




Abstract

Identifying the source of spread through a network, termed diffusion source
identification, is a problem of fundamental importance in a broad class of
applications such as rumor controlling and virus identification. Though this
problem has received significant recent attention, most studies have focused
only on very restrictive settings and lack theoretical guarantees for real-world
network topologies. This work introduces a statistical framework for diffu-
sion source identification for a broad class of diffusion processes on general
network topologies. It also develops a confidence set inference approach in-
spired by statistical hypothesis testing. Our method efficiently produces a
small subset of nodes, which provably covers the source node with any pre-
specified confidence level. Multiple Monte Carlo strategies are presented
for the inference procedure based on network topology and the probabilistic
properties that significantly improve the scalability. To our knowledge, this
is the first diffusion source identification method with a practically useful
theoretical guarantee on general networks. The proposed method is evalu-
ated by extensive synthetic experiments based on well-known random net-
work models and real-world networks from several domains. The method is
also demonstrated in a real-world diffusion example concerning the spread of
COVID-19 between cities.
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Chapter 1

Introduction

The spread of misinformation through a social network or a virus in a com-
puter network has seen increasing relevance in recent years. The spreading
of computer viruses through emails and computer networks have significant
privacy and security implications on today’s growing cyberspace [1, 2, 3].
Similarly, the COVID-19 epidemic presented another example of the impor-
tance of understanding the spread of infection through a network and how
to take fast and effective counter-measures. Spreading via a diffusion process
begins with a few source individuals and spreads quickly throughout the net-
work. Reducing the loss from such an event relies on quickly identifying the
sources so that counter-measures can be taken in a timely fashion, which is
referred to as the diffusion source identification (DSI) problem.

Though there are examples of early practices for this important problem
with motivations from various domains, systematic research on this prob-
lem only began very recently, arguably starting from the seminal work of [4]
which focused on the setting of infinite regular trees. Despite the significant
interest and progress on this problem in recent years [5, 6, 7, 8, 9, 10], many
challenges remain unaddressed. First, the theoretical understanding of these
methods is currently only available under very restrictive and somewhat un-
realistic structural assumptions of the networks such as regular trees. This is
perhaps partially explained by the well-known computational hardness about
the probabilistic inference of diffusion process in general graphs [11]. There-
fore, intuitive approximations have been used for general networks [12, 13].
However, such methods lack theoretical guarantees. Second, even for reg-
ular trees, the available performance guarantee is far from being useful in
practice. Even in the most idealized situation of infinite regular trees, the
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correct probability of the rumor center is almost always below 0.3 [4, 6, 9].
For general graphs and diffusion processes, this is an inherent difficulty with
single-point estimation methods that we observe later.

To guarantee higher success probability, a typical approach, as in both
machine learning theory [14] and data-driven applied models [15], is perhaps
to obtain more data. However, a fundamental challenge in diffusion source
identification (DSI) is that the problem by nature has only one snapshot of
the network information, i.e., the earliest observation about the infection
status of the network.1 Therefore, compared to classic learning tasks, DSI
poses a fundamentally different challenge for inference. It is the above crucial
understanding that motivates our adoption of a different statistical inference
technique, the confidence set. Previously systematic statistical studies adopt
the confidence set approach for DSI on trees [8, 7, 10]. Though they enjoy
good theoretical properties, the methods are applicable only on infinite trees.

This research aims to bridge the gap between practically useful algorithms
and theoretical guarantees for the DSI problem. We introduce a new statis-
tical inference framework which provably includes many previous methods
[4, 12] as special cases. Our new framework not only highlights the draw-
back of the previous methods but, more importantly, also leads to the design
of our confidence set inference approach with finite-sample theoretical guar-
antee on any network structures.

As a demonstration, consider the example of the COVID-19 spreading
process in early 2020. Figure 1.1 shows a travel mobility network between 49
major cities in China, constructed from the two-week travel volume [16, 17]
before the virus caught wide attention. The square nodes (21 out of 49) are
all cities with at least five confirmed cases of the virus on Jan 24, 2020. The
DSI problem is: given only knowledge about the mobility network and which
cities have detected a notable amount of confirmed cases (in this case, at
least 5) , can we identify in which city the virus was first detected?

This problem turns out to be too difficult for precise identification. None
of the single-point source identification methods under evaluation can suc-
cessfully identify Wuhan due to its relatively non-central position from the
network (details in Section 5.2). Nevertheless, both of our 80% and 90%
confidence sets cover Wuhan correctly, giving recommendations of 6 nodes

1Since infected nodes are usually indistinguishable and equally infectious, any addi-
tional information in later observations only tells us which new or additional nodes are
infected and is not helpful for us to infer the source node.
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Figure 1.1: The mobility network and the COVID-19 infection status of major
Chinese cities on Jan 24, 2020. Colored square nodes are cities with at least five
confirmed cases.

and 11 nodes (out of 49 cities), respectively. In fact, the evaluation on all the
whole week after the lockdown of Wuhan reveals that both confidence sets
correctly cover Wuhan in all the seven days, while the single-point estimation
methods are rarely effective. Such a result evidently shows the necessity of
adopting confidence set approach and the effectiveness of our solution.Our
contributions in this paper can be summarized in three-folds.

1. We introduce an innovative statistical framework for the DSI problem.
It includes several previous methods as special cases and includes a
more general definition of diffusion processes, but has the potential for
more effective inference.

2. Under our framework, we propose a general way to construct the source
node confidence set, whose validity can be guaranteed for finite sample
size and any network structures. It is the first DSI method with a
theoretical performance guarantee on general networks, to the best of
our knowledge.

3. We propose techniques that dramatically improve the computational
efficiency of our inference algorithm. En route, we develop a generalized
importance sampling method, which may be of independent interest.

A high-level message in this research is that the confidence set approach,
which did not receive adequate attention in the machine learning literature,
can be an important tool for inference tasks, especially for challenging prob-
lems with limited available data.
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1.1 Literature

A primary motivational setting for the study of diffusion processes is in epi-
demiological spreading. The study of epidemic models often take a macro-
scopic view which focuses on the summary status of a population during
the spreading of a disease [18], whereas diffusion processes on networks con-
sider microscopic interactions between network members and describe the
geographic properties of a population resulting from the diffusion process.
The study of such models has been shown to be useful in many areas beyond
epidemic models, such as information spreading in social networks which
can have implications in politics, economics, and social engineering [19, 20].
Other examples of relevant applications of diffusion models on networks in-
clude simulating a failure or virus spreading in computer networks or track-
ing the movement of files in peer-to-peer content distribution networks [21].
Here we discuss some of the research on diffusion processes as context for the
models studied in this research.

1.1.1 Cascading Models

Cascading, or epidemic models, are processes where the diffusion “cascades”
through the network. Notable, additional infections increase the susceptibil-
ity of other nodes in the network, mimicking the behavior of an epidemic in a
population, or the spreading of information in a social network [21]. Funda-
mental models in epidemic spreading, the “Susceptible-Infected” (SI) model,
“Susceptible-Infected-Recovered” (SIR) model, and “Susceptible-Infected-
Susceptible” (SIS) model were introduced by Kermack and McKendrick [22]
by modelling the spread of an epidemic as the transition of individuals be-
tween states based on a set of differential equations. These models have
served as the base for a number of epidemic spreading models such as dis-
crete time and continuous time versions of the SEIR and SEIS where “E”
denotes an exposed state [23]. The SWIR model includes a weakened state
[24].

A close relative of the SIR model is the Independent Cascades (IC) model
that is intended to describe the spread of influence through a social network
[25]. The problem of influence maximization, which could be thought of as
an inverse problem to DSI, requires identifying the set of source nodes that
will maximize the expected influence through the network at the end of the
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diffusion process. Variants of the IC model include community permeability
and community embeddedness in an attempt to better model real world
spreading in social networks [26]. This model has also been used in inferring
back the network structure given diffusion information [21, 27], a similar
problem to that of diffusion source identification.

Another popular model of study in computer science, particularly with
the influence maximization problem, is the Linear Threshold model [28].
Threshold models impose a threshold on network nodes such that participa-
tion or infection only occurs once the surrounding influence has surpassed an
individual’s threshold [29]. There is a generalized version of the model that
allows for influence to be determined by a general monotone function rather
than a simple linear relationship [28].

In line with past studies on the DSI problem, in this research we focus
on a variant of the SI model with additional experimental results for the
Independent Cascades and Linear Threshold models.

1.1.2 The SI Model and DSI

The SI model with fixed infection size is the primary model studied in re-
search on the diffusion source identification problem. Shah and Zaman [4]
proposed a maximum likelihood rumor center estimator that can be located
by an efficient message-passing algorithm with linear time complexity, but
is restricted to infinite regular trees and the SI model with an exponential
spreading time distribution. A result for diffusion processes with general
spreading time distributions and general random trees was later presented
in [5]. The rumor center result was extended by [9] to finite trees with an
optimal result for regular trees and a near optimal result for general trees.
Dong et al. [6], also focusing on the SI model, constructed a maximum a pos-
teriori (MAP) estimator and proposed a concept called a local rumor center
as generalization of rumor centrality to incorporate a priori knowledge into
the DSI problem. Nguyen et al. [12] gave a result for approximate inference
on multiple sources with results for the previously studied SI model as well as
two other popular diffusion processes, the IC and LT models. In [30], source
detection with partial observation of the activation time of the rumors in the
diffusion is studied.

Rumor source obfuscation is studied in [31] for the setting of diffusions in
anonymous messaging platforms. Their results shows that a certain family of
messaging protocols denoted as adaptive diffusions are able to achieve perfect
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obfuscation where a “snapshot adversary” cannot to better than random
guessing in the best case. [32] studied adaptive diffusions on infinite regular
trees in alternate settings where the adversary can take multiple snapshots
and also with local information spreading, showing that in certain settings
constant probability of source detection is achievable.

Confidence set methods have been studied in the context of this problem
before. Bubeck et al. [8] showed that for uniform attachment and preferential
attachment trees there exists an algorithm for finding a set of K nodes with
a 1 − ϵ guarantee of including the source for any ϵ. Notably the size of K
is independent of the tree size and diffusion detection is more difficult in
the preferential attachment case compared with the regular tree case. The
confidence sets in [7] apply to a regular-tree structure and provides an upper
bound on the number of elements needed to guarantee the inclusion of the
source in the confidence set. Finally, [10] studies confidence sets for linear
preferential attachment and uniform attachment models and provides upper
bounds on the expected confidence set size.
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Chapter 2

Preliminaries

We now define a general version of the Diffusion Source Identification (DSI)
problem, introduced in the seminal work of Shah and Zaman [4]. Consider
a network G with node set V = {1, · · · , n} and edge set E. We write
(u, v) ∈ E if there is an edge from node u to v. Additionally we let each
edge (u, v) ∈ E have non-negative weight wuv ∈ R+. The network can be
equivalently represented by its n× n adjacency matrix A, where Auv = wuv.
Note that if A is symmetric, then G is undirected, and if ∀u, v ∈ V the
edge weight is wuv ∈ {0, 1}, then G is unweighted. Note that G is assumed
to be connected in this research as independent subgraphs can be analyzed
independently under the DSI problem.

The diffusion model of choice for previous works is the “Susceptible-
Infected” (SI) model [33, 4], however in this research we will be considering a
more general definition of a diffusion process on a single source node s∗ ∈ V .
Let a diffusion process, σ : Rn×n × [n] → {0, 1}n, be a probabilistic func-
tion on a graph G = (V,E) and source s∗ that generates a connected subset
of V . In this research we are considering two-state diffusion models, how-
ever the statistical results shown later on are generalizable to models with
a greater number of node statuses, or possibly to diffusion process without
the requirement of connected infections. Note that in this research because
confidence construction relies on simulating the diffusion process, we only
consider efficiently simulatable diffusion processes.

Now, denote the sample space, Yσ ⊆ {0, 1}n, as the subsets of V that are
supported under diffusion process σ for any choice of source s ∈ V . With
this, the DSI problem is formally defined as follows:

Definition 1 (Diffusion Source Identification). Given diffusion process σ
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and one sample y ∈ Yσ, identify the source node s∗ of the diffusion process
that generates y.

In the DSI problem, a node s cannot be the source for data y if P (σ(G, s) =
y) = 0 for diffusion process σ. To capture the set of candidate source nodes
for the DSI problem we denote the set Cσ(y) = {s : s ∈ y, P (σ(G, s) = y) >
0} as the set of sources that are capable of generating the sample y under
process σ.

Challenges

There are two notable challenges intrinsic to the DSI problem. First, for a
given source s∗, there may be more than one execution path and choice of
source for σ(G, ·) that produces the same sample y. In fact, the problem of
source identification is rooted in the fact that this information is lost by the
time y is observed. Consequently we define the diffusion path space Zσ and
many-to-one mapping ζ : Zσ → Yσ to capture the execution of σ.

Zσ = {v = {(s∗ = v0, t0 = 0), (v1, t1), · · · , (vT , tT )} : vt ∈ V,

and (vi, vi′) ∈ E for some i ̸= i′ with ti < ti′ }

The second notable challenge is the inherent limited availability of data.
In contrast to a learning problem, there is only access to a single data obser-
vation. For example, the Markovian nature of the SI model makes subsequent
observations of a network state unhelpful in solving the DSI problem. If you
combine this with the uncertainty in the generation of y, it makes achieving
arbitrary accuracy in the DSI problem impossible for point estimate methods.

2.1 Diffusion processes

In this research we will consider four different diffusion processes: unweighted
and undirected SI model with fixed infection size, weighted and directed SI
model with fixed infection size, Independent Cascades (IC) model, and Lin-
ear Threshold (LT) model. As explained in section 1.1, the unweighted SI
model is the most widely studied diffusion process in the source identification
problem while the weighted version is a natural extension that better reflects
real world network structures. The IC and LT models are popular choices in
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the influence maximization problem.

2.1.1 Unweighted and Undirected SI Model

As the most widely studied diffusion process in the DSI problem, the un-
weighted SI model is the primary model of study in this research. In this
model, there are a total of T infections starting with source node s∗, giving a
total of T + 1 infected nodes. Let At ⊆ V be the set of active nodes at time
step t. The next propagation edge is then chosen uniformly at random from
the edge set {(u, v) : u ∈ At, v ∈ V \At}. The active set for time t+1 is then
At+1 = At ∪ {vt} for chosen edge (ut, vt). This proceeds with A0 = {s∗} and
σT
SI(G, s

∗) = AT is the resulting sample infected set. Note that this process
is equivalent to a continuous time model with infections propagating across
edges with spreading time sampled from an exponential distribution. The
process is summarized in algorithm 1.

Algorithm 1 Unweighted and undirected SI model for fixed number of in-
fections
1: Input: Infection count T , source s∗

2: A0 = {s∗}
3: for t = 1 to T do
4: Select (ut, vt) ∈ {(u, v) : u ∈ At, v ∈ V \ At} uniformly at random
5: At+1 = At ∪ {vt}
6: end for
7: return AT

For this model, the diffusion path space ZT is the sequence of infection
propagation edges.

ZT = {v = {(s∗ = v0, t0 = 0), (v1, 1), · · · , (vT , T )} : vt ∈ V, vt1 ̸= vt2
if t1 ̸= t2, and (vt, vt′) ∈ E for some t < t′ }

The diffusion sample space is the set of connected subgraphs of G of size
T + 1 and the set of candidate source nodes is CSI(y) = y.
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YT = {y ∈ {0, 1}n : ∥y∥1 = T + 1, such that {i : yi = 1}
induces a connected subgraph of G}.

2.1.2 Weighted and Directed SI Model

For weighted graphs the probability of selecting an edge (u, v) is proportional
to the edge weight wuv. If Et = {(u, v) : u ∈ At, v ∈ V \ At} is the set of
propagating edges for At, then the probability of selecting (u, v) ∈ Et is
PEt((u, v)) = wuv/

∑
(u′,v′)∈Et

wu′v′ . No changes are needed in the algorithm
description to support directed graphs.

Algorithm 2 Weighted and directed SI model for fixed number of infections

1: Input: Infection count T , source s∗

2: A0 = {s∗}
3: for t = 1 to T do
4: Select (ut, vt) ∈ Et = {(u, v) : u ∈ At, v ∈ V \ At} with probability

PEt((u, v)) = wuv/
∑

(u′,v′)∈Et

wu′v′

5: At+1 = At ∪ {vt}
6: end for
7: return AT

The diffusion path space ZT and diffusion sample space YT are the same
as in the unweighted SI model. If G is directed, however, it is possible to
infect a node v such that there is no path from v back to the source s∗.
Define Gy as the subgraph of G containing only the nodes in y. The set of
candidate source nodes is then

CSI(y) = {v : ∀u ∈ y,∃ a path from v to u in Gy}

2.1.3 Independent Cascades Model

We consider the most basic version of the IC model. In this model, diffusion is
based on a cascade of information throughout a network. The process begins
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with a set of active nodes that remain active for a single time step during
which it can affect all of their inactive neighbors. Because we are considering
single source diffusion processes, the initial active set is A0 = {s∗}. Infections
propagate along edges according to their weights. This requires wuv ∈ [0, 1]
where the probability of node activation is wuv.

Algorithm 3 Independent Cascades Model

1: Input: Infection count T , source s∗

2: A0 = {s∗}, I = {}
3: while At is not empty do
4: At+1 = {}
5: for each (u, v) ∈ {(u′, v′) : u′ ∈ At, v

′ ∈ V \ (At ∪ I)} do
6: Add v to At+1 with probability wuv

7: end for
8: I = I ∪ At, t = t+ 1
9: end while

10: return I

Note that this model appears to include three states: active, inactive,
and uninfected, however the state assignment output by Algorithm 3 does
not include any active nodes. The diffusion path space encodes the sequence
of active nodes during the diffusion process, while the diffusion sample space
is the set of connected subgraphs of G. The set of candidate nodes CIC(y)
is the same as in the directed SI model.

ZIC = {v = {(s∗ = v0, t0 = 0), (v1, t1), · · · , (vT , tT )} : vt ∈ V,

if t1 ̸= t2, then v1 ̸= v2 and (vi, vi′) ∈ E for some i ̸= i′ with ti < ti′ }

YIC = {y ∈ {0, 1}n : such that {i : yi = 1}
induces a connected subgraph of G}.

2.1.4 Linear Threshold Model

The Linear Threshold model is designed to mimic information spreading
where an individual is only influenced once a certain proportion of its neigh-
bors are influenced. Edge weights are restricted such that for each v ∈ V ,
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∑
u∈V wuv ≤ 1. Once a node becomes active it remains active, and a node be-

comes active once the total influence of its active neighbors surpass a hidden
threshold θt ∈ [0, 1] that is chosen uniformly at random.

Algorithm 4 Linear Threshold Model

1: Input: Infection count T , source s∗

2: A0 = {s∗}
3: Select θv ∈ [0, 1] for each v ∈ V
4: while At ̸= At−1 do
5: At+1 = At

6: for each v ∈ V \ At do
7: Add v to At+1 if θv ≤

∑
u∈At

wuv

8: end for
9: t = t+ 1

10: end while
11: return At

The diffusion path space, ZLT , encodes the sequence of newly activated
nodes and thus takes the same form as ZIC . The diffusion sample space YLT

and candidate set CLT (y) candidate are identical to YIC and CIC(y) for the
independent cascades model as well.
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Chapter 3

A General Statistical
Framework

3.1 DSI as Parameter Estimation

We start by formulating DSI under a systematic statistical framework, which
will help in our design of better inference methods later on. First, treat the
diffusion process σ and network G as fixed with s∗ as the only model pa-
rameter. The probability of generating data y ∈ Yσ can then be represented
by Ps∗(Y = y) = p(y|s∗). where random variable Y = σ(G, s∗) denotes the
diffusion sample resulting from σ with source s∗. The identification of s∗ can
then be treated as a parameter estimation problem. Specifically, we consider
the following general parameter estimation framework. Given any discrep-
ancy function ℓ : Yσ×Zσ → [0,∞), we want to find an estimator of s∗ based
on the following optimization problem:

minimizes Esℓ(y, Z) (3.1)

in which Z ∈ Zσ is the diffusion path random variable given diffusion process
σ with source parameter s and where Es denotes the expectation over Z. In
other words, we look to select the s such that the diffusion path Z it generates
has the minimum expected discrepancy from our observed data y.

Remark 1. An important design here is that the discrepancy function ℓ is
defined on Yσ × Zσ, not on Yσ × Yσ. That is, y will be compared with the
random diffusion path while not merely the snapshot induced by the path.
This is because Z contains richer information about the diffusion process.
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As we show later, this turns out to be very crucial for designing effective
discrepancy functions.

Notice that our framework includes a few previous methods as special
cases. For both cases the diffusion process σ is the unweighted SI model
with fixed infection size. All formal proofs in this paper have been deferred
to the Appendix. Instead, intuition and explanations are provided as needed.

Proposition 1. 1. If ℓrc(y, z) = 1− I(y = ζ(z)), when the network is an
infinite regular tree, process (3.1) gives the rumor center of Shah and
Zaman [4].

2. If ℓse(y, z) = ∥y − ζ(z)∥22, the squared Euclidean distance between y and
ζ(z), the discrepancy is equivalent to the symmetric difference in [12]1.

Proposition 1 also reveals some key drawbacks of the rumor center method
and its variants. First, the discrepancy function ℓrc only takes two values, and
it treats all configurations z with ζ(z) ̸= y equally. Therefore, such a function
may not be sufficiently sensitive for general networks and is unsuited for the
Monte Carlo approach later described for confidence set construction. From
this perspective, ℓse is potentially better. Second, and importantly, both
of the above discrepancy functions only depend on ζ(z), failing to leverage
the diffusion order of the z. Ignoring such information may also undermine
the performance. To overcome these drawbacks, we propose the following
family of discrepancy functions as a better alternative. We call this family
the canonical family of discrepancy functions.

Definition 2 (Canonical Discrepancy Functions). Consider a class of dis-
crepancy functions ℓ that can be written in the following form

ℓ(y, z) = −
∑

v:yv=1

I(v ∈ z)h(tz(v)), (3.2)

in which tz(v) is the infection time of node v in path z and h is a weighting
function. When v /∈ z, we define tz(v) = ∞.

The canonical form (3.2) is essentially a negative similarity function. It
incorporates both the infection status and the infection order of z. This
form of discrepancy only differentiates between deviations of z from y based

1However, different from our framework, [12] used an approximation metric to this
discrepancy for DSI.
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on infection order in z. The weight function ht then is used to encode the
importance of earlier deviations against later deviations. Conceptually, this
canonical family is general enough to incorporate the needed information for
the diffusion processes described in Section 2.1. In addition, as shown in
Section 3.4, it admits fundamental properties that make the computation
very efficient. As a special case, if the infection size is fixed for diffusion
process σ (e.g. SI model with fixed infection size T ), it holds that ℓse is
equivalent to a discrepancy function with h(tz(v)) ≡ 2, as follows

∥y − ζ(z)∥22 =
n∑

i=1

I(yi ̸= ζ(z)i) = 2T − 2
∑

v:yv=1

I(v ∈ z).

Therefore L2 is equivalent to Eq. (3.2) with f(tz(v)) ≡ 2 given a fixed
diffusion sample size of T .

If we intuit that infections earlier in a diffusion process are more likely
to match when the true source is tested, the following natural configuration
for discrepancy function arises which we call the “Averaged Deviation -
inverse Time” (ADiT), which takes the canonical family form (3.2) with
the inverse time weights:

h(tz(v)) =
1

tz(v)
. (3.3)

In this case a stronger signal is sent for deviations early in the diffusion
process while later deviations are assigned less importance.

Remark 2. The design of discrepancy functions for general diffusion pro-
cesses permits more depth than what is encoded in the canonical family of
discrepancy functions. Notably, the kinds of loss functions that are effective
and possible can vary significantly depending on the choice of diffusion pro-
cess σ. The design of the canonical class as well as ZT is motivated by their
effectiveness in the SI model and their computational advantages, however
different diffusion processes may need the consideration of different classes of
discrepancy functions and definitions for Zσ to include information beyond
just infection time.

In Table 5.4 of Section 5.2, we show the simulation performance of the
single-point estimation by our framework compared to other methods. Though
our methods demonstrate improvements, the accuracy is universally low
in all situations for all methods. Such an observation indicates that it is
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generally impossible to recover the source node by a single estimator with
high accuracy. Indeed, as shown in Shah and Zaman [4], Dong et al. [6], Yu
et al. [9], even in the ideal infinite regular tree for which the rumor center is
proved to be optimal in the MLE sense, the probability of correct source node
identification turns out to still be low (≤ 0.3). Such a low accuracy is far
from useful in real-world applications, suggesting the necessity of developing
alternative forms of inference, which is we embark on in the next section.

3.2 Confidence Set

As mentioned previously, single point estimators suffer from low success rates,
rendering them unsatisfactory in real-world applications. To identify the
source node with a nontrivial performance guarantee, we propose construct-
ing a small subset of nodes that provably contains the source nodes with any
pre-defined confidence. This insight motivates our use of the confidence set
as the DSI method.

Definition 3. Let Y be the random infection status of the stochastic diffusion
process starting from s∗. A level 1− α confidence set of the source node is a
random set S(Y ) ⊂ V depending on Y for which

P(s∗ ∈ S(Y )) ≥ 1− α.

Surprisingly, the idea of using confidence set to infer the diffusion source
– though arguably a natural one in statistics – has not been explored much
in the context of DSI. The most relevant to ours are probably Bubeck et al.
[8], Khim and Loh [7] and Crane and Xu [10]. Bubeck et al. [8] considered
identifying the first node of a growing tree but not a diffusion process. Khim
and Loh [7] extended the idea to the SI model but only for infinite regular
tree and asymptotic setting. Despite its theoretical merits, this method is
not practical. For example, even consider the situation of an infinite 4-
regular tree as the network structure, applying the method of Khim and Loh
[7] would indicate a confidence set of size 411 ≈ 5 × 106, regardless of the
infected size T . This is far too large for almost any applications, let alone the
fact that infinite regular tree itself is unrealistic. Crane and Xu [10] makes
the inference more effective, but still rely on the tree-structure assumption.

We instead take a completely different yet natural approach based on our
statistical framework for the problem. To ensure the validity of the inference
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for any network structures, we will rely on the general statistical inference
strategy for the confidence set construction. We first introduce a testing
process for the hypothesis H0 : s∗ = s against the alternative hypothesis
H1 : s∗ ̸= s. Given a discrepancy function ℓ, data y and the node s under
evaluation, define the testing statistic to be our loss Ts(y) = Esℓ(y, Z) for
any data y. Then the p-value of the test is defined to be

ψs = Ps(Ts(ζ(Z)) ≥ Ts(y)). (3.4)

where the probability Ps is over the randomness of the path Z generated
from the random diffusion process starting from s. The p-value is the central
concept in statistical hypothesis testing, and it gives a probabilistic charac-
terization of how extreme the observed y deviates from the expected range
for random paths that are truly from s [34]. For a level 1−α confidence set,
we compute ψs for all nodes s and construct the confidence set by

S(y) = {s : ψs(y) > α}. (3.5)

The following result guarantees the validity of the confidence set constructed
above.

Theorem 1. The confidence set constructed by (3.5) is a valid 1− α confi-
dence set.

Notice that Theorem 1 is a general result, independent of the network
structure or the specific test statistic we use. However, the validity of the
confidence set only gives one aspect of the inference. We would like to have
small confidence sets in practice since such a small set would narrow down our
investigation more effectively. The confidence set size depends on the network
structure and the corresponding effectiveness of the discrepancy function (the
test statistic). We will use the proposed ADiT as our primary choice of
discrepancy in defining our test statistic. As shown in our empirical study,
it gives excellent and robust performance across various network settings in
the SI model. There is an extended discussion on choosing the discrepancy
function included in Chapter 5.
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3.3 Algorithmic Construction of Confidence

Sets

The exact evaluation of the statistic Ts(y) and p-value ψs is infeasible for
general graphs since computing the probability mass function for general dif-
fusion processes is intractable, notable the IC model [11] and SI model. To
overcome this barrier, we resort to the Monte Carlo (MC) method for ap-
proximate calculation, with details in Algorithm 5. This vanilla version turns
out to be computationally inefficient. However, we will introduce techniques
to significantly improve its computation efficiency afterwards.

Remark 3 (Monte Carlo setup). Note that we have two layers of Monte
Carlo evaluations. The first layer is the loss function calculation in (3.6) and
(3.7), while the second layer is the p-value evaluation (3.8). The number
of samples used in the loss function calculation is denoted as ml, while the
number of samples used for p-value calculation is denoted as mp. This is
different from the classical Monte Carlo, but would not break the validity for
p-value calculation. The properties of p-value calculation by Monte Carlo
method have been studied in detail by [35, 36].

Remark 4 (Choice of the sample numbers ml and mp). In theory,
the computation in Algorithm 5 is exact when ml,mp → ∞. In practice,
simple guidance about the choice of ml and mp can be derived as follows.
The critical step in Algorithm 5 is Step 7 for the p-value calculation since
the MC errors from previous steps are usually in a lower order, although
there is a dependence on the choice of discrepancy function ℓ and . For the
correctness, we only need to worry about the evaluation at node s∗ when
the true p-value is close to α. Step 7 averages over mp indicators. By the
central limit theorem, the MC estimate at most misses the true p-value by
roughly 2

√
α(1− α)/mp. For example, if we are aiming for a 90% confi-

dence set where α = 0.1, setting mp = 10000 would indicate that the MC at
most misses the targeting confidence level by 0.006%, which is usually good
enough in most applications. For the main experiments, we use mp = 10000
and ml = 10000 and it has been sufficient in all situations. Notice that this
recommendation is more conservative than the ones used in classical statis-
tical inference problems [35]. In our experience, it might still be acceptable
to use a smaller mp, as mp = 2000 is used in Appendix A.6 where acceptable
confidence levels are observed.
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Remark 5 (Time complexity of the vanilla MC, and its trivial par-
allelization). The time complexity of a standard sequential implementation
of Algorithm 5 is dependent on the complexity of running diffusion process
σ. Let C = |Cy| be the number of candidate source nodes in Cy and let
N = E|ζ(z)| be the expected size of a diffusion sample. Then the number
of calls to σ is Õ((ml +mp)C) and loss calculation has an average complex-
ity of Õ(mpmlCN). For the SI model this comes out to a time complexity
of Õ((ml + mp)T

2 + mpmlT
2) 2 (1) the first term is due to the MC sam-

pling [37]; (2) the second term is from the statistic calculation (3.7) given
the MC samples. However, our algorithm can be trivially parallelized. In
particular, the loop in Step 3 can be distributed across different s ∈ Cy with-
out any need for communication. This leads to a parallel time complexity
Õ((ml + mp)T + mpmlT ) in the case of the SI model. It is worthwhile to
compare this time cost with the rumor center of [4] which has Õ(dT ) linear
complexity and d is the maximum node degree. But the algorithm has to
be sequential (thus non-parallelizable). In summary, Algorithm 5 has a bet-
ter dependence on the network density captured by d but has an additional
quadratic dependence on the number of samples ml and mp.

3.4 Fast Loss Estimation for the Canonical

Family

Amajor computational bottleneck of Algorithm 5 is theO(mpmlN) (O(mpmlT )
for SI) time for estimating Es(ℓ(y, Z)) in Equation (3.7) for every j since we
have to compute ψ̂ for mp samples, and each ψ̂ is the average over another
ml samples. Fortunately, it turns out that, for the canonical family of dis-
crepancy functions this step can be done in O((ml+mp)T ) time, highlighting
another advantage of this particular class of discrepancies.

Instead of computing T̂s in Equation (3.7) by summing over the sample
i = mp+1, · · · ,mp+ml, we can compute T̂s directly using only the “summary
information” of these samples that can be computed and cached in advance.
This insight is possible due to the following alternative representation of the

2As a convention, the Õ notation omits logrithmic terms.
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T̂s(y) function in Equation (3.7):

T̂s(y) = − 1

ml

∑
v:yv=1

mp+ml∑
i=ml+1

T∑
k=1

h(k)I(tzi(v) = k)

= − 1

ml

∑
v:yv=1

T∑
k=1

Mv,kh(k) (3.9)

whereMv,k counts the total number of samples in zmp+1, · · · , zmp+ml
in which

node v is the k’th infected node in the infection path. Let M ∈ Rn×T be
the matrix containing the entries Mv,k. Note that, there are at most mlN
nonzero entries in M since each sample only has N nodes. These entries
can be computed in O(mlN) time simply by updating the corresponding
Mv,k entries during sampling. With these non-zero Mv,k entries, we can then

compute ĥ(v) =
∑T

k=1Mv,kh(k) for all the v that showed up in our samples

in O(mlT ) time. Finally, given the previous ĥ(v), we can compute any T̂s(y)
in O(T ) time where y = ζ(z1), · · · , ζ(zmp), which thus in total takes an
additional O(mpT ) time. This overall takes O((ml +mp)T ) time. Note an
additional advantage of this approach is the independence ofM from sample
data y. This allows for the efficient storage of M for each choice of source j
if precomputing the samples for loss calculation.
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Algorithm 5 Vanilla MC for Confidence Set Construction

1: Input: MC sample numbers ml,mp, confidence level 1− α
2: Input: Network G, diffusion process σ, data y, discrepancy function ℓ
3: for each candidate source node s ∈ Cσ(y) do
4: Generatemp+ml samples zi ∈ Zσ, i = 1, · · · ,mp+ml from the diffusion

process σ with source s on G.
5: Estimate expected loss Ts(y) of data y as

T̂s(y) =
1

ml

mp+ml∑
i=mp+1

ℓs(y, zi). (3.6)

6: For path zj, j = 1, · · · ,mp, estimate Ts(ζ(zj)) as

T̂s(ζ(zj)) =
1

ml

mp+ml∑
i=mp+1

ℓ(ζ(zj), zi). (3.7)

7: Estimate the p-value ψs(y) as

ψ̂s(y) =
1

mp

mp∑
j=1

I(T̂s(ζ(zj)) ≥ T̂s(y)). (3.8)

8: end for
9: return level 1− α confidence set:

Cα(y) = {s ∈ VI : ψ̂s(y) > α}.
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Chapter 4

Monte Carlo Acceleration

In section 3.4, we reduced the computation time for estimating a single p-
value to Õ(mp+ml) for sampling for a single node and Õ((mp+ml)T ) for p-
value estimation. This is arguably the minimum possible in our framework for
the unweighted SI model since even sampling mp+ml samples already takes
Õ((mp + ml)T ), and the weighted SI, IC, and LT models take even longer
for sampling. In this section, we will introduce efficient strategies to reduce
another major computational cost in our algorithm – the MC sampling. Our
techniques will “borrow” MC samples of one node for the inference task of
another node by leveraging the network structure and properties of the SI
model. Consequently, we only need to generate MC samples for a subset of
the infected nodes, which may effectively reduce the computational cost.

4.1 Permuted Sampling for Isomorphic Nodes

When the network structure is in some sense “symmetric” for two nodes,
the inference properties of the MC samples from one node can be viewed
as stochastically equivalent to the MC samples from the other node after an
appropriate symmetric reflection. We call such a property node isomorphism.
Denote the node u’s kth order neighborhood– the set of all nodes (at most)
k hops away from u– by Nk(u). The following definition for isomorphism
rigorously formulates the aforementioned idea.

Definition 4. Any two nodes u, v in a network are kth-order isomorphic
if there exists a bijective mapping π : V → V , such that: (1) π(u) = v; (2)
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π(i) = i, if i /∈ {u, v}∪Nk(u)∪Nk(v); (3) if (u, v) ∈ E, then (π(u), π(v)) ∈
E,

For illustration, consider a simplified case of a node isomorphism where
u and v have exactly the same connections. In this case, π only swaps u and
v and remains the identity mapping for all other nodes. For this pair of u, v,
the diffusion process properties would be the same if we swap the positions
of u and v. Definition 4 is more general than this simplified case as it allows
permutations to nodes in the kth order neighborhoods of u and v. Under
this definition of isomorphism, the following theorem shows that we can use
the MC samples from one node to make inference of its isomorphic nodes
after applying the permutation.

Theorem 2. Let u and v be kth-order isomorphic under the permutation π.
If Z = {u, v1, v2, · · · , vT−1} is a random diffusion path from source u, then
define the permuted path as

Zπ = {π(u), π(v1), · · · , π(vT−1)}.

Then Zπ has the same distribution as a random diffusion path from source v
for any choice of diffusion process.

Note that Theorem 2 is only a sufficient condition. For example, it is
possible for two nodes u and v to share the same path diffusion distribution
if after applying a permutation π, the network structure is preserved within
the T neighborhood of u and v for the SI model with fixed T . Finding
all pairs of nodes that share a distribution is difficult for general diffusion
process, so we limit our focus to node isomorphisms.

4.1.1 Efficient Identification of Node Isomorphisms

To apply the MC samples of one node to its set of isomorphic counterparts
according to Theorem 2, we need an efficient algorithm to identify isomorphic
pairs and the corresponding permutations. Directly checking Definition 4
is costly and related to the widely studied problem of graph isomorphisms
discussed below. To efficiently find node isomorphisms, we introduce two
approaches for identifying permutations, the first of which is based on graph
spectral properties.

Let A be the network adjacency matrix with |V | = n and A = UΛUT be
the eigen-decomposition of A. Note that requiring A = Aπ̃ where Aπ̃ is the
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adjacency matrix resulting from applying π to V is equivalent to the third
condition in Definition 4. Given an arbitrary permutation from π : V → V ,
let P be the permutation matrix (by permutation rows of I according to π).
Then PAP T = Aπ̃ is the matrix of permuting the rows and columns of A
according to π. Notice that PP T = I, because PIP T is applying the same
permutation to the rows and columns of I, which always give I itself. In
particular, this property indicates that

PUΛ(PU)T

is also the eigen-decomposition of PAP T . In particular, let W be the per-
mutation matrix of π̃ in Definition 4. We then have

UΛUT = A = WAW T = WUΛ(WU)T .

Assume that among all eigenvalues, there are Q eigenvalues with multi-
plicity 1. Without loss of generality, denote them by λ1, · · · , λQ, and assume
they are sorted by non-increasing magnitude: |λ1| ≥ |λ2| ≥ · · · ≥ |λQ| > 0.
Notice that for these eigenvalues, the corresponding eigenvectors are unique
up to a sign. Therefore, we have

Uq = τqPUq, τq ∈ {±1}
where Uq is the qth column of U and the eigenvector for λq. Also notice that,
if it happens that u and v are kth-order isomorphic but τq = −1, notice that
by the above relation, we know that Ui,q = 0 if i is not within k-hops to either
of the nodes. So this condition provides a convenient to way to perform an
adaptive check of node isomorphisms – we can start from a lower order first
and stop earlier if we find they are isomorphic in a lower order.

Note that this approach contains a potentially significant computational
cost for large graphs when performing the eigen-decomposition of A and
subsequent comparisons of columns of U . This can be avoided, however,
because a kth-order permutation only affects edges the k + 1 neighborhoods
of u and v. This leads to the following proposition.

Proposition 2. Let G′ be a subgraph of G induced by V ′ such that {u, v} ∪
Nk+1(u) ∪Nk+1(v) ⊆ V ′ ⊆ V . Then u and v are kth order isomorphic on G
if and only if the pair is kth order isomorphic on G′.

This allows us to adaptively check an isomorphism candidate pair u, v on
the subgraph of G induced by yk+1, the k+1 neighborhood of diffusion sample
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y. A description of this algorithm, along with an alternate degree based
approach to identifying node isomorphisms is described in Appendix A.3.

4.1.2 Relation With the Graph Automorphism Prob-
lem

The graph isomorphism problem is a well studied problem in graph the-
ory concerning the existence of a structure preserving mapping between two
graphs G1 and G2. While it is known to reside in NP, it is one of the few prob-
lems where it is not known whether is lies in P or NP-Complete [38, 39, 40].
Efficient algorithms have been shown to exist for specific graph structures,
such as trees, planar graphs, and graphs with bounded degree or eigenvalue
multiplicity, however results for general network structures are not known
[40, 41, 42, 43, 44]. The problem of identifying node isomorphisms seen in
this research is closely related to the graph automorphism problem, which is
a sister problem to finding graph isomorphisms.

Definition 5. Given graph G = (V,E), does there exists a non-trivial per-
mutation π : V → V such that if (u, v) ∈ E, then (π(u), π(v)) ∈ E?

The focus of this research is not to provide a heavy analysis of this prob-
lem, but instead to include a practical approach to finding node isomorphisms
that is effective within the context of the DSI problem. There exist prac-
tical tools for solving the graph automorphism problem such as nauty [45],
bliss [46], and saucy [47], however we observe that in the case of real world
networks, high order node isomorphisms are extremely uncommon. This
motivate focusing on finding lower order node isomorphisms quickly on the
infected subset of a graph G.

4.2 Surjective Importance Sampling and Single-

Degree Nodes in the SI Model

A node with only one connection in the network is called a single-degree node.
Suppose node u ∈ VI is a single degree node with the only neighbor v0 that
is also infected. Since any diffusion process starting from u must pass v0,
we can then use the distribution of paths from v0 to infer the distribution
of paths from u. However, the converse is not true — a diffusion path from
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v0 may not pass u, and even if it passes u, this may not occur as the first
infection. Therefore, a certain mapping is needed to connect the two diffu-
sion processes. The mapping is dependent on the choice of diffusion process,
so here we will be considering the SI model, however alternate versions of
this result exist for the IC and LT models. Importantly the method of sur-
jective importance sampling is a general approach. The following theorem
formulates this intuition.

Theorem 3. Let u be a single-degree node in the graph G with the only
neighbor node v0. If a path z ∈ Zσ starting from v0 contains u

z = {v0, s1, s2, · · · , sK−1, u, sK+1, · · · , sT},

define z’s matching path from u as

fu(z) = {u, v0, s1, · · · , sK−1, sK+1, · · · , sT}. (4.1)

In this case, the likelihood ratio between z and fu(z) is

p (fu(z)|u)
p (z|v0)

=
1

P (u|v0, s1 · · · sK−1)

× 1∏K−1
k=1 (1− P (sk|v0, s1 · · · sk−1))

(4.2)

If the path z from v0 that does not contain u, we define the ratio p (fu(z)|u)/p (z|v0)
to be 0.

Notice that all terms on the right-hand side of (4.2) are available when we
sample a path from the diffusion process starting at v0, thus given a sampled
path z, computing the likelihood ratio only introduces negligible computa-
tional cost. Intuitively, according to Theorem 3, when the MC samples of
v0 are available, they can be used to compute the p-value for node u based
on a similar idea to importance sampling [48]. However, regular importance
sampling cannot be directly applied because the likelihood ratio is only avail-
able between z and fu(z) under the mapping of fu. Therefore, we need a
generalized version of the importance sampling. We name this process the
surjective importance sampling and give its property in the following theo-
rem. We believe that this theorem could be of general interest beyond the
context of diffusion source identification.
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Theorem 4 (Surjective Importance Sampling). Suppose p1 and p2 are two
probability mass functions for discrete random vector Z defined on C1 and C2.
Let E1 and E2 denote the expectation with respect to p1 and p2, respectively.
Given surjection ϕ : C ′

1 → C2, defined on a subset C ′
1 ⊂ C1, we define the

inverse mapping by ϕ−1(z̃) = {z ∈ C ′
1 : ϕ(z) = z̃} for any z̃ ∈ C2. For a given

bounded real function of interest, g, define

η = E2[g(Z)] and η̂ =
1

m

m∑
i=1

g(ϕ(Zi))

|ϕ−1(ϕ(Zi))|
p2(ϕ(Zi))

p1(Zi)

where Z1, Z2, · · · , Zm is a size-m i.i.d. sample from distribution p1, and if
Zi ̸∈ C ′

1, we define p2(ϕ(Zi)) = 0. We have

lim
m→∞

η̂ = η a.s.

Notice that the standard importance sampling is a special case of Theo-
rem 4 when ϕ is the identity mapping. Theorem 3 and 4 together would serve
as a cornerstone for our use of the MC samples from v0 to make inference of
u.

Corollary 1. For a single degree node u and its neighbor v0, let zi, i =
1, · · · ,m be the m i.i.d. paths generated from the diffusion process with source
v0. For any bounded function g, we have

lim
m→∞

1

m

m∑
i=1

g (fu(zi))
P (fu(zi)|u)
P (zi|v0)

1

T
= Eu[g(Z)] a.s.

in which fu(zi) and the likelihood ratio is given by Theorem 3.

Based on Corollary 1, when g(z) = ℓ(y, z) or g(z) = I(Tu(ζ(z)) ≥ Tu(y)),
E[g] corresponds to the test statistic Tu(y) or the p-value ψu(y). Conse-
quently, the MC sampling for u can be avoided. Instead, to find the p-
value for u, Equation (3.7) in Algorithm 5 can be replaced by T̂u (ζ (fu (zj)))
equalling the following

1

ml

mp+ml∑
i=mp+1

ℓ (ζ (fu (zj)) , fu(zi))
P (fu(zi)|u)
P (zi|v0)

1

T
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and Equation (3.8) can be replaced by ψ̂u(y) equalling the following

1

mp

mp∑
i=1

I
(
T̂u (ζ (fu(zj))) ≥ T̂u(y)

)
P (fu(zi)|u)
P (zi|v0)

1

T
,

where zj, j = 1, · · · ,ml + mp are the MC samples generated from v0.

The same operation can be used for T̂u (y)). The computational strategy
for canonical discrepancy functions can also be extended in this setting (see
Appendix A.2).
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Chapter 5

Experiments

In this chapter a suite of experimental results are presented to provide an
experimental verification of the confidence set method and an analysis of the
model on different networks, diffusion processes, and discrepancy functions.

5.1 Evaluation Setup Details

The implementation of our methods are provided in the form of a Python
package 1. The code is structured as a python package with three primary
sub-packages, each corresponding to a particular programmable facet of the
confidence set model. “diffusion source.graphs” provides classes for a super-
set of the graphs tested in this section, as well as a wrapper for importing
arbitrary graph structures. “diffusion source.infection model” provides an
abstract implementation of the confidence set method that accommodates
the general definition for σ. Additionally, explicit implementations for the
SI, IC, and LT models are included. Finally “diffusion source.discrepancies”
provides implementations of the set of the discrepancy functions studied in
this research. Additional information about usage can be found with the
code base, however the code importantly provides an abstract design that al-
lows the results presented in this research to easily be extended to alternate
choices of diffusion process, network structure, and discrepancy function.

1The code can be found on Github at https://github.com/lab-sigma/Diffusion-Source-
Identification.
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5.1.1 Implementation Challenges and Minor Optimiza-
tions

Here we note some minor optimizations found in the implementation not
discussed in the main body. First, to verify the statistical properties of
the confidence set we require a large number of repetitions of the Monte
Carlo procedure. This poses a substantial compute challenge in generating
O(KN(ml +mp)) samples where N is the average infection sample size and
K is the number of trials. One optimization is to leverage the property of
the canonical family of loss functions to precompute the infection frequency
matrix M described in section 3.4 for each choice of source node s. While
storing the full set ofml samples used in loss calculation is too space inefficient
in practice, storing M is possible for moderately sized networks (∼ 3gb for
3182 node network with time depth). This relegates the ml factor to O(nml)
number of samples in a preprocessing step where |V | = n. This strategy is
impractical for real world use, but is very effective when studying different
choices of discrepancy function.

Another difficulty was observed when moving from the unweighted to
weighted SI model. There is a linear complexity discrepancy during the edge
sampling step due to having a weighted distribution (step 4 in Algorithm 1
and Algorithm 2). If we restrict the edge weights to integer values, the dif-
ficulty of sampling the edge can be recouped up to a factor of the average
node degree d. This proves to be adequate for integer weight networks, how-
ever without parallelization, sampling for general weighted networks proves
to be slow in practice. A different problem is observed for the IC and LT
models where the runtime depends heavily on how large the sample infected
set |y| = T is. As a result, to provide accurately distributed data, the IC
and LT models are only studied on smaller networks.

5.1.2 System Used in Evaluation

All experiments were executed on the UVa research compute system Rivanna.
Executions of each algorithm were submitted as individual jobs with the
Slurm workload manager and run in parallel. Rivanna is a heterogeneous
cluster with 595 nodes and over 22598 cores. More information can be found
at Rivanna’s overview page.
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5.1.3 Network Details

Three random network models were chosen for evaluation of the unweighted
SI model: 4-regular trees, the preferential attachment model [49], and the
small-world (S-W) network model [50]. In network science, the preferential
attachment model is usually used to model the scale-free property of networks
that is conjectured by many as ubiquity in real-world networks [51]. The
small-world property is believed to be prevalent in social networks [50]. The
network size is N = 1365 (the size of regular tree with degree 4 and depth
6). Details are shown in table 5.1

Table 5.1: Properties of each of the synthetic unweighted networks used in the
evaluation.

Name N Avg. Degree Max Degree

4-reg. tree 1365 0.999 4

Pref. Att. 1365 0.999 70

S-W 1365 2 7

Evaluations of weighted diffusion processes are on a set of five real world
networks based on global airport flight traffic from (3182 nodes) [52], a statis-
tician citation network (2654 nodes) [53], and three smaller hiring networks
(Business School, Computer Science, and History) [54]. We consider both an
undirected and directed version of these networks. The undirected version
is constructed by using the weights in the upper triangle of the adjacency
matrix in each network, unless the weight wij = 0 and wji > 0 with i > j.
Properties for each of these networks are included in tables 5.2 and 5.3.

5.2 Evaluation of the SI model on Synthetic

Networks

In this section, we evaluate our proposed methods on the synthetic network
models with the unweighted SI model. In these experiments, both Monte
Carlo numbers, mp and ml, are 10000. Source nodes are randomly sampled,
and the reported results are an averaged across 200 replications.
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Table 5.2: Properties of each of the weighted networks used in the evaluation.
(undirected)

Name N Avg. Degree Max Degree

AFT 3182 5.90 248

Stat. Cit. 2654 7.55 298

BSchool 113 26.1 111

Comp. Sci 206 13.3 172

History 145 15.6 124

Table 5.3: Properties of each of the weighted networks used in the evaluation.
(directed)

Name N Avg. Deg. Max in Deg. Max out Deg.

AFT 3182 11.6 238 239

Stat. Cit. 2654 8.13 143 239

BSchool 113 30.4 111 51

Comp. Sci 206 14.2 172 33

History 145 16.7 124 33
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Figure 5.1: Average confidence set size as a function of confidence level for syn-
thetic networks in the unweighted SI model.

5.2.1 Confidence validity evaluation on the SI model

First, we set the infection size T = 150. We start with evaluating the perfor-
mance of the single-point source estimation accuracy from the rumor center
and distance center of [4, 7, 8, 9], as well as estimator using our proposed
framework with discrepancy functions ℓse and ADiT. The result is shown in
the Table 5.4. Though the two estimators based on our framework are bet-
ter, the overall message from the table is not promising. All of the methods,
including ours, give poor accuracy that is too low to be useful in applications.
Such a negative result convincingly shows that the DSI problem is generally
too difficult for the single-point estimation strategy to work, and exploring
the alternative confidence set inference is necessary.

Table 5.4: The correct rate of single-point estimation methods across 200 replica-
tions.

reg. tree Pref. Att. S-W

Rumor center 0 0 0.004
Dist. center 0 0 0
Euclidean (ours) 0 0 0.099
ADiT (ours) 0 0 0.128

Table 5.5 shows the coverage rate of the confidence sets, with the squared
Euclidean distance and the ADiT as the discrepancy functions. Notably, the
proposed confidence set procedure delivers the desired coverage (up to the
simulation error). Meanwhile, the size of the confidence set varies substan-
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Table 5.5: The average coverage rate of the confidence sets across 200 replications.
The standard error for the coverage rate is about 2.1% and 2.8% for 90% and 80%
confidence sets, respectively.

4-reg. tree Pref. Att. S-W

Euclidean-90% 93% 88% 91%
size 79.4 87.8 16.3

ADiT-90% 91.5% 89% 90.5%
size 58.1 72.7 17.98

Euclidean-80% 82.5% 80% 80.5%
size 69.1 73.2 10.6

ADiT-80% 81.5% 80.5% 83.5%
size 48.8 59.7 11.5

tially depending on the network structure. For regular trees and scale-free
networks, the ADiT works much better than the Euclidean distance, indicat-
ing that the diffusion order is informative in this type of network structure.
For the small-world networks, the two are very similar. This may indicate
that for well-connected networks, the diffusion order is less informative. In
general, we believe the adaptivity of the ADiT- based confidence set is always
preferable.

To obtain a comprehensive view of the tradeoff between the set size and
confidence level, we show the relationship between the confidence set’s av-
erage size and the confidence level in Figure 5.1. Notably, the relation is
sub-linear. In connection with the single-point estimation results, notice
that for small-world networks, the confidence set with a confidence level 20%
has average size of around 1. In contrast, the regular tree and preferential
attachment network are more difficult, and to guarantee at 10%, the average
size of the confidence set is already about 5. These observations verify the
results in Table 5.4 and support our argument that, in general, inferring the
source by a single-point estimator is hopeless. Figure 5.2 shows the variation
of the size with respect to T . It can be seen that the size, within the current
range, follows a roughly linear trend with T . Again, though the ADiT is
slightly worse than the Euclidean loss in small-world networks, the differ-
ence is negligible. In the other two settings, the improvement of ADiT is
significant.
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Figure 5.2: The average size of 90% confidence sets for T values.

Table 5.6: The timing comparison of the sequential running time for the proposed
pooled MC strategies (in sec.).

reg. tree Pref. Att. S-W

Vanilla MC 2606 3129 3209

Import. Sampl. 1679 1730 3253

Isomorphism 1657 1988 3138

Both 1219 1360 3114

5.2.2 Computational Improvement by the pooled MC

Finally, we also evaluate the timing improvements achieved by the pooled
MC strategies. The power of the pooled MC strategies depends on network
structures, as expected. The timing comparison for the pooled MC strategies
is included in Table 5.6. The timing included is only the sequential version
of our method for a fair comparison with the rumor center. As can be seen,
with both of the pooled MC strategies used, we can reduce the timing by
about 60% for tree structure and the preferential attachment networks, but
the effects on small-world networks are negligible.

Meanwhile, notice that our inference procedure can be parallelized. We
give a parallel algorithm in the Appendix section (see Algorithm 7 in Ap-
pendix A.4). It needs MC sampling for only one node in each group, and the
calculations for other nodes can be done using pooled MC methods. Table 5.7
includes the timing results of the parallel version implementation based on
20 cores in the same settings as Table 5.6. With 20 cores, the time needed for
a confidence set construction is around 1 minute for cases when the pooled
MC methods are effective. For reference, the average timing for finding the
rumor center is about 2 seconds. However, with the extra computational
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cost, our method provides confidence sets at all specified levels within one
run, with guaranteed accuracy for any network structures. We believe it is
generally a wise tradeoff.

Table 5.7: Comparison of the parallel running time for the proposed pooled MC
strategies (in sec.) on 20 cores.

reg. tree Pref. Att. S-W

Vanilla MC 150.8 176.0 184.9

Import. Sampl. 116.7 96.1 185.9

Isomorphism 111.0 130.3 184.3

Both 60.4 76.5 183.4

To obtain a better sense of its practical effectiveness, we also evaluate
the timing improvement brought by the pooled MC on real-world network
structures. In particular, we take 381 network data studied in [55] from 6
domains (biological, economic, informational, social, technological and trans-
portation networks). The pooled MC can give more than 40% computational
improvement on economic and social networks, and deliver 10% to 20% im-
provement on biological and informational networks. Details can be found
in Appendix A.5.

5.3 Comparison of Different Discrepancies and

Diffusion Processes

Here, we present a comparison of our model for different diffusion pro-
cesses and choices of discrepancy functions. All figures were generated with
ml = 10000, mp = 2000, and K = 1000 replications unless noted otherwise.
Weighted SI model evaluations are on all five of the previously described
weighted networks. IC and LT results focus on the three hiring networks. In
addition to L2 and ADiT loss functions, we consider two additional losses.
First is “Averaged Deviation Time” (ADT) which is simply the inverse
of ADiT.

h(tz(v)) = tz(v). (5.1)
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This loss is included in all cases. The other loss is included for the case
of IC and LT because the canonical form of the L2 loss depends on a fixed
infection size, which does not apply to those two models. This loss is non-
canonical but still admits efficient computation strategies based on the stored
matrix M . We denote it as “Z−” and it represents the count of how many
nodes are found in the diffusion path but not in the sample data.

Z−(y, z) =
∑

v:ζ(z)v=1

I(v ̸∈ y) (5.2)

For correctness we will denote the canonical “L2” loss in the IC and LT
models as Z+.

Z+(y, z) = −
∑

v:yv=1

I(v ∈ z) (5.3)

We start by observing experimental coverage levels in the unweighted
SI model. The trends shown in Figure 5.3 indicate that the true coverage
for closely matches the theoretical lower bound. Points where the observed
confidence drops below the nominal level can be explained by the variance
introduced by approximating the coverage with repetitions of the model.
Figure 5.4 shows the same coverage relationship on the airport flight traffic
and statistician citation networks.
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Figure 5.3: The relationship between confidence level (1 − α) and true coverage
level in the Unweighted SI model (K = 200, ml = mp = 10000).

The observed true coverage levels for confidence construction in the case
of the SI model matches the results shown in the previous section. Figure 5.1
shows a sublinear relationship between the confidence level and the confidence
set size for L2 and ADiT in the unweighted case. As a comparison, Figure 5.5
shows a similar sublinear relationship between the confidence level and the
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Figure 5.4: The relationship between confidence level (1 − α) and true coverage
level in the unweighted SI model (undirected).

confidence set size. This is unsurprising given the similarity between the
unweighted and weighted diffusions.
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Figure 5.5: Average confidence sets size as a function of confidence level for two
networks in the weighted SI model (undirected).

In figure 5.5, ADiT outperforms L2 while ADT falls between the two. In
all cases we observe a sublinear function of the confidence set size, meaning
the Monte Carlo algorithm is able to provide a better confidence set size
than uniformly random sampling from the infected sample y. Inference in
the small world networks appears to be easier than other network models.
If the intuition for designing ADiT is to put more importance on nodes
infected early in the diffusion procedure, then a reasonable question is why
ADT, which applies the inverse relationship, outperforms L2. This suggests
that the incorporation of infection order information into the discrepancy
function is critical to designing effective loss functions.

Now, looking at the results for coverage in the directed case of the SI
model shown in figure 5.6, confidence set performance appears poor for low
confidence levels. This is contrasted by the true coverage levels for these
confidence sets, shown in figure 5.7. If we instead plot the confidence set
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Figure 5.6: Average confidence sets size as a function of confidence level for two
networks in the weighted SI model (directed).
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Figure 5.7: True confidence set coverage function of confidence level for two net-
works in the weighted SI model (directed).

size against the true confidence level, as in figure 5.8, then we see a more
useful relation. This can be explained by considering a difficulty in directed
networks not found in undirected ones, specifically for the fixed infection size
SI model. If starting from a particular source is unable to infect the full set
of T = 150 nodes, then the resulting infected set is guaranteed to include
all nodes it is able to infect. Moreover, all candidate nodes (which might
be a single one) will produce identical infected sets, making useful inference
impossible. In the case of the flight traffic network, most nodes are strongly
connected, while that is not the case in the statistician citation network.

Moving on to the undirected IC and LT models, we observe a similar
confidence set size relation. The confidence set size results for the IC and LT
models in figure 5.9 for the BSchool hiring network then seem to suggest that
the discrepancy functions considered thus far are not well suited for those
models.

Comparing the confidence set size to the true confidence level shown in
figure 5.10, however, we observe an interesting trend. While the confidence
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Figure 5.8: Average confidence sets size as a function of confidence level for two
networks in the weighted SI model (undirected).
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Figure 5.9: Average confidence set size as a function of confidence level for the IC
(left) and LT (right) models on the business school hiring network.

set size appears worse than linear, the true confidence level for the 1−α level
confidence sets for smaller values of α are larger than the nominal level for
both model which reflects the relation seen in the confidence set sizes for each
model. This is reflected in figure 5.11, which shows that the confidence set is
approximately equal to (1−α) times the infected set size. For the IC and LT
models we see that all of the loss functions shown here display nearly identical
performance. This shows that the confidence set matches the performance of
randomly selecting (1−α) of the infected nodes in these two models. Results
for the directed case show a similar trend are left to appendix A.6.. This is
a potential future direction of study to better understand the difficulty of
inference in the DSI problem for the case of IC and LT.
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Figure 5.10: True coverage level as a function of confidence level for the IC (left)
and LT (right) models on the business school hiring network.

0.0 0.2 0.4 0.6 0.8 1.0
True Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 S
ize

BSchoolHiring
Z+
ADiT
ADT
Z-

0.0 0.2 0.4 0.6 0.8 1.0
True Confidence

0.0

0.2

0.4

0.6

0.8

1.0
BSchoolHiring

Figure 5.11: Confidence set size compared against the true coverage level for the
IC (left) and LT (right) models on the business school hiring network.
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Chapter 6

Future Directions and
Conclusion

The problem of discrepancy function design for general networks remains an
open problem and a potential focus for future work. Considering a more
general class of loss functions may be necessary to achieve good performance
across different diffusion processes and network structures. One limitation
of this model is in generalizing to multiple sources. The study of IC and
LT models in other problems (e.g. influence maximization) typically allow
diffusions to begin from a set of sources, however the current confidence set
algorithm requires enumeration of the combination of source nodes to achieve
the desired statistical confidence which is impractical. Another potential
direction for further study is in considering cases with limited information
about either the infected status or topology of the network. This might better
match real world settings where full information about network topology or
the status of an epidemic is usually unavailable.

This research contributes a statistical inference framework for diffusion
source identification on networks. Compared with previous methods, our
framework is more general and renders salient insights about the problem.
More importantly, within this framework, we can construct the confidence
set for the source node in a more natural and principled way such that the
success rate can be guaranteed on any network structure and any diffusion
procedure. To our knowledge, our method is the first DSI method with
theoretical guarantees for general network structures. We also propose effi-
cient computational strategies that are potentially useful in other problems
as well.
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Appendix A

Appendix

Appendix to “Diffusion Source Identification
on Networks with Statistical Confidence”

A.1 Proofs

A.1.1 Proof of Proposition 1

Both the two claims are straightforward to show by using the definition.
First, we have

Esℓrc(y, z) = 1− EI(y = ζ(z)) = 1− Ps(ζ(Z) = y).

So minimizing the loss is equivalent to the MLE, which is equivalent to the
rumor center in infinite regular trees.

Secondly, notice that that both y and ζ(Z) are n dimensional binary
vectors. So

∥y − ζ(Z)∥22 =
∑
i

I(yi ̸= ζ(Z)i)

which is the symmetric difference between the set {i : yi = 1} and {i :
ζ(Z)i = 1}.

A.1.2 Proof of Theorem 1

Define qαT,s∗ = inft{t : Ps∗(Ts∗(ζ(Z)) ≥ t) ≤ α}. Notice that qαT,s∗ can be seen
as one generalized definition for the right quantile of the distribution of the
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random variable Ts∗(Ỹ ), where Ỹ := ζ(Z) is a random infection status of the
network generated by the diffusion process starting from s∗.

Now assume Y is a random infection status from the diffusion process
from s∗. We have two cases. First, let Ps∗(Ts∗(ζ(Z)) ≥ qαT,s∗) ≤ α:

According to the definition of the p-value, we have

Ps∗ (s
∗ ∈ S(Y )) = Ps∗ (ψs∗(Y ) > α)

= Ps∗

(
Ps∗

(
Ts∗(Ỹ ) ≥ Ts∗(Y )

)
> α

)
= Ps∗

(
Ts∗(Y ) < qαT,s∗

)
= 1− Ps∗

(
Ts∗(Y ) ≥ qαT,s∗

)
.

Note that since s∗ is the true source node, Ts∗(Y ) and Ts∗(Ỹ ) are following
exactly the same distribution, thus

Ps∗ (s
∗ ∈ S(Y )) = 1− Ps∗

(
Ts∗(Y ) ≥ qαT,s∗

)
≥ 1− α.

Now, let Ps∗(Ts∗(ζ(Z)) ≥ qαT,s∗) > α

Ps∗ (s
∗ ∈ S(Y )) = Ps∗ (ψs∗(Y ) > α)

= Ps∗

(
Ps∗

(
Ts∗(Ỹ ) ≥ Ts∗(Y )

)
> α

)
= Ps∗

(
Ts∗(Y ) ≤ qαT,s∗

)
= 1− Ps∗

(
Ts∗(Y ) > qαT,s∗

)
.

We then get a similar relationship.

Ps∗ (s
∗ ∈ S(Y )) = 1− Ps∗

(
Ts∗(Y ) > qαT,s∗

)
≥ 1− α.

A.1.3 Proof of Theorem 3

Given a path generated by the diffusion process starting from v0 containing
u, denoted by

z = {v0, s1, s2, · · · , sK−1, u, sK+1, · · · , sT},
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we match it to the path fu(Z) defined as

fu(z) = {u, v0, s1, · · · , sK−1, sK+1, · · · , sT}.

We start from the probability mass of z starting from v0. By using the
Markov property, we have

p(z|v0) =P(s1|v0)P(s2|v0, s1) · · ·P(sK−1|v0, s1, · · · , sK−2)

× P(sK+1|v0, · · · , u) · · ·P(sT |v0, · · · , sT−1) (A.1)

× P(u|v0, s1, · · · , sK−1)

In contrast, for the path fu(z), we have

P(fu(z)|u) =P(v0|u)P(s1|u, v0)P(s2|u, v0, s1) · · ·P(sK−1|u, v0, s1, · · · , sK−2)

× P(sK+1|u, v0, · · · , sK−1) · · ·P(sT |u, v0, · · · , sT−1)

=P(s1|u, v0)P(s2|u, v0, s1) · · ·P(sK−1|u, v0, s1, · · · , sK−2)

× P(sK+1|u, v0, · · · , sK−1) · · ·P(sT |u, v0, · · · , sT−1). (A.2)

Notice that the conditional probability P(sk+1|v0, · · · , u, sK+1, · · · sk), k >
K only depends on the infection status before the kth infection and is invari-
ant to the infection order. This property indicates that all terms after the
K + 1th (in the second rows) of (A.1) and (A.2) are equal.

Next, we compare the terms in the first line in each of (A.1) and (A.2).
Notice that for each k < K, the term P(sk|v0, s1, · · · , sk−1) is identical for
each available connections given the infected nodes v0, s1, · · · , sk−1 while the
term P(sk|u, v0, s1, · · · , sk−1) is identical on all available edges given the in-
fected nodes u, v0, s1, · · · , sk−1. The only difference in the two infected sets
is on u. Since u has only one connection to v0, at each point, the number of
available infecting edges is one more in the former case. Therefore, we have

P(sk|u, v0, s1, · · · , sk−1) =
1

1− P(sk|v0, s1, · · · , sk−1)
P(sk|v0, s1, · · · , sk−1), k < K.

In addition, notice that in the third line of (A.1), there is one extra term
that does not appear in (A.2). Combining the aforementioned three relations,
we final obtain probability mass factor to be

P(fu(π)|S0 = u)

P(π|S0 = v0)
=

1

P(u|v0, s1, · · · , sK−1)

K−1∏
i=1

1

1− P(si|v0, s1, · · · , si−1)

(A.3)
Moreover, if z does not contain u, we set the ratio to be 0.
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A.1.4 Proof of Theorem 4

Since Zi’s are a random sample from p1, under the current assumption, by
the strong law of large numbers, we have

P
(
η̂ → E1[

g(ϕ(Z))

|ϕ−1(ϕ(Z))|
p2(ϕ(Z))

p1(Z)
]

)
= 1.

Notice that ϕ is a surjection. Therefore, the term E1[
g(ϕ(Z))

|ϕ−1(ϕ(Z))|
p2(ϕ(Z))
p1(Z)

] can
be rewritten as

E1[
g(ϕ(Z))

|ϕ−1(ϕ(Z))|
p2(ϕ(Z))

p1(Z)
] =

∑
z∈C1

g(ϕ(z))

|ϕ−1(ϕ(z))|
p2(ϕ(z))

p1(z)
p1(z)

=
∑
z∈C1

g(ϕ(z))

|ϕ−1(ϕ(z))|
p2(ϕ(z))

=
∑
z∈C′

1

g(ϕ(z))

|ϕ−1(ϕ(z))|
p2(ϕ(z)) +

∑
z∈C1/C′

1

g(ϕ(z))

|ϕ−1(ϕ(z))|
p2(ϕ(z))

=
∑
z∈C′

1

g(ϕ(z))

|ϕ−1(ϕ(z))|
p2(ϕ(z))

=
∑
z̃∈C2

∑
z:ϕ(z)=z̃

g(ϕ(z))

|ϕ−1(ϕ(z))|
p2(ϕ(z))

=
∑
z̃∈C2

∑
z:ϕ(z)=z̃

g(z̃)

|ϕ−1(z̃)|
p2(z̃)

=
∑
z̃∈C2

∑
z∈ϕ−1(z̃)

g(z̃)

|ϕ−1(z̃)|
p2(z̃)

=
∑
z̃∈C2

|ϕ−1(z̃)| g(z̃)

|ϕ−1(z̃)|
p2(z̃)

=
∑
z̃∈C2

g(z̃)p2(z̃)

= E2[g(Z)].

A.1.5 Proof of Corollary 1

We will use fu(z) in place of ϕ to apply Theorem 4. The only remaining step
is to find |fu(f−1

u (z))|. By the definition of fu in Theorem 4, it is easy to
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see that the other T − 1 nodes (except u and v0) and their order uniquely
determine to the mapped path. Therefore, |fu(f−1

u (z))| would always be T
in this situation.

A.1.6 Proof of Theorem 2

Notice that, given σ, the probability mass function of a diffusion path only
depends on the network A and the source node. Condition 1 of Definition 4
indicates that Zπ starts from v. Condition 2 and condition 3 of Definition 4
together indicate that Zπ is also a valid diffusion path. Condition 3, in
particular, indicates that

pu(Z) = pv(Zπ).

Now define can define π−1 to be the inverse of π. For any Z̃ from v, for
the same reason, Z̃π−1 is also a valid diffusion path starting from u. In
particular, we have Z = (Zπ)π−1 . Therefore, Zπ has the same sample space
and probability mass function as the random diffusion path from v.

A.1.7 Proof of Proposition 2

For convenience, let

Nk+1(u, v) = {u, v} ∪Nk+1(u) ∪Nk+1(v)

and
Nk(u, v) = {u, v} ∪Nk(u) ∪Nk(v)

Now, let u and v be kth order isomorphic on G′ with bijective mapping
π′ satisfying Definition 4. Define π : V → V such that π(i) = π′(i) for i ∈ V ′

and π(i) = i otherwise. Now, because π′ is a valid kth-order isomorphic
permutation for u and v on G′, we get π(u) = π′(u) = v and π(v) = π′(v) = u
showing Condition 1. Second, because π′ is a valid kth order permutation
on V ′, we get

π(i) = π′(i) = i for i ∈ V ′ \Nk(u, v)

and we get π(i) = i for i ∈ V \ V ′, showing Condition 2. Finally, consider
three cases for edge (i, j) ∈ E. First, if i, j ∈ V ′, then (π(i), π(j)) ∈ E by
the validity of π′. Second, if i, j ∈ V \V ′, then (π(i), π(j)) = (i, j) ∈ E holds
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as well. Finally, let i ∈ V ′ and j ∈ V \ V ′. In this case, if i ∈ Nk(u, v), then
it must hold that i ∈, which contradicts Nk+1(u, v) ⊆ V ′. Then, because π′

corresponds to a kth order mapping in V ′ and i ̸∈ Nk(u, v), it must hold that
(π(i), π(j)) = (i, j) ∈ E. This proves Condition 3 and shows that u and v
are kth order isomorphic on G.

Now instead let u and v be kth order isomorphic on G with bijective
mapping π. Define π′ : V ′ → V ′ such that π′(i) = π(i). Then, Conditions
1 holds from π(u) = v and π(v) = u and u, v ∈ V ′. Condition 2 holds
because π is kth order in G, and Nk(u, v) ⊆ V ′. Finally, if (i, j) ∈ E ′, then
(π′(i), π′(j)) = (π(i), π(j)) ∈ E. This shows that u and v are kth order
isomorphic on G′.

A.2 Loss Function Computation Acceleration

for Surjective Importance Sampling

The calculation strategy for canonical discrepancy functions can also be fur-
ther generalized to the weighted averaging scenario used for the single-degree
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nodes in Section 4.2. Specifically, there we need to calculate terms like

1

ml

mp+ml∑
i=mp+1

ℓ (y, fu(zi))
P (fu(zi)|u)
P (zi|v0)

1

T
=

= − 1

ml

mp+ml∑
i=mp+1

∑
v:yv=1

I(v ∈ fu(zi))h(tfu(zi)(v))
P (fu(zi)|u)
P (zi|v0)

1

T

= − 1

ml

∑
v:yv=1

mp+ml∑
i=mp+1

I(v ∈ fu(zi))h(tfu(zi)(v))
P (fu(zi)|u)
P (zi|v0)

1

T

= − 1

ml

∑
v:yv=1

mp+ml∑
i=mp+1

I(v ∈ fu(zi))

[
T∑

k=1

I(tfu(zi)(v) = k)h(k)

]
P (fu(zi)|u)
P (zi|v0)

1

T

= − 1

ml

∑
v:yv=1

mp+ml∑
i=mp+1

T∑
k=1

I(v ∈ fu(zi))I(tfu(zi)(v) = k)h(k)
P (fu(zi)|u)
P (zi|v0)

1

T

= − 1

ml

∑
v:yv=1

T∑
k=1

h(k)

mp+ml∑
i=mp+1

I(tfu(zi)(v) = k)
P (fu(zi)|u)
P (zi|v0)

1

T

 .
Therefore, to use this strategy in Section 4.2, when general MC samples from
v0, in addition to caching M , we also want to cache the matrix adjusted by
the factor

M
(v0→u)
v,k =

mp+ml∑
i=mp+1

I(tfu(zi)(v) = k)
P (fu(zi)|u)
P (zi|v0)

1

T
.

A.3 Algorithms for Node Isomorphism Iden-

tification

First, details for applying the spectral analysis to isomorphism identification
is shown in Algorithm 1.

Algorithm 1 (Algorithm to check isomorphism up to kth order). Assume
we have U (Q) = (U1 · · · , UQ) available. To check isomorphism up-to order k
for node u and v:
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1. Check if |U (Q)|u· = |U (Q)|v·. If not, return FALSE. Else, identify the po-
tential τq’s based on the sign-matching. Create Ũ (Q) = (τ1U1 · · · , τQUQ).
Proceed to Step 2 with k = 0, π̃ = {u→ v},

2. Run the following recursive checking step

(a) If k <= K: Take neku and ne
k
v, run π

k =DistanceMatching(neku, ne
k
v , Ũ

(Q)).
Check the following cases:

• If fail, break and return FALSE.

• If success, set π̃ = [π̃, πk]. Take set D = [n]\
(
∪k

k=0[ne
k
u ∪ nekv ]

)
.

Check if ∥UD,q∥ = 0 for all q with τq = −1. If success, break
and go to step 3. Else, go to Step 2 with k := k + 1.

(b) If k > K: Break and return FALSE.

3. Final check: check the definition based on the current π̃. If success,
return TRUE with π̃. Else, return FALSE.

Algorithm 2 (DistanceMatching(ne1, ne2, U)). Given two subsets of nodes
ne1, ne2 and a matrix U with rows corresponding to the nodes. Set the map-
ping π : ne1 → ne2 to be empty.

1. If |ne1| ≠ |ne2|, return Failure. Else, go to Step 2.

2. For each u ∈ ne1: find v ∈ ne2 such that ∥Uu − Uv∥ = 0. If success,
add the mapping {u → v} to π, and remove u from ne1 and v from
ne2. Else, break and return Failure

3. Return Success with π.

Now, consider another natural necessary condition for node isomorphisms
based on node degrees.

Proposition 3. If u and v are kth-order isomorphic, we must have du = dv
and Dk(u) = Dk(v) where du and dv are the degrees of u and v, D1(u) and
D2(v) are the degree sequence (sorted in ascending order) of Nk(u) and Nk(v).
Furthermore, u and v have the same k + 1th-order neighbor sets. That is,
Nk+1(u) \Nk(u) = Nk+1(v) \Nk(v).

Based on the properties in Proposition 3, Algorithm 6 finds all first-order
isomorphic pairs and their associated permutations in the network. Next, we
provide a proof of Proposition 3.
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Proof of Proposition 3. du = dv because π gives a 1-1 mapping from Nk(u)
to Nk(v). Furthermore, we have π(Nk(u)) = Nk(v). By condition 3 of
Definition 4, we also have Dk(u) = Dk(v).

For the last one, we can prove by contradiction. Suppose there exists
a node w, such that w ∈ Nk+1(u) but w /∈ Nk+1(v). Since π(Nk(u)) =
Nk(v) while π(w) = w, so after applying the permutation to the network,
we have π(w) disconnected from π(Nk(w)). This contradicts condition 3 of
Definition 4.

Based on Proposition 3 we can efficiently identify isomorphism using pre-
screening steps. And while Algorithm 6 can be extended to higher-order
neighborhoods, identifying more isomorphic pairs, the complexity of identi-
fying pairs with this method increases exponentially with the order of neigh-
bors, which may overwhelm the saved time on the MC side. The first-order
isomorphism turns out to give the most desirable tradeoff in terms of compu-
tational efficiency and is the principle motivator for considering Algorithm 6.
That is, for real world network examples, high order node isomorphisms
are relatively uncommon, and the degree based approach for isomorphism
searching can outperform the spectral approach in some cases.

A.4 Parallel Algorithm for Confidence Set Con-

struction

As discussed in Section 3.3, our confidence set construction algorithm can
be implemented in parallel, further boosting its speed. In the main paper,
we only include the details and timing for the sequential version. The paral-
lelized algorithm is described in Algorithm 7.

As can be seen, Algorithm 7 needs MC sampling for only one node in each
group, and the calculations for other nodes can be done using pooled MC
methods. When additional cores are available, the for-loops in the algorithm
can be further parallelized.

A.5 Evaluation on 381 real-world networks

The data set from Ghasemian et al. [55] contains 550 networks. We focus on
381 networks with more than 200 nodes for stable evaluation. The removed
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ones are either too small or have certain pathological structures to stable
computation. The 381 networks are from six domains (71 biological, 110
economic, 9 informational, 105 social, 56 technological, and 30 transportation
networks).

Though there are no real diffusion labels observed on these networks, we
can generate a synthetic diffusion process based on our model. We generate
a diffusion process with T = min(0.2N, 150). By doing this, we can evaluate
the confidence set properties on these networks and the timing. The aver-
age coverage probability of the 90% confidence set and the relative size of
|C|/T are shown in Table A.1. The results match what we observed previ-
ously on the simulated networks, and the ADiT is more effective than the
Euclidean loss, indicating the valid method on the real-world network. More
importantly, we also evaluate the timing improvement based on the pooled
MC methods. We calculate the improvement percentage of the pooled MC
strategies (over the vanilla MC) on each network. The results are summa-
rized in Figure A.1. As can be seen, the pooled MC is very effective on
economic networks and social networks, resulting in an average improvement
of 40%. It is moderately effective on biological and informational networks
with 10%-20% improvement. The technological networks and transportation
networks are suitable structures for the strategy. The economic, social, and
biological networks are the three largest domains in the data set. These
results demonstrate the pooled MC’s potential as a general computational
strategy.
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Figure A.1: The timing improvement proportion by the pooled MC over the vanilla
MC on 381 real-world networks.
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Table A.1: The average coverage rate of the 90% confidence sets and the relative
size |C|/T on the 381 real-world networks.

Bio. Econ. Info. Social Tech. Transport.

Euclidean-90% 90.0% 90.1% 88.9% 89.8% 89.1% 90.9%
|C|/T 0.60 0.41 0.66 0.44 0.57 0.38

ADiT-90% 90.2% 89.9% 87.6% 89.3% 89.3% 90.1%
|C|/T 0.55 0.36 0.61 0.40 0.52 0.35

A.6 Coverage Rates and Confidence Sizes for

Multiple Models and Networks

The remainder of the figures discussed in section 5.3 are provided here.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Level

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

BSchoolHiring
L2
ADiT
ADT

Figure A.2: Weighted SI model true confidence set coverage as a function of con-
fidence level on the business school hiring network (undirected).
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Figure A.3: Weighted SI model true confidence set coverage as a function of con-
fidence level on the computer science hiring network (undirected).
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Figure A.4: Weighted SI model true confidence set coverage as a function of con-
fidence level on the history hiring network (undirected).
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Algorithm 6 Identification of First-Order Isomorphic Pairs

Input: Graph G = (V,E)
Initialize L = ∅ to store the list of isomorphic node pairs
for every node u ∈ V do
Compute N1−4(u) as the set of all neighbors of u within 4 hops
// N1−4(u) includes all nodes that are possible to be

isomorphic to u
for v ∈ N1−4(u) do
if dv == du then
Compute D1(u) = {du′ : u′ ∈ N1(u)}, the multi-set of degrees of
nodes in N1(u)
Similarly, compute D1(v), the multi-set of degrees of all one-hop
neighbors of v
if D1(u) == D1(v) then
Compute Ñ2(u) = N2(u)−N1(u)−N1(v)− {u, v}
// Ñ2(u) contains all (exactly) two-hop neighbors

of u, but with all (exactly) one-hop neighbors of u, v
removed

Compute Ñ2(v) = N2(v)−N1(u)−N1(v)− {u, v}
if Ñ2(u) == Ñ2(v) then
Do exhaustive search to check whether u, v are isomorphic by
enumerating all possible matchings of their neighbors under the
constraints of Ñ2(u) and the matching D1(u), D1(v), and if so,
add (u, v) to list L
// Usually, not many pairs need to go through

this step

end if
end if

end if
end for

end for
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Algorithm 7 Parallel Confidence Set Construction

1: Input: MC sample numbers ml and mp, confidence level α, Network G,
data y, discrepancy function ℓ

2: Compute S = {g1, g2, · · · , gM}, the isomorphic groups for infected nodes
with degree at least 2.

3: for each g ∈ S do
4: Extend g by including all of its single-degree neighbor.
5: end for
6: for each infected isomorphic group g ∈ S in parallel do
7: Select any s ∈ g with degree at least 2
8: Generate mp +ml samples zi ∈ Z, i = 1, · · · ,mp +ml from the T -step

diffusion process from source s.
9: Calculate the p-value for s following (3.6), (3.7), and (3.8)

10: for each v ∈ g that is isomorphic to s do
11: Calculate ψ̂v(y) according to Theorem 2.
12: end for
13: for each single-degree node v ∈ g do
14: Calculate the p-value ψ̂v(y) according to the surjective importance

sampling in Section 4.2.
15: end for
16: end for
17: return the level 1− α confidence set:

Cα(y) = {s ∈ VI : ψ̂s(y) > α}.
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Figure A.5: Weighted SI model confidence set size as a function of confidence level
on the business school hiring network (undirected).
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Figure A.6: Weighted SI model confidence set size as a function of confidence level
on the computer science hiring network (undirected).
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Figure A.7: Weighted SI model confidence set size as a function of confidence level
on the history hiring network (undirected).
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Figure A.8: Weighted SI model true confidence set coverage as a function of con-
fidence level on the business school hiring network (directed).
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Figure A.9: Weighted SI model true confidence set coverage as a function of con-
fidence level on the computer science hiring network (directed).
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Figure A.10: Weighted SI model true confidence set coverage as a function of
confidence level on the history hiring network (directed).
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Figure A.11: Weighted SI model confidence set size as a function of confidence
level on the business school hiring network (directed).
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Figure A.12: Weighted SI model confidence set size as a function of confidence
level on the computer science hiring network (directed).
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Figure A.13: Weighted SI model confidence set size as a function of confidence
level on the history hiring network (directed).
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Figure A.14: IC model true confidence set coverage as a function of confidence
level on the computer science hiring network (undirected).
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Figure A.15: IC model true confidence set coverage as a function of confidence
level on the history hiring network (undirected).
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Figure A.16: IC model confidence set size as a function of confidence level on the
computer science hiring network (undirected).
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Figure A.17: IC model confidence set size as a function of confidence level on the
history hiring network (undirected).
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Figure A.18: LT model true confidence set coverage as a function of confidence
level on the computer science hiring network (undirected).
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Figure A.19: LT model true confidence set coverage as a function of confidence
level on the history hiring network (undirected).
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Figure A.20: LT model confidence set size as a function of confidence level on the
computer science hiring network (undirected).
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Figure A.21: LT model confidence set size as a function of confidence level on the
history hiring network (undirected).
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Figure A.22: IC model true confidence set coverage as a function of confidence
level on the computer science hiring network (directed).
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Figure A.23: IC model true confidence set coverage as a function of confidence
level on the history hiring network (directed).
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Figure A.24: IC model confidence set size as a function of confidence level on the
computer science hiring network (directed).
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Figure A.25: IC model confidence set size as a function of confidence level on the
history hiring network (directed).
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Figure A.26: LT model true confidence set coverage as a function of confidence
level on the computer science hiring network (directed).
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Figure A.27: LT model true confidence set coverage as a function of confidence
level on the history hiring network (directed).
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Figure A.28: LT model confidence set size as a function of confidence level on the
computer science hiring network (directed).
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Figure A.29: LT model confidence set size as a function of confidence level on the
history hiring network (directed).
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