetics through EEG.‬

‭For the future, there are many improvements to the project that could be made. The‬

‭robotic hand can be improved by adding more degrees of freedom and designing it to be able to‬

‭be physically attached to a person. Also, the EEG signal processing can be improved to better‬

‭handle noise. The program would also benefit from testing and training on a wider range of‬

‭users. A partnership with healthcare providers to test the system with individuals who have‬

‭motor impairments would be the most accurate testing of whether the system is an effective aid‬

‭for motor control. Overall, this project proved that reinforcement learning can be used to‬

‭interpret brainwaves for real-time control of a robotic arm, offering a new path toward more‬

‭accessible and adaptable assistive technologies.‬
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‭Detailed Drawings‬

‭Figure 4: 2D Drawing of Prosthetic Palm‬



‭Figure 5: 2D Drawing of Middle Joint of Prosthetic Finger‬



‭Figure 6: 2D Drawing of Prosthetic Finger Tip Joint‬



‭Figure 7: 2D Drawing of Prosthetic Arm‬



‭Code‬

‭Figure 8a: Page 1/4 EEG DQN Python Program‬



‭Figure 8b: Page 2/4 of EEG DQN Python Program‬



‭Figure 8c: Page 3/4 of EEG DQN Python Program‬



‭Figure 8d: Page 4/4 of EEG DQN Python Program‬



‭Figure 9a: Page 1/3 of Live Prosthetic Control Python Program‬



‭Figure 9b: Page 2/3 of Live Prosthetic Control Python Program‬



‭Figure 9b: Page 3/3 of Live Prosthetic Control Python Program‬


