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Abstract 

Extreme heat is the leading cause of weather-related death and illness in the United 

States. Adaptation and mitigation strategies designed to protect the public would greatly 

benefit from knowing specifically where heat-related deaths are most likely. This 

dissertation represents a comprehensive examination of intra-city heat-related mortality.  

Over two million records of mortality spanning multiple decades and cities comprise the 

primary data set. Time series models were employed to relate mortality to temperature 

after accounting for seasonality and long-term time trends. Threshold temperatures were 

established for each city associated with significant increases in mortality above typical 

summertime conditions. The mortality rate within each postal code on threshold-

exceeding days was then calculated, quantifying spatial variability in heat-related risk. 

These intra-city mortality patterns were compared to demographic and environmental 

variables using multivariate regression. Temporal variability in the spatial mortality 

patterns was evaluated in an iterative model building and testing framework.   

Mortality on hot summer days significantly varied within the study cities, and intra-city 

variability was far greater than inter-city variability.  Characteristics of high-risk zones 

included more elderly residents, more isolated residents, and more intensely developed 

land, although the specific set risk factors varied from one city to another. There was 

evidence that the location of high-risk zones are predictable.  A city-specific, health data-

driven approach offers an improved strategy for municipalities to identify, understand, 

and reduce the risks associated with the most deadly natural hazard in the United States.  
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Chapter 1. Introduction 
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The main topic of this dissertation is the relationship between high temperatures and 

human health. This chapter introduces the topic and reviews relevant scientific literature. 

Overviews of the underlying physiology (Section 1), known impacts of heat on human 

health (Section 2), sources of spatial variability in risk (Section 3), sources of temporal 

variability in risk (Section 4), and public health responsed strategies (Section 5) are 

included. Section 6 summarizes the motivation for research and Section 7 presents 

descriptions of each of the four main chapters of the dissertation.  

1. Heat and Human Health  

The human body works to maintain a thermal equilibrium, eliminating heat at the same 

rate at which it is produced.  Physiological processes attempt to balance heat gains and 

losses from respiration, evaporation, convection, conduction, work, and radiation. 

Evaporation is the only mechanism that always removes heat from the body, work 

(metabolism) the only process that always adds. The other three can result in a net loss or 

gain of heat depending on the surroundings. The body has a remarkable capacity to keep 

internal organs within a consistent temperature range, 37-39°C, despite exterior exposure 

to temperature variations of 30-40°C or greater. One of the principal mechanisms by 

which thermal regulation is achieved under high temperature conditions is the dilation of 

blood vessels closest to the skin. This circulation works to remove heat from the body’s 

core and toward the skin where cooling mechanisms including conduction and 

evaporation transfer heat from the person to the environment. When further cooling is 

required, sweating begins from an average of 2.5 million endocrine glands scattered 

across the human skin (Winslow and Herrington 1949, Koppe et al. 2004). On an average 
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day, these glands produce a total of two to three quarts for a sedentary person (Kavaler 

1981).  

High temperatures and/or humidity levels can compromise physiological cooling 

mechanisms. High air temperatures reduce the temperature gradient between the skin and 

the environment making heat loss via conduction and convection more difficult. Sweating 

can be inhibited when the vapor pressure is high and the air is near saturation (Winslow 

and Herrington 1949, Kovats et al. 2009).  In either of these cases, or a combination 

thereof, internal temperatures can increase and the thermoregulatory system can become 

strained (Basu and Samet 2002). Thermoregulatory strain can be enhanced under extreme 

conditions or with prolonged exposure (Braga et al. 2001).  

When the thermoregulatory system fails to keep internal temperatures below the upper 

limits of the desirable range (37-39°C) illness and death may follow. Mild conditions 

include dehydration, when the body has insufficient fluids to replace those lost via 

sweating, and heat syncope, when the circulation cannot maintain sufficient blood 

pressure to supply oxygen to the brain. An individual suffering from heat syncope may 

feel light-headed or faint but symptoms are often relieved by sitting down for a short rest. 

A more severe diagnosis is heat exhaustion, characterized by an increase in body core 

temperature and high cardiovascular distress. As with heat syncope, there is insufficient 

circulation to maintain proper body function but in this case the oxygen deprivation is 

experienced throughout the body (Kavaler 1981). Heat stroke is an extremely severe 

diagnosis under which core temperatures exceed 40.5°C. This temperature level damages 

cellular structures and frequently leads to human mortality (Kovats et al. 2009).  
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2. Identifying impacts 

a. Major heat events 

In the United States, approximately 400 deaths annually can be directly attributed to heat 

(Basu and Samet 2002). Although those directly caused by exposure to high temperature 

account for a relatively small portion of total mortality, even mild exposures to hot 

environments can exacerbate other health problems because of the stress imposed on the 

entire human system (Kovats et al. 2009). This implies that although relatively few 

deaths are directly linked to hyperthermia, many other deaths and illnesses may be heat-

related. Because there is no federal definition for heat deaths in the United States and 

different medical examiners interpret heat-related deaths different, it is probable that 

heat-related deaths are significantly underestimated (Changnon et al. 1996). A wide range 

of causes of death are believed to be weather-related (Kalkstein and Davis 1989), and 

using all-cause death totals has led to results comparable to those obtained using 

subdivisions such as weather-related deaths or non-accidental deaths (Sheridan and 

Kalkstein 2004). Thus the impact of high temperatures on human mortality may be far 

greater than suggested by the number of deaths labeled as directly caused by 

hyperthermia.  

Several major heat events over the past century have been documented for their linkage 

with drastic elevations in mortality over relatively short time spans. These events have 

also served as reminders of the threat that high temperatures pose to human life and 

continue to motivate biometeorological research, including the present study. A major 

heat event can loosely be described as a prolonged period of elevated temperatures 

lasting from several days to several weeks. Amongst the more notable heat events in U.S. 
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history are the frequent heat waves of the 1930s associated with the dust bowl and Great 

Depression. Maximum temperatures are reported to have remained over 100°F in parts of 

Iowa for 53 consecutive days in 1936.  Another severe heat wave in the 1980s reached 

into the Northern Plains states and persisted through much of the summer. Two hundred 

thirty excess deaths were reported over a 28-day period in St. Louis compared to the 

previous year’s mortality including 24 heatstroke deaths on one single day. Other cities 

around the country reported similar spikes in the death count (Kavaler 1981).  

As surveillance and communication have improved over the recent decades, so has the 

documentation of the impacts of severe heat events. The Chicago/Midwest heat wave of 

July 1995, for example, is the subject of several research articles (e.g., Semenza et al. 

1996, Karl and Knight 1997, Whitman et al. 1997, Dematte et al. 1998, Palecki et al. 

2001). The heat wave is believed to have directly led to 718 deaths across ten states over 

a four-day span (Changnon et al. 1996).  The death toll of the August 2003 heat wave in 

Europe, however, dwarfs most of the other major events recorded to date. More than 

14,000 deaths over a 20-day period are blamed on the excessive heat in France, and in 

Italy another 20,000 were recorded across July and August of the same summer resulting 

from high temperatures. Germany, the Netherlands, the United Kingdom, Portugal, and 

Belgium also reported significant elevations in mortality (Gosling et al. 2008; Kovats and 

Hajat 2008). Other heat events that have led to large increases excess deaths have been 

reported across much of the globe (Gosling et al. 2008).  
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b. Methodological approaches 

The significant risk posed by exposure to high temperatures has motivated the application 

of a large suite of research techniques to better understand the relationship between heat 

stress and human mortality and morbidity. Across a wide range of methods, most 

researchers acknowledge that there is an optimal human thermal comfort range outside of 

which mortality increases with either cold or warmth (e.g., Kalkstein and Davis 1989, 

Martens 1998, Gosling et al. 2008). When mortality data are plotted against temperature 

at a given location, the resulting curve often appears in the shape of a “U,” “V,” or “J” 

(e.g., Curriero et al. 2002, Donaldson et al. 2003, Paldy et al. 2005, Laaidi et al. 2006). 

 

Hindering the adoption of standardized methods for the evaluation of heat-mortality 

relationships are the many different ways in which one can definite mortality and heat. 

As discussed previously, there is no official definition of a heat-related death in the 

United States. This leads to variability in identification practices by medical examiners 

(Changnon et al. 1996). Further, during high temperature periods, deaths arising from a 

number of causes seem to increase rather than only those directly attributable to heat 

(Kalkstein and Davis 1989). This has led to some studies examining all-cause mortality, 

others examining only a selected set of deaths that are “likely” to be heat related, and 

others focusing solely on deaths that are specifically identified as heat-related by medical 

personnel. Heat risk research is also conducted with respect to morbidity via the 

examination of hospital admissions (e.g., Green et al. 2010) and ambulance dispatch calls 

(e.g., Bassil et al. 2009).  
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In addition to variability in results arising from differences in medical reporting 

procedures and selection of which subset of deaths to study, researchers have adopted 

different techniques to calculate the excess mortality that occurs during heat events. The 

expected or baseline mortality can be calculated, for example, as the average over a 

single month or entire year (Dessai 2002, Davis et al. 2003a, Dessai 2003, Gosling et al. 

2007, cited in Gosling et al. 2008).  Other studies compare each day’s mortality to that 

observed on the same day in the previous year or average of several previous years (Conti 

et al. 2005, Michelozzi et al. 2006). Yet others define the baseline mortality based on that 

observed when temperatures fall in an optimal range (Donaldson et al. 2001, Donaldson 

et al. 2003). The choice of methods is largely dependent on the data available to the 

researcher and determines the applicability of results to other locations or time periods 

(Gosling et al. 2008).  

 

The array of methods used to examine temperature-mortality relationships has been 

categorized into broad groups by Basu and Samet (2002) and Gosling et al. (2008) in 

recent reviews: descriptive and mapping epidemiological studies, approaches that use 

time series data and regression models, case-only or case-crossover studies, and synoptic 

climatological approaches.  

 

The overall goal of the epidemiological approach is to explain patterns in mortality (or 

some other health outcome) using predictors including environmental variables 

(temperature, pollution) or demographic information such as socioeconomic status (Basu 

and Samet 2002, Gosling et al. 2009). In the case of environmental variables, a percentile 



8 

 

or threshold approach is often adopted that compares heat stress relative to typical 

conditions for a given location (e.g., Davis et al. 2003a). The environmental variables 

most often evaluated are the ambient temperature, relative humidity, and/or apparent 

temperature. The apparent temperature is a measure that accounts for both temperature 

and humidity and is commonly referred to as the Heat Index (Steadman 1979, Steadman 

1984). Wind speed is occasionally included because of the role that moving air can play 

in modifying thermal stress. The treatment of these measures varies from one study to 

another, with certain authors using the daily mean, daily minimum, daily maximum, 

average over a multiple day period, lags of one day or more, etc. Furthermore, some 

authors examine the entire temperature time series throughout the year or an individual 

season, whereas others focus on specific time periods of interest such as heat waves. 

Increasingly, researchers are beginning to adopt both approaches simultaneously (Gosling 

et al. 2008).  

 

One advantage of the regression approach is that confounding factors can sometimes be 

quantitatively accounted for by adding additional terms to the model. Commonly cited 

confounding (or correlated) factors include humidity, wind speed, air pollution, and 

demographic and social factors. Gosling et al. (2008) identified at least 40 variables that 

have been incorporated in recent temperature-mortality studies. Within the regression and 

modeling approach, some researchers have developed more complex biometeorological 

indices that take into account the location and time during the year at which extreme 

conditions are observed (Gosling et al. 2008). The Health Related Assessment of Thermal 

Environment (HeRATE) is one such index that includes recent conditions experienced by 
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a population over previous weeks (Koppe and Jendritzky 2005, Jendritzky and Tinz 

2009). HeRATE builds upon the European tradition of developing biometeorological 

“scores” based on the human heat budget and physiological perception—previously 

developed variables include the Perceived Temperature (PT), Predicted Mean Vote 

(PMV), Physiological Equivalent Temperature (PET), and Standard Effective 

Temperature (SET) (Koppe et al. 2004, Jendritzky and Tinz 2009).  

 

Another broad classification includes the case-only and case-crossover methods. These 

approaches typically focus on individual behavior over shorter time periods by 

comparing a period of interest such as a heat wave to some other control or reference 

period (Basu and Samet 2002, Gosling et al. 2008). Because the study centers on 

individuals, there is minimal need to control for confounding factors such as 

demographics and behavior (Basu and Samet 2002). The case-only approach was applied 

by Medina-Ramon et al. (2006) to investigate the characteristics of individuals dying on 

exceptionally warm days to those dying when temperatures were lower. 

 

The final major methodological approach described by Gosling et al. (2008) is that of 

synoptic climatology, although synoptic air mass types can be integrated into any of the 

strategies previously discussed. With respect to identifying environmental conditions 

associated with elevated mortality risk synoptic climatology typically involves the 

identification of certain air mass types linked to oppressive conditions. The identification 

of homogeneous categories is often more desirable in the study of human health 

outcomes because people typically respond to multiple environmental variables 
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simultaneously (e.g., Knight et al. 2008). The recent history of synoptic climatology 

includes the development of the temporal synoptic index (TSI) (Kalkstein 1991) and 

Spatial Synoptic Classification (SSC) (Kalkstein and Greene 1997, Sheridan 2002). The 

current iteration of the SSC, the SSC2 (Sheridan 2002) includes a daily air mass 

categorization for hundreds of cities across North America and Europe. Synoptic types 

have been linked with daily mortality in variety of contexts (Kalkstein and Smoyer 1993, 

McMichael et al. 1996, Chestnut et al. 1998, Samet et al. 1998, Guest et al. 1999, 

Sheridan and Kalkstein 2004). Perhaps validating their usefulness, synoptic classification 

is a major component of heat watch/warning systems currently in place in cities across 

the globe (Gosling et al. 2008).  

 

3. Spatial Variability 

a. Environmental factors 

The major environmental factors believed to influence heat-related risk at the local scale 

include temperature, air quality, and humidity. A number of researchers have compared 

the temperature-mortality relationship across larger groups of cities spanning entire 

countries or continents. As discussed previously, there is an optimal temperature range at 

which mortality reaches a minimum, outside of which mortality increases with elevated 

stress from cold or warm conditions. It is evident that the temperature of minimum 

mortality varies systematically from one location to another based on the acclimatization 

of people to their environment. In a study examining 48 cities across the United States, 

Kalkstein and Davis (1989) found that threshold temperatures for elevated mortality vary 

considerably from one city to another and that the effect is often much greater than 
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variation within cities arising from demographic factors. In warm locations like Phoenix, 

AZ, summertime mortality does not significantly increase until temperatures reach 43°C, 

whereas in cooler and maritime climates including San Francisco, Boston, and Pittsburgh, 

a significant increase occurred with temperatures near 30°C. Gosling et al. (2008) 

compiled the minimum mortality temperatures identified in 29 recent studies and 

similarly observed a logical progression whereby higher mortality thresholds (with 

respect to heat stress) are present in warmer climates. This theory is well corroborated 

(Braga et al. 2001, Braga et al. 2002, Donaldson et al. 2003, Pattenden et al. 2003, 

Medina-Ramon and Schwartz 2007, Jendritzky and Tinz 2009).    

 

Far less straightforward is the manner in which urban areas modify thermal stress and 

mortality response. The complex structure of cities leads to large differences in 

temperatures between varying neighborhoods—differences which, when accumulated 

over the span of several days, may lead to certain areas exceeding physiological 

thresholds related to heat stress (Harlan et al. 2006). Elevated temperatures are commonly 

observed in cities when compared to surrounding areas because of the well-documented 

urban heat island (UHI) effect (e.g., Voogt and Oke 2003). In metropolitan areas, higher 

temperatures arise from a suite of processes including reduced radiant heat loss, lower 

wind velocities, increased exposure to radiation, anthropogenic heat sources, atmospheric 

contaminants, and reduced evaporation (Oke 1987, Jendritzky et al. 2000, Koppe et al. 

2004). These factors combine to create environments that are potentially more stressful 

for occupants during high temperature events.  
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The magnitude of the UHI has been estimated at approximately a 10° difference between 

rural and urban areas for both Phoenix, AZ (Hawkins et al. 2004) and Tel Aviv (Saaroni 

2000). By comparing the magnitude of the UHI for cities across the globe, Oke (1987) 

developed a relationship based solely on population and wind speed. An analogous 

relationship was later developed for Phoenix, where Brazel et al. (2007) estimate the 

temperature increase as 1.4 K (+/- 0.4K) per 1000 homes constructed. In similarly large 

cities, this effect far outweighs the temperature increases associated with predicted 

climate change for the next century (Jendritzky and Tinz 2009). Higher population 

densities have been linked with higher heat-related mortality (Medina-Ramon and 

Schwartz 2007), and urban heat risk may be enhanced in future decades as across the 

globe more people move to cities. One projection expects 60% of the world’s residents to 

live in cities by the year 2025, up from approximately 50% presently (Koppe et al. 2004).  

    

The spatial extent and magnitude of the UHI vary from city to city. In general, as one 

moves from the surrounding countryside toward the city, there is a sharp increase in 

temperature at the city limits, a temperature “plateau” that extends to nearly the city 

center, where another sharp increase can be observed. This theoretical pattern can be 

greatly influenced by open space, green space, and the varying designs of each individual 

city (Oke 1987). More specifically, higher temperatures are observed in areas with tall 

buildings, high building density, low fraction of green space, industrial land use, and 

sources of anthropogenic heat (Balling and Brazel 1987, Unger 1999, Matzarakis 2001, 

Stathopoulou et al. 2004). Cooler places are conversely associated with open spaces, 

plazas, lower building densities, and residential or commercial land use (Balling and 



13 

 

Brazel 1988, Saaroni 2000). The temperature pattern that results from a wide range of 

development and design characteristics in metropolitan areas can result in complex 

temperature patterns that evolve over both space and time (Nichol 1998, Kovats and 

Hajat 2008).   

 

Meteorology and climate also play an important role in shaping the UHI. The strongest 

effects are typically observed under anticyclonic conditions when skies are clear and 

winds are weak (Oke 1987). Regional processes like mountain-valley and land-sea 

breezes can further modify the UHI (Clarke 1969, Oke 1987, Baumbach and Vogt 1999, 

Ichinose et al. 1999). These influences can be substantial: No UHI is observed for Kuwait 

City, likely due to its proximity to water and landscape patterns (Nasrallah et al. 2006). 

Further, the UHI commonly is strongest at night because of the substantial difference in 

cooling rates between urban and rural areas (Oke 1987). 

 

The net effect of the UHI is that many city occupants are subject to higher temperatures 

than those living in rural areas during heat waves. The excessive heat can lead to more 

hot days and heat waves being identified in urban areas compared to rural ones (Tan et al. 

2010). Further, differences within urban areas can lead to variations in thermal stress 

between proximate communities. Thus, based on temperature alone one would expect to 

see variability in heat-related mortality within metropolitan areas.  

 

Metropolitan areas also influence other meteorological variables and processes. Wind 

speeds, for example, are generally lower within city centers, although in some cases air 
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flow can be enhanced when winds rush through city canyons. Under calm conditions, 

temperature differences between urban and rural areas can create a local-scale circulation. 

Urban areas have also been linked to increases in fog frequency, thunderstorms and 

precipitation (downwind of the city), and nighttime humidity levels (Oke 1987). Amongst 

these changes, elevated humidity should most directly impact thermal stress during high 

temperature events because of the role evaporation plays in the human heat budget.   

 

Air quality is another environmental variable that may contribute to heat-related mortality 

during stressful periods, particularly in metropolitan areas that often have higher pollutant 

concentrations than rural areas. Determining the relative contribution of elevated 

temperatures and poor air quality to mortality has proved extremely difficult to date 

because of the high degree of collinearity between meteorological variables and 

pollutants (Kalkstein 1991, Sartor et al. 1995). Two of the most commonly examined 

pollutants that are known to impact human health are ozone and particulate matter. The 

formation of ozone relies on photochemical reactions that occur more readily with sunny 

conditions that often accompany heat waves. Particulate matter concentrations, along 

with ozone, can worsen with a stagnant air mass: this too is often the case when high 

temperatures persist for several days or more. Some studies have identified an interaction 

between pollutants and temperature (e.g., Shumway et al. 1988, Sartor et al. 1995, Sunyer 

et al. 1996, Touloumi et al. 1996, Roberts 2004, cited in Basu and Samet 2002) whereas 

others find little evidence for the modification of a mortality-temperature relationship by 

pollutants (Driscoll 1971, Kalkstein 1991, Samet et al. 1998, Green et al. 2010, cited in 

Basu and Samet 2002). Further complicating the study of pollutant-temperature-mortality 
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interactions are the infrequent measurement of small particulates in the U.S. (Braga et al. 

2002), indoor air pollution to which individuals are more commonly exposed (Kilbourne 

1997), and the variation of air quality within cities (Jerrett et al. 2005).  

 

b. Demographic and social factors 

Age is the most commonly cited demographic factor related to morbidity and mortality 

risk during heat events (e.g., Whitman et al. 1997, Danet et al. 1999, Smoyer et al. 2000, 

O’Neill et al. 2003, Conti et al. 2005, Medina-Ramon et al. 2006, Hajat et al. 2006, 

Johnson and Wilson 2009). Elderly populations are believed to be at higher risk to 

changes in temperature than the general population because of diminished 

thermoregulatory capacity and the potential interference of drugs with homeostasis 

mechanisms (Havenith 2001, Koppe et al. 2004).  

More locally, communities with a high percentage of aged residents often show the 

highest mortality rates during heat events. In a 1993 heat wave in Philadelphia, most of 

the deaths were amongst isolated, elderly residents who did not have access to air 

conditioning (Mirchandani et al. 1996). For the same event, density of those aged 65 and 

above was identified as the strongest factor in a local-scale model of heat-related 

mortality (Johnson and Wilson 2009). Quantifying the elevated risk of elderly residents 

will continue to be important as the U.S. population continues to age (Changnon et al. 

1996).  

The impact of race on heat-related mortality is not as clear. Minority populations have 

often been linked to elevated mortality during heat events, including Native Americans 
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during the Philadelphia 1993 heat event (Johnson and Wilson 2009), African-Americans 

during the 1995 Chicago heat wave (Changnon et al. 1996), and African-American 

populations more generally across longer studies (O’Neill et al. 2003, Medina-Ramon 

2006, Basu and Ostro 2008). Not all research has found a mortality effect based on race: 

no effect of race or ethnicity was found for heat-related hospital admissions in California 

(Green et al. 2010), and the difference between white and non-white groups was not 

found to be statistically significant for most U.S. cities (Kalkstein and Davis 1989).  

Socioeconomic status is potentially linked to heat-related mortality because affluent 

residents may be more able to afford higher-quality housing and air conditioning. The 

high costs associated with energy required to cool homes may discourage air conditioning 

use amongst those with fewer financial resources (Smoyer 1998). In the U.S., economic 

status may be amongst the most important factors in determining heat-related risk, 

although this is not necessarily the case in other countries where air conditioning use is 

less common (Kovats and Hajat 2008). Areas with higher poverty rates were associated 

with statistically higher mortality rates in the 1993 Philadelphia heat event (Johnson and 

Wilson 2009).  

A wide range of other factors have also been linked with elevated mortality rates during 

heat events. Women, for example, may be more at risk of dying during heat events 

(Stafoggia et al. 2006), although this pattern may arise because there are more elderly 

women than men in the population (Kavaler 1981). Other studies have found no gender 

effect (Basu and Ostro 2008, Green et al. 2010). Lower education levels have been 

associated with higher death risk in the U.S. (O’Neill et al. 2003) but this relationship 
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probably arises because of a linkage with wealth (Semenza et al. 1996). Those with 

higher levels of aerobic fitness experience less strain during high heat events (Havenith et 

al. 2001), whereas unhealthy individuals may have a more sedentary lifestyle with fewer 

exposure and acclimatization opportunities (Koppe et al. 2004). Obese individuals have 

more insulation near the skin and thus require increased blood flow for cooling, thereby 

straining the cardiovascular system (Koppe et al. 2004). Pre-existing medical conditions 

also elevate mortality risk during heat events, and relationships have been found with 

diabetes, ischemic heart disease, respiratory disease, cardiovascular disease, and chronic 

obstructive pulmonary disease (Medina-Ramon 2006, Gosling 2009).  

Social characteristics of individuals and the community may also be related to mortality 

risk. Leaving windows and doors of homes open promotes ventilation; however, these 

measures may not be practical in places susceptible to crime (Changnon et al. 1996). 

Marital status has been linked to heat-related mortality as widows and widowers 

demonstrate a higher risk (Stafoggia et al. 1996), a characteristic that is likely closely 

linked to other findings related to isolated persons in general (e.g., Mirchandani et al. 

1996).  

Certain demographic and social factors can interact to create communities within 

metropolitan areas that demonstrate especially elevated risk during heat events. In 

Phoenix, for example, affluent whites tend to live in environments with more green 

space, and thus lower temperatures, whereas lower income Latinos live in places with 

higher building densities and more impermeable surfaces (Harlan et al. 2008). Thus the 

Latino community in Phoenix is subject to higher risk arising from both lower income 
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(resulting in less access to air conditioning) and higher temperatures in general. Places 

where these types of interactions may especially benefit from the adaptation of 

community-based warning systems and intervention measures. These relationships also 

shed light on potential inequities in health outcomes related to climate change (O’Neill et 

al. 2003).  

c. Place-based studies 

Spatial variability in the relationship between climate and heat risk has been well-studied 

at the global and region scale, especially for metropolitan areas. There is evidence for 

acclimatization across the United States, whereby populations in different cities 

experience different heat “thresholds” (Davis et al. 2003b).  In the southeastern states, for 

example, mortality is elevated at much higher temperatures than in places where extreme 

heat events are relatively rare, like the Pacific Northwest. The same pattern can be 

observed in other cities across the globe (Gosling et al. 2008). Such knowledge of the 

relationship between the thermal environment and heat risk, however, does not yet extend 

to the sub-city scale where a range of thermal stresses exists (Oke 1987). Airport 

temperature measurements are commonly used for large-scale heat-mortality research, 

but these data may not accurately reflect the metropolitan exposure to thermal stress 

(de’Donato et al. 2007, Zauli Sajani et al 2008). Remote sensing techniques make 

possible a better representation of the varying thermal conditions people experience 

(Stathopoulou et al. 2005, Voogt and Oke 2003), yet despite this advance, no study has 

comprehensively examined the impact of local-scale climatic variations on heat-related 

mortality (de’Donato et al. 2008).  
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The spatial distribution of heat-related mortality within metropolitan areas has been 

examined in a limited number of studies over the past several decades, dating back to 

maps of deaths in St. Louis during a heat wave in 1966 by Henschel et al. (1969) 

(Smoyer 1998). This gap in the research was later highlighted by Smoyer (1998), who 

was the first to advocate for a geographically oriented analysis of extreme weather 

impacts, especially heat-related mortality. Her research focused on a spatial analysis of 

heat-related deaths for the St. Louis, Missouri metropolitan statistical area (MSA) during 

the summers of 1980, 1983, 1988, and 1995, each of which were characterized by high 

temperatures and at least one heat wave (defined as a period of at least two consecutive 

days with apparent temperatures above 40.6°C). The emphasis of her study was to 

identify characteristics of places, rather than people, which were associated with high 

risk. In more traditional population-based studies, she believed that the risk of 

committing “ecological fallacy”—drawing inferences about individuals based on 

aggregate—was high, a problem avoided by focusing on the spatial distribution of 

various risk factors. Explanatory variables were derived from census data to estimate 

thermal stress, economic resources, and isolation of residents. The results suggested that 

heat-related mortality is higher in portions of the city with less neighborhood stability and 

fewer economic resources.  

 

Recent progress has been made in the spatial analysis of heat risk at the local scale via the 

examination of ambulance call data for Toronto, Canada (Dolney and Sheridan 2006, 

Bassil et al. 2009) and county-scale mortality data for the state of Ohio (Sheridan and 

Dolney 2003). The Canada studies revealed that areas within the downtown core showed 
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a high rate of heat-related dispatch calls but acknowledged that the reasons for the spatial 

pattern were unclear. Another area of elevated dispatch calls came from the Lake Ontario 

shoreline, where the researchers speculated that heat-stressed individuals seek relief from 

the weather (Dolney and Sheridan 2006, Bassil et al. 2009). In the Ohio study, the 

authors found that the urban population was at no greater risk than those who lived in 

suburban or urban areas. The impacts of their result are unclear, as it is well known that 

urban areas are warmer than their surroundings and thus should exhibit elevated heat 

stress during extremely warm periods (Sheridan and Dolney 2003).  One of the important 

contributions of both projects was the visualization of local-scale heat-related risk, a 

product not widely available in the literature.    

The most current and comprehensive effort to assess heat vulnerability was completed by 

Reid et al. (2009) who created a national map of estimated morbidity and mortality risk at 

the census-tract scale. Heat vulnerability was estimated from several risk factors 

including demographics, land cover, air conditioning use, and diabetes prevalence. No 

response variable was incorporated. The most vulnerable areas were shown to include the 

northeast and Pacific coast as well as inner city areas nationwide. Amongst the most 

significant findings was the implied variability of risk within metropolitan areas with 

generally higher risk in the downtown core. The authors note the importance of 

identifying elevated risk zones within cities for proper targeting of heat intervention 

strategies. The research proposed here will follow a more rigorous strategy to identify 

such zones by analyzing a larger set of risk factors, including critical measurements of 

atmospheric conditions, within a framework focused on health outcomes.   
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Two studies published within the past several years are the first to integrate satellite 

assessment of urban temperature variability with demographic and social information in a 

model built on mortality data. A Canadian team evaluated warm season daily mortality 

for Montreal over a 14-year period using Landsat imagery, ozone data, and property 

assessments, and found evidence that mortality risk is higher in places with higher 

surface temperatures (Smargiassi et al. 2009). Their dataset included some 51,000 

summertime deaths over the period of record. Many of the authors’ analyses point to a 

significant increase in risk for warmer postal codes; however, the variance in the results 

is not fully detailed. Only two thermal images were used to determine the local-scale 

variability in heat risk, and postal codes were classified into either a “warm” or “cold” 

group based on the satellite imagery. The treatment of demographic factors and air 

quality appear similarly broad. The study signifies research movement toward a 

comprehensive assessment of local-scale heat-related mortality, but the methodology 

applied leaves a high level of uncertainty, some of which is acknowledged by the authors.  

 

The United States research team led by Daniel Johnson of IUPUI has produced multiple 

publications in the past several years focused on the Philadelphia heat wave of 1993. 

Their most recent contribution (Johnson et al. 2009), again examines this event but 

includes satellite imagery to add local-scale temperature variability to their model of 

mortality risk. The authors found that adding a land surface temperature estimate to their 

binary logistic regression model (which already included socioeconomic indicators) 

improved overall performance. More broadly, they concluded that thermal remote 

sensing imagery could be a key tool in examining heat-related risk. The universality of 



22 

 

their findings needs to be validated as the model is based on one single heat event with 

118 attributed deaths. Furthermore, the adoption of a binary logistic regression may have 

been more appropriate in the Johnson et al. study because of the binary outcome variable 

(census tracts either had a mortality event or did not) than in other studies examining 

mortality risk over longer time periods where a range of mortality rates are present across 

metropolitan communities.  

 

4. Temporal Variability 

a. Heat-related mortality trends 

Global mean temperature increased by 0.74°C between 1906 and 2005, with some of the 

hottest years on record observed within the most recent two decades (Trenberth et al. 

2007). Although considerable debate continues regarding future climate change and 

underlying causal mechanisms, the increase in temperatures has led to more frequent 

exposure to thermally stressful conditions in some locations (e.g., Robinson 2001, 

McGregor et al. 2002, Yan et al. 2002). Combating the potential negative impacts of 

global climate change are rapid advancements in technology that create more comfortable 

environments for humans to live. In general, places with less prevalent air conditioning 

experience higher heat-related mortality (O’Neill et al. 2005, Medina-Ramon and 

Schwartz 2007). Across several United States cities, for example, every 1% increase in 

air conditioning has been shown to reduce mortality by over 1 death per year per million 

residents (Davis et al. 2003a). Numerous studies identify a decline in heat-related 

mortality across U.S. metropolitan areas across the past several decades (e.g., Marmor 

1975, Davis et al. 2003a, Davis et al. 2003b, Barnett 2007, Sheridan et al. 2009). 
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Air conditioning is the likely cause of declining heat-related and cardiovascular mortality 

in the United States over the past several decades (Davis et al. 2003a, Barnett 2007), but 

it is unclear how mortality may change in a potentially warmer climate in the future as 

more cities approach air conditioning saturation. The benefits of air conditioning use also 

vary between individuals for socioeconomic reasons, and different responses are possible 

with the stress that air conditioners place on power grids and the heat they release to the 

environment (Klinenberg 2002, Gosling et al. 2008, Hess et al. 2009). Frequent exposure 

to air-conditioned living spaces may also inhibit one’s ability to acclimatize to generally 

higher temperatures (Hajat et al. 2010). 

 

b. Short-term factors: duration, lags, displacement 

There are several factors operating on the scale of days to weeks that need to be 

considered when evaluating heat-related mortality. Heat event duration, lag in response, 

and mortality displacement are commonly cited variables that contribute to the overall 

response of both individuals and populations.  

 

When extremely high temperatures are observed over several successive days, it is 

believed that there is a cumulative stress placed on the human thermoregulatory system 

(e.g., Semenza et al. 1996, Braga et al. 2001). This has inspired the inclusion of heat 

event duration as a potential predictor of mortality in many studies, a large number of 

which have found that prolonged heat events are often associated with the highest 

increases in mortality and that heat event duration is a variable that explains much of the 
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variance in mortality time series (e.g., Kalkstein 1991, Smoyer 1998, Huynen et al. 2001, 

Hajat et al. 2002, Qiu et al. 2002, Rocklov 2007, Tan et al. 2007).  

 

Another important factor to consider is the potential time delay between high 

temperatures and an increase in mortality. Individuals in a population respond to thermal 

stress differently, and many may not suffer immediately when hot conditions develop. 

Accordingly, a lag is noticeable in many time series between the onset of extreme 

conditions and elevated mortality incidence. Gosling et al. (2008) review 24 different 

studies over roughly the past decade that have examined lag effects with respect to 

temperature-mortality relationships. Nearly all studies report a lag effect of three days or 

fewer, although the temporal component of mortality response may be different between 

hot and cold spells (Braga et al. 2001). A one-day lag has been shown to produce the 

most consistent response in the United States (Davis et al. 2003a).  

 

While mortality increases are common in the few days immediately following extremely 

high temperatures, a decrease is often subsequently observed. This pattern has been 

attributed to a theory of “mortality displacement” whereby many of the individuals that 

die under extreme conditions were those already in poor health who would have died in 

the near future regardless of the heat event; the extreme conditions simply accelerated 

their death forward by a few days or weeks (Gosling et al. 2008). Following a heat event, 

mortality is lower than would typically be expected because those individuals that would 

have normally died during that time period were lost during the event. Mortality 

displacement has been observed as soon as three days after a heat events (e.g., Kunst et 
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al. 1993, Hajat et al. 2002, Pattenden et al. 2003, Hajat et al. 2005, 2006), and at longer 

time periods reaching 30 days or more (e.g., Sartor et al. 1995, Huynen et al. 2001, Le 

Tertre et al. 2006, Gosling et al. 2007, Gosling et al. 2008). Mortality deficits following 

heat events have been estimated between 15 and 70% over a suite of studies (Gosling et 

al. 2008), and recent work demonstrates that the magnitude of displacement effects varies 

geographically and between heat events of differing severity (Saha et al. 2013).   

 

c. Seasonality 

In addition to long-term trends over years and decades, in many locations, heat-related 

mortality varies based on the timing of individual heat events (e.g., Kalkstein and Davis 

1989; Tan et al. 2009). It is often thought that early-season warm spells can have a 

greater impact on mortality than those that occur later in the season (e.g., Paldy 2005). 

For example, in London, warm-season mortality increases during extreme heat events 

averages 3.26%, but when heat spells strike in the cold season, the mortality increase is 

over 5% (Hajat 2002). These patterns may be related to mortality displacement as 

discussed above, short-term acclimatization, which can take place over the period of a 

few weeks (e.g., Koppe et al. 2004, Koppe and Jendrizky 2005, Hajat et al. 2010), or a 

combination thereof. Short-term acclimatization generally results in reduced core 

temperatures, earlier onset of sweating, increased blood flow to the skin, and lowered 

metabolism, which have been observed to take place in as little as 3-4 days after exposure 

to a new thermal environment (Koppe et al. 2004). Furthermore there is considerable 

seasonality with respect to mortality across the entire year (Davis et al. 2004) with higher 
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death rates in winter than in summer in many locations. No research describing mortality 

seasonality variability within communities was found.  

d. Heat and climate change 

One of the major environmental questions of our time is ‘how will future global climate 

change affect human health and well-being?’ Across continents, high uncertainty exists 

regarding the potential role that changing temperature and precipitation regimes may play 

related to the spread of disease, availability of food and other resources, and risk posed 

by natural hazards including floods, droughts, and heat waves. Some research suggests 

that the future climate will be one with heat waves that are more intense, more persistent, 

and more frequent (Meehl and Tebaldi 2004). The Intergovernmental Panel on Climate 

Change predicts that higher maximum temperatures, more hot days, higher minimum 

temperatures, and increases in heat index over land areas are all very likely in the 21
st
 

century (Trenberth et al. 2007). If this is to be the case, the effects on human mortality 

may be concentrated in localities where the temperature is higher, including metropolitan 

areas because of the urban heat island effect. One projection for New York City, NY, 

estimates a 70% increase in heat-related deaths over the next five decades from 1990s 

levels (Knowlton et al. 2007). 

Estimates of future heat-related mortality widely vary. Many countries expect future 

increases because of rising temperatures, although because of varying practices in 

identifying heat-related deaths, it is not entirely certain how substantial the increase will 

be (Gosling et al. 2008). For example, in Finland is it believed that heat-related deaths 

comprise less than one-half of one percent of all annual deaths, and therefore despite a 
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projected 2°C warming, a recent assessment did not expect substantial mortality increase 

(Hassi and Rytkonen 2005).  It is possible that an increase in heat-related deaths could be 

offset by a reduction in cold-related deaths: Davis et al. (2004) suggest a net annual 

decline of 2.65 deaths per million U.S. citizens with a seasonally-uniform 1°C increase in 

temperatures because of a greater reduction in cold-related mortality than increase in 

heat-related mortality. A winter-dominant warming, which is more in agreement with 

past observations and future projections, was anticipated to lead to 8.92 fewer deaths per 

million for the same reason (Davis et al. 2004). One global-scale assessment of thermal 

comfort showed that the net effect of a commonly-utilized climate change model will 

lead to an overall decrease in comfort in the highly-populated middle latitudes and 

subtropics; increases in comfort were limited to sparsely populated regions (Jendritzky 

and Tinz 2009).  

 

Gosling et al. (2008) make a special point to acknowledge the considerable uncertainty in 

any projection of future heat-related mortality. More specifically, they identify five major 

areas of uncertainty that contribute to the challenge of forecasting such deaths in the 

future: emissions, processes and parameters within climate models, downscaling, 

temperature-mortality modeling, and population change and adaptation. Uncertainty 

related to future emissions has led researchers to adopt a variety of scenarios in climate 

change models which themselves are limited by the accuracy of parameters based on 

processes that are not perfectly understood. These models are run at a coarse resolution 

for the entire globe, thereby making it difficult to identify impacts at any one place, such 

as a highly-populated city. There is next a suite of temperature-mortality models 
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proposed in the literature, many of which focus on specific places or regions, all of which 

have some degree of error or inaccuracy. Finally, these mortality models are projected 

onto a population that may be of a different size in the future and be more or less adapted 

to climatic change. Gosling et al. (2008) advocate for the examination of where errors are 

most compounded throughout the process of projecting heat-related mortality to better 

understand where future research should be targeted.  

 

5. Response Strategies 

a. Intervention and mitigation 

Humans are able to mitigate the impact of high-temperature events via natural 

mechanisms and technological advances.  The human body has a physiological capacity 

to adapt to changes in environmental conditions, and sensitivity to heat exposure can be 

adjusted over both short-term periods such as 3-12 days (Koppe et al 2004, Hajat 2010), a 

few weeks (Koppe and Jendrisky 2005), or longer-term acclimatization periods on the 

order of several years (Frisancho 1991). This acclimatization is clearly evident in large-

scale analyses of spatial variability in heat tolerance: places with higher overall 

temperatures have a higher mortality threshold temperature (e.g., Kalkstein and Davis 

1989, Eurowinter Group 1997, Pattenden et al. 2003, Jendritzky and Tinz 2009). Despite 

this natural coping mechanism, in many cases, people choose to live and work in 

environments in which they are not physiologically prepared.  

The impact of air conditioning on lessening heat-related mortality and morbidity has been 

substantial in many developed counties. A statistically significant inverse relationship 
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between air conditioning use/prevalence and heat mortality has been documented on 

multiple occasions (Braga et al. 2001, Davis et al. 2003, O’Neill et al. 2005; Medina-

Ramón and Schwartz 2007). However, air conditioning has not mitigated risk equally for 

all stakeholders. Energy costs associated with air conditioning use may discourage or 

prevent use by those with fewer financial resources (Smoyer 1998). This problem can be 

exacerbated by the heat that air conditioning units release to the environment (Gosling 

2009), and the overall stress that air conditioning systems place on the entire power grid 

(Hess et al. 2009). 

When the threat of a dangerous heat event is identified in advance, individual citizens and 

larger community response groups can adopt a series of practices that reduce the risk of 

heat-related fatalities. Often the most needed efforts are communicating the risk to the 

elderly and isolated who may be unaware of the expected heat and can greatly benefit 

from relocation to a cooling center. Other action steps typically enacted once a dangerous 

heat event is forecast include the promotion of a “buddy system” that encourages 

neighbors to check on one another regularly, the activation of dedicated phone “heat-

lines,” home visits by city officials, high alert status at nursing care facilities, the 

cancellation of utility suspensions, increased staffing at hospitals, and outreach to the 

homeless (Koppe et al. 2004). A reduction in heat-related mortality in Milwaukee, 

Wisconsin in recent years has been attributed to effective public health preparedness 

rather than differences in heat levels (Weisskopf et al. 2002).  
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b. Warning systems 

More recently, heat warning systems have been developed that trigger public alerts in 

advance of potentially stressful conditions. Much of the research in this field has been 

conducted by Laurence Kalkstein et al., who have developed warning systems for a suite 

of cities across the globe using synoptic air mass types. In general, these systems provide 

guidance for federal agencies rather than directly warning the public. They act as 

decision-support tools for weather forecasters and emergency managers to issue alerts 

and enact certain protocols. Specialized forecasts are issued by the warning system when 

the next day’s weather is predicted to be an oppressive air mass type (typically associated 

with hot and dry or hot and moist conditions, depending on the location). When an 

oppressive air mass is predicted for the next day, a more specific forecast of the potential 

for elevated mortality is made (Kalkstein et al. 1996, Sheridan and Kalkstein 2004). 

Some locations that have not adopted air-mass-based warning systems use a temperature 

or combined temperature-humidity threshold for enacting emergency measures (Koppe et 

al. 2004).  

Heat warning systems are believed to save lives. In the case of the Philadelphia Heat-

Watch-Warning System (the original synoptic warning system developed by Kalkstein et 

al. in 1995), an estimated 117 lives have been saved since its creation. Using a risk 

measure called the value of statistical life, the financial benefit to Philadelphia for using 

the system can be estimated at over $400 million, while the costs for the system’s 

operation were approximately $200,000 over its first three years (Ebi et al. 2004).  
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c. Potential for improvement 

Advances in technology, surveillance, and reporting have made it possible to accurately 

assess the local-scale geographic variability in heat-related mortality (Ruddell et al. 

2010). The biometeorological community has made significant progress in recent decades 

by improving our knowledge of the human-heat sensitivity, adaptation and 

acclimatization, and the development of heat warning systems customized for individual 

cities. There is a significant opportunity to continue working toward the welfare of those 

at risk by integrating knowledge of the microscale environmental conditions, 

characteristics of subpopulations, and heat-related mortality records. There are 

considerable variations in the urban microclimate that can have a major effect on 

biological outcomes, and these differences are not well-accounted for in current 

assessments of mortality risk (Kilbourne 1997, Ruddell et al. 2010). The efforts of 

Smargiassi et al. (2009) and Johnson et al. (2009) highlight the opportunity to combine 

environmental, demographic, and social characteristics of communities to identify places 

that can benefit from targeted response strategies. Such research can lead to the 

promotion of health community characteristics and more efficient allocation of resources 

(Smoyer 1998).  
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6. Motivation for study 

At present, biometeorologists have developed a good understanding of the relationship 

between high temperatures and human physiology, the extent to which the built 

environment modifies thermal conditions, and have identified certain populations that 

demonstrate an increased risk to heat stress. Little or no work, however, integrates all of 

these factors into models that identify the most heat-sensitive places and explain why 

they are more susceptible. A cross-city comparison of the spatial response in mortality 

associated with elevated heat stress would lay the foundation for understanding the role 

that the built environment, microclimate, demographics, and land cover play in shaping 

the mortality patterns. Many heat-related deaths are preventable (Luber et al. 2006, 

Smoyer et al. 2000)—one of the practical results that could arise from this research 

would be identification of where to direct prevention efforts and understand why those 

places and populations are more sensitive to the impact of heat waves.  

Environmental, demographic, and social factors vary across the metropolitan landscape 

and interactively shape the risk profile of individual communities. Quantitative 

assessment of this interaction is possible with the availability of high-resolution imaging 

of the urban heat island and long-term local-scale mortality records, but research to date 

has only suggested the possibility of such a project. Successful approaches have been 

adopted to measure the urban heat island and compare population characteristics to 

mortality, and evaluate trends and seasonality in mortality for individual cities. Largely 

missing from the literature is the application of these approaches at a local scale. By 

adopting such a framework, research into the geographic dimensions of heat-related 
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mortality within large U.S. cities can advance understanding of the factors that contribute 

to the location and timing of heat-related deaths. 

 

7. Dissertation Structure 

The subsequent four chapters of this dissertation are each based on scientific manuscripts 

intended for, or already appearing in, the peer-reviewed literature. Each chapter is 

intended to be a standalone product, and thus contains its own abstract, main text, figures, 

and references.  Because these chapters were prepared for publication in different 

journals, there are also substantial formatting differences.  

Chapter 2 represents a proof-of-concept analysis focusing on Philadelphia, Pennsylvania. 

In this manuscript, spatial variability in the heat-related mortality rate is explored across 

the 48 postal codes that comprise Philadelphia County. Subsequently, a number of 

potential explanatory variables are linked to the spatial pattern in mortality using 

principal components regression. The set of explanatory variables includes social and 

demographic indicators obtained from census data, zoning and land use information, and 

remote measurements of surface temperature within the city. This chapter was published 

in Environmental Health in 2012. 

Hondula, D. M., Davis, R. E., Leisten, M. J., Saha, M. V., Veazey, L. M., & Wegner, C. 

R. (2012). Fine-scale spatial variability of heat-related mortality in Philadelphia County, 

USA, from 1983-2008: a case-series analysis. Environmental Health, 11(1), 1-11. 

doi: 10.1186/1476-069X-11-16 
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In Chapter 3, a new method is introduced for quantifying heat-mortality relationships for 

spatial units within cities where daily mortality counts are too low to permit the 

application of other approaches. The method takes advantage of advances in the 

environmental health field over the past ten or more years that include modeling 

relationships between mortality to temperature and time with non-linear, semi-parametric 

smoothing splines. This technique offers the advantage of accounting for interannual 

differences in the seasonal pattern in mortality. The method we present is applied to 

mortality data for Philadelphia. This chapter was published in the Journal of 

Epidemiology and Community Health in 2013.  

Hondula, D. M., Davis, R. E., Rocklöv, J., & Saha, M. V. (2013). A time series approach 

for evaluating intra-city heat-related mortality. Journal of Epidemiology and Community 

Health. doi:10.1136/jech-2012-202157 

Chapter 4, emphasizes an inter-city comparison of the factors associated with spatial 

variability in heat-related mortality. Using guidance from earlier work (Chapter 2), a set 

of explanatory variables that includes social, environmental, and demographic factors is 

prepared for each city at the postal code scale. Multiple regression models are then 

constructed to determine those factors that are most closely associated with the mortality 

patterns. Determinants of high-risk spatial zones vary from one city to another, 

encouraging the development of city-specific, empirically-driven risk assessments for 

other locations where heat is associated with negative health impacts. Portions of this 

chapter will be submitted to Environmental Health Perspectives.  
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Hondula, D. M., Davis, R. E., (2013) (Draft). Geographic dimensions of heat-related 

mortality in seven U.S. Cities. Environmental Health Perspectives. 

Temporal variability in intra-city mortality is the focus of the final manuscript, Chapter 5. 

We use the statistical method developed in Chapter 3 to identify locations within each of 

the study cities where mortality rates on hot summer days are significantly different than 

baseline mortality. This procedure is repeated in an iterative fashion, withholding one 

year of data from the model and then comparing the high-mortality zones from the 

training data versus those observed in the withheld year. Interannual consistency in intra-

city mortality can increase confidence that places targeted for intervention strategies 

based on historical data will be those where the risk is highest in the future. This chapter 

will be submitted to the journal Health and Place.  

Hondula, D. M., Davis, R. E., (2013) (Draft). The predictability of high-risk zones for 

heat-related mortality in seven U.S. Cities. Health & Place.  

Chapter 6 concludes the dissertation with an overview of the major findings from each 

previous section, discussion of scientific contributions, and presents opportunities for 

future research. 
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Abstract 

Background 

High temperature and humidity conditions are associated with short-term elevations in 

the mortality rate in many United States cities. Previous research has quantified this 

relationship in an aggregate manner over large metropolitan areas, but within these areas 

the response may differ based on local-scale variability in climate, population 

characteristics, and socio-economic factors.  

Methods  

We compared the mortality response for 48 Zip Code Tabulation Areas (ZCTAs) 

comprising Philadelphia County, PA to determine if certain areas are associated with 

elevated risk during high heat stress conditions. A randomization test was used to identify 

mortality exceedances for various apparent temperature thresholds at both the city and 

local scale. We then sought to identify the environmental, demographic, and social 

factors associated with high-risk areas via principal components regression.  

Results 

Citywide mortality increases by 9.3% on days following those with apparent 

temperatures over 34°C observed at 7:00 p.m. local time. During these conditions, 

elevated mortality rates were found for 10 of the 48 ZCTAs concentrated in the west-

central portion of the County. Factors related to high heat mortality risk included 

proximity to locally high surface temperatures, low socioeconomic status, high density 

residential zoning, and age.  
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Conclusions 

Within the larger Philadelphia metropolitan area, there exists statistically significant fine-

scale spatial variability in the mortality response to high apparent temperatures. Future 

heat warning systems and mitigation and intervention measures could target these high 

risk areas to reduce the burden of extreme weather on summertime morbidity and 

mortality.  

 

Key words 

Biometeorology, heat waves, climatology, apparent temperature, spatial analysis, heat-

health impacts, remote sensing, Landsat 
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Background 

High heat and humidity pose a major health threat for residents of middle latitude 

climates during the warm season. In the United States, for example, heat ranks as the 

leading cause of weather-related mortality. Many of these deaths are believed to be 

preventable via the implementation of appropriate mitigation measures such as advanced 

notification of at-risk groups and availability of cooling shelters [1]. Research to date has 

examined the aggregate heat-health response for large metropolitan areas and identified 

robust relationships for many locales. When temperature-humidity measures rise above a 

geographically sensitive threshold, human mortality becomes greater than the typical 

seasonal pattern would suggest [2]. The consistency of this heat-mortality relationship 

has spawned heat warning systems across the globe for forecast zones comprising entire 

metropolitan areas or multiple counties [1]. Within these metropolitan areas, however, 

there exists considerable variability in environmental conditions and demographic and 

social characteristics of the population. Here we explore the relationship between high 

heat and humidity and human mortality at the local scale. Past work has primarily 

focused on a larger scale examining the response of an entire metropolitan area, but the 

allocation of resources intended to protect citizens from the dangerous effects of heat and 

humidity could be improved with a more specific knowledge of where the risk is highest 

within urban areas. The current state of reporting and data availability makes it possible 

to assess this risk with a multidecadal record of geographically-specific observations. In 

this manuscript we utilize such a record to evaluate intra-city mortality risk within a 

major United States metropolitan area.  
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Elevated temperatures are commonly observed in city centers when compared to 

surrounding areas because of the well-documented urban heat island (UHI) effect [3]. 

Higher temperatures are observed in areas with tall buildings, high building density, 

limited green space, industrial land use, and anthropogenic heat sources [4]. The complex 

nature of cities leads to large differences in temperatures between varying 

neighborhoods—differences that may lead to certain areas exceeding physiological 

thresholds related to heat stress while other locations maintain thermal comfort [5].  

 

Demographic and social variability within metropolitan areas may also contribute to 

geographic variability in heat-related mortality risk. Age is the most commonly-cited 

demographic factor related to morbidity and mortality risk during heat events [6, 7]. 

Elderly populations are believed to be at higher risk to changes in temperature than the 

general population because of diminished or compromised thermoregulatory capacity [1]. 

 

The impact of race on heat-related mortality is not as clear. Minority populations have 

often been linked to elevated mortality during heat events [8-10], but other research 

found no significant mortality difference between races [11, 12]. Socioeconomic status is 

potentially linked to heat-related mortality because affluent residents may be more able to 

afford higher-quality housing and air conditioning [13]. Areas with higher poverty rates 

were associated with statistically higher mortality rates in the 1993 Philadelphia heat 

event [10]. A wide range of other factors have also been linked with, or suggested to be 

linked with, elevated mortality rates during heat events, including education level, 

gender, aerobic fitness, activity level, and pre-existing medical conditions [7].  
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Over roughly the past decade, researchers have started examining the spatial distribution 

of heat-related mortality within metropolitan areas.  At the local scale, places with higher 

morbidity and mortality rates during heat events have been associated with lower 

neighborhood stability and income levels [10, 13] and proximity to the downtown core 

[14-16]. In addition, remote sensing imagery has been incorporated and places with 

higher thermal readings have also been linked with higher mortality rates [17, 18].   

 

The present study aims to relate a multi-decade record of localized mortality data to a 

large suite of independent variables including demographic, social, and environmental 

components. Our goal is to determine if significant spatial variability in heat-mortality 

exists within Philadelphia County, PA, and if so, examine the underlying factors that may 

be responsible for that variability.  
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Methods 

Data 

Individual all-cause mortality records for Philadelphia County residents were obtained 

from the Pennsylvania Department of Health for the period 1983–2008. We limited our 

analysis to deaths that occurred within the County boundary. The dataset includes the zip 

code of residence and age of the decedent. Excluding cases where the zip code was not 

available, the record contains 409,554 deaths over the 26-year period.  

 

Surface hourly meteorological data for the entire period of record were obtained from 

Philadelphia International Airport (see Figure 1), including measurements of air 

temperature, dew point temperature, and wind speed. We calculated hourly apparent 

temperature (AT) using a parameterization of the Steadman model 

 

AT = -2.653 + (0.994*T) + [0.0153 * TD
2
)] + C 

 

where T is the dry-bulb temperature, TD is the dew point temperature, and C is a 

correction based on wind speed [9,19,20]. We linearly interpolated the temperature 

correction for each integer value of wind speed between 0 and 16 m/s because the table of 

corrections only provides values for coarse increments of wind speed [19]. The correction 

for 16 m/s was used in cases where the wind speed exceeded 16 m/s.  The airport AT 

measurements serve as the basis for the identification of days associated with 

exceptionally high heat and humidity conditions across Philadelphia County.  
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The suite of variables we incorporated to compare to the spatial pattern in heat-related 

mortality includes demographic and social factors as well as characteristics of the 

buildings and land surface. Population counts by age were obtained for each census tract 

in the County for 1980, 1990, and 2000 from the United States Census Bureau and the 

National Historical Geographic Information System (NHGIS). Additional variables 

obtained from the census include year 2000 tract-level measures of race, education level, 

income, occupancy, and building age (see Table 1).  For geographic analysis, we used 

boundary shapefiles for the census tracts and year-2000 Zip Code Tabulation Areas 

(ZCTAs, Figure 1) from the Census Bureau and NHGIS.  

 

We used zoning maps to further assess the surface characteristics of the built 

environment. Zoning ordinances constrain the use, coverage, form, and spatial 

arrangement of urban development. These regulations can have significant effects on 

urban environments [21]. Thus, the zoning variables may serve as proxies for high-

resolution thermal measurements given that air temperature sensors are not available at 

the same level of spatial detail. Building density and zoning information for the County 

were obtained from the Pennsylvania Spatial Data Access (PASDA) clearinghouse GIS 

database. Both the zoning and building files contain thousands of individual polygons 

identifying each of several dozen zoning categories and individual building elements.  

 

To assess intra-city variability in thermal stress, we utilized imagery of the Philadelphia 

area from the Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Landsat is a sun-

synchronous satellite with a 16-day overpass interval. We downloaded 47 warm-season 
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relatively-cloud free images using the USGS Global Visualization Viewer “Glovis” 

spanning the period 2004–2010 and selected two images that corresponded with periods 

of extremely elevated air temperature measured at Philadelphia International Airport 

(Figure 2).  

 

Modeling 

To obtain fine-scale mortality counts, daily all-cause mortality is aggregated for each of 

the 48 ZCTAs comprising Philadelphia County for the periods 1983–2008 (9,490 days).  

These data are de-seasoned to remove any residual effects of the intra-annual mortality 

cycle, and age-standardized to account for temporal changes in population demographics.  

All-cause data are commonly employed in heat impact research because of the lack of a 

standardized definition for heat-related death and the potential for heat stress to 

contribute to other causes of mortality (especially respiratory and cardiovascular causes).  

We calculated the seasonality as the 30-day LOWESS-smoothed daily means of the 

County-wide mortality sum. We then scaled this seasonality model such that the mean of 

the seasonality curve for each ZCTA-year matched the background mortality rate 

observed for each ZCTA-year. We next age-standardized the mortality data based on the 

ZCTA-level population age structure obtained from the 1980, 1990, and 2000 census data 

using ten age classes (0 – 4, 5–14, 15–24,…,85 and above) and interpolated (by age 

class) within each ZCTA.  

 

The de-seasoned, age-standardized daily mortality departures were sorted into AT groups 

based on the hourly airport data to examine the heat-mortality relationship. After testing 
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different combinations, we ultimately chose to use overlapping 3°C-wide AT bins with a 

1.5°C interval between the midpoints of each bin. This particular bin size represented 

balance between being able to relatively accurately identify a threshold temperature while 

preserving enough samples in each bin for each to be a reliable indicator of the mortality 

response. We then calculated the mean mortality departure within each bin. A one-tailed 

randomization procedure was used to identify a significant response for a particular AT 

bin. The mean excess mortality for a given AT range is compared to the 95
th

 percentile 

mean of 10,000 randomly-drawn subsets of the same sample size as the test group. 

Samples were drawn exclusively from days falling within the warm season, defined here 

as between calendar days 150–275 (approximately June–September).  If the observed 

mortality is above the 95
th

 percentile, we identify a statistically significant mortality 

elevation. We excluded any bins with a sample size of 5 or fewer cases from analysis. 

The randomization procedure is used in place of a traditional t-test because of the non-

normal distribution of the daily mortality departures [22]. In all cases the mortality 

response is expressed as a percent difference relative to the mean warm-season mortality 

in Philadelphia County (or within each ZCTA) of 0.26 deaths per 10,000 residents per 

day.  

 

We first used the randomization procedure to evaluate the mortality response by AT for 

the entire County (total daily sum). We tested the mortality response by AT and hour for 

12:00 a.m. to 8:00 p.m. on the day of death and all 24 hours for the two days immediately 

prior (each of 68 hours was tested for each AT bin). (We did not examine AT impacts 

after 8:00 p.m. local time on the day of death.) Examination of the overall city response 



62 

 

was used to guide the local-scale analysis to an AT/time combination when the mortality 

signal was robust. The minimum value of the first bin above which mortality remains 

consistently significantly greater than zero was adopted as the threshold AT for the given 

hour [2]. We then calculated the overall mortality response when AT values in excess of 

the threshold were observed (instead of within each AT bin) for the entire County and for 

each of the 48 ZCTAs. The ultimate dependent variable in the regression model is the 

mean excess mortality for certain ATs at a given hour of the day and lag. The 

randomization test was again used to identify significantly elevated mortality at both the 

County-wide and ZCTA scale, except in this instance the test statistic was based on the 

cumulative response above the threshold AT instead of within a particular AT bin.  

  

Because the mortality data were provided with zip code of residence, ZCTAs serve as the 

geographic unit of analysis. All explanatory variables were projected into year 2000 

ZCTAs using the Hawth’s Tools Polygon-In-Polygon feature within ArcGIS.  

 

The zoning code for Philadelphia includes many different classification types, including 

over twenty categories of residential zoning alone. Because a large number of these 

zoning categories were constrained to only a handful of parcels throughout the city, we 

combined similar zoning categories into seven overall classifications (Table 1). This 

aggregation was aided by numerical information within the zoning code related to lot 

size, building heights, etc., as well as street-level photography of the structures present 

for each zoning type.  
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Landsat imagery was employed to assess local-scale variability in surface temperatures. 

We converted the pixel-by-pixel brightness numbers to spectral radiance and then to 

temperature using the ArcGIS raster calculator (Figure 2a) [23]. Once all images were 

converted to temperature values, we used the ArcGIS Zonal Statistics tool to calculate the 

mean surface temperature within each ZCTA (Figure 2b). We used a mid-morning image 

from May 15, 2004 (Air temperature = 295.4 K at time of image) and a mid-morning 

image from July 29, 2008 (300.9 K). These two days best met our criteria of having little 

or no cloud cover and high air temperature out of the 47 images we downloaded. We 

added the mean surface temperature by zip code for each image as separate variables into 

the overall pool.   

 

Principal components analysis was then used to reduce the number of variables from the 

independent pool and eliminate colinearity. As there are only 48 “cases” (ZCTAs) in the 

study, reducing the number of independent variables is especially important to avoid 

over-fitting the regression model.  

 

We used multiple linear regression (conducted in SPSS statistical software, version 

19.0.0) to relate the principal components of our independent variables to the local-scale 

mortality response. Significant variables were deemed to be those with a partial p-value 

of less than 0.05. The residuals from the regression models were examined for spatial 

autocorrelation using Moran’s I statistic in ESRI ArcMap 9.3 to determine if an 

additional term is needed in the regression model to properly account for the true degrees 

of freedom in a spatially autocorrelated field.  
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Results 

 

Countywide mortality is significantly elevated on and following days with high ATs. A 

significant threshold AT is evident for each hour spanning the 3-day period leading up to 

and including the day of death (Figure 3a). The threshold temperature varies by hour such 

that higher afternoon ATs are associated with the same mortality response as lower 

morning ATs. The mean mortality exceedance when ATs occur above the threshold is 

5.2%; however, the cumulative response varies based upon when during the day high 

ATs occur (Figure 3b). Over the 68-hour period, we observed three peaks in the mortality 

rate when ATs occurred above the threshold: most of the afternoon hours two days prior 

to death, the mid-morning hours (7:00 a.m. to 11:00 a.m.) on the day prior to death, and 

the late afternoon and evening hours (8:00 p.m. to midnight) on the day prior to death.  

 

We focused our local-scale analysis on cases where the 1-day lag 7:00 p.m. local time AT 

occurred above 34°C. This specific AT/time combination was chosen because of the 

robustness of the significant elevation in citywide mortality (based on the randomization 

test for the 35.5°C bin) and the sample size, with 110 such occurrences over the period of 

record. Citywide mortality increases 9.3% following days with a 7:00 p.m. AT above 

34°C (see Figure 2b). Significantly elevated mortality, however, is only observed in 10 of 

the 48 ZCTAs within Philadelphia County (Figure 1). The remainder of the ZCTAs do 

not show a significant increase. ZCTAs associated with higher mortality following hot 

days are located in the central and west portions of the County.  
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Six principal components were extracted from the pool of 25 variables by analyzing a 

scree plot (all have eigenvalues ≥ 1.0).  Collectively they account for 84.3% of the 

variability originally present in the dataset (Table 2). PC1 (35.9% explained variance) is 

highly correlated with surface temperatures from the two satellite images and is also 

strongly related to socioeconomic status. Component 1 scores are also positive in ZCTAs 

with an abundance of high density residential housing and high percentages of residents 

below poverty thresholds and lacking a high school diploma.   

 

Three principal components were significant in the regression model: PC1, PC5, and PC6 

(Figure 4). PC5 is representative of high density housing and mixed-use zoning. PC6 is 

most closely related to age and mixed-use zoning (see Table 1). The regression model 

identified a significant relationship (p < 0.001) between the three components and ZCTA-

level mortality 

 

M* = 0.019 + 0.017(PC1) + 0.012(PC5) – 0.008(PC6) 

 

where M* is the predicted mortality rate within each zip code, and PC refers to the 

respective principal components. The partial p-values for the coefficients were <0.001, 

0.002, and 0.027, respectively, and the overall model adjusted R
2
 was 0.439. The model 

indicates that heat-related mortality is greatest in areas with  1) a high number of 

residents below poverty thresholds,  2) residents lacking a high school diploma, 3) 

residents living in high-density housing, 4) more elderly persons, 5) high surface 

temperatures, and 6) mixed-use zoning.  
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The regression model performs well in identifying high-mortality locations (Figures 5 

and 6). Each ZCTA with observed significant mortality exceedances was predicted to 

have a high mortality rate by the regression model. The range of values predicted by the 

model is not as great as the range in observed values, and in a few cases, model error is of 

the same order of magnitude as the observed mortality departures themselves. Residuals 

from the regression model were found to be randomly spatially distributed as measured 

by Moran’s I statistic (I index 0.08, Z-score 1.13), indicating that an additional term in 

the model to account for spatial autocorrelation is not needed.   
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Discussion 

 

The proper definition of environmental conditions that cause heat-related morbidity and 

mortality is an unsettled question in human biometeorological research.  Various studies 

have employed different threshold variables, such as maximum temperature, afternoon 

AT, and morning dew point temperature [7].  Here, we attempt to address this 

shortcoming by examining AT diurnality for Philadelphia County.  Although there are 

significant mortality elevations when ATs exceed the threshold at any hour, we found 

three periods with exceedances greater than 10%. Mortality rates were highest when 

thresholds were exceeded in the morning or evening hours on the day immediately prior 

to death and in the afternoon two days prior. Examining effects by hour, rather than using 

more conventional metrics like daily maximum, minimum, or mean temperature suggests 

specific hazardous periods. These patterns may arise in part from the specific threshold 

chosen for each hour: the threshold temperature might be expected to follow an even 

smoother pattern that shown in Figure 3a. In particular, the threshold temperature seems 

to increase rapidly on lag 1 between roughly 6:00 and 10:00 a.m., and thus the relatively 

high values here might be leading to the spike in the response at the same time in Figure 

3b. The other peaks in the response curve (Figure 3b) seem less likely to be influenced by 

variations in the threshold curve.  Future work might examine the mortality response 

above various percentiles of hourly temperature rather than a mortality-based threshold. 

The lack of an especially high response on the day of death (Figure 3b) may arise from 

the absence of time for exposure and resultant physiological stress (i.e., the response is 

not “immediate.”)  



68 

 

Mortality following days with high ATs in Philadelphia County is not randomly spatially 

distributed but is concentrated in several distinct regions. Certain ZCTAs exhibit 

mortality that is more than 30% above the daily citywide average for particular AT-time 

combinations. Intra-County variability in heat-related mortality has been observed or 

suggested elsewhere [10, 13-18], but the majority of studies to date have focused on a 

larger spatial scale, single heat events, hot summers, or did not consider the actual 

mortality response. This study is among the first to quantify local-scale mortality 

responses over a multi-decadal period.  

 

Several of the variables associated with higher local-scale mortality are consistent with 

observations and hypotheses in the literature, including high-density housing, low 

socioeconomic status, high surface temperatures, and elderly populations [13, 16]. The 

spatial distribution of heat-related mortality in Philadelphia County during the 1993 heat 

wave was previously examined and the same variables were associated with elevated risk 

[10, 17]. The lack of a strong relationship with recreational zoning is surprising because 

we expected places with more parks and green space to have lower surface temperatures, 

thereby reducing heat and heat-related mortality. Recreational zoning is highest in two 

ZCTAs along the Schuylkill River in the western portion of the County, one of which 

also has a high percentage of high density residential zoning. However, the two zoning 

types are not interspersed, and where green space is not intermingled amongst residential 

areas, the mitigating effect on temperature in dense residential areas may be diminished. 

Although a large body of research points to the advantages of adding green space to 

lower temperatures in the urban environment, we are not able to conclude that ZCTAs 
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with more parkland are associated with lower mortality rates. This does not indicate that 

green space is not beneficial, but rather that many other variables may confound the 

signal, especially at the scale of this analysis. We are continuing to investigate the 

relationship between zoning types, air and surface temperatures, and mortality outcomes.  

 

This study also incorporates the relatively recent approach of including remotely-sensed 

measurements of surface temperature in the study of heat-related mortality. Individuals 

living in areas with higher surface temperatures are at greater risk following hot days. 

This finding is consistent with the expectation that individuals living in hotter places are 

under greater physiological stress [10]. We are encouraged that the results from a remote 

sensing approach are similar to those using other sensors or models of the UHI.   

 

We did not directly identify race as a key factor in the spatial distribution of heat-related 

deaths. Principal component loadings for the racial variables were only high in one 

significant component (PC 1), but loadings for other variables (income, surface 

temperature, educational attainment, and density of development) were higher. As 

previously documented for Phoenix [5], minority populations in Philadelphia County live 

in areas that are associated with higher surface and air temperatures. We directly 

observed the relationship with surface temperature and can infer the relationship with air 

temperature because of the high density of residential development in these locales. 

Racial variable loadings are very small for the other two components included in the 

model (PCs 5 and 6). Thus, we cannot conclude that race alone is a key factor in the 

spatial distribution of heat-related deaths in Philadelphia.  
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There are a few limitations we faced in creating our model for Philadelphia that merit 

discussion. The sociodemographic and zoning variables were derived from data available 

at a fixed point in time (e.g., the year 2000 census). However, the underlying 

demographics and zoning ordinances both change over time, a process we were unable to 

capture using this approach. This introduces some uncertainty into the results, and future 

research should explore local-scale mortality patterns over both space and time.   

 

We were especially interested in exploring the relationship between the complex 

temperature patterns present in the metropolitan area and heat-related mortality. Satellite 

imagery has become much more accessible and makes this type of analysis possible using 

surface temperature measurements.  The surface temperature field may be much different 

from the air temperature field over the same area, and we are not claiming that the two 

are identical, although some research indicates a high degree of correlation between the 

two fields during daylight hours [24].  There are many aspects of the urban heat island 

worthy of consideration in the context of urban health, including day/night variability and 

the contrast between the surface heat island and that of the canopy layer. We are 

investigating if residents of places with higher morning surface temperatures on hot days 

are at greater risk.  

 

We are currently implementing a cloud-masking scheme that will increase the number of 

available images as well as extending our sample prior to 2004. We believe that the use 

of remote imagery in our study, and others, could be greatly enhanced if more surface 

temperature images were used. In just the two used in our study, there is variability in the 
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surface temperature pattern that may be linked to seasonal differences, synoptic-scale 

conditions, or other environmental controls. An additional concern with the satellite 

imagery is that many of the image pixels are measuring rooftop temperature, which may 

not be representative of the surface conditions experienced where individuals might be 

living, working, or spending time outdoors.  

 

We observed a high correlation between the surface temperature field and several 

socioeconomic variables, as evident by the high loadings on the first principal 

component. The use of principal components analysis represented a tradeoff between 

examining potential effects of a larger suite of variables believed to be associated with 

risk and interpretability of results. Although we can definitively say that places with 

higher surface temperatures are associated with higher mortality risk, those places are 

also those with a high percentage of residents living in poverty and a high percentage of 

residents without a high school diploma. This pattern has been observed for other cities in 

the United States [5] and makes it difficult to pinpoint a causal relationship between the 

individual predictor variables and the health response. Even if it is difficult to separate 

the effects of individual variables, however, identifying characteristics of places 

associated with higher heat-related mortality can lead to improvements in the allocation 

of medical resources during dangerous conditions. Our future analysis in other cities in 

the United States where  socioeconomic status and surface temperatures may not be as 

highly correlated may shed light on the relative impact of exposure, education, and 

income on heat-related risk.  
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The role of air quality in leading to increased mortality during heat waves is a topic of 

continued debate in the literature and is beyond the scope of this study. As heat waves are 

commonly associated with clear skies and stagnant air, conditions are ideal for the rapid 

buildup and accumulation of various pollutants. It is likely that during heat waves a 

portion of the excess deaths are attributable to the thermal stress whereas others might be 

linked to high concentrations of unhealthy atmospheric constituents. We did not 

incorporate air quality data into this study but encourage future study of the interactive 

effects of heat and air quality on summertime mortality as well as the potential for 

differential mortality over space as a result of local-scale air quality variability. Both are 

topics of active ongoing investigation by the authors and many others. We also note that 

we were unable to locate air conditioning use data at an appropriate resolution for this 

study. Air conditioning has become widely adopted in the United States and increases in 

availability have been linked to decreases in heat-related mortality [2]. However, we 

believe that air conditioning availability and usage is likely highly correlated with 

measures of socioeconomic status, and thus may be implicitly included in our analysis. 

Access and willingness to use medical care is a potential confounder at the individual 

level that we were not able to represent at the scale of this study, although it may be 

highly correlated with the socioeconomic variables included. Finally, the use of AT may 

not identify all of the critical physiological factors in evaluating the heat-mortality 

relationship and we intend to adopt this approach with other physiological indices in the 

future.   
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Intra-city variability in the response to high heat and humidity conditions indicates an 

opportunity for the improvement of heat-health watch-warning systems (HHWWS) that 

have been deployed in cities across the globe. When a dangerous event is forecast, for 

example, emergency managers might reprioritize allocation of medical resources to those 

geographic areas responsible for the largest portion of the heat-related deaths in the past. 

A more thorough effort to build and validate a predictive model of both the timing and 

placement of heat-related deaths is recommended prior to operational changes in any 

HHWWS. Longer-term strategies to reduce the heat stress and health burden in these 

localities might be considered as well, such as the implementation of building 

weatherization programs, adding green space to the city landscape, adoption of low-

albedo and/or green building practices, and location of future healthcare facilities.  
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Conclusions 

 

We have identified statistically significant fine-scale spatial variability in heat-related 

mortality within Philadelphia County, PA, over the period 1983–2008.  Following days 

on which the 7:00 p.m. AT exceeds 34°C Countywide, mortality is significantly elevated, 

but the excess deaths are not randomly distributed throughout the metropolitan area. 

Instead, only 10 of the 48 individual ZCTAs that comprise the County exhibit 

significantly higher mortality. Compared with areas that do not have elevated mortality 

following hot days, these 10 ZCTAs have a higher percentage of elderly residents, a 

higher percentage of residents of low socioeconomic status, more high-density residential 

and mixed-use zoning, higher surface temperatures, and more recreationally-zoned area. 

A portion of the spatial distribution of heat-related mortality arises from underlying 

demographic, social, and environmental variability. The overall Countywide response 

varies based on the specific timing and intensity of high heat and humidity. Afternoon 

AT thresholds are higher than morning thresholds, but especially high mortality rates are 

observed when the threshold is crossed either during the mid-morning or late afternoon 

hours.  

 

The significant local-scale variability in heat-related mortality identified for Philadelphia 

County suggests an opportunity for improved heat preparedness and management 

strategies. In the case of alerting the public, localities associated with excess mortality 

could receive additional notification or special forecasts when hot conditions are 

expected. These places are also prime candidates for facilities that can help residents 
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escape the impact of high ATs. The authors are adopting this approach for other United 

States cities in different climate zones to determine if certain factors are consistently 

associated with elevated risk during heat waves.  Understanding the characteristics of 

places especially sensitive to the dangers of high heat and humidity may ultimately 

reduce the impact of extreme summertime conditions on human health.  
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Figures  

 

Figure 1.  

Detailed legend: Mortality exceedance rates for Philadelphia county ZCTAs on days 

following those with 7:00p.m. local time apparent temperatures greater than 34°C. 

ZCTAs with mortality rates significantly greater than the background rate are identified 

by a white cross. The location of Philadelphia International Airport (PHL), the source of 

meteorological data employed in this study, is represented by the airplane symbol.  
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Figure 2.  

Detailed legend: (a) Landsat thermal image of surface temperatures (K) in Philadelphia 

County, PA, from July 29, 2008. Zip code tabulation areas (ZCTAs) that comprise the 

county are shown with white outlines. (b) The mean surface temperature within each of 

the Philadelphia County ZCTAs is shown with grayshading.  
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Figure 3.  

Detailed legend: (a) Threshold apparent temperatures for heat-related mortality in 

Philadelphia county, PA. (b) Mortality exceedances for Philadelphia County, PA when 

apparent temperatures exceed the threshold between midnight and 8:00 p.m. local time on 

the day of death (lag 0), and for each of the 24 hours on the two days prior.  
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Figure 4.  

Detailed legend: Principal component scores by ZCTA for three significant components 

(a: PC1, b: PC5, c: PC6) included in regression model relating explanatory variables to 

heat-related mortality. The percentage of variance explained by each component is shown 

in parentheses.   
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Figure 5.  

Detailed legend: (a) Regression model predicted mortality exceedances for Philadelphia 

County ZCTAs on days following 7:00p.m. local time apparent temperatures above 

34°C. (b) Differences between observed mortality rates and model predictions by ZCTA.  
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Figure 6.  

Short title: Comparison of model predictions and observations.  

Detailed legend: Scatterplot comparing observed mortality rates and model predictions on 

days following  7:00p.m. local time apparent temperatures above 34°C by ZCTA. The 

1:1 line is included for reference. Filled circles identify the 10 ZCTAs with statistically 

significant mortality exceedances in Figure 1. 
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Tables.  

Table 1. List of explanatory variables for assessing the spatial distribution of heat-related 

mortality exceedances and loadings for extracted principal components.  Loadings greater 

than 0.6 or less than -0.6 are shown with bold text and significant components in the 

regression model are identified with an asterisk.   

 

 
 

 

 

 

1 (35.9)* 2 (16.4) 3 (10.2) 4 (7.7) 5 (5.5)* 6 (4.4)*

ZONING AND LAND USE

% Low Density Residential -.636 -.290 .122 .398 .017 .088

% Mid Density Residential -.402 -.456 .012 -.015 -.578 .087

% High Density Residential .702 .131 -.217 -.079 .449 -.129

% Recreational -.404 -.438 -.058 .304 .396 -.323

% Industrial .161 .020 .646 -.420 .229 .161

% Mixed Use -.073 .142 -.256 .394 .434 .592

% Commercial .045 .797 -.418 .015 .029 .036

% Building Coverage .514 .663 -.442 -.053 -.049 -.078

DEMOGRAPHICS

% White -.647 .610 .361 -.129 .046 -.060

% Black .471 -.648 -.513 .086 -.071 .051

% American Indian .655 .039 .457 .287 .012 -.028

% Asian -.017 .695 -.165 .144 -.244 .099

% Pacific Islander .400 .271 .255 .656 .003 .181

% Other race .615 .146 .541 .333 -.079 -.041

% Two or more races .500 .324 .292 .572 -.334 -.110

% Nonwhite .647 -.610 -.361 .129 -.046 .060

% Over age 65 -.345 .300 -.003 .142 .159 -.620

% Without hs diploma .799 -.135 .402 -.191 .107 -.095

Median per capita income -.651 .455 -.328 .181 .078 -.103

% Below Poverty Line .912 -.005 .006 .066 .266 .050

% Below 2x Poverty Line .925 -.115 .060 -.053 .202 -.033

% Living Alone over age 65 -.648 .044 .370 -.187 .095 .177

% Living Alone -.768 .260 .086 -.085 .200 .247

SURFACE TEMPERATURE

Surface Temp. Image (5/15/2004) .762 .360 .001 -.332 -.201 .107

Surface Temp. Image (7/29/2008) .849 .340 -.152 -.261 -.124 .042

 
Component (% Variance Explained)
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Table 2. Land use zoning categories aggregated from Philadelphia Zoning Code.  

 

Zoning Category 
Description 

Low Density 

Residential 
Suburban, single-family, detached households with lawns 

Mid Density 

Residential 
Semi-detached or attached households with some green space 

High Density 

Residential 
Attached households with minimal or no green space 

Recreational Parks and protected natural areas 

Industrial All industrial complexes, stockyards, or ports 

Commercial Center-city office buildings, retails centers, corner shops 

Mixed-Use 
Strip malls, movie theaters, stadiums, hospitals, colleges, 

condominiums 
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ABSTRACT 

Extreme heat events are a leading cause of weather-related mortality. Most research to 

date has considered the aggregate response of the populations of large metropolitan areas, 

but the focus of heat-related mortality and morbidity investigations is shifting to a more 

fine-scale approach where impacts are measured at smaller units such as postal codes. 

But most existing statistical techniques to model the relationship between temperature 

and mortality cannot be directly applied to the intra-city scale because small sample sizes 

inhibit proper modeling of seasonality and long-term trends. Here we propose a time 

series technique based on local-scale mortality observations that can provide more 

reliable information about vulnerability within metropolitan areas. The method combines 

a generalized additive model with direct standardization to account for changing 

mortality rates in intra-city zones. We apply the method to a 26-year time series of postal 

code-referenced mortality data from Philadelphia County, USA, where we find that heat-

related mortality is unevenly spatially distributed.  Fifteen of 46 postal codes are 

associated with significantly elevated mortality on extreme heat days, a majority of which 

are located in the central and western portions of the County. In some cases the local-

scale mortality rate is more than double the County average. Identification of high-risk 

areas can enable targeted public health intervention and mitigation strategies. 
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INTRODUCTION  

Most studies examining the heat-health response of urban populations have used health 

data aggregated across cities or counties, but there is increasing interest in measuring the 

heat-health response at a finer spatial scale.[1–4] At the broadest level, this research is 

motivated by the significant health burden posed by extremely high heat and humidity 

levels in many middle-latitude cities each summer. On and immediately following days 

in which the temperature (or a temperature-humidity measure) exceeds a location-specific 

threshold, the mortality rate often increases several percent or more above what would 

normally be expected at that time of the year.[3,5] This overall relationship is robust to 

the particular statistical method chosen by the investigator and often the specific 

independent variable used for analysis.[5,6]  

The extension of this research field to a finer spatial resolution is largely motivated by the 

heterogeneity in environmental and sociodemographic factors within metropolitan areas. 

There is general agreement that the major individual-level risk factors for heat-related 

mortality are age, income, and isolation;[7,8] others report additional factors including 

race, pre-existing medical conditions, activity level, and education.[9-10] Thus it is 

already possible to determine those zones within cities where the heat-related mortality 

risk might be expected to be highest.[11] Spatial information at this scale could be 

incorporated by public health officials to efficiently locate medical resources for 

emergency response measures taken before, during, and immediately following extreme 

heat events. In a growing number of cities, these protocols are associated with the 

activation of a heat-health warning system.[12]  Geographic specification of high risk 
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zones could also enhance our understanding of the impacts of the urban heat island on 

human health, potentially providing empirical context for longer-term mitigation 

measures related to green space and building weatherization.[13-14]   

Few studies, however, report intra-city zones where observed mortality is highest when 

extreme heat occurs. The limited exploration of this research area might be partially 

attributable to certain methodological challenges that we are aiming to overcome with the 

approach presented in this manuscript. Methods for evaluating the impact of extreme heat 

on human health tend to vary by discipline, such as studies designed around synoptic air-

mass types and individual-level analysis using case-only and case-crossover methods.[6] 

In recent years, the use of various time series strategies including generalized additive 

models has become more common, most recently leading to the adaptation of distributed 

lag non-linear models designed to capture the impacts of a range of temperatures across a 

range of lags.[15,16] 

This shift toward more flexible modeling strategies has not, to date, accommodated the 

intra-city scale where sample sizes become relatively small through subsetting of the 

original dataset across both space and time. For example, in the case of Philadelphia 

County, Pennsylvania, a metropolitan area in the United States home to nearly 2 million 

residents, the average daily mortality within each of the 48 postal codes that comprise the 

county is less than 1.0.[17] Conceptually one could model the temperature-mortality 

relationship for each individual unit using a Poisson regression time series framework, 

accounting for a number of confounding factors. However, at this scale there are not 

sufficient sample sizes large enough to model correctly the seasonality and long-term 
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temporal mortality trends that must be accounted for when evaluating the impacts of high 

temperature events.  

Recent studies that do use area-based outcome data to map heat-related risk acknowledge 

limitations based on sample size or methodology, focus on single extreme events, make 

certain assumptions about seasonality or long-term trends (or do not account for them), 

combine days into certain larger subsets, or rely on aggregations of small spatial units to 

a coarser scale where existing methods can be used.[1,2,17-23] To the best of our 

knowledge, no published study uses a method for analyzing a fine-scale, long-term 

mortality time series using a technique that a) accounts for varying year-to-year mortality 

seasonality and long-term time trends and b) estimates the temperature dose-response 

curve for each individual geographic unit. At a minimum, the use of a long time series to 

estimate local-scale effects might increase the applicability of results, but it is also 

possible that further model specification would lead to a different estimation of heat 

effects. Here we present a two-stage method for evaluating local-scale heat risk that 

combines elements of various approaches previously presented for measuring risk at the 

aggregate scale. Our goal is to estimate the temperature-mortality relationship for small 

spatial units within cities to foster analysis of environmental and social factors that might 

be responsible for spatial variability in risk. Ultimately, estimation of temperature effects 

on health at the sub-city scale based on outcome data could enhance practical measures 

aimed at improving public health.  

 

METHODS  
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We collected daily all-cause mortality records for Philadelphia County, Pennsylvania, 

USA, for the period 1983–2008. The data were obtained from the Pennsylvania State 

Department of Health and were de-identified, thus no IRB approval was necessary for 

this research.  The records contain the postal code of residence of each decedent as well 

as the date of death. We aggregated the records to a matrix M with a sum of deaths within 

each postal code z on each day in the record d and a vector N with a sum of deaths across 

all postal codes for each day in the record.  Two of the 48 postal codes (19108 and 

19112) were excluded from the analysis because they represent commercial districts 

where only a few individuals reside. No age groups were excluded from the analysis. 

Additional details on these mortality data can be found elsewhere.[17]  

Hourly weather station data were obtained from the National Climatic Data Center for 

Philadelphia International Airport located on the southern perimeter of Philadelphia 

County. Afternoon maximum temperature (T PM) was the exposure metric used, 

calculated as the maximum temperature observed between 1300 and 1900 local standard 

time. This time series has less than 0.1% missing observations over the study period. The 

mean summertime T PM during the time period was 28.0°C; the maximum was 39.4°C.  

The analysis was completed in three stages: (i) estimation of seasonality and long-term 

trends for the entire county, (ii) estimation of seasonality and long-term trends for each 

individual postal code, and (iii) estimation of heat effects for each individual postal code.  

 

Stage I: Estimation of county-level seasonality and trend 
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The first stage of analysis utilizes the daily mortality time series aggregated across all 

postal codes within the County (Figure 1). We employed a generalized additive model to 

estimate the effects of afternoon temperature (T PM) and long-term trends and seasonality 

(Trend) on daily mortality counts (M)  using the equation 

                                         

where α is the model intercept and s is a penalized smoothing spline.[24,25] This type of 

semiparametric model has been widely used to estimate the effect of environmental 

factors on mortality while accounting for confounding variables including seasonality. 

[20, 26-28]. The modeled seasonality (which varies from year to year, represented by the 

solid line in Figure 1) will be carried throughout the local-scale stage of the model, 

whereas the other components (temperature and long-term trends) will be flexible. The 

model utilized a quasi-Poisson link function and splines with five degrees of freedom per 

year for the trend/seasonality variable and six for temperature.  Sensitivity analysis was 

performed to compare model deviance to the maximum number of degrees of freedom 

available for the smoothing terms. The use of five degrees of freedom per year for the 

Trend term provides the model sufficient flexibility to capture seasonal effects within 

each year as well as long-term time trends across the entire record (this term is 

represented by the solid line in Figure 1). We extracted the model predicted value B from 

the Trend term for each day in the period of record (often referred to as a “mortality 

baseline”). 

A new time series, the daily standardized mortality ratio (SMR), is calculated by dividing 

the observed mortality total M by baseline mortality B on each day d. B was generated 
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assuming a temperature of 10°C on every day in the period of record (the specific value 

chosen here does not impact the results because of latter calculations using a “relative to 

baseline” framework). An SMR of 1.0 indicates that the mortality was equal to 

expectations for time of year and date in the period of record; values greater than 1 

indicate excess mortality and less than 1 a mortality deficit.  

Stage II: Estimation of postal code-level seasonality and trend 

The next step is to create an SMR time series for each postal code. These time series need 

to account for demographic changes that might lead to temporal trends in the daily 

mortality count. The other major component of the generalized additive model is the 

interannual variability in mortality seasonality. The specific shape of the seasonal 

mortality pattern may vary from one postal code to another, and each postal code’s 

seasonality may differ from the County aggregate. Because of sample size limitations, 

however, it is not possible to generate a model within which the shape of the seasonal 

mortality curve within each postal code can vary from year to year. It is possible to 

generate an average seasonality curve for each postal code over the entire period of 

record, but this approach would miss any shifts in seasonality related to larger-scale 

occurrences such as the timing of the flu season. Accordingly, we wish to preserve the 

interannual variability in seasonality derived from the aggregate data (B), with the 

tradeoff that we do not specify the shape of seasonality within each postal code 

individually. Thus we are using inference to estimate local-scale effects based on the 

more reliable coarse-scale data. We calculate an SMR value for each postal code z and 

day d using the equation 
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where M is the number of deaths within each postal code z on day d, μ() represents the 

mean daily death count over the entire period of record, and θ() represents the average 

mortality rate within each postal code for the calendar year containing day d.  The 

denominator for the postal code SMR time series is calculated by scaling and shifting the 

seasonality curve from the citywide data to match each postal code’s mortality rate on a 

year-to-year basis. This forces the citywide seasonality curve’s shape on each postal 

code, but allows flexibility in the time series to accommodate the possibility of changing 

postal-code level population and mortality trends over the period of record. We then 

divide the observed daily mortality counts by the daily values calculated from this 

adjusted seasonality curve to produce the SMR time series for each postal code.  

The resulting time series contains daily standardized mortality ratios for each postal code 

that exclude seasonality (based on the city-wide mortality records) and long-term 

population and mortality trends (specified for each postal code). In the next stage of 

analysis we calculate the dose-response curve for each postal code using a binning 

method previously used to evaluate aggregate city-wide response.[5]  

 

 

Stage III: Estimation of heat effects within postal codes 
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First we test the binning method on the citywide data with overlapping 3°C intervals. A 

randomization test is used to determine if the mortality response for a subset of days we 

identify as “extreme heat” differs from the normal summertime mortality rate. For a 

given sample of n days associated with an extreme heat event, we draw 1,000 random 

subsets of size n from all summertime days in the period of record, where summer is 

defined as the 150
th

 through 275
th

 day of the calendar year. The mean SMR is calculated 

for each of the 1,000 subsets, and the 95
th

 percentile of this set of means is chosen as the 

critical value for a one-tailed test of the mean SMR of the subset of days associated with 

extreme heat. The test statistic T is the extreme heat sample mean divided by the critical 

value (T > 1 indicates a significant mortality increase). We also calculate the percent 

increase in the SMR on extreme heat days by dividing the sample mean over the mean 

SMR of all summer days in the period of record (the mean SMR of summer days in the 

period of record is not exactly 1.0 because the original models were calculated using the 

full year-data to model the complete seasonal cycle as accurately as possible). This 

procedure is then repeated for every postal code within each city using each postal code’s 

respective de-seasoned time series. The complete local-scale workflow is demonstrated in 

Figure 2.  

Generalized additive models were constructed using the gam function of package mgcv 

run in R version 2.15.1. All additional analyses were completed using MATLAB version 

7.13. [29-31] 

RESULTS  
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The generalized additive model for Philadelphia identified significant variability related 

to seasonality and long-term trends (captured in one variable) and temperature. Both 

terms in the model were significant (p<0.001), and the model fitted values accounted for 

31.7% of the variance in the original data (R
2
). Visual inspection suggested residuals 

were normally distributed and residual variance was not correlated with model predicted 

values. The seasonality-trend component of the time series (Figure 1) shows an overall 

trend toward lower mortality rates within the County over the time period, particularly 

within the last 20 years of the record. On average, mortality is highest in January (48.4 

deaths per day) and lowest in August (39.5 deaths per day), although the amplitude and 

specific timing of the interannual mortality maximum and minimum are variable.  

The dose-response curve for Philadelphia County (Figure 3) follows the U- or J-shaped 

mortality-temperature relationship that has been found for many other middle latitude 

cities.[6] Temperatures between 5–10°C are associated with minimum mortality, and 

maximum mortality is associated with the highest temperatures. When the curve is 

evaluated relative to the mortality rate associated with the mean summertime daily 

maximum temperature of 28°C, we find a statistically significant increase in mortality 

above 33°C (approximately the 90
th

 percentile of summertime afternoon maximum 

temperatures). This is the first point at which the lower bound of the mortality confidence 

interval occurs above the mortality rate associated with normal summertime conditions. 

The shape of the curve indicates mortality rates approaching up to 10% above baseline 

when afternoon maximum temperatures near 40°C.  The seasonality and trend time series 
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for the individual postal codes showed variability relative to that constructed for the 

overall countywide data (e.g., Figure 2b). 

The shape of the temperature-mortality curve for Philadelphia County based on the 

modeled relationship from the generalized additive model is quite similar to that obtained 

from the binning analysis (Figure 4). Although the curve from the binning analysis is not 

as smooth as that obtained from the generalized additive model, and there is some 

divergence at the low end of the temperature range, the two curves are nearly identical for 

the range of values one might be concerned with when investigating extreme heat effects. 

The relative risk values obtained from the binning analysis fall within the 95
th

 percent 

confidence interval from the generalized additive model. The width of the confidence 

intervals differs between the two methods but follows the same general pattern (see 

Supplementary Material Figure 1). The agreement between these two curves supports the 

use of the binning approach at the postal code level where a generalized additive model 

cannot be created because of the small sample sizes.  

During the study period there were 370 days (14 per year) when the afternoon maximum 

temperature exceeded the threshold of 33°C. On these days, the average mortality rate 

increased by an average of 6.4%. Only fifteen of the 46 postal codes examined were 

associated with statistically higher mortality rates in the same set of study days. Many of 

these postal codes comprise a nearly contiguous region near the center and western 

boundary of the County (Figure 5). The mortality rate in postal codes with significantly 

high mortality on extreme heat days ranged between 6.7 and 22.6% above baseline. 

Across the entire County, 39 postal codes had mortality rates above the baseline rate and 
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seven had rates below the baseline. Five postal codes were associated with increases of 

6.7% (the lowest mortality elevation among significant postal codes) or more but these 

increases were not statistically significant based on the randomization test, which is 

sensitive to sample size. The places identified as “high mortality” are not necessarily 

those that are typically associated with higher mortality rates on non-extreme heat days 

because all calculations are relative to the baseline mortality specific to each postal code. 

Thus residents of certain postal codes in Philadelphia County have historically been at 

greater risk of mortality following extreme heat days compared to residents in 

neighboring areas. 
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DISCUSSION  

Using a new method developed for the investigation of local-scale mortality effects 

associated with extreme heat, we were able to confirm a hypothesis that there is 

significant spatial variability in heat-related mortality within Philadelphia County, USA. 

This method provides a framework for future investigations into sub-city-scale modifiers 

of the impact of extreme temperatures on human health. The finding of differential 

mortality within a metropolitan area has implications for improvements to both short- and 

long-term measures aimed at reducing the public health burden associated with extreme 

heat. Future heat-warning systems, for example, could trigger a more localized series of 

intervention measures. Recent studies have documented the effectiveness of various 

longer-term strategies aimed at reducing thermal stress through the use of improved 

insulation, double-paned windows, reflective coverings for exterior surfaces, green space, 

and more.[32,33] Public programs that support such infrastructural enhancements might 

first focus on the regions where the health burden related to high temperatures is the 

greatest. We suggest that resources be proportionally allocated based on geographical 

patterns in susceptibility. 

The approach we have presented is applicable for other cities with similar spatial 

subdivisions of the population and geographically-specified mortality records. In the 

United States, some mortality records may be available at the finer census tract scale. The 

results of this study are likely sensitive to the specific postal code boundaries, an issue 

commonly facing spatial geographers and ecological design.[34] There are other 

limitations of this work that could be differently addressed by future researchers. We did 
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not include modification of the temperature-health relationship by air pollutants. Previous 

work has documented that there may be some effect modification, namely by ozone and 

particulates, but the air pollution effect may be small compared to the temperature effect 

during extreme summer events.[35,36] This study has also focused on single day heat 

events without consideration of cumulative effects and/or lag structures, and there is an 

added health burden when high temperatures are observed several days in 

succession.[16,37,38] We did not examine whether the response differs by age groups, 

which could provide additional information regarding the appropriateness of various 

intervention strategies in different locations. Finally, these results differ somewhat from 

those previously presented for Philadelphia County where seasonality and long-term 

trends were modeled using direct standardization based on the changing population and 

age structure of the population. [17]  

Quantifying the varying effect of temperature across small spatial units could also be 

addressed with a spatiotemporal Bayesian hierarchical model, as implemented in a wide 

range of other studies adopting an ecological design [39,40]. Given the contrasting 

theoretical frameworks and estimates of uncertainty, along with differences in necessary 

computer processing time, it would be useful to compare such an approach to the one we 

have presented here. Ongoing work by the authors is directed at applying this 

methodology for a suite of other cities in different climatic regions as well as relating the 

spatial patterns in heat-related mortality to various environmental and sociodemographic 

variables. Focusing on a higher spatial resolution can improve the understanding of the 
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factors linked to heat-related mortality, subsequently leading to more effective strategies 

to mitigate the adverse health effects of extreme heat.   
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FIGURES 

 

Figure 1. The time series of daily all-cause mortality for Philadelphia County, PA, USA, 

1983–2008.  The gray dots represent daily observations and the solid black line 

represents the seasonality and trend component (5 degrees of freedom per year) of a 

generalized additive model with the effect of temperature removed. On this plot the 

seasonality and trend component is plotted assuming a temperature of 10°C.  
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Figure 2. A graphical illustration of the described method for estimating postal code-

level temperature effects. Panel (a) is a plot of the daily deaths in postal code 19104 in 

the first year of the period of record. In panel (b) the postal code-level seasonality and 

trend estimates are shown compared to those for the entire County. In panel (c) the raw 

death counts in (a) have been transformed to a standardized mortality ratio by dividing 

the raw count by the baseline mortality rate shown in panel (b). Panel (d) shows the 

estimated relative risk of mortality when the one-day lag afternoon maximum 

temperature exceeds a range of thresholds incrementing by 1.5°C. The dashed line was 

added to aid in visual inspection only. The arrow identifies the point on the postal code-

level dose-response curve corresponding to the Countywide temperature threshold (and 

map of effects, Figure 5).  
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Figure 3. The one day lagged temperature-mortality relationship for Philadelphia 

County, PA, USA, derived from a generalized additive model using 26 years of daily 

mortality records with seasonality and long-term trends removed and daily afternoon 

maximum temperature.  The solid black line represents the model predicted daily 

mortality and the gray lines represent the 95
th

 percentile confidence interval for the 

predicted values. The vertical bar indicates the temperature threshold at which mortality 

becomes significantly higher than that associated with mean summertime conditions 

(represented by the horizontal dashed line). The predicted values shown assume a 

reference background mortality rate of 34 deaths per day, the average summer mortality 

over the last three years of the time series.  
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Figure 4. A comparison of the one day lagged temperature-mortality relationship for 

Philadelphia County estimated by a generalized additive model (black line) and the same 

relationship estimated by a binning method that examines the mortality response for 

overlapping temperature intervals. In both cases seasonality and long-term trends in the 

mortality record were removed with a generalized additive model.  
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Figure 5. Mortality rates within forty-six postal codes comprising Philadelphia County 

for a sample of 192 days immediately following extreme heat days on which the 

afternoon maximum temperature exceeded 33°C. The mortality rate is shown as a 

percentage relative to normal summertime conditions (34 deaths/day for the entire county 

for the most recent three years, see Figure 2). ZCTAs with a statistically significant 

elevation in mortality on extreme heat days are identified with a plus sign (+).  
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SUPPLEMENTAL MATERIAL  

 

Table S1. Descriptive mortality statistics for the 46 postal codes in Philadelphia, PA 

examined in this study. The “Number of Zeros” refers to the number of days in the period 

1983–2008 within each postal code with a daily death count equal to zero.  

Population 

(Year 2000)

Mean Daily 

Deaths
Minimum

5th 

Percentile

25th 

Percentile
Median

50th 

Percentile

75th 

Percentil

e

95th 

Percentile

Number of 

Zeros (n=9490)

Philadelphia County 1,458,614 43.16 15 30 37 43 49 57 84 0

ZCTA 19102 4,094 0.06 0 0 0 0 0 1 2 8,966

ZCTA 19103 17,668 0.51 0 0 0 0 1 2 5 5,699

ZCTA 19104 47,924 1.04 0 0 0 1 2 3 10 3,482

ZCTA 19106 9,078 0.10 0 0 0 0 0 1 3 8,606

ZCTA 19107 11,025 0.17 0 0 0 0 0 1 3 8,024

ZCTA 19111 57,784 1.83 0 0 1 2 3 4 9 1,611

ZCTA 19114 30,041 0.82 0 0 0 1 1 3 6 4,123

ZCTA 19115 30,756 1.11 0 0 0 1 2 3 7 3,144

ZCTA 19116 31,949 0.77 0 0 0 1 1 2 6 4,411

ZCTA 19118 9,588 0.35 0 0 0 0 1 2 5 6,754

ZCTA 19119 28,817 0.85 0 0 0 1 1 3 6 4,054

ZCTA 19120 60,737 1.35 0 0 0 1 2 4 8 2,610

ZCTA 19121 33,429 1.42 0 0 0 1 2 4 8 2,413

ZCTA 19122 18,908 0.46 0 0 0 0 1 2 5 6,015

ZCTA 19123 9,427 0.32 0 0 0 0 1 1 4 6,920

ZCTA 19124 63,384 1.70 0 0 1 1 2 4 9 1,805

ZCTA 19125 23,345 0.71 0 0 0 1 1 2 7 4,649

ZCTA 19126 18,275 0.52 0 0 0 0 1 2 6 5,707

ZCTA 19127 5,946 0.16 0 0 0 0 0 1 3 8,121

ZCTA 19128 35,098 1.07 0 0 0 1 2 3 7 3,289

ZCTA 19129 12,293 0.26 0 0 0 0 0 1 3 7,365

ZCTA 19130 23,273 0.62 0 0 0 0 1 2 5 5,116

ZCTA 19131 46,366 1.53 0 0 1 1 2 4 9 2,048

ZCTA 19132 38,403 1.66 0 0 1 1 2 4 9 1,859

ZCTA 19133 28,362 0.69 0 0 0 0 1 2 5 4,779

ZCTA 19134 53,622 1.75 0 0 1 2 3 4 9 1,768

ZCTA 19135 28,542 0.90 0 0 0 1 1 3 6 3,877

ZCTA 19136 36,922 1.07 0 0 0 1 2 3 7 3,215

ZCTA 19137 6,563 0.29 0 0 0 0 1 1 4 7,091

ZCTA 19138 29,164 0.88 0 0 0 1 1 3 7 3,963

ZCTA 19139 42,611 1.56 0 0 1 1 2 4 9 2,066

ZCTA 19140 53,034 1.48 0 0 1 1 2 4 9 2,244

ZCTA 19141 32,058 0.97 0 0 0 1 2 3 6 3,665

ZCTA 19142 27,372 0.73 0 0 0 1 1 2 6 4,616

ZCTA 19143 68,447 1.97 0 0 1 2 3 5 10 1,421

ZCTA 19144 47,375 1.26 0 0 0 1 2 3 7 2,751

ZCTA 19145 43,053 1.45 0 0 1 1 2 4 8 2,226

ZCTA 19146 35,773 1.30 0 0 0 1 2 4 9 2,733

ZCTA 19147 32,263 0.94 0 0 0 1 1 3 7 3,751

ZCTA 19148 46,497 1.57 0 0 1 1 2 4 11 2,033

ZCTA 19149 48,603 1.27 0 0 0 1 2 3 7 2,705

ZCTA 19150 25,838 0.55 0 0 0 0 1 2 4 5,527

ZCTA 19151 29,703 0.84 0 0 0 1 1 3 7 4,133

ZCTA 19152 28,957 1.33 0 0 0 1 2 3 7 2,555

ZCTA 19153 12,183 0.25 0 0 0 0 0 1 3 7,400

ZCTA 19154 34,069 0.69 0 0 0 0 1 2 7 4,776
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Figure S1. A comparison of the confidence intervals for the one day lagged temperature-

mortality relationship for Philadelphia County. The darker shading indicates the 

confidence interval estimated using a binning method and the lighter shading indicates 

the interval estimated using a generalized additive model. Both models included a term to 

model the seasonality and long-term trends in mortality rates.  
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Chapter 4. Geographic Dimensions of Heat-Related Mortality in Seven U.S. Cities 

DM Hondula, RE Davis, MV Saha, CR Wegner, LM Veazey 
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Background: Heat-related mortality is a leading weather-related cause of death, and 

spatially targeted intervention measures may help protect the public when dangerous 

conditions occur. Although it is believed that heat-related risk varies from place to place 

within metropolitan areas, there is little quantitative evidence of such variability.  

Objectives: We sought to identify places within large U.S. metropolitan areas where the 

mortality rate is highest when extreme heat occurs. We then aimed to identify key 

variables associated with high-risk areas and determine if the set of explanatory variables 

was consistent from one city to another. 

Methods: Temperature-mortality relationships for seven large cities in the United States 

were determined with a Poisson regression model based on daily georeferenced mortality 

data from a twenty-year period. The models accounted for long-term time trends in 

mortality and mortality seasonality. We used these models to identify a statistical 

threshold temperature within each city when mortality becomes abnormally high, and 

then quantified mortality rates for the postal codes comprising each city on above-

threshold days. All subsets and principal components regression were used to determine 

the demographic and environmental variables most closely associated with intra-city 

variability in heat-related risk.  
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Results: A threshold temperature, above which mortality statistically significantly 

increased above normal summer rates, was found for six of the seven study cities. 

Mortality increased by an average of 2.9–6.6% on above-threshold days. Intra-city 

mortality rates on above-threshold days were not spatially uniform. Statistically 

significant increases in mortality were found in 12–44% of the postal codes comprising 

each city. Postal codes associated with greater risk were associated with more developed 

land, lower income, more elderly, more young children, lower educational attainment, 

and prevalence of various races, but the specific variables included in regression models 

varied from one city to another. Multivariate regression models accounted for 14.1–

33.5% of the spatial variability in heat-related mortality. Principal components regression 

models accounted for less variability and highlighted a different set key risk factors in 

some cities. A principal component reflective of general socioeconomic status was 

included as a key risk factor in models for five cities.  

Conclusions: Historical data demonstrate considerable intra-city variability in mortality 

rates on warm summer days within six large U.S. metropolitan areas. There is 

quantitative evidence that residents of certain locations are at greater risk from extreme 

heat and could benefit from spatially targeted intervention strategies. As the 

characteristics of these high-risk locales vary from one city to another, public health plans 

focusing on extreme heat vulnerability should be tailored to individual jurisdictions.  
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Introduction 

Forecasts of more severe and frequent heat waves in the future have captured the 

attention of public health officials and researchers. Extreme heat already ranks as the 

leading weather-related cause of death in the United States (Luber et al. 2006), and the 

possibility that the related public health burden will increase in the future has motivated a 

range of stakeholders to pursue new strategies to protect citizens (Lowe et al. 2011, 

Yardley et al. 2011). We use multidecadal, geographically referenced medical records to 

test two hypotheses: (1) that heat-related mortality is spatially variable within major 

metropolitan areas, and (2) that places with higher percentages of elderly residents, lower 

incomes, and a greater extent of built environment features will be those with the highest 

rates of heat-related mortality. If confirmed, such variability would encourage more fine-

scale, geographically targeted intervention measures when dangerous conditions are 

forecast and occur.  

Much of the existing knowledge on the relationship between high temperatures (and 

humidity) and human health is derived from studies using aggregated data representing 

the entire populations of large cities. The discovery that the relationship varies from one 

city to another (e.g., Kalkstein and Davis 1989, Curriero et al. 2002) was instrumental in 

advancing the city-specific heat-health warning systems currently operating across the 

globe (Sheridan and Kalkstein 2004, Hondula et al. 2013). An underlying premise of 

these systems is that the population’s sensitivity to high temperatures varies spatially, and 

thus the threshold temperature for activating warning systems and deploying resources 

for interventions should also vary. Thus, information about geographic variability in the 
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response between cities is already motivating spatially targeted intervention and 

mitigation activities. 

There is ample evidence supporting the notion that the response to high temperatures 

might also be spatially variable within cities. Important determinants of this intra-city 

variability in heat-related risk include vulnerability related to social and economic 

characteristics and fine-scale differences in exposure to high temperatures arising from 

urbanization effects.  

A number of social and economic characteristics have previously been identified as 

contributing to elevated risk for heat-related mortality. Age is commonly cited as the 

most important risk factor, as the elderly have diminished thermoregulatory capacity 

related to a lesser ability to sweat and potential complications arising from co-morbidities 

and medications (Koppe et al. 2004, Gosling et al. 2009). Infants and young children 

have also been found to be at risk, in part due to underdeveloped thermoregulatory 

systems, but also from accidental overheating when left locked and unattended in 

vehicles (Green et al. 2001). Individuals with lower incomes have been found to be at 

higher risk, which may occur because they are less likely to own or be able to use air 

conditioning (Kilbourne et al. 1982, Naughton et al. 2002, Harlan et al. 2013). Those who 

live alone or are socially isolated from the community may not receive warning messages 

or healthcare assistance in a timely fashion when heat events occur (Semenza et al. 1996, 

Kalkstein and Sheridan 2007). Pre-existing medical conditions reduce the capacity of 

some individuals to physiologically manage stressful environmental conditions (Semenza 

et al. 1996, Naughton et al. 2002). When examined collectively, these variables and 
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others can lead to a spatially complex risk-scape for heat-related mortality strictly arising 

from characteristics of the population (Reid et al. 2009).  

Environmental factors can also play a role in modifying health risks arising from extreme 

heat within urban areas. The differing thermal properties of built environment features, 

relative to the natural landscape, create microclimates within cities where temperatures 

can reach 5–10°C higher than surrounding areas under certain meteorological conditions. 

This contrast arises because of the manner in which buildings and paved surfaces absorb 

and release energy, anthropogenic heat output from buildings and vehicles, and 

differences in surface moisture and evaporation rates related to surface permeability (Oke 

1982). When an extreme heat event occurs, the severity of the event thus varies for 

individuals living and working in different parts of the city. Those living in places most 

impacted by the urban heat island will likely experience higher temperatures and greater 

thermal stress. The potential negative health impacts of the urban heat island have 

motivated a wide range of infrastructure investments aimed at promoting more thermally 

tolerable urban environments (Corburn 2009). But there is little empirical evidence in the 

literature that intra-city temperature variations contribute to intra-city variability in 

morbidity or mortality rates during extreme heat events (Smargiassi et al. 2009, Laaidi et 

al. 2012).  

Given the lack of information on intra-city variability in heat-related risk using observed 

mortality data, our goals are: (1) To identify locations within cities where the mortality 

rate is highest during extreme heat events; (2) To understand the socioeconomic and 

environmental factors associated with high-risk zones and their applicability from one 
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place to another; (3) To demonstrate quantitative linkages between built environment 

features and heat-related health outcomes. At a more general level, such information can 

facilitate more targeted and effective intervention measures by helping health and 

emergency management officials determine where and how they should allocate public 

resources to combat negative consequences of extreme heat events (Ebi and Schmier 

2005).  
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Methods 

Data sources 

Daily mortality data including the postal code of residence of the decedent were obtained 

for seven major metropolitan areas in the United States (Atlanta, Georgia; Boston, 

Massachusetts; Minneapolis-St. Paul, Minnesota; Philadelphia, Pennsylvania; Phoenix, 

Arizona; Seattle, Washington; St. Louis, Missouri) that span multiple climate zones. Data 

were sourced from the respective state departments of health. On average, 22 years of 

data were available for each city; the period of records varied slightly based on data 

availability (Table 1). In total, 2,117,584 cases were examined. There were no periods of 

missing data. Spatial boundaries for each city were chosen to include the populated 

metropolitan core and immediate surrounds. The number of postal codes included per 

city ranged from 63 to 101. 

Hourly meteorological data for each city were obtained for the appropriate time period 

from the archives of the United States National Climatic Data Center 

(http://www.ncdc.noaa.gov). The data were selected from the first-order weather station 

closest to each study city with complete periods of record, which typically came from a 

major airport proximate to the study boundaries. The air temperature, dew point 

temperature, and wind speed time series had few missing values (<1% of all observations 

for each station). There is a lack of consensus in the literature regarding the optimal 

exposure variable to use when examining warm-season temperature-mortality 

relationships (Barnett et al. 2010, Vaneckova et al. 2011). We calculated the daily 

maximum afternoon temperature, in which “afternoon” was defined as the five-hour 
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window centered on the hour of average maximum temperature. We also calculated the 

daily afternoon maximum apparent temperature, a variable that combines the effects of 

temperature, humidity and wind, following a parameterization of the Steadman model 

(Steadman 1984, Hondula et al. 2012).  

Data representing the age, economic status, and other social and demographic indicators 

(Table 2) were obtained from the United States Census Bureau from the year 2000 

census. The data were downloaded for year 2000 Zip Code Tabulation Areas (ZCTAs, 

henceforth “postal codes”) from the National Historical Geographic Information System 

portal (https://www.nhgis.org) (Minnesota Population Center 2011). Geographic 

boundary files for the postal codes were obtained from the same location. Land cover 

information was obtained from the National Land Cover Database (NLCD) through the 

Multi-Resolution Land Characteristics Consortium (http://www.mrlc.gov/index.php). The 

NLCD includes 39 different classification types for 80 m
2
 pixels spanning the United 

States, including three separate types representative of the built environment (low, 

medium, and high-intensity development). In these developed land cover types, 20– 49%, 

50–79%, and more than 80% of the total cover are associated with impervious surfaces, 

respectively. The high intensity type includes apartment buildings, industrial and 

commercial use, and row houses, whereas the low and medium types typically reflect 

areas with single-family homes (Fry et al. 2011). We calculated the percentage of each 

land cover type within each postal code using the Zonal Statistics tool in ESRI ArcMap 

version 10.0. The non-developed NLCD types present in the study cities were 

subsequently aggregated into broader categories (Table 2).  
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Postal code temperature-mortality estimates 

Postal-code level heat-related mortality estimates are derived from a multi-stage 

statistical procedure that accounts for seasonality and long-term time trends. In the first 

stage, the time and temperature components of the time series aggregated across all postal 

codes within each city are estimated with a generalized additive model (Wood 2006). 

Each term is estimated with a fixed natural smoothing spline; seven degrees of freedom 

per year are used for the time component and five for the temperature component. The 

model uses a quasi-poisson link function to account for potential overdispersion in the 

mortality time series and takes the form: 

 

                                               [Equation 1] 

 

where daily mortality E(M) is a modeled as a nonlinear smoothed function of daily 

maximum afternoon temperature TPM with five degrees of freedom and a temporal 

counter Time for seasonality and long-term trends with seven degrees of freedom per year 

y. The temporal component of the model is shown in Figure 1. 

A threshold temperature is determined from each city’s aggregate (non-spatial) model by 

determining the lowest temperature at which mortality is significantly greater than what 

is expected for mean summer conditions. The mean summer temperature is calculated for 

the months June–August. The relative risk of mortality is calculated for all temperatures 

above the summer mean, and the threshold is the lowest temperature at which the 
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confidence interval of the relative risk does not include 1.0. The relative risk and 

confidence intervals are calculated using the equations: 

    
                                    [Equation 2] 

           
   

                                      
           [Equation 3] 

where the relative risk at a given temperature (RRTx) equals the exponential of the 

difference in model-predicted log-relative risk mortality at the given temperature Tx and 

the mean summer temperature Tm. The confidence interval accounts for the joint variance 

in these two estimates.  

In the next stage of the model, seasonality and long-term time trends are removed from 

the postal-code level data. As the low daily mortality counts within each sample do not 

permit reliable estimation of these effects by directly modeling them analogously to the 

city aggregate models, a combination of city-scale and local-scale pieces of information 

are used to construct an approximation. The shape of the seasonality curve within each 

year is obtained from the city aggregate model and scaled and shifted to match each 

postal code-year’s average summer mortality count.  

The original postal code daily mortality counts are divided by the resultant estimated 

baseline mortality time series to yield a daily mortality ratio, which serves as the primary 

variable for analysis henceforth. The final stage of modeling involves determining the 

temperature-mortality impacts for each postal code. The average mortality ratio on all 

days June–September exceeding the city-specific threshold temperature (M*) is 
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calculated for each postal code. A randomization test is used to identify those postal 

codes where average mortality on above-threshold days statistically differs from what 

would be expected under normal summer conditions. For a given number of above-

threshold days, 10,000 equally-sized subsets of postal code mortality ratios are drawn 

with replacement (from summer days only) and the mean of each subset is calculated. A 

statistically significant high-temperature effect is deemed for postal codes where M* 

exceeds the 95
th

 percentile mean ratio from the randomly-generated subsets (Rcrit) 

(Sheridan and Dolney 2003). If there was no statistical difference between baseline 

mortality and that on above-threshold days, and above-threshold day mortality at the 

postal code scale was spatially independent and randomly distributed, one would expect 

5% of postal codes to have “statistically significantly high” mortality on above-threshold 

days because of making multiple comparisons. More complete details on the 

development of this procedure for use in spatial units with low daily mortality counts can 

be found elsewhere (Hondula et al. 2013).  

Spatial Regression Analysis 

Potential associations between spatial variability in heat-related mortality and 

socioeconomic and environmental factors were explored with multivariate regression 

models. The dependent variable was the ratio of M* to Rcrit, (new variable T). This ratio 

was used instead of M* because the variance in the mortality ratio time series markedly 

differs from one postal code to another, making it difficult to draw meaningful 

comparisons from M* alone. T provides a standardized estimate for each postal code 

regarding how exceptional mortality is on above-threshold days for that specific location. 
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If mortality data for each postal code were normally distributed, the dependent variable 

for the analysis would be the t-statistic comparing each postal code’s mean mortality to a 

certain baseline value. Here, T is analogous but for the randomization test accounting for 

non-normality.  

Postal codes with low T values (classified as outliers based on standard deviation criteria 

and visual inspection) were excluded from the regression to avoid the likelihood of 

isolated leverage points having unduly large impact on the overall analysis. A majority of 

postal codes removed had very low populations and mortality counts. No more than five 

postal codes were excluded from the analysis in any given city.  

All subsets linear regression was used to select variables for each city that are associated 

with spatial variability in heat-related mortality. An exhaustive set of all possible 

multivariate linear regression models was generated for each city with 1–10 independent 

variables included. The optimal model was selected from all possible subsets using 

Schwarz’s information criterion (BIC) (Schwarz 1978). The model with the lowest BIC 

was then examined for spatial autocorrelation in the residuals (Moran’s I), collinearity 

(Jarque-Bera test), and heteroskedasticity (Koenker-Bassett test). Where necessary, this 

procedure was iteratively repeated for each city as variables were excluded based on non-

normality heteroskedasticity, and/or collinearity with other terms included in the model. 

We also performed linear regression using unrotated principal components of the original 

pool of explanatory variables. Components were identified separately for each city, and 

those with eigenvalues greater than one were saved as new independent variables. We 
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then generated a multiple regression model using the principal components by including 

all components with partial significance values less than 0.05.  

Finally, we examined data from all cities simultaneously by merging all postal-code level 

data into one single data set. The same procedures as listed above for each city were 

followed to generate multiple regression models using the original pool of explanatory 

variables and principal components. Here, the principal components analysis was 

completed using all cities’ data combined.   

The regression models were generated using the leaps package in RStudio version 

0.96.304 (RStudio 2012) and final modeling, diagnostics, and spatial corrections were 

performed with GeoDa version 1.4.0 (Anselin et al. 2006). Principal components analysis 

was completed with IBM SPSS Statistics version 20.0.  

 

 

 

 

 

 

 

Results 



129 

 

Intra-city heat-related mortality  

A statistically significant positive association between high temperatures and mortality 

was evident in six of the seven study cities (Table 1 and Figure 2). No threshold 

temperature was evident in Atlanta, so Atlanta is excluded from the remainder of the 

analysis. Threshold temperatures for statistically significant increases in heat-related 

mortality varied from 1.64 ºC (Philadelphia) to 3.79 ºC (St. Louis) above the summer 

mean temperature. Threshold temperatures were exceeded on 13.0–27.9% of summer 

days during each city’s study period. Model-predicted relative risks at the threshold 

temperature were consistent across cities, varying from 1.015 (Philadelphia) to 1.020 

(Minneapolis). Larger inter-city differences were evident in the average mortality rate on 

days when the threshold temperature was exceeded, ranging from a 2.9% elevation in 

mortality rates in St. Louis to a 6.6% elevation in Philadelphia. Results were similar for 

apparent temperature, and as air temperature is simpler to measure and calculate, it is the 

exposure variable chosen for the remainder of the analysis (Barnett 2010).  

Significant intra-city spatial variation in mortality rates on above-threshold days was 

evident in each of the six cities examined (Figure 3). Intra-city differences in mortality 

rates far exceeded inter-city differences. Significant increases over baseline summer 

mortality were present for 15 of 60 examined postal codes in Boston (25%), 13 of 100 in 

Minneapolis (13%), 20 of 45 in Philadelphia (44.4%), 12 of 93 in Phoenix (12.9%), 11 of 

60 in Seattle (18.3%), and 7 of 60 in St. Louis (11.7%).  

Spatial Regression with Original Variables 
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From the original set of 25 demographic and environmental variables included as 

potential predictors of spatial variability in heat-related mortality, eight were included in 

multiple regression models across the six cities (Table 3). The number of variables used 

for each city varied from one to four. All models and individual terms were statistically 

significant and all models but one (Phoenix) passed diagnostic tests for lack of spatial 

autocorrelation in residuals.  Two other diagnostic tests did not meet statistical criteria 

(residual heteroskedasticity in Minneapolis and residual normality in St. Louis), but in 

both cases, this was related to individual outlier residuals that did not substantively 

impact the regression. The models accounted for 14.1–33.5% of the spatial variability in 

heat-related mortality.  

The specific set of independent variables included in the regression models varied from 

one city to another. Demographic variables associated with higher risk included lower per 

capita income (in Boston), higher percentages of elderly residents (in Minneapolis, 

Philadelphia, and Seattle), higher percentages of residents of Asian heritage (in 

Philadelphia), higher percentages of children under age five (in Philadelphia), lower 

percentages of white residents (in Philadelphia), lower median housing values (in 

Phoenix), higher percentages of residents of Pacific Islander heritage (in Seattle), and 

higher percentages of residents without a high school education (in St. Louis). The 

environmental variable associated with higher risk was higher percentages of medium-

intensity development (in Boston, Minneapolis, and Phoenix). A spatial lag term for the 

dependent variable was included in the model for Phoenix only, as the original model 
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without a spatial lag term showed significant spatial autocorrelation in the residuals. This 

effect was reduced but not completely removed by adding a spatial lag term to the model.  

 

Spatial Regression with Principal Components 

Significant associations between principal components of the demographic and 

environmental factors and intra-city heat-related mortality were also evident in all cities 

(Table 4). On average, six principal components were extracted for each city that 

represented 81% of the variance of the original pool of 25 variables (Tables A1–A6). The 

principal components regression models explained 6.7– 27.7% of the intra-city mortality 

patterns.  In all six cities the first principal component was reflective of socioeconomic 

status, and this component was included in regression models in five of the six locations.  

Three principal components (PCs) were included in the model for Boston. A positive 

relationship was found for Boston PC2, which had strong positive loadings for 

percentage of children under age 5 and low intensity development, and strong negative 

loadings for one-person households and high intensity development. Boston PC1 was 

also included in the model with a positive association. This component loaded positively 

on percent below poverty, percent without a high school education, and percent of several 

non-white races, and loaded negatively on open space, per capita income, and percent 

over age 65. The third and final term included in the model was Boston PC4, which had 

strongest positive loadings on medium intensity development and old housing. This 

component was also positively related to areas with higher heat-related mortality. The 

model for Boston explained 24.3% of the heat-related mortality pattern.  
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Four PCs were included in the model for Minneapolis, which accounted for 27.7% of the 

spatial variability in heat-related mortality. Minneapolis PC1 had a positive regression 

coefficient and loaded positively on percent below high school education, with public 

assistance, below poverty, and medium intensity development, and loaded negatively on 

percent white. Minneapolis PC2 loaded positively on percent elderly and percent living 

alone and negatively on percent under age 5; this component also had a positive 

regression coefficient. Minneapolis PC3 was inversely related to areas with high 

mortality. PC3 is low in places with high percentages of open space and low intensity 

development. Minneapolis PC5 loaded strongly on percent from other races and water, 

wetland, and forest land cover types and was positively associated with high mortality 

zones.  

No model was generated for Philadelphia using only PCs selected from the original 

search criteria as none of the partial significances were less than 0.05. However, when 

additional PCs were tested, Philadelphia PC9 (2.9% of original variance, λ = 0.676) was 

significantly positively related to the mortality pattern and explained 17.6% of the spatial 

variability. Loadings for this PC were strongest and positive for percent Asian, percent 

Pacific Islander, percent over age 65, and percent of homes built before 1970 or earlier.  

Three PCs were included in the model for Phoenix and accounted for 21.9% of the spatial 

variability in heat-related mortality. Phoenix PC2 had high positive loadings for percent 

living alone, percent living alone over age 65, and medium intensity development. PC2 

had a positive regression coefficient. PC1, which had high positively loadings with 

percent below high school education, percent with public assistance, percent below 
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poverty, and percent nonwhite, also had a positive coefficient. A negative relationship 

was found with Phoenix PC4, which had positive loadings for median housing value, per 

capita income, and forest land cover type.  

The model for Seattle included only one variable, Seattle PC1. This component was 

strongly positive loaded on percent with public assistance, percent below high school 

education, and percent of nonwhite races, and negative loaded on per capita income and 

median housing value. PC1 had a positive regression coefficient and explained 6.7% of 

the spatial variability in heat-related mortality.  

The model for St. Louis also included only one variable, St. Louis PC1. This model 

explained 11.3% of the spatial mortality pattern. PC1 was strongly positively loaded on 

percent below poverty, percent with public assistance, and percent below high school 

education. It was negatively loaded on median housing value, per capita income, and 

percent white.  

All-City Models 

All postal codes from all cities were combined for the final set of regression models 

(Table 5). Using all subsets regression with the suite of original demographic and 

environmental variables, the optimal multiple regression model included five variables 

and explained 25.4% of the variance. Terms with a positive coefficient included percent 

of homes built prior to 1970, percent of elderly living alone, percent Pacific Islander, and 

percent medium intensity development. Percent white was included in the model with a 

negative coefficient. The strongest cross-correlation between these independent variables 
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was between percent white and percent of homes built before 1970 (-0.426); most of the 

correlations had absolute values less than 0.25.  

Analogously to the individual city models, we extracted principal components from the 

all-city data set. Seven of the components (AllCity PCs) had eigenvalues greater than one 

and these PCs accounted for 75.4% of the variance in the original data set. Five AllCity 

PCs were included in a multiple regression model that explained 26.3% of the variance in 

heat-related mortality across the entire data set. Four terms in the model, AllCity PC1, 

PC2, PC4, and PC5 had positive regression coefficients. AllCity PC1 had strong positive 

loadings on percent below high school education, percent below poverty, and percent 

with public assistance. AllCity PC2 was loaded most strongly on percent under age 5 

(negative) and percent living alone (positive). AllCity PC4 had a high positive loading for 

low intensity development. PC5 had strong negative loadings on percent elderly and 

percent grass and crops land cover type. The fifth term included in the model, AllCity 

PC7, had a negative regression coefficient. This component had highest positive loadings 

for median housing value, per capita income, and percent American Indian, and a 

strongest negative loading for percent forest land cover type.  

 

 

Discussion 

In cities where high summer temperatures lead to elevated mortality rates, there is 

significant spatial variability in sensitivity to heat. Mortality records from recent time 
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periods spanning 14–26 years show that residents of certain portions of cities have been 

at greater risk of dying when extreme heat occurs. To the best of our knowledge, this 

study is one of the first to document such intra-city variability in risk. 

The modeled relationship between temperature and mortality (Figure 2) for the cities 

evaluated is similar to that reported elsewhere—a U- or J-shaped curve where mortality 

rates increase at the lowest and highest temperatures (Curriero et al. 2002, Davis et al. 

2003). Unsurprisingly, we found that the threshold temperature, defined as the lowest 

temperature at which mortality is significant different than observed for normal summer 

conditions, varies geographically. The highest threshold temperature was found for the 

warmest study location, Phoenix, while the lowest thresholds were in the coolest 

locations, Seattle and Boston. No threshold temperature was found for Atlanta, Georgia, a 

city with high temperatures and humidity that persists throughout much of the summer. 

Although the modeled relationship for Atlanta (not shown) was similar in shape to the 

other cities, the confidence interval for the estimated effect widened considerably at the 

highest temperatures. No relationship (or a weak one) between summer temperature and 

mortality has previously been reported for Atlanta and other locations in the southeastern 

United States (e.g., Curriero et al. 2002). Geographical variability in the threshold 

temperature is consistent with previous research, and it is believed that this variability 

arises because people in different locations physically and technologically adapt to their 

climate (e.g., Davis et al. 2003).    

The threshold temperatures that we identified are lower than temperatures commonly 

used in heat-warning systems at which various public health intervention strategies are 
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activated. In some of the cities we examined, the threshold temperature was only two 

degrees (C) above the summer mean temperature, which resulted in a large sample of 

days included as “hot.” This is an important contrast to draw between this research and 

others that use more stringent criteria to identify extreme heat days such as the 95
th

 or  

99
th

 percentile summer temperature (e.g., Gosling et al. 2007, Anderson and Bell 2009). 

From a statistical standpoint, temperatures only a few degrees above normal summer 

conditions are associated with elevated mortality rates and should be considered when 

evaluating the total health burden related to high temperatures and when projecting future 

health impacts under climate change. However, we do not advocate that these lower 

thresholds be used in public health alert systems, as alarming the public too frequently 

may result in diminished alert effectiveness.  

There is strong evidence in support of the hypothesis that heat-related mortality is 

spatially variable within urban areas. In each of the six cities examined, significant 

increases in mortality when temperature exceeded the city-specific threshold were 

confined to only a portion of the postal codes comprising each study area. This study 

joins a small but growing body of research documenting such inter-city variability based 

on historical medical data (e.g., Schuman 1972, Smargiassi et al. 2009, Vaneckova et al. 

2010, Laadi et al. 2012, Reid et al. 2012, Johnson et al. 2012, Harlan et al. 2013). A 

portion of this previous work has focused on single locations and/or single heat events, 

whereas here we have included long records of mortality data for multiple locations. The 

maps and results in this study are developed using the entire time period, and temporal 

trends in heat-related mortality were not considered in the study design. However, 
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ongoing work by the authors (Hondula et al. 2013) is addressing this issue to determine if 

certain portions of the city are consistently associated with high mortality during heat 

events. More research in this area would help understand those places where 

interventions are most needed in the coming years.  

Spatial Regression with Original Variables 

We found a significant relationship between the spatial pattern in mortality and various 

potential explanatory variables in each city, but the specific variables included in the 

optimal multiple regression model varied from one city to another. Only two variables 

were included in the model for more than one city (percent land cover with medium-

intensity development and percent of elderly residents). Thus, although certain variables 

may be important determinants of heat-related risk regardless of location, at this spatial 

scale, the strongest associations between socioeconomic and environmental factors and 

mortality outcomes are inconsistent from place to place. Because patterns in 

socioeconomic and environmental factors vary between cities, there may be interactions 

and/or competing effects in one city that are not present elsewhere.  

The key risk factors for Boston were per capita income and percent medium-intensity 

development. Six contiguous postal codes were associated with high heat-related 

mortality rates in the southern part of the study area that include areas in and near 

Roslindale and Mattapan. These postal codes had both high percentages of developed 

land and low per capita incomes. There are sharp contrasts between these areas in terms 

of percentage of high-intensity land cover type, indicating that high heat-related mortality 

rates are possible even in places that are not characteristic of a central business district. 
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Moving northward into the city center, two adjacent postal codes between Roxbury and 

the city center were associated with significant increases. Both areas had high 

percentages of medium- and high-intensity developed land, but they were markedly 

different in terms of per capita income (more than $60,000 in the more eastern of the two 

versus below $22,000 in the more western). In the higher-income area, approximately 

15% of residents live below the poverty line, and nearly 60% of households have only 

one person, so it is possible that these variables are contributing to higher risk in this area 

despite higher overall wealth. Per capita income in the East Boston area in the postal code 

containing Logan airport is among the lowest in the entire city. In the remaining postal 

codes with high mortality rates to the north and west of the city center, incomes are 

typically slightly below the citywide mean and percentage developed land is higher than 

the citywide mean, although there are other areas with similar characteristics without 

high risk. Model-predicted mortality in these locations was below observations. Thus 

there may be a separate risk factor here that is not captured in the multivariate regression.  

Statistically significant elevations in mortality on above-threshold days are evident in 

areas scattered throughout the Minneapolis region, but the regression model indicates two 

predominant covariates: percent medium intensity development and percent elderly. 

Postal codes that feature the characteristics indicated by the model and high heat-related 

mortality include those immediately south of the central business district of Minneapolis, 

the postal code to the south and east of Edina, and the area between Minneapolis and 

Columbia Heights to the north. The other postal codes with significant elevations in 

mortality on above-threshold days do not fit the model well, as they have both percent 
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elderly and percent medium intensity land cover at or below the regional mean. Two 

areas that particularly poorly fit include the postal code southeast of Andover in Anoka 

and Ramsey counties, and the postal code including the lake district in the far west of the 

study region. It is difficult to build a hypothesis for sources of high risk in these regions 

based on the literature and data examined in this study. With respect to the westernmost 

postal code, it is possible that recreation on hot days is a driver of elevated risk, as one 

study from Toronto showed higher ambulance call-outs near the lakeshore where people 

sought relief from the heat (Bassil et al. 2009).  

Nearly half of the postal codes in Philadelphia County are associated with statistically 

high mortality on above-threshold days, and the density of high-risk locations is greatest 

in the southern and central portions of the County. Four factors were found to be 

associated with mortality risk, including percent elderly, percent Asian, percent under age 

five, and percent white (protective). Postal codes with high percentages of elderly 

residents and higher heat-related mortality rates are located on the perimeter of the study 

region, including Northwest Philadelphia and residential portions of South Philadelphia. 

The two postal codes with the highest percentage of elderly residents, however, located in 

the most northern part of the County, were not associated with elevated risk. The five 

postal codes with the highest percentages of Asian residents were all associated with 

statistically high heat-related mortality, three of which are located in the 

southeasternmost portion of the County. The postal codes in the center of the county 

associated with high mortality had highest rates of children under age 5 and lower 

percentages of white residents. These postal codes also have the lowest per capita 
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incomes in the County, but income alone was not found to be a significant predictor of 

mortality. The westernmost postal code, north of Upper Darby Township, and the postal 

code containing Southwest Philadelphia did not fit the model well.  

The variable that explained the greatest amount of variability in heat-related mortality 

rates across Phoenix was percent medium intensity land cover; the addition of other 

variables did not significantly improve the model and led to higher BIC. Of the 19 postal 

codes with 50% or more medium intensity land cover, four are associated with high heat-

related mortality rates located in and near Glendale. This contrasts with only one of the 

33 postal codes with 20% or less medium intensity land cover having high risk. The 

highly developed, high-risk areas are also associated with low income, and previously a 

high correlation has been found for Phoenix between development/urban heat island 

effects and poverty status (Harlan et al. 2007). Three of the remaining high-risk postal 

codes located near Paradise Valley, east Gilbert, and Sun City West, are associated with 

high percentages of elderly residents.  The high-risk area between Mesa and Phoenix has 

among the lowest mean per capita incomes in the region. Three other high-risk zones 

located in and near Scottsdale do not fit the model well, nor do they seem to be associated 

with high risk related to any other variables we considered. It is important to 

acknowledge that the model for Phoenix was the only one that also included a term to 

account for spatial autocorrelation in the dependent variable, and these spatial effects 

were not completely removed with the addition of a spatial lag term, leaving the 

possibility that the model is not properly specified.  
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Postal codes in Seattle with higher percentages of elderly residents and Pacific Islander 

residents were associated with higher risk. High-risk postal codes in the central and 

western portions of the study region all are associated with some of the highest rates of 

Pacific Islander residents in the Seattle area. However, it should be noted that Pacific 

Islanders represent no more than 2.5% of the population in any single postal code. The 

areas near Bellevue, east of Seattle, and Fort Lawton to the northwest have higher 

percentages of elderly residents and higher heat-related mortality rates. High-risk areas 

near the central business district and to the south in eastern Auburn have lower average 

per capita incomes and more medium- and high-intensity development, which could be 

contributing to higher risk, but there is little or no association between risk and either of 

these variables across the entire Seattle area. The high-risk area east of Bellevue has a 

high percentage of Asian residents, which was also found for certain high-risk areas in 

Philadelphia.  

Two clusters of high-risk zones are evident in the St. Louis area, one including postal 

codes in and immediately proximate to the city proper on the eastern edge of the study 

region, and another in outlying areas west of Chesterfield. The only explanatory variable 

included in the model was percent of residents with less than a high school education, 

which explained over 14% of the spatial variability. Three of the high-risk postal codes 

located near the city proper are among the ten lowest in terms of educational attainment. 

Other high-risk postal codes in this area include high rates of poverty (25% or more), and 

high prevalence of homes constructed before 1940 (60% or more). Throughout the city 

proper, there are many postal codes with low educational attainment that are not 
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associated with higher risk, and future work might help understand those factors that 

account for this differentiation. On the western edge of the study region, the postal code 

just west of Chesterfield has the highest level of educational attainment in the region and 

is thus an outlier for the model, causing the normality in error diagnostics to return a 

significant value (Table 3). This is a highly affluent area with few elderly and newer 

homes, and thus the source of risk is unclear. The postal code immediately to the south 

has lower educational attainment and income, although both values are close to the 

regional mean.  

Across all cities, the associations between the model-selected variables and spatial 

mortality patterns are generally consistent with expectations one would derive from the 

literature. Environmental factors were included in models in three of the six study cities. 

Mortality is higher in places with greater percentages of developed land in Boston, 

Minneapolis, and Phoenix, which aligns with other studies investigating Montreal, Paris, 

Phoenix, and Chicago (Smargiassi et al. 2009, Laaidi et al. 2012, Johnson et al. 2012, 

Harlan et al. 2013). The associations we found for built environment characteristics were 

for medium-intensity development; high-intensity development was not included in the 

model for any city. For some cities this variable was intentionally excluded because of 

non-normality (many postal codes have zero high-intensity development) and/or high 

collinearity with other variables that had stronger associations with the mortality pattern. 

High-intensity development may not be a strong covariate with heat-related mortality 

because many of the most highly developed areas within cities have commercial districts 

with few residents or sometimes feature very expensive residences.  More research is 
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required to understand how inter-city differences in the built environment are associated 

with differences in thermal exposure for residents, but the results of this study support the 

hypothesis that built environment factors contribute to spatial variations in heat-related 

mortality in certain locales. Some evidence to the contrary in the literature was conducted 

at coarser spatial scales (Sheridan and Dolney 2003, Hattis et al. 2011).   

Demographic factors were included in models for all six study cities and were also 

generally consistent with previous research. Income and age, variables that commonly 

appear as risk factors in the heat-related literature, also appeared as key predictors in this 

study. Per capita income was inversely associated with heat-related mortality rates in 

Boston. Income is believed to be an important determinant of risk related to heat because 

those living with low incomes and/or in poverty may not be able to afford air 

conditioning, which is among the best means of protecting oneself during periods of 

extreme heat (Semenza et al. 1996, Naughton et al. 2002). Air conditioning data at the 

postal code scale was not available for this study, and thus income may be serving as the 

most appropriate proxy measure.  It is surprising that income or income-related measures 

were not included in the models for more cities. Postal codes with higher percentages of 

elderly residents or higher percentages of elderly residents living alone were associated 

with higher heat-related mortality in Minneapolis, Philadelphia, and Seattle. Postal codes 

with more young children also had higher mortality rates in Philadelphia. These findings 

are also consistent with previous research (e.g., McGeehin and Mirabelli 2001, Basu and 

Ostro 2008).   
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A number of other demographic factors were also included in the multiple regression 

models that have received less attention in the literature. Postal codes with a lower 

percentage of white residents were associated with higher heat-related mortality rates in 

Philadelphia, as were postal codes with higher percentages of Asian residents. In Seattle, 

postal codes with higher mortality rates had higher percentages of residents with Pacific 

Islander heritage. The effect of race on heat-related risk has been examined in some 

research that has drawn mixed conclusions (e.g., Kalkstein and Davis 1989, O’Neill et al. 

2003, Hattis et al. 2011). In Philadelphia, we found that the percentage of white residents 

was highly correlated with a number of other variables including income and educational 

attainment, and thus for this city the variable selected may be serving as a proxy for 

larger-scale demographic patterns (Hondula et al. 2012). Nevertheless, the finding that 

the postal codes with higher heat-related mortality rates have a higher percentage of non-

white residents may be useful for government officials designing intervention strategies. 

Lower percentages of educational attainment were found to be associated with higher risk 

in St. Louis, which may be reflective of either the benefits of an educated public in 

understanding risk related to heat and the appropriate precautionary measures to take. We 

note that education and income were well correlated in St. Louis.  

 

Comparison to Principal Components Regression 

Principal components regression yielded statistical models that explained, on average, 

less variance in each city’s spatial pattern in heat-related mortality than those generated 

using the original explanatory variables.  The variance explained from the principal 
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components models was greater in Minneapolis (by 1.7%) and Phoenix (by 5.2%). In the 

other four cities the principal components models explained 2.8%–9.2% less variance. 

Thus while principal components analysis offers a theoretical statistical advantage in that 

all of the explanatory variables are orthogonal, there was no strong evidence that these 

terms were any more closely associated with spatial variability in mortality than 

combinations of the original variables that were tested for collinearity.  

The principal components included in the regression models do provide a different 

perspective on the postal-code level characteristics associated with variability in heat 

sensitivity, as they more comprehensively capture demographic and environmental 

patterns that are not well-represented by any single variable. For example, Boston PC2, 

which had high positive loadings for low intensity development and percent children 

under five and strong negative loadings for percent living alone and higher density 

development types, seems to be clearly capturing a contrast between single urban 

dwellers and suburban families. In the regression model the latter of these two patterns 

was associated with increasing risk of heat-related mortality. This association was not 

evident from the single variable analysis, which yielded medium intensity development 

and low incomes as key predictors.  

Minneapolis was one of the two cities where the principal components regression had a 

higher adjusted R
2
 than the original multiple regression, but the key predictors were 

found to be largely the same. Areas with more elderly residents and areas with higher 

development are associated with higher risk. The PC regression did yield another pattern 

not evident from the original regression, in that places with old housing, uneducated 
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residents, and residents living in poverty, were also at higher risk. Based on the 

Minnesota model, PC regression appears to be advantageous because it allows for 

different combinations of variables to be associated with variability in risk. A similar 

result was found for Phoenix, where the original model included only one variable but the 

PC regression yielded three distinct spatial patterns associated with higher risk.  

A contrasting example, however, emerged in Philadelphia, where none of the principal 

components with eigenvalues greater than one were significantly related to the intra-city 

heat-related mortality pattern. Compared with the original multivariable model for 

Philadelphia, this PC outcome demonstrates that it is possible that none of the 

predominant spatial patterns in demographic or environmental variables are associated 

with spatial variability in risk. Only in the more subtle spatial pattern represented by PC9 

was an associated with heat-related risk found. Interestingly, the variables represented by 

Philadelphia PC9 (percent Asian, percent elderly, and old housing) share many 

commonalities with the variables included in the original regression (percent elderly, 

percent Asian, percent under age 5, and percent nonwhite).  

As was true for the original multivariable models, the portion of variance explained by 

principal components in Seattle and St. Louis was the lowest of the six cities examined. 

The key factors associated with higher risk were found to be different in both cases. In 

Seattle, the PC most closely associated with the spatial variability in risk was 

representative of general deprivation and prevalence of minority races, whereas the 

original model included percent elderly and percent of one specific race. In St. Louis, 

education was the key factor from the original models, but was not highly loaded on the 
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component included in the PC regression. Instead, the component captured a pattern 

related to collocated poverty, old houses, and prevalence of minority races. As both the 

original and PC models accounted for relatively low percentages of the variance, it is 

unsurprising that the set of key predictive factors differs, as there appeared to be no 

predominant spatial pattern to capture regardless of collinearity among the independent 

variables.  

The principal components also provide additional perspective on the results of the 

regression using the original set of variables. The procedure included tests for collinearity 

among independent variables included in the models, but there was no consideration for 

collinearity of excluded variables. Thus, the possibility exists that variables included in 

the model are highly collinear with excluded variables and may be representative of a 

different pattern than might be suspected simply from examining only the included 

variables.  

Originally included in the model for Boston were per capita income and medium-

intensity development. Both of these variables have high loadings on Boston PC1, which 

is representative of general socioeconomic status and racial variability. Additional 

variables with high loadings on Boston PC1 include educational attainment, public 

assistance, poverty, and race. All of these factors could contribute to areas with lower 

incomes and more intense development being associated with higher risk. Boston PC1 

had a strong negative loading for percent elderly, providing an example of a relationship 

where places with fewer elderly have higher risk because of other factors. Per capita 

income also had a high loading on Boston PC2, representative of the suburban/urban 
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contrast previously discussed. As the set of variables with high loadings on PC2 

substantively differs from those with high loadings on PC1, there are at least two separate 

income-related patterns associated with higher risk in Boston.  

Variables included in the original model for Minneapolis were percent over age 65 and 

medium-intensity development. Percent elderly had a high loading on Minneapolis PC2, 

which was the predominant variable contributing to that component. Minneapolis PC2 

was also included in the principal components regression, and accordingly spatial 

variability in the prevalence of elderly is a pattern related to risk largely independent 

from other variables. Conversely, percent medium-intensity development had a high 

loading on Minneapolis PC1, as was the case for median housing value, per captia 

income, educational attainment, public assistance, poverty, and race. Medium-intensity 

development may be included in the Minneapolis model as an indicator of overall 

socioeconomic status.  

Of the original variables included for Philadelphia, three (percent elderly, percent 

children, and percent white) have high loadings on Philadelphia PC1, which like 

Minneapolis is an indicator of overall socioeconomic status. The loading for elderly on 

this component is negative, however—there are few elderly in the most economically 

disadvantaged areas of Philadelphia. But risk is high in these places, captured by in the 

inclusion of percent under five years old in the original regression, as this variable is 

highly correlated with many other socioeconomic indicators. Philadelphia PC1 may not 

have been included in the principal components regression because, with respect to heat-

related mortality, it includes variables with a contradictory relationship to risk. The same 
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could be said for Philadelphia PC4, which has high loadings on percent elderly and 

percent white, two variables with opposite signs in the original multivariate regression. 

Philadelphia was the only city where percent Asian was included as a predictor variable; 

percent Asian highly loads on Philadelphia PC2. Places with high scores for PC2 are 

highly urbanized (high-intensity development has a positive loading while medium- and 

low-intensity have a negative loading), higher median housing values, more people living 

alone, and few children. If being Asian is not a true driver of heat-related mortality risk, 

the inclusion of percent Asian in the regression model may be highlighting built 

environment effects or living alone as important factors.  

The only variable included in the model for Phoenix was percent medium-intensity 

development, which is highly loaded on Phoenix PC1 and PC2. As is the case in other 

cities, Phoenix PC1 is representative of general socioeconomic status. The finding that 

risk is high in places with both more intense development and lower socioeconomic 

status is consistent with previous research (Harlan et al. 2007), but also hinders 

attributing risk to either factor independently in this location. A different spatial pattern, 

evident in Phoenix PC2, associates medium-intensity development, percent living alone, 

and percent elderly. There may be two separate spatial patterns at work that both 

associate medium-intensity development with heat-related risk even if built environment 

characteristics are not the underlying cause. The reverse is also possible, that those who 

are more socioeconomically disadvantaged and those living alone may not be at higher 

risk for those reasons, but are at greater risk because they live in more developed 
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locations where their exposure to heat is likely to be more severe because of urban heat 

island effects.  

Percent elderly and percent Pacific Islander were the two variables originally associated 

with risk variability in Seattle. As was true in Minneapolis, the highest loading for 

percent elderly is on a component (Seattle PC4) that is mostly reflective of spatial 

variability in percent elderly. Thus percent elderly is a unique spatial pattern in Seattle. 

On the other hand, percent Pacific Islander has a high loading on PC1, which, like other 

cities, is largely a socioeconomic indicator.  

The original model for St. Louis included percent below high school education, which 

loads highly on St. Louis PC1. As is the case elsewhere, places with high PC1 scores in 

St. Louis have lower socioeconomic status and a greater prevalence of older dwellings. 

Percent medium and high-intensity development are also highly loaded on St. Louis PC1, 

indicating similarity to Phoenix that the most socioeconomically disadvantaged are living 

in places with more intense urbanization.  

Common to five of the six cities examined was the inclusion of the first component in the 

principal component regression model. High scores for this component were associated 

with lower socioeconomic status and higher mortality rates on threshold-exceeding days. 

Thus, in general, lower socioeconomic status was associated with higher risk in a 

majority of the locations we examined. However, the specific variables contributing to 

this component varied from one city to another, which makes it difficult to construct an 

overall socioeconomic indicator appropriate for each city. For example, places with high 

scores on PC1 tended to have more homes built before 1940 or 1970 in most locations, 
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but the relationship was weaker in Boston and hardly evident in Seattle. Isolation rates 

were also highly variable across PC1: there was a strong positive loading (0.65) for 

percent living alone on Minneapolis PC1, but a negative loading (-0.40) for percent living 

alone on Philadelphia PC1. It may be for this reason that Philadelphia PC1 was not 

included in the Philadelphia principal components regression model, whereas individual 

variables that covary with socioeconomics (percent under five, percent nonwhite) were 

included in the original models. Spatial variability in heat-related mortality is related to 

predominant spatial patterns in the independent variables across most of the cities 

examined, but an even more detailed understanding of interactive effects of the 

independent variables on heat-related risk could help generate different statistical models 

that account for greater portions of the spatial variability in mortality on hot days.  

All-City Models 

The all city models initially yielded a surprising result, in that the percentage of variance 

explained by both the original multivariate model and the principal components model 

was superior to that of many of the individual city models. This seemed to indicate 

universality in the risk factors of postal codes with high heat-related mortality, sharply 

contrasting with the finding from the city-specific models that the key risk factors varied 

from one place to another.  

Subsequent analysis, however, revealed that the strength of the all city models likely 

emerges from inter-city differences in the independent variables rather than true universal 

relationships between certain risk factors and heat-related mortality for individual postal 

codes. Analysis of variance revealed that model predicted values and residuals 
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significantly varied by city from both the original multivariate regression and the 

principal components regression (Table 6). Thus, it seems that the all-city models are not 

properly specified, and the outcome of this analysis is analogous to an ecological fallacy, 

drawing inferences about variability between locations or individuals based on the results 

of one ecological study at one location (Piantadosi et al. 1988). The notion of an all-city 

model remains an interesting point for future exploration, but likely requires a different 

modeling approach, more contiguous spatial regions, and/or standardization of variables 

from one city to another. We cannot conclude from this analysis that there are 

informative universal predictors of places of high heat-related mortality across the cities 

we examined.  

Synthesis 

A key point arising from the results is that the specific predictor variables that best 

explain the spatial variability in heat-related risk vary from one city to another. This was 

evident by comparing models across cities using the original explanatory variables as 

well as those generated from city-specific principal components. This confirms the 

findings of a number of other researchers who have investigated intra-city (or inter-

region) variability in heat-related risk, generally focusing on only one location. In 

Massachusetts, percent African-American and percent elderly population were found to 

be associated with variability in heat-related mortality rates across 29 districts comprising 

the state (Hattis et al. 2011). Johnson et al. (2009) found that poverty and urban heat 

island effects were key predictor variables for one heat event in Philadelphia. In a 

separate study of heat-related mortality in Philadelphia, home values and percentage of 
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African-American residents were identified as the best predictors (Uejio et al. 2011). No 

relationship was found between socioeconomic status, vegetation cover, and variability in 

heat sensitivity among the elderly in Sydney, Australia (Vaneckova et al. 2010). Key risk 

variables reported in one study of Phoenix heat-related ambulance calls included intra-

city temperature variability, percentage of African-American and Hispanic residents, 

isolation, and household vacancy (Uejio et al. 2011). This sample of studies represents 

the diverse methodologies, dependent variables, time periods, scales of analysis, and 

conclusions reached regarding the variables most closely associated with spatial 

variability in heat-related risk. Here we show that different variables best account for the 

spatial pattern in mortality across different cities using consistent methods. 

A separate, related line of inquiry has been developed that incorporates heat vulnerability 

indices. In an evaluation of one such index across several different locations, Reid et al. 

(2012) found that the association between hospitalizations and the index varied from 

place to place and across disease types. Johnson et al. (2012) demonstrated that a heat 

vulnerability index developed specifically on spatial patterns in social and environmental 

data for Chicago explained a large portion of spatial variability in mortality arising from 

the Chicago 1995 heat wave. A similar association was found using a city-specific index 

developed for Phoenix focusing on deaths directly related to heat exposure over a nine-

year time period (Harlan et al. 2013). The indices used in these two studies, and thus the 

role of key predictor variables, varied, as they were developed based on each location’s 

demographic and environmental data. We have made no assumptions regarding the 

potential interactive or competing effects of variables that may have a similar spatial 
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pattern, as is done when calculating a vulnerability index a priori, and we encourage 

more research aimed at understanding the best manner in which to design such indices 

and their value and reliability. The results of the present study support the general notion 

of Johnson et al. (2012), that heat risk mapping may be most effective when developed at 

a local level.  

There are several components of this study that could be addressed differently in future 

work. To start, this study examined all single days that occurred above a given 

temperature threshold. We did not treat periods of consecutive above-threshold days 

(“heat waves”) any differently, but research has demonstrated some added effect on 

mortality when high temperatures occur several days in succession (e.g., Anderson and 

Bell 2009). There was also no consideration of the date when high temperatures occurred, 

but it may be the case that intra-city variability in risk is different for early-season versus 

late-season heat events if there is geographical variability in acclimatization rates.  

We did not examine modification of effects by air pollutants, which is a topic of 

continued active discussion in the literature (Theoharatos et al. 2010, Ren et al. 2011). If 

the spatial pattern in mortality risk on hot days varies between periods of good and poor 

air quality, health officials may be able to more efficiently target their intervention 

strategies. Future work may also explore how different temperature thresholds, spatial 

units, exposure variables, and lagged and displacement effects are manifest with respect 

to spatial variability in heat-related mortality. The methodological framework we have 

presented could serve as a starting point for such research and the extension of this type 

of investigation to other locations.  
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Other modeling techniques like geographically weighted regression or regression trees 

could reveal in more detail variability in the importance of certain variables across space 

within cities. The fact that, in some cities, there were contrasts in the key factors that 

emerged from the original multivariate regression and those from principal components 

regression, suggests that there are likely complex interactions and spatial variability in 

the importance of certain predictors of risk within each city. Different modeling 

approached like those suggested above may be able to better capture some of these 

patterns and help identify different combinations of factors associated with high risk. 

There may also be absolute and relative thresholds in the relationships between certain 

factors and risk of heat-related mortality, warranting a modeling approach that can 

account for nonlinear relationships. Public health officials in the jurisdictions we 

examined might consider the variables selected using the procedure we have adopted in 

this manuscript as initial indicators of the types of strategies that might be helpful in 

reducing heat-related mortality in the high-risk portions of their cities.  

 

Conclusions 

Over the past two decades, days with temperatures 2ºC or more above mean summer 

conditions have been associated with statistically significant increases in mortality rates 

in six major U.S. metropolitan areas. On these hot days, mortality rates increase by 

several percent in each city, with higher increases associated with higher temperatures. 

However, the mortality rate on hot days within each city is variable, and statistically 

significant increases in mortality are confined to less than 50% of the postal codes 
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comprising each municipality we investigated. Spatially targeted short- and long-term 

intervention measures may be effective in reducing the public health burden related to 

extreme heat. Furthermore, demographic and environmental variables are associated with 

spatial variability in risk, enabling public health officials and city planners to accurately 

target certain populations and design strategies with heat-related mitigation measures. 

The specific variables most closely associated with spatial variability in heat-related risk 

vary from one city to another. Postal codes with more elderly residents, lower per capita 

income, more Pacific Islanders, more Asians, fewer whites, more children, and more 

developed area were found to be associated with higher risk, although no more than four 

of these factors were found to be the most closely associated variables in any one city. 

Principal components regression yielded an overlapping but non-identical set of predictor 

variables, but these models generally accounted for lower portions of the intra-city 

variance.  

The use of daily georeferenced health data offers the opportunity to directly identify 

places within large metropolitan areas where the risk has historically been greatest on hot 

days. The areas within cities that appear to merit targeted intervention measures may 

differ from those one would identify using traditional notions of the drivers of spatial 

variability in heat-related risk that have not been verified by the examination of fine-scale 

mortality records within urban areas.   
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Figures 

Figure 1. The daily mortality time series for each city included in the study. Each 

observation is shown as a gray circle. Superimposed on the figure is a smoothing spline 

showing the temporal component of a generalized additive model constructed for each 

city modeling temperature and time effects.  

(figure follows on subsequent page) 
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Figure 2. The modeled temperature-mortality relationship for each of the study cities 

based on historical data. The solid line is the model estimate and the dashed lines 

represent the confidence intervals. The tick marks on the horizontal axis show the 

distribution of temperature observations for each city.  
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Figures 3 a–f. Maps showing intra-city variability in heat-related risk. The spatial units 

shown on the map are year 2000 Zip Code Tabulation Areas (postal codes). Each postal 

code is shaded according to the percent change in mortality on days that exceed a city-

specific temperature threshold relative to a baseline summer mortality rate. Those postal 

codes where the mortality rate on threshold-exceeding days is statistically significantly 

greater than the baseline are identified with a plus (+) sign. 
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Tables 

Table 1. Descriptive statistics of the data used for this study from each of the six cities 

where a statistical relationship between summer temperature and mortality was found. 

The table also includes information about the city-specific temperature-mortality models 

including the relative risk (RR) predicted by the mortality at the temperature threshold 

(T*), and the average RR when the threshold is exceeded.  

 

 

 

 

 

 

 

 

 

Boston Minneapolis Philadelphia Phoenix Seattle St. Louis

Descriptive Statistics

Period of record 1987-2007 1992-2008 1983-2008 1989-2007 1988-2008 1980-2008

Average daily mortality 35.750 37.580 43.160 52.380 29.680 37.480

Average summer max. temp. 25.500 26.400 29.060 39.920 22.660 30.310

City-wide Temperature Model

Threshold temperature (T*) 27.900 30.000 30.700 42.500 25.900 34.100

Model predicted RR at T* 1.017 1.022 1.015 1.019 1.021 1.016

% of summer days T* exceeded 26.5% 17.9% 27.9% 14.8% 22.0% 13.0%

Average RR when T* exceeded 1.059 1.042 1.066 1.037 1.062 1.029
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Table 2. Independent variables included in the study as potential factors related to spatial 

variability in heat-related mortality at the postal code scale. The data sources are the U.S. 

Census Bureau via the National Historical Geographical Information Systems (NHGIS) 

(Minnesota Population Center 2011) and the National Land Cover Database (NLCD) 

(Fry et al. 2011).  

 

 

 

Variable (by postal code) Source

Percent of residents over age 65 NHGIS/U.S. Census

Percent of residents under age 5 NHGIS/U.S. Census

Percent of residents over age 25 without a high school diploma NHGIS/U.S. Census

Percent of households with one resident NHGIS/U.S. Census

Percent of households with one resident over age 65 NHGIS/U.S. Census

Percent of residents with public assistance for disability NHGIS/U.S. Census

Percent of residents living in poverty NHGIS/U.S. Census

Percent of residents who are white NHGIS/U.S. Census

Percent of residents who are black NHGIS/U.S. Census

Percent of residents who are American Indian NHGIS/U.S. Census

Percent of residents who are Asian NHGIS/U.S. Census

Percent of residents who are Pacific Islander NHGIS/U.S. Census

Percent of residents of another race NHGIS/U.S. Census

Percent of residents of two or more races NHGIS/U.S. Census

Mean per capita income NHGIS/U.S. Census

Median housing value NHGIS/U.S. Census

Percent of dwellings built 1940 or earlier NHGIS/U.S. Census

Percent of dwellings built 1970 or earlier NHGIS/U.S. Census

Percent land area with open space NLCD

Percent land area with low-intensity development NLCD

Percent land area with medium-intensity development NLCD

Percent land area with high-intensity development NLCD

Percent land area with water or wetlands NLCD

Percent land area with forest NLCD

Percent land area with grass or crops NLCD
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Table 3. Details from multivariate linear regression models generated for each city 

relating intra-urban variability in heat-related risk to demographic and environmental 

factors. The Model Summary portion of the table includes several diagnostic tests for 

residual normality, heteroskedasticity, and autocorrelation. *The diagnostic information 

shown for Phoenix is for the regression model excluding the spatial lag term; the 

coefficients are shown for the final model that does include the spatial lag term. # The 

significant tests for residual normality in St. Louis and residual heteroskedasticity in 

Minneapolis are caused by one single outlier value that did not have a substantive impact 

on the regression.  

 

 

 

Boston Minneapolis Philadelphia Phoenix Seattle St. Louis

Model summary

N 60 100 45 92 60 60

F 15.867 18.378 4.528 19.182* 6.300 10.669

p <0.01 <0.01 <0.01 <0.01* <0.01 <0.01

Adj. R2 0.335 0.260 0.243 0.167* 0.152 0.141

Collinearity 8.480 5.280 16.825 3.44* 7.881 3.479

p (Jarque-Bera) 0.340 0.193 0.612 0.103* 0.261 <0.001#

p  (Koenker-Bassett) 0.111 0.048# 0.753 0.007* 0.759 0.130

p  (Moran's I) 0.492 0.755 0.268 0.019* 0.940 0.564

Coefficients

% Medium-Intensity Development (per 10%) 0.019 0.049 0.018

Per Capita Income  (per $10000) -0.015

% Over Age 65 (per 10%) 0.605 0.035 0.044

% Asian (per 10%) 0.039

% Under Age 5 (per 10%) 0.097

% White (per 10%) -0.005

% Pacific Islander (per 10%) 0.436

% Below High School Education (per 10%) 0.282

Other Terms in Model

Spatial Lag 0.297

Constant 0.932 0.715 0.886 0.576 0.876 0.870
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Table 4. Summary information for regression models generated for each city using city-

specific principal components of the suite of explanatory variables shown in Table 2. The 

complete loadings matrix for the principal components, each of which briefly 

characterized in this table, can be found in the appendix.   

 

 

 

 

 

 

 

 

 

F p Adj. R2 Terms Included Coefficient

Boston 7.311 <0.01 0.243 PC1 (Low education, high poverty, high-intensity development, nonwhite) 0.022

PC2 (Low intensity development, children) 0.022

PC4 (Older housing, medium and low-intensity development) 0.021

Minneapolis 10.494 <0.01 0.277 PC1 (Old housing, low education, poverty) 0.041

PC2 (Elderly) 0.035

PC3 (Low-intensity development) -0.034

PC5 (Natural land cover, other races) 0.024

Philadelphia 10.388 <0.01 0.176 PC9 (Asian, Pacific Islander, elderly, older homes) 0.019

Phoenix 9.503 <0.01 0.219 PC1 (Low education, high poverty, high public assistance, high nonwhite) 0.030

PC2 (High living alone, medium-intensity development) 0.032

PC4 (High home values, high income, forest land cover) -0.020

Seattle 5.227 0.03 0.067 PC1 (High public assistance, low education, high nonwhite, low income) 0.018

St. Louis 8.52 <0.01 0.113 PC1 (High poverty, high public assistance, low education, low income) 0.029
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Table 5. Summary information for regression models generated for data combined from 

all cities, analogous to the city-specific models shown in Tables 3 and 4.  

 

 

 

 

 

 

 

 

 

All Cities (orig.) All Cities (PCs)

Model summary

N 417 417

F 29.371 30.738

p <0.01 <0.01

Adj. R2 0.254 0.263

Coefficients

% Medium-intensity development (per 10%) 0.014

% Living alone over age 65 (per 10%) 0.033

% Homes built before 1970 (per 10%) 0.517

% White (per 10%) -0.690

% Pacific Islander (per 10%) 0.531

PC1 (low education, high poverty) 0.039

PC2 (low children, high living alone) 0.016

PC4 (low-intensity development) 0.023

PC5 (high elderly, high grass and crops) 0.011

PC7 (high home values, high incomes, high Amer. Indian, high forest) -0.013

Constant 0.869 0.919



171 

 

Table 6. Analysis of variance comparing regression model predicted values and residuals 

by city. The top half of the table reflects the all-city regression model using the original 

demographic and environmental variables. The bottom half of the table reflects the all-

city principal components regression model.   

 

 

 

 

 

 

 

 

 

Sum of Squares df Mean Square F Sig.

Between Groups .237 5 .047 24.070 .000

Within Groups .811 411 .002

Total 1.048 416

Between Groups .098 5 .020 2.843 .015

Within Groups 2.835 411 .007

Total 2.933 416

Sum of Squares df Mean Square F Sig.

Between Groups .229 5 .046 22.033 .000

Within Groups .854 411 .002

Total 1.083 416

Between Groups .151 5 .030 4.508 .001

Within Groups 2.747 411 .007

Total 2.897 416

Unstandardized Predicted Value * City

Unstandardized Residual * City

Multiple Regression Models (with PCs)

Unstandardized Residual * City

Multiple Regression Models (no PCs)

Unstandardized Predicted Value * City
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Appendix – Tables 
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Tables A1–A6.  Loadings and percent variance explained for the first ten principal 

components extracted for Boston (BOS), Minneapolis (MSP), Philadelphia (PHL), 

Phoenix (PHX), Seattle (SEA), and St. Louis (STL), from an original set of 25 

demographic and environmental variables.  

 

 

1 2 3 4 5 6 7 8 9 10

Variance Explained (%) 36.011 17.683 10.413 6.086 5.530 4.438 3.908 3.250 2.861 1.908

PctOverAge65 -.681 .164 -.513 .351 .115 .071 -.202 .048 .064 .125

PctUnderAge5 .050 .897 -.086 -.027 .136 .173 -.221 .058 -.002 -.079

PctBuiltBefore1940 .414 -.467 .467 .378 .388 .181 .014 .015 .020 .058

PctBuiltBefore1970 .287 -.005 .619 .471 .418 .170 .209 .035 -.058 .000

MedianHouseValue -.230 -.440 .408 -.138 -.171 .622 .082 .103 -.011 -.098

PerCapitaIncome -.580 -.453 .231 -.256 -.122 .236 -.402 -.021 -.003 .079

PctBelowHSEduc .780 .149 -.462 .148 .109 .222 .014 .101 .038 -.104

PctLiveAlone .157 -.892 .118 .033 -.132 .056 -.044 .097 .128 .209

PctLiveAloneandOverAge65 -.281 -.032 -.723 .446 .055 .256 .005 .188 .081 .235

PctwPublicAsst .861 .298 -.213 -.036 -.009 .145 -.084 .036 .145 .067

PctBelowPoverty .847 -.205 -.114 -.214 -.148 .037 .247 .058 -.032 .065

PctTwoRace .881 .200 .032 -.061 .142 -.023 -.017 .098 -.052 -.129

PctWhite -.848 -.256 .014 .033 .338 -.209 .004 .103 -.101 -.062

PctBlack .661 .417 .234 -.066 -.337 .137 -.185 -.116 .150 .237

PctAmerInd .875 .204 .158 -.181 .027 .129 -.079 .120 .017 .051

PctAsian .203 -.398 -.504 .161 -.375 .220 .446 -.214 .013 -.213

PctPacIsl .684 .025 -.011 -.194 .160 -.292 .374 .055 -.048 .333

PctOtherRace .799 .271 -.064 -.155 .209 .110 -.105 .248 -.069 -.145

NLCDOpenSpace -.634 .558 .149 .049 -.213 .008 .224 .244 -.156 -.004

NLCDLowIntensity -.405 .572 .368 .281 -.307 .076 .189 .250 .065 .044

NLCDMedIntensity .516 .209 .334 .463 -.186 -.220 -.064 -.293 .280 -.033

NLCDHighIntensity .532 -.696 -.295 -.065 .172 -.012 -.097 .072 -.093 .011

NLCDWaterWetlands -.512 -.111 .036 -.306 .128 -.103 .182 .373 .625 -.083

NLCDForest -.597 .451 .007 -.295 .139 .271 .235 -.118 -.188 .225

NLCDGrassCrops -.379 .293 -.086 -.263 .479 .258 .162 -.459 .275 .003

Component

Table A1. Component Matrix - BOS
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1 2 3 4 5 6 7 8 9 10

Variance Explained (%) 43.981 16.263 6.805 5.257 4.485 4.125 3.428 2.939 2.615 2.014

PctOverAge65 .138 .862 -.017 -.135 .036 -.323 .294 .083 .039 .003

PctUnderAge5 -.048 -.818 -.300 -.092 -.092 .066 .214 .140 .135 .143

PctBuiltBefore1940 .712 .080 .198 -.187 .121 .467 .044 -.294 .049 .077

PctBuiltBefore1970 .697 .420 -.020 -.331 .106 .152 .188 -.287 .049 -.023

MedianHouseValue -.542 .334 .354 .315 -.060 .427 .230 .260 -.007 .051

PerCapitaIncome -.632 .462 .129 .284 .096 .377 .232 .073 .076 .041

PctBelowHSEduc .889 -.234 -.043 -.066 .162 -.202 .139 .079 -.043 -.045

PctLiveAlone .650 .591 .339 .102 -.013 .005 -.133 -.018 -.069 .035

PctLiveAloneandOverAge65 .334 .779 .064 -.124 .036 -.349 .301 .086 .053 .046

PctwPublicAsst .887 -.213 .040 .173 .070 -.068 .206 .080 -.105 -.026

PctBelowPoverty .897 -.126 .217 .185 -.019 .015 -.005 -.023 -.095 -.096

PctTwoRace .945 -.179 -.010 .038 .145 .050 -.035 .104 .007 -.008

PctWhite -.911 .233 .114 -.188 .007 -.064 -.184 -.028 .094 .013

PctBlack .809 -.215 -.129 .139 -.045 .167 .241 -.022 -.198 -.252

PctAmerInd .719 -.168 .151 -.125 .367 .070 -.147 .285 .001 -.262

PctAsian .646 -.201 -.200 .425 -.301 -.138 .222 -.086 -.069 .262

PctPacIsl .577 -.160 .098 .373 -.040 -.100 -.037 -.307 .561 -.076

PctOtherRace .680 -.123 .067 -.121 .445 .037 -.041 .234 .209 .366

NLCDOpenSpace -.358 .351 -.575 .430 .208 .017 -.122 .196 .050 -.068

NLCDLowIntensity .330 .481 -.685 -.150 -.050 .249 .017 -.110 .017 -.072

NLCDMedIntensity .800 .206 -.198 .033 .000 .106 -.247 .094 .055 .170

NLCDHighIntensity .656 .267 .416 .244 -.268 -.108 -.271 .037 -.045 .004

NLCDWaterWetlands -.523 -.137 .051 .228 .529 -.112 -.012 -.345 -.368 .199

NLCDForest -.660 -.124 .070 .283 .430 -.146 .156 -.112 .186 -.195

Table A2. Component Matrix - MSP

Component
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1 2 3 4 5 6 7 8 9 10

Variance Explained (%) 36.154 18.227 9.172 8.598 5.716 4.712 3.760 3.053 2.938 2.007

PctOverAge65 -.684 -.194 -.157 .498 .165 .302 .065 .029 .198 .097

PctUnderAge5 .705 -.524 .062 .230 -.144 -.035 .187 .013 .101 -.199

PctBuiltBefore1940 .484 .453 -.372 -.226 -.465 .224 .123 -.043 .071 .218

PctBuiltBefore1970 .501 -.048 -.454 -.067 -.529 .060 -.153 .257 .326 -.021

MedianHouseValue -.724 .484 .229 -.124 .059 .200 -.013 .098 -.066 -.123

PerCapitaIncome -.761 .359 .212 -.189 -.136 .314 .056 .200 -.029 -.121

PctBelowHSEduc .887 -.131 -.131 .340 .067 -.031 .121 -.053 -.005 .083

PctLiveAlone -.397 .734 -.128 -.306 .265 .217 -.027 -.003 -.081 .096

PctLiveAloneandOverAge65 -.418 .020 -.319 .657 .273 .339 .148 -.002 .201 .057

PctwPublicAsst .909 -.112 -.009 .100 .228 .157 .110 -.078 -.071 -.001

PctBelowPoverty .859 .227 -.070 -.067 .331 .100 .052 -.156 -.075 .115

PctTwoRace .641 .265 .571 .040 -.038 -.002 -.169 .007 .272 -.059

PctWhite -.618 .343 .108 .548 -.316 -.203 .034 .017 -.129 .083

PctBlack .449 -.453 -.248 -.602 .287 .235 .002 -.003 .106 -.091

PctAmerInd .771 .103 .233 .065 -.209 .207 -.153 -.051 -.266 .218

PctAsian -.144 .641 .142 -.063 .195 -.464 -.097 -.262 .389 .122

PctPacIsl .462 .309 .464 .142 .079 .340 -.269 .017 .249 -.120

PctOtherRace .707 .111 .492 .338 -.017 .115 -.082 .099 -.178 -.023

NLCDOpenSpace -.441 -.656 .293 -.098 -.162 .047 .212 -.329 .027 -.139

NLCDLowIntensity -.498 -.563 .277 -.160 -.165 .229 -.194 -.246 .089 .299

NLCDMedIntensity -.117 -.673 -.100 .050 .308 -.195 -.443 .376 -.048 .138

NLCDHighIntensity .534 .738 -.259 .069 .090 -.128 .109 .068 -.027 -.105

NLCDForest .117 -.144 .572 -.254 .103 -.099 .547 .393 .152 .260

Component

Table A3. Component Matrix - PHL
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1 2 3 4 5 6 7 8 9 10

Variance Explained (%) 34.963 15.140 12.573 6.773 5.466 4.700 3.792 3.129 2.370 2.216

PctOverAge65 -.413 .517 .532 -.342 -.156 .008 .049 .189 .166 -.055

PctUnderAge5 .685 -.534 -.282 .008 -.195 -.043 -.051 -.032 -.105 .019

PctBuiltBefore1940 .491 .351 .241 .447 -.113 .332 -.049 -.305 .032 -.034

PctBuiltBefore1970 .686 .477 .162 .293 .018 .024 .018 -.062 -.057 .098

MedianHouseValue -.635 -.080 .070 .606 .153 .161 -.137 .069 .105 .224

PerCapitaIncome -.795 .042 .053 .480 .182 .093 -.061 .101 .045 .099

PctBelowHSEduc .890 -.081 .238 .023 -.275 .039 .048 .103 -.024 .072

PctLiveAlone .096 .845 .193 .005 .273 .052 -.007 -.129 .079 -.012

PctLiveAloneandOverAge65 -.169 .713 .510 -.343 -.090 .049 -.008 .128 .122 -.012

PctwPublicAsst .880 -.134 .285 .017 .174 .146 -.132 .044 .005 .010

PctBelowPoverty .901 .058 .248 .170 .039 .167 .018 -.028 .054 .014

PctTwoRace .755 -.362 .023 -.186 .392 .005 -.099 .119 .005 -.050

PctWhite -.907 .301 -.101 .024 -.091 -.060 .001 -.130 -.094 .027

PctBlack .671 -.002 -.152 .229 -.299 .015 .091 -.044 .322 -.258

PctAmerInd .353 -.352 .408 -.219 .601 .202 -.279 .102 .078 -.011

PctAsian -.202 -.059 -.696 .062 .400 .075 .201 -.197 .111 -.324

PctPacIsl .350 .090 -.539 -.083 .171 -.283 .231 .092 .479 .351

PctOtherRace .875 -.174 .025 .057 -.266 -.050 .138 .151 -.016 .084

NLCDOpenSpace -.406 -.108 -.394 -.143 -.275 .535 -.225 .248 .206 -.193

NLCDLowIntensity .150 .334 -.706 .044 -.133 .220 -.314 .203 -.089 .196

NLCDMedIntensity .459 .651 -.339 -.052 .211 -.252 .011 .116 -.227 -.069

NLCDHighIntensity .644 .530 -.118 .175 .087 .058 .140 .007 .005 -.109

NLCDWaterWetlands -.125 -.089 -.065 -.221 .119 .627 .661 .060 -.167 .165

NLCDForest -.252 -.126 .279 .539 .089 -.198 .257 .552 -.063 -.221

NLCDGrassCrops -.392 -.619 .593 .038 -.064 -.077 .135 -.221 .135 .033

Table A4. Component Matrix - PHX

Component
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1 2 3 4 5 6 7 8 9 10

Variance Explained (%) 31.687 21.924 9.363 6.785 5.853 4.346 3.371 3.065 2.708 2.120

PctOverAge65 -.208 .407 .483 .683 .059 .101 -.096 -.102 .010 -.008

PctUnderAge5 .260 -.882 .042 -.029 .203 .040 -.040 .000 -.037 -.053

PctBuiltBefore1940 .103 .802 .078 -.353 .149 -.014 .325 .150 -.049 .062

PctBuiltBefore1970 .162 .630 .525 -.120 .273 .022 .196 .091 .137 .134

MedianHouseValue -.631 .477 .252 -.170 -.242 .166 .047 .252 .109 -.082

PerCapitaIncome -.745 .413 .107 -.049 -.269 .153 -.071 .193 .154 -.103

PctBelowHSEduc .936 -.045 .051 .182 .007 .003 .120 -.026 -.048 .065

PctLiveAlone .117 .872 -.295 .041 -.095 -.050 -.052 .134 .110 -.054

PctLiveAloneandOverAge65 .072 .666 .241 .652 .062 .019 .013 -.108 -.023 .027

PctwPublicAsst .911 -.051 .011 .156 -.044 .025 .141 .071 -.103 .023

PctBelowPoverty .706 .500 -.252 .114 -.154 -.050 .083 .028 -.087 .099

PctTwoRace .897 -.165 .093 -.163 .046 -.056 -.073 .047 .037 -.044

PctWhite -.857 .008 -.323 .127 .323 -.133 -.007 .034 .064 .105

PctBlack .758 .197 .249 -.132 -.264 .072 .154 -.010 -.165 -.081

PctAmerInd .737 .266 -.378 .245 .280 -.037 -.048 .036 -.064 .142

PctAsian .634 -.085 .417 -.138 -.469 .175 -.056 -.118 -.111 -.138

PctPacIsl .735 -.289 .155 -.011 .136 .092 -.145 .197 .432 .086

PctOtherRace .790 -.280 .038 .036 .081 .135 -.137 .153 .378 -.041

NLCDOpenSpace -.034 -.484 .059 .224 -.095 -.523 .532 .265 .099 -.106

NLCDLowIntensity -.357 -.367 .597 .210 .001 .108 .192 -.199 .157 .089

NLCDMedIntensity .113 .391 .274 -.425 .572 .220 .009 -.028 -.150 .083

NLCDHighIntensity .377 .666 -.483 .122 -.245 .049 -.095 .013 .117 -.033

NLCDWaterWetlands -.149 -.238 -.482 -.067 -.273 .462 .402 -.284 .210 .283

NLCDForest -.253 -.497 .130 .187 -.257 .202 -.127 .515 -.277 .396

NLCDGrassCrops -.064 -.255 -.320 .304 .340 .584 .234 .225 -.122 -.371

Component

Table A5. Component Matrix - SEA
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1 2 3 4 5 6 7 8 9 10

Variance Explained (%) 35.955 15.791 12.035 7.236 4.981 4.652 3.865 3.069 2.748 1.974

PctOverAge65 .016 .721 -.453 .369 -.113 -.196 .116 .151 .135 .054

PctUnderAge5 .247 -.724 .082 -.289 .136 .028 .093 .330 .124 .126

PctBuiltBefore1940 .724 .206 .098 -.131 -.122 .277 -.321 .246 -.204 .116

PctBuiltBefore1970 .751 .401 -.065 -.252 .019 -.188 .008 .007 -.298 .033

MedianHouseValue -.683 .378 -.056 -.067 .183 .531 -.021 .166 -.045 -.006

PerCapitaIncome -.747 .445 -.023 -.065 .145 .399 .025 .118 -.026 -.003

PctBelowHSEduc .882 -.281 -.185 .084 -.019 .015 .109 .150 .104 .061

PctLiveAlone .600 .528 .063 .461 -.065 .010 -.184 -.035 -.047 -.036

PctLiveAloneandOverAge65 .367 .576 -.381 .530 -.124 -.040 .116 .213 .084 .002

PctwPublicAsst .849 -.288 -.243 -.003 .164 .193 .018 .115 .135 .007

PctBelowPoverty .888 -.156 -.200 .108 .146 .246 .002 .047 .106 -.044

PctTwoRace .548 .113 .690 -.088 .024 -.218 -.086 .224 -.068 -.197

PctWhite -.774 .276 .384 -.030 -.300 -.075 .066 .077 .011 .205

PctBlack .756 -.298 -.428 .031 .280 .068 -.047 -.077 -.034 -.190

PctAmerInd .572 -.019 .551 -.010 -.157 .053 .412 -.133 .000 .052

PctAsian -.258 .429 .514 .010 .258 .194 -.366 -.109 .380 -.084

PctPacIsl .119 .360 .433 .183 .512 .087 .325 .101 -.374 .011

PctOtherRace .365 .180 .728 -.052 -.039 -.142 .136 .253 .278 -.214

NLCDOpenSpace -.516 .283 -.323 -.286 .341 -.097 .454 .068 .204 .052

NLCDLowIntensity .132 .504 -.195 -.627 .244 -.305 -.176 -.082 -.036 .027

NLCDMedIntensity .765 .117 .268 -.100 -.035 .123 -.073 -.013 .108 .472

NLCDHighIntensity .639 .137 .304 .147 .067 .242 .218 -.507 .049 .022

NLCDWaterWetlands -.441 -.385 .174 .454 .419 -.258 -.169 -.022 .088 .205

NLCDForest -.601 -.548 .095 .094 -.332 .272 .108 .077 -.101 -.091

NLCDGrassCrops -.432 -.472 .246 .469 .290 -.169 -.093 .088 -.169 .061

Table A6. Component Matrix - STL

Component
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Abstract 

Heat-related mortality remains a public health challenge in the United States. One 

potentially beneficial strategy to reduce mortality is to focus intervention efforts on 

locations within metropolitan areas where the risk is greatest—where mortality rates have 

historically been the highest on the most severely hot summer days. The objective of this 

study was to determine the temporal consistency high-risk zones using historical 

georeferenced mortality data from seven U.S. cities.  A generalized additive model was 

used to identify city-specific threshold temperatures associated with increased mortality, 

and then the mortality rate on threshold-exceeding days was calculated for each postal 

code comprising each study city. This process was iterated by withholding subsets of data 

from the model, enabling comparison of places with high mortality in a training data set 

to the outcomes on testing data. In all cities, the average mortality rate in postal codes 

targeted for intervention by the statistical model was higher than that in non-targeted 

areas. Targeted areas for interventions in the study data accounted for 50% of excess 

heat-related deaths despite only accounting for 25% of total mortality.  Statistically 

significant interannual consistency in the spatial mortality pattern was found in Boston, 

Minneapolis, Philadelphia, and Seattle. In these cities, the relative risk of a postal code 

having high heat-related mortality in the testing data set was 32% higher for those 

identified as targets. Focusing intervention measures at certain geographical zones within 

these large urban areas could be an effective means of combating heat-related mortality 

because there is temporal consistency in places where the death rate is most sensitive to 

heat.  
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Introduction 

The human response to high heat and humidity varies from individual to individual, but 

over large populations there is clear evidence that extreme summertime conditions lead to 

elevated mortality and morbidity rates (Davis et al. 2003, Sheridan et al. 2009, Guo et al. 

2012). This information has contributed to the adoption of a number of measures aimed 

at protecting public health when dangerous conditions are forecast, including heat-health 

watch-warning systems (Hondula et al. 2013b). There is now a growing capacity to 

improve specificity in assessments of heat-related risk across both time and space. New 

knowledge about the human response to heat could lead to more efficient allocation of 

resources associated with the activation of heat emergency management protocols as well 

as those associated with longer-term mitigation and adaptation strategies.   Recent 

research has contributed to increased awareness of geographic variability in the response 

to heat within large metropolitan areas (e.g., Vaneckova et al. 2010, Hondula et al. 2012) 

and of intra-annual variability in the metropolitan aggregate-scale response to heat (e.g., 

Guo et al. 2012). But little effort has been directed at the intersection of these sources of 

variability—exploring how the intra-city human response to heat, in particular morbidity 

and mortality, changes from one year to another.  

Within metropolitan areas the heat-health risk is expected to vary spatially as the urban 

heat island and related microclimates create different levels of exposure for residents of 

different communities. Similarly, the underlying risk of the population varies as the 

demographic profile of city residents is spatially heterogeneous. Heat vulnerability 

indices have been proposed and mapped at fine spatial resolutions to highlight geographic 
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variability in expected risk arising from factors that are believed to impact heat sensitivity 

(e.g., Reid et al. 2009). Other research has mapped health outcomes to identify regions 

within cities that have historically been associated with higher rates of heat-related 

mortality and then deduced the association with certain variability factors from the 

observations (e.g., Smargiassi et al. 2009, Hondula et al. 2012, Laiidi et al. 2012, Reid et 

al. 2012).  

In addition to exploring spatial variability in intra-city risk it is also important to consider 

the temporal dynamics in the response. It is known that the heat-mortality response varies 

across time (e.g., Davis et al. 2003, Rocklov et al. 2009, Guo et al. 2012). Although 

considerable debate continues regarding future climate change and population adaptation, 

the increase in temperatures in recent years combined with urban heat island impacts has 

resulted in individuals being more frequently exposed to thermally stressful conditions in 

some locations (Arnfield et al. 2002, Wilby et al. 2003). At the same time, infrastructure 

improvements including the use of air conditioning and building design might be 

decreasing the risk for some (Davis et al. 2003, Sheridan et al. 2009). Aside from these 

long-term trends, there is evidence that warm-season mortality might be influenced by 

antecedent wintertime conditions, and further evidence suggests that the characteristics of 

individual heat events including their timing, duration, and intensity, impact the mortality 

rate (Rocklov et al. 2009, Anderson and Bell 2011) .  In light of these sources of 

variability at different time scales, it is possible that specific populations within cities 

most affected by heat might vary based on heat event characteristics, time in season, or 
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longer-term trends. From a geographical perspective, then, the location of high risk zones 

(e.g., Reid et al. 2009, Hondula et al. 2012) may not be consistent over time.  

An examination of temporal variability in the intra-city response to heat is warranted 

because of the insights such a study could provide regarding the effectiveness of various 

intervention strategies, particularly those where resources are directed toward particular 

locations. Here we investigate the predictability of high-risk zones for heat-related 

mortality using multi-decadal geo-coded mortality records from seven climatically 

diverse cities in the United States.  The goal of the study is to determine if spatial patterns 

in heat-related mortality are non-random temporally.   
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Data  

We obtained mortality records from seven metropolitan areas across the United States: 

Atlanta, Georgia (period of record 1994–2007), Boston, Massachusetts (1987–2007), 

Minneapolis, Minnesota (1992–2008), Philadelphia, Pennsylvania (1983–2008), Phoenix, 

Arizona (1989–2007), Seattle, Washington (1988–2008), and St. Louis, Missouri (1980–

2008). The mortality records contained the postal code of residence of each decedent, 

enabling us to determine the daily number of deaths within each postal code over the 

entire period of record. The average number of daily deaths within each city ranged from 

30 to 53, and each city contained between 48 and 101 postal codes. Postal codes were 

selected as the spatial unit for this study because they were the smallest subdivision 

available across all cities. As these units are designed for mail delivery, the population is 

roughly evenly distributed between them (interquartile range: 16,728–35,407) and there 

is no bias from one city to another. Descriptive statistics of the mortality data sets used 

are available in (Supplementary) Table 1. These data were obtained from the respective 

state departments of health. Because the data were de-identified, no IRB approval was 

necessary for this research under Title 45 Part 46 exemption category 4.  

Hourly meteorological data were obtained from the first-order weather stations closest to 

the study cities through the U.S. National Climatic Data Center. These data are publicly 

available online (www.ncdc.noaa.gov). We calculated the daily maximum afternoon 

temperature, defined as the maximum temperature observed in the five-hour window 

centered at the hour of the average daily maximum temperature. There were 43 days 
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(<0.1% of available data) where no data were available from this time window; these 

days were given a missing value for temperature.  

Geographic boundary files for the study cities were sourced from the United States 

Census Bureau accessed through the National Historical Geographical Information 

System portal online (www.nhgis.org) (Minnesota Population Center 2011). We 

downloaded year-2000 Zip Code Tabulation Areas (ZCTAs) for the states comprising the 

study cities and extracted the boundaries corresponding to the postal codes available from 

the mortality records.  
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Methods 

Model Training and Threshold Temperatures 

We adopted a cross-validation framework to examine the predictability of mortality 

within postal codes in each of the study cities. The general procedure was to identify 

target zones within each city using all years of data except year yw, and then evaluate how 

mortality in the target zones compares to that in the withheld year. This procedure was 

iterated for all years y in each city’s period of record and across all zip codes. 

In the first iteration, we calculated the relationship between temperature and mortality 

while accounting for seasonality and long-term time trends using a generalized additive 

model of the form: 

                                               [Equation 1] 

where E(M) is the predicted daily mortality count, α is the model intercept, TPM 

represents daily afternoon maximum temperature, Time is a variable to account for long-

term time trends and seasonality, n(y) is the number of years in the time series (excluding 

the withheld year yw), and s() represents thin plate smoothing splines for the temperature 

and time terms (Wood 2003, Wood 2006). Five degrees of freedom was set for the 

temperature term and seven per year for the time term for all cities after testing a number 

of other options for each variable and comparing generalized cross validation scores and 

visually examining plots of model predicted values for each term. All values for the 

withheld year were set to a missing value indicator. We then extracted model predicted 

values and partial error for the temperature component of the model.  
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As we are interested in examining mortality when summertime weather deviates from 

normal conditions, our entire analysis is conducted relative to the mean summer 

afternoon maximum temperature, where we defined summer as June–August inclusive. 

We then examined the model predicted values and standard errors and determined the 

first temperature higher than the summer mean at which the confidence interval of the 

relative risk between a given temperature Tx and the mean temperature Tm did not include 

one. The relative risk (RR) between a given temperature and the mean was calculated as: 

    
                                     [Equation 2] 

where    is the model predicted mortality at a given temperature Tx or the summer mean 

temperature Tm. The 95% credible interval of the relative risk was calculated as:  

           
   

                                      
           [Equation 3] 

where ε is the partial model error in the temperature term at a given temperature.  Thus 

the temperature threshold is defined here as the temperature at which model-predicted 

mortality significantly differs from that expected for mean summertime conditions. We 

then calculated the average mortality rate on all above-threshold days.  

To this point we have calculated the effect of temperature for the city as an aggregate, but 

our focus here was on the smaller postal code units that comprise each study city. As 

smoothing spline estimates of seasonality derived directly from small samples of data can 

be unreliable, we examined the relationship between temperature and mortality within 

each postal code using a multi-stage model (Hondula et al. 2013a). In the first stage, 
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seasonality was removed from the city-wide data using a generalized additive model that 

includes terms for seasonality, long-term trends, and temperature. The seasonality and 

long-term time trends in the mortality data represent a mortality “baseline” – long term 

variability that is (presumably) unrelated to short-term variability in temperature. This 

baseline curve was then adjusted to match the changing mortality rates within each postal 

code based on population growth and demographic changes. A daily mortality ratio (MR) 

was calculated for each postal code by calculating the ratio between each day’s sum of 

deaths within the postal code and the expected number of deaths based on the mortality 

baseline. We then group the postal code-level ratios into different “bins” based on 

temperature thresholds (as defined above).  

This method was adapted to the current investigation by omitting the withheld year. To 

ensure that intra-annual, rather than inter-annual differences in mortality rates are 

emphasized in the analysis, an additional standardization was made to set the mean 

summertime MR equal to exactly one for each year in the period of record. No adjustment 

was made to the variance. We obtained estimates of within-postal code mortality for two 

separate groups of days: those with temperatures above and below the city-wide 

estimated threshold. We then used a randomization test (Sheridan and Dolney 2003, 

Hondula et al. 2013a) to identify postal codes where mortality was statistically 

significantly high on above-threshold days. These postal codes were labeled as “targets” 

for intervention activities.  

 

Model Testing 
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The target zones were determined using all years except the one withheld year, excluded 

from the training model to assess predictability. We quantified predictability by 

comparing the mortality in the target zones in the withheld year to that in the non-target 

zones. In general, if mortality is higher in the target zones than the non-targets in the 

withheld year, we concluded that there is predictability in the spatial response. As each 

postal-code year is mean-standardized, there is no bias introduced from the methods that 

would cause a postal code identified as a target to be more likely to have high or low 

mortality in the testing year.  

With only one year of withheld data and small sample sizes within each postal code, there 

were not enough data to generate a robust statistical model of within-postal code 

mortality for the withheld year analogously to what we have done for the rest of the time 

period. Instead, we calculated seasonality for the entire city in the withheld year using the 

model:  

                                               [Equation 4] 

Temperature was not included in the model for the withheld year because effect estimates 

based on one year of data were found to be unstable (i.e., the magnitude, significance, 

and sign of the effect varied from one year to another). Although there is some concern 

that the time component of this model is incorrectly capturing temperature-related 

variability, in cases we examined there was no visual evidence of short-term deviations 

away from seasonality that might indicate over fitting.  
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Seasonality, as determined from equation 4, was removed from the postal code-level data 

by scaling the seasonal curve so that the mean mortality rate matches that within each 

postal code. We then calculated a mortality ratio MR for each day within each postal code 

for the withheld year yw by dividing the observed mortality count by the scaled 

seasonality. As before, we then re-standardized so the mean summertime MR in the 

withheld period is equal to one. A postal code was labeled as “high mortality” during the 

withheld year if the mean MR on above-threshold days exceeded the critical value for 

significance as determined from the randomization test described above.  

Model Evaluation 

This entire procedure was repeated for each year yj in the data set. Thus for each year we 

identified a set of target zip codes based on (n(y)-1) years of data and those postal codes 

that were associated with high mortality rates on above-threshold days in year j. We used 

2x2 contingency tables to quantify the performance of the models in identifying postal 

codes with high mortality. For each testing iteration we tabulated the number of postal 

codes with high and low mortality and the number of target and non-target zip codes. 

Cross-tabulation of these quantities yields four distinct possibilities: (A) Target zones 

with high mortality in the withheld year, (B) non-target zones with high mortality in the 

withheld year, (C) Target zones without high mortality in the withheld year, and (D) non-

target zones without high mortality in the withheld year (e.g., Table 2). Cells “A” and 

“D” in the contingency table are associated with correct forecasts, “B” and “C” with 

missed forecasts. We then calculated the relative risk (RR) of a postal code being 

associated with high mortality in the withheld year if it was classified as a target zone 
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compared to the risk of a postal code being associated with high mortality if it was 

classified as a non-target using the equation: 

    
       

       
                                                                                                [Equation 5] 

where the letters A–D refer to specific cells in the 2x2 contingency table (Table 2). A 

relative risk greater than 1.0 indicates that target zones are more likely to be associated 

with high mortality in the withheld years.  We determined that high-mortality zones 

within each city were statistically predictable if the lower bound of the confidence 

interval for relative risk (Gardner and Altman 1994) was greater than 1.0.  

Finally, we estimate the overall mortality burden attributable to heat for each city over 

the entire time period as well as for target postal codes exclusively during years they 

were identified as targets. “Excess mortality” is defined as the difference between the 

observed and expected number of deaths on a given day or set of days. We calculated the 

excess mortality ε for each postal code i within each year j on above-threshold days using 

the equation: 

                                                            [Equation 6] 

where M is the mean daily summertime mortality specified for each postal code-year, T* 

is the city-specific threshold temperature for each respective year, n is a count of the 

number of days the threshold temperature is reached, and μ is the average mortality ratio 

MR for each postal code and year on above-threshold days. Because of the procedures 

discussed above to derive MR, μ represents average mortality ratios on above-threshold 
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days standardized for seasonality and long-term time trends (see Equation 4 and 

subsequent text). Summation of ε across all postal codes and years yields the total excess 

mortality on above-threshold days for each city in aggregate.  

We next sought to determine the portion of excess mortality that occurred in target zones. 

We repeated the calculation in Equation 6 for observed mortality in target zones (  ) only 

using observations from each year when a postal code was identified as a target. The 

percentage of excess mortality occurring in the target zones is then determined by 

multiplying the ratio of    (summed across all postal codes and years) to ε (summed 

across all postal codes and years) by 100. For comparative purposes, we also calculate 

total summertime mortality (all days regardless of temperature) for all postal codes and 

for target postal code-years only using a variation of Equation 6.  

Example of Training and Testing Methods 

For illustrative purposes, we present the approach for Minneapolis, MN, for which data 

are available 1992–2008—thus 17 separate numerical “experiments” were conducted for 

that city. In the first iteration, the model was run using only data from 1993–2008, 

omitting 1992 (all values for 1992 were set to a missing value indicator).  The mean 

summer temperature in the years included in the training period was 26.6°C, and the 

threshold temperature determined to be 30.2°C. This threshold corresponded to a model 

predicted increase in mortality of 2.3% (Figure 1). On the 296 days in the training period 

when the threshold temperature was exceeded, mortality increased 4.5% relative to 

baseline.  
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Based on the 1993–2008 data, 15 postal codes in Minneapolis were identified as target 

zones (i.e., mortality in 15 postal codes was significantly greater than baseline on above-

threshold days in the training period). The mortality rate on above-threshold days in 

target zones averaged 23.4% above baseline, compared to 3.6% below baseline in non-

target zones.  

In the withheld year there were five days on which the temperature exceeded the 

threshold of 30.2°C. On these days, after accounting for seasonality (Figure 2), mortality 

was 15.6% above baseline across the entire city. The average mortality rate across the 15 

target zones on these six days was 23.2% above baseline, whereas in the other postal 

codes mortality rates averaged 5.4% above. Of the 15 target zones, nine were associated 

with high mortality in the withheld year (cell “A” in the contingency table) and six were 

not (cell “C”). Of the remaining 86 postal codes, 31 were associated with high mortality 

in the withheld year (cell “B”) and 55 were not (cell “D”). The relative risk for this 

iteration was 1.66 (95% confidence interval 1.01, 2.74), indicating that high-mortality 

locations in 1992 could have been statistically reliably “predicted” using 1993–2008 data.  

To demonstrate the calculation of excess mortality, we focus on postal code 55112, 

where the average daily mortality rate during the withheld year was 0.77 deaths per day. 

Mortality on the six above-threshold days was, in this postal code, 10.3% above baseline, 

0.85 deaths per day. The difference in these two daily mortality rates (0.08 deaths per 

day) is multiplied by the number of above-threshold days (five) for excess mortality in 

this postal code during the withheld year of 0.4 deaths. Across all target postal codes in 

1992 there were 12.2 excess deaths.  
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Results 

Model Training 

Statistically significant relationships between temperature and mortality were established 

for six of the seven study cities in all training iterations. The relationship between 

temperature and mortality was only significant in a portion of the training models for 

Atlanta and thus a threshold could not be established for every year; Atlanta is excluded 

from the remainder of the analysis. The threshold temperatures (Table 1) for the six other 

cities were between 1.6°C (Philadelphia) and 4.1°C (St. Louis) above the respective city 

mean summer afternoon maximum temperatures. The model-predicted increase in 

mortality at the threshold temperatures range from a 1.5% increase (Philadelphia) to 2.3% 

increase (Minneapolis-St. Paul). On all threshold-exceeding days mortality rates were 

3.2% (St. Louis) to 6.6% (Philadelphia) above mortality rates on summer days with 

below-threshold temperatures. Depending on the year and city, between 4 and 31 postal 

codes were identified as targets (i.e., associated with high mortality during the training 

period). Across all cities, the average number of target postal codes ranged between 12% 

and 39% of the total number of postal codes within the city.  

For most cities there was a clear separation between postal codes that tended to be 

identified as targets during training iterations and those that were not. In Philadelphia, for 

example, ten postal codes were associated with high mortality in every training iteration, 

and another five were labeled as targets on over 90% of the training runs. At the other 

end of the distribution 26 postal codes were never associated with statistically 

significantly high mortality in any training model and one area was identified in only one 
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iteration. There were six remaining postal codes identified as targets in 20–80% of the 

training runs. A similar pattern was seen in the other cities where the distribution was 

strongly bimodal with peaks near 0% and 100%. Mortality rates in the target zones on 

above-threshold days was markedly higher than that in non-threshold zones. On average 

mortality rates in the target zones were between 4.6% (Philadelphia) and 20.5% 

(Minneapolis) greater that in non-target zones during the training iterations (Figure 3). 

Model Testing 

After identifying target zip codes for all but one withheld year in each city’s period of 

record, we next evaluated how mortality in the target zones compared to that in the non-

target zones during the single withheld year. As was the case during the training periods, 

mortality was higher in the target zones in the testing years relative to the non-target 

zones on average (Figure 3). The ratio of target to non-target zone mortality was similar 

between the training and testing periods in Boston (8% higher), Minneapolis (20% 

higher), and Philadelphia (4% higher). In Phoenix, Seattle, and St. Louis there was a 

larger difference. In St. Louis, for example, mortality was 11.9% higher in target zones 

using the training data but only 2.7% higher than the non-target zones in the testing 

period. Of the six cities Minneapolis showed the greatest difference in mortality between 

target and non-target zones in the withheld year and the difference was smallest in St. 

Louis. In all six cases the difference in mortality rates between target and non-target 

zones on above-threshold days was smaller in the testing period when compared to the 

training period (see Figure 3).  
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 Unlike the training periods, however, there was considerable variability evident in the 

difference between target and non-target zones in each sample of testing (Figure 4). In 

total we examined 130 city-years of withheld data; in 87 of these cases (67%) mortality 

in the target zones was higher than that in the non-target zones. Mortality rates were 

higher in target zones in 16 of 17 (94%) testing cases in Minneapolis, which was also the 

city associated with the greatest difference in mortality between target and non-target 

zones. St. Louis target zones were found to be associated with higher mortality in only 14 

of 26 (54%) testing cases, and this was the city associated with the smallest difference in 

mortality rates between targets and non-targets. Rates in the other four cities were 

between 58% and 76%.  

Contingency tables were employed for comparison of the likelihood of a postal code 

being associated with high mortality in the testing period if it was classified as a target 

relative to the likelihood of it being associated with high mortality if not classified as a 

target (Table 2). In all six cities we examined the relative risk of high mortality in a target 

zone was greater than 1.0, but the 95% percent confidence interval for Phoenix and St. 

Louis included one. Therefore there was statically significant model skill in identifying 

high-risk locations in Boston, Minneapolis, Philadelphia, and Seattle. Among these 

locations, the city-specific relative risks varied from a low of 1.18 in Seattle to a high of 

1.49 in Minneapolis; the overall average relative risk among these cities was 1.32. This 

means that, in these locations, the probability that a postal code will have high mortality 

in a given year is nearly 32% higher for zones classified as targets compared to non-

targets. The average for Phoenix and St. Louis was 1.05.  
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Finally, we compared two of the key metrics of this study: (1) the likelihood that each 

postal code would be labeled as a target for each iteration using training data, and (2) the 

likelihood that each postal code would be associated with high mortality in the withheld 

year. As evident from city-specific scatter-plots (Figure 5) of these quantities compared 

to each other and the contingency tables, the overall tendency was for target zones to be 

associated with high mortality in the testing year. Correlations between the percentage of 

years each postal code was identified as a target and the percentage if withheld years that 

the postal code had high mortality were statistically significant for all cities based on the 

non-parametric Kendall tau test. Correlation coefficients ranged between 0.425 and 

0.598.   

Excess Mortality 

We calculated the number of excess deaths on above-threshold days to estimate the 

portion of the total heat-related mortality burden that could potentially be alleviated by 

targeting specific postal codes. Estimates of average annual excess mortality per city 

ranged from 7.9 for St. Louis to 46.1 in Philadelphia. Over the study periods, we 

estimated 3,490 excess deaths on above-threshold days. Of these, nearly half (1,741: 

49.9%) occurred in postal codes labeled as targets. It should be reiterated that excess 

deaths were calculated using data from withheld years only; training data excluding the 

withheld year were used to identify target locations. The percent of excess deaths 

occurring in target postal codes ranged from a low of 11.2% in Phoenix to a high of 

103.4% in Minneapolis. (Note: a percentage greater than 100% indicates that mortality in 

non-target zip codes was below the summertime mean on above-threshold days).  
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To provide a point of comparison for the percentage of excess mortality found in target 

zones, the total number of summertime deaths and total number of summertime deaths in 

target zone-years is also shown in Table 3. If the percentage of excess mortality found in 

target zones mirrored the percentage of total mortality found in target zones, the excess 

mortality result might simply be reflecting different population sizes or overall mortality 

rates at the postal code scale. Although target postal codes represent 49.9% of excess 

deaths on above-threshold days, they account for only 25.0% of total summertime 

mortality. In five of the six cities target zones accounted for a disproportionate fraction of 

the excess mortality on above-threshold days. In Minneapolis, which showed the greatest 

contrast, target zones were associated with 103.4% of excess mortality but only 18.6% of 

total mortality. In Boston and St. Louis the difference was approximately a factor of two. 

Philadelphia and Seattle were associated with slight increases over total mortality, and in 

Phoenix target zones accounted for 11.2% of excess mortality and 15.4% of total 

mortality.  
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Discussion 

A common theme in the heat-health literature is that heat-related mortality should be 

preventable. Our goal was to investigate whether prevention of such deaths could be 

facilitated by a geographically targeted approach, and our results indicate that there are 

locations within the cities we examined where the mortality rate is consistently high 

when extreme heat occurs. Our main findings were that postal codes identified as targets 

using a sample of training data were associated with higher mortality rates and were more 

likely to have high mortality in testing periods. There was statistically significant 

predictive ability in identifying high-mortality postal codes in four of the study cities. 

Overall, predictability was strongest in Minneapolis and weakest in St. Louis and 

Phoenix. We believe this study is the first of its kind to explore the predictability of zones 

of heat-related mortality.  

We found that mortality in target postal codes was between 2.6% and 19.9% higher than 

in non-targets in withheld years, and that the likelihood of a postal code being associated 

with high mortality in a withheld year was anywhere between 1.6% and 49.3% higher if 

that postal code was identified as a target. These results support the notion that 

geographically-targeted heat intervention activities within cities may lead to greater 

benefits than a uniform city-wide approach. If heat-related mortality could be prevented 

in the target zones only—a relatively small number of postal codes in most of the study 

cities—the benefits for public health could be quite substantial. We found that almost half 

of the 3,490 excess heat-related deaths occurred in target postal codes where high 

mortality rates would have been expected.  
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There were considerable differences in the study results between cities. Regardless of the 

metric used to quantify predictability, Minneapolis consistently exhibited the greatest 

difference in heat impacts between target and non-target zones. Depending on the 

specific model iteration, only 10–15 of the 101 postal codes in the Minneapolis study 

area were identified as targets. On above-threshold days, these locations were associated 

with 20% higher mortality rates than non-target zones. More strikingly, however, these 

locations were associated with 103% of the excess mortality on above-threshold days. As 

the target postal codes only account for 18.6% of the total summertime mortality during 

the study period, the results provide strong evidence that there are specific localities 

within the Minneapolis area that are especially sensitive to heat.  

In Phoenix and St. Louis,  target postal codes were the least different from non-target 

zones. Target zones in both cities were associated with higher mortality rates and a higher 

relative risk of being associated with high mortality in any given year than non-targets, 

but the relative risk was not significantly different than random. The fact that the 

response is more homogeneous across Phoenix may not be surprising, as the hot desert 

climate has forced Phoenix residents to adopt a range of adaptation measures to cope with 

high temperatures throughout much of the year. We did not include enough cities in this 

study to determine if there is systematic variability in the predictability of high-risk zones 

related to geography and climate, but our results are consistent with such a hypothesis 

(generally higher predictability in Boston, Seattle, and Minneapolis, intermediate in 

Philadelphia, and lower in St. Louis and Phoenix). With respect to excess mortality, we 

found that the percentage of excess deaths within target postal codes in Phoenix (11.2%) 
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was lower than the percentage of total deaths (15.4%) that occurred within those regions. 

This result seems to contrast the fact that we found overall higher mortality rates on 

above-threshold days within target postal codes in Phoenix on hot days; the difference 

arises because the excess mortality calculations are weighted by the population of each 

postal code and the number of above-threshold days each year. The finding is consistent 

with the fact that there was not statistically significant model skill in identifying the 

places where heat mortality was more likely to occur in withheld years.  

The use of a prediction-based framework for analysis using separate training and testing 

data sets is especially relevant and important for problems where there may be significant 

costs associated with a missed forecast (e.g, wasted resources or underserved vulnerable 

populations). Heat-health researchers have only recently begun to use this type of study 

design (Hajat et al. 2010). Although there is a very strong statistical association between 

heat and human mortality in many locations, the correlation between temperature and 

mortality is imperfect. Not all hot days are associated with excess mortality, and some 

high mortality are unaffected by heat (Hajat et al. 2010, Zhang et al. 2012, Pascal et al. 

2013). This inherent noisiness should be accounted for when designing intervention and 

mitigation activities.   

An additional strength of this study is the extension of an intra-city, outcome-based 

approach to identifying high-risk locations for heat-related mortality to six cities that 

have not been previously examined in such a manner. In an era of finite public resources, 

the identification of zones where elevated mortality rates can reliably be anticipated in 

advance offers a useful tool for planning and response. Practical measures that could 
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benefit from this work include public warning systems, the opening of cooling centers, 

activation of phone lines and buddy networks, and allocation of additional medical 

resources and personnel (Sheridan and Kalkstein 2004). There are also longer-term 

strategies employed to reduce the impacts of extreme heat that could benefit from 

identification of areas with temporally predictable risk; municipalities are adopting 

educational campaigns and building weatherization and modification programs aimed at 

reducing urban heat island effects (e.g., Solecki et al. 2005, Smith et al. 2008).  

This research concerns the likelihood that a particular postal code will experience heat-

related mortality in a given year; this complements information about the magnitude of 

the response within each postal code aggregated over longer time periods (e.g., 

Vaneckova et al. 2010, Hondula et al. 2012). Geographic zones where the heat-related 

risk is consistently high are ideal candidates for focused intervention measures. Although 

the temperature-mortality relationship is indeed “noisy” as discussed above, in these 

particular locations the response is more consistent from one year to another. The 

methodology we presented in this manuscript could readily be applied to many other 

locations where heat may pose a threat to public health. In our experience the limiting 

factor in the feasibility of conducting such as study is access to geographically-referenced 

health outcome data; we advocate for the accessibility of such data to the research 

community. Furthermore the results of studies like this one merit re-evaluation on a 

regular basis, as new temporal and spatial patterns in risk may emerge in the coming 

years.  
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There are also a number of limitations, assumptions, and methodological choices that 

could be further explored in subsequent research. The leave-one-out study design was 

chosen based on the available periods of record for each of the study cities. This study 

design creates a disconnect from the proper chronological sequencing of training and 

testing data; in practice data, from 2007 could never be used to generate a model to 

predict outcomes in 1995. Splitting the data available to use into chronological periods 

simply did not allow for the generation of robust models and/or evaluation data. As 

surveillance data continue to be accumulated, we recommend that a different subsetting 

model be applied to determine if a model generated in one time period can be used to 

predict outcomes in a subsequent period. This is particularly important for the problem at 

hand because of the long-term time trends in the response that could be impacted by 

acclimatization and climate change.  

Other elements of the study that might be approached in a different manner in the future 

are related to the identification of extreme heat and the modeling of effects. We identified 

an absolute temperature threshold (i.e., one that does not vary across months or years), 

but research efforts continue be directed to improve the identification and definition of 

high-risk extreme heat days (e.g., Barnett et al. 2012, Zhang et al. 2012, Antics et al. 

2013).  There may be both theoretical and model performance advantages to using more 

complex metrics for quantifying the relationship between human health and heat, and the 

optimal metric could vary from one city to another. We did allow the temperature 

threshold to vary across cities, but chose to hold all other model parameters constant. The 

thresholds we found were based on the model-predicted mortality (and error) at given 
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temperatures relative to the mean summer temperature, and for some cities this resulted 

in the threshold temperature falling several degrees or more below those linked to 

activation of various warnings and advisories by weather forecast offices (National 

Weather Service 2006) and temperatures commonly perceived as being dangerous 

(Sheridan 2007). This is not necessarily a weakness of our study, as we likely included all 

days where heat could have been a contributing factor to elevated summertime mortality 

rates, but a more stringent criterion could be applied by others. We also included all days 

where the temperature exceeded a city-specific threshold, but it would be worthwhile to 

examine if the response is more predictable when limiting the study to heat waves where 

dangerous temperatures are experienced over several consecutive days (Anderson and 

Bell 2011). We did not consider the effects of mortality displacement (Hajat et al. 2005, 

Saha et al. 2013) or potential confounding by air pollutants (e.g., Roberts 2004).  
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Conclusion 

Using multi-decadal high-resolution mortality records from cities spanning the climate 

zones of the United States. we have found evidence that geographic zones associated with 

higher heat-related mortality are predictable. The relative risk of a given postal code 

being associated with high mortality in one withheld year if identified as a target zone 

from a training model was statistically better than random in Boston, Minneapolis, 

Philadelphia, and Seattle. In these cities there was a 32% greater chance that target zones 

for intervention activities had high heat-related mortality in a data set unseen by the 

predictive model. The relative risk was also greater than one in Phoenix and St. Louis, 

but predictability was not statistically significant. These cities are associated with greater 

temporal heterogeneity in the spatial mortality pattern on hot summer days. Across all six 

cities, 50% of excess mortality on above-threshold temperature days was confined to 

postal codes identified as targets. As these locations represented only 25% of total 

mortality during the study period, they were disproportionately impacted by extreme 

heat. Study results indicate significant reductions in heat-related mortality could be 

achieved with proper intervention programs aimed at specific localities within major 

metropolitan areas, particularly in Boston, Minneapolis, Philadelphia, and Seattle.  
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Figures 

Figure 1. The temperature-mortality relationship for Minneapolis, MN, based on a 

generalized additive model using data from 1993–2008. The threshold temperature is the 

lowest temperature at which model-predicted mortality significantly differs from that 

predicted at the summer mean temperature. The model-predicted value is the solid center 

line and the confidence intervals are represented by the dashed lines. 
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Figure 2. The seasonality in mortality in Minneapolis, MN, during 1992. The pattern 

emerges from a generalized additive model using daily mortality data. The model-

predicted value is the solid center line and the confidence intervals are represented by the 

dashed lines.  
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Figure 3. The ratio of mortality rates on high temperature days in target postal codes to 

non-target postal codes in each of the six cities examined. The ratios shown are the means 

across all training data sets (gray bars) and testing data sets (black bars). A ratio of 1.0 

indicates that the mortality rate on hot days is equal between the two groups.  
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Figure 4. A year-by-year comparison of mortality ratios on high temperature threshold-

exceeding days in target zones (black lines) and non-target zones (gray lines) in six study 

cities. A mortality ratio of 1.0 indicates that mortality on hot days was equal to the rate 

that would be expected for normal summer conditions.  
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Figure 5. Scatterplots comparing the frequency that each postal code (each represented 

by one black circle) was identified as a target zone during a model training iteration and 

identified as a high-mortality zone during a model testing evaluation. A circle in the 

bottom left hand corner of each panel indicates places that were never identified as 

targets based on training data and were never associated with high mortality in testing 

data; the top right hand corner places that were always identified as targets and always 

had high mortality.  

 



218 

 

Tables 

Table 1. Descriptive statistics of the meteorological and mortality data sets used in the 

study for six different United States cities. The table also includes information regarding 

the modeled temperature-mortality relationship for each city, the modeled threshold 

temperatures, and the number of spatial units identified as targets during model training 

iterations.  

 

 

 

 

 

 

 

City Boston, MA Minneapolis-St. Paul, MN Philadelphia, PA Phoenix, AZ Saint Louis, MO Seattle, WA

Period of Record 1987–2007 1992–2008 1983–2008 1989–2007 1980–2008 1988–2008

Summer mean 

temperature in training 

periods (Min-Max)

25.5 (25.4-25.6) 26.4 (26.3-26.6) 29.1 (29.0-29.1) 39.9 (39.9-40.0) 30.3 (30.2-30.4) 22.7 (22.6-22.8)

Threshold temperature 

(Min-Max)
28.0 (27.8-28.2) 30.2 (30.0-30.6) 30.7 (30.6-30.8) 42.6 (42.4-43.0) 34.4 (33.8-35.8) 25.9 (25.7-26.1)

Model predicted mortality 

increase at threshold (95% 

CI)

1.018 (1.000-1.036) 1.023 (1.000-1.046) 1.015 (1.000-1.031) 1.019 (1.020-1.040) 1.016 (1.000-1.033) 1.021 (1.000-1.042)

Mean mortality on all 

above-threshold days 

relative to below-threshold 

days (Min-Max)

1.059 (1.056-1.063) 1.046 (1.041-1.050) 1.066 (1.060-1.070) 1.040 (1.035-1.055) 1.032 (1.026-1.046) 1.063 (1.059-1.067)

Number of postal codes
64 101 48 101 63 65

Mean number of target 

postal codes (Min-Max)
15.0 (13-16) 13.5 (10-15) 18.9 (16-21) 11.9 (10-15) 7.7 (4-11) 11.3 (10-14)
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Table 2. Contingency tables comparing the relative frequency at which postal codes were 

identified as targets and non-targets during model training and associated with high 

mortality during model testing. The data shown are summed across all years in the study 

period for each respective city. Relative risk values greater than 1.0 indicate that postal 

codes identified as targets are more likely to be associated with high mortality in model 

testing compared to non-targets.  

 

 

 

 

 

 

BOS MSP

Target Non-Targets Target Non-Targets

High 158 373 High 106 459

Not High 158 655 Not High 124 1028

Relative Risk 1.378 (1.202, 1.580) Relative Risk 1.493 (1.273, 1.751)

PHL PHX

Target Non-Targets Target Non-Targets

High 228 288 High 82 565

Not High 264 468 Not High 145 1127

Relative Risk 1.216 (1.067, 1.387) Relative Risk 1.082 (0.899, 1.302)

STL SEA

Target Non-Targets Target Non-Targets

High 79 571 High 108 434

Not High 140 1037 Not High 129 694

Relative risk 1.016 (0.842, 1.226) Relative Risk 1.184 (1.012, 1.386)

Training SampleTraining Sample

Training Sample

Training Sample Training Sample

Training Sample

Withheld 

Year

Withheld 

Year

Withheld 

Year

Withheld 

Year

Withheld 

Year

Withheld 

Year
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Table 3. Descriptive statistics of total summer mortality and estimated excess heat-

related mortality during the study period for each city examined. The column to the right 

represents summation across all six cities.   

 

 

 

 

 

 

 

 

 

 

BOS MSP PHL PHX SEA STL All Cities

Total Summer Deaths 63996 54204 96423 84536 53912 93317 446388

Total Summer Deaths 

(Targets Only) 19330 10090 47268 13020 10287 11800 111795

Total Excess Mortality 770.55 301.88 1198.80 456.05 533.29 229.08 3489.65

Total Excess Mortality 

(Targets Only) 439.79 312.06 766.54 50.85 113.12 58.94 1741.31

Percent of Total Deaths 

in Targets 30.21 18.62 49.02 15.40 19.08 12.65 25.04

Percent of Excess Deaths 

in Targets 57.08 103.37 63.94 11.15 21.21 25.73 49.90

Number of years 21 17 26 19 21 29
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Chapter 6. Review 

1. Summary 

This body of research has made multiple contributions to the fields of applied 

climatology and environmental health. A statistical method for calculating the 

temperature-mortality relationship for spatial units with sample sizes too small for 

conventional methods was developed. This method was applied to long-term daily 

mortality records, which revealed statistical differences in risks related to extreme heat 

events within a suite of large metropolitan areas in the United States over the past two 

decades. An ecological framework was the adopted to determine factors most closely 

associated with variability in intra-city risk. To the best of our knowledge, this 

dissertation represents the first comprehensive effort to assess intra-city variability in 

heat-related mortality using long-term data collected from multiple cities. The major 

findings from each chapter of the main text (2–5) are reported below, followed by general 

conclusions integrating across the chapters and identification of promising areas for 

continued and new exploration.  

 

Chapter 2. Fine-scale spatial variability of heat-related mortality in Philadelphia County, 

USA, from 1983–2008: A case-series analysis.   

 Georeferenced mortality records including the postal code of residence of the 

decedent show large differences in the mortality rate on hot summer days in one 

large U.S. city 
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 Intra-city variability in heat-related mortality is associated with spatial variability 

in a number of socioeconomic and environmental factors, and risk is highest in 

locations with high surface temperatures, more elderly, lower per capita income, 

and more intensely-developed land.  

 Estimates of the impact of high temperatures on mortality rates vary depending 

on the specific hourly temperature measurement chosen for analysis 

Chapter 3. A time series approach for evaluating intra-city heat-related mortality 

 A statistical technique is introduced that enables estimates of heat-related 

mortality for spatial units with small sample sizes, combining ideas from different 

disciplines 

 Low daily mortality rates inhibit direct modeling of seasonality and long-term 

time trends using a single smoothing spline and failure to accurately model these 

patterns can lead to misspecification of temperature-mortality associations 

 Application of this new method to Philadelphia data identifies a set of high-risk 

locations not identical to those presented in Chapter 2 

Chapter 4. The predictability of high-risk zones for heat-related mortality in seven U.S. 

cities  

 There is sufficient temporal consistency in intra-city heat-related mortality 

patterns such that high-risk zones can be identified with data not used by a 

predictive model 
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 For the six study cities where a significant association between temperature and 

mortality was found, over half of excess deaths on above-threshold temperature 

days occurred in locations predicted to be high risk 

 The predictability of high-risk zones varied considerably between study cities  

Chapter 5. Geographic dimensions of heat-related mortality in seven U.S. cities 

 Heat-related mortality is spatially variable within large U.S. metropolitan areas 

where there is a statistical link between high temperatures and elevated mortality 

 Intra-city variability in heat-related mortality is substantially greater than inter-

city differences, and statistically significant high mortality on hot days is confined 

to 11-44% of the postal codes comprising the cities examined 

 Postal codes with higher heat-related mortality rates are associated with many 

characteristics that would be expected based on previous research, including more 

elderly residents, lower incomes, and greater extent of developed land, but the 

specific combination of factors that explain the spatial pattern varies from city to 

city 

 The areas within cities where mortality rates are the highest on hot summer days 

may contrast with those expected using traditional vulnerability assessments, 

warranting a data-driven, city-specific approach to understand spatial variability 

in risk 
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2. Conclusions 

There has been little formal evidence of intra-city variability in heat-related mortality 

rates based on health outcome data published to date. In the major U.S. cities we 

examined where high temperatures are associated with elevated mortality rates, 

significant variability in sensitivity to heat exists at the postal code scale.  This 

dissertation presents the first comprehensive assessment of intra-city variability in heat-

related mortality rates that utilizes daily, multidecadal, georeferenced health records from 

climatically diverse locations. The results add a finer-scale layer to our understanding of 

risks related to extreme heat, as most previous research has focused on the aggregate 

response of the populations of large metropolitan areas. For decades it has been known 

that there are important inter-city differences in sensitivity to heat, thereby encouraging 

the development of city-specific warning systems. This research shows that intra-city 

differences also exist and can be quite large. This evidence should provide additional 

motivation for public officials to improve the level of spatial specificity in their planning 

and response efforts focused on extreme heat.  

The statistical method presented in Chapter 3 offers other researchers in the field an 

accessible means of determining heat-health associations for small spatial units in other 

jurisdictions. The method could also be readily applied for other environmental health 

hazards where the analysis is complicated by important inter- and intra-annual variability 

in the response variable. The methods currently used to estimate temperature-mortality 

associations for time series with higher daily mortality counts simply are not reliable for 

the sample sizes investigated in this dissertation—often three or fewer deaths per postal 
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code per day. Borrowing more reliable information from larger-scale units is a method 

that produces model estimates of temporal and temperature-related effects that are more 

plausible than those generated simply by applying established methods to these smaller-

sample data sets.  

The characteristics of places associated with higher heat-related mortality rates varied 

across the cities examined in this dissertation (Chapter 4). This is vital information for the 

research community, public health officials, and government planners involved in 

identifying and helping vulnerable populations in metropolitan areas. Although the 

characteristics of high-risk places were largely consistent with previous research, the 

specific combination of factors included in statistical models for each city varied. This 

means that if one were to apply a consistent scheme for identifying vulnerable locations 

within a suite of cities, there would likely be high-risk locations missed and low-risk 

locations receiving potentially unnecessary aid.  

This dissertation provides support for the notion that built environment features can 

contribute to elevated risk of heat-related mortality that may arise because of urban heat 

island effects. The intensity of developed land cover was associated with intra-city 

variability in heat-related mortality in several of the cities examined and was more 

closely related to the variability than various demographic indicators. This encourages the 

consideration of—at least in some cities—the adoption of design features aimed at 

reducing thermal stress for residents.  

The demographic characteristics of high-risk locations identified from this research can 

be used by emergency management personnel and planners in assessing the types of 
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mitigation and intervention strategies that may be most effective for sensitive populations 

within their jurisdictions. This research demonstrates that these personnel should not 

assume that established risk factors necessarily translate to their areas of governance, and 

where, possible, efforts should be made to empirically understand risk variability within 

their service region. 

The fact that there is some temporal consistency in the year-to-year spatial pattern in 

heat-related mortality (Chapter 5) is encouraging for the future application of the 

outcomes of this dissertation. For the majority of the cities we examined, the places 

associated with high heat-related mortality in any given year are often those that would 

be predicted by an empirical model based on training data. Across the study sites, more 

than half of excess deaths on above-threshold days were found in places that would have 

been identified as target locations for intervention activities based on quantitative 

evidence. As heat-related deaths are believed to be largely, if not fully, preventable, 

effective intervention measures solely focused on these particular locations could go a 

long way toward reducing the unnecessary health burden associated with extreme heat.  

 

 

 

 

3. Future Research Opportunities 
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The possibility of increasingly frequent and severe heat waves in the future, combined 

with an increasingly urban population, indicates that heat-related morbidity and mortality 

may be a persistent challenge in the coming decades. Research in the areas represented in 

this dissertation offers the means of providing new information to public health officials, 

city planners, policymakers, and other researchers to help develop the most effective and 

efficient strategies for saving lives and reducing healthcare costs. As the chapters of this 

dissertation represent the first comprehensive, empirically-driven, local-scale assessment 

of heat-related mortality across multiple U.S. cities, it is the author’s hope that this body 

of work serves as the starting point for research in the coming years spanning multiple 

disciplines that are ultimately connected to understanding how natural hazards like 

extreme heat impact people and how any negative impacts can be minimized. A number 

of scientific and application-driven questions have emerged during the course of this 

research, and many doors have been opened for future opportunities from the compilation 

of data and initial set of analyses. A sample of potential future projects is discussed 

below, some of which have already been started by collaborators at the University of 

Virginia and elsewhere. 

Understanding drivers of variability in the surface urban heat island 

Follow-up work to Chapter 2 included the creation of a collection of remote imagery of 

the Philadelphia surface urban heat island. Over the study period, 21 images were found 

for clear summer days with relatively high temperatures, and the collection includes 

images from a variety of months and years. Preliminary analysis of this image collection 

revealed significant variability in the surface urban heat island during warm days, which 
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discourages the approach adopted in Chapter 2 (and elsewhere in the peer-reviewed 

literature) of using only one or two satellite images to represent intra-urban microclimatic 

variability. It was determined that there is low confidence that any one available image 

will be representative of the mean surface urban heat island on hot days.  

Subsequent analysis revealed an interesting pattern in which there is an association 

between time of year and the range of surface temperatures across the County boundaries. 

More specifically, the contrast between the city center and surrounding suburbs was 

larger in the late spring and early summer and smaller in late summer and early fall. This 

decreasing range mostly was driven by increasing relative minimum temperatures—the 

suburban heat island signature more closely resembled that of the city center late in the 

season. If this collection of images represents a true seasonal signal in spatial variability 

in urban heat island intensity, it would be useful to understand the physical drivers of this 

seasonal pattern. One hypothesis is that there is greater moisture content in soil and 

vegetation in suburban areas in late spring compared to late summer, and evaporation of 

this moisture provides cooling relief.  

The finding also has potential implications for heat stress differences between suburban 

and city-center residents, in that those living in the urban core experience higher 

temperatures than those living in surrounding areas early in the season. Previous research 

has shown that early-season heat waves have a disproportionate effect on mortality, and 

also that those who live in more highly developed areas are more vulnerable to heat. It 

could be the case that early-season heat poses a greater threat to city-center residents, 

adding a temporal dimension to targeted intervention strategies. Understanding the health 
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impacts of this seasonal variability in the heat island can also provide additional 

justification and motivation for adoption of design features aimed at reducing urban heat 

island effects.  

Quantifying personal thermal exposure in urban landscapes 

One of the major assumptions of this dissertation adopted in Chapters 2 and 5 is that the 

environment in which people reside serves as a good representation of the conditions they 

experience. In Chapter 2, for example, the surface temperature of the postal code of 

residence of decedents was compared to intra-city variability in mortality rates to 

determine if places with higher temperatures are also associated with higher mortality 

rates. It is not necessarily the case, however, that the surface (or air) temperature of a 

given postal code of residence accurately portrays the thermal experience of residents of 

that postal code, and thus it is difficult to draw definitive conclusions, particularly at the 

individual level, about the contribution of the built environment to heat-related health 

risks. The behavior of individuals moving through complex urban landscapes is largely 

unaccounted for in present research. Many individuals spend the majority of their time in 

climate-controlled residences, vehicles, and workplaces. Others do not have access to air 

conditioning or work in settings where heat exposure is common. Urban residents, the 

elderly, outdoor workers, those in poverty, and children are most susceptible to extreme 

heat, but it is unclear how variability in heat exposure contributes to this susceptibility. 

Patterns of exposure might also vary by season, weather, and time of day. This variability 

necessitates measurement of personal exposure to harmful levels of heat that is largely 

absent in present research and practice.  
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We have proposed a pilot project to instrument individuals moving throughout urban 

landscapes with wrist-worn temperature sensors with the goal of understanding 

temperature from a person-based, rather than place-based, perspective. Related future 

work could also involve capturing data through mobile phones, vehicles, and other fixed 

and mobile sources. In the coming years, individuals could theoretically receive personal 

alerts when their individual level of exposure reaches a certain threshold.   

 

Mapping heat-health impacts at multiple scales 

This dissertation shifts the focus of analysis of heat-related mortality from the city-wide 

scale to the intra-city (postal code) scale, and this shift makes it possible to draw different 

conclusions regarding where the most vulnerable populations are located that one can 

reach using coarsely-aggregated data from large populations. However, meaningful and 

helpful research in this area is possible along the entire spectrum of scales ranging from 

inter-city down to the level of individual residences. As they are derived from an 

ecological design, the results of this dissertation must be treated appropriately, in that the 

patterns and associations seen in certain locations and at this scale of analysis do not 

necessarily extend to other locations and other scales. For example, while this dissertation 

has shown that in some cities postal codes with higher percentages of developed land are 

associated with higher mortality rates on hot days, this does not necessarily mean that 

cities with more developed land should expect higher heat-related mortality than those 

with more open space. Thus, more research is needed to understand the spatial scales at 

which certain factors are important determinants of risk. Exploring spatial variability at 
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different scales can also provide a more comprehensive perspective on vulnerable 

populations within the service regions of public officials at various levels of government. 

The data compiled in this dissertation make it immediately possible to conduct analysis 

comparing heat-related mortality rates across counties of certain states, as well as 

exploring census-tract-level variability within certain locations. In some cases, 

individual-level residential information is available. Other stakeholders may have 

interests at different spatial scales that are appropriate for their planning, intervention, 

and mitigation efforts.  

 

Assessing emergency managers’ perceptions of spatial variability in heat-related risk and 

willingness to use empirically-driven results   

The author and contributors to this dissertation have intended from the start of the project 

to see that this work is communicated to public officials in the study cities in a manner 

that makes improvements to their heat-health response measures possible. Directly 

engaging these stakeholders to share project results and learn end-user needs may be an 

effective means of doing so. Based on the scientific literature, as well as documentation 

produced by health and emergency departments in the study cities, there is very little 

evidence that geographical dimensions of heat-related risk are an integral part of the 

response efforts in the study cities. We have developed and are in the process of 

conducting an interview-based project to learn emergency managers’ understanding and 

perceptions of spatial variability in risk within their service regions. Interviews conducted 

to date suggest that while these public officials perceive differential risk within their 
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cities, formal mechanisms for targeting certain locations with tailored interventions do 

not exist. Further, in some cases the locations perceived to be high-risk for heat-related 

mortality by public officials have not been historically associated with higher risk on hot 

days (perhaps because of successful interventions), and in other cases locations with 

higher historical risks were unexpected. While initially engaging officials in the 

conversation has proven challenging thus far, we believe that the conversations that have 

occurred have provided new perspective and can help shape future response efforts. A 

continued, persistent effort to ensure that this research reaches a range of stakeholders in 

each of the study cities is imperative to see that it achieves its maximum societal impact.  


