
Designing a Native AWS System to Classify Server Reboots in Real Time 

A Technical Report submitted to the Department of Engineering 

Presented to the Faculty of the School of Engineering and Applied Science 

University of Virginia • Charlottesville, Virginia 

In Partial Fulfillment of the Requirements for the Degree 

Bachelor of Science, School of Engineering 

Yashwanth Kolli 

Fall 2023 

On my honor as a University Student, I have neither given nor received unauthorized aid on this 
assignment as defined by the Honor Guidelines for Thesis-Related Assignments 

Kathryn A. Neeley, Associate Professor of STS, Department of Engineering and Society 



ABSTRACT 

Amazon was unable to classify EC2 server reboots in real time. As an intern, I solved this 
problem by creating a fully AWS-based solution to process server logs from end-to- end and 
store the classification result. I began the design by placing the logs from server reboots onto an 
S3 bucket, which triggered a lambda function, which stored the reboot information and directed 
the event to another lambda function based on the primary reboot reason. This final lambda 
function performed a full detailed classification based on the logs using regex expressions, and 
stored the result. We were able to reduce the end-to-end latency of classifying dirty server 
reboots from 15 minutes to a few seconds. Next steps for this project include addressing 
scalability, making sure that the design can handle a high volume of reboots. 

1. INTRODUCTION 

Amazon EC2 is a web service by AWS that provides resizable compute capacity in the cloud. In 
simpler terms, an EC2 server is a virtual machine that one can rent from AWS to run various 
types of applications and workloads. These EC2 servers need to be constantly monitored and 
analyzed, making sure that their health is maintained. During my internship, this maintenance 
was done by my team, EC2 Health Analytics. 

EC2 servers can dirty reboot, which happens when a computer reboots or restarts abruptly, 
without proper shutdown. Prior to my arrival 

on the team, dirty server reboots were being classified in 15-minute batches. Any time a server 
would reboot, it would accumulate in an S3 bucket, which would be processed by a Distributed 
Job Scheduler in 15-minute increments. Classifying these reboots in real time proved to be much 
more advantageous, since if a high volume of reboots occurred for a particular reason, the issue 
could be flagged immediately. 

2. RELATED WORKS 

While EC2 provides the computational power to handle big data, doing so in real- time requires a 
detailed architectural approach. Marz and Warren (2015) emphasized the need for systems that 
can manage large amounts of data while providing insights in real-time. They detail how Lambda 
Functions can be used to achieve this by using stream processing. The flexibility of AWS 
services like Lambda functions and S3 buckets make real-time log processing a real potential, as 
developers can create powerful data processing systems. 

The official EC2 documentation (Amazon.com, n.d.?) does not just highlight its functionality, 
but also outlines best practices and challenges in managing applications on their servers. Marz 
and Warren also dive into the challenges developers might face in the real world, offering best 
practices to mitigate them. Examples of such best practices include Regularly backing up your 
EC2 instances and data to Amazon S3, testing recovery procedures, implementing consistent 
tagging, and more. 



This emphasis on not just the advantages but also on potential pitfalls and their solutions makes 
both resources valuable for this project. EC2's documentation provides insights into the 
infrastructure side of things, while Marz and Warren give a comprehensive view of the data side. 
When looked at together, they provide a holistic view of the infrastructure and teach us how to 
data handling using best practices. 

3. PROCESS DESIGN 

The workflow for this project started when an EC2 server rebooted without human interaction. 
The team had an internal infrastructure set up that would add the server log of an EC2 reboot to 
an S3 bucket. This server log would contain information such as the server id, log information, 
time of incident, etc. 

I configured an AWS lambda function to be triggered to run whenever a new item was added to 
the bucket. I wrote this lambda function in GoLang, the primary language used by the team. 
GoLang is similar to C/C++ in which that it runs fast and accounts for efficient memory 
management. This lambda function would store the incident on an Amazon Aurora Database. It 
would store the information relating to the incident, including a unique id, the server id, and the 
primary reboot reason. This primary reboot reason was determined based on predefined Regex 
expressions defined by the team. 

I used an Amazon Aurora Database because it offered many advantages. First, it offered 
extremely high performance compared to other options. For example, it has 2-5x faster 
throughput than MySQL and PostgresSQL databases. Since we needed our system to be 

as real time as possible, it was important to account for this speed. Second, Amazon Aurora is 
also highly scalable. It supports both vertical and horizontal scaling, as the database can easily be 
resized to accommodate changing workloads. Read replicas can also be created from the original 
instance, also improving scaling functionality. 

After the storage onto the database, the first lambda function would trigger another lambda 
function based on the primary reason. There were multiple primary reasons; therefore, the traffic 
influx was balanced by redirecting the classification of the secondary and tertiary reasons based 
on the primary reason. 

This second lambda function would again use Regex expressions to classify the secondary and 
tertiary reasons for the reboot occurrence. The results would be stored onto the Amazon Aurora 
Database, ending the workflow. 

This system was designed to handle a high volume of reboots at any point, as lambda functions 
can have up to 1000 concurrent bursts, allowing us to catch all reboots. This was beneficial for 
production deployment, as a there was little reason to worry about missed classifications. 
Specific IAM roles and policies were also put into place to ensure that only individuals on the 
team had admin access to these different components. 



Last, I wrote extensive test cases to ensure that the written code was functional. This was done 
through mocking the AWS services and calls. There was a 92% code coverage with the written 
test cases, surpassing the original goal of 80%. 

4. RESULTS 

The result of this project was the reduction in the time needed to classify a reboot. Before this 
implementation, reboots were accumulated and classified in 15-minute batches. After the 
implementation of this project, the average reboot time reduced to less than five seconds. 

Being able to classify these reboots in real time allowed for dynamic and up-to-date server 
analytics. It also allowed for our team to raise issues quickly if we noticed a high volume for a 
specific reboot reason. 

5. CONCLUSION 

The project I created holds a lot of value in the context of real-time EC2 server management 
within the AWS ecosystem. By designing and implementing a native AWS system for classifying 
server reboots in real- time, the team was able to address a critical need for timely insights into 
EC2 server health. This project has applications in server analytics, real-time issue identification, 
and overall efficiency. The benefits of reducing latency and providing dynamic server analytics 
allow users to make informed decisions and respond quickly to issues. 

6. FUTURE WORK 

To further enhance the project, several avenues can be explored. First, we need to focus on 
scalability to accommodate different levels of reboot activity. Additionally, we should look into 
performance optimization to continue to improve the system's responsiveness. Also, advanced 
classification methods, such as machine learning, can be used to improve accuracy. Last, the 
project's adaptation for potential uses beyond EC2 servers can be explored to maximize its value 
in different AWS scenarios. 

REFERENCES 

Amazon.com. (n.d.-b) What is Amazon EC2? - amazon elastic compute cloud. https://
docs.aws.amazon.com/AWSEC2/late st/UserGuide/concepts.html 

Marz, N., & Warren, J. (2015). Big Data: Principles and best practices of scalable realtime data 
systems. Manning Publications Co. 


