




Abstract

Permittivity data of liquids is necessary for applications such as dielectric heating, remote sensing,

and moisture detection, and is also used for molecular characterization. Dispersive molecular mech-

anisms occur for field excitations of frequencies mainly above 10 GHz and extending into terahertz

and optical frequencies. Around 100 GHz there is less data, due to the frequency limits of microwave

and quasi-optical techniques. This work presents an over-moded cavity resonator for liquid permit-

tivity measurements. Novel full-wave modeling of a four-port inhomogeneous waveguide junction

removes the limits imposed by previous methods. A cavity with environmental control was designed

and tested. The parameters estimated from the modeling and measurement inputs are plausible

and comparable to literature. Based on repeatability measurements and a sensitivity analysis, rec-

ommendations are made for future cavity designs that will enable permittivity measurements at

frequencies previously little measured.
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Chapter 1

Background

Measurements of an electric field perturbed by a material can give insight into the charge distribu-

tion, or molecular structure, of the material. This principle is used in spectroscopy of liquids and

biological molecules, which are both difficult to characterize solely by theoretical methods. The raw

spectroscopy data is often transformed into a parameter, such as permittivity, that is more imme-

diately relevant to the characterization of a material and is relatable among different measurement

techniques. Permittivity data is also useful in and of itself for the creation of material references,

which serve as a calibration aid for other measurement systems. Out of all liquids, the permittivity of

water is of interest to many fields and consequently has been measured numerous times; however, its

characterization is not complete. Conversely, design of permittivity measurement systems is guided

by an expected electrical response of the sample under test; this is first ascertained by simplistic

structural models. Thus, while molecular characterization is an end goal, it is still worthwhile to

examine these physical models. In turn, mathematical expressions can be derived, giving estimates

for the relative permittivity. Generally, the subdivision of matter (e.g. molecular or atomic) governs

the frequency range of measurement, while the absolute permittivity values guide the sensitivity of

the measurements.

Before going into the background, a brief note is made regarding the spectral unit, which varies

among disciplines. In this thesis, the unit primarily used is Hertz, rather than inverse wavelength of

cm−1 ≡ 30 GHz. Measurements were done in W-band, which spans 75-110 GHz, or 2.5-3.7cm−1.

1
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1.1 Physical Origin of Permittivity

Within a material, charged bodies will move in response to the electromagnetic force of an applied

electric field. The movement of these particles is not instantaneous as it is hindered by their masses

and the bonds, if any, that hold them; this mathematically adds an imaginary component to per-

mittivity, which is also referred to as loss. The particles vary in size, from sub-atomic to molecular

scale. Thus it follows that each type of particle will react differently to the same oscillating field.

This is what accounts for the dispersion of permittivity across the frequency spectrum. While there

are many types of bodies that make up liquids, their behaviors can be mostly grouped into two dif-

ferent processes: orientational and distortional polarizations. Meanwhile, there are forces of friction,

collisions, and random thermal effects that occur independently of these mechanisms.

Molecules that have permanent dipole moments will undergo orientational polarization, which is

also known as relaxation. On average, molecules will reorient their dipole moments in accordance

with the field polarity, as shown in Figure 1.1. As described above, dipole moments are dispersive.

They easily follow the field at lower frequencies, but as the frequency increases, they struggle to

maintain alignment due to their mass, and the lag between the polarization and the field increases;

eventually at some frequency this lag reaches a local maximum. Beyond this frequency, the field

alternates too quickly for the dipole moment, so the relaxation process has little effect on the

permittivity. This type of loss mechanism is expected to occur from the microwave range into

submillimeter-wave frequencies.

The permittivity of polar molecules was initially studied by Peter Debye. He created the Debye

Model, which assumes an exponential decay form for the polarization when the applied field is turned

off [1]. The following shows the permittivity of a material with a single relaxation:

ε(ω) = ε∞ +
εs − ε∞
1 + ωτ

(1.1)

where τ is the relaxation time, or the amount of time it takes for the polarization to decay by a

factor of 1/e. This term is expected to depend on the mass and temperature of the dipole structure.

The inverse of τ gives the frequency (in radians) at which the maximum loss occurs. The term ε∞

is the permittivity at infinite frequency, while εs is the static permittivity.
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Figure 1.1: Illustration of orientational polarization. The image on the left shows the random
orientation of dipoles and how they rotate in relation to the field, as seen on the right (from [2]).

At much higher frequencies, distortional polarizations occur, which affect the shape of the charge

distribution. These are in the form of ionic and electronic polarizations. Examples of the former,

also known as vibrational modes, are shown for the water molecule in Figure 1.2. Distortional

polarizations are reminiscent of a damped harmonic oscillator; likewise each polarization will have

its own natural frequency at which oscillatory behavior will reach a maximum, which are expected

to lie in the terahertz region and above. Using the damped harmonic oscillator as a model, Herbert

Frölich derived a term for these resonant polarizations, as shown in (1.2), for a single resonance over

the entire frequency spectrum. In this case, τ accounts for the damping and ω0 is the resonance

frequency [1].

ε(ω) =
(εs − ε∞)

2

[
1− ω0τ

1− (ω0 + ω)τ
+

1 + ω0τ

1 + (ω0 − ω)τ

]
(1.2)

Figure 1.2: Illustration of vibrational modes for the water molecule. The dotted arrows indicate the
initial direction of distortion for each atom.

When creating a permittivity function that covers the entire frequency spectrum, the polariza-

tion terms are summed, but with the εs− ε∞ term replaced with an intermediate term that roughly

corresponds to the contribution of each particular mechanism to the overall dispersion. Initial es-

timates for τ and ω0 can be calculated from simple physical models. This leaves the permittivity

at zero and infinite frequencies, which are usually estimated by measurements with a capacitance

cell and the sodium D line, respectively [1]. In all, the dispersion of permittivity for a hypothetical
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material demonstrating three polarizations - orientational, ionic, and electronic - is shown in Fig-

ure 1.3. This graph also highlights the differences between the relaxation and resonance phenomena

effects on permittivity. The real part will experience a gradual decrease for a relaxation, while it

locally peaks for a resonance. As for the loss, the main difference is the width in the peak, with the

relaxations producing a broader effect.

Figure 1.3: Broadband permittivity variation due to loss mechanisms (from [3]).

1.2 Liquids

Some forms of matter have a molecular structure that is so simplistic that its responsiveness to stimuli

can be easily modeled. However, this is not the case with liquids, which are generally comprised of

molecules that are highly structured yet still malleable in response to thermal or electrical sources [4].

Thus, experimental studies of liquids are done in conjunction with theoretical and computational

methods.

There are a number of applications that require the knowledge of liquid permittivity, such as

microwave dielectric heating, remote sensing, and moisture detection, among others [4]. These appli-

cations would greatly be served by the creation of multiple liquid standards, which would be used for

instrument calibration or operational check [5]. There is a group at the National Physical Laboratory

in the United Kingdom that is focused on the creation of highly precise liquid standards, but the

work has been limited to below 10 GHz [6]. Besides water, methanol and other alcohols have been

measured by fewer studies for frequencies higher than 10 GHz [7, 8]. Including water, the alcohols
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are also good candidates as liquid standards because they are common solvents manufactured with

high purity and are lossy, so they are more impervious to impurities [2].

1.2.1 Water

Above 100 GHz, there are a wide variety of applications for which water data is necessary, such as

remote sensing and standoff detection. The characterization of biological molecules, which starts

at 60 GHz, would be aided by the ability to measure molecules in their natural environment of an

aqueous solution [9,10]. However, the water obviously contributes to the spectroscopy measurements,

so any effect due to water must be deconvolved [10]. Ultimately this data is gathered in order to

create spectral signatures of chemical and biological warfare agents [11]. Another use of water

permittivity data is in modeling human skin in order to study standoff detection of weapons [12].

Although water has been studied extensively, there remain discrepancies among the various studies

at these frequencies.

In its purest form, water consists of two hydrogen atoms and one oxygen atom bonded covalently,

which creates a permanent dipole between the hydrogen and the oxygen. Given its molecular struc-

ture, at least one dipolar relaxation is expected, along with the resonances at higher frequencies. In

fact, all water studies have confirmed the first relaxation, occurring at approximately 19 GHz for

25◦ C. It is thought that this is the reorientation of a tetrahedral composition of water molecules [13].

While this relaxation accounts for a majority of the dispersion, it is inadequate for modeling the data

from 30 GHz to 3 THz, above which the resonances become influential [14]. Most current models use

at least two relaxations, the second one probably the relaxation of a single molecule [13]. However,

the second one is ill-defined and has been characterized to occur from 150 GHz to 900 GHz [15].

This wide range appears to be a consequence of the number of terms chosen versus the measure-

ment bandwidth, in that the second relaxation is overestimated when the maximum frequency is

greater than 1 THz, as evidenced from studies by Kindt and Rønne [7,16]. If three relaxations were

used, or the data for two-relaxation models did not extend beyond 500 GHz, then the relaxation

frequencies are much closer in agreement, ranging around 150 GHz [14,15,17,18]. This corresponds

to an approximate 1 ps relaxation time and is in agreement with results from optical Kerr-effect
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spectroscopy methods, which do not measure permittivity but instead the transient response of a

sample excited by a femotsecond laser [19,20].

From the perspective of obtaining accurate permittivity data of water, however, the parameter

values are not necessarily relevant as long as the model provides a good fit to the data. Still, there is

a general lack of agreement among models at the higher end of the millimeter-wave range (mm-wave,

30-300 GHz, or 1-10 cm−1). Furthermore, from 100-300 GHz, not many measurements have been

made of water [21].

1.3 Measurement techniques

Permittivity measurement methods exist from DC to optical frequencies and are based on frequency-

specific devices and equipment. Essentially the sample is introduced to a circuit so that it measurably

alters the electric field. With a model of the circuit and sample, the permittivity can be extracted

from the measurements.

In characterizing a material, the two main considerations are: at what frequencies is the per-

mittivity to be measured, and what permittivity value magnitudes need be measured? There are

many measurement methods, but the focus of this section will be on those that measured liquids in

the millimeter-wave range or at its boundaries, or contributed to the characterization of water and

other polar liquids. Specific studies with pertinent permittivity data are highlighted.

1.3.1 Terahertz

One feature of the “Terahertz gap” was a lack of bright single-frequency sources, which spurred the

development of broadband-source spectroscopy. In particular, two types that have demonstrated

operation at and below 100 GHz are Terahertz Time-Domain Spectroscopy (THz-TDS) and Disper-

sive Fourier Transform Spectroscopy (DFTS). Both of these are quasi-optical techniques, meaning

that free-space optical setups are used for wave transmission, but with wavelengths a few orders of

magnitude larger than those of traditional optics. Recently, backward-wave oscillators (BWO) have

emerged as a coherent source suitable for spectroscopy and have also been used for quasi-optical

setups. In general, these techniques are not optimal at lower frequencies due to diffraction effects.
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Terahertz Time-Domain Spectroscopy

For Terahertz Time-Domain Spectroscopy (THz-TDS), a femtosecond-order laser pulse both creates

and samples a THz pulse, via a photoconductive antenna and receiver, that has either been trans-

mitted through or reflected from the sample. The Fourier Transform of the resulting waveform will

give the response as a function of frequency. The lower frequency limit of THz-TDS is typically

around 100 GHz, which results from lower efficiencies of the antenna and the mirrors used to direct

the THz beam [22]. Temporal sampling of the THz waveform is done by a delay line, so the fre-

quency resolution is set by the maximum delay and is typically 1 GHz [23]. This can be lowered with

a greater delay, but with an increase in background noise which lowers the dynamic range of the

system. The emitted THz radiation is sent through the liquid sample cell, although usually reflected

off of the cell for better sensitivity, since the sample is lossy [24]. Both the real and imaginary parts

of the permittivity can be found.

There have been a number of works that measured liquids with THz-TDS. Kindt measured and

provided Debye fits for water and a number of alcohols from 60 to 1500 GHz. [7]. Around the same

time, Rønne measured water from 100 to 2000 GHz at various temperatures [16]. About a decade

later, Jepsen measured water-ethanol mixtures from 100 to 1000 GHz, and also determined Debye

parameters for water [25].

Fourier Transform Spectroscopy

Fourier Transform Spectroscopy (FTS) systems are mainly used from 300 GHz and up into terahertz

frequencies. They are based on the Michelson Interferometer and rely on a broadband light source.

DFTS is similar to conventional Fourier Transform Spectroscopy in that a wideband light source is

split equally between a fixed and moving mirror, which create an interferogram in the spatial-domain.

The main difference between conventional and DFTS systems is that the latter is phase-sensitive,

so effectively the entire complex permittivity can be measured [24]. Similarly to THz-TDS, the

frequency resolution is inversely proportional to the maximum distance traveled by the moving

mirror. The lower frequency limit is set by a number of factors but mainly by the low output

of the mercury lamp source below 300 GHz. For DFTS, much work was done to push this limit

further below 300 GHz by ensuring an optimal and stable setup with accurate modeling of optical
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components for improved SNR; while it has shown excellent accuracy and precision it remains to be

a highly specialized technique [2, 26,27].

In 1977, Afsar measured water with DFTS from 0.15 to 13.5 THz [28]. Vij used a DFTS system

to measure water from 1.5 to 6.6 THz; this data, along with lower frequency literature data, was

combined to produce a Debye fit [18].

1.3.2 Microwave

Below 100 GHz, dielectric spectroscopy has been dominated by setups that include frequency-tunable

sources and microwave components, which are mainly coaxial and waveguide. With highly accurate

Vector Network Analyzers (VNA) providing high spectral resolution (1 Hz), these methods are more

limited by the difficulty in scaling the components to higher frequencies. Measurement methods are

split into broadband and resonant techniques, i.e. continuous vs. discrete frequencies.

Broadband

Coaxial techniques have mainly been used below 50 GHz due to fabrication tolerances of coaxial

components for single-moded operation. The most commonly used method is the coaxial probe.

While it has shown operation up to 110 GHz with a 1-mm coaxial probe, this method must be

calibrated with a reference liquid. Other coaxial methods exist that do not need calibration, with

the sample as either a semi-infinite load, short-circuited load, or section of the coaxial dielectric. The

latter two are usually equipped with a variable-length cell for increased accuracy. However, these

would be impractical with expensive 1-mm coax, which would have to be flushed of the sample; also

the measurements become very sensitive to the coax and sample dimensions [5]. As part of the effort

at NPL to obtain data for reference liquids, Gregory used a coaxial line to characterize methanol

and other alcohols up to 5 GHz [6].

Above 50 GHz, rectangular waveguide is usually chosen. Many waveguide transmission/reflection

techniques are similar to the coaxial methods in that the liquid sample is incorporated as a load or

transmission cell whose surface area is equivalent to the cross-sectional area of the waveguide. As

with coax, either moving parts or dielectric inserts are necessary to contain the sample, and thus their

dimensions and physical placement must be characterized accurately unless proper calibration or



Chapter 1. Background 9

modeling removes these effects. Barthel characterized water and some alcohols with Debye equations,

using waveguide measurements up to 90 GHz [29, 30]. Concurrently, Richards measured water at

90 GHz with an oversized waveguide system [31]. In 1997, Duhamel measured methanol across

several waveguide bands, up to 110 GHz [32]. More recently, Kouzai used advanced full-wave

modeling techniques that allow for the use of a sample-containing tube placed in the waveguide, for

up to 50 GHz [33].

Similar to the terahertz methods, there are free-field setups that use horn antennas to transmit

the signal to the sample. These methods are most suitable for large, planar samples so that plane-

wave approximations can be used, or Gaussian Beam approximations if focussing elements are used.

Even with the latter technique, the sample size must still be at least six times the wavelength [2].

Resonant

A resonant circuit can easily be made out of any type of mm-wave transmission line. Naturally these

methods only give results at one or a few frequencies, but they are used for their high sensitivity.

As a result, resonators are more renowned for the measurement of low-loss dielectrics. However,

lossier samples can still be measured provided that not so much of the power is absorbed that the

fields cannot build up to resonance. This can be done by either using a small sample or placing the

sample in a region of the cavity where the electric field is weak.

Fabry-Perot cavities have the largest quality factors of 100,000 and higher; this is a free-space

method, so again the sample must be much larger than the beam width.

Whispering gallery mode dielectric resonators have recently been developed. The “whisper-

ing gallery” describes a mode pattern in which the field lobes are at the edges of the resonator.

Evanescent fields existing just outside of the resonator interact with the liquid sample. At 35 GHz,

Eremenko measured water-alcohol solutions using a hemispherical dielectric resonator set at the bot-

tom of a container and immersed in the liquid sample [34]. Above 100 GHz, Shaforost demonstrated

use of a whispering gallery resonator for liquid measurements, albeit for a sensing application [35].

Waveguide cavities offer lower Q-factors than their open-cavity Fabry-Perot counterparts, but

they have been used more for liquid measurements for the smaller sample volumes. In general,

studies that used cavity resonators were limited to frequencies below 100 GHz because only the
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fundamental mode was used. However, waveguide is commonly used above this frequency, can be

easily modeled, and can provide high Q-factors, so it was chosen for precision measurements of

liquids. The next chapter will go into more detail about waveguide cavities.

1.4 Conclusion and Thesis Overview

The background of liquid permittivity and the importance of its determination were discussed.

Around 100 GHz there is less data than at other frequency bands due to the instrumentation. In

order to supplement the scarce higher frequency data for molecular characterization and the creation

of liquid standards, a measurement setup using a waveguide cavity was chosen.

The next chapter will provide more detail on cavity resonators and their use for dielectric mea-

surements, and then describe the modeling of the liquid-loaded cavity. In Chapter 3, the design of

the waveguide resonator for precision measurements is presented, and Chapter 4 analyzes the results

the performance of the rigourously-modeled resonator system for permittivity measurements.



Chapter 2

Cavity Design and Modeling

With every permittivity method, there is a model that relates the measurable parameters to the

underlying permittivity of the sample. This chapter first describes the relevant physical and dimen-

sional properties of the cavity and then lays out the modeling to solve for the permittivity from

measurements.

2.1 Background

Before presenting the modeling for the measurement system, a preliminary background and rationale

will be given of the method.

2.1.1 Circular cavity

A circular cavity is essentially a right circular cylinder, made of metallic walls, of radius R and closed

off at both ends so that its length is h, as seen in Figure 2.1. The multiple modes that can resonate

in this structure are found by solving the boundary conditions for the electric and magnetic fields,

which are governed by the Helmholtz equation. Assuming the walls are made from perfect electric

conductors, an adequate approximation for high conductivity metals, the electric field boundary

11
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conditions of this structure result in the following equation for the resonant frequencies [36]:

f0mnp =
1

2π
√
µε

√(χmn
R

)2
+
(pπ
h

)2
(2.1)

where m,n, and p are integers, µ and ε are respectively the permeability and the permittivity of the

material filling the cavity, and χmn is the nth zero of either the Bessel function or its derivative of

the first kind of order m. Modes are classified into two categories, either Transverse Electric (TE) or

Transverse Magnetic (TM), signifying that there is respectively no electric or magnetic component

of the field in the axial direction. For both types, the m,n, and p indices further define a unique

mode, such as the TE111 and TM010 modes; each index also signifies the field variation in φ̂, ρ̂,

and ẑ.

The resonant frequency is only one measurable piece of data, so it alone is not sufficient for

characterizing both the real and imaginary parts of the permittivity. In addition there is the quality

factor Q, which is the ratio of the average stored energy to the dissipated power. Two sources of

electric loss exist: the conductor loss of the cavity walls and the dielectric loss of the filling medium;

if the former is known, then both components of the permittivity can be found. For a closed cavity,

there are also closed analytical expressions for the quality factor [37].

However, a closed cylinder completely filled with liquid is not practical for measurements. First,

polar liquids at higher millimeter-wave frequencies are still quite lossy, so in order to observe a

not completely damped response it is necessary to have more control of the filling factor by, say,

only adding a small amount of sample to the cavity [5]. Second, the cavity can never be completely

closed because an excitation mechanism is needed to measure the response. Both the inhomogeneous

filling and the external excitation will perturb the ideal resonant frequencies and quality factors. To

account for these modifications, various resonant methods have been developed, but the following

short survey will mainly focus on those used to measure liquids.

2.1.2 Resonant methods

Cavity resonators were initially used with the cavity perturbation method. Similarly to general

perturbation theory, the permittivity is found by relating it to the difference in the responses of the
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Figure 2.1: Circular cavity within the cylindrical coordinate system.

original and perturbed cavity with the sample. Bethe and Schwinger are credited with developing this

method, and Birnbaum and Franeau used it to measure liquids [38–40]. Generally, the fields of the

perturbed cavity are approximated as being equivalent to those of the unloaded cavity. This requires

that the sample be small, and limits measurement to modes that are well-isolated in frequency from

adjacent modes, so typically the fundamental mode. The reduced computation of this method was

especially beneficial to the measurement of liquids, which require a container and also an opening

in the cavity through which they can be inserted; both of these experimental considerations further

alter the ideal cavity case. Of course, the cavity itself can be used as the container if low-loss liquids

are measured; in 1973, Stumper configured a cavity that was partially filled with hydrocarbon liquids,

whose permittivity was found by modeling the fields [41].

Faster computers, though, facilitated more rigorous modeling that allowed for containers and

insertion holes to be modeled. Li, Yu, and Kawabata used field-matching techniques for the mea-

surement of liquids using the TM010 mode [42–44]. This is a fundamental mode with strong fields

in the center of the cavity, so the amount of liquid measured was limited to less than 1 percent of

the total cavity volume. Since it is computationally easier to keep the liquid in the center of the

cavity, other resonant modes have been explored, such as by Krupka or Regier, who used the TE01δ

modes, which have a field null in the center [45,46].

While the fields were modeled, most of the above methods were mainly used for only one resonant
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mode, thus providing permittivity at only a single frequency (Krupka provided data for two reso-

nant modes). Within the past decade, though, multi-moded cavity resonator techniques have been

developed, albeit for the measurement of solid samples. A split-cylinder resonator was created by

Janezic for measurement of low-loss substrates, which was capable of measuring permittivity at seven

frequencies across a 15 GHz band starting at 10 GHz; both TE0np and TE2np modes were used [47].

Cheng developed a similar method for measuring low-loss solids at several resonant frequencies of

TM0np modes in a 10 GHz band [48]. Both of these systems used a characteristic equation that

assumed a closed cavity, and then either neglected the coupling effects because of low coupling or

used a circuit model. Another method, by Shan, incorporated the coupling effects into the modeling,

using eight TM0n0 modes over a 70 GHz band [49]. While more computationally intensive, modeling

of the coupling is more accurate as it does not necessitate a circuit model or low coupling for valid

computation of the quality factor, whose value determines the imaginary permittivity of the sample

yet will change with higher coupling. In Janezic’s work, the coupling is at approximately -50 dB,

which is low enough that the measured Q is considered equivalent to the unloaded Q, to which his

modeling was compared. This low coupling works at frequencies below 50 GHz and for measuring

low-loss samples, but is not feasible for measuring lossy liquids with the smaller dynamic range of

the available W-band VNA system (about 75 dB). Higher coupling and a circuit model was used in

Cheng’s work, but only modes of a certain azimuthal variation were excited and the circuit model

assumed that modes were well-isolated from one another, which places limitations on the cavity

setup.

With full-wave modeling, it is possible to use higher order modes and measure at multiple

frequencies. It also provides more options for electric fields variations and interactions with samples.

2.2 Full-wave modeling

A simplified diagram of the over-moded cavity system is shown in Figure 2.2. A circular cavity

is coupled to input and output waveguides via apertures, while a hole in the center of the cavity

allows for the insertion of the tube. The rationale for this specific configuration is explained in more
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Figure 2.2: Cross-sectional view of over-moded cavity block and tube for permittivity measurements

detail in §3.1.1. Otherwise, the setup is also similar to previous techniques [43, 44]. In short, it

simplifies the modeling and manufacture of the cavity. Based on the geometry of the cavity setup, a

suitable modeling method was chosen. The finite element and finite difference methods are general

techniques that can mesh arbitrarily-shaped volumes. While commonly used, these methods are not

good for electrically large structures, such as an over-moded cavity.

2.2.1 Mode-matching

Looking at Figure 2.2, it can be seen that the geometry of the structure consists of shapes that

are easily characterized by the common Cartesian and cylindrical coordinate systems. Indeed, the

system can be subdivided into rectangular and circular waveguides, for which there are eigenmode

solutions to the Helmholtz equation. This is the basis of the mode-matching method, which finds the

superposition of these modes that will satisfy the boundary conditions. The mode-matching method

is commonly used for the modeling of waveguide filters, T-junctions, couplers, dielectric resonators,

and horn antennas [50–54].

Generally speaking, the contribution of each mode is found by matching both the electric and

magnetic fields at a discontinuity, hence “mode-matching”. In the literature this technique has also
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been described as the conservation of complex power or reaction, or modal analysis [55–57]. At a

discontinuity, all of these methods apply a cross-product operation between the electric and magnetic

fields that results in a function which is analytically (or nearly) integrable over a finite surface area.

The problem is set up by subdividing the structure, either by a change in geometry or material,

so that at each discontinuity the only unknowns are the normal mode coefficients. A simple discon-

tinuity is shown in Figure 2.3 of waveguides 1 and 2, whose respective cross-sections of S1 and S2

differ in size but share an equivalent longitudinal axis n̂. In each region, the electric and magnetic

fields are approximated as a sum of modes, where the subscript T denotes the field tangential to n̂,

and Al,m1,2 and Bl,m1,2 are the incoming and outgoing mode coefficients, respectively

~E1T
∼=

L∑
l=1

~e l1
(
Bl1 +Al1

)
~E2T
∼=

M∑
m=1

~em2 (Am2 +Bm2 ) (2.2a)

~H1T
∼=

L∑
l=1

~hl1
(
Bl1 −Al1

)
~H2T
∼=

M∑
m=1

~hm2 (Am2 −Bm2 ) (2.2b)

1

S1

2

S2

n̂

B1

A1

B2

A2

Figure 2.3: Diagram of waveguide discontinuity for mode-matching method.

At the discontinuity, the following boundary conditions are enforced

~E2T =


~E1T on S1

Zs ~Js ' Zs
(
−n̂× ~H2T

)
on S2 − S1

(2.3a)

~H1T = ~H2T on S1 (2.3b)

where [55]

Zs ' (1 + j)

√
ωµ

2σ
for σ � 0 (2.4)



Chapter 2. Cavity Design and Modeling 17

Usually an infinite conductivity is assumed. To satisfy the boundary conditions, cross-products

of the following form are taken

〈~a,~c〉 =

∫
S

(~a× ~c) · n̂ · d~S (2.5)

where in literature dealing with mode-matching, this cross-product is also referred to as an inner

product between the field being matched and a weighting function [54,58,59]. As in (2.2), the fields

are approximated as a superposition of modes, or basis functions. Since the weighting function is

the dual of the field being matched, these cross-products reduce to definite integrals of orthogonal

bases, similarly to a generalized Fourier series.

For the electric fields, the magnetic field modes of the larger region are used for the weighting

functions, as this enforces condition (2.3a) [56]

〈
~E1T ,

~hm2

〉
=
〈
~E2T ,

~hm2

〉
〈

L∑
l=1

~el1(Bl1 +Al1),~hm2

〉
=

〈
M∑
m=1

~em2 (Am2 +Bm2 ),~hm2

〉

This results in a system of M linear equations, which are set up in matrix form


〈
~e11,

~h12

〉
· · ·

〈
~eL1 ,

~h12

〉
...

. . .
...〈

~e11,
~hM2

〉
· · ·

〈
~eL1 ,

~hM2

〉


B1

1 +A1
1

...

BL1 +AL1

 =


〈
~e12,

~h12

〉
· · ·

〈
~eM2 ,

~h12

〉
...

. . .
...〈

~e12,
~hM2

〉
· · ·

〈
~eM2 ,

~hM2

〉


A1

2 +B1
2

...

AM2 +BM2


Φ [B1 +A1] = Ψ2 [A2 +B2] (2.6)

If the medium of Region 2 is lossless and the modes are normalized, then due to modal orthogonality,

Ψ2 will reduce to an identity matrix. This procedure is similarly done for the H-field boundary

condition, with the electric field modes of Region 1 used as the weighting functions; these provide

an additional L equations, which is sufficient [56] - presumably, the incoming waves are known, so

the L+M B1 and B2 coefficients are the unknowns. Also by using the Region 1 electric field modes,
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this enables the matrix transpose of Φ to be used, reducing the number of computations.

Ψ1 [B1 −A1] = ΦT [A2 −B2] (2.7)

For multiple discontinuities matrix algebra is performed, substituting unknown mode coefficients

with the equivalent formula of inner product matrices until the final region is reached, where a mode

coefficient can be defined by a known excitation. For instance, in (2.6) and (2.7), if the incoming

waves A1 and A2 are known, then B1 and B2 can be found. This is basically the analysis in Shan [49].

This procedure can also be used for regions with standing waves. If the final region is definable

by a known boundary, such as a perfect electric conductor, then (2.6) becomes

ΥC = 0 (2.8)

which is a homogeneous system of linear equations. The mode coefficients C are the non-trivial

solutions, which is the nullspace of Υ. This also corresponds to a zero-determinant, and typically in

electromagnetic problems the resonant frequencies are found from a root-search of the determinant.

Both Janezic and Cheng used this method [47,48].

2.2.2 Modal indices

For the sake of clarity, a brief discussion of what constitutes a mode is included here. In waveguide,

with a closed transverse area and an indefinite longitudinal length like either regions 1 or 2 in

Figure 2.3, a mode is typically TE or TM, as described in §2.1.1. A specific TE- or TM-mode is

further designated by two indices, unlike the three indices for the modes of the circular cavity, which

is closed in all three dimensions; again, each index corresponds with a dimension. However, for the

modeling analysis, these two indices are collapsed into a single index.

2.2.3 Generalized Scattering Matrix

Instead of solving for the mode coefficients, a more prudent formulation of the Generalized Scattering

Matrix (GSM) is introduced, as it is both immediately comparable to data provided by the network

analyzer and also facilitates the analysis of multiple discontinuities with both incoming and outgoing
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waves, which can be seen in §A.7. Essentially, the outgoing waves are related to the incoming waves

by scattering parameter relations

B1 = S11A1 + S12A2 (2.9a)

B2 = S21A1 + S22A2 (2.9b)

which bear a strong resemblance to those of a conventional two-port S-parameter matrix. The

difference is that the GSM includes scattering coefficients for more than a single mode, including

evanescent ones.

To obtain the GSM for the discontinuity in Figure 2.3, (2.9a) and (2.9b) are substituted into

the boundary condition equations. Starting with (2.6)

Φ [(S11 + I)A1 + S12A2] = Ψ2 [S21A1 + (I + S22)A2]

The factors of A1 and A2 on both sides are set equal to one another, and since Φ is likely not to

be a square matrix and thus cannot be inverted, the following relations are found, in which I is the

identity matrix

S21 = Ψ2
−1Φ (S11 + I) (2.10)

S22 = Ψ2
−1 (ΦS12 −Ψ2) (2.11)

This is repeated for the magnetic field boundary condition (2.7), with the additional step of substi-

tuting in (2.10) and (2.11), resulting in

S11 =
(
Ψ1 + Ψ2

−1Φ
) (

Ψ1 −Ψ2
−1Φ

)
(2.12)

S12 = 2
(
Ψ1 + ΦTΨ2

−1Φ
)−1

ΦT (2.13)
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2.3 Modeling of four port aperture-coupled cavity junction

The relevant aspects for modeling the cavity for liquid measurement are shown in Figure 2.4. In

order to include possible radiation effects at the end of the hole containing the tube, the structure

is modeled as a four-port junction, after Zheng [59]. Other mode-matching analyses of a sidewall

aperture-coupled cavity have been done by Melloni and Rong, although the cavities in both of these

papers were closed except for the aperture [58,60]. In Kawabata’s work of an eigenfrequency analysis

of a concentric liquid-tube configuration in a TM010 cavity, the ends of the hole were shorted with

both electric and magnetic walls, and the hole length in the modeling was increased until the resonant

frequency for both types of walls matched [44].

The modeling was coded in MATLABr, for its availability and ease of use, particularly with

matrices1.

2.3.1 Boundary conditions

Looking at Figure 2.4, Regions W and A are respectively the waveguide and aperture regions, both

rectangular cross-sections. Regions C and H are inhomogeneous circular waveguide. In the center,

V and P are intermediate regions, where V is electrically shorted at ρ = Rc and P is likewise

shorted at z = ± z02 . These intermediate regions are necessary because the waveguide and insertion

hole are in different directions, so if a single wavefunction were to be formulated for the cavity

region, the transverse functions could not be completely defined at the waveguide and insertion hole

discontinuities. As discussed in §2.2.1, the normal mode coefficients need to be the only unknowns at

a discontinuity. By creating these regions with artificial boundaries, the fields can be formulated for

the mode-matching technique. The fields for all of the regions are explicitly derived in Appendix A.

It was decided to automatically include the conductor loss of the cavity in the analysis. On the

cavity wall of the P -region this was accomplished in the mode-matching analysis, as in (2.3a). For

the walls of Regions C and H, the loss is included in the modal propagation constants, which are

found numerically (for lossless, homogeneous waveguide, these propagation constants are simply

related to the Bessel zeros).

1The MathWorks Inc., MATLAB, Natick, MA
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(c) P - and V - intermediate regions for junction model.
P is radial waveguide with perfect conductors at z =
± z0

2
, while V is inhomogeneous circular waveguide

with perfect conductor at ρ = Rc.

Figure 2.4: Diagram of regions and discontinuities for modeling.

As the structure is symmetric, only a quarter of it needs to be analyzed, and the number of

discontinuities in the problem can be reduced; the “electric/magnetic wall” lines in Figure 2.4 denote

the planes of symmetry. Additionally, this structure is not modeled as a whole, but is divided into

multiple S-matrices, as shown in Figure 2.5, which are subsequently combined. The S-matrices SW

and SH are found as in §2.2.1 and §2.2.3, whereas SA and SC are simply diagonal matrices that

represent a phase shift in the waves resulting from traveling through a section of uniform waveguide.

In the following analysis, the boundary conditions that result in SJ are presented. Derivation of the

final S-parameters for the whole structure can be found in §A.8.
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At z = z0
2 , enforcement of the boundary conditions produces

ẑ × ~EC = ẑ × ~EV〈
~eC ,~hV

〉
(BC +AC) =

〈
~eV ,~hV

〉
AV (2.14a)

ẑ × ~HC = ẑ ×
(
~HV + ~HP

)
〈
~eC ,~hC

〉
(BC −AC) =

〈
~eC ,~hV

〉
AV +

〈
~eC ,~hP

〉
AP (2.14b)

At ρ = Rc, the boundary conditions are:

ρ̂× ~EP =


ρ̂× ~EA on SA

Zs(−ρ̂)×
(
~HV + ~HP

)
on SP − SA[〈

~eP ,~hP

〉
+ Zs

〈(
ρ̂× ~hP

)
,~hP

〉]
AP

+Zs

〈(
ρ̂× ~hV

)
,~hP

〉
AV =

〈
~eA,~hP

〉
(BA +AA) (2.15a)

ρ̂×
(
~HP + ~HV

)
= ρ̂× ~HA〈

~eA,~hP

〉
AP +

〈
~eA,~hV

〉
AV =

〈
~eA,~hA

〉
(BA −AA) (2.15b)

From the electric boundary conditions (2.14a) and (2.15a), AV and AP are found in terms of

the scattering parameters AA, AC , BA, and BC , then substituted into the magnetic boundary

conditions (2.14b) and (2.15b). In a similar fashion to the procedure in §2.2.1 and §2.2.3, SJ can be

determined.

It should be noted that the cross-products in (2.14) and (2.15) are merely reactions, i.e. the

complex conjugate is not taken on one of the arguments. However, because lossy materials are

included, these cross-products are strictly speaking not inner products as they violate the Hermitian

transpose property. Rather, they are of the form of a “pseudo inner product” [61], which was

simpler to implement in code. In the mode-matching literature, some authors use the complex

conjugate while others simply stick with the reaction, although the latter take steps to ensure that

their functions are real-valued by changing basis functions, e.g. switching to hyperbolic sine if the
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argument is imaginary, though the rationale for this is not explained. This was of some concern, so

a simple case of two waveguides coupled through an aperture, with each region filled with a lossy

dielectric was tested. The inner product and the pseudo inner product gave equivalent S-parameters

for the TE10 mode.

A P,V

SJ

C
+

SCC`C

+
C

SH
H

+A

`A

SA

+A

SW

W

SW SA SJ SC SH
A1

B1

A2

B2

Figure 2.5: Transformation of discontinuities into cascaded S-matrices.

2.3.2 Inhomogeneous propagation constants

When dielectrics are added to the cylindrical waveguide regions V , C, and H, the wavenumbers

cannot be defined in a straightforward manner as with the single boundary condition on the empty

waveguide wall. The boundary conditions between the dissimilar dielectrics must be satisfied. This

is done in a manner very similar to Yeh’s work, in which the boundary conditions are formulated

into multiple matrix equations, one for each discontinuity, instead of a single matrix that includes

equations for the whole structure [62]. In this way, the smaller matrices are combined into a final 2x2

matrix, for which the determinant is easier to compute than for a 10x10 matrix, i.e. two coefficients

in the center region and four coefficients each in the outer two regions.

The determinant of the 2x2 matrix is the characteristic equation whose roots are the propagation

constants. Because of the lossy dielectrics and outer conductor, the root search must be over

a complex region. The Lehmer-Schur algorithm was chosen for its ease of implementation; it is

essentially the two-dimensional version of a bracket search [63]. The root-search algorithm proceeds

by first determining whether there is a root in a region. This is done by computing the argument
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principle [64], ∮
C

f ′(z)
f(z)

dz = 2πi (NZ −NP )

where C is a closed curve that defines the region, f(z) is the function for which the roots are desired,

NZ is the number of zeros in the region, and NP is the number of poles, of which there should be

none. This is done numerically with Henrici’s algorithm by accumulating the change in argument

of the function along the closed curve [65]. If Nz > 1, this means that there is more than one root,

and the region is divided into quarters which slightly overlap so as to avoid a zero coinciding with

the closed curve [66, 67]. This recursive process continues until a single root has been found within

a region of a precision that is suitable for providing an estimate of the zero, and the center of this

region is returned. A more accurate value of the root is then obtained using Muller’s method, which

is capable of handling complex roots [63]. If the region providing the initial guess is too large, then

Muller’s method could converge to a neighboring zero, and the true zero would be lost.

Zeros were searched for in the fourth quadrant, over subregions that excluded trivial solutions to

the characteristic equation, as seen in Figure 2.6. In testing the method, it was found that the Bessel

zeros were adequate as initial guesses for the Muller’s method step for both lossy waveguide that

was either empty or contained the quartz tube, since both cases only slightly perturb the lossless

empty waveguide case. Thus, the complex root search algorithm was used only to find roots for

when a liquid is in the tube, and also to find the zeros that cannot be predicted by the Bessel zeros,

i.e. normalized propagation constants greater than 1, which occur for inhomogeneous waveguide.

2.3.3 Bessel conditioning

A few extra steps were taken with handling Bessel function arguments for the P -region modes.

First, for all modes that had purely imaginary arguments, an extra factor was inserted into the

modal coefficients so that the arguments could be made real, with the modified Bessel functions

replacing the ordinary ones. This change was based on previous work [58]. While the rationale for

this was not explicitly stated, it was likely done because the modified functions are the evanescent

form of the ordinary functions, i.e. they are exponential and not oscillatory. However, it was also

found useful in MATLAB since the internal Bessel functions returned complex results, albeit with

a ∼ 10−16 real part, for a purely imaginary argument.
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x̂

ŷ

×

C

•

•

•

• × ×

Figure 2.6: Example diagram of complex root search, particularly for a liquid-filled tube. Only the
two left regions are searched for the empty tube, and the leftmost region for the empty cavity. In
region C there are four zeros, or NZ=4. Intermediate limits (×) are trivial solutions.

For proper convergence, many modes must be included in the cavity region, including Bessel

functions of orders close to or greater than 100. However, with the arguments for the P -fields at

radius Rc, the values of Jm(ρ) become very small, while they become very large for Ym(ρ). This

would result in a poorly-conditioned matrix. To keep the magnitude of the values at similar orders,

and also not do computations with numbers that are near the limit of floating-point precision, an

additional normalization is included with the P -modal coefficients. In effect, the Bessel functions

and their derivatives are divided by the function values at the discontinuity radii.

Still, it was found with MATLAB that with orders of m greater than about 100, erroneous

results of either 0 or inf are given although the function was still calculable in another mathematics

software package Mathematicar. To deal with this problem, the logarithm of the Bessel function

was calculated with continued fractions as in [68]. Thus, when the normalization above is taken, the

two more well-numerically behaved numbers can instead be subtracted.

2.3.4 Aperture approximation

At the ρ = Rc boundary, the aperture fields must undergo a coordinate transformation so that the

surface integrals can be expressed analytically in a common coordinate system. However, unlike

the analysis of the discontinuity found in §2.2.1, the aperture and circular regions do not share

a common normal vector across the whole surface area. This necessitates a numerical integration
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that includes the propagation constants, which are frequency-dependent, when otherwise the surface

integrals are only dependent on the dimensions; this impacts the computation speed. For relatively

large apertures the numerical integrals are necessary, but a small-angle approximation can be used

when the aperture width is much smaller than the cavity circumference [59,60].

2.3.5 Convergence

The modeling will be exact if an infinite number of modes can be used, but since this is not possible,

an upper limit needs to be set. Looking at the approximate fields in (2.2a) and (2.2b), there is good

consensus in the literature that a proper ratio between L and M needs to be chosen for accurate

convergence [57,59,69,70]. For the analysis of the discontinuity between rectangular waveguide and

bifurcated waveguide, Mittra and Lee found that the ratio of the number of modes in each subdivided

portion of the bifurcated guide should be set equal to the ratio of their dimensions; the number of

modes in the rectangular guide equals the sum of all of the modes in the bifurcated guide. This type

of discontinuity can be turned into a step discontinuity by shorting one portion of the bifurcated

guide, or setting its width as zero. It can then easily be found that the ratio of the number of modes

of the two guides equals the ratio of their dimensions. This method has been adapted for two-

dimensional discontinuities [58, 71]. Other authors set a cut-off frequency greater than the highest

band frequency and include all modes that propagate below this frequency [59,60,70].

2.4 Conclusion

The electromagnetic theory of a circular cavity was introduced, along with its use in permittivity

measurements. Full-wave modeling allows for more complex configurations of the circular cavity.

An introduction to mode-matching was presented, and an overview of its application to modeling

the permittivity setup was given.
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Liquid Measurement

3.1 Setup design

Because rigorous modeling is used, which enables greater flexibility with permittivity characteriza-

tion, the cavity was designed for measurement of liquids with varying permittivities, and at multiple

frequencies around 100 GHz. To hold the liquid, fused quartz tubes were chosen, since they are

low-loss and so maintain the high quality factors.

In addition, temperature and humidity controls were included in the design, serving to improve

the data precision but also enhance the modeling accuracy - the waveguide dimensions and liquid

properties are dependent on the temperature, and the permittivity of air is dependent on the relative

humidity.

3.1.1 Electromagnetic design

As with nearly all waveguide components at higher millimeter-wave frequencies, the circular cavity

is contained within a machined block. The negative space of this block, which is shown in Figure 3.1,

will define the cavity, the insertion hole for the tube, and the excitation feeds.

The blocks were machined out of aluminum and then plated with a layer of gold, which has a

higher conductivity and does not oxidize.

27
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Overall cavity configuration

To simplify the modeling, the placement of the insertion hole for the tube is configured coaxially

with the cavity. As a result, the coupling into the cavity is placed on the sidewall, perpendicularly

to the tube. This is easier to configure than placing both the coupling and the tube insertion hole

in the same plane, since the cavity block ultimately must be connected to flanges on the frequency

multiplier heads of the network analyzer.

The output of the heads is rectangular waveguide, which sets the input and output feeds of the

cavity. In order to machine these waveguide feeds with high precision and accuracy, the block must

be split into two halves, cutting through the waveguide. There are two ways to split the waveguide,

either through the longer wall (H-plane) or the shorter wall (E-plane). Since currents travel across

the E-plane, parallel to the waveguide Ẽ-field, they would be disturbed by a split placed in this wall,

which would degrade the performance of the waveguide and add loss. Thus, the split was placed

through the H-plane. Yet because a circular cavity is being used, this H-plane versus E-plane choice

also determines which type of modes are excited, since the axis of the hollow right circular cylinder

is more simply machined perpendicularly to the plane of the split. As a result, the orientation of the

fields of the TE10 mode with respect to the cavity will couple to TEz modes, which have magnetic

fields in the ẑ-direction. Finally, the waveguide flanges of the frequency multiplier heads are actually

oriented perpendicularly to the waveguide in Figure 3.1. So for measurement, this negative space is

rotated 90◦, and the tube lies horizontally.

Dimensions

A number of factors determined the block dimensions, which are summarized in Table 3.1, but they

were largely based on a previous block that was acquired for an unrelated project of a millimeter-

wave magnetron that required a whispering gallery mode. With this block, liquid measurements

were performed, giving data that guided the design of a new block. The major difference is that

the previous block had TM mode-excitation, i.e. 90◦-rotated rectangular waveguide, but based on

simulations and closed cavity theory, the sensitivity was expected to be similar.

The major dimensions of the radius and height were kept the same. Closed-form equations for

f0 and Q were used to verify that TE-modes of different electric field patterns, i.e. permittivity
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Figure 3.1: Diagram of negative space in a machined cavity block.

sensitivities, would be available in W-band; some of these field patterns can be seen in Figure 3.2.

Initial modeling, which included coupling to the cavity, verified this approach by matching the

measured resonant frequencies of the old block to those of a closed cavity, based on the plotted

electric fields.

The aperture size of the previous block was thought to be suitable. Maximum transmission S21

values of the resonances ranged from -15 dB to -20 dB, which is higher than normal for resonance

measurements, but these systems typically measured low-loss materials at lower frequencies. With

the available network analyzer in W-band, the specified dynamic range is 76 dB [72]. However,

additional waveguide components used for environmental control would reduce this dynamic range,

and it was difficult to quantitatively anticipate the reduction. Additionally, the loss of the liquids

would reduce the transmission level, particularly for sensitive modes with strong electric fields in

the center.

The final dimensions that were considered were those regarding the tube. Obviously, the insertion

hole must be made big enough to accommodate the maximum tube diameter. However, it cannot

be made too big because the more sensitive modes will radiate away through the hole and no longer

resonate. This can be ascertained by computing the cut-off frequencies of the lowest-order circular

waveguide modes. With the previous block, MHz-shifts were seen for lossy liquids in a tube of a

1 mm outer diameter, so the inlet hole was made a bit larger than this. For this diameter, the
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TE511, f0 =81.4 TE221, f0 =83.2 TE021, f0 =85.1 TE611, f0 =88.2

TE321, f0 =91.6 TE131, f0 =95.1 TE711, f0 =95.4 TE421, f0 =100

Figure 3.2: Electric field plots of TE modes (f0 in GHz) in W-band.

Table 3.1: Nominal cavity dimensions

Cavity radius 5.461 mm
Cavity height 2.540 mm
Hole radius 1.066 mm

Aperture width 762 µm
Aperture height 762 µm
Aperture length 381 µm

corresponding cut-off frequency for the lowest-order mode TE11 is 175 GHz.

3.1.2 Block exterior

A number of features were added to the outside of the block, as seen in Figures 3.3 and 3.4. The

first two, (A1) and (B1), ensure that the tube is centered within the cavity, which is an assumption

of the modeling. At the top of the block, the diameter of the (A1) hole was made to tightly fit a

fluidic fitting that is placed over the tubes in order to facilitate the addition of liquid sample, as

shown in the left in Figure 3.5. Otherwise, given the horizontal orientation of the tube, it would rest

on the bottom half of the circumference of the insertion hole and not be centered. With the (A1)

hole, the tube is centered to within 0.25mm. The bottom of the block was modified to accept an
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additional machined fitting (B1), with a smaller diameter hole in the center; it has alignment pins

and screws on to the block.

Figure 3.3: CAD image of block exterior, 0◦

rotation.
Figure 3.4: CAD image of block exterior, 90◦

rotation.

Figure 3.5: Fitting on quartz tube and connection to syringe.

Humidity and vapor control

On both sides of the cavity block are the Nitrogen blocks, which are shown in more detail in

Figures 3.6 and 3.7. They consist of waveguide through sections with an inlet hole for a nitrogen

gas feed that purges the cavity of water vapor or any vapor from the sample. In Figure 3.6, on

the same face as the inlet hole are four holes which serve to fasten and align the two halves of a

single Nitrogen block. To determine the diameter of the inlet hole and ensure it does not disturb
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power transmission through the waveguide, various values were simulated using the ANSYSrHFSS1

model shown in Figure 3.8. Ultimately the diameter of 0.04in was chosen, since the return loss is

mostly above 20 dB across the entire band, and this larger diameter would require less pressure to

purge the cavity. In order to prevent nitrogen from going into the extension heads and ensure flow

through the cavity, the waveguide is sealed with a viscous epoxy.

Figure 3.6: CAD image of Nitrogen block
half.a

a3D model of tube fitting from McMaster-Carr
Supply Company.

Figure 3.7: Photograph of Nitrogen block
and epoxy seal.

Temperature control

Additional screw threads were added to the cavity block for temperature control. At the top of

the block, the #8-32 thread hole accepts a thermistor that is housed in a bolt mount with a #8-32

thread. A thermistor was chosen because of its high sensitivity to small changes in temperature;

the specific thermistor was the Omega ON-950 series thermistor. On each side of the block, screw

threads were added in order to hold rectangular fixtures that can clamp Peltier elements or heaters

onto the cavity block rather than gluing them, since it was desired to be able to separate the cavity

block halves for cleaning. Ultimately Peltier elements, ones specifically from Laird Technologies,

were chosen in order to have the flexibility for cooling the block.

1ANSYS, Inc., Canonsburg, PA
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Figure 3.8: HFSS symmetrical model and simulated return loss of waveguide with inlet hole of
varying diameters.

The temperature was controlled with an in-house PID program in Python, using PyVISA2 for

GPIB control of the test equipment. To read the temperature, the thermistor leads were connected

to an Agilent 34401 multimeter. In order to prevent self-heating of the thermistor, which would

introduce error in the resistance readings, the resistance range was manually set to 100 kΩ so

that only a 10 µA current source is used, which is the recommended operating current for the

thermistor. Resistance values were converted into temperature using the manufacturer-provided

Steinhart-Equation for the thermistor. As for the Peltier elements, they were powered in parallel by

an Agilent E3631A power supply.

3.2 Measurement

Achieving accurate measurements to compare to the modeling is dependent on many factors. First,

the relative humidity of the air will affect its permittivity and thus alter the resonant frequency

and quality factor. This is controlled by the Nitrogen blocks. Likewise any impurities, such as

oils, on the surface of the cavity walls will have an effect. Next, because the Nitrogen blocks are

2T. Bronger et al., The PyVISA package, http://pyvisa.sourceforge.net/
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imprecisely plugged with a dielectric material, they cannot be accurately modeled and so must be

included in the network analyzer calibration, which is a standard procedure that removes any phase

and transmission errors in the system. Calibration also allows for the removal of the effect of any

additional waveguide components necessary for measurement so that the data is only representative

of the device under test. Finally, waveguide measurements in general are sensitive to connections

made between components, such as a waveguide block to a flange. Both parts are machined with

alignment pins and holes so as to reduce any reflections from offset waveguide cross-sections. This

error becomes worse at higher frequencies due to the increased sensitivity of smaller wavelengths to

machining tolerances. While the mode-matching technique can model offset waveguides, this is a

random error that cannot be quantified accurately for each measurement. Two waveguides must also

be in good physical contact with each other in order to maintain a consistent electric field boundary.

So, waveguide flanges also include screw holes for tight fastening. This introduces another source of

error, in that the measurement is sensitive to the torque of the screw.

All of these issues have either been addressed with the block design or will now be discussed

in the measurement procedure, which is as follows. First, the VNA was powered on and left to

warm up for at least one hour. Before data collection, the cavity block was cleaned of potential

water vapor on the walls by heating it for at least thirty minutes, with a continuous Nitrogen flow;

this was occasionally preceded by isopropanol clean of the cavity block in order to get rid of oils or

other contaminants. Meanwhile, the Nitrogen blocks are placed on the extender heads so that their

temperature is in equilibrium with the VNA before calibration. Next, a frequency range capable of

capturing all resonance measurements is chosen, with the maximum number of swept frequencies

and 128-pt averaging, which effectively helps to increase the dynamic range. A standard Thru-

Reflect-Line (TRL) calibration is performed, which measures the known standards of a zero-length

through waveguide, a 90◦ delay line, and zero-length short.

Once the cavity has reached room temperature, it is connected in between the Nitrogen blocks,

which is shown in Figure 3.9. To help with the temperature precision, styrofoam insulation is

placed around the cavity block, as seen in Figures 3.10 and 3.11; in the front of the setup, the two

insulation layers are tiled to allow for easy and fast access to the tube. The temperature of the

cavity is monitored, and once it stabilizes, PID control is started. Data is collected once the control
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temperature is reached and stabilized.

For consistency and the reduction of measurement error, calibration standards and the blocks are

fastened to the flanges using a constant torque wrench set at 4 in-lb. There is a noticeable effect on

the transmission magnitude due to changes in torque with inconsistent hand-tightening; this would

also change the coupling to the cavity, which effects the resonant frequency and quality factor.

Figure 3.9: Cavity and Nitrogen blocks (with Nitrogen feed tube) connected to frequency extension
heads, which connect to the network analyzer. Peltier elements and thermistor are installed onto
cavity.

Figure 3.10: Inner view of insulation. Figure 3.11: All insulation for measurement,
with second nitrogen gas tube for quartz
tube.

For the measurement of the empty tube, the nitrogen connection is split so that half of the gas

flows through the tube. From Figure 3.5, the fitting over the tube has a #10-32 thread, so it can
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be connected to the same tube fitting used for the Nitrogen block, via a female standoff. Finally,

measurement of a liquid can be seen in Figure 3.12.

Figure 3.12: Injection of liquid sample into tube.

3.3 Data post-processing

Commonly f0 can be found from the frequency of maximum S21; subsequently Q is found from

f0 divided by the difference between the 3-dB frequency points, i.e. the frequencies at which the

magnitude drops three decibels from the maximum value. However, this method is not very accurate

when there is noise in the measurement. In a study comparing various resonance fitting procedures,

Petersan and Anlage found that the phase versus frequency fit was the most accurate and precise [73].

For this method, a circle is first fit to the pairs of real and imaginary S21 data; if there is no crosstalk

nor phase shift then this circle should lie on the x-axis [74]. The circle fit gives information on the

location of the S21 circle in the complex plane. Then, the data is rotated and translated so that the

center of the circle is placed at the origin. The phase of this shifted data is then used for fitting of

this equation

φ(f) = φ0 + 2 arctan

[
2Q

(
1− f

f0

)]
(3.1)

where φ0 is the angle where f0 lies. Material and dimensional parameters were estimated from f0

and Q instead of to the sweeps directly because it was found to converge faster and more accurately.
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If a fit is to be made to a sweep, then it has to be assumed that the modeling is exactly comparable

to the measurement, which is only the case if the system is perfectly calibrated. However, the

calibration is not done at the same temperature as the measurement, so it will no longer be as

accurate when the waveguide sections in the Nitrogen blocks expand with temperature. The phase

versus frequency fit accounts for this and other systematic differences [73–75].
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Results

In this chapter, the data acquisition process is broken down in parts to determine the uncertainties

added at each step. The enviromental controls are assessed, and permittivity results are analyzed.

4.1 Resonance fitting

An example of resonance measurement and its circle fit is shown in Figure 4.1. Based on the center

of the circle fit, the data is rotated and translated until its center lies at the origin. The phase of

this data and the fit is shown in Figure 4.2. For the estimated parameters f0 and Q in vector a, the

uncertainties σ2
a are found from the diagonal values of the covariance matrix, which is the inverse of

the following matrix α [76]

αjk =

Ni∑
i

1

σ2
i

∂y′(xi, a)

∂aj

∂y′(xi, a)

∂ak

where the uncertainties σi are equivalent and estimated from the quality of the fit

σ2 =
1

Ni −Na

Ni∑
i

[yi − y(xi, a)]
2

and Ni is the number of data points, Na is the number of parameters, xi are the independent data

points, yi are the measured data points, and y(xi, a) is the best fit from a nonlinear-least squares

38
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method. For the resonance in Figure 4.2, values and uncertainties found from the fit are summarized

in Table 4.1.

Table 4.1: Phase fit example values

a σa
φ0 -0.092 0.00046
f0 83.026360 GHz 9 kHz
Q 6525 9
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Figure 4.1: Example of circle fit (red) to original complex S21 data (blue) and its transformation
(black).
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Figure 4.2: Example of phase fit (red) to phase of transformed S21 data (black).
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4.2 Measurement setup

The performance of the environmental controls are discussed. With repeated measurements, uncer-

tainties in the data were characterized so that further on the precision of the permittivity results can

be found. Variability in measurements within a single day and across multiple days were examined,

along with the possible effects of the environmental controls and mechanical connections.

4.2.1 Environmental controls

After the Nitrogen blocks were sealed with epoxy, they were measured on the network analyzer. The

insertion loss is mostly less than 5 dB, while the return loss is mostly above this value; the exception

is at the lower part of the band. Also, the reflection S-parameters of S11 and S22 are different from

one another due to the unequal amounts of epoxy in each block. The high loss due to the epoxy

lowered the available dynamic range of the system when it was calibrated with the Nitrogen blocks

at both ports. An example calibrated measurement is shown in Figure 4.4.
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Figure 4.3: Measured S-parameters of Nitrogen blocks. The high loss is due to the epoxy.

With the humidity control there was concern over the affect on the measurements from the

nitrogen pressure level, which was set by the tank regulator with pressure markings larger than the

actual pressure needed for purging. This was tested by increasing the pressure until it was slightly

above the range of operator uncertainty, which was judged by the volume of the sound of the gas;
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Figure 4.4: Measured S-parameters of the Thru section after TRL calibration with Nitrogen blocks.

the effect on S21 is seen in Figure 4.5. There was a 200 kHz decrease in the resonant frequency and

no discernible effect on the quality factor.
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Figure 4.5: Effect of different N2 pressures. Change in resonance measurement. Red is increased
pressure, with f0 reduced by 200 kHz.

With the PID controller and insulation, the achievable temperature precision ranged from±0.01◦C

to ±0.05◦C. Manual tuning was done to find the three PID constants. The Integral term was left at

zero because when correcting for the below-setpoint cavity temperature during initial heating, the

accumulated error prevented the block to cool back down to setpoint, especially with the insulation
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surrounding the cavity. A plot of typical temperature control is seen in Figure 4.6. At the moments

in time where the temperature goes beyond this precision, either the PID control was initiated, or the

empty tube was inserted into the cavity or filled with liquid, so the insulation was removed in order

to obtain access to the cavity. Another example of the temperature control is seen in Figure 4.7, in

which the temperature was held steady for close to an hour while the current adjusted for changing

room temperature. Additionally, the plot also shows a decrease in setpoint by 1◦C, followed by an

increase of 0.1◦C.
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Figure 4.6: Typical temperature control.
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Figure 4.7: Example of stable temperature hold and multiple setpoints.
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4.2.2 Data variability

The sweeps in Figure 4.5 also show the typical variation in the measured resonances for a single day

of measurements. Before liquid data was taken, a variety of empty cavity measurements were done

to test the stability and repeatability of the setup. First, data was acquired over multiple days,

using an identical Aluminum block with no gold plating, shown in Figure 4.8. The first day of data

was near 102.462 GHz, and on the following day f0 rose by about 2 MHz and Q by 30. On the three

final days, the changes seemed to have leveled off; the data is concentrated within a 3 MHz range,

and the Q varies by no more than 10. Means and standard uncertainties for each day are shown

in Table 4.2. It should be noted that for days (2)-(5), the data was collected during a span of over

one hour. Also in the table, the final means and uncertainties for all five days are shown in the final

row. The standard uncertainty of parameter a is a combined uncertainty and is defined as

u2a =
σ2

N
+ u2a′

where σ is the standard deviation and N is the number of data points. The variable ua′ is the

uncertainty of a data point – in a single day this comes from the phase fit, and over multiple days

this is the uncertainty in a single day of measurements. The upward trend in the data indicated

that perhaps the repeated heating and purging of the cavity was clearing it of impurities, so various

cleaning steps were added and tested, which are summarized in Table 4.3, with the corresponding

data shown in Figure 4.9. These measurements were done with the gold-plated cavity at 28◦C,

which is why the quality factors and resonant frequencies are higher. First, an isopropyl alcohol

(IPA) clean of the cavity was done to remove any oils on the inner block faces. Next, a heating

step with the Peltier modules was added to try to remove any water vapor on the walls; during

the heating, nitrogen flowed continuously through the cavity. From previous measurements, it was

observed that in a single day f0 was consistently precise to 1 MHz, so this was the targeted metric.

Yet, since the spread in the data for the IPA clean-60 minutes heating+N2 flow-N2 flow sequence

(denoted by symbol •) was over 5 MHz, a final day of measurements was attempted without the

heating step. After the block reached a stable temperature and the 20 MHz decrease in f0 was

observed, it was heated for 30 minutes, re-measured, then re-heated for an additional half-hour.
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There was no significant change in f0. If the 60 minutes heating et al. data are solely considered,

then uf0 and uQ drop to 0.5 MHz and 3.7, respectively. However, the final measurement, with very

similar cleaning procedures, was more than 20 MHz off of these measurements, so further tests were

done to investigate possible causes of the drift that are independent of possible cavity impurities.
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Figure 4.8: Variation of data for TE811 mode at 30◦C over five days. Aluminum block measured.

Table 4.2: Al cavity, T=30◦C

f0 (GHz) uf0 (KHz) Q uQ
(1) 102.4616 18 2732 2.5
(2) 102.4636 105 2762 2.3
(3) 102.4692 46 2766 1.4
(4) 102.4685 13 2769 0.6
(5) 102.4670 17 2771 0.6

All days 102.4660 1.4 MHz 2760 7.3

Table 4.3: Au cavity TE811 cleaning steps

Symbol Cleaning procedures
� Isopropyl alcohol (IPA) clean-30′ heating+N2 flow-N2 flow
◦ 60′ heating+N2 flow-N2 flow
• IPA clean-60′ heating+N2 flow-N2 flow
∗ IPA clean-30′ heating+N2 flow-30′ heating+N2 flow-N2 flow
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Figure 4.9: Variation of data for TE811 mode at 28◦C over thirteen days. Au-plated block measured.
Mean f0=102.5496 GHz, Q=3565. uf0=2.2 MHz, uQ=4.0

4.2.3 Repeatability tests

Other causes for variability among day-to-day measurements come from variation in the assembly

of the cavity block halves and connection of the block to the extension head flanges. For the block

halves and flanges to align, the pins must obviously fit in the alignment holes, but with machining

tolerances, there is room for error through which lateral and/or rotational misalignments can be

introduced, on the order of a few microns. Also, variation in the torque when fastening the block

halves together or the block to the flanges will have an effect as well. Namely, the shape of the

cavity will be altered and also the coupling to the VNA waveguides. These effects were examined

via measurements.

Two sets of raw data (i.e. not calibrated), with temperature control and nitrogen flow, were

taken on consecutive days, while in between the cavity was left connected to the network analyzer;

the measurements are shown in Figure 4.10. From the curve-fitting results, the resonant frequencies

are indistinguishable, and the Q-factors differ by 0.1%. The only major difference is the magnitude

shift in S21, but this is expected for uncalibrated data. These results indicate how well the N2 purge

and temperature control aid in the repeatability of the data, although more consecutive days of

measurements would be needed to state this with great certainty.

To test the effect of variability with assembly of the cavity block halves, the cavity was dis- and
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Figure 4.10: Raw data of empty cavity resonance, measured on two consecutive days, with cavity
block left connected to VNA.

reassembled multiple times during a single-day measurement set. Once the temperature restabilized

when the cavity was fastened back on to the VNA extension heads, data was recorded. This ex-

periment was done for two different resonant modes, and the data can be seen in Figure 4.11. It

can be seen that the resonant frequency can vary within 5-6 MHz. Also examined was the effect of

variability in the connection of the cavity block to the extension head flanges, as seen in Figure 4.12.

Four times the cavity was disconnected and reattached, with the block halves kept fastened together;

the resonant frequency varies within less than 1 MHz. In the same day, the re-assembly of the cavity

was also tested and again a maximum shift of 5 MHz was seen.

Because these measurements were taken in the same day and with the same cleaning procedure,

any cavity impurities were presumably equivalent, so the larger shifts in the data are due to changes

in assembly of the cavity block halves, which cannot be modeled. This observed 5 MHz variation

likely explains the variation of most of the data in Figure 4.9. The two outliers are then probably

due to poor block assembly and/or flange connection.

From these experiments, estimates for the uncertainties in f0 and Q are found, which are later

used in the uncertainty analysis for modeled parameters. For now, the variation in f0 due to block

disassembly is not included, but will be examined later. Remaining measurement uncertainties are

listed in Table 4.4. The uncertainty due to the imprecise nitrogen pressure is treated as a Type B

uncertainty, where the 200 kHz seen in Figure 4.5 defines a half-width of a rectangular distribution;

thus this value is divided by
√

3 [77, 78]. Next, the effect of the flange connection is included by
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Figure 4.11: Effect on resonances of dis- and reassembly of cavity.
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Figure 4.12: Effect of reconnection (◦) and reassembly (∗) of cavity on data.

estimating the standard uncertainties of the measurements in Figure 4.12. Finally, the same is done

with the final three measurements of Table 4.2 in order to reflect the day-to-day uncertainty that

was consistently seen with other resonant modes, without disassembly.

Table 4.4: Uncertainties in f0 and Q

Uncertainty source Standard uncertainty
uf0 (MHz) uQ

Nitrogen pressure 0.12 –
Flange connection 0.08 5.7

Day-to-day 0.64 1.7
Combined 0.66 5.9
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4.3 Modeling

Application of the full-wave modeling described previously will now be discussed. In order to extract

permittivity from measurements, the modeling must accurately capture the effects due to aperture

coupling, conductor loss, and complex permittivity. Also, since the modeling is an approximate

technique, the convergence of results with additional modes is examined, along with possible errors

due to the small-angle approximation used at the aperture-cavity boundary.

4.3.1 Validation

The modeling was validated by comparing its relative changes in S21 of the empty cavity versus the

tube-loaded cavity between the measurements. Nominal dimensions and material properties were

used in the modeling (i.e. no attempt was made to modify the model parameters to account for

variations in the physical cavity). First, a whole band comparison can be seen in Figure 4.13, where

the modeled tube perturbations follow those of the measurements, particularly with the larger shifts

that correspond to modes with strong, centrally-located electric fields, such as TE221 near 83 GHz,

TE021 near 85 GHz, and TE131 near 95 GHz. An additional comparison of the phase for the empty

cavity is seen in Figure 4.14.
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Figure 4.13: Measurement vs. modeling of empty cavity and tube, using nominal dimensions.
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Figure 4.14: Measurement vs. modeling of empty cavity, phase, using nominal dimensions.

Additionally, with some resonances there is a behavior that could not be predicted with pertur-

bation theory. For example, raw data measurements of the TE811 mode and its change with the

tube and methanol is shown in Figure 4.15a. In spite of the additional loss of the quartz tube, the

magnitude of S21 increases. Furthermore with methanol, the resonant frequency decreases from that

of the empty tube. These conditions were simulated, and the sweeps are seen in Figure 4.15b; since

the measured data was uncalibrated, the absolute magnitudes will not match up. Nominal values

for the dimensions and materials are used, so while the resonant frequencies do not match up, the

relative changes are being captured with the modeling.
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Figure 4.15: TE811 mode (black), with tube (red) and methanol (green). Comparison of measured
versus modeled relative shifts. Measurements were raw, uncalibrated VNA data. Nominal cavity
dimensions and permittivity literature values were used for modeling.
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Figure 4.16: Diagram of structure to illustrate choice of modal limits by dimensional ratios.

4.3.2 Convergence

Since the permittivity fitting is done to the resonant frequency and quality factor, these terms were

tested when examining convergence. A simple test of S21 convergence for a single frequency could

be tested, provided that the chosen frequency lies on a resonance. Convergence was examined by

adding modes to the aperture region, or more specifically with different permutations of Mx and Ny,

which are respectively the maximum m and n indices of the aperture fields, as seen in (A.26). In the

waveguide region, the maximum index number is set by multiplying the maximum aperture index

by the ratio of the corresponding parallel waveguide and aperture dimensions; for instance, in the

xA-dimension seen in Figure 4.16, Mx,w = wx
ax
Mx. As for the cavity, the maximum m for the regions

within the cavity – (A.4), (A.16), and (A.21) – is scaled from Ny by the ratio of π and the angle

swept by the aperture arc. The index of m is the variation of the fields in φ̂, which is mostly parallel

to ŷA along the aperture. In the x̂A and ẑ directions, the maximum n3 for the P -region is set equal

to Mx since the dimensions and materials match. For the remaining modes, a cut-off frequency fc

is found from the highest order mode in the aperture, which sets the remaining n-indices n1 and n2

in the P -region as Ni = 2fcz0
√
µεi [36]. Finally, V - and C-modes are chosen by including all kzc,v

that are equal to or less than the the maximum kza , or the highest order mode [70].

With multiple simulations the convergence of the absolute values was determined for the reso-

nances used for liquid measurements. The results can be seen in Figures 4.17a and 4.17b for the

TE221 mode, and in Figures 4.18a and 4.18b for the TE521 mode. Only odd Mx are necessary be-

cause of concentricity of the waveguide and aperture, and mid-height sidewall location of aperture.

As can be seen, f0 and Q are converging with more aperture modes. For Ny ≥ 3 there is not much

variation in the results, so an extrapolation, in red, is made off of Ny = 2. This is assuming that
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the offset between the Ny = 2 and Ny = 5 curves are the same for Mx ≥ 7, which seems reasonable

given the trends of the other curves. With this extrapolation, a final converged value is estimated,

designated by the dashed blue line. To save computation time and memory, instead of using modes

up to Mx = 13 and Ny = 5, the lower order-combination of Mx = 7 and Ny = 2 was chosen for the

proximity of its results to the converged value.
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Figure 4.17: Convergence of TE221 resonant frequency and Q-factor, over increasing aperture index
Mx. Each curve is a unique value of Ny. The combination of Mx=7 and Ny=2 is within 1 MHz of
the estimated converged f0 and within 10 of the estimated converged Q.

4.3.3 Aperture approximation

As discussed in §2.3.4, the inner product integrals at the aperture-cavity boundary must be numer-

ically integrated. But since the aperture width is much smaller than the curvature of the cavity, a

small-angle approximation can be used, which is explicitly shown in §A.6.2. A comparison of the
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Figure 4.18: Convergence of TE521 resonant frequency and Q-factor, over increasing aperture index
Mx. Each curve is a unique value of Ny. The combination of Mx=7 and Ny=2 is about 1 MHz off
of the estimated converged f0 and about 10 off of the estimated converged Q.

resonant frequencies and quality factors between the small-angle approximate φ-integral and the

numerical integral is shown in Figure 4.19. With the approximation, there is an error of about

400 kHz in f0 and 20 in Q for the TE221 mode, and 2.5 MHz and 55 for the TE521 mode.

4.4 Dimensional measurements

Dimension tolerances need to be set for the fabrication of the cavity block and the tube; however,

these can produce a significant variation in the results, particularly in the resonant frequency with

regards to the cavity radius. Dimensions were measured at a temperature different from data

collection. So when running the simulations, the dimensions of the block are adjusted in accordance
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Figure 4.19: Comparison of small-angle approximation vs. numerical integrals for the TE221 mode,
over increasing Mx, for Ny=2. There is an error of about 400 kHz in f0 and 20 in Q.
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Figure 4.20: Comparison of small-angle approximation vs. numerical integrals for the TE521 mode,
over increasing Mx, for Ny=2. There is an error of about 2.2 MHz in f0 and 55 in Q.

to the temperature difference.

Most dimensions are measured by independent means, while the rest that cannot be easily

measured are estimated from resonant frequency data. For these, a phase fit is done for each

sweep, which is an average of 8 or 16 sweeps, so that the resonant frequency and quality factor

are extracted. Then, a two-dimensional fit is performed with the modeling, using the Levenberg-

Marquardt method [76]. To compute the Jacobian, forward differences are used.
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4.4.1 Cavity block

Block dimensions that were measured are shown in Figure 4.21. The lateral dimensions l and y of

the aperture were measured with a microscope that has a calibrated camera, while the depth x of

the apertures were measured with a white light interferometer. However, it was difficult to use the

interferometer to image both the top and the bottom cavity faces in order to determine the depth

h, which is nominally 1.27mm. Instead, a gauge normally used to measure the thickness of wafers

for lapping was used. Because symmetry was assumed in the modeling, the dimensions for both

apertures and waveguide were averaged into a single value. Measured and averaged dimensions are

shown in Table 4.5. The uncertainty of u2h is for both block halves and is found as

u2h =
√
u2h + u2h

where

uh =
√

0.000112 + 0.000142

in which 0.00011 is the standard uncertainty of repeated gauge measurements and 0.00014 is a Type

B error that reflects the 0.0005mm precision of the gauge stand, which was calculated as [77]

0.00025√
3

= 0.00014

Figure 4.21: Key of block dimensions that were independently measured.
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Table 4.5: Measured cavity dimensions

h(mm) x(µm) y(µm) l(µm)
1.2695 1.2710 1.2705 1.2700 384 382 760 756 757 380 378
1.2700 1.2700 1.2710 1.2710 380 380 758 754 761 379 375
1.2710 1.2705 1.2700 1.2695 380 380 761 756 759 375 380
1.2705 1.2695 1.2700 1.2695 381 756 758 753 381 382
1.2700 1.2700 1.2700 1.2715 758 756 755
1.2715 1.2710 1.2710 1.2715 756 757 755
1.2715 1.2715 1.2715 1.2710 750 758 757
1.2715 1.2705 1.2695 1.2705 755 757 757
1.2715 1.2705 1.2695 1.2705

µ±95% C.I. 1.2705±0.0002 381±1 757±1 379±2
u2h 0.0003 mm

When measuring the dimensions, it was not realistically possible to ensure that the block was at

the same temperature as when measured on the network analyzer. Additionally, multi-temperature

measurements of permittivity, which are desirable for liquids, would be cumbersome. Instead, the

temperature at which the dimensions were measured was recorded. Then in the modeling, when a

comparison is made to measured S21 data, the block dimensions were scaled by the linear coefficient

of thermal expansion for aluminum, which constitutes close to all of the block.

Validation of this is shown in Table 4.6, where the cavity radius and conductivity was first tuned

to match the 26◦C measurement. Then this radius and the measured dimensions were increased

to correspond with the expansion of 2◦C; the subsequent simulation matches very closely with the

measurement of the cavity at 28◦C. The resonant frequencies match to a precision of 100 kHz, and

the quality factors match within the error.

Table 4.6: Measured vs. simulated of temperature change1.

f0(GHz) Q

29.0◦C
Measured 102.47167±0.00002 2762± 2
Simulated 102.47164 2759

29.1◦C
Measured 102.47147±0.00005 2761± 9
Simulated 102.47140 2759

30.0◦C
Measured 102.46927±0.00008 2764± 4
Simulated 102.46928 2759

195% confidence intervals

As for the cavity radius, it is difficult to measure this precisely, so this value is determined from

resonant frequency measurements of the empty cavity. Presumably, a radius found from a fit to
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one resonance should be valid for another. To test this, three adjacent resonances were measured

simultaneously in a single day. As shown in Figure 4.22 the measured resonant frequencies (black

dashed lines) were compared to various modeled cavity radii and permittivity values for air (symbols).

It can be seen that there is no combination of values that match all three resonances, although the

results for TE021 and TE221 track closely. A possible explanation for this is if the two apertures

are not directly across from each other, but instead are separated by an angle that is not 180◦.

An alternate angular offset disturbs the excitation of the mode and thus alters its field pattern in

the cavity. Since the TE511 mode has the most lobes in the azimuthal direction, it will be the

most sensitive to a change in coupling angular offset among these three modes. This contrasts to

the TE021 mode, whose field pattern in φ̂ is constant. Various offset angles were tested using a

simpler model of a lossless cavity without an inlet hole, with a method by Melloni that allows for

a variable offset angle between the apertures [60]. As the results show in Figure 4.23, a change of

a few degrees produces a 2 MHz decrease in the TE511 resonant frequency, while the TE221 mode

is only perturbed by a few hundred kilohertz and the TE021 is barely disturbed. Therefore, if an

angular offset were used in the simulations of Figure 4.22, the modeled TE511 f0 would decrease and

more closely match the measured f0, with cavity conditions that are more consistent with the other

two modes. However, since the angular offset for the inhomogeneous four-port model is fixed, the

cavity radius is estimated to the measurement of the empty cavity.
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Figure 4.22: Simulated conditions of three resonances compared to measurements. The black dashed
lines are the measured f0, R is the cavity radius, �: εair = 1.0006, ◦: εair = 1.00055. Change in
height shifts f0 equally for all modes.
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Figure 4.23: Sensitivity of f0 to angle offset between apertures. Nominal dimensions. For the TE511

mode, which has the most azimuthal lobes, f0 decreases by more than 2 MHz for 3◦ change in the
angle.

4.4.2 Tube

The fused quartz tubes used for measurements have a manufacturer-specified 10% tolerance of the

dimensions, which can produce a significant variation in the simulated resonant frequency for a mode

with strong central electric fields. Thus, the inner and outer radii are measured for each tube.

The inner radius is found from weighing the tube filled with water. First, the scale was zeroed by

weighing the empty tube. Then, the tube was partially filled with water, forming a column whose

length h is measured with a caliper. The final step was to measure the mass m of the water-filled

tube. Using the volume formula for a cylinder and the well-known density of water ρ, the inner

radius r can be found as

r =

√
m

ρπh
. (4.1)

With repeated readings, the inner radius is determined by using a linear least-squares fit; for one of

the sets of data being analyzed, this fit for the tube is shown in Figure 4.24.

As for the outer radius, using a caliper was considered, but tightening of the caliper screw

could compress the tube, and its resolution is only 20 µm. So, it was attempted to measure its outer

diameter with the microscope. A photograph for same the tube of Figure 4.24 is shown in Figure 4.25,

from which an average outer diameter value of 1009µm can be estimated. This outer diameter and

the inner radius of Figure 4.24 were inputted into the modeling, along with the permittivity for fused
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Figure 4.24: Least-squares fit of tube inner radius.

quartz, which was averaged from the higher frequency literature data in Figures 4.26. The measured

and modeled f0 are shown in Table 4.7, and there is nearly a 7 MHz difference, which is significant. If

the permittivity is increased to ε′=4.1, the simulated f0 matches more closely, but compared to the

literature data, this value is unreasonable. Instead, the outer diameter can be estimated by fitting

the simulated resonance to the measured, in which case it is 1022 µm and within the 10% tolerance.

Also, the 1% difference of 12 µm is more plausible, particularly if the widest part of the tube is not

within focus.

Finally, the loss of the tube is estimated to the measured resonance, simultaneously with the

outer diameter. From a survey of literature permittivity data for fused silica, which is a material

very similar to fused quartz yet measured more extensively, the loss varied more widely and increased

with greater frequency, even linearly in a single study [47]. Additionally, the loss will be sensitive to

any impurities, such as water content [79,80].

Table 4.7: Measured and Simulated Tube f0

f0 ε′r O.D. (µm)
Measured (95% C.I.) 82.940439±0.000043 – –

Simulated
82.946763 3.79 1009
82.941473 4.1 1009

Fitted 82.940437 3.79 1022
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Figure 4.25: Microscope method for outer diameter measurement of tube.
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Figure 4.26: Real and imaginary permittivity values of fused quartz from literature [81–85]. The
value of 3.79 was selected for ε′ as an average of the higher frequency data.

4.5 Liquids

Initially raw data of the cavity, tube, and methanol were taken with all of the resonances, in order

to confirm the predicted sensitivities based on the modeling. A few modes of varying sensitivities

were chosen to take calibrated measurements and test the method.

For each day of liquid measurements, the effective cavity radius and conductivity were found

by fitting the modeling to the averaged resonant frequency and quality factor measurements of the

empty cavity, using the Levenberg-Marquadt method. The same procedure was used with the tube

data to determine its outer diameter and loss. Fitting values were considered converged if they were

within the uncertainty of the data. Simulated S-parameters of the liquids were found either from
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fits or values used from the literature.

4.5.1 Medium sensitivity

The first mode measured was the TE221 mode, whose field plot is shown in Figure 4.27. All of

the field plots were generated in MATLAB using the modeling. The strongest lobes of the field

are located outside of the nominal 0.5 mm radius tube, but there is still some interaction between

the tube and lower strength fields. A comparison of the measured and simulated S21 is shown
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Figure 4.27: Electric field plot of TE221 mode. Axes in mm. Weaker fields interact with the 0.5 mm
tube. Aperture coupling can be seen at φ = 90◦.
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Figure 4.28: Comparison of measured and simulated Methanol I results. Black: empty cavity,
Rc=5.4614mm, σ = 3.79 × 107Sm−1. Red: tube, Rb=511µm, ε′′2r = 0.003. Green: methanol,
εr = 5.0− j2.7.

in Figure 4.28. The electric conductivity is close to that of bulk gold (σ = 4.1 × 107Sm−1), but is

expected to be less since the block is merely plated with gold. It can be seen that the modeling

captures the decreasing S21 magnitude due to the dielectric losses, but there is an approximately

1 dB difference in magnitude. The coupling levels were consistent across multiple days, to within



Chapter 4. Results 61

0.5 dB, even when the resonant frequencies shifted. Thus, this magnitude difference is systematic

and lies with the modeling. It was found that with more modes |S21| decreases, so higher convergence

would align the magnitudes more closely. Another cause could be asymmetric coupling, namely one

aperture being smaller or longer than the averaged value.

From running simulations of multiple values of permittivity, it was deemed that this mode was

sensitive enough so that the permittivity of methanol could be determined at a precision comparable

to literature values; a more in-depth analysis is shown in §4.6.

Water

In addition to methanol, water was measured with the TE221 mode; the data and fitted simulations

for the empty cavity and tube can be seen in Figure 4.29. This set of data was taken over a month

after the previous methanol data; the cavity radii are only 0.2µm different, and the conductivities

are close to only 1% off. Different tubes were used, so the results are not comparable.

Water is considerably lossier than methanol, so the magnitude of S21 has dropped by over 3 dB.

For reference, the permittivity data for water from previous studies is shown in Figure 4.30 [7, 14,

16, 17, 25, 29, 86]. The simulated f0 for the nominal permittivity of water (εr = 10.2− j16.6 [14]) is

close to that of the measurement, but f0 and Q differ by more than the measurement uncertainty.

But, it is possible that on the wall of the tube a surface layer of water is being formed, and its

properties differ from that of bulk water. This effect would be further magnified considering the fact

that the surface layer would lie in the stronger part of the field, by examining the electric field plot

in Figure 4.27.

Attempts to use the fitting method to estimate a permittivity were unsuccessful. Manual simu-

lations were done for various values, but f0 and Q could not be fitted simultaneously, i.e. χ2 > 100.

Also, as demonstrated by the other permittivity simulations in Figure 4.29, the modeling for this

mode is not as sensitive to changes in the permittivity for larger values. For a change of 2 in ε′r,

only a 1 MHz change is produced, whereas with the methanol fitting, a 3 MHz change was observed

for ∆ε′r = 0.2. Further work should be done to determine if this is a numerical problem with the

modeling or if this decreased sensitivity with increasing permittivity would be seen experimentally.
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Figure 4.29: Measured and simulated water 26◦C TE221 results. Black: empty cavity, Rc=5.4616mm,
σ = 3.75 × 107Sm−1. Red: tube, Rb=516µm, ε′′2r = 0.011. Blue: water. Measured
f0=82.8417±0.0002 GHz, Q=848±3. ◦: εr = 10.2 − j16.6, f0=82.8376, Q=823. ×: εr = 8 − j14,
f0=82.8387, Q=837. �: εr = 10− j14, f0=82.8374, Q=844.
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Figure 4.30: Literature permittivity data of water.

Smaller tube

The next higher mode at 85 GHz is the TE021 mode, which is more sensitive, as demonstrated

by Figure 4.31. A methanol-filled 1 mm O.D. tube was so lossy that the resonance was rendered
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immeasurable, so a smaller 0.84 mm O.D. tube was tested. Data and simulation results are shown in

Figure 4.32. While still close, the cavity radius and conductivity are a bit larger than with the TE221

mode. The liquid measurement was still considerably lossy, more than the water measurement.
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Figure 4.31: Electric field plot of TE021 mode. Axes in mm. Stronger fields interact with the tube,
versus the TE221 mode.
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Figure 4.32: Measured and simulated water TE021 results. Black: empty cavity, Rc=5.4619mm, σ =
3.80× 107Sm−1. Red: tube, Rb=419µm, ε′′2r = 0.001. Green: methanol. Measured f0=84.547 GHz,
Q=310. ◦: εr = 4.9− j2.6, f0=84.578, Q=371.

4.5.2 Low sensitivity

Due to the high loss of water, more water measurements were done with a less sensitive mode, the

TE521 mode seen in Figure 4.33. Figure 4.34 shows data and the cavity fit, along with simulations

for the tube and some water permittivity values. The fitted cavity radius is 5µm smaller than

what was found with the lower order modes, and the conductivity is smaller as well. These results
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Figure 4.33: Electric field plot of TE521 mode. Axes in mm.
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Figure 4.34: Measured and simulated water 27◦C TE521 results. Black: empty cavity, Rc=5.4562mm,
σ = 3.2 × 107Sm−1. Red: tube, Rb=555µm, ε′′2r = 0.0009. Blue: water. Measured
f0=109.0213 GHz, Q=4507. ◦: εr = 8.6 − j13.6 (nominal), f0=109.0215, Q=4239. ×: εr =
9.0− j12.0, f0=109.0215, Q=4204.

were consistently seen across multiple days, so it is not likely that it is due to the data variation

discussed in §4.2.3. Likewise, use of the numerical integrals (Figure 4.20) that produce smaller f0

would thus result in an even smaller estimated radius to compensate, since f0 and the radius are

inversely related. This is the same with the larger Q values of the numerical integrals - an even

lower conductivity would be estimated from the fit. Thus, it is believed that possible asymmetries

or coupling angle offset might be the source of the error. It can also be observed that with a greater

number of azimuthal lobes, the estimated radius and conductivity decrease.

The tube radius was set at the maximum value permitted by the tolerance; its f0 is 70 kHz

larger than the measured, which is close but still greater than the uncertainty in the measured f0.
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However, the resonant frequency for the nominal tube radius is also close, only 400 kHz greater.

This is indicative of the decreased sensitivity of this mode, as opposed to the MHz-scale changes

seen in Table 4.7 for the TE221 mode.

A literature value for water of εr = 8.6 − j13.6, based on Ellison’s fit, was tested, along with

another arbitrary value that is significantly different. Since the modeled results are very similar to

each other, no permittivity estimation was done for this mode; in future, a larger tube is recom-

mended. However, the simulation results are accurate, although an unexplained magnitude offset in

S21 appears, whose behavior is the opposite of what was seen with the lower order modes.

4.5.3 Mode-mixing

While the tuning of the cavity radius to obtain permittivity has thus far seemed to be a plausible

method, the changing estimated cavity radii that appear with the different azimuthal variations is

problematic if there are two closely-adjacent modes that mix together. This was seen for measure-

ments with the mode at 95 GHz, which is predominately the TE711 mode but is affected by the

lower order TE131 mode. After the cavity radius fit, the simulated f0 for the nominal tube radius

was 8 MHz lower than what was measured, as seen in Figure 4.35. If the radius is decreased by

10% to 450 µm, then it is only 1 MHz less, but based on a caliper measurement this value was not

realistic. This problem was explored by looking at the broadband response and plotting the electric
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Figure 4.35: Measured and simulated TE711 results. Black: empty cavity, Rc=5.4576mm, σ =
3.4× 107Sm−1. Red: tube, ◦: Rb=450µm, ×: Rb=500µm.

fields. The resonances A and C of the simulation in Figure 4.36 are for the TE711 mode, while

resonances B and D are for the TE131 mode. The electric field plots for these four resonances are
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shown in Figure 4.37. In the empty cavity plots, the TE711 mode has additional weak lobes towards

the center that appear to come from the TE311 mode; likewise, the field for the latter mode has

slight ripples in the outermost lobe, which seem to correspond to the lobes of the whispering gallery

TE711 mode. When the tube is added, the resonances are further separated from one another, and

the field plots match more closely to their closed-form responses, seen back in Figure 3.2. Based on

the previous results, the estimated cavity radius for the TE711-TE131 mixture could be larger than

it would have been for a more isolated TE711 mode. Thus, when the tube is added, a simulated

f0 for a feasible tube radius is for, in effect, a different mode. If a smaller cavity radius had been

estimated for an isolated TE711 mode, then the simulated tube f0 would also shift up in frequency.
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Figure 4.36: Simulated TE131 (B,D) and TE711 (A,C) results. Black: empty cavity, red: tube.

4.6 Permittivity Data

Permittivity data for methanol was obtained with the TE221 mode. The results for one day of

methanol measurements can be seen in Table 4.8. This data was obtained at a lower convergence of

Mx = 3 and Ny = 1; at Mx = 7 and Ny = 2 the calculated permittivity is within 1%, for retuned

conductivity and radius.

The determined permittivity value is compared to literature values of various temperatures in

Figure 4.38. Only studies that made measurements in the vicinity of W-band were included. The

TE221 value is close to the literature values, particularly the Saxton data if trend lines were extrap-

olated, but is more than 10% higher than the Barthel data, which is frequently cited and is for a

temperature that is only 1◦C different. Methanol was measured at 26◦C because the temperature
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Figure 4.37: Field plots of TE711 and TE131. Top row: cavity. Bottom row: tube. Mutual influence
of TE131 and TE711 modes decreases with addition of tube.

Table 4.8: Methanol I Fitting Results, 83 GHz

Data Parameter Fitted Nominal

Empty
83.02636 GHz Rc 5.4614mm 5.4610mm

6518 σ 3.788× 107Sm−1 4.1× 107 (bulk Au)

Tube
82.94044 GHz 2Rb 1022µm 1000

6469 ε′′2r 3.4× 10−3 1× 10−3

Liquid 82.87505 GHz, 1410 ε1r 5.01− j2.72(26◦C) 4.47− j2.16(25◦C) [29]

of the block went above 25◦C when it was connected to the frequency extension heads (which have

amplifiers and mixers that require a power source, so heat is generated) and immersed in insulation.

While the real parts of the TE221 and Kindt values are closer and within their uncertainties, the

exact temperature was not specified. Although they compared their Debye parameters to those of

Barthel, it is believed that their data was taken at a lower temperature, based on their water data

of the same study (see Figure 4.30). The Jordan and Saxton data show how the permittivity of

methanol changes with temperature in this frequency range, with the real and imaginary parts in-

versely and directly related to temperature, respectively. Thus, while the TE221 ε
′′ value is feasible,

it is possible that ε′ is being overestimated. However, this is difficult to definitively say when the
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few measurements of methanol in this frequency range are contradictory, a point that is further

exemplified by the spread of the data in Figure 4.30. For instance, both parts of permittivity should

be decreasing since this frequency range is between the second and third relaxations of methanol,

according to the Debye fits of both Barthel and Kindt, which used far-infrared data and thus have

estimations for the third relaxation. Given that fact, extrapolation of the Saxton and Jordan data

to 83 GHz would also be different from Barthel and Kindt.
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Figure 4.38: Comparison of methanol permittivity results to literature [7,29,87–89]. Multi-frequency
curves are Debye functions.
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4.6.1 Uncertainty

The next thing to be addressed is the uncertainty, which was calculated using the propagation of

uncertainty formula. All of the estimated parameters y can be considered as a function f of the

measured dimensions or other known inputs xi as so

y = f(x1, x2, ...)

where f is the mode-matching modeling of the resonator [70]. The propagation of uncertainty

formula is

uy =

√(
∂f

∂x1
ux1

)2

+

(
∂f

∂x2
ux2

)2

+ ...

which is also the norm of the standard uncertainties, or the sensitivities multiplied by their uncer-

tainties. These sensitivities are partial derivatives, which have to be found numerically with the

forward difference formula

∂f

∂x
≈ f(x+ δ)− f(x)

δ

where δ is set at a small value. To compute these, each x is altered by δ so that there is a significant

change in f0 and Q. Then, the fitting method finds f(x + δ). For the above methanol results, the

calculated sensitivities and corresponding uncertainties are shown in Table 4.9. From simulations it

was found that the resonances were not very sensitive to the aperture size nor to the inner radius

of the tube, so these parameters were not included in the analysis. It can be seen that the liquid

permittivity is the most sensitive to the tube outer diameter and the cavity radius and height. But,

the former two dimensions are estimated and are also the most sensitive to the cavity height. In

fact, if uh were lowered to 0.1µm, then the uncertainties in ε′r and ε′′r are also reduced to a third

of their former value, or about 8%. This is lower than the 10% uncertainty in the Kindt data,

which was determined by propagation of given uncertainties of the Debye parameters through the

Debye formula. The accuracy of the Barthel data, on the other hand, was estimated as 3%, but

this value seemed to be based on deviations of the data from their Debye fit. Standard deviations

for discrete permittivity data points were presented, but these were likely estimated from repeated

measurements and did not examine dimensional uncertainties in their modeling [30].
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Table 4.9: Uncertainty budget for TE221 methanol data

x ux Standard Uncertainty

Empty
R (µm) σ (105Sm−1)

h 0.3µm -0.65 0
f0 0.6 MHz -0.08 0.06
Q 15 0.002 1.93

0.66 1.93

Tube
Rb (µm) ε′′2r × 10−3

h 0.3µm -4.66 0.15
R 0.66µm -4.79 0.15
σ 1.93×105Sm−1 0.02 0.77
f0 0.6 MHz -0.57 0.014
Q 14 0.0009 -0.72

6.7 1.07

Liquid
ε′r ε′′r

h 0.3µm -0.59 -0.27
R 0.66µm -0.53 -0.25
σ 1.93×105Sm−1 0.001 0.003
Rb 6.7µm -0.95 -0.57
ε′′2r 1.07×10−3 0.001 -0.002
f0 0.6 MHz -0.07 -0.03
Q 5 0.006 -0.01

1.24 0.68

4.6.2 Repeatability

TE221 measurements of methanol at 26◦C were repeated on a consecutive day, with a different and

unused quartz tube. The results of set II can be seen in Table 4.10, with the set I results repeated

for comparison. Because the tube outer diameter was considerably larger, which was also observed

with the microscope and the caliper, the tube shifted the resonance further down in frequency, so

the methanol measurements are 19 MHz apart. Based on the Barthel Debye fit, the permittivity of

methanol changes by less than 0.5% at these two frequencies. The I and II permittivity results are

close, within 3%, and are certainly within the uncertainty. The different losses could be sensitive to

varying impurities in the methanol and its exposure to the ambient air of the lab, since it was being

stored in a jar. In actuality, the set II data was measured the day before set I, so this could help

explain the increased loss and decreased real part of the permittivity.
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Table 4.10: Methanol (26◦C), 83 GHz: I vs. II Fitting Results

Parameter Data I II Data
Rc 83.02636 GHz 5.4614mm 5.4616mm 83.02528 GHz
σ 6518 3.788× 107Sm−1 3.789× 107Sm−1 6520
2Rb 82.94044 GHz 1022µm 1050µm 82.91887 GHz
ε′′2r 6469 3.4× 10−3 2.8× 10−3 6462
ε1r 82.87505 GHz, 1410 5.01− j2.72 5.07− j2.63 82.85638 GHz, 1446



Chapter 5

Conclusions and Future Work

In this work, the use of a full-wave electromagnetic model of a cavity resonator to measure the per-

mittivity of liquids was explored. For the first time, a four-port, inhomogeneous waveguide structure

with built-in electric conductivity loss was analytically formulated and coded. This complex mod-

eling allowed for the automatic inclusion of the resonator coupling effects, as well as flexibility with

modeling the effect of the inlet hole for the liquid. A new waveguide resonator was designed, which

included environmental controls for accurate and precise measurements. Over the course of an hour

the data was shown to be very precise, as well as over consecutive days with equivalent mechanical

connections. Methanol and water were measured at 83 and 109 GHz, and the modeling produced

permittivity data for methanol that were moderately comparable to that of the literature. Uncertain-

ties in the permittivity results were 25%, which was attributable to uncertainty in the cavity height.

The measurements for water were either too lossy or not sensitive enough to obtain meaningful data.

An uncertainty analysis was conducted for a day of methanol measurements and included the

more influential sources of error. It was concluded that a majority of the uncertainty was due to

the uncertainty in the cavity height. In light of this, the next resonator designed should instead

have TM mode-excitation so that the TMnp0 modes can be measured, since they are insensitive to

the cavity height. The field plot of an example TMnp0 mode is shown in Figure 5.1, in opposition

to the TE221 mode that was measured. As with the TE-mode, moderate-strength fields are located

within the inlet hole region. From repeated measurements, it was determined that the disassembly
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(a) TM230

(b) TE221

Figure 5.1: HFSS field plots of TM and TE modes. The TM-fields are insensitive to the cavity
height.

of the block was responsible for the largest variation in inter-day resonant frequencies, to which the

cavity diameter is estimated. In future, it is recommended to not split the block directly through

the waveguide but rather at either end of the cavity, as shown in Figure 5.2. While this should

present no difficulty in creating the circular cylinder for the cavity region, the side-coupled aperture

and waveguide will likely have larger corner radii and not be as rectangular. Since the fields for the

input excitation, the TE10 mode, are mostly in the center, this should not have a huge effect, but

as a worst case there are numerous papers on elliptical waveguide. For the split at the top of the

block, the Ez field must short at the cavity sidewall, so there must be good contact between the two

halves.

Measurement of water was difficult with the available dynamic range of the network analyzer.

This is less of a problem with newer VNAs and frequency extension head systems that provide

more dynamic range, up to 100 dB in W-band. To take the fullest advantage of this capability, a

very low-loss material should be used to make the dielectric plug in the Nitrogen blocks, such as

hydrocarbon foams.

Additionally for water, the properties of surface layers should be explored, and its effects should

be taken into consideration in the new design, in particular the size of the tube and its relation to
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Figure 5.2: Cross-sectional view of recommended split for TM mode-excitation block.

the electric field.

The biggest challenge with the modeling was the computation of the inhomogeneous propagation

constants. The root-search would sometimes converge to erroneous roots, so the method was made

to ensure that all of the roots were found, and became computationally time-consuming. Instead,

the very recent four-port ring network method is recommended, in which a four-port matrix is found

for each concentric dielectric layer; the method also has the capability to include lossy metallic

walls [90].



Appendix A

Equations

A.1 Waveguide

Fields solutions for waveguide start with the source-free, time-harmonic Helmholtz Equation, deriv-

able from Maxwell’s Equations [37]:

∇2ψ + k2ψ = 0 (A.1)

where ∇2 is the Laplacian, ψ is a vector potential, and k is the wavenumber. For mode-matching,

the functional form of the solutions to the Helmholtz equation are found by separating the problem

into regions that can be solved more easily, i.e. regions of uniform waveguide with geometries

that are definable by coordinate surfaces of a curvilinear coordinate system in which the Helmholtz

equation is separable [54]. The measurement cavity is separable into rectangular and cylindrical

regions, and their respective building blocks are rectangular and circular/parallel-plate waveguide,

which are diagrammed in Figures A.1 and A.2. Fields in both types of waveguide are designated as

either TE (h), transverse electric, or TM (e), transverse magnetic. The following relations, which

are for lossless and homogeneous waveguide, are standard in advanced electromagnetic texts, but

the notation used is mostly from Harrington and Balanis [36,37]. In rectangular waveguide, the TE-
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and TM-wave potentials are

ψhmn = cos
mπx

a
cos

nπy

b
e−kzz (A.2a)

ψemn = sin
mπx

a
sin

nπy

b
e−kzz (A.2b)

kz =

√(mπ
a

)2
+
(nπ
b

)2
− k2 (A.2c)

where m and n are integers. From these wave potentials, the field components in each direction

can be found with the following

Ehx = −∂ψ
h

∂y
Hh
x =

1

jωµ

∂2ψh

∂x ∂z

Ehy =
∂ψh

∂x
Hh
y =

1

jωµ

∂2ψh

∂y ∂z

Ehz = 0 Hh
z =

1

jωµ

(
∂2

∂z2
+ k2

)
ψh

Eex =
1

jωε

∂2ψe

∂x ∂z
He
x =

∂ψe

∂y

Eey =
1

jωε

∂2ψe

∂y ∂z
He
y = −∂ψ

e

∂x

Eez =
1

jωε

(
∂2

∂z2
+ k2

)
ψe He

z = 0

Similarly for circular and parallel-plate waveguide the potentials are

ψhmn = Jm
(
khρρ

){ cosmφ
sinmφ

}
Zh(z) (A.3a)

ψemn = Jm
(
keρρ
){ cosmφ

sinmφ

}
Ze(z) (A.3b)
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where m is an integer. The z-wavefunctions and wavenumbers for circular waveguide, which has a

perfect electric conductor at ρ = R, are

khρ =
χ′mn
R

keρ =
χmn
R

kh,ez =

√
k2 − kh,e

2

ρ

Zh,e(z) = e−jk
h,e
z z

where χmn and χ′mn are the nth zeros of Jm and J ′m, respectively. For parallel-plate waveguide,

which has perfect electric conductors at z = 0 and h, the z-wavefunctions and wavenumber are

Zh(z) = sin
nπ

h
z

Ze(z) = cos
nπ

h
z

kh,eρ =

√
k2 −

(nπ
h

)2
where n is an integer. The fields can be found in a fashion similar to rectangular waveguide

Ehρ = −1

ρ

∂ψh

∂φ
Hh
ρ =

1

jωµ

∂2ψh

∂ρ ∂z

Ehφ =
∂ψh

∂ρ
Hh
φ =

1

jωµρ

∂2ψh

∂φ ∂z

Ehz = 0 Hh
z =

1

jωµ

(
∂2

∂z2
+ k2

)
ψh

Eeρ =
1

jωε

∂2ψe

∂ρ ∂z
He
ρ =

1

ρ

∂ψe

∂φ

Eeφ =
1

jωερ

∂2ψe

∂φ ∂z
He
φ = −∂ψ

e

∂ρ

Eez =
1

jωε

(
∂2

∂z2
+ k2

)
ψe He

z = 0
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x

y

z

a

b

Figure A.1: Rectangular waveguide.

y

z

x

h

R

Figure A.2: Circular waveguide.

A.2 Fields in Cavity and Hole regions

Diagrams of the breakdown of the inhomogeneous cavity into regions for modeling are shown again

in Figure A.3. The fields in the cavity and hole, or C- and H-regions are equivalent, with the only

difference being the radius R of the outer conducting surface, so only the analysis for the cavity

fields are presented. The wavenumbers and TE- and TM-wavefunctions are a more general version

of (A.3) for circular waveguide, allowing for inhomogeneous composition along with incoming and

outgoing waves:

ki = ω
√
µεi, kcρi =

√
k2i − k2cz

Ψh
cem

= nc
[
ChciJm

(
kcρiρ

)
+Dh

ciYm
(
kcρiρ

)] { cosmφ
− sinmφ

} [
Bce

−jkcz z +Ace
+jkcz z

]
= ncB

h
ci(ρ)

{
cosmφ
− sinmφ

}
ZE(z) (A.4a)

Ψe
cem

= nc
[
CeciJm

(
kcρiρ

)
+De

ciYm
(
kcρiρ

)] { sinmφ
cosmφ

} [
Bce

−jkcz z −Ace+jkcz z
]

= ncB
e
ci(ρ)

{
sinmφ
cosmφ

}
ZH(z) (A.4b)

where i is inner dielectric region 1, 2, or 3 and c designates a unique C-mode. The electric and

magnetic symmetry walls at φ = 0 and π define the φ-functions in the braces, where the top function
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ρ = Ra
ρ = Rb

ρ = Rc

electric/magnetic wall
discontinuity
lossy or perfect conductor

W A

φ̂

φ

ρ̂

ρ

(a) Cross-section, z = 0

RaRbRh

Rc

z = z0
2

z = h
2

W A
z = 0

C

P,V

H

ẑ

ρ̂

(b) Cross-section, φ = π
2

z = z0
2

z = − z02

P ẑ

ρ̂

ρ = Rc

V ẑ

ρ̂

(c) P - and V - intermediate regions for junction model.
P is radial waveguide with perfect conductors at z =
± z0

2
, while V is inhomogeneous circular waveguide

with perfect conductor at ρ = Rc.

Figure A.3: Diagram of regions and discontinuities for modeling.

is for the electric wall and the bottom one is for the magnetic wall. The φ-indices m, which are also

the order of the Bessel functions, are integers. Negative signs which appear arbitrary are to maintain

consistent functions when derivatives are taken, which is useful later for making cancellations in the

formulation of the inhomogeneous propagation constants. In region 1, or for an empty cavity,

Dh,e
ci = 0 since Ym(ρ) is singular at ρ = 0. Finally nc is a normalization factor that is added so that
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〈
~eC ,~hC

〉
ẑ

= 1. From the wavefunctions the fields can be found as

~Ehci = nc

[
ρ̂
m

ρ
Bhci(ρ)

{
sinmφ
cosmφ

}
+ φ̂kcρiB

h′

ci (ρ)
{

cosmφ
− sinmφ

}]
ZE(z) (A.5)

~Hh
ci =

kcznc
ωµ

[
−ρ̂kcρiBh′ci (ρ)

{
cosmφ
− sinmφ

}
+ φ̂

m

ρ
Bhci(ρ)

{
sinmφ
cosmφ

}]
ZH(z)

+ ẑ
nc
(
k2i − k2cz

)
jωµ

Bhci(ρ)
{

cosmφ
− sinmφ

}
ZE(z) (A.6)

~Eeci =
kcznc
ωεi

[
−ρ̂kcρiBe′ci(ρ)

{
sinmφ
cosmφ

}
− φ̂m

ρ
Beci(ρ)

{
cosmφ
− sinmφ

}]
ZE(z)

+ ẑ
nc
(
k2i − k2cz

)
jωεi

Beci(ρ)
{

sinmφ
cosmφ

}
ZH(z) (A.7)

~He
ci = nc

[
ρ̂
m

ρ
Beci(ρ)

{
cosmφ
− sinmφ

}
− φ̂kcρiBe′ci(ρ)

{
sinmφ
cosmφ

}]
ZH(z) (A.8)

For an inhomogeneous cylinder, the propagation constants kcz and the Bessel coefficients Ch,eci , D
h,e
ci

in (A.4a) and (A.4b) are found numerically by satisfying the boundary conditions at the radial

discontinuities. Specifically, at each inner radius j, which separates regions a and b, the tangential

electric and magnetic fields are equated. In the following, Jm(a,j) ≡ Jm(kcρaρj).

Eφ : kcρa

[
ChcaJ

′
m(aj) +Dh

caY
′
m(aj)

]
− kczm

ωεaρj

[
CecaJm(aj) +De

caYm(aj)

]
= kcρb

[
ChcbJ

′
m(bj) +Dh

cb
Y ′m(bj)

]
− kczm

ωεbρj

[
CecbJm(bj) +De

cb
Ym(bj)

]
(A.9)

Ez :
k2a − k2cz
ωεa

[
CecaJm(aj) +De

caYm(aj)

]
=
k2b − k2cz
ωεb

[
CecbJm(bj) +De

cb
Ym(bj)

]
(A.10)

Hφ :
kczm

ωµρj

[
ChcaJm(aj) +Dh

caYm(aj)

]
− kcρa

[
CecaJ

′
m(aj) +De

caY
′
m(aj)

]
=
kczm

ωµρj

[
ChcbJm(bj) +Dh

cb
Ym(bj)

]
− kCρb

[
CecbJ

′
m(bj) +De

cb
Y ′m(bj)

]
(A.11)

Hz :
k2a − k2cz
ωµ

[
ChcaJm(aj) +Dh

caYm(aj)

]
=
k2b − k2cz
ωµ

[
ChcbJm(bj) +Dh

cb
Ym(bj)

]
(A.12)

At the outer radius Rc, a final boundary condition for the tangential electric fields of the third region

(or single region for an empty cavity) is used, which takes into account a low-loss conductor, whose

value is embedded in the surface impedance Zs

~EcT3
= Zs(−ρ̂)× ~HcT3

(A.13)
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which gives

Ecφ3 = ZsHcz3

Ecz3 = −ZsHcφ3

Eφ :

(
kcρ3J

′
m(3c) − Zs

k2cρ3
jωµ

Jm(3c)

)
Chc3 +

(
kcρ3Y

′
m(3c) − Zs

k2cρ3
jωµ

Ym(3c)

)
Dh
c3

− kczm

ωε3ρc

(
Jm(3c)C

e
c3 + Ym(3c)D

e
c3

)
= 0 (A.14)

Ez : Zs
kczm

ωµρc

(
Jm(3c)C

h
c3 + Ym(3c)D

h
c3

)
+

(
k2cρ3
jωε3

Jm(3c) − Zskcρ3J ′m(3c)

)
Cec3 +

(
k2cρ3
jωε3

Ym(3c) − Zskcρ3Y ′m(3c)

)
De
c3

(A.15)

These ten equations form a homogeneous linear system, and when combined into a matrix, the

zero-valued determinant gives the values of kcz . With each known mode propagation constant, the

corresponding nullspace of the system comprises the Bessel coefficients C and D. Each mode is a

hybrid mode, meaning it is composed of both TE- and TM-modes.

A.3 Fields in V -region

The V -region is similar to the C-region, except that the surface at radius Rc is a perfect electric

conductor with Zs = 0, and the z-component of the wavefunction is defined to satisfy the boundary

conditions for electric and magnetic symmetry walls at z = 0. As with the C-region, the extra

negative signs and the extra j factor in Ψv are for maintaing a consistent formulation for finding

kvz , Vvi , and Wvi . Each unique mode is signified by v. A normalization of nv is included but not

necessary because these modes do not include scattering coefficients.

ki = ω
√
µεi, kvρi =

√
k2i − k2vz
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Ψh
v = nv

[
V hviJm

(
kvρiρ

)
+Wh

viYm
(
kvρiρ

)] { cosmφ
− sinmφ

}{
sin kvz z
cos kvz z

}
Av

= nvB
h
vi(ρ)

{
cosmφ
− sinmφ

}{
sin kvz z
cos kvz z

}
Av (A.16a)

Ψe
v = jnv

[
V eviJm

(
kvρiρ

)
+W e

viYm
(
kvρiρ

)] { sinmφ
cosmφ

}{
cos kvz z
− sin kvz z

}
Av

= jnvB
e
vi(ρ)

{
sinmφ
cosmφ

}{
cos kvz z
− sin kvz z

}
Av (A.16b)

~Ehvi = nv

[
ρ̂
m

ρ
Bhvi(ρ)

{
sinmφ
cosmφ

}
+ φ̂kvρiB

h′

vi (ρ)
{

cosmφ
− sinmφ

}]{
sin kvz z
cos kvz z

}
Av (A.17)

~Hh
vi =

kvznv
jωµ

[
ρ̂kvρiB

h′

vi (ρ)
{

cosmφ
− sinmφ

}
− φ̂m

ρ
Bhvi (ρ)

{
sinmφ
cosmφ

}]{
cos kvz z
− sin kvz z

}
Av

+ ẑ
nv
(
k2i − k2vz

)
jωµ

Bhvi (ρ)
{

cosmφ
− sinmφ

}{
sin kvz z
cos kvz z

}
Av (A.18)

~Eevi =
nvkvz
ωεi

[
−ρ̂kvρiBe

′

vi(ρ)
{

sinmφ
cosmφ

}
− φ̂m

ρ
Bevi (ρ)

{
cosmφ
− sinmφ

}]{
sin kvz z
cos kvz z

}
Av

+ ẑ
nv
(
k2i − k2vz

)
ωεi

Bevi (ρ)
{

sinmφ
cosmφ

}{
cos kvz z
− sin kvz z

}
Av (A.19)

~He
vi = jnv

[
ρ̂
m

ρ
Bevi (ρ)

{
cosmφ
− sinmφ

}
− φ̂kvρiBe

′

vi(ρ)
{

sinmφ
cosmφ

}]{
cos kvz z
− sin kvz z

}
Av (A.20)

A.4 Fields in P -region

The wavefunctions are formulated for cylindrical parallel-plate waveguide, with perfect electric con-

ductors at z = ± z02 . At z = 0, even integer values for n satisfy the electric symmetry wall, while

the odd integers are modes for the magnetic wall. Unique modes in each region i are represented

by p, which is simply a combination of m and n. Unlike the hybrid modes in C- and V -regions, the

modes here are separable into TE and TM.

ki = ω
√
µεi, kpρi =

√
k2i −

n2π2

z20
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Ψh
pi =

[
Jm
(
kpρiρ

)
+QhpiYm

(
kpρiρ

)] { cosmφ
− sinmφ

}
sin

nπ
(
z + z0

2

)
z0
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= Bhpmi (ρ)
{
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}
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nπ
(
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2

)
z0

Ahpi (A.21a)

Ψe
pi =

[
Jm
(
kpρiρ

)
+QepiYm

(
kpρiρ

)] { sinmφ
cosmφ

}
cos

nπ
(
z + z0

2

)
z0

Aepi

= Bepmi (ρ)
{
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}
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nπ
(
z + z0

2

)
z0

Aepi (A.21b)

The fields are

~Ehpi =

[
−ρ̂m

ρ
Bhpmi(ρ)

{
− sinmφ
− cosmφ

}
+ φ̂kpρiB

h′

pmi(ρ)
{

cosmφ
− sinmφ

}]
sin

nπ
(
z + z0

2

)
z0

Ahpi (A.22)

~Hh
pi =

[
ρ̂

nπ

jωµz0
kpρiB

h′

pmi(ρ)
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cosmφ
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}
+ φ̂

nπ

jωµz0

m

ρ
Bhpmi(ρ)

{
− sinmφ
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}]
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nπ
(
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2
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+ ẑ
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(
nπ
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)2)
jωµ
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}
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nπ
(
z + z0

2

)
z0

Ahpi (A.23)

~Eepi =

[
−ρ̂ nπ

jωεiz0
kpρiB

e′

pmi(ρ)
{

sinmφ
− cosmφ

}
− φ̂ nπ

jωεiz0

m

ρ
Bepmi(ρ)

{
cosmφ
− sinmφ

}]
sin

nπ
(
z + z0

2

)
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+ ẑ

(
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(
nπ
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)2)
jωε

Bepmi(ρ)
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sinmφ
cosmφ

}
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nπ
(
z + z0

2

)
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Aepi (A.24)

~He
pi =

[
ρ̂
m

ρ
Bepmi(ρ)

{
cosmφ
− sinmφ

}
− φ̂kpρiBe

′

pmi(ρ)
{

sinmφ
cosmφ

}]
cos

nπ
(
z + z0

2

)
z0

Aepi (A.25)

If there are inner dielectrics, then the Bessel coefficients Ah,epi and Qh,epi serve to satisfy the tangential

field boundary conditions. As in [91], starting from Qh,ep1 = 0, Ah,ep1 and Ah,ep2 are found in terms

of Ah,ep3 and Qh,ep2 and Qh,ep3 are solved by doing mode-matching at each radius. In this analysis, all

Qh,epi are diagonal matrices. First, all of the Ap1 coefficients, or A1, are formulated from electric field
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boundary condition at ρ = Ra

〈
~eP1 ,

~hP1

〉
ρ̂
RJ

1Ea
A1 =

〈
~eP2 ,

~hP1

〉
ρ̂

(
RJ

2Ea
+ RY

2Ea
Q2

)
A2

P1RJ
1Ea

A1 = PT
21

(
RJ

2Ea
+ RY

2Ea
Q2

)
A2

A1 = RJ−1

1Ea
P−11 PT

21

(
RJ

2Ea
+ RY

2Ea
Q2

)
A2

where RJ
1Ea

is a diagonal matrix of of the appropriate Bessel function of the first order (superscript

J), for the electric field in region 1 at ρ = Ra (subscripts E, 1, and a), e.g. J ′m
(
kpρ1Ra

)
for TE-

modes. This relation is then substituted into the magnetic boundary condition so that a formulation

for Q2 is found

P21RJ
1Ha

A1 = P2

(
RJ

2Ha
+ RY

2Ha
Q2

)
A2

P21RJ
1Ha

RJ−1

1Ea
P−11 PT

21

(
RJ

2Ea
+ RY

2Ea
Q2

)
A2 = P2

(
RJ

2Ha
+ RY

2Ha
Q2

)
A2

K2RJ
2Ea

A2 + K2RY
2Ea

Q2A2 = P2RJ
2Ha

A2 + P2RY
2Ha

Q2A2

Q2 =
(
K2RY

2Ea
−P2RY

2Ha

)−1 (
P2RJ

2Ha
−K2RJ

2Ea

)

and A2 is the remaining unknown. As in the electric field relation, RJ
1Ha

are the Bessel functions of

the magnetic field. This is repeated at ρ = Rb

A2 =
(
RJ

2Eb
+ RY

2Eb
Q2

)−1
P−12 PT

32

(
RJ

3Eb
+ RY

3Eb
Q3

)
A3

= (J23 + Y23Q3)A3
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which gives A2 in terms of A3 and Q3. With the magnetic boundary condition, Q3 is found

P32

(
RJ

2Hb
+ RY

2Hb
Q2

)
A2 = P3

(
RJ

3Hb
+ RY

3Hb
Q3

)
A3(

P32RJ
2Hb

+ P32RY
2Hb

Q2

)
(J23 + Y23Q3)A3 =

(
P3RJ

3Hb
+ P3RY

3Hb
Q3

)
A3

K32 (J23 + Y23Q3) = P3RJ
3Hb

+ P3RY
3Hb

Q3

Q3 =
(
K32Y23 −P3RY

3Hb

)−1 (
P3RJ

3Hb
−K32J23

)

and thus A1 and A2 are expressed in terms of A3, which is henceforth written as AP .

A.5 Fields in rectangular waveguide regions

As in the analysis of rectangular waveguide starting with (A.2), the wavenumbers and wavefunctions

in the aperture (and likewise the input and output WR-10 waveguide) are defined as

k = ω
√
µε, kaz =

√
m2π2

a2x
+
n2π2

b2y
− k2

Ψh
ae
m

= ha cos
mπxA
ax

cos
nπyA
by

(
Bhae

m
e−k

h
azA +Ahae

m
e+k

h
azA
)

(A.26a)

Ψe
ae
m

= ea sin
mπxA
ax

sin
nπyA
by

(
Beae

m
e−k

e
azA −Aeaeme

+keazA
)

(A.26b)
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where m and n are integers that are modal indices, which are combined in the unique mode identifier

subscript a. Each mode is normalized by ha and ea. The fields are found as

~Eha =ha

[
x̂A

nπ

by
cos

mπxA
ax

sin
nπyA
by
− ŷA

mπ

ax
sin

mπxA
a

cos
nπyA
by

](
Bhaeme

−khazA +Ahaeme
+kazA

)
(A.27)

~Hh
a =

hak
h
a

jωµ

[
x̂A

mπ

ax
sin

mπxA
ax

cos
nπyA
by

+ ŷA
nπ

by
cos

mπxA
ax

sin
nπyA
by

](
Bhaeme

−khazA −Ahaeme
+khazA

)
+ ẑA

ha
(
k2 + k2a

)
jωµ

cos
mπxA
ax

cos
nπyA
by

(
Bhaeme

−khazA +Ahaeme
+khazA

)
(A.28)

~Eea =
eak

e
a

jωε

[
−x̂A

mπ

ax
cos

mπxA
ax

sin
nπyA
by
− ŷA

nπ

by
sin

mπxA
ax

cos
nπyA
by

](
Beaeme

−keazA +Aeaeme
+keazA

)

+ ẑA
ea

(
k2 + ke

2

a

)
jωε

sin
mπxA
ax

sin
nπyA
by

(
Beaeme

−keazA −Aeaeme
+keazA

)
(A.29)

~He
a =ea

[
x̂A

nπ

by
sin

mπxA
ax

cos
nπyA
by
− ŷA

mπ

ax
cos

mπxA
ax

sin
nπyA
by

](
Beaeme

−keazA −Aeaeme
+keazA

)
(A.30)

A.5.1 Rectangular-to-cylindrical coordinate transformation

To apply the mode-matching method at the cavity-aperture boundary, there needs to be a common

coordinate system in order to do the cross-product integrations. The diagram in Figure A.4 shows

how the cylindrical and rectangular coordinate systems in each region relate to one another. So

that an integration is not done on Bessel functions, which would be computationally intensive, the

aperture is transformed into cylindrical coordinates, allowing for the integration to be done over a

constant ρ = Rc. A consequence of this is that ρ̂ is completely normal to the surface, while ẑA is

not, so the reaction matrices in (2.6) and (2.7) are not common factors of the incoming and outgoing

aperture waves. Instead, these waves are a function of φ, over which the cross-product reactions are

integrated. The aperture coordinates are expressed in terms of the cavity coordinates as

x̂A = ẑ xA = z

ŷA = ρ̂ cosφ− φ̂ sinφ yA = ρ cosφ (A.31)

ẑA = ρ̂ sinφ+ φ̂ cosφ zA = ρ sinφ
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and the transformed fields, ρ̂-tangential, are

~Eha = ha

[
φ̂
mπ

ax
sin

mπz

a
sinφ cos

nπρ cosφ

by
+ ẑ

nπ

by
cos

mπz

ax
sin

nπρ cosφ

by

]
·(

Bhae
−khaρ sinφ +Ahae

+kaρ sinφ
)

(A.32a)

~Hh
a =

hak
h
a

jωµ

[
ẑ
mπ

ax
sin

mπz

ax
cos

nπρ cosφ

by
− φ̂nπ

by
cos

mπz

ax
sinφ sin

nπρ cosφ

by

]
·(

Bhae
−khaρ sinφ −Ahaeme

+khaρ sinφ
)

+ φ̂
ha
(
k2 + k2a

)
jωµ

cos
mπz

ax
cosφ cos

nπρ cosφ

by

(
Bhaeme

−khaρ sinφ +Ahaeme
+khaρ sinφ

)
(A.32b)

~Eea =
eak

e
a

jωε

[
φ̂
nπ

by
sin

mπz

ax
sinφ cos

nπρ cosφ

by
− ẑmπ

ax
cos

mπz

ax
sin

nπρ cosφ

by

]
·(

Beaeme
−keaρ sinφ +Aeaeme

+keaρ sinφ
)

+ φ̂
ea

(
k2 + ke

2

a

)
jωε

sin
mπz

ax
cosφ sin

nπρ cosφ

by

(
Beaeme

−keaρ sinφ −Aeaeme
+keaρ sinφ

)
(A.32c)

~He
a =ea

[
ẑ
nπ

by
sin

mπz

ax
cos

nπρ cosφ

by
+ φ̂

mπ

ax
cos

mπz

ax
sinφ sin

nπρ cosφ

by

]
·(

Beaeme
−keaρ sinφ −Aeaeme

+keaρ sinφ
)

(A.32d)

ρ̂
φ̂

φ
ρ

ŷA

ẑA

Figure A.4: Diagram of coordinate systems in cavity and aperture regions.
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A.6 Full boundary conditions

At z = z0
2 , enforcement of the boundary conditions produces

ẑ × ~EC = ẑ × ~EV〈
~eC ,~hV

〉
(BC +AC) =

〈
~eV ,~hV

〉
AV

ΦCV (BC +AC) = ΨVA
V (A.33a)

ẑ × ~HC = ẑ ×
(
~HV + ~HP

)
〈
~eC ,~hC

〉
(BC −AC) =

〈
~eC ,~hV

〉
AV +

〈
~eC ,~hP

〉
AP

ΨC (BC −AC) = ΦCVAV + ΦCPAP (A.33b)

At ρ = R, the boundary conditions are

ρ̂× ~EP =


ρ̂× ~EA on SA

Zs(−ρ̂)×
(
~HV + ~HP

)
on SP − SA〈

~eP ,~hP

〉
AP + Zs

〈(
ρ̂× ~hP

)
,~hP

〉
AP

+Zs

〈(
ρ̂× ~hV

)
,~hP

〉
AV =

〈
~e+
A ,
~hP

〉
BA +

〈
~e−A ,

~hP

〉
AA(

ΨP −ΨH
P

)
AP + ΦH

VPAV = Φ+
APBA + Φ−APAA (A.34a)

ρ̂×
(
~HP + ~HV

)
= ρ̂× ~HA〈

1

2

(
~e+
A + ~e−A

)
,
(
~hPAP + ~hVAV

)〉
=

〈
1

2

(
~e+
A + ~e−A

)
,
(
~h+ABA + ~h−AAA

)〉
1

2

(
Φ+T

AP + Φ−
T

AP

)
AP + ΦAVAV = Ψ+

ABA + Ψ−AAA

KAPAP + ΦAVAV = Ψ+
ABA + Ψ−AAA (A.34b)

where the choice of the weighting function 1
2

(
~e+
A + ~e−A

)
in (A.34b) is from [59]. It is a combination

of the outgoing and incoming waves, which are respectively represented by the superscripts + and −,

indicating their direction relative to ẑA.
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Solving for AV and AP in (A.33a)

AV = Ψ−1V ΦCV (BC +AC)

= MVC (BC +AC) (A.35)

This is placed into (A.34a) so AP can be found

AP =
(
ΨP + ΨH

P

)−1 [
Φ+

APBA + Φ−APAA −ΦH
VPMVC (BC +AC)

]
= M+

PABA + M−
PRAA −MPVMVC (BC +AC) (A.36)

Both of these can be substituted into the magnetic boundary conditions, starting with (A.33b)

ΨC (BC −AC) + (ΦCPMPV −ΦCV) MVC (BC +AC) = ΦCPM+
PABA + ΦCPM−

PAAA

Hz
BC
BC + Hz

AC
AC = Hz

BA
BA + Hz

AA
AA (A.37)

(A.38)

and then (A.34b)

(ΦAVMVC −KAPMPVMVC) (BC +AC)

=
(
Ψ+

A −KAPM+
PA

)
BA +

(
Ψ−A −KAPM−

PA

)
AA

Hρ
BC
BC + Hρ

AC
AC = Hρ

BA
BA + Hρ

AA
AA (A.39)

(A.40)

Designating the aperture and its wave coefficients AA and BA as port 1, and the the circular region

C and AC and BC as port 2, the S-parameters of the junction can be found.

A.6.1 Analytical Integrations

Most of the integrations for the inner products are combinations of sine and cosine functions. For

integrals over ρ, the expressions in papers by Kajfez and Manring were used [92,93].
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A.6.2 Small-angle approximation

As the aperture width is much smaller than the cavity circumference, a small-angle approximation

can be used for the surface integrals of the cross-product at ρ = Rc discontinuity. Specifically, for

an aperture that is centered at φ = π
2 ,the integral over φ, then a change of variable, is

∫ π
2 +θ

π
2−θ

f(φ)dφ =

∫ +θ

−θ
f
(
ψ +

π

2

)
dψ

For a small θ, the coordinate-transformed aperture fields can then be approximated with the following

cosφ = cos
(
ψ +

π

2

)
sinφ= sin

(
ψ +

π

2

)
= − sinψ = cosψ

≈ −ψ ≈ 1

A.7 Cascading S-matrices

A waveguide system frequently consists of multiple discontinuities. A diagram for combining two

S-matrices that are separated by a constant waveguide section of electrical length ` is shown in

Figure A.5.

A1

B1

A2

B2

Sa

`

Sb
A3

B3

A4

B4

Figure A.5: Combination of two cascaded S-matrices.

In the end, what is desired is a final S-matrix S′ with wave coefficients A1, B1, A4, and B4.

First, it can be seen that A2 is simply B3 with a phase shift, and likewise for A3 with regards to
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B2. They can be defined as

A2 = e−jkn`B3 = TB3

where kn are the modal propagation constants in the center waveguide section and T is a square

diagonal matrix. These are substituted into the relations between the outgoing and incoming waves

B1 = S11A1 + S12TB3 (A.41a)

B2 = S21A1 + S22TB3 (A.41b)

B3 = S33TB2 + S34A4 (A.41c)

B4 = S43TB2 + S44A4 (A.41d)

(A.41e)

Then, (A.41c) is substituted into (A.41b), and B2 is found, then substituted back into (A.41c)

B2 = M−1 (S21A1 + S22TS34A4)

B3 = S33TM−1 (S21A1 + S22TS34A4) + S34A4

M = (I− S22TS33T)

When these relations replace B2 and B3 in (A.41a) and (A.41d), only the desired wave coefficients

are left, and the S-parameters are found as

S′11 = S11 + S12TS33TM−1S21

S′14 = S12TS33TM−1S22TS34

S′41 = S43TM−1S21

S′41 = S43TM−1S22TS34
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A.8 Symmetrical S-matrix

The S-matrix found from analysis of the regions in Figure A.3 is two-port, but the final structure

is a symmetrical four-port. The following shows how the four-port is obtained from the two-port.

Credit must be given to the helpful derivation provided by Sabbagh [94].

First, the technique will be demonstrated with deriving a symmetrical two-port from a one-port.

To start, an arbitrary two-port is shown in Figure A.6a; at each port is is presumed that a mode-

matching analysis has occurred and the interior coefficients are not shown. If the two-port is known

to be symmetric, then mode-matching only needs to be done on one-port, and the full two-port

GSM can be derived from it. This is accomplished by placing electric and magnetic walls at the line

of symmetry. With an electrical wall, a voltage minimum will occur in the center, so the waves at

ports 1 and 2 will be out of phase. In other words, incoming waves of A1

2 at port 1 and −A1

2 at port

2 will satisfy this configuration, and likewise A2

2 at port 2 and −A2

2 at port 1. For the magnetic

wall, a voltage maximum occurs, and the waves must be in phase. Then if we set

B1 = Be1 +Bm1

we can substitute in for Be,m1 simple relations that include the incoming waves A1,2 and the Se,m-

matrices

B1 =
1

2
Se (A1 −A2) +

1

2
Sm (A1 +A2)

=
1

2
(Sm + Se)A1 +

1

2
(Sm − Se)A2

≡ S11A1 + S12A2

and since the structure is symmetric, S21 = S12, although the same analysis can be used with B2.

A four-port can be analyzed in terms of a two-port with two lines of symmetry. With regards to

structure of interest in Figure A.3b, the combination of electric and magnetic walls and the resulting

waves is shown in Figure A.7; port W in the former diagram corresponds to port 1, and likewise

port H with port 3.
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S 2
A2

B2
1

A1

B1

(a) Two-port S-matrix.

Se
A1

2 −
A2

2

Be1

A2

2 −
A1

2

Be2

(b) Electric wall.

Sm
A1

2 + A2

2

Bm1

A2

2 + A1

2

Bm2

(c) Magnetic wall.

Figure A.6: Analysis of symmetrical 2-port from 1-port.
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Figure A.7: Analysis of symmetrical 4-port from 2-port.
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Appendix C

Microwave PCR

One use for the measurement of liquid permittivity is dielectric heating, which is found in the field of

microwave chemistry [4]. Recently microwave dielectric heating has been explored for the polymerase

chain reaction (PCR), which is a method for the replication of DNA. This reaction has applications

in medicine and forensic sciences. It essentially consists of repeated heating and cooling cycles of

the sample DNA along with a mixture of enzymes and proteins. In each cycle the mixture is heated

to about 95◦C so that denaturation of the DNA can occur, meaning the hydrogen bonds between

the two strands are broken so that the DNA becomes single-stranded. Then, the sample is cooled

to intermediate temperatures so that the copies of the DNA can be formed. This cycle is repeated

usually thirty times on the new copies of the DNA.

Typically PCR is performed with commercial bench-top equipment and takes approximately one

to two hours. Currently, there is an increasing push for for portable PCR in microchips, and the

ability to combine multiple reactions onto a single chip. To accomplish this, one focus has been to

localize the heating within an area on the chip, rather than heating the entire chip with the use

of a hot plate in the bench-top equipment. Methods that have been demonstrated include resistive

heaters, Peltier elements, and IR-mediated heating [95–98].

Likewise, with proper design, microwave heating can be localized for PCR thermal cycling.

Dielectric heating occurs with the absorption of energy from the movement of rotating dipolar

molecules. This effect is related to the dielectric loss of the material, so it is more effective at

104
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frequencies close to where the relaxation mechanism occurs. For water, which makes up the majority

of PCR solutions, this relaxation occurs near 20 GHz at room temperature. However, the loss is

still considerable at frequencies between 1 and 10 GHz, for which there are cheaper and smaller

microwave sources and amplifiers, thanks to the wireless industry.

The use of microwave heating for successful PCR was initially conducted with a single-mode

cavity [99, 100]. While this is not a localized method, as it is rather akin to a microwave oven, it

showed that the components of the PCR solution were compatible with the microwave energy. A

similar system involved placing a microchip inside of an X-band waveguide; PCR was successful,

requiring 50 W of RF power [101].

In order to reduce power consumption by targeting the heating to a specific micro-area, the

microchip and microwave system should be designed in tandem. Recently, one design custom-fitted

a machined waveguide cavity to a microchip, which reduced the RF power consumption to less

than 1 W [102]. While cavities have traditionally been used for heating solutions, planar microwave

circuitry is more adaptable to microchip geometry and fabrication. At the same time, however, the

microchip design is guided by the electric field distribution of the planar microwave circuit. One

example accomplished heating by placing a microchannel within the fields produced by coplanar

waveguide, while another used a slot line-like system for the heating of water drops [103,104].

Such systems can be taken a step further by placing the liquid within strong electric fields that

are induced by circuit design, such as creating standing waves along a microstrip line [105]. In

collaboration with Dr. James Landers, Dr. Dan Marchiarullo, Dr. Susan Barker, Kyudam Oh, and

Brian Poe in the Chemistry department, the use of a microstrip matching network for efficient power

transfer was investigated for low-power localized microwave heating [106–108]. Within this partner-

ship, the author of this thesis was responsible for the matching network design and measurements,

along with the equipment setup for the RF heating, while the personnel in Chemistry fabricated

the microchips and conducted the heating, temperature control, and PCR experiments. Computer

modeling of the heating distribution within the microchip was shared equally. This appendix in-

cludes the essential RF and microchip design for efficient heating, as well as electromagnetic and

thermal simulations that investigated the validity of the chamber circuit model and the temperature

distribution within the chamber. The instrumentation and setup for the heating and PCR exper-
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iments is described in [106]. There was marginal success with PCR replication, but the efficiency

must be increased, likely by improving the homogeneity and sensing accuracy of the temperature in

the heating chamber.

C.1 Microchip design

The conceptual design of the microchip is the incorporation of the chamber and fluidic channels as

part of the substrate of a microstrip circuit, within which the chamber is modeled as an electrical

load, as illustrated in Figure C.1). In order to achieve low power consumption and localized heating,

a microstrip matching network is designed to transform the equivalent load impedance of the heating

chamber to 50 Ω.

Figure C.1: Schematic of integration of microchip and microstrip network for efficient transfer of
RF energy to the PCR reaction chamber.

C.2 Fluidic microchip

The fluidic microchips are fabricated from multiple polymeric layers, which each have areas cut

out that form reservoir, channel, and heating well volumes when aligned and bonded together, as

seen in Figure C.2. The reservoir starts at the top surface of the microchip so that the sample

can be injected into the channel, which directs the sample to the heating well where the localized

heating occurs. This configuration of the heating well within the microchip is very typical, and is
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well-suited for integration with microstrip, a type of microwave transmission line whose fields are

located between the two conductors of the top microstrip line and the bottom ground plane.

Details of the microchip fabrication can be found in [106, 109]. In short, a variety of substrates

were tested, starting with glass, which is easy to etch and bond but is very lossy, so the denaturation

temperature could not be attained in initial experiments. Thus, a switch was made to polymeric

substrates, namely polycarbonate (PC) and poly(methyl methacrylate) (PMMA). Also, due to mi-

crostrip circuit design, it is preferable to minimize the thickness of material between the top and

bottom conductors in order to keep the microstrip width small and minimize the microstrip foot-

print. For plastics, the dielectric constant is approximately 3, thus a chip with a thickness of 2 mm

or less would allow the microstrip width to remain below 5 mm.

Figure C.2: A: Overall and cross-sectional views of PCR chip with air pockets and the six polymeric
layers fitted together to form a chip. B: Cross-sectional view of chamber showing derivation of
electrical parameters of chamber load, which consists of the solution and additional chip substrate
layers.

The air pockets seen in Figure C.2 were added to reduce the non-uniformity of the chamber

temperature, which was experimentally observed. Temperature distribution due to microwave heat-

ing was studied by first creating a three-dimensional electromagnetic model of the microchip and
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matching network in ANSYS HFSS, which solved for the electric fields that were next imported into

ANSYS ePhysics, along with the model. Table C.1 contains thermal conductivities, densities, and

specific heats for various materials (copper and constantan represented the thermocouple); room

temperature was assumed to be 25 ◦C. Simulated RF input power was adjusted to maximize the

temperature close to 95 ◦C in order to approximate the denaturation temperatures for the PCR re-

action and both static and transient heating simulations were examined. In the original chip design,

as seen in Figures C.3A and B, there were both horizontal and vertical temperature gradients. The

horizontal one features two hotspots at the microstrip edges, likely due to edge currents, as well as

a smaller gradient in the direction perpendicular to the channel. This last effect is probably due to

the asymmetrical configuration of the microstrip with regards to the chamber; the microstrip line

leading to the source is bigger, so it will draw away more heat than the amount of microstrip covering

the chamber in the opposite direction. The same can be said for the vertical gradient, in which the

bottom of the chamber is cooler due to the larger ground plane. To mitigate this affect, air pockets

were added between the chamber and the microstrip in order to reduce the heat conduction. These

air pockets were also found to have helped with the horizontal gradient, but the design was further

developed with guard channels, which are dummy chambers filled with solution that aid in moving

the non-uniformities away from the reaction chamber. As seen in Figures C.3C and D these added

features reduced the gradient to less than 1◦C. While microchips were fabricated with the guard

channels, it was difficult to completely seal the chip, so only the air pockets were included in chips

for experiments.

Table C.1: Coefficients for material properties used in modeling simulations.

Material Thermal conductivity Specific heat Mass density
(Wm−1K−1) (Jg−1K−1) (gcm−3)

Air 0.0257 1.005 0.0013
PCR buffer (water) 0.58 4.187 1.0

Polycarbonate 0.2 1.2 1.22
Copper 401 0.385 8.96

Constantan 19.5 0.39 8.9
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Figure C.3: Simulated temperature distributions in different chambers. A: Top view of original
chamber (dashed line indicates transmission line) B: Side view of original chamber. C: Top view of
chip with guard channels and air pockets. D: Side view of chip with guard channels and air pockets.

C.3 Electrical design

Microwave heating of water is based on the tendency of water molecules to rotate in order to align

their permanent dipole with an applied electric field. This can be modeled as a complex permittivity:

ε = (ε′ − jε′′)εo

where the real component represents stored electric energy (capacitance), the imaginary component

represents the energy converted to heat (resistance), and εo is the vacuum permittivity. The Debye
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formula in Equation. (C.1) provides a model for this permittivity as a function of frequency, f :

ε′ = ε∞ +
εs − ε∞

1 + (2πfτ)2

ε′′ =
2πfτ(εs − ε∞)

1 + (2πfτ)2
+

σ

2πεof

(C.1)

where ε∞ is the high-frequency (or optical) limit, εs is the temperature-dependent static dielectric

constant, τ is the temperature-dependent relaxation time constant, and σ is the ionic conductiv-

ity [110]. Values for these parameters at room temperature are shown in Table C.2. An equivalent

Table C.2: Parameters of Debye formula (T=25◦C, Salinity=4ppt).

Parameter
ε∞ 4.9
εs 77.2
τ 8.1 ps
σ 0.7 Ω−1m−1

circuit model of the chamber, seen in Figure C.2, that represents its electrical impedance can be

created using this permittivity. The equivalent resistance and capacitances of the heating chamber

can be calculated as:

Rs =
hs

2πfε′′εoπr2
, Cs =

ε′εoπr2

hs

Cp =
ε′pεoπr

2

hp
, Ca =

ε′aεoπr
2

ha

(C.2)

where hs is the height of the heating well, hp is the thickness of the polymeric layers, ha is the

thickness of the air pockets, and r is the radius of the chamber; dielectric losses ε′′ in the polymers

were considered negligible. After the impedance of the chamber load was calculated, a single-

stub matching circuit (Figure C.1) was designed using microstrip transmission lines. Essentially,

this entails transforming the chamber impedance ZL, which at 5.5 GHz equals 2 − j365Ω, to the

microwave source impedance Z0 of 50Ω, with the parameters listed in Table C.3. First, the microstrip

line of length lf tunes the chamber impedance to 50 + jX Ω, then the stub of length ls tunes out

the imaginary part of the impedance, X [111]. The above model served as a guide for creating the

matching network, but further tuning was still necessary and performed after chip fabrication since

the simple equivalent circuit model presented above ignores second-order effects such as fringing

fields between the microstrip line and the ground plane. To make the chip, the matching network
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Table C.3: Parameters for calculation of chamber impedance, ZL = 2 − j365Ω, at f=5.8 GHz,
r=1 mm

h (µm) ε′ ε′′

Rs 400 — 21.1
Cs 400 72.0 —
Cp 200 2.6 (PMMA), 2.8 (PC) —
Ca 200 1.0005 —

was first designed using the simple model, with length ls of the stub made longer for tuning on

the network analyzer; the circuit is cut out of copper tape and placed on the top of the chip. The

ground plane consisted of a layer of copper tape affixed to a separate Plexiglas block, into which

a rotatable SMA connector was screwed, allowing for multiple chip thicknesses; this setup can be

seen in Figure C.4. While better power transmission is achieved if the ground plane is soldered to

the SMA connector, the ground connection by mechanical contact made for faster and less wasteful

experimentation. To tune the match, the chamber was filled with water or PCR buffer and the

reflected power was observed on the network analyzer. The length of the stub line was trimmed

until the reflected power minimum was -15 dB or less and fell into the frequency range (2-7 GHz)

of the microwave sources and amplifiers; an example measurement is seen in Figure C.5. The

Figure C.4: Photograph of experimental PCR microchip on a copper tape-covered Plexiglas block
that served as the ground plane. The black dashed line is the boundary of the matching network.

problem with the simple RC load model is that it assumes that the electric fields lie entirely within

the chamber cross-section as denoted by the dashed line in Figure C.2. However, the microstrip

fields do not exist wholly inside the substrate; instead, there are fringing fields on the edges of the
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Figure C.5: Network analyzer measurement of power reflected. The dip at 4.66 GHz indicates that
the chamber is matched at this frequency.

microstrip that extend outside of the chamber cross-section. This would cause the effective radius

of the additional substrate capacitances to increase, altering the chamber impedance. To test this,

a model was created for a hypothetical chamber, as seen in Figure C.6; its de-embedded impedance

was compared to the original RC load model in Figure C.7. As can be seen, if the radius of the

chamber in the RC load model is increased, the increased capacitance reconciles the RC load model

with its full-wave counterpart. More effort would be required to create a geometrically-dependent

analytical model, but generally there is less fringing for shorter, wider chambers.

Figure C.6: HFSS setup for determination of chamber impedance.
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Figure C.7: Comparison of HFSS and RC load impedances. To reflect the fringing fields of microstrip,
increasing the chamber radius in the RC load model shifts the impedance closer to the HFSS result.
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