
Using Monogame for Accessible Developmental Software

A Technical Report Submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Jared Conway

Fall 2024

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Mark Sherriff, Department of Computer Science



Using Monogame for Accessible Developmental Software

Jared Conway

CCS CONCEPTS
• Human-centered computing → Accessibility; • Applied
computing → Education;

KEYWORDS
Developmental software; education; concentration; game
engine

1 INTRODUCTION
Between 2011 and 2013, the amount of smartphone usage
among children under the age of two has risen from around
11% to 38% [1]. Although some parents may view this
increase as a negative, others view it as a new opportunity to
help raise their children. Developmental software, for
example, is one such opportunity that can be used to train
kids on a variety of different topics, including number sense,
reflex, and writing [1]. One other such topic some software
trains is concentration.

Concentration as a concept has been misunderstood for
years. For example, news articles, such as TIME, have
claimed that the human attention span is around 8 seconds
long. TIME has even gone as far as to say that goldfish have
better attention spans than the average person [2].
Regardless if attention spans are on the decline or not, the 8
second statistic has been heavily sensationalized. This only
refers to the length of time a person is willing to spend on a
webpage before clicking off, but not their attention spans in
other contexts [3]. For example, lectures that run for as long
as 50 minutes saw “no difference nor decline in retention
rates of material” compared to 25 minute lectures [3].

Given that attention spans can vary wildly given
different contexts, it is better to consider concentration not
as the length of time someone is willing to devote to doing
one thing. Rather, concentration is their expectations about
the length of time, as well as their willingness to spend extra
time. For example, someone with good concentration would
not only spend longer than 8 seconds on a website before
losing their patience, but also longer than 50 minutes in a
lecture. Therefore, the goal of developmental software that
seeks to improve concentration focuses more on improving
their users’ willingness rather than increasing a specific
length of time.

2 RELATEDWORK
One approach used to help train concentration is the usage
of electroencephalography, or EEG, headsets. These
specialized headsets are capable of scanning five particular
brain waves to calculate the users’ restfulness and
attentiveness. Alpha waves cover the 8-12 Hz frequencies
and correspond with restfulness and introspection [4]. Beta
waves cover 13-30 Hz and correspond with “normal waking
consciousness,” or normal, everyday behavior [4]. Gamma
waves are around 40 Hz and correspond with attentiveness
[5]. Delta covers 1-4 Hz and occurs during sleep. Theta
covers 4-8 Hz and occurs during deep meditation [4].
Combined together, researchers can determine whether the
user is restful and willing to continue testing, or unfocused
and bored.

One company which produces these EEG headsets for
everyday use is Neurosky. This company has not only
offered multiple different models to its clients, but has
created a platform which allows developers to publish their
own games that utilize their EEGs. The most recent model
unveiled in 2018 was the MindWave Mobile 2, a headset
specifically designed for comfort and usability; however,
not all users agreed with this sentiment. Several reviews on
Amazon revealed that the headset was “incompatible with
newer operating systems like Windows 11” due to the
drivers not being updated and maintained. Other reviews
claimed that the headset had bluetooth connectivity issues,
making the EEG hard to use and develop with. Although

1



users could be asked to downgrade their operating system to
support the outdated drivers, this unnecessary friction does
not align with the instant gratification and ease of use
people nowadays come to expect [6]. If the goal of this
approach is to help people improve their concentration,
requiring a high level of willingness and patience before
training has started is not a good idea.

In spite of the issues with the hardware, the software
has shown to produce favorable results. One of the main
applications designed for Neurosky headsets is called Focus
Pocus - a magic themed game designed for kids. Utilizing
the different brain waves, the game’s minigames are able to
train multiple different types of concentration: focus,
relaxation, and meditation. After 85 children were trained
on each of these areas for 7 to 8 weeks, researchers found an
increase in alpha wave activity, and a decrease in delta,
suggesting an increase in attentiveness [7]. There was also a
decrease in engagement over the training period [7].

Interestingly, not every minigame in Focus Pocus
utilizes the EEG. “Hex Practice,” for example, is a card
matching game which only requires a mouse. Since certain
minigames in Focus Pocus operate fine without the usage of
the EEG, developmental software could be made without
such equipment; therefore, the driver and bluetooth
problems would be resolved. My technical project, for
example, does not rely on such hardware. Instead, it relies
on hardware the average computer user has: a keyboard, and
mouse. The project additionally uses .NET and Monogame
to allow the software to run on modern operating systems,
such as Windows 10. Following the design principles of low
coupling and high cohesion, the software contains a strong
foundation other developers can reuse for their own games.
However, as the main goal of the technical project is to
provide an alternative to EEG based developmental
software, the project also includes an example game to
showcase the validity of this approach.

3 OVERVIEW
The example game for the project is called “Focus

App” which showcases a character named Stario who can
transform into a ring. The game requires the user to keep
their mouse cursor over Stario while distractions are shown
on screen. Once the user keeps their mouse over Stario for
enough time, the user wins the level and receives their
score. Afterwards, the user can press the escape key to
return to the main menu to try again, or try a different level.
This example game is complete with a level select system, a
level editor, ranking system, and leaderboard.

The level editor was created to aid development as well
as to allow users to create their own levels, thereby allowing
users to be more involved with the game. The ranking
system and leaderboard were created to appeal to agôn, or
competition, which is one of the four elements of play [8].
Social based mechanics, such as leaderboards, are known to
have one of the strongest correlations with video game
addiction, having a β value of 0.2 [9]; therefore, by
including a leaderboard, engagement for the game can be
further strengthened. Ideally, games which are able to
appeal to all four elements (agôn, alea, mimicry, and ilinx)
[8] can lead to the most engagement, but that is out of scope
for this project.

Figure 1: Select Select Screen. Users can select one of five
different levels to play. Levels will show the best score and
rank the player achieved, as well as the leaderboard scores.

Figure 2: Tutorial Level. Clouds will appear and move left
and right across the screen to try to distract the player.

4 IMPLEMENTATION
To have full control over the software, the Monogame
framework was selected over conventional game engines,
such as Unity. As it is the goal of this project to be as
accessible as possible, using Monogame has allowed the
build to be around 18 MB, uncompressed. Although less

2



powerful, the cross-platform version of Monogame was
selected to allow Mac and Linux developers to compile their
games for non-Windows machines.

As this project was made in Monogame, most features
normally seen in game engines, such as a user interface or
sprites, were not implemented. Therefore, while working on
the example project, foundational code was implemented
when needed. Object Oriented Programming (OOP) was
heavily used while implementing such foundational code in
order to reduce redundancy and keep the project organized.
UI buttons, for example, extend the UIElement class, which
in turn extend the GameObject class. As GameObjects
already have position, scale, and texture information, these
variables were able to be reused for buttons.

The level editor was one of the first features added to
the game, as well as one of the longest to implement given
the lack of foundational code. Level data is stored as Json to
allow new levels to be easily added, as well as to add in
additional tags when new mechanics are created. Each level
Json object is of the form:

“level-name”: {
“author”: “author-name”,
“difficulty”: 0
“positions”: [[x1, y1, time1,
offset], [x2, y2, time2, offset2] …],
“distractions”: [[x1, y1, time1],
[x2, y2, time2] …],
“accuracy”: accuracy

}
Note that difficulty is unused. For both positions and
distractions, x and y correspond to the x and y positions of
the ring or distraction at a given time. For positions, the ring
linearly interpolates between (x1, y1) and (x2, y2) based on
the current time. For example, a gametime of 1.5 with a
time1 of 3 would have the ring equally distanced between
the points (x1, y1) and (x2, y2). Additionally, a non-zero
offset value will cause the ring to arc between the two
points, rather than moving straight. This is to provide more
interesting movement. Providing a null value for the offset
will cause the ring to teleport from point to point instead.
For distractions, when the current time reaches time1, a
distraction will appear at (x1, y1), disappearing soon after.
A different distraction will appear at (x2, y2) when the time
reaches time2. Unlike the ring, multiple distractions can be
seen on screen at once.

Figure 3: Level Editor. Users can click on the Positions and
Distractions subtabs to edit Stario’s data or distraction data.
Columns 1 and 2 are x and y, 3 is time, and 4 is offset.

The leaderboard system was implemented by using
Firebase’s realtime database as well as Representational
State Transfer (REST). Firebase was selected as the
leaderboard database as it is both free to use and updates in
real time. Sending a score to the database can be done using
a PATCH request with the level name, player name, and
score. An example score of 87% with a player name of
“player” for the level “lvl1” can be done with the following:

var json = $"{{\"player\": 0.87f}}";
var content = new StringContent(json, System
.Text.Encoding.UTF8, "application/json");
await Registry.CLIENT.PatchAsync(Registry
.LEADERBOARD_URL + "lvl1.json", content);

Registry.CLIENT corresponds to the HTTP Client created at
runtime, while Registry.LEADERBOARD_URL is the URL
for the leaderboard (ie: https://[leaderboard-name]-rtdb.fire-
baseio.com/). This may alternatively be called from the
LevelReader class, using:

LevelReader.UpdateLeaderboard(“lvl1”,0.87f);
This method will run asynchronously, allowing users to
continue to use the application while the leaderboard
updates. Note that the above method has “player” hard
coded as the player name. This is due to not having enough
time to implement a username system, as well as to mitigate
users from entering obscene language as their name.
Leaderboard information can be retrieved using:

var info = await
Registry.CLIENT.GetStringAsync(Registry.LEADE
RBOARD_URL + ".json");

Such information is then parsed as a JsonObject and
separated by level names. As a benefit of using Json to store
scores, custom levels created with the level editor will
automatically have their own section in the leaderboard
added as soon as any user completes it, following a
data-driven design.

3



5 RESULTS
The final project is around 18 MB in size and only requires
around 200-250 MB of RAM, making the project usable on
lower-end devices. The example game is complete with 5
levels as well as leaderboards for each. Unlike EEG based
games, this example game does not require any hardware
the average computer user does not already have, nor
require an outdated operating system. Developers will have
access to the bare essentials to creating any simple game
using this project’s engine, whether it be for developmental
software or not. Additionally, due to the OOP design of the
foundation, it is easy for developers to add additional
features to the codebase if needed as they may be able to
extend already existing features.

Originally, the project would have also used an eye
tracker instead of the mouse cursor to follow the ring. The
underlying logic was that if the user was not looking at the
ring, then they likely were not concentrating, and vice versa.
However, I realized early on that the project could operate
fine without the usage of the eye tracker; therefore, it was
decided to save the eye tracker for later if there was still
enough time to implement it. While researching various eye
trackers online, most were either not in the budget (free), or
used the GNU license. Had I used any of the GNU licensed
eye trackers, I would not have retained any ownership of the
example project or engine if it was used. Eventually, I
settled on a Github repository which implemented an eye
tracker in Python with an MIT license. After tweaking and
compiling the eye tracker as an executable, I was able to run
the file as a process and redirected the standard output from
the console to the game.

Unfortunately, as the eye tracker was compiled by an
unknown author and tried to access the computer’s camera,
my antivirus software repeatedly deleted the eye tracker
every time the game was run. To mitigate this, I disabled the
antivirus every time I decided to run the game. Besides the
problem with the antivirus, there were also problems with
properly lighting the room in order for the eye tracker to
register my eyes. I also had to sit perfectly still and look
straight ahead as any deviation threw the tracker off. Even
once my lighting and posture were perfect, the eye tracker
was still extremely variable in where it thought I was
looking - it was completely unreliable. After this, I decided
that the mouse was adequate for the project as users would
still need to concentrate to keep the mouse on the ring.

6 FUTUREWORK
Further work may be done for the example game in multiple
different ways. For example, the leaderboard does not have
any security measures in place to authenticate users who
submit scores, nor verify if the score submitted is real. To
help with user authentication, RSA encryption could be used
on PATCH requests to verify that the person who sent the
score is who they say they are. Unfortunately, not much can
be done for score verification as the game is client-sided.
Users could be required to send a recording of their
gameplay to validate their scores, although this would not
scale well.

The example project may be further improved by
including more levels. These levels would be longer than
the starting levels and have different types of distractions.
As the engine supports animations using the Animation and
AnimationCollection classes, these levels could have
distractions which visually change. These distractions would
be more interesting to look at than static images, therefore
making it harder to pay attention.

In addition to improving the example project, further
work may be done for the game engine. For example, to
make the engine more approachable for developers, a full
engine API documentation could be written. This
documentation would detail the structure of each class, class
usages, as well as example implementations. Code from the
example project could be reused for the examples, although
additional examples would be beneficial.

To help developers find out about the engine, it would
be useful to have a platform for developers to share their
games made with the engine. One such existing platform
which could be utilized is the Steam Workshop - a platform
made for developers to publish mods and content for games.
By uploading the game engine to Steam, other developers
could upload their games as mods to the engine with little
hassle. This approach would have the added benefit of
allowing these developers to reach more users as Steam is
one of the largest platforms in the world for gaming [10].

ACKNOWLEDGEMENTS
I would like to acknowledge Professor Mark Sherriff at the
University of Virginia for assisting me with revising this
paper as well as for keeping development of the game
engine on track. I am grateful for the time he has given me,
as well as his support for the creation of this engine. I would
also like to thank Professor Upsorn Praphamontripong, now
with the University of Albany, for the time and support she
has also given me for the early development of the engine.

4



REFERENCES
[1] Jodi Gold. 2015. Screen-smart parenting (1st. ed.). New
York, NY: The Guilford Press. Retrieved from
https://www-r2library-com.proxy1.library.virginia.edu/Reso
urce/Title/1462515533.
[2] Kevin McSpadden. 2015. You Now Have a Shorter
Attention Span Than a Goldfish. Retrieved from
https://time.com/3858309/attention-spans-goldfish/.
[3] Neil A. Bradbury. 2016. Attention span during lectures:
8 seconds, 10 minutes, or more? Advances in Physiology
Education 40, 4 (Nov. 2016), 509-513. doi:
10.1152/advan.00109.2016
[4] Jim Robbins. 2008. A Symphony in the Brain : The
Evolution of the New Brain Wave Biofeedback,
Grove/Atlantic, Incorporated. Retrieved from
http://ebookcentral.proquest.com/lib/uva/detail.action?docI
D=5503798.
[5] John S. Barlow. 1993. The Electroencephalogram: Its
Patterns and Origins, MIT Press. Retrieved from
https://books.google.com/books?id=LPN-xm_POfMC.
[6] Paul Roberts. 2014. The impulse society: America in the
age of instant gratification. Bloomsbury Publishing, USA.
Retrieved from
https://books.google.com/books?id=TgkbBAAAQBAJ.
[7] Stuart J. Johnstone, Steven J. Roodenrys, Kirsten
Johnson, Rebecca Bonfield, and Susan J. Bennett. 2017.
Game-based combined cognitive and neurofeedback
training using Focus Pocus reduces symptom severity in
children with diagnosed AD/HD and subclinical AD/HD.
International Journal of Psychophysiology, 116 (Jun. 2017),
32-44. doi: 10.1016/j.ijpsycho.2017.02.015
[8] Roger Caillois and Meyer Barash. 2001.Man, Play, and
Games, University of Illinois Press. Retrieved from
https://books.google.com/books?id=bDjOPsjzfC4C.
[9] Damien C. Hull, Glenn A. Williams, and Mark D.
Griffiths. 2013. Video game characteristics, happiness and
flow as predictors of addiction among video game players: a
pilot study. Journal of Behavioral Addictions, 2, 3 (Sept.
2013) 145-152. doi: 10.1556/jba.2.2013.005
[10] Robert Hoile. 2017. Sparking a steam revolution:
Examining the evolution and impact of digital
distribution in gaming. Charlottesville, VA: University of
Virginia, English - Graduate School of Arts and Sciences,
MA (Master of Arts). doi: 10.18130/V3Z369

5


