
"

1reseOUeE Uo
UIe GaDVlUZ oG UIe 4DIool oG &OHiOeeriOH aOE "QQlieE 4DieODe

6OiWersiUZ oG VirHiOia

iO QarUial GVlGillmeOU
oG UIe reRViremeOUs Gor UIe EeHree

bZ

A Toolkit for Creating Dynamic Tangible Interfaces Using
Compliance Illusion

Thesis

Master of Science

Spencer Thomas Keefer

May 2023

APP307A- 4)&&T

5Iis

is sVbmiUUeE iO QarUial GVlGillmeOU oG UIe reRViremeOUs
Gor UIe EeHree oG

"VUIor�

"EWisor�

"EWisor�

$ommiUUee .ember�

$ommiUUee .ember�

$ommiUUee .ember�

$ommiUUee .ember�

$ommiUUee .ember�

$ommiUUee .ember�

"DDeQUeE Gor UIe 4DIool oG &OHiOeeriOH aOE "QQlieE 4DieODe�

+eOOiGer -� 8esU
 4DIool oG &OHiOeeriOH aOE "QQlieE 4DieODe

Thesis

Master of Science

Spencer Thomas Keefer

This Thesis has been read and approved by the examing committee:

Seongkook Heo

Brad Campbell

Gregory J. Gerling

May 2023

SpareSafe

A TOOLKIT FOR CREATING DYNAMIC TANGIBLE INTERFACES USING

COMPLIANCE ILLUSION

Spencer Thomas Keefer

Clayton, North Carolina

Bachelor of Science, Virginia Tech, 2017

A Thesis submitted to the Graduate Faculty

of the University of Virginia in Candidacy for the Degree of

Master of Science

Department of Computer Science

University of Virginia

May 2023

Brad Campbell, Chair

Seongkook Heo, Advisor

Gregory J. Gerling

ii

Copyright © 2023, Spencer Thomas Keefer

iii

A Toolkit for Creating Dynamic Tangible Interfaces Using Com-
pliance Illusion

Spencer Thomas Keefer

(ABSTRACT)

Tangible and haptic interfaces can enable more intuitive and engaging interactions

by allowing users to manipulate the physical control that reacts differently based on

the virtual context. However, building such interfaces often requires the development

of electronic circuits, moving mechanisms, firmware, and a device driver, making it

difficult to be built by designers or users without extensive knowledge. We propose

PseudoWidgets, a toolkit developed to allow users to prototype dynamic tangible

interfaces easily. By using the deformation haptic illusion created using vibrotactile

feedback, users can create tangible controls of various types of movement without

creating linkages and using motors. Using PseudoWidgets CAD tool, users can easily

add virtual controls, such as buttons, levers, joysticks, and knobs, on a 3D model of

their own. The CAD tool automatically generates structures to place haptic mod-

ules for the user to print using a 3D printer. Once assembled, the haptic modules

will communicate with a computer over WiFi to dynamically adjust its movement

properties based on the virtual context.

iv

Acknowledgments

I would first like to thank my advisor and the rest of the Ultimate Interface Lab

team for providing me with support and insights on how to improve my research this

past year. Specifically I would like to thank Professor Heo for getting me interested

in haptic feedback and human-computer interaction research while enrolled in his

Engineering Interactive Technologies course last Spring. Next I would like to thank

my old high school engineering teacher Mr. Bill ”Ralph” Evans who first introduced

me to computer-aided design with Autodesk Inventor and years ago; this knowledge is

something I never would have imagined needing again for my Computer Science thesis

and it really helped me with creating the Designer Tool add-on in Fusion 360. Finally

I would like to thank and dedicate this paper to my parents Tom and Terri Keefer,

my sister Ragan, my girlfriend Taylor, and my friends from Blacksburg, Clayton, and

here through the CS graduate program.

v

Contents

List of Figures vii

1 Introduction 1

2 Related Work 4

2.1 Dynamic Reconfiguration of Tangible Interfaces 4

2.2 Illusion of Material Compliance . 5

2.3 Toolkits for Tangible Interfaces . 7

3 PseudoWidgets: Utilizing Pseudo Movement 10

3.1 Widget Types . 11

3.2 Software-induced Dynamic Properties 13

4 PseudoWidgets Implementation 14

4.1 PseudoWidgets Designer . 14

4.1.1 Generating a Button Widget 16

4.1.2 Generating a Lever, Knob, or Joystick Widget 17

4.2 PseudoWidgets Connector . 17

4.3 Application Programming Interface 19

vi

4.4 PseudoWidgets Module . 21

5 Evaluation 24

5.1 Individual Widgets . 25

5.2 Application-specific Controllers . 25

5.2.1 Video Game . 25

5.2.2 Music Player . 26

6 Discussion 28

6.1 Expandability of PseudoWidgets . 28

6.2 Limitations . 29

7 Future Work 31

8 Conclusion 33

vii

List of Figures

1.1 PseudoWidgets allow designers and developers to use a standardized

module to prototype various control widgets, such as buttons, levers,

knobs, and joysticks. PseudoWidgets also offers a PseudoWidgets De-

signer, where the user can modify existing 3D models to have struc-

tures to accommodate the PseudoWidgets modules. PseudoWidgets

API allows developers to easily use the devices developed using Pseu-

doWidgets for their applications. 2

3.1 The Four PseudoWidgets: Button (top left), Lever (top right), Knob

(bottom right), and Joystick (bottom left). Transparent green region

represents PseudoWidgets module placement. 12

4.1 (a) Creating a widget outline (b) Selecting widget outline for gener-

ation (c) Generated widget output (d) Widget pieces separated and

sent to AnkerMake slicing software (e) Final printed product 15

4.2 (a) PseudoWidgets Connector interface with one sensor module as-

signed to a Button widget. (b) Diagram of force visualization via

gradual color change. 18

4.3 Example Python code instantiating a PWManager object and invoking

some supported commands. 20

4.4 PseudoWidget Module. (a) Top and bottom views of the device, (b)

electronic components in the module. 21

viii

4.5 Sensor measurement by force, and the estimated force after calibration

using quadratic curve fitting. 22

5.1 Haptic Space game and PseudoWidget controller 26

5.2 Music player app and PseudoWidget controller using Button on the

front side and a lever and a knob on the top 27

ix

List of Abbreviations

API Application Programming Interface

CAD Computer-aided Design

FSR Force Sensing Resistor

Li-Po Lithium Polymer Battery

LRA Linear Resonant Actuator

PWC PseudoWidgets Connector

UDP User Datagram Protocol

VR/AR Virtual and/or Augmented Reality

1

Chapter 1

Introduction

Tangible and haptic user interfaces allow users to physically manipulate the user

interface to interact with the system. These interfaces offer several benefits, such as

the physical affordance (Fitzmaurice, Ishii, and Buxton 1995), eyes-free interaction

(Taylor et al. 2009; Kirk et al. 2009), and more engaging experiences. Some user

interfaces use actuators and control movements or deformation of the user interface

based on the virtual context, such as the material of the virtual object (Nakagaki

et al. 2019; Benko et al. 2016) and movement constraints (Shim et al. 2020). While

useful, these physical interfaces are not accessible to many users since many devices

are tailored to specific applications , such as video games (Shim et al. 2020), or bulky

and heavy to build (Nakagaki et al. 2019) to be used in everyday life for various

uses. Fortunately, 3D printers and physical interface prototyping toolkits (Savage,

Chang, and Hartmann 2013; Lin et al. 2022) can help users build interactive physical

interfaces that can sense user input (Savage, Chang, and Hartmann 2013) and produce

passive (Lin et al. 2022; W. Y. Yang et al. 2022) and active haptic feedback (Cruz

et al. 2021).

However, prototyping a tangible user interface that can dynamically vary its haptic

properties is still challenging for designers and developers who do not have expertise

in hardware prototyping. Even with the help of the toolkits, users often need to

prepare electric components and assemble them (Ramakers et al. 2016) in addition to

2

Figure 1.1: PseudoWidgets allow designers and developers to use a standardized
module to prototype various control widgets, such as buttons, levers, knobs, and
joysticks. PseudoWidgets also offers a PseudoWidgets Designer, where the user can
modify existing 3D models to have structures to accommodate the PseudoWidgets
modules. PseudoWidgets API allows developers to easily use the devices developed
using PseudoWidgets for their applications.

3D printing modules, unless they use special equipment that can fabricate functional

devices (Nisser, Liao, et al. 2021). This is inevitable as changing physical properties

requires mechanical or pneumatic actuators that move the structure.

To demonstrate the potential of using the illusion movement in prorotyping tangi-

ble interface, we developed PseudoWidgets, a new toolkit that simplifies the pro-

cess of adding illusion compliance to 3D printed controllers. PseudoWidgets uses

PseudoWidgets module, a small, self-contained module equipped with a force sensor,

vibrotactile actuator, microcontroller, and a battery, to simulate a moving physical

control and programmatically change the physical properties of the control. Pseu-

doWidgets has two main components – PseudoWidgets Designer and Connector tools.

PseudoWidgets Designer is a Fusion 360 add-in, and users can bring their own 3D

model and add a haptic interface to the model by simply specifying the type and

the location of the interface. The system will then modify the loaded model and

create spaces for the PseudoWidgets module to be inserted into. Once the design

3

is complete, the users can 3D-print the model to create a hardware controller. The

fabricated object will have slots for the user to insert PseudoWidgets module, which

is a device with a force sensor and an LRA that creates the compliance illusion. This

process does not require the user to prepare any electric or mechanical components.

Different types of control, e.g., a button or a lever, may use different number of

PseudoWidgets modules. For example, a push button can be created with a single

module and a joystick may need four modules to support the 2-Dimensional move-

ment. PseudoWidgets Connector is designed for users to spatially assign modules to

their widgets. Once the control configuration is made in the PseudoWidgets Con-

nector, the application can access the PseudoWidget in an abstract form (e.g., 2D

joystick). We conducted a preliminary study to understand the effectiveness of the

dynamic tangible interfaces created with PseudoWidgets by exposing users to a set

of sample applications that come with a custom controller and use PseudoWidgets’s

API.

In summary, this work contributes 1) the concept and mechanisms of using vibration-

based deformation illusion for creating different types of controls; 2) the development

of PseudoWidgets, a toolkit that consists of a Designer and a Connector, and physical

modules that generates the illusion.

4

Chapter 2

Related Work

2.1 Dynamic Reconfiguration of Tangible Interfaces

Many haptic interfaces tailor to one specific use, making them difficult for use in

other applications. Because of this limitation, researchers have experimented with

concepts that offer multiple modes of interaction. One concept for enriching tangible

interactions is the use of several actuated pins that emerge from flat surfaces (Jung,

Youn, and G. Lee 2017; Robinson et al. 2016). Such devices offer physical widgets on

demand that users control based on the current context of the device. For example, if

a user wanted to adjust the volume on a device, multiple pixels would emerge to form

a small dial that a user can control. Several virtual and augmented reality works

also rely on actuator mechanisms of similar or lower resolution to provide a sense

of touch to complex virtual objects and surfaces (Follmer et al. 2013; Suzuki, Ofek,

et al. 2021; Suzuki, Hedayati, et al. 2020; Siu et al. 2018; Suzuki, Nakayama, et al.

2020). All of these ideas take up a lot of space and require assembling several moving

parts which is not ideal for small devices like smartphones and tablets. This prompted

researchers to consider mobility when designing devices for tangible interfaces. Haptic

Tabletop Puck is one such example that utilizes a small, hand-held device with a

single moving rod that updates its behavior based on where it is positioned on a

touchscreen surface (Marquardt et al. 2009). This offers greater mobility than using

5

pins to cover an entire interactable surface. Haptic Touch Toolkit provides an API to

implement haptic buttons which are composed of graphical 2D button images with

different states, where the moving rod of the HTP updates its software properties

when hovering over the button when disabled, enabled, or clicked on (Ledo et al.

2012). However, one major drawback of the toolkit is the absence of other haptic

widgets such as levers, switches, or rotating dials where forces applied are naturally

perpendicular to the surfaces they are on. FS-Pad offers a dynamic force feedback

analog replacement for a video game controller (Shim et al. 2020). However, its

reliance on motors and moving parts prevent it from being scaled down. ReCompFig

provides multimodality to a tangible interface through a set of tensioning cables. The

tightening and loosening of different cables in a set allow users to specify degrees of

freedom for the interface, allowing it to emulate different widgets (H. Yang et al.

2022). This solution also suffers from using many moving parts as it relies on both

tensioning cables and motors, which makes it difficult to scale down the interface.

2.2 Illusion of Material Compliance

Vibrations are a common source for supplying tactile feedback to users from a stan-

dalone device or wearable, on-body applications. Tactile cues aid in providing in-

formation to the skin such as spatial indicators, material compliance, or material

softness.

One such technique for vibrotactile feedback, the technique we want to employ in

this work, is the simulation of material compliance on a rigid body using grain-

based vibrations. The use of grain-based vibrations was first proposed by Kildal

when creating an abstract model for material compliance (Kildal 2010). The model

6

described how a rigid body could behave elastically when subject to an external

force. Pressing on the surface would act as if it were attached to a spring that

could displace on a single axis. Kinesthetic cues that naturally occur when displacing

a spring are replaced with cutaneous vibration grains, where a certain amount of

force was needed to reach the next vibration grain or step. Kildal then applied the

model in a scenario where a user interacts with a force-sensitive tablet using a stylus

rigged with a linear vibrotactile actuator. When a user exerts force on the tablet,

force information is transmitted to the actuator on the stylus to render grain-based

vibrations. The vibrations permeate across the entire pen and the holder perceives

the material compliance from his hand holding the pen. A qualitative study was

performed where the goal was to see if participants could perceive material compliance

using the stylus without knowledge of its capabilities. When pressing in a designated

area, participants could feel the surface’s simulated elasticity and distinguish it from

a regular rigid surface. Heo, J. Lee, and Wigdor (2019) later employs the same

technique to create the illusion of bending, twisting, or stretching a rigid device in

multiple degrees of freedom. The design choice was a cylindrical rod that a user

would hold with both hands, one on each end of the device. The device housed a 6-

DOF force sensor and vibrotactile actuator that would produce grain-based vibrations

in response to the amount of force or torque applied by a user holding the device.

Software parameters were introduced to adjust the step size of vibration grains and

max force allowed in the handle bar, allowing for varied material compliances to

render. A psychophysical study was conducted where participants placed their hands

inside an opaque box and held the device without seeing it. Different illusions were

simulated and participants were evaluated based on their perception of the material

compliance. The results showed that participants could perceive different material

stiffnesses when interacting with the rod. Grain-vibrations have also been adopted

7

to gain a sense of physical interaction with virtual buttons on a touchpad, grains are

mapped on a force-displacement curve to mimic the interactions before and after the

click occurs on a physical button. The technique is also adopted for rendering cues in

a person’s foot. Strohmeier et al. (2020) designs shoes for VR and AR applications

where vibration grains are used to render different materials being pressed on with

shoes. Visell, Law, and Cooperstock (2009) shows how floor panels can respond to

applied force to simulate different ground materials. Marquardt et al. (2009) and

Ledo et al. (2012) simulates breakiness in a touchpad surface using a vertical rod

with a servo motor, the breakiness value was adjustable and specified number of

breakpoints (similar to grains) placed to emulate surfaces such as sand. Instead of

grain-vibrations, the breakpoints represent areas where a vertical rod doesn’t displace.

2.3 Toolkits for Tangible Interfaces

Ramakers et al. (2016) provides a toolkit, RetroFab, that modifies the existing layouts

for legacy devices such as TV remotes and toasters. The process scans a legacy de-

vice and then, using a CAD automation tool, creates a 3D printed enclosure with new

mechanical widgets which a user can define widget properties using a GUI. Groeger

et al. (2019) uses a toolkit for designers to rapidly print electro-tactile controls called

Tactlets that can attach to tangible objects. Multiple tools present design methods

for applying passive force feedback mechanisms to physical interfaces using planar

geometries configured in a GUI for haptic customization and fabricated by 3D print-

ing or laser cutting (Zheng et al. 2022; Lin et al. 2022). Other toolkits help rapidly

sketch and convert passive objects into functioning controllers by sensing user inter-

actions through an overhead camera and registering widgets with a computer appli-

8

cation (Savage, Chang, and Hartmann 2013; Holman and Benko 2011). Shibasaki,

Tuchiya, and Minamizawa (2017) democratizes haptic device creation for children

with TECHTILE bits toolkit, enabling children to add haptic effects to their toys

and other tangible objects. OmniSoft facilitates the printing of 3D printed products

with specified regions of softness where the softness value is in reference to real world

objects (Kim et al. 2021). The design space of haptic toolkits also extends to shape-

memory alloys for skin stretching feedback (Messerschmidt et al. 2022; Nakao et al.

2019), magnets (Yasu 2020; Nisser, Makaram, et al. 2022), audio feedback (Israr et

al. 2019), and pneumatics for shape-changing surfaces (Zhang and Sra 2021; Ghosal

et al. 2019).

We also want to make note of other existing toolkits that employ vibrotactile feedback.

Haptic Enchanters supplies small-form boxes containing actuators that can attach to

smartphones or other small IoT devices to create spatial tactile feedback (Park, Cha,

and Choi 2019). Google Research offers their own toolkit for prototyping wearable

vibrotactile devices using a driver board that can support up to twelve different

vibrotactile actuators with sufficient voltage. The implementation was applied to a

sleeve, wrist band, and phone case (Dementyev et al. 2021). Cruz et al. (2021) offers

five different self-contained modules, one being a vibrotactile module that uses an

eccentric rotating mass (ERM) motor to simulate touch and a skin-safe adhesive for

easy attachment on a user’s body. A user can customize the intensity and duration

of the vibration played. All are great examples for mobilizing vibrotactile feedback

but all focus on passive touch techniques, where a user does not control the sense of

touch.

Our work builds on the insights and findings of studies on haptic toolkits that are

capable of simplifying the design process and lowering the skill perquisites needed for

9

crafting effective haptic and tangible interfaces. Different from others, our method

utilizes illusory movement caused by grain vibrations and uses a standardized Pseu-

doWidgets module, making tangible interface prototyping soldering- and wiring-free

while allowing dynamic control of physical properties, such as stiffness and maximum

movement. To the best of our knowledge, this is the first toolkit for creating tangible

interfaces using the deformation illusion.

10

Chapter 3

PseudoWidgets: Utilizing Pseudo

Movement

Many haptic toolkits offer a variety of tools that enable users to quickly prototype de-

vices with haptic feedback. For an end-to-end toolkit, it is important to provide tools

that each specialize in a different stage of the design process. Specifically for tangible

controls, we want to facilitate the designs of ubiquitous interfaces that are used to

perform daily tasks such as buttons and levers. A toolkit for the material compliance

illusion technique requires three distinct tools: design software for creating and fab-

ricating controllers, a management tool for configuring wireless sensor modules, and

a programming interface that application developers can invoke in their source code

to communicate with a controller’s registered modules. For creating tangible input

devices with material compliance illusions, there is a large emphasis on the struc-

tural design of rigid bodies that allow for effective vibration permeation. Poor design

choices would likely result in illusions failing to give a user the perception of moving

parts. This convinces us that a design tool is crucial as it can generate rigid widgets

that are known to supply sufficient vibrations in response to user input. Using a de-

sign tool, a user can simply designate a section of a rigid body to generate a structure

for user input. Many CAD suites are accessible to users online for making products

and offer extensive libraries for developing add-ons that introduce new features. Plus,

11

some CAD programs provide built-in functions for exporting CAD designs to slicing

programs such as Cura for 3D printing. The other tools are needed if we are allowing

third parties to customize and communicate with wireless sensor modules. Controller

designers need a simplified way of registering devices to a controller design, allowing

them to deploy a data structure for application developers to interact with using API

commands. And without a dedicated interface for app developers to use, they would

have to handle all the communication protocols from scratch which can be tedious.

Providing these three tools can sufficiently cover the entire design process from early

product design stages to deployment of the final product.

3.1 Widget Types

Rigid widgets should represent the common input devices that people use to perform

daily tasks. For PseudoWidgets, we chose four widgets to represent the building

blocks for creating our interfaces: a button, a lever, a rotating knob, and a joystick

(see Fig. 3.1). The button acts as a pressure plate, where a sensor module can rest

under a thin surface that a user will apply force on. Applying force on the plate

creates a small displacement at the point of contact. This displacement of the plate

then hits the force sensor in the module which responds with vibrations from the

LRA. The lever, rotating knob, and joystick widgets share a different approach since

users apply forces on these widgets that are parallel to the controller’s surface. To

capture these interactions, force sensors must be positioned orthogonal to and under

the controller’s surface allowing them to oppose the incoming forces. This can be

accomplished using the stick or shaft feature that comes naturally with real levers,

knobs, and joysticks. Rigid shafts can be created with extruded bumps or prongs

12

Figure 3.1: The Four PseudoWidgets: Button (top left), Lever (top right), Knob
(bottom right), and Joystick (bottom left). Transparent green region represents Pseu-
doWidgets module placement.

13

that can effectively press on force sensors. When exerting a force on the shaft, the

shaft will slightly displace allowing the prong in the direction of the applied force to

hit a force sensor.

3.2 Software-induced Dynamic Properties

There is a significant lack of haptic interfaces with multi-modal properties. Using the

widgets discussed, we can mount sensor modules in designated areas of the widget to

simulate moving parts that are present in other multi-modal haptic interfaces. Since

all simulation is thanks to software, we can ignore any moving parts and solely use

adjustable parameters to offer multi-modality in rigid widgets. For example, a rigid

button can be clickable until a certain event occurs in a program which forces it to

disable. Software parameters can be sent to disable the button without the hassle

of replacing or suspending actual parts. Beyond enabling and disabling widgets, the

software parameters can also control the frequency of vibrations which allows rigid

bodies to express moving parts of various stiffnesses. To make all of this happen, we

need firmware running in the modules that can monitor for force readings and trigger

grain vibrations in the LRA. Since the force sensor values are just analog values from

a micro-controller and we want to implement a force-displacement model, we use

a quadratic formula to map those values to a linear force-displacement curve. The

curve we generated has an R-squared coefficient of 0.9787. Processing sensor values

into actual force exerted provides the necessary information needed to determine the

number of grain vibrations to produce. During application use, the firmware inside

each sensor module used will continuously read in force sensor input and convert it

into a force value.

14

Chapter 4

PseudoWidgets Implementation

In this section, we provide detailed descriptions for the implementation and design

decisions of each tool that make up PseudoWidgets: the designer tool, the WiFi sensor

module management tool, and the supplied application programming interface.

4.1 PseudoWidgets Designer

Since we want to maximize the usability of PseudoWidgets, we incorporate existing

services that both industry and personal projects commonly use. For the designer

tool, instead of using a standalone application we opted for a Fusion 360 add-on.

Autodesk’s Fusion 360 is a popular CAD design tool for creating products and pro-

vides an extensive API for adding new features through add-on programs. Many

product designers already have some familiarity with the tool which would signif-

icantly decrease the amount of time needed to instruct people on how to use our

design tool. After completing a design, Fusion 360 offers a feature to easily export

designs to slicing programs such as Cura for 3D printing. All of the designs gener-

ated by PseudoWidgets are composed of PLA material which is commonly used in

commercial 3D printers. Another key consideration for using Fusion 360 is because

of its cloud sharing capabilities that allow groups of designers to work collaboratively

online. In an ideal group project scenario, each group member can simply load the

15

Figure 4.1: (a) Creating a widget outline (b) Selecting widget outline for generation
(c) Generated widget output (d) Widget pieces separated and sent to AnkerMake
slicing software (e) Final printed product

PseudoWidgets’s design add-on to their local machine and work together to design

haptic-enabled devices.

To enable the add-on, the user must insert the design add-on project folder under the

designated Fusion 360 add-ons folder. Upon running the add-on through the Fusion

360 interface, a set of buttons appear on the user interface that represent the actions

a user can perform to create their controllers. There are five buttons: one for sketch

generation and four for each individual widget. The sketch generation button is for

designating a region for creating a widget. The user will click this button first and

specify what type of widget to use and the plane or face of the controller he/she

would like to place the widget at. After answering these two questions through a

prompt that appears, a sketch of fixed dimension will appear on the specified surface.

Using a mouse, the user can drag the generated sketch around on the selected face

to specify the precise location of the new widget. After determining the location of

16

the sketch region, the user then proceeds with the actual generation of their widget

in the sketch region using a widget button associated with their sketch. The user

clicks the appropriate widget button and a second prompt pops up asking for the

specified sketch region to generate at. After completing the second prompt, the add-

on generates the design.

The generation of a rigid widget comprises many known Fusion 360 actions into one

compact script and relies on the dimensions of the sensor module to make appropriate

cuts into the sketch region of interest. A visualization of this process can be seen in

Figure 4.1. We separate the discussion of generating a button and generating the

other three widgets that rely on an additional shaft piece.

4.1.1 Generating a Button Widget

The button widget requires one sensor module that is centrally placed. When a

user applies force to a plate resting above it, the plate displaces and presses on the

force sensor resting under the point of contact (see Fig. 3.1). Generating a button

component first takes a sketch region and cuts into the controller by the height of the

sensor module (12 mm). At the bottom of the cut, three wall structures are extruded:

one thin-walled rectangle outline for easy placement of the sensor module and two

walls adorned with snap joints at the top for easy placement of the widget plate. The

widget plate generates after the wall structures are finished, this plate is designed to

cover the hole that was created. The button’s widget plate is 1 mm in height allowing

for sufficient flexibility for plate deformation. Two holes are cut through the plate

itself allowing the plate to snap on to the controller with the snap joints. The snap

joints are shared across all widget types and are used to keep the plates attached.

17

4.1.2 Generating a Lever, Knob, or Joystick Widget

Although the remaining widgets do not share the same fixed sketch region, they

each share the same generation procedure. Same as the button, we first cut into the

controller shell and create snap joint walls and a widget plate but with two main

distinctions. Firstly, since the forces applied to these widgets are parallel to the

surface, we have to extrude by the length of the sensor module (57 mm). Secondly,

the widget plate is no longer the source of user input so a hole is cut at the center

of the plate to make room for a shaft component that users interact with instead.

The shaft is designed to be attachable using a ball-and-socket joint and relies on

prongs on its side to supply force to sensors. Right after extruding the snap joint

walls, a socket hole for the shaft is created at the center. The shaft used for each

of the three widgets vary (see Fig. 3.1). The lever needs two prongs for pressing on

the two modules positioned on opposite sides for lateral translation. The knob also

uses two modules but both share the same side and separated by a small spacer, the

shaft has two longer prongs to reach each module’s FSRs when being turned by a

user. Lastly, the joystick has the same behavior as a lever but uses four modules for

two-dimensional translation.

4.2 PseudoWidgets Connector

The next step after designing a controller and sending it off to print is configuring

WiFi sensor modules provided by PseudoWidgets. The number of sensor modules

depends on the number of widgets used and how many each widget needs to function

properly. Running PseudoWidget’s Connector (PWC) program on the same network

allows designers to register sensor modules with specific widgets, configure their vir-

18

Figure 4.2: (a) PseudoWidgets Connector interface with one sensor module assigned
to a Button widget. (b) Diagram of force visualization via gradual color change.

tual parameters, and provide force visualization. PWC establishes a UDP server on

a provided WiFi network, allowing sensor modules to connect. Upon module connec-

tion, the module persistently informs PWC of its current force, stiffness, and cutoff

values. The PseudoWidget’s Connector program is a multi-threaded Python appli-

cation that utilizes customtkiner, a Tkinter extension that gives the application a

modern appearance.

PWC’s interface provides two main panels for interaction. The left panel currently

displays a list of sensor modules that are connected to the UDP server. Upon starting

PWC, the list first appears empty until the designer hits refresh to check if any sensor

modules made contact with the server.

The right panel is for spatially mapping sensor modules to different widgets and

visualizing their force readings. Each widget entry contains empty slots (appears

as dashed outline boxes) for assigning sensor modules and field inputs that allow

19

designers to setup virtual parameters for all of the widget’s modules. Assigning a

sensor module is a two-step process. First the designer selects the sensor module on

the left pane. Then, the designer clicks on a empty slot for filling in with the sensor

module selection. Filling in an empty slot with a module turns the box white with

a solid black outline. If a designer can not recall where a module’s assignment is,

they can simply press on the module’s force sensor and the corresponding slot will

respond back by gradually changing color based on force applied. This feature is

also important for designers who need a sense of how strong a force is in a widget or

controller design.

After a designer finishes configuring sensor modules and widgets, the designer is ready

to deploy a database that application developers can interface with over the server.

Clicking the ”Deploy” button on the top right-hand side fills creates a dictionary data

structure where each widget is represented by a key and value. The key is the name

of the widget and the values are the modules associated with it.

4.3 Application Programming Interface

For adding dynamic states we provide an Application Programming Interface (API)

written in Python, enabling application developers to communicate and change vir-

tual parameters over PWC’s server. The UDP server on PseudoWidget’s Connector

end interprets string queries sent by both modules and application developers. Such

string commands are abstracted for app developers keeping requests simple to call.

To begin using the package, the app developer would instantiate an object from the

API’s PWManager class, just like any normal class instance in object-oriented pro-

gramming. This class handles all requests made by the application developer such

20

Figure 4.3: Example Python code instantiating a PWManager object and invoking
some supported commands.

as accessing widget information, disabling or enabling a widget, and getting/setting

virtual parameters for modules (Figure 4.3). Developers can utilize these commands

in their code logic to create dynamic states for their applications. One example is

using a PseudoWidgets button with a countdown application, where each press of

the button with virtual stiffness on decrements an integer by 1 in Python code. The

developer’s code will listen for force changes using the appropriate get command with

a PWManager object. When the countdown reaches zero, a condition is checked and

the developer’s program calls to disable the entire widget making the button feel rigid.

This is a trivial example but offers some insight on the wide range of applications

that could benefit from PseudoWidget’s API.

21

Figure 4.4: PseudoWidget Module. (a) Top and bottom views of the device, (b)
electronic components in the module.

4.4 PseudoWidgets Module

PseudoWidgets module is designed to be a plug-in component that can be inserted

into 3D-printed parts to enable dynamic haptic interactions by creating the compli-

ance illusion. Therefore, we developed PseudoWidgets module to be small, lightweight,

and self-contained without the need for wiring to connect to a computer (See Fig.

4.4). The module is 57× 22× 12mm(W ×H ×D), and weighs 15.4 grams. It uses a

QT Py ESP32-S2 module to process the force measurement, render grain vibrations,

and communicate with a PC via Wi-Fi. The device is powered by a 3.7V 100mAh

lithium polymer (Li-Po) battery, and an Adafruit Li-Po battery charger add-on with

MCP73831 Li-Po charge management controller was attached to the QT Py ESP32-

S2 module to allow the module to be charged through the USB-C connection. The

module has a window on the bottom for easy access to the power switch. Based

on our measurement, the device consumes approximately 350 mWh and will last for

22

Figure 4.5: Sensor measurement by force, and the estimated force after calibration
using quadratic curve fitting.

around an hour on a 3.7V 100mAh battery.

The device uses a Force-Sensing Resistor (FSR) with an 8-mm diameter sensing area

and a minimum force detection value of 0.2 N. Using a voltage divider with a 2.2

resistor connected in series and the ESP32 Analog-Digital Converter (ADC), the

force is converted to the measurement at 13-bit resolution. To ensure the linear force

readings, we calibrated the force sensors by fitting the measurements using a quadratic

curve fitting. Fig. 4.5 shows the result of the force calibration. The haptic feedback

generation uses a simplified version of the PseudoBend algorithm Heo, J. Lee, and

Wigdor 2019. The device measures and processes the force at 1000 Hz, and if the

difference between the measured force and the force when the last grain vibration

was played is greater than the force threshold (stiffness parameter), the device will

render a grain vibration and store the measured force. If the device did not play any

grain vibrations, then the last grain vibration force will be 0. To generate the grain

vibration, we use a 10ms-long digital pulse. The pulse generated by the digital I/O

of the ESP32 device will be sent to a 2N3904 transistor to drive a Linear Resonant

Actuator (LRA, Jinlong Machinery G0832012, diameter: 8mm, thickness: 3.2mm).

The FSR and the LRA are attached to each other to minimize the footprint, and

23

our pilot tests found that the vibration from the LRA does not cause significant

disturbance to the force measurement.

24

Chapter 5

Evaluation

We conducted a preliminary study to gain initial insights into the user experience of

using tangible user interfaces created using PseudoWidgets. Since the toolkit’s main

goal is to bring new immersive experiences to users, it is important that products

made with PseudoWidgets are effective in supplying vibrotactile feedback. The study

protocol was approved by the Institutional Review Board of [anonymized institution].

Three participants were recruited via word-of-mouth. The average age of participants

was 21.33 years old (20-24, 3 males). The study took around 30 minutes to complete,

and the participants received a $10 gift card for their participation. The participant

first interacted with each of the four standard widgets (button, lever, knob, and

joystick) and then used tangible user interfaces developed using PseudoWidgets in

two applications: a tangible music player and a video game - Haptic Space. The

applications were implemented in Python using pygame package, and they used the

PseudoWidgets API to use the tangible user interfaces. The participants were asked

to fill out a questionnaire about their experience of using the interface after trying

each application.

25

5.1 Individual Widgets

Before using the two applications, the participants were asked to try the four basic

widgets: a button, a lever, a knob, and a joystick, to obtain feedback from the

participants regarding the experience of using each widget. During this process, the

researcher changed the stiffness of the widgets and enabled and disabled the illusion,

and asked the participants if they could discern behavior changes. For button, lever,

and joystick widgets, all participants reported that they could feel when the device

starts or stops moving and perceive the differences in stiffness. However, two of the

three participants mentioned that the differences were not very clear when using the

knob widget.

5.2 Application-specific Controllers

After handling each individual widget and filling out the first part of the survey, par-

ticipants played a video game and music player applications by using their associated

controller. To see if participants favored using the haptic technique in controllers, a

second version of each application was created for participants to play after using the

haptic-enabled version. The second version mutes all haptic properties, making all of

the widgets on the controller rigid. After playing with each application for roughly

five minutes, the participants filled out a survey to provide feedback.

5.2.1 Video Game

In the Haptic Space video game, participants controlled a spaceship and shoot down

asteroids in a maze, using a tangible game controller that has Joystick and Button

26

Figure 5.1: Haptic Space game and PseudoWidget controller

widgets developed using PsuedoWidgets. The video game dynamically changed the

stiffness of the joystick based on the game context. In the game space (see Figure

5.1), the air density differed by different areas. The brown-colored area had a more

dense air and causes more friction, and the joystick became stiffer to manipulate.

On the other hand, the blue-colored area had less friction and the joystick had less

stiffness. The button behavior was also dynamically controlled; the button became

disabled when the spaceship ran out of ammo. Participants found that the Button

on the controller made combat more realistic when playing the game. Participant C

said ”the Button haptic feedback felt useful”. Participant B appreciated the haptic-

enabled version of the video game compared to the other, saying ”the haptic feedback

definitely made the user experience more realistic feeling and more interesting”.

5.2.2 Music Player

The music player application allows users to interact with a small music playlist in a

more tangible way by using a controller containing a button, lever, and rotating knob.

27

Figure 5.2: Music player app and PseudoWidget controller using Button on the front
side and a lever and a knob on the top

The music player user interface shows four song blocks. The songs could be selected

using a cursor controlled by the lever, and pressing the front button started playing

the music. The button was deactivated when the cursor was not on the song block.

The knob was used to control the music volume level, which stopped rotating when

the volume reached the maximum or minimum level. After using the application,

all participants reported that they liked the haptic feedback, and navigating the

music and controlling the music volume felt easier with the illusive movement. One

participant mentioned: ”the feedback from the knob was weaker than the others, but

it was also the most noticeable missing when the haptics were turned off”, and another

participant mentioned that ”the music player controller without haptic feedback felt

limiting”.

28

Chapter 6

Discussion

PseudoWidgets can effectively simplify the tangible interface prototyping process.

Using the design tool, the researchers could design and implement dynamic tangi-

ble interfaces in a short amount of time. The tangible user interfaces created using

PseudoWidgets could also effectively manipulate the perceived movement of the wid-

gets based on the application context that is distinguishable by the participants.

We believe that this toolkit will allow users without extensive hardware prototyping

experience to build functional prototypes using 3D printers. The design of the Pseu-

doWidgets module will become opensource so that it can be produced by 3rd parties

and shared or sold to others.

6.1 Expandability of PseudoWidgets

The sample applications created with pygame are just a fraction of where PseudoWid-

gets can be employed. Mobile games use flat touchscreen controls that lack tangible

interactions and eyes-free control. PseudoWidgets such as joysticks and buttons can

replace these and could be attached to a smartphone or tablet device. Virtual and

augmented reality environments are now commonly used in workspaces and personal

use that allow users to immerse themselves in a digital environment to perform op-

erations. However, virtual reality and augmented reality are intolerant to tangible

29

interactions and are only capable of supplying visual and audio information. Actions

such as clicking a button or a switch in the virtual menu offer no haptic feedback.

PseudoWidgets can be used as attachments to existing VR controllers or can repre-

sent virtual objects in a physical setting. One specific example where PseudoWidgets

has a purpose is improving the tangible interactions with virtual menus such as a

settings menu. The virtual buttons and switches on a menu can be represented with

real PseudoWidgets that are spatially arranged or attached to the body of a user. An-

other area where PseudoWidgets could benefit is in remote-controlled devices. Flying

a remote-controlled drone, for example, sometimes comes with the challenge of flying

through windy conditions, making it difficult to fully control the device. To aid bal-

ancing in weather conditions, using PseudoWidgets with dynamic stiffness changing

could be useful for providing a user an idea of the weather conditions occurring in

the air from the ground. Toys are also another area where PseudoWidgets can be

incorporated. One popular toy such as the Bop-it is adorned with different physical

widgets such as a twisting knob, button, and lever. A substitute controller can be

created with PsuedoWidgets where we can program the stiffness, cutoff and dynamic

behaviors such as how far the knob can be twisted.

6.2 Limitations

PseudoWidgets does a great job at simplifying the design of tangible interfaces but

there still remain some drawbacks. The first drawback concerns the current size of the

widgets that PseudoWidgets support. Although we can create hand-held controllers,

the controllers are slightly bigger compared to other physical controllers used today.

This limitation is present as the size of the widgets and their internal structures are

30

dependent on the dimensions of the sensor modules we use. To reduce the size of

widgets, we would need to figure out how to scale down the sensor module which has

hardware limitations. Controllers made by PseudoWidgets are also limited to short

play times due to the sensor modules short battery life. When a sensor module is

not charging and in active use, it can stay on for 1 hour which is not favorable. One

workaround is just keeping the sensor module wired and making holes in the con-

trollers. Other issues come from the limitations of using an LRA for vibration grains.

The vibrations in a 3D-printed device are noisy and tend to permeate across entire

controllers. Both of these limitations may deter the immersive experience when inter-

acting with tangible interfaces. One idea used by Haptic Enchanters (Park, Cha, and

Choi 2019) is using vibration attenuation layers or dampening mechanisms to con-

tain vibrations in one specific area. Also, the vibrations from the LRA can be noisy,

which may deter the immersive experiences of interacting with the widgets. This

is one consideration but we also want to preserve PseudoWidgets minimal assembly

advantages.

31

Chapter 7

Future Work

We want to extend PseudoWidgets to other applications outside of simple Python

games. One specific area for exploration is implementing dynamic tangible interfaces

for virtual reality applications. Common tools such as Unity are utilized for creating

such applications and require the use of C-Sharp programming. We plan to expand

the current API to support the C-Sharp language, allowing Unity developers to easily

include dynamic tangible interfaces into their virtual or augmented reality applica-

tions. We also intend to conduct a more extensive study on both end-user applications

and the usability of the toolkit. Although our findings from three participants show

positive end-user experiences surrounding the different controllers, more participants

are needed to validate our findings. For usability, we seek to recruit other partici-

pants in the future who have knowledge of programming and 3D Cad design to see

how easy it is to create PseudoWidget controllers. We also intend to address some

of the constructive feedback from the preliminary study to make improvements to

the widgets supported by the Designer tool. The knob widget performed the lowest

out of the four widgets where some of the participants noted that the widget seemed

weaker in use. However, they also mentioned it was the most useful widget in the

haptic-enabled version of the music player versus the non-haptic-enabled version when

adjusting the volume of the music. This information convinces us that improving the

knob widget will improve the tangible experiences of twisting a rigid device. We also

32

need to quantify how well vibrations travel in a controller when a user presses on

each of the widgets.

33

Chapter 8

Conclusion

Designing tangible and haptic interfaces brings several challenges for designers who

lack the interdisciplinary experience needed to craft mechanisms, electrical compo-

nents, and firmware on embedded devices. Many haptic interfaces are restricted to

one form of interaction, making them difficult to use for multiple contexts. Pseu-

doWidgets toolkit tackles both of these problems by allowing rapid creation and

dynamic programming of tangible interfaces that simulate moving parts. This simu-

lation of moving parts is performed by changing virtual stiffness parameters, known

as material compliance illusion. PseudoWidgets toolkit offers a Designer tool for cre-

ating and slicing 3D widgets, a Connector tool for configuring sensor modules over

a UDP network and assigning to widgets, and an application programming interface

for developers to interface with registered sensors. In a user study, we used Pseu-

doWidgets to create two different applications and controllers to use in an end user

study to gain qualitative feedback. Two versions of each application are created for

comparing haptic and non-haptic scenarios. Participants found all of the widgets to

be effective in supplying the illusion of movement and all but the rotating knob for

discerning behavioral or dynamic changes. All participants also recognize the useful-

ness of the haptics used in the controllers compared to controller interactions without

haptic feedback. Finally, we intend to expand our toolkit’s capabilities to virtual and

augmented reality applications but this first requires extending the API support. We

34

hope that this work promotes further research into creating dynamic haptic interfaces

and toolkits for democratizing haptic prototyping.

35

Bibliography

Fitzmaurice, George W., Hiroshi Ishii, and William A. S. Buxton (1995). “Bricks:

laying the foundations for graspable user interfaces”. en. In: Proceedings of the

SIGCHI conference on Human factors in computing systems - CHI ’95. Denver,

Colorado, United States: ACM Press, pp. 442–449. ISBN: 978-0-201-84705-5. DOI:

10.1145/223904.223964. URL: http://portal.acm.org/citation.cfm?doid=

223904.223964 (visited on 04/05/2023).

Kirk, David et al. (Sept. 2009). “Putting the physical into the digital: Issues in de-

signing hybrid interactive surfaces”. en-US. In: URL: https://www.microsoft.

com / en - us / research / publication / putting - the - physical - into - the -

digitalissues- in- designing- hybrid- interactive- surfaces/ (visited on

04/05/2023).

Marquardt, Nicolai et al. (Nov. 2009). “The Haptic Tabletop Puck: tactile feedback

for interactive tabletops”. In: Proceedings of the ACM International Conference

on Interactive Tabletops and Surfaces. ITS ’09. New York, NY, USA: Association

for Computing Machinery, pp. 85–92. ISBN: 978-1-60558-733-2. DOI: 10.1145/

1731903.1731922. URL: https://dl.acm.org/doi/10.1145/1731903.1731922

(visited on 04/05/2023).

Taylor, Stuart et al. (Apr. 2009). “Turning the tables: an interactive surface for

vjing”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems. CHI ’09. New York, NY, USA: Association for Computing Machinery,

pp. 1251–1254. ISBN: 978-1-60558-246-7. DOI: 10.1145/1518701.1518888. URL:

https://dl.acm.org/doi/10.1145/1518701.1518888 (visited on 04/04/2023).

36

Visell, Yon, Alvin Law, and Jeremy R. Cooperstock (July 2009). “Touch Is Every-

where: Floor Surfaces as Ambient Haptic Interfaces”. In: IEEE Transactions on

Haptics 2.3. Conference Name: IEEE Transactions on Haptics, pp. 148–159. ISSN:

2329-4051. DOI: 10.1109/TOH.2009.31.

Kildal, Johan (Nov. 2010). “3D-press: haptic illusion of compliance when pressing on

a rigid surface”. en. In: International Conference on Multimodal Interfaces and

the Workshop on Machine Learning for Multimodal Interaction. Beijing China:

ACM, pp. 1–8. ISBN: 978-1-4503-0414-6. DOI: 10.1145/1891903.1891931. URL:

https://dl.acm.org/doi/10.1145/1891903.1891931 (visited on 01/23/2023).

Holman, David and Hrvoje Benko (2011). “SketchSpace: designing interactive be-

haviors with passive materials”. en. In: Proceedings of the 2011 annual confer-

ence extended abstracts on Human factors in computing systems - CHI EA ’11.

Vancouver, BC, Canada: ACM Press, p. 1987. ISBN: 978-1-4503-0268-5. DOI: 10.

1145/1979742.1979867. URL: http://portal.acm.org/citation.cfm?doid=

1979742.1979867 (visited on 10/26/2022).

Ledo, David et al. (Feb. 2012). “The HapticTouch toolkit: enabling exploration of

haptic interactions”. In: Proceedings of the Sixth International Conference on

Tangible, Embedded and Embodied Interaction. TEI ’12. New York, NY, USA:

Association for Computing Machinery, pp. 115–122. ISBN: 978-1-4503-1174-8. DOI:

10.1145/2148131.2148157. URL: https://doi.org/10.1145/2148131.2148157

(visited on 02/20/2023).

Follmer, Sean et al. (Oct. 2013). “inFORM: dynamic physical affordances and con-

straints through shape and object actuation”. In: Proceedings of the 26th annual

ACM symposium on User interface software and technology. UIST ’13. New York,

NY, USA: Association for Computing Machinery, pp. 417–426. ISBN: 978-1-4503-

37

2268-3. DOI: 10.1145/2501988.2502032. URL: https://doi.org/10.1145/

2501988.2502032 (visited on 03/18/2023).

Savage, Valkyrie, Colin Chang, and Björn Hartmann (Oct. 2013). “Sauron: embedded

single-camera sensing of printed physical user interfaces”. In: Proceedings of the

26th annual ACM symposium on User interface software and technology. UIST

’13. New York, NY, USA: Association for Computing Machinery, pp. 447–456.

ISBN: 978-1-4503-2268-3. DOI: 10.1145/2501988.2501992. URL: https://doi.

org/10.1145/2501988.2501992 (visited on 10/20/2022).

Benko, Hrvoje et al. (Oct. 2016). “NormalTouch and TextureTouch: High-fidelity 3D

Haptic Shape Rendering on Handheld Virtual Reality Controllers”. In: Proceedings

of the 29th Annual Symposium on User Interface Software and Technology. UIST

’16. New York, NY, USA: Association for Computing Machinery, pp. 717–728.

ISBN: 978-1-4503-4189-9. DOI: 10.1145/2984511.2984526. URL: https://dl.

acm.org/doi/10.1145/2984511.2984526 (visited on 04/04/2023).

Ramakers, Raf et al. (May 2016). “RetroFab: A Design Tool for Retrofitting Physical

Interfaces using Actuators, Sensors and 3D Printing”. In: Proceedings of the 2016

CHI Conference on Human Factors in Computing Systems. CHI ’16. New York,

NY, USA: Association for Computing Machinery, pp. 409–419. ISBN: 978-1-4503-

3362-7. DOI: 10.1145/2858036.2858485. URL: https://doi.org/10.1145/

2858036.2858485 (visited on 09/21/2022).

Robinson, Simon et al. (May 2016). “Emergeables: Deformable Displays for Contin-

uous Eyes-Free Mobile Interaction”. In: Proceedings of the 2016 CHI Conference

on Human Factors in Computing Systems. CHI ’16. New York, NY, USA: Asso-

ciation for Computing Machinery, pp. 3793–3805. ISBN: 978-1-4503-3362-7. DOI:

10.1145/2858036.2858097. URL: https://doi.org/10.1145/2858036.2858097

(visited on 10/26/2022).

38

Jung, Jingun, Eunhye Youn, and Geehyuk Lee (May 2017). “PinPad: Touchpad In-

teraction with Fast and High-Resolution Tactile Output”. In: Proceedings of the

2017 CHI Conference on Human Factors in Computing Systems. CHI ’17. New

York, NY, USA: Association for Computing Machinery, pp. 2416–2425. ISBN: 978-

1-4503-4655-9. DOI: 10.1145/3025453.3025971. URL: https://doi.org/10.

1145/3025453.3025971 (visited on 10/26/2022).

Shibasaki, Mina, Keitaro Tuchiya, and Kouta Minamizawa (Mar. 2017). “TECHTILE

Bits: Designing a Tool for Children to Create Haptic Devices”. In: Proceedings

of the Virtual Reality International Conference - Laval Virtual 2017. VRIC ’17.

New York, NY, USA: Association for Computing Machinery, pp. 1–4. ISBN: 978-1-

4503-4858-4. DOI: 10.1145/3110292.3110308. URL: https://doi.org/10.1145/

3110292.3110308 (visited on 02/24/2023).

Siu, Alexa F. et al. (Apr. 2018). “shapeShift: 2D Spatial Manipulation and Self-

Actuation of Tabletop Shape Displays for Tangible and Haptic Interaction”. In:

Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.

CHI ’18. New York, NY, USA: Association for Computing Machinery, pp. 1–13.

ISBN: 978-1-4503-5620-6. DOI: 10.1145/3173574.3173865. URL: https://dl.acm.

org/doi/10.1145/3173574.3173865 (visited on 04/05/2023).

Ghosal, Radhika et al. (Oct. 2019). “Rapid Prototyping of Pneumatically Actuated

Inflatable Structures”. In: Adjunct Proceedings of the 32nd Annual ACM Sympo-

sium on User Interface Software and Technology. UIST ’19 Adjunct. New York,

NY, USA: Association for Computing Machinery, pp. 78–80. ISBN: 978-1-4503-

6817-9. DOI: 10.1145/3332167.3357121. URL: https://doi.org/10.1145/

3332167.3357121 (visited on 03/20/2023).

Groeger, Daniel et al. (Oct. 2019). “Tactlets: Adding Tactile Feedback to 3D Objects

Using Custom Printed Controls”. In: Proceedings of the 32nd Annual ACM Sympo-

39

sium on User Interface Software and Technology. UIST ’19. New York, NY, USA:

Association for Computing Machinery, pp. 923–936. ISBN: 978-1-4503-6816-2. DOI:

10.1145/3332165.3347937. URL: https://doi.org/10.1145/3332165.3347937

(visited on 10/20/2022).

Heo, Seongkook, Jaeyeon Lee, and Daniel Wigdor (Oct. 2019). “PseudoBend: Produc-

ing Haptic Illusions of Stretching, Bending, and Twisting Using Grain Vibrations”.

In: Proceedings of the 32nd Annual ACM Symposium on User Interface Software

and Technology. UIST ’19. New York, NY, USA: Association for Computing Ma-

chinery, pp. 803–813. ISBN: 978-1-4503-6816-2. DOI: 10.1145/3332165.3347941.

URL: https://doi.org/10.1145/3332165.3347941 (visited on 09/21/2022).

Israr, Ali et al. (2019). “Stereohaptics Toolkit for Dynamic Tactile Experiences”. en.

In: HCI International 2019 – Late Breaking Papers. Ed. by Constantine Stephani-

dis. Vol. 11786. Series Title: Lecture Notes in Computer Science. Cham: Springer

International Publishing, pp. 217–232. ISBN: 978-3-030-30032-6 978-3-030-30033-3.

DOI: 10.1007/978-3-030-30033-3_17. URL: http://link.springer.com/10.

1007/978-3-030-30033-3_17 (visited on 02/22/2023).

Nakagaki, Ken et al. (Mar. 2019). “inFORCE: Bi-directional ‘Force’ Shape Display

for Haptic Interaction”. In: Proceedings of the Thirteenth International Conference

on Tangible, Embedded, and Embodied Interaction. TEI ’19. New York, NY, USA:

Association for Computing Machinery, pp. 615–623. ISBN: 978-1-4503-6196-5. DOI:

10.1145/3294109.3295621. URL: https://dl.acm.org/doi/10.1145/3294109.

3295621 (visited on 04/04/2023).

Nakao, Takuro et al. (July 2019). “ShareHaptics: a modular haptic feedback sys-

tem using shape memory alloy for mixed reality shared space applications”. In:

ACM SIGGRAPH 2019 Posters. SIGGRAPH ’19. New York, NY, USA: Associa-

tion for Computing Machinery, pp. 1–2. ISBN: 978-1-4503-6314-3. DOI: 10.1145/

40

3306214.3338597. URL: https://doi.org/10.1145/3306214.3338597 (visited

on 02/24/2023).

Park, Gunhyuk, Hojun Cha, and Seungmoon Choi (Jan. 2019). “Haptic Enchanters:

Attachable and Detachable Vibrotactile Modules and Their Advantages”. In: IEEE

Transactions on Haptics 12.1. Conference Name: IEEE Transactions on Haptics,

pp. 43–55. ISSN: 2329-4051. DOI: 10.1109/TOH.2018.2859955.

Shim, Youngbo Aram et al. (Oct. 2020). “FS-Pad: Video Game Interactions Using

Force Feedback Gamepad”. In: Proceedings of the 33rd Annual ACM Symposium

on User Interface Software and Technology. UIST ’20. New York, NY, USA: As-

sociation for Computing Machinery, pp. 938–950. ISBN: 978-1-4503-7514-6. DOI:

10.1145/3379337.3415850. URL: https://doi.org/10.1145/3379337.3415850

(visited on 10/20/2022).

Strohmeier, Paul et al. (Oct. 2020). “bARefoot: Generating Virtual Materials using

Motion Coupled Vibration in Shoes”. en. In: Proceedings of the 33rd Annual ACM

Symposium on User Interface Software and Technology. Virtual Event USA: ACM,

pp. 579–593. ISBN: 978-1-4503-7514-6. DOI: 10 . 1145 / 3379337 . 3415828. URL:

https://dl.acm.org/doi/10.1145/3379337.3415828 (visited on 03/11/2023).

Suzuki, Ryo, Hooman Hedayati, et al. (Apr. 2020). “RoomShift: Room-scale Dynamic

Haptics for VR with Furniture-moving Swarm Robots”. In: Proceedings of the 2020

CHI Conference on Human Factors in Computing Systems. CHI ’20. New York,

NY, USA: Association for Computing Machinery, pp. 1–11. ISBN: 978-1-4503-6708-

0. DOI: 10.1145/3313831.3376523. URL: https://dl.acm.org/doi/10.1145/

3313831.3376523 (visited on 04/05/2023).

Suzuki, Ryo, Ryosuke Nakayama, et al. (Feb. 2020). “LiftTiles: Constructive Building

Blocks for Prototyping Room-scale Shape-changing Interfaces”. In: Proceedings of

the Fourteenth International Conference on Tangible, Embedded, and Embodied

41

Interaction. TEI ’20. New York, NY, USA: Association for Computing Machin-

ery, pp. 143–151. ISBN: 978-1-4503-6107-1. DOI: 10.1145/3374920.3374941. URL:

https://doi.org/10.1145/3374920.3374941 (visited on 03/20/2023).

Yasu, Kentaro (Apr. 2020). “MagneLayer: Force Field Fabrication by Layered Mag-

netic Sheets”. In: Proceedings of the 2020 CHI Conference on Human Factors in

Computing Systems. CHI ’20. New York, NY, USA: Association for Computing

Machinery, pp. 1–9. ISBN: 978-1-4503-6708-0. DOI: 10.1145/3313831.3376552.

URL: https://doi.org/10.1145/3313831.3376552 (visited on 02/24/2023).

Cruz, Ramón E. Sánchez et al. (July 2021). “Modular Haptic Feedback for Rapid Pro-

totyping of Tactile Displays”. In: 2021 IEEE World Haptics Conference (WHC),

pp. 703–708. DOI: 10.1109/WHC49131.2021.9517256.

Dementyev, Artem et al. (Oct. 2021). “VHP: Vibrotactile Haptics Platform for On-

body Applications”. In: The 34th Annual ACM Symposium on User Interface

Software and Technology. UIST ’21. New York, NY, USA: Association for Com-

puting Machinery, pp. 598–612. ISBN: 978-1-4503-8635-7. DOI: 10.1145/3472749.

3474772. URL: https : / / doi . org / 10 . 1145 / 3472749 . 3474772 (visited on

02/27/2023).

Kim, Jeeeun et al. (Feb. 2021). “OmniSoft: A Design Tool for Soft Objects by Ex-

ample”. In: Proceedings of the Fifteenth International Conference on Tangible,

Embedded, and Embodied Interaction. TEI ’21. New York, NY, USA: Associa-

tion for Computing Machinery, pp. 1–13. ISBN: 978-1-4503-8213-7. DOI: 10.1145/

3430524.3440634. URL: https://doi.org/10.1145/3430524.3440634 (visited

on 03/17/2023).

Nisser, Martin, Christina Chen Liao, et al. (May 2021). “LaserFactory: A Laser

Cutter-based Electromechanical Assembly and Fabrication Platform to Make Func-

tional Devices & Robots”. In: Proceedings of the 2021 CHI Conference on Human

42

Factors in Computing Systems. CHI ’21. New York, NY, USA: Association for

Computing Machinery, pp. 1–15. ISBN: 978-1-4503-8096-6. DOI: 10.1145/3411764.

3445692. URL: https://dl.acm.org/doi/10.1145/3411764.3445692 (visited

on 04/05/2023).

Suzuki, Ryo, Eyal Ofek, et al. (Oct. 2021). “HapticBots: Distributed Encountered-

type Haptics for VR with Multiple Shape-changing Mobile Robots”. In: The 34th

Annual ACM Symposium on User Interface Software and Technology. UIST ’21.

New York, NY, USA: Association for Computing Machinery, pp. 1269–1281. ISBN:

978-1-4503-8635-7. DOI: 10.1145/3472749.3474821. URL: https://doi.org/10.

1145/3472749.3474821 (visited on 09/25/2022).

Zhang, Bowen and Misha Sra (Dec. 2021). “PneuMod: A Modular Haptic Device

with Localized Pressure and Thermal Feedback”. In: Proceedings of the 27th ACM

Symposium on Virtual Reality Software and Technology. VRST ’21. New York, NY,

USA: Association for Computing Machinery, pp. 1–7. ISBN: 978-1-4503-9092-7. DOI:

10.1145/3489849.3489857. URL: https://doi.org/10.1145/3489849.3489857

(visited on 02/24/2023).

Lin, Hongnan et al. (Apr. 2022). “FlexHaptics: A Design Method for Passive Haptic

Inputs Using Planar Compliant Structures”. In: Proceedings of the 2022 CHI Con-

ference on Human Factors in Computing Systems. CHI ’22. New York, NY, USA:

Association for Computing Machinery, pp. 1–13. ISBN: 978-1-4503-9157-3. DOI:

10.1145/3491102.3502113. URL: https://doi.org/10.1145/3491102.3502113

(visited on 02/24/2023).

Messerschmidt, Moritz Alexander et al. (Jan. 2022). “ANISMA: A Prototyping Toolkit

to Explore Haptic Skin Deformation Applications Using Shape-Memory Alloys”.

In: ACM Transactions on Computer-Human Interaction 29.3, 19:1–19:34. ISSN:

43

1073-0516. DOI: 10.1145/3490497. URL: https://doi.org/10.1145/3490497

(visited on 02/24/2023).

Nisser, Martin, Yashaswini Makaram, et al. (Dec. 2022). “Demonstration of Mixels:

Fabricating Interfaces using Programmable Magnetic Pixels”. In: Adjunct Pro-

ceedings of the 35th Annual ACM Symposium on User Interface Software and

Technology. UIST ’22 Adjunct. New York, NY, USA: Association for Computing

Machinery, pp. 1–3. ISBN: 978-1-4503-9321-8. DOI: 10.1145/3526114.3558654.

URL: https://doi.org/10.1145/3526114.3558654 (visited on 02/24/2023).

Yang, Humphrey et al. (Apr. 2022). “ReCompFig: Designing Dynamically Reconfig-

urable Kinematic Devices Using Compliant Mechanisms and Tensioning Cables”.

In: Proceedings of the 2022 CHI Conference on Human Factors in Computing

Systems. CHI ’22. New York, NY, USA: Association for Computing Machinery,

pp. 1–14. ISBN: 978-1-4503-9157-3. DOI: 10.1145/3491102.3502065. URL: https:

//doi.org/10.1145/3491102.3502065 (visited on 09/21/2022).

Yang, Willa Yunqi et al. (Oct. 2022). “Reconfigurable Elastic Metamaterials”. In:

Proceedings of the 35th Annual ACM Symposium on User Interface Software and

Technology. UIST ’22. New York, NY, USA: Association for Computing Machin-

ery, pp. 1–13. ISBN: 978-1-4503-9320-1. DOI: 10.1145/3526113.3545649. URL:

https://dl.acm.org/doi/10.1145/3526113.3545649 (visited on 03/22/2023).

Zheng, Clement et al. (Apr. 2022). “Shape-Haptics: Planar & Passive Force Feedback

Mechanisms for Physical Interfaces”. In: Proceedings of the 2022 CHI Confer-

ence on Human Factors in Computing Systems. CHI ’22. New York, NY, USA:

Association for Computing Machinery, pp. 1–15. ISBN: 978-1-4503-9157-3. DOI:

10.1145/3491102.3501829. URL: https://doi.org/10.1145/3491102.3501829

(visited on 09/21/2022).

