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Identifying the Source of Vulnerability in Fragile Interpreta-
tions: A Case Study in Neural Text Classification

Ruixuan Tang

(ABSTRACT)

Along with the development of machine learning models, although the prediction

performance has been improved, it becomes more difficult to understand why the

model makes such predictions due to the complexity of neural networks. It causes

concern and interest in the trustworthiness and reliability of models. One concrete

way to improve the trustworthiness and reliability of the neural model is to generate

explanations that can demonstrate the relationship between the input and output

prediction and help people understand the model. However, some recent observations

reveal the interest and concern in the stability of the explanation methods.

Previous works (Ghorbani, Abid, and Zou 2019; Subramanya, Pillai, and Pirsiavash

2019; Xinyang Zhang et al. 2020; Lakkaraju, Arsov, and Bastani 2020) had obser-

vations on the explanation vulnerability caused by the perturbation at model input.

Some of them have conflicting opinions on what source caused the explanation to

be fragile and whether explanation methods are stable. This thesis explores the po-

tential source that caused the fragile explanation. Is it caused by the neural model

itself or the explanation method? I focus on a model agnostic explanation method

that generates explanations from the post-hoc manner (e.g., model output probabil-

ity), which is called the post-hoc explanation method. To investigate the cause of

the fragile explanation, I propose a simple output probability perturbation method,
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which adds a slight noise to the output probability of the neural model. Compared

to prior perturbation methods applied at the model’s inputs, the output probability

perturbation method can circumvent the neural model’s potential influence on the ex-

planation. The proposed method is evaluated by three post-hoc explanation methods

(LIME, Kernel Shapley, and Sample Shapley) and three neural network classifiers

(CNN, LSTM, and BERT). The result demonstrates that the neural model is the po-

tential primary source causing fragile explanations. Furthermore, I analyze the kernel

calculation inside a post-hoc explanation method (LIME). The result demonstrates

the stability of this post-hoc explanation method.
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Chapter 1

Introduction

Due to their remarkable prediction performance, neural network models have be-

come indispensable for natural language processing (NLP) tasks. However, a neural

model’s evaluation should not be based only on the model’s accurate prediction per-

formance but also should be based on the reliability and trustfulness of the model’s

prediction results. Even though the prediction is accurate, if we cannot understand

why the model generates the prediction, we cannot trust the model. One way that

can be applied to improve the trustworthiness and reliability of neural models is to

generate explanations that can demonstrate the relationship between the input text

and the prediction result in a humanly understandable form. However, depending

on the complexity of neural models, we cannot directly generate the explanations to

understand how variables are combined in the model to generate predictions.

To address this issue, some explanation methods have been developed to provide

insights into figuring out the relationship between input text and prediction results

(Du, N. Liu, and Hu 2019). Some methods explain a black-box model from the

post-hoc manner by attributing an importance score to each feature, which will be

discussed detailed in the chapter 2 (Ribeiro, Singh, and Guestrin 2016b; Lundberg

and Lee 2017a; Sundararajan, Taly, and Yan 2017).

Some recent works have demonstrated that explanations’ instability was observed

(Ghorbani, Abid, and Zou 2019; Subramanya, Pillai, and Pirsiavash 2019; Xinyang
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Zhang et al. 2020; Lakkaraju, Arsov, and Bastani 2020). Based on this observation,

different research groups have two different but intuitive conclusions. One conclusion

believes that the observation result can be attributed to the potential instability of

post-hoc explanation methods. While the other conclusion thinks that it is premature

to claim if post-hoc explanation methods are stable according to this observation.

Both conclusions raise the concern about assessing post-hoc explanation methods’

stability. Recall that the explanations generated by a post-hoc method (Ribeiro,

Singh, and Guestrin 2016a; Lundberg and Lee 2017b; Friedman 2001) depend on a

black-box model’s prediction probabilities. If perturbations at the input cause model

prediction probabilities to change, that perturbation at the input would indirectly lead

to explanation changing. It is difficult to identify the source that explanations change

by only perturbing at the input of the black-box model because the major unstable

component could be either the black-box model itself or the post-hoc explanation

method. In other words, both the black-box model and the post-hoc explanation

method are possible factors that result in unstable explanations.

Figure 1.1: The pipeline of a simple example that post-hoc methods generate expla-
nations with no perturbation applied.

In Figure 1.1, I demonstrate a simple example of the process that generates expla-

nations using a post-hoc method. In Figure 1.2, I demonstrate an example of the

process that generates explanations with perturbation at the input side using a post-

hoc method. In this example, I apply this perturbation to the word embedding layer.
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The prediction label Figure 1.1, ŷ, and the prediction label in Figure 1.2, ȳ, are equal,

which is ŷ = ȳ. In Figure 1.1 and Figure 1.2, it can be noticed that the feature im-

Figure 1.2: The pipeline of a simple example that post-hoc methods generate expla-
nations with perturbation applied at the input side.

portance score of the same feature to the corresponding prediction result is changed.

In general, when a feature has a higher score, it can be considered a more important

explanation that supports the corresponding prediction result. For example, the word

“love”, with the highest feature importance score, means that it is the most relevant

feature connecting to the prediction result in Figure 1.1. Similarly, the word “clas-

sical” is the most relevant feature connecting to the prediction result in Figure 1.2.

Normally, the explanation to input is ranked by the features’ importance score, which

means the first feature is the most relevant explanation word to the result and the

last feature is the least relevant explanation word.

In the examples in Figure 1.1 and Figure 1.2, when explanations are inconsistent

while ŷ = ȳ, it is difficult to tell whether it is the model or the explanation method

that causes the explanation discrepancy. One intuitive claim is that the random

perturbation at the input side has to go through both the model and the post-hoc

explanation method. Therefore, one possible source is the unstable black-box model.

Its prediction behavior can change under the perturbation at the input side, that is,

focusing on different features to make predictions. This may not tell from predicted

labels if they remain unchanged but can reflect in post-hoc explanations, i.e., expla-
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nations discrepancy (H. Chen and Ji 2020). Another possible source is the post-hoc

explanation methods if the mechanism is vulnerable to perturbation at the input side.

Figure 1.3: The pipeline of a simple example that post-hoc methods generate expla-
nations with perturbation applied at the output probability (proposed method).

In this thesis, I propose a simple strategy to demonstrate the potential primary source

causing fragile explanations as observed. To circumvent the potential influence on

explanations from the model, instead of applying perturbation at the input side, I

design an output probability perturbation method by slightly modifying the predic-

tion probabilities of a black-box model, as shown in Figure 1.3. Since this method

directly perturbs the black-box model’s output probability, it isolates the potential

influence caused by the model’s instability to explanations. If similar fragile explana-

tions can be observed when only output probability perturbation is applied, it would

suggest that post-hoc explanation methods may be unstable because the potential

influence from the black-box model is blocked. Post-hoc explanation methods can

be attributed to one of the sources that caused the explanation discrepancy in previ-

ous observations. Otherwise, we should not blame post-hoc explanation methods as

unstable and contributing to explanation discrepancy in the observation of the prior

works.

In chapter 2, I will introduce the proposed method in detail. In chapter 3, I will dis-

cuss a comparison experiment on the explanation discrepancy, including experiment

setup, results, and discussion on an analysis of the kernel calculation inside the LIME
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algorithm. In chapter 4, I will introduce some important previous relevant works

related to this thesis.
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Chapter 2

Output Probability Perturbation

Method

In this chapter, I will demonstrate the proposed method in detail. I will introduce

some important related works in chapter 4.

2.1 Background

For a text classification task, x denotes the input text consisting of N words, x =

[x(1), · · · ,x(N)], with each component x(n) ∈ Rd representing the n-th word embed-

ding. We define a black-box classifier as f(·) and the neural network model output

probability of a given x on the corresponding label k is P (y = k | x) = fk(x), where

k ∈ {1, . . . , C} and C is the total number of label classes.

To explain a black-box model’s prediction ŷ = f(x), a class of post-hoc explanation

methods approximate the model locally via additive feature attributions (Lundberg

and Lee 2017a; Ribeiro, Singh, and Guestrin 2016b; Shrikumar, Greenside, and Kun-

daje 2017). Specifically, these algorithms demonstrate the relationship between the

input text and the prediction result by evaluating the contribution of each input fea-

ture to the model prediction result. These methods would assign a feature importance

score to each input feature to represent its contribution to the prediction. Let’s apply
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the LIME method as an example.

Example: Post-hoc Explanation Method, LIME. It first subsamples words

from the input, x, to form a list of pseudo examples {zL
j=1}, and then the contri-

butions of input features are estimated by a linear approximation fŷ(r) ≈ gŷ(r
′),

where r ∈ {x, zL
j=1}, gŷ(r′) = wT

ŷ r
′, and r′ is a simple representation of r, e.g. bag-

of-words representation. The weights {w(n)
ŷ } represent importance scores of input

features {x(n)}. Let I(x, ŷ, P ) denote the explanation for the model prediction on x,

where ŷ is the predicted label and P represents output probabilities. For input per-

turbations, previous work claimed that explanation methods are fragile if I(x, ŷ, P )

and I(x̄, ŷ, P̄ ) are discrepant, while model predicitons on the original input x and

the perturbed input x̄ are the same (Ghorbani, Abid, and Zou 2019; Subramanya,

Pillai, and Pirsiavash 2019; Sinha et al. 2021). However, with different inputs, the

model may behave differently, which would reflect in post-hoc explanation, though

it may not be in prediction labels. It is not reasonable to blame explanation vulner-

ability without excluding the effect of model robustness on explanation discrepancy.

To circumvent the model prediction behavior change on different inputs, I propose a

method to explore the source of fragile explanation by adding output perturbations.

2.2 Explanation Discrepancy

The basic idea of this thesis is to examine the source that caused the explanation

discrepancy due to the perturbation at the model input. Recall the previous section,

I(x, ŷ, P ) and I(x̄, ŷ, P̄ ) denote the explanation to the model prediction based on

the original input x and the perturbed input x̄ respectively, where x̄ = x + ε, ε is
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the perturbation at input. Similarly, we define I(x, ŷ, P̃ ) as the explanation to the

prediction based on the perturbed output probability P̃ = P+ε′, ε′ is the perturbation

on output probability. Note that when ε and ε′ are small, the model prediction ŷ

would not change. Especially, ε′ is a slight perturbation, that would not make P̃ to

a value lower than 0.

The explanation discrepancy between I(x̄, ŷ, P̄ ) and I(x, ŷ, P ) is denoted as δinput,

and the discrepancy between I(x, ŷ, P̃ ) and I(x, ŷ, P ) is denoted as δoutput. Here, I

use figures in chapter 1 as an example to illustrate the explanation discrepancy in

detail.

As introduced, the explanation, I(x, ŷ, P ), in Figure 1.1 is “Love”, “Classical”, “I”

and “Music”, with the order. The explanation, I(x̄, ŷ, P̄ ), in Figure 1.2 is “Classical”,

“Music”, “Love”, and “I”, with the order. The explanation, I(x, ŷ, P̃ ), in Figure 1.3

is “Love”, “Classical”, “I” and “Music”, with the order. Generally, after perturbed,

explanation inconsistency reflects in two aspects. The first aspect is the difference

in the same feature’s importance score. For example, the importance score for the

word “I” may differ in Figure 1.1 and Figure 1.2. The difference is considered δinput.

The second aspect is whether the top K important features in the explanation are

consistent. For example, if K = 2, the first two important words in Figure 1.1 is

“Love”, and “Classical” and the first two important words in Figure 1.2 is “Classical”,

and “Music”. The difference between these is considered δinput as well. Similarly,

δoutput can describe the same aspects of explanation discrepancy in Figure 1.1 and

Figure 1.3.
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2.3 The Proposed Method

Recall the limitation of the method that perturbation is applied at the input side;

it is difficult to identify the primary source causing explanation discrepancy. The

purpose of the output probability perturbation method is to evaluate the explana-

tion discrepancy without the possible influence of black-box models. For the output

probability perturbation, given an example x, I add a small perturbation to model

output probabilities {P (y = k | x) + ε′y=k}Ck=1, where each ε′y=k ∼ N (0, σ2), σ2 is the

variance of Gaussian Distribution.

To guarantee the modified {P (y = k | x) + ε′y=k}Ck=1 are still legitimate probabilities,

I further normalize them as

P̃ (y = k | x) =
P (y = k | x) + ε′y=k∑C

i=1{P (y = i | x) + ε′y=i}
(2.1)

Similar to finding an explanation to the original prediction, the explanation to the

prediction with output probability perturbation is computed based on P̃ (y = ŷ | x).

The output probability perturbation idea well suits the motivation of investigating

the primary source causing explanation changes. The main reason is that, unlike

perturbation applied at the input side, the proposed method avoids the potential

effects of the model vulnerability to explanations. I apply the LIME algorithm as an

example to demonstrate the proposed method.

Example: Output probability perturbation in LIME. To give an example

of the proposed perturbation idea, I would like to represent r′ as the bag-of-words

representations of the original input texts. A simplified version 1 of LIME is equivalent
1Without the example weight computed from a kernel function and the regularization term of

explanation complexity.
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to finding a solution of the following linear equation:

wT
ŷ r

′ = p̃ŷ (2.2)

where p̃ŷ = [P̃ (y = ŷ | x), P̃ (y = ŷ | z1), . . . , P̃ (y = ŷ | zL)]
T are the perturbed

probabilities on the label ŷ, and wT
ŷ is the weight vector, where each element measures

the contribution of an input word to the prediction ŷ. A typical explanation from

LIME consists of top important words according to wŷ. Essentially, the proposed

output perturbation is similar to the perturbation analysis in linear systems (Golub

and Van Loan 2013), which aims to identify the stability of these systems. Despite

the simple formulation in Equation 2.2, a similar linear system can also be used to

explain the Shapley-based explanation methods (e.g., Sample Shapley (Strumbelj and

Kononenko 2010)).
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Chapter 3

Experiments and Discussion

In this chapter, I will introduce the experiment setup, comparison experiment, and

evaluation result. Furthermore, according to the result observed in the comparison

experiment, I will further analyze the kernel calculation inside the LIME algorithm,

including results from a simulation experiment in section 3.4.

3.1 Experiment Setup

Datasets. I adopt four text classification datasets: IMDB movie reviews dataset

(Maas et al. 2011, IMDB), AG’s news dataset (Xiang Zhang, J. Zhao, and LeCun

2015, AG’s News), Stanford Sentiment Treebank dataset with binary labels (Socher

et al. 2013, SST-2), and 6-class questions classification dataset TREC (X. Li and

Roth 2002, TREC). The summary statistics of datasets are shown in Table 3.1.

Dataset C L #train #dev #test vocab threshold length
IMDB 2 268 20K 5K 25K 29571 5 250
SST-2 2 19 6920 872 1821 16190 0 50
AG’s News 4 32 114K 6K 7.6K 21838 5 50
TREC 6 10 5000 452 500 8026 0 15

Table 3.1: Summary statistics for the datasets where C is the number of classes, L is
the average sentence length, # counts the number of examples in train/dev/test sets,
vocab is the vocab size, and the threshold is the low-frequency threshold, and length
is mini-batch sentence length.
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Models. I apply three neural network models, Convolutional Neural Network (Kim

2014, CNN), Long Short Term Memory network (Hochreiter and Schmidhuber 1997,

LSTM), and Bidirectional Encoder Representations from Transformers (Devlin et al.

2018, BERT).

Convolutional Neural Network, CNN, is one of the most widely used deep learning

architectures. Although it has a supremacy position in the field of vision, the use

of CNN in other fields (e.g., natural language processing) is increasing rapidly. In

simple, the principle of CNN is based on information processing in the visual system

of humans. The core characteristics are that it can efficiently decrease the dimension

of input, and it can efficiently retain important features of the input.

Long Short Term Memory Neural Network, LSTM, is another widely used deep learn-

ing algorithm, which is one kind of the advanced, recurrent neural network, RNN.

Unlike the architecture of a standard feedforward deep learning neural network, it

has feedback connections in the architecture, which helps to process sequential data

(e.g., language and speech). LSTM can reduce long-term dependencies problems and

vanishing gradient problems, that are caused by standard RNN.

Bidirectional Encoder Representations from Transformers, BERT, is a Language

Model (LM), which is released by the Google company in 2018 (Devlin et al. 2018,

BERT). After it was released, because of its superior performance in many NLP

tasks, BERT became the most popular deep learning architecture. In the Natural

Language Processing field, the main tasks of the BERT model are (1) Sentence pairs

classification tasks and (2) Single sentence classification tasks. In this thesis, I apply

the BERT model focusing on the second task.
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Post-hoc Explanation Methods. I adopt three post-hoc explanation methods,

Local Interpretable Model-Agnostic Explanations (Ribeiro, Singh, and Guestrin 2016b,

LIME), Kernel Shapley (Lundberg and Lee 2017b), and Sample Shapley (Strumbelj

and Kononenko 2010). LIME, Kernel Shapley, and Sample Shapley are additive fea-

ture attribution methods. The additive feature method provides a feature importance

score on every feature for each text input based on model prediction.

LIME and Kernel Shapley are two post-hoc methods adopting a similar intuitive strat-

egy. The first step is to generate a new dataset by sub-sampling based on the original

dataset and the corresponding prediction result based on the black-box model. The

second step is to train an explainable machine learning model (eg: linear regression,

LASSO) with the new sub-sampling dataset. The difference between the LIME al-

gorithm and the Kernel Shapley algorithm is in the way to calculate the weight of

sub-sampling data in the explainable model. LIME algorithm relies on the distance

between the original data and the sub-sampling data. Kernel Shapley algorithm relies

on the Sharpley value estimation.

Sample Shapley is a post-hoc method based on another intuitive strategy. It evaluates

how much contribution of each input feature to the prediction result (based on the

Sharpley value estimation), which is another way to explain the model’s prediction.

Evaluation Metrics. In the experiment, I apply two evaluation metrics, Kendall’s

Tau order rank correlation score, and the Top-K important words overlap score.

As illustrated in section 2.2, explanation discrepancy reflects in two aspects intu-

itively. I use Kendall’s Tau order rank correlation score to evaluate the explanation

discrepancy on the same feature. Kendall’s Tau order rank correlation score can be

applied to evaluate the correlation between two values in the same position. If the
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score in the same position is close to 1, then the two values do not differ significantly.

If the score in the same position is close to −1, then the two values differ significantly.

I use Top-K important words overlap score to evaluate the discrepancy on the first

K number features in the ordered explanation on the same input. The counting

method is to evaluate the overlap rate of the first K number features in the ordered

explanation. In this thesis, I set K = 5.

3.2 Explanation Discrepancy Comparison Experi-

ment

To explore the primary source causing explanation vulnerability, I conduct a compar-

ison experiment to evaluate and compare between explanation discrepancy δ1, and

explanation discrepancy δ2. The definition of δ1 and δ2 are introduced in chapter 2.

δ1 represents discrepancy of the explanation generated by the black-box model with

no perturbation, I(x, ŷ, P ), and the explanation generated by the black-box model

with perturbation at the input, I(x̄, ŷ, P̄ ). While δ2 represents the discrepancy of

I(x, ŷ, P ) and the explanation generated by the black-box model with perturbation

at the output probability, I(x̄, ŷ, P̃ ).

To ensure the model performance is acceptable, the prediction accuracy for all models

and datasets applied is recorded in Table 3.2.

In this experiment, I directly add random noise to the word embedding layer, as the

way to add perturbation at the input (X. Liu et al. 2020). In comparison, for adding

perturbation at the output, I directly add random noise to the output probabilities.

I apply the Gaussian Distribution to generate perturbation values, which has two
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Dataset CNN LSTM BERT
IMDB 86.30% 86.60% 90.80%
SST-2 82.48% 80.83% 91.82%
AG’s News 89.90% 88.90% 95.10%
TREC 92.41% 90.80% 97.00%

Table 3.2: Prediction accuracy(%) four datasets (IMDB, SST-2, AG’s News and
TREC) on three neural network models (CNN, LSTM and BERT).

preponderance. First, I can control the perturbation level by modifying the variance

of Gaussian Distribution σ2, which is intuitive and simple. Second, directly applying

the Gaussian Distribution generated perturbation at the word embedding layer, can

not only perturb at the input, but also it would not cause potential changes on

input features. To generate a generalized evaluation result, I applied five different

perturbation levels. “0” means the slightest perturbation level, zero perturbation,

while “4” represents the strongest perturbation level.

Detailed values of perturbation levels, which is the variance of Gaussian Distribution,

at both input side and output probability are shown in Table 3.3, 3.4, 3.5, and 3.6.

Dataset Perturbation Level Model
CNN LSTM BERT

IMDB Input Perturbation (σ2
input) 0 0 0 0

1 0.05 0.05 0.05
2 0.1 0.1 0.1
3 0.15 0.15 0.15
4 0.2 0.2 0.2

Output Perturbation (σ2
output) 0 0 0 0

1 0.25 0.25 0.25
2 0.5 0.5 0.5
3 0.75 0.75 0.75
4 1 1 1

Table 3.3: Perturbation levels applied on IMDB dataset
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Dataset Perturbation Level Model
CNN LSTM BERT

AG’s News Input Perturbation (σ2
input) 0 0 0 0

1 0.05 0.05 0.05
2 0.1 0.1 0.1
3 0.15 0.15 0.15
4 0.2 0.2 0.2

Output Perturbation (σ2
output) 0 0 0 0

1 0.25 0.25 0.25
2 0.5 0.5 0.5
3 0.75 0.75 0.75
4 1 1 1

Table 3.4: Perturbation levels applied on AG’s News dataset

Dataset Perturbation Level Model
CNN LSTM BERT

SST-2 Input Perturbation (σ2
input) 0 0 0 0

1 0.05 0.05 0.05
2 0.1 0.1 0.1
3 0.15 0.15 0.15
4 0.2 0.2 0.2

Output Perturbation (σ2
output) 0 0 0 0

1 0.25 0.25 0.25
2 0.5 0.5 0.5
3 0.75 0.75 0.75
4 1 1 1

Table 3.5: Perturbation levels applied on SST-2 dataset
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Dataset Perturbation Level Model
CNN LSTM BERT

TREC Input Perturbation (σ2
input) 0 0 0 0

1 0.05 0.05 0.05
2 0.1 0.1 0.1
3 0.15 0.15 0.15
4 0.2 0.2 0.2

Output Perturbation (σ2
output) 0 0 0 0

1 0.25 0.25 0.25
2 0.5 0.5 0.5
3 0.75 0.75 0.75
4 1 1 1

Table 3.6: Perturbation levels applied on TREC dataset

3.3 Results and Discussion

Plots of results of the comparison experiment on four datasets are shown in Figure 3.1,

3.2, 3.3 and 3.4.

I apply analysis on the IMDB dataset result, shown in Figure 3.1, as an example.

Results shown in other plots have a similar tendency. Kendall’s Tau order rank

correlation score plots are shown in Figure 3.1(a), (c) and (e). Top-K important

words overlap score plots are shown in Figure 3.1 (b), (d) and (f). Figure 3.1 (a)

and (b) reflects the results on the LIME method. Figure 3.1 (c) and (d) reflects the

results on the Kernel Shapley method. Figure 3.1 (e) and (f) reflects the results on

the Sample Shapley method.

Kendall’s Tau order rank correlation score results. Kendall’s Tau order rank

correlation score results indirectly illustrate the stability of post-hoc explanation

methods. Furthermore, previous observation on the explanation difference can be

attributed to the potential influence caused by the black-box model. In Figure 3.1
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Comparison experiment results on IMDB dataset
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Comparison experiment results on AG’s News dataset
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Comparison experiment results on SST-2 dataset
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Comparison experiment results on TREC dataset
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(a), (c) and (e), existing apparent discrepancies between δ1 against δ2 in all three post-

hoc explanation methods, LIME, Kernel Shapley and Sample Shapley. For output

probability perturbation method results, it is noticeable that the values of Kendall’s

Tau order rank correlation scores remain the same with the increased perturbation

levels from “0” to “4”. It indicates that the feature importance score remains the same

for every input word, although output probability perturbation is applied. Further-

more, the result suggests that for a given input, if x and ŷ stay unchanged, the only

perturbation ε′ at output probability is unlikely to influence explanations generated

by post-hoc methods. In other words, the explanation of vulnerability observed in

the previous study is unlikely caused by post-hoc methods.

Meanwhile, for the baseline results (perturbation applied at the input), it is notifiable

that the values of Kendall’s Tau order rank correlation scores decrease obviously with

the increase of input perturbation intensity levels. Except for some datasets using

the BERT model, it decreased slightly. It means that the black-box model becomes

more vulnerable to the perturbation at the input, which causes fragile explanations.

Compared to the previous result, the black-box model is more likely to be the primary

source causing fragile explanation as prior works observed.

Top-K word importance score results. Top-K word importance score plots

reflect the same result: the black-box model is the primary source causing explanation

difference. In Figure 3.1 (b), (d) and (f), δ1 against δ2 displays an obvious discrepancy

in three post-hoc explanation methods as well. For output probability method results,

δ2 reveals no change in the overlap score of the K most important words. It means

that, for the top five important features to each corresponding prediction result,

output probability perturbations cannot cause the difference. It is a corresponding
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result due to the previous evaluation metrics result. Because the feature importance

score does not change for each input feature, the overlap rate would remain the same

as well. Moreover, the result in this metric indicates that the black-box model is more

likely to cause explanation vulnerability than explanation methods.

3.4 Further Analysis on the LIME Algorithm

3.4.1 Analysis

According to the results of comparison experiments, one indirect conclusion is that

the post-hoc explanation methods are likely stable. Although we can conclude the

potential primary source that caused explanations fragile in the previous work is the

black-box model, it may be premature to claim the post-hoc methods are stable.

After reviewing the work of LIME (Ribeiro, Singh, and Guestrin 2016a) and Kernel

Shapley (Lundberg and Lee 2017b), although they apply different kernel functions

to calculate the feature importance score, both methods apply the same processing

strategy, which I have introduced in section 3.1. I will use LIME as an example to

explore the stability of post-hoc methods.

L(f, g, π) =
∑

z,z′∈Z

π(f(z)− g(z′)) (3.1)

Equation 3.1 is definition of the loss function (Ribeiro, Singh, and Guestrin 2016a).

According to the loss function equation, I define the kernel calculation of the LIME

algorithm, πg(z′). g(z′) represents the explainable model on the sub-sampling dataset,

z′, in the post-hoc algorithm. Here, I use a linear model to represent this explainable
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model, g(z′) = Wz′. W is the weight function of the linear model and the importance

feature score function as well. Equation 3.2 is the kernel calculation equation of the

explanation method after expanding.

G = πWz′ = πz′W (3.2)

The form of the kernel calculation equation can be interpreted as a general linear

function. Recall a general form of a linear equation, Ax = b. According to (I.

Goodfellow, Bengio, and Courville 2016), if the condition number, (κ), which is the

largest eigenvalue in the matrix A divided by the smallest eigenvalue in the matrix A,

is large, the solution x would change rapidly by a slight difference in b, which would

cause sensitivity of the solution to the slight error in the input. In Equation 3.2, πz′

represents the matrix A, and the feature importance score function W represents the

solution x. If πz′ is a stable linear system with a minor condition number, the feature

importance score function W would be unlikely sensitive to the minor error, and the

corresponding post-hoc explanation method is stable.

In the next section, I apply the LIME algorithm as an example to evaluate its con-

dition number in the linear system πz′. Since the kernel calculation part is a pure

numerical step without semantics involved. I conduct a simulation experiment to

explore the stability of the post-hoc explanation method.

3.4.2 Simulation Experiment

For the simulation experiment, I simulate z′ as a matrix with the size of sub-sampling

size, m, multiple the length, l, of input text. For the sample size, I select m = 200,
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which is the actual value I applied in the comparison experiment, in section 3.2. For

the sentence length, I firstly simulated the case when sentence length, l = 20. Then I

compare condition number distribution when sentence lengths are different. I apply

two other cases, l = 30, and l = 40. For each length, I simulated it for 500 iterations.

For π, it is the kernel function in LIME, which is the distance between the original

input to the sub-sampling based on the original input. In the simulation experiment,

I apply cosine distance to represent the value of π.

Total iteration number κ ∈ [5, 6) κ ∈ [6, 7)
500 392 108

Table 3.7: Condition number (κ) distribution when l = 20

Figure 3.5: Simulation Experiment Result.
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In Table 3.7, the result of the simulation experiment when the sentence length is

20, demonstrates that the majority of condition number of the matrix πz′ is lower

than 7. In Goldstein’s work, it suggests that the condition number of a stable or a

well-conditioning matrix should be lower than 30 (Goldstein 1993). It means that the

feature importance score function, W , is less likely influenced by a small perturbation

involved, which reflects in the results in the comparison experiment in section 3.2.

In Figure 3.5, the result of the further simulation experiment shows that when the

length of the sentence increases, the condition number of the matrix πz′ increases with

a tiny amplitude. The majority of the condition number of the matrix is lower than 13

when the length is from 20 to 40. Although the result demonstrates that the condition

number would increase with sentence length increasing, the increasing ampitude is

small and the majority of the condition number is lower than the threshhold number.

The result suggests that the matrix πz′ in the LIME algorithm can remain a small

condition number, which makes the system relatively stable. In other words, the

LIME algorithm is a relatively stable post-hoc explanation method.
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Chapter 4

Previous Relevant Works

4.1 Post-hoc Explanation Methods

Most work focuses on explaining neural network models in a post-hoc manner, es-

pecially generating a local explanation for each model prediction. The white-box

explanation methods, such as gradient-based explanations (Hechtlinger 2016) and

attention-based explanations (Ghaeini, Fern, and Tadepalli 2018), either require ad-

ditional information (e.g. gradients) from the model or incur much debates regarding

their faithfulness to model predictions (Jain and B. C. Wallace 2019).

Another line of work focuses on explaining black-box models in a model-agnostic way.

Jiwei Li, Monroe, and Jurafsky (2016) proposed a perturbation-based explanation

method, Leave-one-out, that attributes feature importance to model predictions by

erasing input features one by one. Ribeiro, Singh, and Guestrin (2016b) proposed

to estimate feature contributions locally via linear approximation based on pseudo

examples. Some other works proposed the variants of the Shapley value (Shapley

1953) to measure feature importance, such as the Sample Shapley method (Strumbelj

and Kononenko 2010), the Kernel Shapley method (Lundberg and Lee 2017b), and

the L/C-Shapley method(J. Chen et al. 2018).

In this project, I focus on two well-adopted post-hoc explanation methods on the
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black-box model, the LIME method(Ribeiro, Singh, and Guestrin 2016b) and the

Sample Shapley method (Strumbelj and Kononenko 2010).

4.2 Model Robustness

Recent works have shown the vulnerability of model due to adversarial attacks (Szegedy

et al. 2013; I. J. Goodfellow, Shlens, and Szegedy 2014; Z. Zhao, Dua, and Singh

2017). Some adversarial examples are similar to original examples but can quickly

flip model predictions, which causes concern on model robustness (Jia et al. 2019). In

the text domain, a common way to generate adversarial examples is by heuristically

manipulating the input text, such as replacing words with their synonyms (Alzantot

et al. 2018; Ren et al. 2019; Jin et al. 2020), misspelling words (Jinfeng Li et al. 2018;

Gao et al. 2018), inserting/removing words (Liang et al. 2017), or concatenating trig-

gers (E. Wallace et al. 2019). Unlike these works that modify original input texts,

I add noise at model outputs and disentangle explanation robustness from model

robustness.

4.3 Explanations Robustness

Previous work explored explanation robustness by either perturbing the inputs (Ghor-

bani, Abid, and Zou 2019; Subramanya, Pillai, and Pirsiavash 2019; Xinyang Zhang

et al. 2020; Heo, Joo, and Moon 2019) or manipulating the model (Wang et al. 2020;

Slack et al. 2020; Zafar et al. 2021). For example, Slack’s group fooled post-hoc expla-

nation methods by hiding the bias for black-box models based on the proposed novel

scaffolding technique (Slack et al. 2020). However, all of these works cannot disen-
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tangle the sources that cause fragile explanation. Differently, the proposed method

mitigates the influence of model to the explanation by perturbing model outputs.
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Chapter 5

Conclusion

In this thesis, my main contribution is to identify the primary source of fragile ex-

planation, where I propose an output probability perturbation method that slightly

modifies the prediction probability of black-box models. With the help of this pro-

posed method, some observation results based on the method can illustrate a conclu-

sion that the primary potential source that caused fragile explanations in the previous

studies is the black-box model itself.

In chapter 2, I demonstrate this proposed method in details and its advantages com-

pared to the previous methods. In chapter 3, I explore this method with a comparison

experiment. Furthermore, in section 3.4, I analyze the kernel calculation inside the

LIME algorithm. I apply the condition number of the matrix and a simulation ex-

periment to demonstrate that the kernel calculation matrix inside LIME has a low

condition number. This result further suggests the stability of the LIME algorithm.

The final destination of research in artificial intelligence is to apply this technology

in real life and industry to help people of the next generation. However, the trust-

worthiness and reliability problems in machine learning have become a restriction.

I hope the contributions in this thesis can assist future research that can verify the

stability of the post-hoc explanation method, which is the key to the trustworthiness

and reliability of machine learning.
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