
Near-data-processing for Data-Intensive Applications

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Doctor of Philosophy (Computer Science)

by

Lingxi Wu

September 2023

© 2023 Lingxi Wu

Abstract

The information technology sector has experienced explosive growth in data-intensive applications such

as bioinformatics, big data analytics, and deep neural networks (DNNs). These computing tasks have

a tremendous economic impact and societal benefits, but their execution on conventional Von Neumann

architectures is inefficient due to excessive data movement, a problem that rapidly growing input data

sizes have exacerbated. To tackle this bottleneck, the computer architecture research community has put

forward many data-centric solutions that place logic inside memory or the disk drive, commonly referred to as

Near-data-processing (NDP), to reduce the latency and energy cost of data access significantly. Additionally,

NDP architectures usually offer much larger parallelism, higher data bandwidth, and lower peak power

consumption than CPU and GPU, allowing them to achieve orders of magnitude speedup and energy saving

when executing data-intensive kernels.

This dissertation outlines four new contributions to NDP, including (1) a digital bit-serial DRAM-based

processing scheme that targets a wide range of computing tasks, including bioinformatics, data analytics,

pattern matching, and general-purpose arithmetic, (2) a 3D-stacked memory technology with an integrated

compute layer that accelerates de novo genome assembly, (3) a processing-with-storage-technology (PWST)

HW/SW codesigned framework that targets k -mer counting, a key bottleneck of many bioinformatics tasks,

and (4) a case study of how privacy and data integrity can be breached in a recent NDP-based DNN accelerator

leveraging the non-volatile memory technologies (NVM), highlighting the importance of fostering future NDP

accelerator design with a security focus.

i

Approval Sheet

This dissertation is submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

Lingxi Wu

This dissertation has been read and approved by the Examining Committee:

Kevin Skadron, Adviser

Ashish Venkat, Adviser

Mircea R. Stan, Committee Chair

Adwait Jog

Felix Lin

Sandhya Dwarkadas

Accepted for the School of Engineering and Applied Science:

Jennifer L. West, Dean, School of Engineering and Applied Science

September 2023

ii

Acknowledgements

I am grateful to many people who have contributed to shaping this dissertation. This dissertation would not

have been possible without the influence, advice, and support of many colleagues, friends, and family.

First, I would like to thank my advisors, Prof. Kevin Skadron and Ashish Venkat, for their constant and

genuine support, patience, and guidance during my academic career. First, they encouraged me to dream

big, aim high, and never submit a paper without trying to develop it fully. Second, they always give me

plenty of time to explore and learn. I have my first work published in the fourth year. Before that, they had

never given me any pressure for publication. This allowed me to focus on the work rather than the stress of

not having any publications. Third, they provided me with many opportunities to make connections and

collaborate with talented people from both industry and academia, which greatly elevated my vision and

capabilities as a researcher. I had the greatest privilege and pleasure of working with them.

Second, I would like to thank many of my co-authors, including Rasool Sharifi, Marzieh Lenjani, Minxuan

Zhou, Rahul Sreekumar, Akhil Shekar, and Deyuan Guo; without their effort, dedication, and input, none of

my work would be possible. They taught me valuable lessons in various technical subjects. I will forever

miss the meetings and conversations we had while we were solving difficult problems in both academia and

personal life. Most importantly, they are a great source of inspiration and encouragement that help me reach

the finish line. I would also like to thank many other friends and colleagues from our group, including Alif

Ahmed, Farzana Siddique, Sergui Mosanu, Wole Jaiycoba, Chunkun Bo, Tommy Tracy, and many more.

Lastly, I would like to thank my family and close friends. My grandparents and my parents pushed me

to pursue a Ph.D. degree many years ago. Although there were moments when I felt like it was a terrible

idea and wanted to quit, they nevertheless encouraged me to continue this journey. Today, I can truly say

that getting my Ph.D. is a life-changing experience, and it taught me many things that will benefit me for

the rest of my life. I am also grateful to have my wife, Ningle, who is always by my side to celebrate my

every little achievement, tolerate my tantrums when I experience setbacks, and support me in every way

possible. A special thanks to my puppy, Dobby. I don’t know what I did last life to deserve such intense and

unconditional love from a little angel like that. He has been giving me a tremendous amount of emotional

Abstract iv

support. I was also lucky to meet my roommate Kun, who quickly became my close friend. He graduated

last year with a Ph.D. in Chemistry from UVA as well. He always puts others before himself, and we shared

many fun and memorable moments during grad school.

Pursuing a Ph.D. degree is difficult. Looking back, it’s a series of seemingly never-ending struggles

sprinkled with bittersweet moments. I am truly happy to finish what I started six years ago, and I’m looking

forward to new chapters in my personal and professional life.

Contents

Contents v

List of Tables . ix

List of Figures . x

1 Introduction 1

1.1 Thesis Statement and Contributions . 4

1.1.1 Digital bit-serial DRAM-based SIMD Processing . 5

1.1.2 Ultra Efficient Acceleration for De Novo Genome Assembly via Near-Memory Computing 7

1.1.3 Abakus: Accelerating k -mer Counting With Storage Technology 8

1.1.4 New Hardware Trojan Threats in Memristor-based Neuromorphic Computing Systems 8

1.2 Dissertation Organization . 9

2 Background 11

2.1 DRAM Memory Technology and SSD . 11

2.1.1 2D Planar DRAM . 11

2.1.2 3D-stacked Memory Cube . 12

2.1.3 SSD . 14

2.2 Bioinformatics . 14

2.2.1 k -mer matching . 15

2.2.2 k -mer counting . 16

2.2.3 de Bruijn Graph (DBG) Genome Assembly . 18

2.3 Database OLAP . 18

2.4 Hardware Trojans . 20

3 Sieve: Scalable In-situ DRAM-based Accelerator Designs for Massively Parallel k-mer
Matching 22

3.1 Introduction . 22

3.2 Motivation . 25

3.3 Architecture . 29

3.3.1 Sieve Type-2 and Type-3 . 29

3.3.2 Sieve Type-1 . 34

3.3.3 System Integration . 35

3.3.4 k -mer to Subarray Mapping . 36

3.3.5 Sieve: Putting it all together . 37

3.4 Methodology . 37

3.5 Results . 39

3.5.1 Energy, Latency, and Area Estimation . 39

3.5.2 Kernel Performance Improvement . 40

3.5.3 Sensitivity Analysis . 43

3.6 Related Works . 44

3.7 conclusions . 46

v

Contents vi

4 DRAM-CAM: General-Purpose Bit-Serial Exact Pattern Matching 47
4.1 Introduction . 47
4.2 Architecture . 49
4.3 Evaluation . 51
4.4 Conclusion . 54

5 Membrane: A PIM-based Architecture to Accelerate Database OLAP Queries 55
5.1 Introduction . 55
5.2 Background . 57
5.3 Architecture . 60

5.3.1 Membrane-V . 60
5.3.2 Membrane-H . 63

5.4 System Integration . 65
5.5 Evaluation . 68

5.5.1 Power, Latency, and Area Evaluation . 68
5.5.2 Overall Membrane Performance . 69
5.5.3 Membrane Performance Breakdown . 71
5.5.4 Sensitivity Study . 72

5.6 Related Works . 74
5.7 Conclusion and Future Work . 76

6 DRAM-BitSIMD: Exploring the Design Tradeoffs and Opportunities in DRAM-based
Bit-Serial Vector Computing 77
6.1 Introduction . 77
6.2 Background . 80
6.3 Related Work . 83
6.4 Design Space Exploration . 85

6.4.1 Deployment Models . 85
6.4.2 Complexity of the Bit-Serial Logic . 85

6.5 DRAM-BitSIMD Architecture . 88
6.6 System Integration . 89

6.6.1 Programming and Compiling . 89
6.6.2 Virtual Memory and PIM-kernel Launch . 93

6.7 Methodology . 96
6.8 Evaluation . 97
6.9 Conclusions . 100

7 Ultra Efficient Acceleration for De Novo Genome Assembly via Near-Memory Computing102
7.1 Introduction . 102
7.2 Key Ideas . 104

7.2.1 DBG Assembly Pipeline . 104
7.2.2 NDP Acceleration . 105

7.3 NDP-based DBG Construction . 106
7.3.1 NDP parallel graph construction . 106
7.3.2 Bucket Distribution . 108
7.3.3 Message Buffering and k -mer Compression . 110

7.4 NDP-based DBG Traversal . 112
7.4.1 NDP Parallel Graph Traversal . 113
7.4.2 Speculative Contig Expansion . 114

7.5 Architecture . 117
7.5.1 Programming Interface . 117
7.5.2 Hardware Support . 118

7.6 Methodology . 120
7.6.1 Simulation . 120

Contents vii

7.6.2 Baseline System . 121
7.6.3 Workloads . 121

7.7 Results . 121
7.7.1 Performance Scalability . 123
7.7.2 Inter-core Communication Reduction . 124
7.7.3 Exploration on Speculation . 125
7.7.4 Exploration on Network . 125
7.7.5 Energy Efficiency . 126
7.7.6 Comparison with Other Distributed Algorithms . 126

7.8 Related Works . 127
7.9 Conclusion . 128

8 Abakus: Accelerating k-mer Counting With Storage Technology 129
8.1 Introduction . 129
8.2 Background . 132
8.3 Motivation . 134

8.3.1 I/O Is the Bottleneck . 134
8.3.2 ISP k-mer Counting Considerations . 135

8.4 Architecture . 137
8.4.1 Overview of the PWST Architecture . 137
8.4.2 Abakus-Basic Overview . 138

8.5 Partitioning Strategy . 139
8.6 Custom Hardware Design . 140

8.6.1 Chip-level NSPU . 140
8.6.2 SSD-level Processing . 141

8.7 Abakus Optimizations . 141
8.8 Abakus-BF . 142

8.8.1 Abakus-BF Motivation . 142
8.8.2 Abakus-BF Overview . 143
8.8.3 Estimate the Bloom filter Size . 143
8.8.4 Estimate Partition Cardinality . 144

8.9 Abakus-OP . 145
8.9.1 Motivation . 145
8.9.2 Abakus-OP Overview . 145
8.9.3 Abakus-OP Estimate Partition Cardinality . 146

8.10 Methodology . 147
8.11 Results . 149

8.11.1 Area Overhead Analysis . 149
8.11.2 Overall Performance and Energy Efficiency . 149
8.11.3 Performance Breakdown . 150
8.11.4 Sensitivity Analysis . 151

8.12 Discussion . 152
8.13 Conclusion . 153

9 New Hardware Trojan Threats in Memristor-based Neuromorphic Computing Systems155
9.1 Introduction . 155
9.2 Background . 156
9.3 Related . 158
9.4 Threat Model . 158
9.5 Attack Overview . 160

9.5.1 Feasibility of Exploitation . 160
9.5.2 Attack Procedure . 160
9.5.3 Establishing Power-to-Weight Correlation . 161

9.6 Trojan Design . 162

Contents viii

9.7 Methodology . 163
9.8 Results . 165

9.8.1 Trojan Stealth . 165
9.8.2 Sensitivity Study . 166

9.9 Mitigation . 167
9.10 Conclusion . 167

10 Conclusions and Future Work 169
10.1 Conclusions . 169
10.2 Future Research Opportunities . 172
10.3 Appendix . 174

10.3.1 Accepted publications . 174
10.3.2 Under Review . 174

Bibliography 175

List of Tables

3.1 Workstation Configuration . 37
3.2 Query Sequence Summary . 37
3.3 Sieve Components Energy and Latency Analysis . 40

4.1 Mapping exact matching kernels onto DRAM-CAM . 48
4.2 Population Count Logic Characteristics . 51
4.3 Workstation Configuration . 51

5.1 Membrane Hardware Characteristics. 69

6.1 Cycle Count for n-bit High-Level Operations on DRAM-BitSIMD 3-Reg Design 90
6.2 Selected Benchmarks (Notation: I: integer, F: floats, *: not executable in the stock version of

SIMDRAM) . 96
6.3 Area and Power of BSLU Variants, per 1-bit BSLU . 98

7.1 Programming Interface . 117
7.2 Workstation and NDP Configuration . 120
7.3 Genome Datasets . 121

8.1 Area and power breakdown. 147
8.2 Input Genome Datasets (Default k = 28) . 148

ix

List of Figures

2.1 DRAM memory organization . 11
2.2 Solid State Drive (SSD) organization . 14
2.3 k-mer matching pseudo code and illustration . 15
2.4 The application of k -mer counting in bioinformatic pipelines. 16
2.5 The stages in de novo genome assembly using de Bruijn graph. 17
2.6 An example OLAP scenario. Image credit Akhil Shekar . 19
2.7 The stages in integrated circuits design and manufacturing. 20
2.8 Hardware Trojan taxonomy . 21

3.1 Execution time breakdown of Kraken [1], CLARK [2], stringMLST [3], Phymer
[4], LMAT [5], BLASTN [6] . 23

3.2 k-mer matching in existing in-situ accelerators using Triple-row Activation and
horizontal data layout. 26

3.3 k-mer matching in Sieve using Single-Row Activation and vertical data layout. . . 26
3.4 Characterization of mismatches between k-mers. 28
3.5 Sieve Overview. (a) DRAM banks. (b) Type-2 Zoom-in. Subarray group facilitates

inter-subarray data copy, and a compute buffer is added for each subarray group
which has the matcher circuits. (c) Type-3 Zoom-in. Similar to Type-2 but the
matchers reside in the local row buffers. (d) Matcher. (e) Data layout of subarray.
Each subarray is partitioned into three regions for storing k-mer pattern groups,
payload offsets, and payloads. 29

3.6 Column Finder in Type-2/3. Segments with k-mer hits are shown in red, otherwise
green. 30

3.7 ETM in Type-2/3. 31
3.8 Type-3 Timing Analysis. WL, SA, and PRE indicate latencies associated with

raising the wordlines, enabling sense amplifiers and precharging the rows. (a)
ETM and matchers operations overlap with row opening. (b) ETM is on the
critical path only when there is a hit, as it needs extra cycles to identify the hit.
Then the BSRs are shifted, followed by a copy into the RS. CF operates in parallel
with row opening and ETM for the next k-mer. 32

3.9 Row-wide data copy across subarrays. 33
3.10 Sieve Type-1. A query k-mer is sent to the Query Register, and a row activation

is issued. 1. The controller logic uses the column address to select a batch and
indexes into the SRAM Buffer to get the batch result bits entry. 2: The query bit,
the reference bits, and the result bits are sent to the Matcher Array. 3: Matchers
write back to the result bits entry stored in the SRAM Buffer. 34

3.11 Row-major in-situ vs. Sieve Comparison. 42
3.12 Comparison with CPU baseline. 42
3.13 Comparison with GPU baseline. 42
3.14 Average cycles spent to process CPU benchmarks. 43
3.15 The effect of varying the number of compute buffers. T = Type, #CB = number

of compute buffers. 45

x

List of Figures xi

4.1 Population count logic. 49
4.2 Comparison with CPU baseline. 534.3 Comparison to other in-DRAM accelerators. 54

5.1 The results show how long the Aggregate step takes for each query, with early/late materializa-
tion. Using PIM may improve the remaining time (for the Filter step). 60

5.2 Membrane-V Architecture. 62
5.3 Membrane-H Architecture. 64
5.4 End-to-end SSB performance of various PIM techniques, compared against a hand-optimized

AVX-512 CPU baseline. Results are depicted as a speedup against the CPU baseline. Aside
from Membrane-H, which uses the RLU, all techniques are evaluated using a late materialization
strategy. 70

5.5 Membrane-V SSB query breakdown. 71
5.6 Membrane-H time to materialize each SSB query, by layout. For each query, the data layout

with the shortest time to materialize each query is labeled above. 73
5.7 Effect of subarray-level parallelism on area, geometric mean query power consumption, and

performance. 73

6.1 Bit-serial addition (a + b = s) example. 80
6.2 In-situ bit-serial computing in DRAM. 81
6.3 Bit-serial logic unit design space. 86
6.4 DRAM-BitSIMD architecture. 88
6.5 Bit-serial programming process for 1-bit addition on the NAND-only architecture. 90
6.6 Bit-serial int add/sub microprograms on DRAM-BitSIMD. 91
6.7 Compare CPU and DRAM-BitSIMD histogram kernel. 92
6.8 DRAM-BitSIMD-3Reg speedup and energy saving over CPU. Bars=speedup (SP); data

points=energy reduction (EN). 98
6.9 BitSIMD energy savings over SIMDRAM. 99
6.10 BitSIMD energy savings over SIMDRAM. 100
6.11 BitSIMD-3Reg speedup over GPU. 100
6.12 BitSIMD-3Reg energy savings over GPU. 100
6.13 DRAM-BitSIMD 3-Reg speedup over GPU. Results are normalized to GPU silicon die area

and power. 101

7.1 The overview of NDP-accelerated DBG assembly. 105
7.2 The overview of NDP-based DBG construction. 108
7.3 Bucket shuffle based on the origins of k-mers. 109
7.4 Hop distance from the source core (in white) to different remote cores (in color). 109
7.5 Message compression by leveraging the overlapping bases of consecutive k-mers. . 111
7.6 The distribution of the number of bases that are overlapped for each consecutive

22-mer pairs. 112
7.7 The overview of NDP-based graph traversal. 112
7.8 The speculative search optimization. 115
7.9 Resolving speculation conflicts. 116
7.10 Hardware support for NDP-based DBG assembly. 119
7.11 Operations in hardware components. 119
7.12 Performance comparison with the baseline on graph construction and graph traversal.122
7.13 Memory bandwidth utilization for Human genome. 123
7.14 Scalability results from 1-cube to 16-cube. 123
7.15 The reduction of inter-core message passing provided by optimizations for graph

construction. 124
7.16 The performance comparison among different steps for speculation. 125
7.17 The performance comparison among different network structures. 126

8.1 Illustration of a two-phase disk-based k-mer counting algorithm workflow (F: input sequence
files, P: s-mer partition files, C: k-mer counting table files. 133

List of Figures xii

8.2 Gerbil [7] I/O overhead. 134
8.3 The overall architecture of Abakus. 137
8.4 The basic two-phase hardware workflow of Abakus. Bloom filter is effective in Abakus-BF . 138
8.5 Diagram of the near-storage processing unit (NSPU). 140
8.6 Mapping for Hash Table and Bloom Filter modes . 142
8.7 Abakus-OP Workflow . 143
8.8 The overall performance and energy across different platforms, genomes, and k sizes. 148
8.9 Performance breakdown for the three Abakus designs. 150
8.10 The performance of different partitioning strategies. 151
8.11 Exploration of different buffer sizes for Abakus-OP. 153

9.1 Synaptic Core layout[8] and Neuron Architecture. 157
9.2 Schematics and waveforms that depict (a). Generic Integrate and Fire Neuron

model; transient signals that exhibit (b). current integration, and (c). spiking
pattern. 158

9.3 Trusted and untrusted parties in the supply chain. 159
9.4 Synaptic weights recovery through a Trojan-created power side-channel. 160
9.5 Trojan trigger module and payload circuit . 162
9.6 Transient waveforms of payload circuit. 163
9.7 (a) SNR comparison, (b) Offline characterization . 165
9.8 Sensitivity to Conductance Levels and ADC Resolutions for add references for

devices. 165
9.9 (a). Area overhead and (b). Pleak in comparison to the noise floor, as a function

of the input Trojan vector. 165

Chapter 1

Introduction

Data movement dominates the execution time and energy consumption of software with large data footprints

due to the strict separation of computing devices (i.e., CPU) and data storage devices (i.e., main memory or

disk) in modern computing systems.

First, fetching data to the processor is expensive. For example, transferring data from the off-chip main

memory to the processor takes two orders of magnitude more time and consumes three orders of magnitude

higher energy than a single-precision addition [9]. For applications designed to handle large data sets beyond

the available memory of a machine by using a disk to cache intermediate results (i.e., out-of-core processing),

the data movement overhead is even worse. In such cases, a large amount of data needs to be moved across

the deep hardware stack (hierarchies within an SSD, main memory, cache layers, etc.) and system software

stack (flash transaction layer, NVMe protocols, OS file systems, etc.) between CPU and the hard drive,

which incurs significant command and control overhead.

Second, the growing dataset sizes and random access patterns further exacerbate the data movement

challenges. However, the underlying hardware is having an increasingly difficult time keeping up with the

data growth rate due to the end of Moore’s Law and Dennard’s scaling. In bioinformatics alone, the amount

of data that needs to be analyzed is projected to surpass astronomy, particle physics, and popular websites

such as YouTube and Twitter, far exceeding the pace of Moore’s Law [10]. A similar trend is observed

in enterprise database analytics. A recent Google report indicates that more than 2.5 quintillion bytes of

data are expected to be generated daily worldwide. Currently, BitQuery, a database analytics platform, has

already consumed 10% total cycles within the hyperscalar fleet [11]. For years, traditional Von Neumann

architectures have relied on caches to hide the data access latency. However, the memory access patterns

of these data-intensive applications are typically random, and their working sets are often large, leading to

1

Introduction 2

poor cache behavior, even on high-end servers that feature large last-level caches [12], forcing applications to

initiate frequent and slow off-chip data retrieval.

Third, The impact of data movement is most severe when the computing task required by those applications

is simple and unable to mask the long data access latency, amplifying the inefficiency caused by the memory

wall [13], where the processor’s speed outpaces the rate at which data can be transferred to and from the

memory system. Essentially, for data-intensive applications, the processors frequently stall for memory

requests to be serviced across all levels due to the random nature of their data access, only to perform a

small computational task on that data; therefore, the overall execution time is dominated by the idle gaps

created by data movements.

Across different application domains, data movement has already been shown to be the bottleneck. In deep

neural networks (DNN), a recent study demonstrates that data movement in a production DNN (GoogLeNet)

accounts for roughly 70% of the overall energy consumption [14]. For example, in bioinformatics, many

key kernels such as k -mer counting, which builds a histogram of short DNA sequences of size k are also

bottlenecked by data access [15]. Our performance profiling experiments on a state-of-the-art k -mer counting

tool [7] suggest 49% to 89% of execution stalls are caused by bringing data from a secondary data storage

device to the CPU and writing data back. In Online Analytic Processing (OLAP), a key step is to apply a

scan operator to filter out desired data items based on predicates, which can incur large overhead because

the entire database records need to be brought into the CPU to process. Our workload profiling also suggests

that this key database operation is largely memory-bound and not compute-bound (see Chapter 5.2).

The above observations have inspired numerous attempts to place compute capabilities inside the data

storage devices, commonly called near-data-processing (NDP), to address the data movement challenge. NDP

comes with a variety of design choices. To our knowledge, a comprehensive taxonomy that fully captures the

diverse world of the NDP landscape has not been officially proposed and accepted. Here, we introduce a few

design principles to interpret and categorize the NDP design space. Based on the underlying data storage

technology, NDP architectures are memory-based, such as DRAM or SRAM (a.k.a Processing-in-memory or

PIM), or storage-based, such as SSD. Based on functionalities, there are domain-specific NDP accelerators

that target high-value individual applications or kernels (DNN, bio, database, graph, etc.) or general-purpose,

which can perform a set of common compute primitives (arithmetic, logical, relational, etc.). Based on the

specific locations that the compute logic is integrated (e.g., data row buffer, I/O interface, logic layer, etc.),

an NDP work is described as either near-data or in-situ. There are also NDP works that leverage the analog

charge-sharing property of the data array to perform computing and those that rely on digital circuits.

Adding to the complexity of categorizing different NDP designs, another consideration is the deployment

scenarios for NDP architectures. The NDP architectures can also be broadly divided into two markets—

Introduction 3

“memory/storage-first” and “accelerator-first” NDP, that each offer varying degrees of power-performance-area

tradeoffs and present unique system integration challenges. Memory/storage-first NDP design focuses on

adding compute capabilities to the memory or data storage units with minimal hardware complexity. Hence,

the resulting product fits in existing memory/storage-system design constraints and has minimal impact

on memory capacity. The compute-enabled memory/storage still competes in the memory/storage market

with other commodity memory/storage products. Accelerator-first NDP designs seek to design the best

data-parallel accelerator and use memory/storage architecture as an implementation technology to achieve this

without the constraints of the traditional memory interface. The end result is an accelerator that competes

with other data-parallel architectures such as GPU. Data in an accelerator-first architecture can still be read

and written by the processor, for example, via CXL [16]. Potentially, the data capacity and host read/write

bandwidth would be lower and device power higher than what a traditional memory interface supports.

While a memory/storage-first NDP design is attractive in terms of cost because it does not significantly step

away from existing memory/storage architecture, it usually entails solving many system-level challenges,

such as addressing mapping, maintaining data coherency, data reshaping, and more (see Chapter 6.1 and

10.2). An accelerator-first design would be easier to integrate into a host system using existing approaches

similar to other PCIe-connected co-processors. However, there are still challenges regarding developing

custom compilation toolchains and APIs, and it would be more expensive to manufacture than commodity

memory/storage products.

NDP is suitable for many data-intensive applications because it reduces data movement by processing

at the place where data resides. Additionally, the underlying memory or storage technology that forms

the foundation of NDP architecture can sustain much higher internal data bandwidth and parallelism if

the compute elements can be directly connected to the data arrays. For example, the SSD has a notable

internal (between flash chips and the SSD controller) vs. external (between host and SSD) bandwidth gap.

Moreover, the internal bandwidth is easier to scale by providing more channels, while expensive data pins

limit the external bandwidth. For a 3D-stacked memory cube where the aggregated internal bandwidth of

all vaults (i.e., vertical slices similar to channels) can be an order of magnitude larger than its external I/O

bandwidth [17]. For a traditional 2D planar DIMM memory, the external I/O width is limited to 64-bit,

but a local row buffer in each memory subarray (see also Chapter 2.1.1) has access to 1024 bytes to 4096

bytes. Second, using a bit-serial DRAM-based NDP as an example, we argue that a well-designed NDP

provides much larger data parallelism. In such architecture, each memory bit sense amplifier is augmented

with a 1-bit compute unit. For a single 8-Gbit DDR4 chip (8 banks/chip) with 16K bitlines per bank, there

would be 128K 1-bit processing elements. The degree of hardware parallelism can be further increased with

subarray-level parallelism. Recent prototypes by Micron have demonstrated that 8 million 1-bit processing

Introduction 4

units can be fired up simultaneously in an NDP system built on top of a DDR4 8Gib x4 chip [18] with much

smaller peak power consumption (∼ 7W) than CPU and GPU.

While several recent proposals [19, 20, 21, 22, 23, 19, 24, 25, 26] have tackled the challenge of improving

the performance and efficiency of NDP designs, the security and privacy implications of these architectures

remain largely unexplored. Notably, semiconductor supply chain attacks are critical threats that have the

ability to disrupt the operations of high-value mission-critical systems. The process of setting up a trusted

end-to-end production line for emerging analog eNVM-based neuromorphic accelerators can be prohibitively

time-consuming and expensive, which has paved the way for a more decentralized design-manufacturing

approach that inevitably invites exploitation from bad actors to stealthily inject malicious hardware Trojans

into the product [27, 28, 29, 30, 31, 32]. Successful transformation of NDP designs from prototypes to

products will entail solving many challenges, and the security and privacy implications of these designs

remain largely unexplored despite the potential sensitive deployment scenarios for NDP devices, including

mission-critical or privacy-sensitive machine learning tasks such as medical diagnostic imaging and virtual

assistance.

1.1 Thesis Statement and Contributions

Observing the recent progress and unaddressed challenges of NDP, we hypothesize in this dissertation

that NDP systems can significantly mitigate the cost of data movement, improving the application execution

speed and energy consumption for data-intensive applications. However, as NDP technology matures, the

security implications of future designs should be thoroughly analyzed to achieve wide adoption. Accordingly,

we design and evaluate a set of NDP accelerators to alleviate the data movement bottleneck for data-intensive

workloads across different application domains. In addition to exploring the design space from performance

and efficiency perspectives, we explore potential security threats in the supply chain to facilitate the design of

future NDP accelerators with a security focus.

This dissertation advances the area of NDP further by primarily making four contributions

(detailed in the following subsections). First, we explore applying a bit-serial DRAM-based SIMD processing

scheme to accelerate various computing tasks, including bioinformatics, data analytics, pattern matching, and

general-purpose computing. Second, we propose a 3D-stacked memory technology with an integrated compute

layer that accelerates de novo genome assembly. Third, we evaluate a processing-with-storage-technology

(PWST) HW/SW codesigned framework that targets k -mer counting, a key bottleneck of many bioinformatics

tasks. Fourth, we conduct a case study of how privacy and data integrity can be breached in a recent

1.1 Thesis Statement and Contributions 5

NDP-based DNN accelerator, highlighting the importance of fostering future NDP accelerator design with

security in mind.

1.1.1 Digital bit-serial DRAM-based SIMD Processing

Bit-serial computing sequentially processes from operands’ LSB to MSB, and each bit position is computed

by applying different logic operations (AND, XOR, NOT, etc.). While traditional bit-parallel computing

can compute results in one shot, bit-serial computing can outperform it by simultaneously operating on a

large vector of elements bit-by-bit since its performance is sensitive to the bit-length of each element rather

than the number of elements. In-DRAM bit-serial computing relies on cycling through operand DRAM rows

for processing. Prior work [33, 34, 35, 36, 37, 38] have explored the potential of enabling massively-parallel

bit-serial SIMD-style processing with a vertical data layout in DRAM architecture. The vertical layout allows

each activation to access a bit slice across a row worth of vector elements (i.e., bitlines or lanes), hence the

name bit-serial computing. Our approach differs from the prior analog-based works by performing bit-serial

logic digitally using a minimalistic logic integrated at the DRAM local row buffer. Based on the underlying

implemented logic, such digital bit-serial architecture can be adapted to accelerate different applications with

different performance and energy profiles. Specifically, we explore the following four variations.

Variation one. Sieve: Scalable In-situ DRAM-based Accelerator Designs for Massively Parallel

k-mer Matching

The rapid influx of biosequence data, coupled with the stagnation of the processing power of modern

computing systems, highlights the critical need for exploring high-performance accelerators that can meet the

ever-increasing throughput demands of modern bioinformatics applications. This work argues that processing

in memory (PIM) is an effective solution to enhance the performance of k -mer matching, a critical bottleneck

stage in standard bioinformatics pipelines characterized by random access patterns and low computational

intensity.

This work proposes three DRAM-based in-situ k -mer matching accelerator designs (one optimized for

area, one optimized for throughput, and one that strikes a balance between hardware cost and performance),

dubbed Sieve, that leverage a novel data mapping scheme to allow for simultaneous comparisons of millions

of DNA base pairs, lightweight matching circuitry for fast pattern matching, and an early termination

mechanism that prunes unnecessary DRAM row activation to reduce latency and save energy. Evaluation of

Sieve using state-of-the-art workloads with real-world datasets shows that the most aggressive design provides

Introduction 6

an average of 326X/32X speedup and 74X/48X energy savings over multi-core-CPU/GPU baselines for k -mer

matching.

Variation two. DRAM-CAM: General-Purpose Bit-Serial Exact Pattern Matching

Exact pattern matching is a widely used kernel in many applications. We observe that exact-pattern-matching-

intensive workloads share similarity with k -mer matching and thus can benefit from a similar architecture

like Sieve. We decided to extend Sieve with several cost-effective modifications, such as a population count

logic, chip-level parallelism support, and a hardware data transposition unit, making a general-purpose

DRAM-CAM and key-value store that outperforms CPU and various PIM solutions.

Variation three. Membrane: A PIM-based Architecture to Accelerate Database OLAP Queries

We then apply the DRAM-based bit-serial techniques to Online Analytical Processing (OLAP) database

workloads. We explore how to map queries onto subarray-level PIM, which enables parallelism across subarrays

and banks. We systematically explore mapping strategies and trade-offs between bit-serial/element-parallel

and bit-parallel/element-serial designs adapted from the prior Sieve and Fulcrum architectures, respectively.

We find that join operations do not map well to subarray-level PIM architectures. Thus, we need to use

a software pre-join/denormalization method to transform join operations into selection/filter operations.

We also learn that certain operations, such as aggregation, remain better served using the CPU. Thus, we

propose a cooperative approach for analytic query processing between CPU and PIM. We then explore several

dimensions in the design space of PIM architectures, including different ways to perform filter operations

and a new way to return data to the CPU. We conclude that a traditional columnar database layout with a

scalar processing element in the PIM-enabled subarrays (Membrane-H) for the table scan, combined with a

rank-level unit (RLU) for gathering the selected elements, is the best configuration. An evaluation of an

end-to-end query processing on the popular analytic benchmark SSB at scale factor 100 (a 60GB database)

yields a 45.39× geometric-mean speedup over a hand-optimized AVX-512 implementation of SSB.

Variation four. DRAM-BitSIMD: Exploring the Design Tradeoffs and Opportunities in DRAM-

based Bit-Serial Vector Computing

Finally, after observing the speedup and energy-saving of bit-serial DRAM-based pattern matching in

bioinformatics and data analytics, we hypothesize such NDP processing can be applied to more compute

primitives such as arithmetic, logical, relational, and more. We comprehensively explore the design space

for bit-serial general-purpose computing logic embedded in the DRAM subarray, leveraging the massive

1.1 Thesis Statement and Contributions 7

parallelism of DRAM row operations. We show that digital techniques can outperform prior analog charge-

sharing techniques. Digital techniques require more area but support a wider range of computing primitives

and allow a sequence of logic operations to be performed at higher clock speeds between slower subarray

row reads/writes. We describe a range of bit-serial architecture choices and evaluate raw performance area

and energy efficiency. We also describe a high-level vector-oriented instruction set. By analyzing bit-serial

operations with different complexity levels, we identify essential hardware components for performing such

operations efficiently. With software and hardware co-designing, we propose a programmable DRAM-BitSIMD

architecture that achieves a good balance between bit-serial computing performance and hardware costs by

introducing a bit-serial logic unit with bit registers, highly optimized bit-serial instruction set, and decoupled

memory and logic instruction execution. We implement a rich set of high-level operations with bit-serial

microprograms, explore the system integration approaches, and evaluate the performance on multiple widely

used benchmarks. Results show that the digital architecture demonstrates a 20X speedup over CPU, 5X over

GPU, and 1.7X over SIMDRAM, an analog architecture.

1.1.2 Ultra Efficient Acceleration for De Novo Genome Assembly via Near-

Memory Computing

De novo assembly of genomes for which there is no reference is essential for novel species discovery and

metagenomics. In this work, we accelerate two key performance bottlenecks of DBG-based assembly, graph

construction and graph traversal with near-data processing (NDP) architecture based on a 3D-stacked

memory product with a logic layer. The proposed framework distributes key operations across NDP cores to

exploit a high degree of parallelism and high memory bandwidth. We propose several optimizations based on

domain-specific properties to improve the performance of our design.

we map the graph construction to many independent in-memory tasks that can be allocated to a specific

in-memory core. We design a new memory organization for sequence data and the resulting DBG in the NDP

architecture to maximize the parallelism and balance the workload in all in-memory cores. We also propose a

synchronization-based parallel in-memory traversal to generate genome contigs efficiently. We integrate the

proposed techniques into an existing DBG assembly tool, and our simulation-based evaluation shows that the

proposed NDP implementation can improve the performance of graph construction by 33× and traversal by

16× compared to the state-of-the-art.

Introduction 8

1.1.3 Abakus: Accelerating k-mer Counting With Storage Technology

This work seeks to leverage Processing-with-storage-technology (PWST) to accelerate a key bioinformatics

kernel called k-mer counting, which involves processing large files of sequence data on the disk to build

a histogram of fixed-size genome sequence substrings and thereby entails prohibitively high I/O overhead.

In particular, this work proposes a set of accelerator designs called Abakus that offer varying degrees of

tradeoffs in terms of performance, efficiency, and hardware implementation complexity. The key to these

designs is a set of domain-specific hardware extensions to accelerate the key operations for k-mer counting at

various levels of the SSD hierarchy to enhance the limited computing capabilities of conventional SSDs while

exploiting the parallelism of the multi-channel, multi-way SSDs. Our evaluation suggests that Abakus can

achieve 8.42×, 6.91×, and 2.32× speedup over the CPU-, GPU-, and near-data processing solutions.

1.1.4 New Hardware Trojan Threats in Memristor-based Neuromorphic Com-

puting Systems

Fast and energy-efficient execution of a DNN on traditional von Neumann architectures is challenging

due to excessive data movement and inefficient digital computation. Recently, emerging memristor-based

neuromorphic computing systems (MNCS), which is a form of NDP architecture that mimics biological

neuron computations, are gaining traction. These neuromorphic chips perform neuron computation using

arrays of resistive memory cells, and the computation results are directly represented with the analog current.

However, MNCS designs focus on performance, while security concerns take a back seat. Previous works

have shown that DNNs running in traditional platforms such as CPU, GPU, and FPGA environments are

subject to various attacks, suggesting that MNCS is also likely vulnerable.

This work demonstrates a hardware supply chain attack (i.e., insertion of hardware Trojan during design

and production) against emerging MNCS devices consisting of leakage of neuron network model parameters

through a covert power side-channel that could be inserted at several points in the supply chain. We then

dissect a common MNCS architecture derived from several published works and identify the analog-to-digital

converters (ADC), which convert the MNCS’ analog output current to digital output as an attack target.

The ADCs generate a series of voltage spikes that allow the adversary to correlate MNCS switching activities

with secret model parameters (i.e., synaptic weights). We design a stealthy hardware Trojan that taps into

the ADC circuits to create a covert power side-channel. An adversary can infer the synaptic weights by

collecting a series of power traces of the victim MNCS devices. Our evaluation suggests a simple power signal

analysis can recover over 90% of synaptic weights of an MNIST MLP, and the reconstructed MLP performs

similarly with the victim model, making this a viable threat to MNCS.

1.2 Dissertation Organization 9

1.2 Dissertation Organization

The remainder of this dissertation is organized as follows:

Chapter 2: Background and Prior Works introduces various memory and data storage technologies

that form the foundation of our NDP designs, the background of the computational tasks that we aim to

accelerate, and the fundamentals of hardware security.

Chapter 3 - 6: Digital bit-serial DRAM-based SIMD-style Processing presents the design space

exploration of fitting 1-bit digital logic in the DRAM local row buffer to process data and bit-serially. This

NDP architecture is characterized by its bit-serial element-parallel processing scheme, which is highly parallel

and energy efficient. We discuss the tradeoffs and design decisions of the digital DRAM-based bit-serial

architectures through four variations, which target different domains and have different capabilities. This

chapter, in full, is a reprint of the material as it appears in the proceeding of ISCA 2021 [12] (Chapter 3) and

CAL 2022 [39] (Chapter 4). A full list of authors for Chapters 3 and 4 can be found in Appendix 10.3.1.

I am the primary investigator and author of these two papers. Chapter 5 (HPCA 2024 Membrane) and

Chapter 6 (ASPLOS 2024 DRAM-BitSIMD) are adapted from the material of the two works under review.

A full list of authors for Chapters 5 and 6 can be found in Appendix 10.3.2. Chapter 5 is a joint effort with

Akhil Shekar (UVA), Kevin P. Gaffney (UW), Martin Prammer (UW), and Helena Caminal (Cornell). My

primary contribution to this work is the design of the Membrane-V architecture and area, power, and

performance evaluation of both Membrane-V and Membrane-H. Chapter 6 is a joint effort with Deyuan

Guo (UVA). My primary contribution to this work is the programming interface, overall performance

evaluation and modeling, and the overall shaping of the design space.

Chapter 7: Custom Logic in 3D-stacked DRAM memory cube presents a HW/SW codesigned

framework that integrates lightweight processing cores in the logic layer of the 3D-stacked memory cube

to accelerate the de Bruijn graph (DBG) based genome assembler. This chapter, in full, is a reprint of the

material as it appears in the proceeding of PACT 2021 [40]. This is a joint effort with Minxuan Zhou (UCSD).

A full list of authors for Chapter 7 can be found in Appendix 10.3.1. My primary contribution to this

work is the design of the NDP parallel DBG graph construction and its evaluation.

Chapter 8: Processing with storage technology presents an NDP architecture that leveraging

Processing-with-storage-technology (PWST) to accelerate a key bioinformatics kernel called k -mer counting.

This chapter, in full, is a preprint of the material submitted to TACO. This is a joint effort with Minxuan Zhou

(UCSD). A full list of authors for Chapter 8 can be found in Appendix 10.3.2. My primary contribution

to this work is the design of Abakus-Basic, Abakus-BF, Abakus-OP, and several major experiments to

evaluate their performance.

Introduction 10

Chapter 9: Hardware Trojan in DNN NDP Accelerator presents for the first time the feasibility

of carrying out a hardware supply chain attack against a neuromorphic DNN accelerator that performs

neuron computation inside resistive memory cell arrays. This chapter, in full, is a reprint of the material as it

appears in the proceeding of DATE 2023 [41]. This is a joint effort with Rahul Sreekumar (UVA). A full list

of authors of Chapter 9 can be found in Appendix 10.3.1. My primary contribution to this work is the

design of the overall attack scheme and evaluating the effectiveness of the weight recovery attack.

Chapter 10: Conclusions summarizes the dissertation and describes potential future research directions.

Chapter 2

Background

In this section, we introduce the fundamentals of DRAM memories.

2.1 DRAM Memory Technology and SSD

2.1.1 2D Planar DRAM

DIMM_0
DIMM_1

DIMM_2
DIMM_3

ch
ip

B
an

k

I/O Logic

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

Core Core

Mem Ctrl

$ $

Processor

Memory
Channel

R
ow

 d
ec

od
er

Row buffer
Subarray_0

wordline

bi
tli

ne

capacitor

tra
ns

is
to

r C
ell array

bi
tli

ne

bi
tli

ne

Sense Amp

(a). 2D Planar DRAM Memory (a). 3D-stacked DRAM Memory

Figure 2.1: DRAM memory organization

DRAM Organization Figure 2.1 (a) illustrates the key components of a commodity 2D planar DRAM,

which is usually organized as a hierarchy of memory cells with peripheral controls and I/O logic to support

high-density data storage and high-bandwidth data read and write. The host CPU communicates with a set

of DDR (double data rate) DRAM modules (DIMMs) through one or more memory channels controlled by

the memory controller. Each DIMM contains one or two ranks of chips. Chips grouped into the same rank

react to the same DRAM commands and behave in a lockstep manner, i.e., accessing a row from bank i in

one chip entails simultaneously accessing the same row in bank i from all chips in the same rank. Organizing

11

Background 12

conventional (i.e., DDR) DRAM into ranks is primarily for two reasons. (1) A large monolithic single-chip

DRAM bank would be slow due to the wire delay. (2) The I/O width of a DDR DRAM chip is limited to 8 -

16 bits, so to support a cache fill, a rank is needed to achieve a wide read/write. Essentially, each logical

DRAM bank is physically partitioned among a rank of chips.

Banks are further broken down into groups (32 to 64) of 2D arrays of cells called subarrays, and each

subarray typically consists of 512–1024 rows. However, these values may vary from product to product to

optimize overall DRAM density and performance. Conventionally, only one subarray per bank is activated

to respond to a DRAM command. Additional performance can be extracted by exploiting subarray-level

parallelism (SALP) [42]. SALP has three variations, and we leverage the most aggressive form called MASA

(Multitude of Activated Subarrays). MASA exploits the fact that each subarray has its own local row buffer

that latches a recently activated DRAM row; therefore, by adding one additional single-bit latch to each

subarray’s peripheral logic as well as a new 1-bit global control signal, the SALP mechanism can keep multiple

subarrays in the same bank active, reducing bank-level request conflict and improve row-buffer hit rate to

the same bank. When applied to NDP designs, subarray-level parallelism (SALP) substantially increases

the computing throughput. However, sustaining the activation of several subarrays simultaneously requires

more power than traditional DRAM chips and system interfaces are designed to support. However, the

performance benefit usually justifies the cost.

DRAM Data Access Bits are stored as charges in the DRAM cell’s capacitor and converted to digital

values upon access by a row of sense amplifiers known as the row buffer. Accessing DRAM includes three

essential steps: (1). Row activate, which selects a row of cells by asserting the wordline and connecting

the cells’ transistors to the bitlines, at which point the charge flows to the sense amplifiers. It takes tRCD

(≈ 15ns) delay for the sense amps to detect and stabilize the charges. Note connecting a DRAM row to the

row buffer destroys the original values, and the sense amplifiers take additional time to restore the charges.

The delay between the row activation and cell charge restoration is governed by the timing parameter tRAS

(≈ 35ns). (2). After the bits are latched in the row buffer, the memory controller can issue a Read or Write

command and a column address to access the desired bits. (3). Finally, to access another DRAM row, a

precharge stage lasting ∼ 15 ns (tRP) is needed to disconnect the current capacitors from the bitlines by

disabling the wordline and restore the bitline voltage to their quiescent state.

2.1.2 3D-stacked Memory Cube

Emerging 3D-stacked DRAMs, such as Micron’s hybrid memory cube (HMC) illustrated in Figure 2.1 (b),

and high bandwidth memory (HBM) [43, 44] of different vendors such as Samsung, SK Hynix, and Micron,

2.1 DRAM Memory Technology and SSD 13

are popular platforms to enable NDP functionality. Since HMC and HBM share many high-level design

principles, we use an HMC cube illustrated in Figure 2.1 (b) to explain the core concepts of a 3D-stacked

memory product.

HMC Organizations For each of a 3D-stacked memory module (AKA a cube in HMC’s terminology),

there are multiple (4 - 8) vertically-stacked memory dies on top of a logic die (e.g., a logic layer in HMC or

a layer of interposer in HBM). A HMC cube is vertically sliced into multiple (16 - 32) independent vaults

(8 - 32 MB / vault), similar to pseudo channels in HBM. Each vault has its own memory controller in the

logic layer, and the data is transferred from the DRAM dies to the logic die through fast through-silicon

vias (TSVs), which provide higher bandwidth, lower latency, and lower communication energy consumption

within a cube than comparable 2D DIMM organizations [45].

HMC Characteristics Differs from traditional 2D DIMM-based memory, HMC adopts a packet-based

(16B to 128B) communication protocol implemented with high-speed serialization/deserialization (SerDes)

circuits [45], which archives higher raw link bandwidth than achievable with synchronous bus-based interfaces

implemented in the traditional DIMM memory. Such communication protocols provide a much wider interface

than DDR DIMM, which has a narrow I/O: 4 - 16 bits per chip and 64 bits per rank. In terms of the

bandwidth, externally, there are eight 60 GB/s high-speed serial links as the off-chip interface, which means

a single HMC cube providing 480 GB/s of host-to-memory bandwidth [46]. To scale out the HMC-based

memory, multiple cubes can be connected using a crossbar network. Internally, with 32 vaults per cube and

2Gb/s of TSV signaling rate, an HMC archives an internal bandwidth of 512 GB/s [17]. Additionally, 3D

stacking has the advantage of a smaller form factor compared to DIMM technology.

HMC-based Accelerators Due to its advantages, 3D-stacked memory has been used by some high-end

GPUs and FPGAs to improve performance. It is also a starting point for potential consideration to achieve

NDP. 3D-stacked memory-based NDP solutions come in various forms. Recent proposals can be separated

into two categories: (1) in-situ processing where the logic is embedded at the row-buffer level such as

Fulcrum [47], or integrating a custom core/application logic at the logic layer per vault [17, 48, 49, 50]. The

NDP system can scale out by connecting multiple cubes using high-speed serial links to form a network of

NDP cores. Scaling out the NDP system built on top of HMC can simultaneously increase the memory

capacity, parallelism, and aggregated memory bandwidth, which is ideal for many big-data applications such

as parallel genomics workloads with a large memory footprint and high bandwidth demand. We evaluate the

effectiveness of NDP design in the context of HMC architecture, which provides concrete parameters accessible

to researchers. However, our optimizations may also be applied directly to other 3D-stacked memories like

HBM, which shares a similar organization (e.g., channels vs. vaults) [43, 44].

Background 14

SSD Controller

SSD Core

Host
I/O

FMC 0

FMC 31

Flash Chip 0 Flash Chip 1 Flash Chip 2 Flash Chip 3

Flash Chip 0 Flash Chip 1 Flash Chip 2 Flash Chip 3

Channel 0

Channel
31

...

DRAM 1.2Gbps

Plane 0

Plane 1

D
ie 1

Plane 0 D
ie 0

M
ul

tip
le

xe
d

In
te

rf
ac

e

B
us

 In
te

rf
ac

e

...

bl
oc

k
bl

oc
k

bl
oc

k

Figure 2.2: Solid State Drive (SSD) organization

2.1.3 SSD

Figure 2.2 shows the block diagram of a commodity SSD. An SSD can be conceptually divided into a front-end

and a backend. The backend consists of NAND flash chips organized into multiple (8 ∼ 32) independent

channels to increase the I/O parallelism. In addition, each chip comprises several dies; each can serve a

different memory request but must compete with other sibling dies for the same data and control paths

[51]. Each die comprises multiple data blocks (groups of 4∼8 KB pages), organized into several planes that

generally respond to commands in a lock-step manner [51]. There is usually a register at the die level [51, 52]

to buffer a data page for an R/W command. The front end consists of a controller core, DRAM, and a set of

flash memory controllers (FMC). An SSD controller, usually a low-frequency, energy-efficient CPU, has three

responsibilities: (1) communicate with the host through SATA or NVMe protocols to handle I/O requests,

(2) convert I/O requests to flash transactions and submit them to chip-level queues, in addition to supporting

address translation, read/write caching, garbage collection, among other tasks, and (3) coordinate with FMCs

which issue commands to and transfer data to/from the chips. The DRAM stores the data structures the

controller requires to execute various flash management tasks and buffers data.

2.2 Bioinformatics

The field of bioinformatics has enabled significant advances in human health through its contributions to

precision medicine, disease surveillance, population genetics, and many other critical applications. Bioin-

formatics pipelines typically analyze unknown genome samples of various sizes, ranging from small viruses

(e.g., a COVID test) to extremely large environmental data in metagenomics (e.g., analyzing soil samples).

Investigating bio-accelerator designs has tremendous economic and societal benefits. The market share

of metagenomics alone is expected to reach $1.4 billion by 2025 [53]. In the emerging precision medicine

domain, a patient’s sample is first sequenced on the NovaSeq instrument in under 48 hours, producing 6 12

TB microbiome and human DNA/RNA data. To develop personalized treatment from these samples, raw

2.2 Bioinformatics 15

1.					for	(query_seq:	query_list){
2.										kmer_list	=	[]
3.										payload_list	=	[]
4.										...	//	store	k-mers	from	query_seq
5.										for	(kmer:	kmer_list){
6.														result	=	query_kmer(kmer,	reference	k-mer	set,	...)
7.														if	(result	!=	NULL)	//	found	match,	retrieve	payload
8.																	payload_list.add(result.payload)
9.														else
10.																...	//	no	match
11.								}
12.								...	//	classify	query_seq	using	payload_list
13.			}

Query Sequence

......

3
Taxon i
Taxon j
Taxon k
Taxon l......

2

1

Classify the query sequence

K
-m

ers

K-mer DB
Assign taxon ID to each k-mer by searching the DB

Count the number of hits for each k-mer

4

Taxon ID
Counter 1 5 3 4

Taxon i Taxon j Taxon k Taxon l

Figure 2.3: k-mer matching pseudo code and illustration

sequences are passed through, often in parallel, various metagenomics stages with k -mer matching, DBG

genome assembly, and k -mer counting on the critical path. ∼68 days can be spent on software called Kraken

[1] during the critical k -mer matching stage, ∼3600 CPU hours on the de novo genome assembly. Efficient

execution of k -mer matching, DBG genome assembly, and k -mer counting can help transform many life-saving

tasks from vision to reality. Each of the three bioinformatics kernels is described as follows.

2.2.1 k-mer matching

A DNA sequence is a series of nucleotide bases commonly denoted by four letters (bases): A, C, G, and T.

k -mer are subsequences of size k. Metagenomic algorithms attempt to assign taxonomic labels to genetic

fragments (sequences) with unknown origins. A “taxonomic label” assigns a sequence to a particular organism

or species. Traditionally, this is done by aligning an individual query sequence against reference sequences,

which can be prohibitively slow. Processing a metagenomics file containing 107 sequences using an alignment-

based BLAST algorithm takes weeks of CPU time [54, 55]. Experts predict that genomics will soon become

the most prominent data producer in the next decade [56], demanding more scalable sequence analysis

infrastructure. More recently, alignment-free tools that rely on simple k -mer matching have emerged to aid

large-scale genome analysis tasks, because properly labeled k -mers are often sufficient to infer taxonomic and

functional information of a sequence [5, 1, 2, 57].

Figure 2.3 (a) illustrates the process of a typical k -mer-matching-based sequence classifier. In an offline

stage, a reference k -mer database is built, which maps unique k -mer patterns to their taxon labels. For

example, if a 5-mer ”AACTG” can only be found in the E.coli bacteria sequence, an entry that maps

”AACTG” to E.coli is stored. At run time, k -mer matching algorithms slide a window of size k across the

query sequence, and for each resulting k -mer, they attempt to retrieve the associated taxon label from the

database. The function query kmer in line 6 is repeatedly called to search each k -mer in the database. If

the query k -mer exists in the database (k -mer hit), its taxon label (payload) is retrieved; otherwise, we move

on and compare the next k -mer in the query. Once all k -mers in a query are processed, the taxon labels of

Background 16

Original (Unknown) Sequence
(e.g., 6.4 billions bps)

AAATATGTGCACCATATTTATGAATA

AAATATGT
ATGTGCACCATA

CATATTTAT

NGS Reads (100~300 bps)

k-mer counting (k=7)
AAATATG
AATATGT

ATGTGCA
TGTGCAC
GTGCACC
TGCACCA
GCACCAT
CACCATA

CATATTT
ATATTTA
TATTTAT

countk-mer
300AAATATG
320AATATGT

…
123CACCATA

counting

Downstream tasks

…

thresholding
AAATATG
ATATTTA

…
ATGTGCA
TGTGCAC
CACCATA

filtered
k-mers

de Bruijn graph
k-mer0 k-mer10

k-mer2 k-mer8

de novo sequence assembly

0
100
200
300

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

C
ou

nt

k-mer frequency
Distribution pattern

Genetic analysis

Metagenomics

Figure 2.4: The application of k -mer counting in bioinformatic pipelines.

the matched k -mers are used to make a final decision on the originating organism for the query sequence. A

popular choice is to keep a counter for each retrieved taxon label, and the taxon label with the most hits is

used to classify the query sequence. See Figure 2.3 (b)for example. The reference k -mer set itself can be

implemented in several ways. CLARK [2] and LMAT [5] leverage a hash table, with the k -mer pattern as the

key and the taxon label as the value. Kraken [1] uses a more sophisticated data structure that is a hybrid

between a hash table and a sorted list, in which k -mers that share the same “signature” are put into the

same hash bucket, which is then looked up using binary search. The assumption here is that two adjacent

k -mers within a query sequence are likely to share the same “signature” since they overlap by (k-1) bases and

are thereby likely to get indexed into the same bucket. In theory, this improves the cache locality over purely

hash table or sorted list approaches since matching the first query k -mer often brings the bucket to the cache,

which will be used for the subsequent query k -mers. In our workload analysis, we find out that even with this

optimization, cache performance remains poor.

2.2.2 k-mer counting

Use Case. The predominant genome sequencer today is based on the Next Generation Sequencing (NGS)

technology, which cannot output the entirety of a genome sequence in one sitting but instead produces many

overlapping short reads that are pieced together into the underlying genome through genome assembly. Due

to the errors introduced in the underlying chemical and electrical processes of the sequencers, the output

reads have an error rate of roughly one in a thousand bps. To ensure each region of the genome is correctly

covered at least a minimum threshold times for a highly accurate assembly result, genomes need to pass the

sequencer multiple times.

A quintessential use case of k-mer counting arises in the context of de novo genome assemblers based on

the de Bruijn graph (DBG), which leverages the overlapping portion of the NGS reads to put them together

into a complete genome. De novo assembly is used when the sequenced reads are from an organism whose

2.2 Bioinformatics 17

Target (Unknown) Genome Sequence (e.g., human – 6.4 billions bps)
AAATATGTGCACCATATTTATGAATATGGATACCCTAACAGTCCTCTGTGTGCGCGTCGTTGATTGGTGCC

AAATATGTGCACCATATTTATGAATCTGG ATATTTATGAATCTGGATACCCTAACAGT

GTCCTCTGTGTGCGCGTCGTTGATTGGTGC GAATATGGATACCCTAACAGTCCTCTGTGT

❶ NGS Reads (100~300 bps)

❷ K-mer Extraction (e.g., k=5)
GTCCT
TCCTT
CCTTC
CTTCC
TTCCT
TCCTC
…

AAATA
AATAT
ATATG
TATGT
ATGTG
TGTGC
…

ATATT
TATTT
ATTTA
TTTAT
TTATG
TATGA
…

GAATA
AATAT
ATATG
TATGG
ATGGA
TGGAT
…

AAATA AATAT ATATG TATGT

❸ DBG Construction (Hash Table)

GAATA TATGA

K-Mer Multiplicity
AAATA 1
AATAT 2
ATATG 2
…

f(x)
Hash

Sorting & Counting

❹ Genome Assembly (DBG traversal)

AAATA

Visit a k-mer
Guess the next

AATAT

Search the DBG

f(x)
Expand the contig

AAATAT
If yes

Visit the next k-merDe Bruijn Graph

Figure 2.5: The stages in de novo genome assembly using de Bruijn graph.

genome sequence is yet to be constructed, and there is no available reference sequence. Currently, there are

only 3,500 species of complex life that have been sequenced, and only about 100 have been sequenced at

“reference quality” [58], so DBG assemblers will remain an essential stage of the genome sequencing pipeline.

DBG is a form of directed multigraph where each unique k-mer is represented as a node in the graph, and an

edge is formed between two nodes if the ‘k-1’ suffix of the first node exactly matches the ‘k-1’ prefix of the

second node. An Eulerian path that visits each node exactly once represents the target genome sequence.

The primary purpose of k-mer counting in a DBG assembler is to reduce the data size by removing

potentially erroneous k-mers, represented as graph nodes. Since each genome region has coverage of multiple

NGS reads to defeat the inherent sequencing error rate, low-frequency k-mers such as those that appear only

once or twice are likely caused by sequencing errors and, therefore, disregarded. The number of erroneous

k-mers can be fairly large in real-world genome datasets (up to 80%) because one incorrect base pair can

result in k erroneous overlapping k-mers. For this reason, k-mer counting is an essential step to address the

genome sequencing and assembly data explosion problem. Furthermore, k-mer frequency information is also

used to resolve branches in DBG graph traversal [59].

Definition. Let Σ = {A, C, G, T} denote the alphabet of DNA nucleotide (AKA base pair) sequences.

A read r of length l is a sequence of nucleotides over the alphabet Σ. A k-mer is a substring of length k in r

(k≤l). All k-mers of a read r can be obtained by sliding a window of size k over r. Let R be a collection of

such input reads. k-mer counting is defined as finding the total number of occurrences of each distinct k-mer

pattern that is present in R. Consider a read set R of 3 reads: {ACGGTA, CGGTAC, TTTAC}. For k = 3,

a k-mer counting algorithm would recover eight distinct 3-mers and their respective number of occurrences

from read set R: {ACG:1, CGG: 2, GGT: 2, GTA:2, TAC:2, TTT:1, TTA:1, TAC:1}. k-mer is a critical step

in several bioinformatic pipelines including sequence assembly [60], genetic analysis [61], metagenomics [62],

etc., as shown in Fig. 2.4.

Background 18

2.2.3 de Bruijn Graph (DBG) Genome Assembly

Genome sequencing is the process of determining a segment or the whole DNA sequence of an organism. De

novo assembly is a key step of genome sequencing, where the short sequenced reads are assembled without

using a reference genome [63, 64, 65, 66, 67, 68, 69, 70, 71, 72]. Currently, the most successful de novo

assembly algorithm is based on the de Bruijn graph (DBG) algorithm. DBG is a form of directed multigraph

that stores the overlapping information of k -mers (DNA subsequences of size k) extracted from DNA sequence

reads. Each unique k -mer is represented as a node in the graph, and an edge is formed between two nodes if

the ‘k-1‘ suffix of the first node exactly matches the ‘k-1‘ prefix of the second node. DBG assembler finds a

path that visits each node exactly once to assemble the DNA sequence. The DBGs are of special interest

because the assembly algorithm can finish in polynomial time with respect to graph size [66].

Figure 2.5 shows the full pipeline of DBG-based genome assembly. It takes in NGS short reads sampled

in the genome sequence step and then extracts k -mers from every position. The de Bruijn graph is built on

the coverage relation between k -mers. Unlike a general graph, DBG follows a simple pattern where each

node can only have up to four outgoing edges and four incoming edges (four possible nucleobases). Therefore,

the most common data structure for DBG is a hash table, which enables efficient traversal on a forward or

backward path by searching the next/previous possible k -mers[71, 67, 70]. When a k -mer appears more than

once during the graph construction process, they are merged into one node and increase the count. DBG

assembly can build many long sequences, which are called contigs, by traversing the Eulerian path in the

DBG. DBG assemblers have many common steps, including data loading, error removal, and contig assembly.

The most time-consuming phases in a DBG assembly process are graph construction, which saves unique

k -mers along with their multiplicity and connectivity from raw input reads to a hash table, and graph

traversal, which traverses the graph to connect a chain of k -mers as contigs. Based on our experiments on

several popular tools [71, 67, 70, 69], graph construction takes 60% of the execution time, and graph traversal

for contig assembly takes 30% of execution time. Therefore, this dissertation focuses on accelerating these

two phases.

2.3 Database OLAP

Online Analytic Processing (OLAP) systems are critical technologies enterprises use to unlock the potential of

their vast enterprise databases. These systems employ analytic SQL queries to transform database data into

visual graphs on live dashboards and generate summary reports. Many OLAP workloads are characterized by

their emphasis on analyzing historical data, as compared to Online Transaction Processing (OLTP) workloads

2.4 Hardware Trojans 19

date
d_key
d_year
d_month
d_day

order
o_d_key
o_p_key
o_c_key
o_s_key
o_discount
o_quantity

product
p_key
p_category
p_color

customer
c_key
c_name
c_age
c_gender

supplier
s_key
s_region
s_size

(a) OLAP schema

Find the top 10 product categories most
popular with customers in their 20s

SELECT
 p_category,
 SUM(o_quantity) AS popularity
FROM order, product, customer
WHERE o_p_key = p_key
 AND o_c_key = c_key
 AND c_age BETWEEN 20 AND 29
GROUP BY p_category
ORDER BY popularity DESC
LIMIT 10;

(b) OLAP query

Figure 2.6: An example OLAP scenario. Image credit Akhil Shekar

that generally facilitate business transactions [73]. The differences between OLAP and OLTP workloads

have driven specialization in database platforms, where two separate database solutions regularly perform

analytical and transactional query processing. In many cases, the archived data is stored as a read-mostly,

append-only database, commonly referred to as a data warehouse [74], while the transactional database,

typically much smaller, stores the latest copy of the key tables in the database.

An OLAP database typically consists of a small number (often 1) fact tables and many dimension tables.

Fact tables contain historical transaction records and the dimension tables contain detailed information for

specific columns in the fact table records. As an example in a shopping cart application, the fact table record

may contain a record for each item that is purchased, including the id of the customer (a foreign key). A

separate customer dimension table may contain one record for each customer, recording the unique (primary

key) customer id along with detailed information for that customer, such as the customer’s email and address.

There may be other dimension tables to record other details about the purchase, including the product

description, the shipping method, etc. The fact table is generally large in size, and the dimensions tables are

significantly smaller. Typical OLAP queries involve “slicing and dicing” the data along the dimensions (they

do that by applying selection predicates on the dimension table columns, AKA table scan), then joining the

selected dimension records with the fact table, and finally aggregating the combined results to produce a

result (e.g., an ordered list of the top trending products purchased last year.)

Background 20

IP Blocks VHDL /
Verilog Netlist Layout ChipRTL Designs

Logic Verification

Logic Synthesis

Timing Verification

Place & Route

LVS & DRC

Post-layout Timing

Manufacturing
Verification

Packaging

Digital design phase Backend digital design phase Fabrication (Foundry)

Delivery

Post-Fabrication

Figure 2.7: The stages in integrated circuits design and manufacturing.

2.4 Hardware Trojans

Fig. 2.7 captures the major milestones and deliverables of the IC design and manufacturing process [27].

Chip vendors increasingly subcontract several key steps to third parties to save costs. One popular movement

is to go fabless due to the astronomically high upfront investment to set up a fabrication facility ($20 billion

in 2020 for the current process node [27]). While outsourcing is economically sensible, it inevitably opens the

door to an unforeseen security threat – hardware Trojans. Previous works have shown that every stage in the

distributed IC supply chain is susceptible to the insertion of hardware Trojans by any entities involved. The

design team might unintentionally use tainted 3rd party IP blocks or CAD tools for its RTL designs, resulting

in Trojan-infected netlist or layout files(GDSII) [28, 29]. A rogue engineer in the design team can insert a

Trojan directly at the RTL level [30, 31, 32]. Even if the chip specifications are correctly implemented by the

design house and verified by the backend design house, the malicious foundry can tamper with the mask

layout during the fabrication phase [27, 29]. Finally, the genuine IC’s can be intercepted and replaced with

counterfeited ones containing Trojans during the transportation at the post-fabrication phase. This work

focuses on inserting a Trojan at the design or backend design phase.

Typically, a hardware Trojan consists of a trigger circuit that activates a Trojan on a specific condition and

a payload circuit that causes functional perturbations, carries out catastrophic failures, or establishes a covert

channel to leak private information. A good Trojan design is stealthy, which implies that the underlying

malicious circuitry occupies minimal area, consumes negligible standby power, and remains dormant during

its lifetime, only to be triggered by extremely rare events.

Fig. 2.8 shows a widely acknowledged classification of hardware Trojans based on action types, physical

characteristics, and activation mechanisms [75, 28, 76], with the highlighted boxes indicating properties

that the Trojan we design possesses. In particular, we embed our Trojan inside a memristor-based NN

accelerator to disable some neurons from firing, allowing us to steal and transmit sensitive model parameters

(i.e., the synaptic weights) to an adversary in the untrusted domain. The Trojan is implemented by adding

small trigger circuits (layout change), separately located with the payload circuits (loosely distributed). It is

considered functional instead of parametric because our Trojan is realized through inserting new transistors

and gates, rather than tweaking the physical characteristics of existing circuits (e.g., thinning of wires,

2.4 Hardware Trojans 21

Physical
Characteristics

Activation
Characteristics

Distribution

Structure

Size

Type

Layout
Change

Layout Same

Parametric

Functional

Externally
Activated

Internal
Activated

Antenna

Sensor

Tightly
Distributed

Loosely
Distributed

Large

Small

Always On

Conditionally
On

Sensor

Logic

Action
Characteristics

Transmit
Information

Modify
Function

Modify
Specification

Change

Disable

Figure 2.8: Hardware Trojan taxonomy

weakening of transistors, etc.) Finally, our Trojan is conditionally activated by monitoring specific input

patterns, which change the internal logic state of the accelerator.

Chapter 3

Sieve: Scalable In-situ DRAM-based

Accelerator Designs for Massively

Parallel k-mer Matching

3.1 Introduction

The field of bioinformatics has enabled significant advances in human health through its contributions to

precision medicine, disease surveillance, population genetics, and many other critical applications. The

centerpiece of a bioinformatics pipeline is genome sequence comparison and classification, which involves

aligning query sequences against reference sequences, with the goal of identifying patterns of structural

similarity and divergence. While traditional sequence alignment algorithms employ computationally-intensive

dynamic programming techniques, there has been a growing shift to a high-performance heuristic-based

approach called k-mer matching, that breaks a given query sequence into a set of short subsequences of size k,

which are then scanned against a reference database for hits, with the underlying assumption that biologically

correlated sequences share many short lengths of exact matches. k -mer matching has been deployed in a

wide array of bioinformatics tasks, including but not limited to, population genetics [4], cancer diagnosis [77],

metagenomics [1, 78, 79, 2, 5, 80], bacterial typing [3], and protein classification [81]. k -mer matching may

also show up in other application domains, but in this paper, we focus on bioinformatics.

The acceleration of bulk k -mer matching is of paramount importance for two major reasons. First,

k -mer matching sits on the critical path of many genome analysis pipelines. Figure 3.1 shows the execution

22

3.1 Introduction 23

0% 20% 40% 60% 80% 100%

Kraken
CLARK

stringMLST
Phymer

LMAT
BLASTN

K-mer Matching Build Taxonomy Trees Build Classification Table
Word Extending Hits Update Reads Filtering
Classification Verification Other

Figure 3.1: Execution time breakdown of Kraken [1], CLARK [2], stringMLST [3], Phymer [4],
LMAT [5], BLASTN [6]

breakdown of several important bioinformatics applications that target a variety of tasks ranging from

metagenomics to population genetics, and clearly, k -mer matching dominates the execution time in all

applications. Second, modern sequencing technologies have been shown to generate data at a rate surpassing

Moore’s Law [56]. In fact, by 2025, the market share of metagenomics alone is expected to reach $1.4 billion,

and the amount of data that needs to be analyzed by metagenomics pipelines is projected to surpass that

of YouTube and Twitter [10]. To further exemplify the scale of data explosion and processing overhead,

consider the case of precision medicine, where a patient’s sample can be sequenced in roughly 48 hours on

the NovaSeq instrument, producing 10 TB of microbiome and DNA/RNA data [82]. To develop personalized

treatment from these samples, raw sequences are passed through, often in parallel, various metagenomics

stages with k -mer matching on the critical path (e.g., ∼68 days on Kraken [1]). These tasks play a critical

role in combating pandemics and treating antibiotic-resistant infections, saving billions of dollars in health

care costs [82, 83].

However, despite its significance, the acceleration of k -mer matching on modern high-end computing

platforms remains a challenge, due to its inherently memory-bound nature, considerably limiting downstream

genome analysis tasks from realizing their full potential. In particular, k -mer matching algorithms are

typically characterized by random accesses across large memory regions, leading to poor cache behavior, even

on high-end servers that feature large last-level caches. The cache-unfriendliness of k -mer matching will

continue to get worse with the rapid growth in the size and complexity of genomic databases, making the

task a major bottleneck in modern bioinformatics pipelines. This is further exacerbated by the fact that the

computation per k -mer lookup is too small to mask the high data access latency, thereby rendering existing

compute-centric platforms such as multi-core CPUs and GPUs inadequate for large-scale genome analysis

tasks.

Sieve: Scalable In-situ DRAM-based Accelerator Designs for Massively Parallel k -mer Matching 24

Memory-centric solutions to accelerate bioinformatics applications come in a variety of flavors, but

recent proposals demonstrate that near-data [84, 85, 86] and in-memory processing systems [87, 88, ?] have

promising potential to improve the efficiency of large-scale genome analysis tasks, owing to the fact that these

applications are increasingly characterized by their high data movement (from memory to the processor) and

low computation (within the processor) costs [13].

This work explores the design space for high-performance k -mer matching accelerators that use logic in

DRAM as the basis for acceleration, including the most aggressive form of processing-in-memory (PIM),

in-situ computing, with the goal of parallel processing of sequence data within DRAM row buffers. To this end,

we propose Sieve, a set of novel Scalable in-situ DRAM-based accelerator designs for massively parallel k-mer

matching. Specifically, we offer three separate designs: Sieve Type-1, Type-2, and Type-3. Each architecture

incrementally adds extra hardware complexity to unlock more performance benefits. Note that, although

our approach involves modifying conventional DRAM organization, we do not propose change conventional

DRAM; our goal is to only leverage DRAM technology to build a new accelerator. Ultimately, the value of

the accelerator will determine whether a new DRAM-based chip is worth the design and manufacturing effort.

The advantage of in-situ computing is that the bandwidth at the row buffer is six orders of magnitude

larger than that at the CPU, while the energy for data access is three orders of magnitude lower [89, 90].

However, in-situ computing also introduces several key challenges. First, in-situ acceleration necessarily

requires the tight integration of processing logic with core DRAM components, which has been shown to

result in prohibitively high area overheads [87, ?]. In fact, even a highly area-efficient state-of-the-art in-situ

accelerator is only half as dense as regular DRAM [87]. However, bioinformatics applications typically favor

accelerators with larger memory capacity due to their ability to accommodate the ever-increasing DNA

datasets that need to be analyzed within short time budgets. Second, existing in-situ approaches [87, 88] rely

on multi-row activation and row-wise data mapping to perform bulk Boolean operations of data within row

buffers, resulting in substantial loss of throughput and efficiency [?]. Finally, to capitalize on the performance

benefit of in-situ computing for k -mer matching, it is imperative that the accelerator is provisioned with

an efficient k -mer indexing scheme that avoids query broadcasting, and a mechanism to quickly locate and

transfer payloads (e.g., genome taxon records).

Key Contributions. The distinguishing feature of Sieve is the placement of reference k -mers vertically

along the bitlines of DRAM chips and subsequently utilizing sequential single-row activation rather than

the multi-row activation proposed in prior works, to look up queries against thousands of reference k -mers

simultaneously. The column-wise placement of k -mers further allows us to employ a novel Early Termination

Mechanism (ETM) that interrupts further row activation upon the successful detection of a k -mer mismatch,

thereby considerably alleviating the latency and energy overheads due to serial row activation. To the best of

3.2 Motivation 25

our knowledge, this is the first work to introduce and showcase the effectiveness of such a column-wise data

mapping scheme for k -mer matching with early termination, substantially advancing the state-of-the-art in

terms of both throughput and efficiency.

By exploiting the fact that matching individual k -mers is relatively less complex than most other

conventional PIM tasks such as graph processing, in this work, we design a specialized circuit for k -mer

matching, with the goal of minimizing the associated hardware cost. We then meticulously explore the

design space of in-situ PIM-based accelerators by placing such custom logic at different levels of the DRAM

hierarchy from the chip I/O interface (Type-1) to the subarray level (Type-2/3), with a detailed analysis of

the performance-area-complexity trade-offs, and a discussion of system integration issues, deployment models,

and thermal concerns.

We compare each Sieve design with state-of-the-art k -mer-matching implementations on CPU and GPU,

and perform rigorous sensitivity analyses to demonstrate their effectiveness. We show that the processing

power of Sieve scales linearly with respect to its storage capacity, considerably enhancing the performance of

modern genome analysis pipelines. Our most aggressive design provides an average speedup of 210X/35X

and an average energy savings of 35X/71X over conventional multi-core-CPU/GPU baselines

3.2 Motivation

In this section, we explain why memory bottlenecks the overall k -mer matching execution, and we address the

main challenge of designing in-situ k -mer matching accelerators, namely integrating logic into DRAM dies

with low hardware overhead. We propose three separate Sieve designs to combat this issue. We then identify

the key limitations of prior in-situ work when adapted for k -mer matching and motivate our novel data layout

and pattern matching mechanisms. Finally, we introduce an Early Termination Mechanism (ETM) to further

optimize Sieve by exploiting characteristics of real-world sequence datasets.

Memory Is the Bottleneck for k-mer Matching. Real-world k -mer matching applications expose

limited cache locality. For sequence classifiers that store reference k -mers in a hash table, accessing a hash

table generates a large number of cache misses due to the linked list traversal or repeated hashes (to resolve

hash collision). While a hash table/sorted list hybrid can provide better locality, since the k -mer bucket can

be fetched into the cache from the previous k -mer lookup, using Kraken and its supplied datasets, we discover

that only 8% of consecutive k -mers index into the same bucket, resulting in new buckets fetched repeatedly

from memory to serve requests. k -mer matching also benefits from finer-grained memory access—k -mer

records are typically around 12 bytes [1], while each memory access retrieves a cache line of data, which

usually serves only one request due to poor locality, resulting in waste of bandwidth and energy. Finally,

Sieve: Scalable In-situ DRAM-based Accelerator Designs for Massively Parallel k -mer Matching 26

AATCCGATCG AATCGGATAA ATTCCGATCC
ATTCCGATCG ATTCCGATCG ATTCCGATCG
0000000...0000 1111111...1111 0000000...00000000000...0000

Mismatch 1111111...1111 MismatchMismatch

Tr
ip
le
-

R
ow

A
ct
iv
at
io
n

ANDAND AND~ 340 ns

RRef
RQuery
RCtrl

RResult
Figure 3.2: k-mer matching in existing in-situ accelerators using Triple-row Activation and
horizontal data layout.

A
A
T
C
T

A
A
C
A
A

G
C
T
C
G

A
A
T
A
A

T
G
T
C
G

A
A
C
C
G

G
A
G
C
C

A
C
C
C
T

A
G
T
C
T

A
A
C
T
C

C
G
A
T
C

A
A
T
C
C

A
A
T
G
G

A
T
C
A
G

T
A
T
G
G

C
C
A
T
T

A
A
T
C
G

A
T
G
C
G

T
G
G
C
G

T
C
A
T
C

AQBase

Row Buffer:

Single-Row
Activation

~ 50 ns

Figure 3.3: k-mer matching in Sieve using Single-Row Activation and vertical data layout.

the computational intensity of k -mer matching is too little to mask extended data access latency. While

retrieving k -mers from a database takes many cycles due to cache misses, updating counters for matched

k -mers is trivially inexpensive, amplifying the effects of the memory wall [13].

DRAM Overhead Concerns. While in-situ accelerators can provide dramatic performance gains

for memory-intensive applications, building them with reasonable area overhead is difficult [87, ?]. The

sense amplifiers in row buffers are laid out in a pitch-matched manner, and the DRAM layout is carefully

optimized to provide high storage density, fitting additional logic into the row buffer in a minimally invasive

way is non-trivial. Moreover, since the number of metal layers of a DRAM process is substantially smaller

than that of the logic process, building complex logic with a DRAM process incurs significant interconnect

overhead [87, ?].

We design a set of core k -mer matching operations for Sieve using simple Boolean logic. Sieve has very

little hardware overhead compared to other PIM architectures, because k -mer matching, which is mainly

accomplished by exact pattern matching, can be supported by a minimal set of Boolean logic.

Trade-offs of Different Sieve Designs. To explore optimal Sieve designs, we compare the placement

of custom k -mer matching logic at three different levels in the DRAM hierarchy: from the I/O interface of

the DRAM chips (Sieve Type-1) to the local row buffer of each subarray (Sieve Type-3), and Type-2 as the

middle ground where several subarrays share one k -mer matching unit. Recall that a DRAM bank’s transistor

layout is highly optimized for storage, and inserting extra logic, however minimal, requires significant redesign

effort. Type-1, illustrated in Figure 3.10, keeps the bank layout intact, and thus is the least intrusive design.

However, it suffers from the lowest parallelism and the highest latency, because the comparison is restricted

to a column of bits rather than the entire row. Sieve Type-2 increases parallelism and energy efficiency

3.2 Motivation 27

over Type-1 by accessing a row of bits. Type-3 leverages subarray-level parallelism (SALP) [42], providing

the highest performance potential, but it comes at the cost of the highest design complexity and hardware

overhead.

Novel Data Layout and Pattern Matching Mechanism. We show that our column-wise k -mer

data layout and row-wise matching mechanism, combined with early termination outperforms prior in-situ

accelerators that rely on multi-row activation and conventional row-wise mapping. The majority of the

k -mer matching workload is exact pattern matching, which can be performed using bulk bitwise XNOR

between two operand DRAM rows. The prior arts such as Ambit and DRISA implement XNOR operation

by first ANDing two rows along with a third control row (populated with 1s or 0s), and send the results to

an additional logic. In the following analysis, we only consider the timing delay of the AND operation to give

advantage to the previous in-situ PIM work. Ambit [88] is used as a baseline. Both Ambit and 1T1C-based

DRISA [87] are inspired by the same work [91] for in-situ AND procedure. Thus, their performance for k -mer

pattern matching is similar. Ambit performs bulk bitwise AND in reserved DRAM rows (see Figure 3.2).

Assuming a DNA base is encoded with two bits (by NCBI standard [92]), a common k value of 31, and a

typical DRAM row width of 8192 bits, then each row fits 128 k -mer patterns if k -mers are stored in a row-wise

manner. To search a query against a group of references, Ambit first copies 128 reference patterns from the

data region to RRef. It then makes 128 copies of the same query in RQuery. Since the target operation is

AND, the control row (RCtrl) is populated with 0s (copied from a preset row). Next, a triple-row activation

is performed on RRef, RQuery, and RCtrl. Finally, the result bits are copied to another row RResult. One

row-wide AND takes 8 row activations and 4 precharge commands from setting up to completion, which is

8 × tRAS + 4 × tRP =∼ 340ns for a typical DRAM chip.

In contrast to these approaches, ComputeDRAM [93] enables in-memory computation in commodity

DRAMs, without the need for integrating any additional circuitry. The key to this approach is the fact that

issuing a constraint-violating sequence of DRAM commands in rapid succession leaves multiple rows open

simultaneously, allowing row-wide copy, logical AND, and logical OR operations to be performed via bit line

charge sharing, essentially free of hardware cost.

While all of these approaches can be leveraged to perform k -mer matching, our analysis suggests that

significant gains in performance and energy efficiency can be achieved by employing the column-major

approach we propose in this work, that not only eliminates the need for multi-row activation, but also enables

a synergistic early termination mechanism that inhibits further row activations upon finding a match.

More specifically, Sieve does not compare a full-length query k -mer against a set of full-length reference

k -mers at once. Instead, it compares a query with a more extensive set of references in a shorter time window

(1× tRAS + 1× tRP =∼ 50ns), but progresses only one bit at a time (see Figure 3.3). Reference bits in Sieve

Sieve: Scalable In-situ DRAM-based Accelerator Designs for Massively Parallel k -mer Matching 28

96.9% the 1st
mismatch between
two k-mers
happens at the first
five bases. Note
each base is
encoded by 2 bits.

Only 0.17%
times we need
to activate all
rows that store
reference k-
mers

Input k-mer set:
Ancestor-R1.fastq
1,898,516 sequences
Reference k-mer set:
MiniKraken_4GB
Encoding Scheme:
A: 00, C: 01, T: 10, G: 11

 N
um

be
r o

f k
-m

er
s

(x
10

00
)

Number of bits needed to check if two k-mers are different
Figure 3.4: Characterization of mismatches between k-mers.

are laid out column-wise, along bitlines. Thus, a single row activation transfers 8K bits into the matchers

embedded in row buffers for comparison. Each matcher has a one-bit latch to keep track of the matching

result. The next row is activated, and a new batch of reference bits is compared, until ETM (introduced

next) interrupts when all latches return zero.

Processing only one bit at a time does not hurt Sieve’s performance, because it leverages parallelism

across the rows; i.e., it performs 8K comparisons at once. The vertical data layout greatly expands the initial

search space (128 reference k -mers to 8192 reference k -mers), and our early termination mechanism (ETM)

quickly eliminates most of the candidates after just a few row activations. Besides the latency reduction for

each row-wide pattern matching by adopting single-row activation (∼340 ns to ∼50 ns), Sieve also reduces

activation energy, since raising each additional wordline increases the activation energy by 22% [88]. Thus,

even if the same data mapping strategy is applied, the multi-row activation-based approach is still slower

and less energy efficient than Sieve simply because of the internal data movement. Note that the internal

data movements associated with multi-row activation is unavoidable, because the operand rows have to be

copied to the designated area. Furthermore, arbitrarily activating three rows inside the DRAM requires a

prohibitively large decoder (possibly over 200% area overhead [87]), and activating more than one row could

potentially destroy the original values.

The Motivation for Early Termination.Activating consecutive rows in the same bank results in

highly unfavorable DRAM access patterns that are characterized by long delays (due to more row cycles) and

high energy costs (row opening dominates DRAM energy consumption [94]).

We identify a novel optimization opportunity that exploits the concept of the Expected Shared Prefix

(ESP), which describes the first mismatch location between two random sequences. On average, for DNA

sequences between 1k and 16k bases, the first mismatch is known to occur between the sixth and the eighth

base [95]. The ESP is even smaller than six for short k -mers, as shown in in Figure 3.4. For random k -mers

3.3 Architecture 29

Su
ba

rr
ay

 0

...Bit Cells

(d) (e)

 ME

BL

Se
ns
e

A
m
p

Matcher

LatchA
N

D

Query
Ref

XN
O

R

Type-3

Local RB...

 ME

ETM & Col Findr

WL0

WL1

WL2

B
L0

B
L1 B
L2
55

B
L2
56

WL62

WL63

B
L3
19

B
L3
20

B
L5
74

B
L5
75

R
eg

io
n

1

......

...
...

...
...

R
eg

io
n

2
R

eg
io

n
3

WL64

WL65

WL94

WL95

......

WL96

WL97

...
...

...
...

A
C
C
A
...
G
C
A

WL510

WL511

......

...

Pattern
Group 1

...

Local RB 0

Local RB 1
Compute
Buffer

...

Su
ba

rr
ay

G
ro

up
 n

Subarray Group 0 Subarray 1...

B
an
k

B
an
k

Type-2

Bank Bank Bank Bank

Bank Bank Bank Bank

(a)

(b)

(c)

Figure 3.5: Sieve Overview. (a) DRAM banks. (b) Type-2 Zoom-in. Subarray group facilitates
inter-subarray data copy, and a compute buffer is added for each subarray group which has the
matcher circuits. (c) Type-3 Zoom-in. Similar to Type-2 but the matchers reside in the local
row buffers. (d) Matcher. (e) Data layout of subarray. Each subarray is partitioned into three
regions for storing k-mer pattern groups, payload offsets, and payloads.

extracted from metagenomics reads, when matched against reference k -mers, 97% of the first mismatch can

be found within the first five bases (first 10 bits if each base is encoded by two bits).

3.3 Architecture

This section describes the three Sieve designs. We introduce Types-2 and 3 first, as they exploit greater

parallelism, and follow it up with Type-1 due to difference in design details.

3.3.1 Sieve Type-2 and Type-3

Figures 3.5 (b) and (c) show the functional block diagrams of Type-2/3. They differ mainly in the placement

of the add-on logic (e.g., matching circuitry) at the bank vs. subarray level, but share the same data mapping

scheme.

Data Layout. k -mer patterns are encoded in binary (A: 00, C: 01, G: 10, T: 11) and transposed onto

bitlines, for column-wise placement, as described in the previous section. Bit cells within each subarray are

divided into three regions (Figure 3.5 (e)). However, we note that no physical modification is made to the bit

cells. Region-1 stores the interleaved reference and query k -mers. Region-2 stores the offsets to the starting

address of payloads (one for each reference k -mer), allowing us to precisely locate the payloads. Region-3

Sieve: Scalable In-situ DRAM-based Accelerator Designs for Massively Parallel k -mer Matching 30

0 01 0 0... ... Shift bits in the RS to
get the column index

4

Segment j 1
1

0
0

Segment k 1
11 2

1-bit
Latch

(a)

0

Segment j 1
1

0
0

Segment k 1
13

......

(b)

(c)

Figure 3.6: Column Finder in Type-2/3. Segments with k-mer hits are shown in red, otherwise
green.

stores the actual payloads such as taxon labels. Data in Region-2/3 is stored in conventional row-major

format. The main motivation to co-locate patterns and payloads is to minimize contention and achieve higher

levels of parallelism. If patterns are densely packed into several dedicated banks/subarrays, all matching

requests will be routed to them, creating bank access contention and serializing such requests.

Region-1 is further broken down into smaller pattern groups and a batch of 64 (different) query k -mers

are replicated in each pattern group in the middle (red in Figure 3.5(e)). This is because the transmission

delay of long wires inside DRAM chips prevents us from broadcasting a query bit to all matchers (discussed

next) during one DRAM row cycle. All pattern groups in a subarray work in the lockstep manner. The exact

size of a pattern group is equivalent to the number of matchers that a query bit can reach in one DRAM

row cycle. In this example (DDR3 micron 32M 8B x4 sg125), it happens to be 576 (512 reference k-mers +

64 query k-mers). The number of query k -mers per batch is determined by the chip’s prefetch size. In this

example, a chip with a prefetch size of 8 bytes writes 64 bits with a single command. A chip with smaller

(larger) prefetch size has smaller (larger) batch size. After a batch of query k -mers finishes matching in a

subarray, they are replaced by a new batch. The total number of write commands needed to replace a batch

of 64 k -mers can be computed as (# of pattern groups / subarray) × (k × 2).

Matcher. We enhance each sense amplifier in a row buffer with a matcher shown in Figure 3.5 (d). The

matcher of Type-2/3 is made of an XNOR gate, an AND gate, and a one-bit latch. The XNOR gate checks

if the reference bit and the query bit at the current base are equal. The bit latch stores the result of the

XNOR operation, indicating if a reference and a query have been matched exactly up until the current base.

The value in each bit latch is set to 1 initially (default to match). The AND gate compares the previous

matching result stored in the bit latch with the current result from the XNOR gate and updates the bit

latch accordingly, capturing the running outcome bit-by-bit. Finally, we allow the matcher to be bypassed or

engaged by toggling the Match Enable signal.

When a row is opened, both query and reference bits are sent to sense amplifiers. A subarray controller [87]

(sCtrl) then selects which query to process among the 64 queries in the subarray. Each pattern group has a

3.3 Architecture 31

Segment 1 1 Segment 2 1 Segment 3 1 Segment 4 1

1 1 1 1
......

Row Cycle 0:

Segment 1 0 Segment 2 1 Segment 3 1 Segment 4 1Row Cycle 1:

Segment 1 0 Segment 2 0 Segment 3 1 Segment 4 1Row Cycle 2:

Segment 1 0 Segment 2 0 Segment 3 0 Segment 4 1Row Cycle 3:

Segment 1 0 Segment 2 0 Segment 3 0 Segment 4 0Row Cycle 4:

......
0 0 0 0

......
0 0 1 1

......

......
0 0 1 0

......

: Segment Registers (SR)

......

......

......

......

......

: 1-bit latche in the matcher1 0

1 0

and

and

Figure 3.7: ETM in Type-2/3.

1-bit shared bus connecting all matchers. The selected query bit is distributed to all matchers in a pattern

group through this shared bus.

Early Termination Module (ETM). The ETM interrupts further row activation by checking if the

entire row of latches is storing zeros. The k -mer matching process continues if at least one latch stores 1.

The natural way is to OR the whole row of latches. However, the challenge of this approach is that each

OR gate adds to the latency, and during one DRAM row cycle, only a small fraction of result latches can

propagate their results through OR gates. We propose a solution that breaks the row of latches into segments

and propagates partial results in a pipelined fashion. (shown in Figure 3.7). One segment register (SR) is

inserted for every 256 latches to implement the pipeline. During one DRAM row cycle, each segment takes

the value from the previous SR, ORs it with all its latches, and outputs the value to the next SR. Notice

that in Figure 3.7, although at row cycle 3, all latches store zeros, the last SR still holds 1. An extra cycle is

needed to flush the result

Column Finder (CF). Unless interrupted by the ETM, the row activation continues until all bases of a

query are checked. If a query is previously matched to a reference, one and only one latch in a row buffer

stores one. The Column Finder identifies the column (bitline) that is connected to that latch. The column

numbers are needed to retrieve offsets, and subsequently, payloads. Our solution is to shift a row of latched

bits until we find a one. The challenge of this approach is to design a shifter with reasonable hardware cost

and latency. In the worst case, where the matched column (reference k -mer) is located at the end of the row,

the CF needs to shift an entire row of latched bits. We propose a pipelined, two-level shifter solution for

CF. Figure 3.6 illustrates this. The CF circuits are re-purposed mainly from those of the ETM. For each

ETM segment, a MUX (1) and a 1-bit Backup Segment Register (BSR) (2) are added (Figure 3.6 (a)). BSRs

Sieve: Scalable In-situ DRAM-based Accelerator Designs for Massively Parallel k -mer Matching 32

ETM SEG

Last row activation for k-mer i

PRE WL SA...

...

Identified a
hit

row activations for subsequent k-mers

PRE WL SA

COLUMN FINDER

PRE WL SA

ETM SEG 1 ...
...

ETM SEGShift Seg
Registers

...

Copy
segment

ETM SEG

ETM SEG 1

PRE
...

Row 0 Row 1 Row 2

WL SA PRE WL SA PRE WL SA

ETM SEG 2 : Check ETM seg results

Latency

ETM

: Matching

(a)

(b)

Figure 3.8: Type-3 Timing Analysis. WL, SA, and PRE indicate latencies associated with raising
the wordlines, enabling sense amplifiers and precharging the rows. (a) ETM and matchers
operations overlap with row opening. (b) ETM is on the critical path only when there is a hit,
as it needs extra cycles to identify the hit. Then the BSRs are shifted, followed by a copy into
the RS. CF operates in parallel with row opening and ETM for the next k-mer.

and SRs maintain the same values and are updated simultaneously during the ETM operation. Zero in a

BSR means that its associated segment does not contain a match, and one implies it does. Further, we add

another set of bit latches called the Reserved Segment (RS) shown in Figure 3.6 (c), which includes the same

amount of 1-bit latches and OR gates as a segment.

For Column Finder, the BSRs are first shifted until we find a one, to narrow down the appropriate segment

that contains a match (3) in Figure 3.6 (b)). We then copy this segment over to the Reserved Segment (RS)

where the final round of shifting happens (4). From this point on, all ETM segments are freed to support the

pattern matching for the next k -mer, while the CF works in the background to retrieve the column number

(see Figure 3.8 (b)). The shifting of bits in RS is overlapped with the matching of the subsequent k -mer. We

point out two details here. First, after the last row activation for a given query k -mer finishes, ETM takes up

to 256 DRAM row cycles to flush the pipeline in the worst case, when the one is at the very end. During

this time, no new row activation is issued, and the CF operation is stalled until ETM completes. Second,

note that each k -mer hit takes up to 4800 DRAM cycles, while the CF operation takes up to 1032 DRAM

cycles in the worst-case scenario. Therefore, we observe no contention at the CF, even when there are two

consecutive hits in the same subarray.

Sieve Type-2. While Type-2 retains most of the high-level design from Type-3 (ETM, data mapping,

matching circuits, etc.), it differs in one key aspect – instead of integrating logic to all subarrays at the local

row buffer level, logic is added to a subarray group – a subset of adjacent subarrays within a bank (e.g., 1/2,

1/4, 1/8 of subarrays) connected through high bandwidth links (isolation transistors). Each subarray group is

equipped with a compute buffer, which retains much of the capabilities (k -mer matching, ETM, and column

finding) of a local row buffer in Type-3 without its sense amplifiers. Unlike type-3, where k -mer matching is

3.3 Architecture 33

Compute Buffer

Local RB 1

Local RB 0

Local RB 1

Local RB 0

Local RB 1

Local RB 0

Compute Buffer

Compute Buffer

Local RB 1

Local RB 0

Compute Buffer

(a) (b)

(c) (d)

tRAS 0 tSA1

tPRE
0

ISO-0
Disable

ISO-0
Enable

t

t
SA-0
Enable

Hop
Delay
Compute

Buffer

ISO-0

ISO-0

ISO-0

ISO-0

Figure 3.9: Row-wide data copy across subarrays.

performed locally at each individual subarray, Type-2 processes k -mer matching inside the compute buffer

regardless of the target subarray query k -mers get dispatched to. This involves transferring a row of bits

across subarrays to reach the compute buffer at the bottom of the subarray group. To enable fast row copy

across subarrays, we leverage LISA [96], albeit adapted to the folded-bitline architecture that Sieve is built

upon. We validate the feasibility of our design with a detailed circuit-level SPICE simulation.

Figure 3.9 illustrates the process of transferring a row from the source subarray to its compute buffer –

(a) the DRAM row in the subarray 0 is activated and the data is latched onto its local sense amplifiers, (b)

when the bitlines of subarray 0 are fully driven, the links between the subarray 0 and subarray 1 are enabled.

Due to charge sharing between the bitlines of subarrays 0 and 1, the local sense amplifiers in the subarray

1 senses the voltage difference between the bitlines and amplifies it further, as a result of which, (c) local

sense amplifiers in both subarrays 0 and 1 start driving their bitlines to the same voltage levels, and finally,

(d) when both sets of bitlines in subarrays 0 and 1 reach their fully driven states, the isolation transistors

between them are disconnected and the local sense amplifiers in the subarray 0 are precharged. The process

is repeated until the data reaches the computed buffer. Note that – (1) only two sets of local sense amplifiers

are enabled at any time in a bank, and (2) as validated in our Spice simulation, the latency of activating the

subsequent sense amplifiers (tSA in Figure 3.9 is much smaller (∼ 8X) than activating the ones of the source

subarray (tRAS). The latency for one row to cross a subarray (except for the first one) is referred to as ”hop

delay” which consists of enabling the isolation transistors (link) and the activation of the sense amplifiers.

k-mer Matching Walkthrough. We use Type-3 as an example to illustrate the k -mer matching process.

Once a row is selected for activation, both the query and the reference bits are sent to the local row buffer for

comparison using the mechanisms described above. The ETM checks all segments and propagates the values

of Segment Registers (SRs) to determine if a match is found.Once a match is found, the payload associated

Sieve: Scalable In-situ DRAM-based Accelerator Designs for Massively Parallel k -mer Matching 34

Batch 3 Result Bits

0000001101100...010

Batch 1 Result Bits

......

64 bits

12
8

en
tr

ie
s

Batch 2 Result Bits

...

64-bit Query Reg

C
on

tr
ol

Lo
gi

c

W
 b

at
ch

 re
su

lt

0 0 0 ...
128-bit skip bits reg

1 0

...

...

...

...

...

...

......

R
ow

 D
ec

od
er

Batch 2

...

000...1

8192 bits
Column Decoder

XN
O
R A
N
D

R query
R ref Matcher

SR
A

M
 B

uf
fe

r

[1
5:

0]
 ro

w
_a

dd
r

[6
:0

] c
ol
_a
dd

r

Matcher Array

7-bit start batch reg

1 2

2

2

3

3

R result

Figure 3.10: Sieve Type-1. A query k-mer is sent to the Query Register, and a row activation
is issued. 1. The controller logic uses the column address to select a batch and indexes into
the SRAM Buffer to get the batch result bits entry. 2: The query bit, the reference bits, and
the result bits are sent to the Matcher Array. 3: Matchers write back to the result bits entry
stored in the SRAM Buffer.

with that k -mer pattern is retrieved as follows. The CF first determines the segment number by shifting all

BSRs. It then gets the column index by shifting all 1-bit latches in that segment until the one is found. The

column number is calculated as segment number × (# of columns / segment) + column index and sent to

subarray controller to index into the payload address offsets.

3.3.2 Sieve Type-1

Sieve Type-1 is not a quintessential in-situ architecture, due to the lack of processing unit embedded in

row buffers. However, Type-1 preserves the overall high-level ideas, such as the data layout, ETM, and the

matching unit. In addition, Type-1 is the least intrusive implementation of Sieve because it does not change

the physical layout of DRAM banks. The bank I/O width is 64 bits, and each row is 8192 bits. Thus, a row

is divided into 128 batches. A batch is a set of bits retrieved by a DRAM read burst of a read command.

Batch size varies depending on the column width, which can be 32, 64, or 128 bits. Next, we introduce each

component of Type-1.

SRAM Buffer (SB). SB stores the match result bits, organized in a 2D array. The number of entries is

equal to the number of batches, and the entry width is the batch size. Before matching, all batch result bits

3.3 Architecture 35

are preset to one, and are updated as the matching progresses, again capturing the running match outcome.

Figure 3.10 highlights the result of batch two, where zero indicates a mismatch.

Matcher Array (MA). MA consists of 64 matching units. It compares a query bit with the reference

bit using an XNOR gate, and updates (writes back) the result bit by ANDing the match result bit stored in

SB with the output from XNOR.

Skip Bits Register (SkBR). SkBR is used for ETM. It contains one bit for each batch indicating if we

need to process the current batch. All bits in SkBR are preset to one. As the matching progresses, more and

more bits in SkBR is set to zero, meaning more and more batches will be skipped. Without SkBR, each row

activation is followed by 128 batch comparisons. Since most comparisons result in mismatches, SkBR leads

to significant energy and latency reduction.

Start Batch Register (StBR). StBR reduces processing time further. Due to the ETM, Type-1 checks

the skip bits to find proper batches to send to the MA. The search time is one DRAM cycle per skip bit. In

the worst case where only the last batch is valid, 127 DRAM cycles are wasted to check all the previous skip

bits. With the help of the StBR, whose value points to the first batch that needs to be processed, Type-1 can

quickly determine the first batch to open.

Column Finder and Payload Retrieval. The control logic first checks the skip bits to locate the

batches that contain a one, given the one-to-one mapping between batches and skip bits. A small shifter is

applied to get the index of the matched column in the batch. The column number is calculated as (batch

index) * (batch size) + (column index), and is then used by the control logic to get offsets and payload.

3.3.3 System Integration

We consider both Dual-Inline Memory Module (DIMM), and PCIe form factors for integrating Sieve into a

host. While PCIe incurs extra communication overhead due to packet generation, DIMM suffers from limited

power supply. A typical DDR4 DIMM provides around 0.37 Watt/GB [97] of power delivery and 25 GB/s of

bandwidth, which is sufficient for Type-1. To satisfy the bandwidth and power requirement, Type-2 needs at

least PCIe 3.0 with 8 lanes, and Type-3 needs at least PCIe 4.0 with 16 lanes.

We use a 32 GB Type-2 Sieve to illustrate how Sieve communicates with the host using a PCIe interconnect.

Unlike Type-1, which communicates with the host on individual k -mer requests, Type-2/3 uses a packet-based

protocol that delivers hundreds of k -mer requests per PCIe packet. A PCIe Type-2/3 accelerator maintains

a (PCIe Input Queue) and a (PCIe Out Queue) for sending/receiving PCIe packets, and a response ready

queue (RRQ) to hold serviced k -mer requests. The CPU scans the query sequences to generate k -mers, and

for each k -mer, it makes a 12-byte request that contains the pattern, sequence ID, destination subarray ID,

Sieve: Scalable In-situ DRAM-based Accelerator Designs for Massively Parallel k -mer Matching 36

and other header information. Each PCIe packet contains 340 requests, assuming 4 KB PCIe packet payload

size. Each Sieve bank buffers 64 requests. To fully saturate the capacity of a 32 GB Sieve, the depth of the

PCIe queue is set to 24 (24 PCIe packets × 340 requests / packet ≈ 16 ranks × 8 banks / rank × 64 requests

/ bank). Sieve removes the PCIe packets from PCIe Input Queue, unpacks them, and distributes requests to

the target banks. A finished request gets moved to the RRQ. Once the RRQ is full, a batch of PCIe packets

is moved to the PCIe Out Queue. Sieve sends an interrupt to the CPU if the packets are waiting in the PCIe

Out Queue or if there are empty slots in the PCIe Input Queue.

The entire space of Sieve is memory-mapped to host as a noncacheable memory region, avoiding virtual

memory translation and cache coherence management. Regardless of configuration (DIMM or PCIe), a

program interacts with the Sieve device through the Sieve API, which supports calls to transpose a conventional

database into the format needed for column-wise access (this can be stored for later use and is thus a one-time

cost); load a database into the Sieve device; and make k -mer queries. The API implementation requires a

user-level library and an associated kernel module or driver to interface to the Sieve hardware. The exact

API and implementation are a subject to future work. k -mer databases are relatively stable over time, so

once a database is loaded into the Sieve device, it can be used for long periods of time, until the user wishes

to change a database. The same databases are often standard within the genomics community, high reuse

can be expected to amortize the cost of database loading.

3.3.4 k-mer to Subarray Mapping

Without an appropriate mapping scheme, each query needs to be broadcast across all regions of the accelerator.

A näıve mapping scheme would involve looking up an index table that maps queries to banks (Type-1) or

subarrays (Type-2/3). Such a scheme would quickly stop scaling, as the size of such an index table increases

exponentially with the length of a k -mer. We design an efficient and a scalable indexing scheme, wherein

the size of the index table scales linearly with the main memory capacity rather than the length of a k -mer.

More specifically, the reference k -mers in each subarray are sorted alphanumerically from left to right, and

then each entry in our index table maintains an 8-byte subarray ID along with the integer values of the first

and the last k -mers at the respective subarray (identified by the index). Upon receiving a matching request,

Sieve first converts the query k -mer to its integer representation, and consults the index table to select the

bank/subarray that contains a match. While Type-2/3 exploit different levels of parallelism, they share the

same indexing scheme, i.e., if Type-2 only provides the bank address to our indexing scheme, a query needs

to be checked against every subarray in that bank. The size of the index table stays well under 2 MB even

for Type-2/3 with 500 GB of capacity, which is reasonable for a dedicated bioinformatics workstation.

3.4 Methodology 37

Table 3.1: Workstation Configuration

CPU Model Intel(R) Xeon(R) E5-2658 v4

Core/ Thread/ Frequency 14/ 24/ 2.30 - 2.80 (GHz)

L1 (KB)/L2 (KB)/L3 (MB) $ 32 / 256 / 35

Main Memory DDR4-2400MHz

Memory Organization 32GB / 2 Channels / 2 Ranks

GPU Model Pascal NVIDIA Titan X

Table 3.2: Query Sequence Summary
Query files # Sequences Seq Length # k-mer

HiSeq Accuracy.fa (HA) 1.0e4 sequences 92 bases 6.2e4 k-mers
MiSeq Accuracy.fa (MA) 1.0e4 sequences 157 bases 1.27e6 k-mers
simBA5 Accuracy.fa (SA) 1.0e4 sequences 100 bases 7.0e5 k-mers
HiSeq Timing.fa (HT) 1.0e8 sequences 92 bases 6.2e8 k-mers
MiSeq Timing.fa (MT) 1.0e8 sequences 157 bases 1.27e10 k-mers
simBA5 Timing.fa (ST) 1.0e8 sequences 100 bases 7.0e9 k-mers

3.3.5 Sieve: Putting it all together

For Type-2/3, the host reads the input query sequences and extracts k -mer patterns. For each k -mer, the

k -mer to subarray index table is consulted to locate the destination subarray, and a k -mer request is made, as

described in Section 3.3.3. A number of k -mer requests that need to be sent to the same subarray is grouped

into one “batch”. The exact number of k -mer requests per batch is equal to the number of query k -mers in

a pattern group (64 in our example). These query batches are placed in a buffer, ready to be shipped to

the PCIe device buffer by DMA. PCIe bundles several such batches into one PCIe packet (also described

in Section 3.3.3) sent to the Sieve device. Sieve dispatches each batch of query k -mers to the destination

subarray, and replaces an already processed query k -mer batch with a new (to-be-processed) batch.

Individual k -mer requests in the same batch potentially complete at different times as (1) they get issued

out-of-order (as soon as their bank/subarray becomes available), and (2) each request may involve checking a

different number of rows. Thus, response packets may arrive out-of-order at the host, where their sequence

IDs and payloads are examined, as part of a post-processing step. Upon completion of all k -mer requests for

a given sequence, the accumulated payloads are fed into a classification step. Note that there is no additional

reordering step required at the host end as the accumulated payloads are typically used to build a histogram

of taxons for a given DNA sequence.

3.4 Methodology

Workloads. We use Kraken2 [98] and CLARK [2] for the CPU baseline, and cuCLARK [99] for the GPU

baseline. We use MiniKraken 4GB (4GB), MiniKraken 8GB (8GB), NCBI Bacteria (2785 genomes 6.24GB).

The query sequences are summarized in Table 3.2, and K is set to 31.

Sieve: Scalable In-situ DRAM-based Accelerator Designs for Massively Parallel k -mer Matching 38

Baseline Performance Modeling. We report our workstation configurations in Table 3.1. The GPU

baseline is idealized because (1) the energy and latency of data transfer from host to GPU are not included,

and (2) the on-board memory is assumed to always be large enough to avoid running each query multiple

times. The baseline DRAM energy consumption is estimated by feeding memory traces associated with k -mer

matching functions, obtained using Hopscotch [100], to DRAMSim2 configured to match our workstation.

The CPU energy is measured using the Intel PMC-power tool [101], then scaled down by 30% to exclude

the interference from other system components, and the GPU energy is measured using NVIDIA Visual

Profiler [102] as it is performed in [103] to characterise the multi-GPU inference server energy efficiency and

scaled down by 50% to exclude energy spent on cooling and other operations, consistent with the methodology

from DRISA [87].

Circuit-level SPICE Validation. Of all the Sieve components, only the Matchers are in direct contact

with the sense amplifiers’ BLs. In the presence of the Matcher circuit, the load capacitance on the BL is

increased. We use SPICE simulations to confirm that Sieve works reliably. The sense amplifier and matcher

circuits are implemented using 45nm PTM transistor models [104]. Because of the relatively small input

capacitance of the matcher circuit (∼0.2 pf), in comparison with the BL capacitance (∼22pf), the matcher

has a negligible effect on the operation of the sense amplifiers.We find that, after the row activation and when

the BL voltage is at a safe level to read, the result of the matcher is ready after less than 1 ns. To validate

correct operation of links in Type-2, we use our DRAM circuit model to simulate transfer of data between

local row buffers of two adjacent subarrays. In both simulations, the initial charge of the cell is varied across

different values to consider the effect of DRAM cell charge variations. Even in the worst case, the matcher

and the link between two subarrays cause no bit flips or distortions.

Energy, Area, and Latency Modeling. We estimate the power and latency overhead of each Sieve

component using FreePDK45 [105]. Further, we use OpenRAM[106] to model and synthesize the SRAM

buffer in Type-1. We use scaling factors from Stillmaker, et al. [107] to scale down results to the 22nm

technology node, and use the planar DRAM area model proposed by Park, et al. [108] to estimate area

overhead.

Modeling Sieve. We assume a pipelined implementation of Sieve, where the host (CPU) performs

pre-processing (k -mer generation, driver invocation, and PCIe transfer) and post-processing (accumulation of

response payloads for genome sequence classification), while Sieve is responsible for k -mer matching. Our

analysis confirms that the latency of this pipeline is limited by k -mer processing on Sieve. In particular,

k -mer matching on Sieve is either comparable to (for Type-3) or slower than (for Types-1/2) both pre- and

post-processing steps on the CPU, so the CPU is always able to send enough k -mer requests to Sieve to keep

it fully utilized.

3.5 Results 39

We model the pre- and post-processing steps using the baseline CPU described in Table 3.1. We treat the

classification step as a separate pipeline by itself, as (1) the algorithm differs for each application, and (2) it

is independent of k -mer matching, which is the primary focus of this work. Thus, we forgo modeling the

effort required for genome classification and other post k -mer processing. For modeling the k -mer matching

itself, we use a trace-driven, in-house simulator with a custom DRAMSim2-based front-end. The simulator

also models PCIe communication overhead, using standard PCIe parameters [109]. We use a Micron DDR4

chip (DDR4 4Gb 8B x16) as the building block for Sieve. DRAM parameters are extracted from the same

datasheet and modified to account for the estimated latency and energy overhead of matchers, ETM, column

finder, and segment finder.

3.5 Results

3.5.1 Energy, Latency, and Area Estimation

Energy Evaluation. Table 3.3 summarizes the dynamic energy and static power of each Sieve component.

Type-3 incurs additional power consumption for each DRAM row activation. However, using formula 10a

from Micron’s technical documentation [97], we find that Sieve consumes only 6% more energy for each row

activation than a regular DRAM, because the area and the load of the extra transistors we introduce is so

small compared to the sense amplifier and the bitline drivers. We further break down this energy overhead to

understand the effect of the different Sieve components. We find that the Matcher Array (MA) and the ETM

dominate the energy consumption, capturing 78.9% and 15.8% of the 6% energy overhead incurred by Sieve,

with the energy spent by the Segment Finder and the Column Finder being negligible (less than 5%). Type-1

adds no overhead on top of the regular DRAM row activation because no modification is made to the row

buffer, and it is less energy-intensive than Type-2/3.

Latency Evaluation. Table 3.3 shows the latency of each Sieve component. For Type-1, we assume

that (1) accessing the SRAM buffer and the Query Register can be overlapped entirely with a column read

command (∼15 ns) that retrieves a batch of reference bits, and (2) although the pattern matching and register

checking are on the critical path, they add negligible overhead (∼0.5 ns) to the DRAM row cycle (∼50 ns).

For Type-2/3, each ETM segment (256 OR gates) meets the timing requirement of completing its operation

within one DRAM row cycle. Further, since the segment and column finders are composed of simple shifters,

their latency of operation is well within one DRAM cycle (0.625 ns).

Area Evaluation. To estimate area the overhead of Sieve, we use the model proposed by Park et al. [108].

We adopt the DRAM sense amplifier layout described by Song, et al. [110] and a patent from Micron [111]

Sieve: Scalable In-situ DRAM-based Accelerator Designs for Massively Parallel k -mer Matching 40

Table 3.3: Sieve Components Energy and Latency Analysis

Component
Dynamic

Energy (pJ)
Static Power

(uW)
Latency

(ns)
(T1) 64-bit MA 0.867 1.4592 0.353
(T1) QR, SkBR, StBR 1.92 5.28 0.154
(T1) SRAM Buffer 5.12 4.445 0.177
(T2/3) 8192-bit MA 181.683 0.289 0.535
(T2/3) ETM Segment 73.5 56.185 43.653
(T2/3) Segment Finder 2.44 0.294 0.362
(T2/3) Column Finder 20.69 28.16 0.152

for a conventional 4F2 DRAM layout. The short side and long side of the sense amplifier are 6F and 90F,

respectively. In Type-2/3, for the accommodation of the matcher, ETM, segment, and column finder circuits

in the local row buffer, we add 340F in total on the long side of the local sense amplifiers. For Type-2, an

extra 60F in long side is added to each sense amplifier for considering the area overhead of the links between

the subarrays.

The area overheads for Type-2 with 1, 64, and 128 compute buffers (CB) are 1.03%, 6.3% and 10.75%, for

an 8-bank DRAM chip. In Type-3, each local sense amplifier is enhanced with k -mer matching logic, and for

enabling subarray parallelism, a row-address latch is added to each subarray [42], resulting in 10.90% area

overhead. For Type-1, all components are added to the center strip of our DRAM model. The SRAM buffer

of 8 Kbits (128 Rows X 64 Bits) and matching circuit in each bank increase the area by 2.4% and 0.08%,

individually.

3.5.2 Kernel Performance Improvement

Comparison Against Row-major In-Situ Accelerators. We simulate an ideal row-major baseline which

mimics prior proposals [87, 88, 91] (Row Major in Figure 3.11), and an improved row-major accelerator based

on ComputeDRAM [93]. We measure their speedup over the CPU baseline. We also implement Sieve without

ETM (Col-major).

We make the following assumptions for the Row-major, ComputeDRAM-based, and Col-major accelerators.

First, their latency for locating and transferring payloads is assumed to be similar to that of Sieve. Second,

both architectures are configured to be the same capacity with the same subarray-level parallelism. Third,

they share the same indexing scheme. Fourth, we assume that ComputeDRAM has a much shorter Triple-row

Activation latency due to the fact that it issues memory commands in rapid succession.

Figure 3.11 shows the results from this experiment. The convention for the workloads on the X-axis is

kernel.query.size. The kernel is either Kraken2 or CLARK, the query files are listed in Table 3.2, the sizes are

4GB, 8GB, and NCBI Bacterial reference (6.24GB). We make the following observations.

3.5 Results 41

First, row-major perform similarly to column-major without ETM (slightly worse), but for different

reasons. Column-major must activate all the rows that store k -mer data (64 rows if k=32). Row-major and

ComputeDRAM stop when it finds a hit, but requires ∼10X more writes to set up the comparison, as each

query k -mer must be replicated across the length of the row. Second, ComputeDRAM is able to outperform

both the row-major and column-major (without ETM) approaches, owing to its fast triple-row activation.

Third, the column-major approach used in Sieve allows it to benefit from our ETM strategy (that provides

an additional speedup of 5.2X to 7.2X), in contrast to both row-major and ComputeDRAM designs that

lack such an opportunity. We conclude that the chief contribution of column-major layout is therefore 1) in

enabling ETM and 2) in amortizing the setup cost across a pattern group of 64 writes. The row-major design

performs slightly worse than Type-3 without ETM because, in the event of a k -mer mismatch, both designs

on average open roughly the same number of rows (62 8192-bit rows), but the row-major design stops when

it finds a hit. We note that, from our evaluation, real sequence datasets are typically characterized by low

k -mer hit rates (around 1%), thus favoring Sieve designs.

Leveraging ComputeDRAM to build a column-major k -mer matching accelerator entails solving many

challenges. If we populate the query section with the same query, we will need 128×64 write commands per

query (630X more than Sieve). Populating the query section with different queries brings more challenges.

For example, there could be more than one match, impacting our ability to design an efficient indexing

scheme. We note that addressing these challenges while maintaining the performance, efficiency, and cost

benefits of these approaches is the subject of future work.

Improvement Over CPU. Figure 3.12 shows the average speedup and energy savings. All results are

normalized to CPU measurement. In this experiment, we constrain the memory capacity of all designs to

32 GB. For Type-2, we consider all possible numbers of compute buffers per bank and select the midpoint

of 16 (T2.16CB). We present the performance of other Type-2 configurations in Section 3.5.2. For Type-3,

we choose the best performer, which supports 8 concurrently working subarrays (T3.8SA). While clearly

more energy-efficient, Type-1 offers limited speedup (1.01X to 3.8X) for 8 out of 9 benchmarks, showing that

for many workloads, there is significant additional performance potential that can be tapped via an in-situ

approach. However, we also point out that Type-1 is likely to outperform CPU/GPU as its memory capacity

grows (more banks thus more parallelism and bandwidth), while the similar memory-capacity-proportional

performance scaling is hard to achieve in a non-PIM traditional architecture [17], due to the memory wall.

Type-3 designs offer a speedup and an energy savings of as much as 404.48X and 55.89X respectively, over

the CPU baseline. Note that this is in comparison to a Type-2 design that offers a speedup of 55.49X and an

energy reduction of 28.11X over the CPU baseline, clearly showcasing the substantial benefits that can be

realized by exploiting finer-grained parallelism at the subarray-level. We also find that Sieve is sensitive to

Sieve: Scalable In-situ DRAM-based Accelerator Designs for Massively Parallel k -mer Matching 42

0
100
200
300
400
500

K2.HA.4 K2.MA.4 K2.SA.4 K2.HA.8 K2.MA.8 KS.SA.8 C.HT.BG C.MT.BG C.ST.BG

Sp
ee

du
p

ov
er

CP

U
 b

as
el

in
e Row_Major Col_Major

ComputeDRAM Sieve

Figure 3.11: Row-major in-situ vs. Sieve Comparison.

0.1

1

10

100

1000

Sp
ee

du
p

ov
er

CP

U

T1 T2.16CB T3.8SA

0.1

1

10

100

K2.HA.4 K2.MA.4 K2.SA.4 K2.HA.8 K2.MA.8 K2.SA.8 C.HT.BG C.MT.BG C.ST.BGEn
er

gy
 S

av
in

g
ov

er
 C

PU

Figure 3.12: Comparison with CPU baseline.

0.1

1

10

100

C.HT.BG C.MT.BG C.ST.BG

Sp
ee

du
p

ov
er

 G
PU

 T1 T2.16CB T3.8SA

1

10

100

1000

C.HT.BG C.MT.BG C.ST.BGEn
er

gy
 S

av
in

g
ov

er

G
PU

 T1 T2.16CB T3.8SA

Figure 3.13: Comparison with GPU baseline.

the characteristics of the application. For example, the C.MT.BG benchmark performs worse than C.ST.BG

benchmark as the number of k -mer matches for C.MT.BG is 3.28X higher than C.ST.BG benchmark, resulting

in more row activations, increasing the overall query turnaround time and energy. Furthermore, our early

termination mechanism interrupts row activations as soon as we detect a mismatch, minimizing the overall

turnaround time and energy consumption for workloads with fewer k -mer matches.

Improvement Over GPU. Figure 3.13 shows the speedup and energy savings of various Sieve designs

(32 GB) over the GPU baselines. Type-1 is 3X to 5X slower than the GPU but more energy efficient, and

Type-2 is only modestly faster (2.59x to 9.43x). However, as the memory capacity of Sieve and dataset size

increase, Type-1/2 are likely to outperform the GPU unless GPU memory capacity scales as fast, because all

reference datasets can fit onto Sieve, avoiding the repetitive data transfer from host memory to GPU board.

3.5 Results 43

0

10

20

30

1SA 2SA 4SA 8SA 16SA 32SA 64SA 128SA

Cy
cl

es
 (m

ill
io

ns
)

T3.4GB T3.8GB T3.16GB T3.32GB

Figure 3.14: Average cycles spent to process CPU benchmarks.

Type-3 dramatically outperforms the GPU, because it leverages subarray-level parallelism. Type-3 offers

speedups of 33.13X–55.0X and energy savings of 83.77X–141.15x.

Effect of Increased DRAM Bandwidth. Simply increasing bandwidth to DRAM in the CPU and

GPU baselines is not sufficient to address the performance bottleneck in k -mer matching, because we find

that it is not bottlenecked by bandwidth. While it is memory-intensive (high percentage of loads in the

ROB), memory bandwidth is underutilized because each MSHR is unable to serve multiple loads and the

available MSHRs are quickly depleted, stalling subsequent loads in the ROB and preventing the bandwidth

from being fully saturated. Even if we overprovision those Broadwell cores with enough MSHRs to sustain all

outstanding memory accesses, and all loads are served concurrently with a memory latency of 40 ns to reach

the same level of throughput as Type-3, the workstation has to be equipped with over 215 cores, not only

resulting in a substantial increase in power consumption, but a considerable wastage in DRAM bandwidth as

only a small portion of the retrieved cache line is useful. cuCLARK is highly optimized, so we suspect that

GPUs are constrained by similar bottlenecks as CPUs, although we have not yet pinpointed the exact set of

microarchitectural structures.

3.5.3 Sensitivity Analysis

Number of Subarrays per Bank. We analyze the impact of subarray-level parallelism on performance and

energy by comparing various Type-3 design configurations (see Figure 3.14) at different memory capacities

and number of subarrays per bank. The results are averaged across all benchmarks. Supporting all subarrays

performing k -mer matching simultaneously without increasing the area overhead significantly is not yet

feasible, due to power delivery constraints. However, for this experiment, we assume this is not an issue.

In any case, although Sieve’s k -mer matching throughput increases with more concurrent subarrays, the

speedup plateaus after 8 subarrays—probably because most bank-access conflicts can be resolved by a small

number of subarrays [42].

Sieve: Scalable In-situ DRAM-based Accelerator Designs for Massively Parallel k -mer Matching 44

Number of Compute Buffers. We explore the performance-area tradeoff of Type-2 designs, by varying

the number of compute buffers (shown in Figure 3.15). For reference, we include Type-1 (the left-most bar

T1) and Type-3 (the right-most bar T3.1SA) designs without subarray-level parallelism. The middle eight

bars represent Type-2 with 1-128 compute buffers per bank. We make the following observations. First,

Type-2 with one compute buffer is faster than Type-1 (1.39X to 1.94X) but not by a large margin. For each

row activation, in the worst case, Type-1 has to burst read 128 batches to the matchers, which is similar

to T2.1CB where the opened row needs to ”hop” across 128 subarrays to reach the compute buffer. Since

the hop delay (∼4ns) is faster than a burst latency (tCCD: 5∼7ns), and both design are equipped with

some forms of ETM, T2.1CB is likely to spend less time on data movement than Type-1 in the average

case. However, the chain activation of sense amplifiers in Type-2, which relays the row to the compute

buffer, consumes significant energy, making Type-2 with sparse compute buffers less energy efficient. Second,

generally speaking, increasing the number of compute buffers per bank also increases the speed and energy

efficiency of Type-2. As we have explained previously, adding more compute buffers reduces the activation of

sense amplifiers, which in turn reduces the delay and energy consumption. Third, the area overhead scales

with the number of compute buffers per bank. Finally, the speedup and energy reduction of T2.128CB slightly

trails behind those of T3.1SA, because T2.128CB still requires one hop per row activation. However, Type-3

also has a higher area overhead than T2.128CB for enabling subarray-level parallelism.

ETM. To simulate the adversarial case where every query k -mer has a match, we turn ETM off in

Type-2/3, and measure the speedup and energy reduction over CPU/GPU baselines (averaged across all

benchmarks). Type-2/3 without ETM are still 1.34x–155.37x faster and 4.15x–36.17x more energy efficient

than CPU, and 1.3X–9.54X faster and 6.60X–18.43X more energy efficient than GPU.

PCIe Overhead. We use PCIe 4.0 x16 in our simulation. Overall, PCIe adds 4.6% to 6.7% communication

overhead to the ideal case where k -mer matching requests are dispatched to the destination bank/subarray as

soon as they arrive, and returned to the host when they complete.

3.6 Related Works

In this section we discuss previous work that shares similar interests concerning Sieve. The concept of PIM

dates back to the 70s [112]. Since then, there have been many proposals integrating heavy logic into 2D

planar DRAM dies [113, 114, 115, 116, 117]. These early efforts largely remain at their inception stage due

to the challenges of fabricating logic using the DRAM process. Recently, the 3D-stacked technology, which

takes a more practical approach by placing a separate logic die underneath the DRAM dies, revitalizes the

interests in PIM research. To fully exploit the benefit of 3D-stacked architectures, many domain specific

3.6 Related Works 45

0

10

20

30

40
Sp

ee
du

p
ov

er

CP
U

0%

5%

10%

15%

Ar
ea

 O
ve

rh
ea

d

0

5

10

15

20

T1 T2.1CB T2.2CB T2.4CB T2.8CB T2.16CB T2.32CB T2.64CB T2.128CB T3.1SA

En
er

gy
 S

av
in

g
ov

er
 C

PU

Figure 3.15: The effect of varying the number of compute buffers. T = Type, #CB = number of
compute buffers.

accelerators for graph processing [17, 48], pointer chasing [118], and data analytics [50] have been proposed.

We plan to evaluate Sieve in 3D-stacked context as future work.

Non-DRAM-based In-situ Accelerators. NVM- and SRAM-based in-situ accelerators such as

Pinatubo [119] and Compute Caches [120] have been proposed, but we choose DRAM for its maturity and

availability, which can lead to quicker development and deployment cycles. Furthermore, SRAM generally

has a lower capacity than that of DRAM, a smaller number of subarrays, and shorter row buffers. We plan

to evaluate NVM-based Sieve in future work.

PIM-based Genomics Accelerators. Recently, PIM has been explored for several algorithm-specific

PIM architectures for genomics. For example, GenCache [84] modifies commodity SRAM cache with algorithm-

specific operators, achieving energy reduction and speedup for DNA sequence aligners. Medal [85] leverages

commodity Load-Reduced Dual-Inline Memory Module (LRDIMM) and augments its data buffers with

custom logic to exploit additional bandwidth and parallelism for DNA seeding. Radar [86] provides a high

scalability solution for BLAST by mapping seeding and seed-extension onto dense 3D non-volatile memory.

However, these efforts are not ideal for k -mer matching. GenCache has hardwired logic in SRAM to compute

Shifted Hamming Distance and Myer’s Levenshtein Distance, which are not used for k -mer matching. Medal

is highly optimized for FM-index based DNA seeding, which relies on different data structures (suffix arrays,

accumulative count arrays, occurrence arrays) than those in k -mer matching (associative data structures such

Sieve: Scalable In-situ DRAM-based Accelerator Designs for Massively Parallel k -mer Matching 46

as dictionaries). Radar binds seed-extension, a stage irrelevant to k -mer matching, with seeding to maximize

speedup.

PIM-based Genomics Accelerators. PIM has been explored for several algorithm-specific architectures

for genomics. For example, GenCache [84] is an SRAM-based accelerator for DNA sequence alignment.

Medal [85] augments the data buffers of commodity DIMM to exploit additional bandwidth and parallelism

for DNA seeding. Radar [86] provides a high-scalability solution for BLAST by mapping seeding and

seed-extension onto dense 3D NVM. These efforts rely on domain-specific knowledge to achieve maximal

speedup for specific algorithms that are not applicable to k -mer matching, but are complementary to Sieve.

3.7 conclusions

In this work, we identify k -mer matching as a bottleneck stage in many genomics pipelines, due to its

memory-intensive nature. We propose Sieve, a set of DRAM-based in-memory architectures to accelerate

k -mer matching, by storing reference k -mer patterns along the bitlines and enhancing row buffers with a

minimal set of Boolean logic for k -mer matching. We optimize Sieve with an Early Termination Mechanism.

Type-1 offers limited benefit over CPUs and GPUs. Type-2 offers extensive speedups over CPUs (3.74x to

76.62x) but only modest benefit over GPUs (1.33x to 12.97x). Type-3 offers compelling benefits over both,

with speedups and energy savings over the CPU of as much as 389.49X and 93.97X respectively; and 6.05x

and 68.74x over the GPU.

Chapter 4

DRAM-CAM: General-Purpose

Bit-Serial Exact Pattern Matching

4.1 Introduction

Exact pattern matching is a widely used computation kernel. A common software implementation is a

lookup or hash table, but large data sets do not fit into the last-level cache (LLC) and exhibit poor locality.

Furthermore, the computation per pattern lookup is also too small to mask the high memory-access latency,

resulting in frequent processor stalls [53], making the task memory-bound. An alternative is a coarse-grained

index that fits in the LLC, in which a key is mapped to a bucket of potential matches, with linear or binary

search within a bucket. However, our prior results [53] show poor temporal locality in which buckets are

accessed.

To address these limitations, data-centric architectures leveraging content addressable memory (CAM)

have been proposed [121, 122]. This paper describes how to implement CAM functionalities inside DRAM,

which offers several advantages over non-volatile memory (NVM) and SRAM alternatives. Even a highly

compact 3T3R PCM NV-CAM cell is over 3X larger than a DRAM cell, and SRAM is much less dense and

more power-hungry.

The proposed architecture, DRAM-CAM, is built on Sieve [53], a recently-proposed processing-in-memory

(PIM) key-value accelerator designed originally for massively-parallel k -mer matching (searching for short DNA

sequence patterns of size k), but more generally suitable for a variety of key-value applications. Sieve provides

an average of 326X/32X speedup and 74X/48X energy savings over multi-core-CPU/GPU baselines for

k -mer matching, using a column-wise data layout for patterns, allowing element-parallel, bit-serial matching

47

DRAM-CAM: General-Purpose Bit-Serial Exact Pattern Matching 48

Table 4.1: Mapping exact matching kernels onto DRAM-CAM

Benchmark Index ETM PCL DTU CLP Input Payloads DRAM-CAM pat-
terns

DRAM-CAM computing

String
Match

Yes Yes No No Yes Key file None Encrypted file Search keys in the encrypted file

Histogram No Yes Yes Yes No 8-bit pixels None Image binary pixel
values

Aggregate hits for each pixel
pattern

Word
Count

No Yes Yes Yes No Unique words None Words from text file Aggregate hits for each input
word

Bitcount Yes No No No Yes 32-bit binaries Num of set
bits

32-bit binaries Retrieve number of set bits

Apriori No No Yes No No Itemsets bit vec-
tors

None 1-hot encoded trans-
actions

Check if transactions contain an
itemset

(each bit position is checked across a large number of bitlines, i.e. data items). Sieve and SIMDRAM [123]

showed that this offers better matching throughput than a traditional, row-wise data layout. This allows

Sieve to integrate low-overhead bit-wise logic inside row buffers, coupled with subarray-level parallelism, to

simultaneously compare thousands of patterns in each row cycle without incurring expensive data movement.

Although a similar in-situ approach has been explored in prior proposals such as Ambit [88] and SIMDRAM,

their multi-row activation-based approach, which relies on charge-sharing, is more energy-intensive and

slower than the sequential single row activation and digital comparisons employed in Sieve [53], due to

the overhead of row-copy operations involved to set up operand rows in the “Bitwise” group for pattern

matching[123, 88]. Furthermore, column-wise data layout and single-row activation allow Sieve to exploit an

Early Termination Mechanism (ETM) that prevents unnecessary DRAM row activation if all columns have

encountered a mismatch. Therefore, even if the slow multi-row activation mechanism is replaced with rapid

timing-constraint-violating DRAM commands that leave multiple rows open to perform fast row-wide logic

operations, as described in ComputeDRAM [93], Sieve still performs better by a large margin due to the

benefit of ETM, which is not possible in a row-wise data mapping. Furthermore, combining ComputeDRAM

with a vertical data layout is unlikely to outperform Sieve, because of the much larger overhead of setting up

queries for the target subarrays [53].

In this paper, we add several features that enable a wider range of pattern-matching applications, including

population-count logic to count matches (in Sieve, a given k -mer will have at most one match), hardware

support for faster transposition of data into the column-wise format, and optimizations for greater parallelism.

The evaluation shows that DRAM-CAM provides up to three orders of magnitude of speedup and energy

reduction over the CPU baselines, and on average outperforms the closest PIM competitor by 3.7X.

4.2 Architecture 49

1024 bits

...

1024
16

64-bit PCL
64

FF
to ctrlr

3:23:23:2

3:23:23:2
3:23:23:2

HA

...

... ...

1
63

2121

... ...

LUT-based
PCL

LUT LUT LUT LUT LUT ...

...

...

REG

...
...

REG REGREG REG

REG

REG

4 4 4 4 4

3 3 3 3 3

ADD ADD

REG
4 4

ADD

REG

ADD

4

Compressor-
based PCL

Figure 4.1: Population count logic.

4.2 Architecture

DRAM-CAM retains the core architectural designs of Sieve and serves as a PCI-attached accelerator with

an offload model. We introduce several hardware components and runtime optimizations pertaining to

DRAM-CAM.

Population Count Logic (PCL). A population count logic (PCL) unit returns the total number of

matches for each query. The PCL accumulates the number of ones from the row of latched bits at the subarray

level, then aggregated at the controller level for the total number of hits. In many use cases, aggregating hits

for each query accounts for nearly the entirety of the workload. Integrating PCL at the subarray level is

difficult since it needs to process a large bit vector in a timely fashion with minimal hardware overhead.

Our PCL design, shown in Fig. 4.1, works on 1024 bits by processing chunks of 64 bits. To count the 1s

in a group of 64 bits, we explore two options: lookup table (LUT) and Wallace-tree-architecture compressor

tree circuit [124]. The first level of the LUT-based PCL requires 16 four-input LUTs that take four bits from

the latches and output the number of ones in binary. The remaining levels of this PCL are like an adder tree,

aggregating ones from all LUTs. One optimization is to insert registers between levels to form a pipelined

PCL, which reduces latency but increases area and power overhead (see Table 4.2). The compressor-tree

PCL is based on [124], which uses 57 3:2 compressors and 8 half-adders in ten cascading stages. The 3:2

compressor has the same truth table as a full adder. Each compressor processes 3 bits, outputting the number

of ones in its sum and carry bits as sum + 2 × carry.

Data Transposition Unit (DTU). If the reference patterns are reused across different executions,

transposing the data in software is a one-time cost amortized over a long period of use. However, some

workloads require input data to be transposed on the fly and written to the DRAM-CAM prior to matching,

which places the data transposition operation on the critical path. We integrate a simplified data transposition

unit (DTU) from SIMDRAM [123] into DRAM-CAM. The DRAM-CAM DTU requires only one 4KB SRAM

transposition buffer. DRAM-CAM’s DTU works at a rate of transposing one cache line worth of data (512

bits) in one cycle. We estimate that such hardware DTU is 381.3X faster than a software one (estimated

DRAM-CAM: General-Purpose Bit-Serial Exact Pattern Matching 50

using a modified DRAMSim2), and adds an insignificant (<0.1%) amount of execution time. Once the CPU

with the help of a dedicated runtime environment (future work) instructs the DRAM-CAM device to load the

reference pattern sets (e.g., image data for Histogram) from disk using DMA, data first arrive at this SRAM

buffer, then transposed row by row by simple custom logic and written into DRAM-CAM using DRAM

commands.

Chip-level Parallelism (CLP). Sieve chips in a rank respond to queries in a lockstep manner due to

the shared chip select signal (CS), a design carried over from a traditional DDR architecture. Chip-level

parallelism (CLP) can be achieved to a certain degree by providing each chip with a dedicated chip select

wire. Note this solution does not make each chip truly autonomous, because the data line (DL) still has to be

shared inside a rank due to limited high-frequency data pin count, which is prohibitively expensive to scale.

DRAM-CAM chips receive their input queries once the shared DL is available, thus only pattern matching is

parallelizable, while query input is serialized. The downside of CLP is that the number of entries in the index

table will be increased since chips need to be indexed. However, the granularity of the indexing scheme can

be adjusted if needed to keep the index within L2 capacity.

Runtime Optimizations. To leverage the parallelism of DRAM, we want to leverage as many subarrays

as possible, which reduces congestion and maximizes parallelism. DRAM-CAM starts offloading patterns by

choosing a random subarray for pattern storage, and after it is filled with subarray width patterns, randomly

chooses the next subarray from a different channel/rank/bank for pattern placement. Further optimization is

to replicate small reference pattern sets multiple times by storing them in unused subarrays, which allows

applications to use them for greater parallelism. To support this optimization, the main changes occur in the

index table, where one additional busy bit for each entry is needed to indicate if the subarray is currently

being used or not. When a new query arrives, the index table chooses a subarray whose busy bit is 0 that

stores the same reference patterns. If all candidate subarrays are busy, we choose a random one to wait upon.

Pattern distribution (PD) offers 22% to 7.4X speedup while pattern replication (PR) offers 4X to 29.4X

speedup over an unoptimized pattern storage scheme (Fig. 4.2). PR generally offers better performance than

PD, because it allows DRAM-CAM to utilize subarray-level parallelism on top of bank-level parallelism.

Application Mapping. While some kernels map to DRAM-CAM naturally, such as String Match (SM)

and Bitcount (BC), others are not so straightforward and require algorithmic changes. Histogram (HG)

and Word Count (WC) differ most from their CPU counterparts, where the input images or text files are

transposed into DRAM-CAM prior to the matching process. Then a standardized input set such as all 8-bit

pixel patterns or unique English words are passed as input to aggregate hits. For Aprior (AP), the entire

transaction database is transcribed using one-hot encoding, with each column representing a transaction

and each row representing an item. To check if a candidate itemset is a subset of a transaction, the ith row

4.3 Evaluation 51

Table 4.2: Population Count Logic Characteristics

LUT no Pipeline LUT Pipeline Compressor Tree

Area (nm2) 201 554 148
Delay (ns) 0.76 0.34 0.84
Power (uW) 0.03 0.06 0.02

Table 4.3: Workstation Configuration

CPU Model Intel(R) Xeon(R) E5-2658 v4

L1 /L2 /L3 $ 32 KB / 256 KB / 35 MB

Main Memory DDR4-2400MHz (32 GB/2 Chan)

corresponding to the ith 1 of the bit vector is opened. Table 4.1 shows more details of mapping each kernel

onto DRAM-CAM. One interesting discovery is that the best way to utilize ETM in natural language (e.g.,

Word Count) is to match the patterns backward, due to the significant prefix overlapping.

4.3 Evaluation

The experimental setup and evaluation methodology are identical to those of [53]. The baseline DRAM energy

is estimated by feeding memory traces to DRAMSim2, configured to match our workstation. The CPU energy

is measured using the Intel PMC-power tool, then scaled down by 30% to exclude the interference from

other system components, consistent with the methodology from DRISA [87] For application performance

modeling, we use a trace-driven, in-house simulator that has a custom DRAMSim2 as the front end. We

use the Micron DDR4 4Gb 8B x16 chip as the building block. We assume a pipelined implementation of

DRAM-CAM, where the host (CPU) performs pre-processing and post-processing, while DRAM-CAM is

responsible for pattern matching. We use Verilog to implement different versions of the population count

circuit. Then, we estimate power/area/latency using Synopsys in 90nm. Finally, we use scaling factors from

[107] to scale down results to 22nm. See the original Sieve paper [53] for more methodology details. Table 4.3

reports the CPU hardware setup. We measure the portion that can be offloaded to DRAM-CAM, which is

98.97% for String Match, 75.88% for Histogram, 92.99% for Word Count, 100% for Bitcount, and 63.00% for

Apriori. Table 4.2 summarizes performance characteristics for PCL. The compressor-based PCL has lower

area and power, while the pipelined LUT-based PCL is the fastest. We propose to fit PCL in the center strip

of each DRAM chip, and each PCL is time-shared among subarrays of a bank. This setup increases the

latency slightly. Decoupling CS signals to enable chip-level parallelism requires negligible hardware changes.

For the data transposition unit, the primary component is a 4KB SRAM buffer. We estimate its area to be

0.015 mm2, and it consumes 2.22 uW.

Exact Pattern Matching Workloads. We select the same applications from [121] (Table 4.1), minus

Vortex, which is deprecated and not open source, and ReverseIndex, which does not map well to DRAM-CAM.

DRAM-CAM: General-Purpose Bit-Serial Exact Pattern Matching 52

String Match processes a key file of strings and a file of hashed (encrypted) strings to find which keys

occur in the encrypted file. Histogram counts frequencies of pixel values in the RGB channels of a bitmap.

Word Count generates the frequency for each word in a text file. Apriori performs associative rule mining,

building a candidate itemset, and counts itemset frequencies in a transaction database. Our results suggest

DRAM-CAM’s bit-serial nature favors workloads with shorter patterns (several hundred bits or less). The

Reverse Index is a “bad fit” because each pattern (URL links) is too long for DRAM-CAM to handle.

DRAM-CAM also favors kernels that can issue large batches of pattern search requests to fully leverage

parallelism in the DRAM hierarchy.

Performance improvement over CPU. Figure 4.2 reports the speedup and energy saving over a CPU

baseline of various DRAM-CAM configurations, including the performance of our unoptimized (UNOPT)

setup, which is closest to the original Sieve architecture while enabling these other applications, and the

benefit of three optimizations: pattern distribution (PD), pattern replication (PR), and chip-level parallelism

(CLP). For applications that need PCL, we model LUT with the pipeline. The optimizations are highly

effective when the reference pattern set is small, because it can be distributed and replicated many times to

leverage the massive internal parallelism of DRAM. Additionally, chip-level parallelism offers approximately

2.9X speedup when applicable, but it does not help when a query needs to visit all subarrays to aggregate

hits. String Match (SM) shares the most similarities with k -mer matching and benefits the most from such

an accelerator. Word Count (WC) only experiences modest speedup. In fact, UNOPT is 1.5X slower than

CPU. There are two reasons: (1) long string patterns and high match rates cause frequent and long sequences

of DRAM row openings, and (2) a large input set (reference patterns) that limits optimization potential.

This is in contrast to Apriori (AP), which also stores large reference sets and long patterns. but only opens

a few rows (<10). DRAM-CAM outperforms Bitcount (BC) on the CPU, because it stores a much larger

lookup table (32-bit vs. 8-bit patterns).

The baseline DRAM-CAM (UNOPT) tends to show the best energy efficiency because the dynamic power

consumption of DRAM-CAM depends on the number of banks that are used for pattern matching, and the

UNOPT setup uses only a small percentage (0.7% ∼ 50%) of banks, resulting in up to 126.4X lower power

than the CPU baseline. There is a tradeoff between greater parallelism and higher energy. PD shows worse

energy saving than UNOPT, even though it offers better speedup, because UNOPT uses all subarrays of a

smaller set of banks, but leverages subarray-level parallelism (SALP) to its full potential, thus making up the

performance loss due to increased bank conflicts. On the other hand, PD usually utilizes fewer subarrays

from a larger set of banks, resulting in sublinear speedup w.r.t. bank count. PR usually shows better energy

saving than PD, except for the SM benchmark, by exploiting more SALP. SM has a small input set, and

PD utilizes only two banks (low power). PR offers 16X speedup, but needs 128 banks, However, HG, WC,

4.3 Evaluation 53

0.1

1

10

100

1000

10000

SM HG WC BC AP

Sp
ee

du
p

UNOPT PD PR CLP

1

10

100

1000

10000

SM HG WC BC AP

En
er

gy
 S

av
in

g

UNOPT PD PR CLP

Figure 4.2: Comparison with CPU baseline.

and AP have larger data sets, and PD requires the same amount of banks as PR, meaning they have similar

dynamic power consumption. Since PR significantly reduces the execution time of those benchmarks, it offers

better energy efficiency for those benchmarks. Finally, CLP increases power consumption minimally, but the

performance improvement is significant, so the energy savings approach or surpass UNOPT.

Comparison to alternative PIM designs. We compare DRAM-CAM with several prior DRAM-

based in-situ proposals. Fig. 4.3 reports the results, and the performance numbers are normalized to CPU

baselines. We assume all indispensable architectural features such as population count logic are enabled for

all architectures, even though they are missing from some prior works, and all appropriate hardware and

software optimizations proposed in this work are equally applied to prior works. Ambit adopts the traditional

horizontal data layout (row-major) and triple-row-activation (TRA) based logical operation (XNOR) for

pattern matching. ComputeDRAM-H reduces TRA latency by half but retains the horizontal data layout.

ComputeDRAM-V /SIMDRAM switches to vertical data layout (column-major) with TRA. In addition to

charge-sharing based in-situ accelerators, we also simulate variations of DRISA, which combines analog bit-line

functionality with digital logic in the row-buffer. DRISA-H uses horizontal data layout while DRISA-V uses

vertical, and DRISA-V-Batch-Input is DRISA-V but utilizes Sieve-style batched queries.

TRA-based pattern matching is inherently slow, even with the modified version proposed in Comput-

eDRAM. Each row-wide comparison takes multiple DRAM cycles, whereas in-row-buffer logic takes only

one. Moreover, exact matching needs to XNOR operand rows, which requires two TRA operations. Second,

while for general-purpose computing, vertical data layout has shown better performance, for exact matching,

horizontal data layout is better because each query only needs to populate one row, whereas vertical data

layout has to populate a two-dimensional block of bits (subarray width× query bit length) for each query

to support the bit-serial matching. Third, PIM generally favors short patterns over longer patterns, and this

is especially true for column-major layouts. Fourth, DRAM-CAM outperforms DRISA because it has a more

efficient way of setting up queries, plus early termination (ETM). Note also that GRIM-filter [125], an HMC

PIM for short-sequence DNA alignment, may also support exact pattern matching, an interesting direction

for future work.

DRAM-CAM: General-Purpose Bit-Serial Exact Pattern Matching 54

0.1

1

10

100

1000

10000

String Match Histogram Word Count Bitcount Aprior

Sp
ee

du
p

ov
er

 C
PU

Ambit ComputeDRAM-H ComputeDRAM-V/SIMDRAM DRISA-H DRISA-V DRISA-V-Batch-Input DRAM-CAM

Figure 4.3: Comparison to other in-DRAM accelerators.

4.4 Conclusion

This work develops general CAM functionality inside DRAM, making it capable of accelerating a wide range

of exact pattern-matching workloads while achieving significant energy reduction over the CPU, with up to

6217X speedup and 5888X energy savings.

Chapter 5

Membrane: A PIM-based Architecture

to Accelerate Database OLAP Queries

5.1 Introduction

Online Analytic Processing (OLAP) systems are critical technologies used by enterprises to unlock the

potential of their vast enterprise databases. These systems employ analytic SQL queries to transform database

data into visual graphs on live dashboards, generate summary reports depicting the progression of key

performance indicators (KPIs) over time, and trigger alerts when KPIs deviate from the norm. In modern

enterprise settings, these analytic SQL queries often serve to convert raw data in enterprise databases, often

referred to as warehouses, for downstream machine learning (ML) pipelines.

Enterprise databases have consistently grown in size over the past five decades. Despite this growth, the

prevailing expectation remains that the underlying OLAP analytic SQL queries will continue to execute quickly

and efficiently. Historically, much of this demand has been met by the progressive doubling of performance

(both in computation and storage) of the underlying hardware, all while maintaining a near-constant cost

from one hardware generation to the next. This phenomenon, a combination of Moore’s Law and Dennard’s

scaling, has fueled this progress. However, it is now evident that this trajectory is no longer sustainable.

Indeed, Google recently showed results from profiling its hyperscalar fleet and found that BigQuery, an

analytics platform, consumed about 10% total cycles within the fleet, and proposed analytics as a candidate

for acceleration. [11]

There is a rich history of enhancing database query speed through hardware innovations. Noteworthy

instances of this approach include Oracle’s 2009 acquisition of Sun, followed by endeavors to develop database-

55

Membrane: A PIM-based Architecture to Accelerate Database OLAP Queries 56

specific hardware. Another example involves IBM’s acquisition of Netezza, initially intended to capitalize

on FPGA-based acceleration, a pursuit that has since been abandoned. In parallel, efforts have also been

directed towards enhancing database software to extract greater performance from underlying hardware. This

has involved rethinking fundamental mechanisms employed in analytic database engines. Notably, there was

a transition from row-store to column-stores, analogous to shifting the underlying data representation from a

row-major order to a column-major order. This shift resulted in significant performance improvements, given

that analytic queries typically access data in a primarily column-oriented fashion, such as when scanning for

records whose fields match certain criteria.

A more recent approach involves additional vertical data shredding at the bit-level using techniques like

BitWeaving [126]. This involves transforming the underlying computation into bit-level arithmetic, which can

be efficiently evaluated at the circuit level using a concept referred to as intra-cycle parallelism. For example,

when evaluating a predicate (such as “columnValue ≥ 5“), data is fetched by the bit position. So, if the

memory system is used to fetch 8 bytes of data, what gets fetched is 8 x 8 = 64 bits of the most significant

bit (MSB) for 64 consecutive column values. These MSB bits are then compared with the MSB of the value

(5), and predicate evaluation proceeds by bit positions but bit-parallel operations like XOR and AND. In

many cases, the least significant bits (LSBs) for the column values need not be fetched, reducing the memory

fetches and the number of cycles used to evaluate the predicate on the batch of columns (64 in the example

above).

Furthermore, the importance of in-memory database organizations is growing rapidly for OLAP systems,

including in data science and business analytics settings where complex analytic queries are often performed

with a human-in-the-loop (a key driver behind the rise of DuckDB) [127]. A PIM-based approach is

especially appealing for these workloads because they are often bound by the memory system’s performance

in conventional von Neumann-style processing systems (which dominates the server landscape on which

database systems are deployed). As noted in [128], OLAP applications hit the memory wall [129], and

this problem is likely to grow over time as memory densities are likely to grow faster than memory bus

speeds (both latency and throughput impact OLAP workload performance) [130]. Furthermore, even when

the database does not fit in memory, smart methods of caching data from disk are used by the database

management system (DBMS) to keep hot data in memory. Thus the CPU-DRAM level is critical for overall

query performance [131].

Our paper explores processing-in-memory (PIM) for analytic SQL queries. Notably absent from the

existing efforts in this domain is a comprehensive consideration of both hardware options and software

implications. For instance, Ambit [88]) and SIMDRAM [123]) focus on a data layout called BitWeaving-V

(where data is stored by the bit positions), while others have considered only traditional column-major layouts,

5.2 Background 57

e.g. [132]. However, no prior work has compared the benefits of these different layouts in a comprehensive

way. Moreover, prior research (except for Castle in the SRAM domain [133]) has not thoroughly examined

end-to-end query performance across a full benchmark.

In this paper, we show that end-to-end query processing does indeed benefit from PIM and present the

following contributions:

1. We concentrate on DRAM-based PIM and explore the hardware design possibilities suitable for data

laid out in either the BitWeaving-V or the traditional columnar formats. We introduce two distinct hardware

designs: Membrane-V and Membrane-H, based on vertical or horizontal data layouts. These designs highlight

the necessity for different architectural elements based on the software approach.

2. We devise query processing mechanisms to comprehensively evaluate a popular SSB database benchmark.

Our findings indicate that while our PIM approach accelerates most segments of analytic queries, certain

parts, notably aggregation and sorting, are more effectively executed on the CPU. Consequently, we recognize

the continued significance of CPUs in analytic query processing.

3. We note that our benchmarking employs a prevalent software-based data acceleration technique

called WideTable [134], to convert intricate queries into simple, PIM-friendly scans by joining the data

upfront and storing the data in this “denormalized” form. With suitable encoding, the space overhead is

modest, approximately 18–22% in our experiments with SSB. In fact, the benefits of eliminating joins and

the associated query planning overheads has led to adoption in several commercial products [135, 136, 137].

4. Our investigation reveals that our initial Membrane-V and Membrane-H designs significantly enhance

the performance of the most data-intensive component of analytic queries—the table-scan (i.e., filtering)

operation. However, a new bottleneck emerges: gathering the selected records for the subsequent query

processing phase. To address this need, we show the benefits of a rank-level unit (RLU) on the DRAM side

of the memory bus for gathering the results of a table scan (i.e., for early materialization).

5. Collectively, we analyze the design space encompassing V- and H-based hardware as well as software

methods for analytic query processing. Through experimentation on a large 60 GB in-memory SSB database

(Scale Factor-100), we demonstrate that our methods yield orders-of-magnitude improvements over existing

approaches. As a result, we propose a potential novel avenue for accelerating analytic queries in OLAP

systems.

5.2 Background

OLAP Basics There are two main categories of database workloads: online transaction processing (OLTP)

and online analytical processing (OLAP) [73]. These two workloads have starkly different characteristics and

Membrane: A PIM-based Architecture to Accelerate Database OLAP Queries 58

are regularly serviced by two separate database systems. Typically, new data (e.g., orders in an e-commerce

application), are first recorded in an OLTP system that uses transactions to safely record the data. Periodically,

data from the OLTP system is transferred to a read-mostly, append-only OLAP system commonly known as

a data warehouse [74]. The OLAP system—the focus of this paper—is used to analyze this historical data.

An OLAP database usually has few fact tables (often just one) and many dimension tables. Fact tables

hold transaction records, while dimension tables provide detailed information for specific columns in the fact

table records. For example, an e-commerce application may have an orders fact table with one record per

purchased item, including the customer ID as a foreign key. A separate customer dimension table would have

one record per customer, including detailed customer information and a unique customer ID as the primary

key. Other dimension tables may record more purchase details, such as product descriptions. Fact tables tend

to be large, while dimensions tables are smaller. OLAP queries often involve selecting and joining dimension

table records with fact tables and then aggregating values to produce informative results, such as a list of top

products in the last month.

Given the read-mostly and append-only nature of data warehouses, a common method to speed up query

processing is to denormalize the database schema. This technique folds information from the dimension

table(s) into the fact table so that a join is no longer needed to evaluate OLAP queries. In research, it

has already become a common requirement for software-based OLAP acceleration methods [134, 138, 88,

126, 139]. Denormalization is now emerging in multiple commercial products as well (e.g., [135, 136, 137]).

WideTable [134] is a specific, widely-used style of denormalization. Although denormalization comes at the

cost of increasing the database size, dictionary-based encoding can limit this overhead (to 18-22% in our

experiments with SSB, and generally small for a wide range of schema) [134, 140, 141, 142, 143].

OLAP queries are data-intensive, involving relatively few processor cycles per byte of input data. For

example, when a query asks for all customers in a given zip code, it may scan an entire table while only

applying a simple comparison operation on each input record. As CPU speed and memory size have increased

faster than both the memory speed and memory bus bandwidth, OLAP query evaluation in main-memory

environments (the focus of this paper) is often memory-bound [128].

OLAP is Memory Bound To demonstrate the memory-bound nature of OLAP workloads, we evaluated

hand-optimized C++ implementations of the thirteen queries in the Star Schema Benchmark (SSB) [144]

on a typical server (two Intel Xeon Platinum 8260 CPUs, each with 24 cores and 376 GiB of memory),

with scale factor 100, which corresponds to a ∼60GB database. Our query implementations used explicit

SIMD instructions from the AVX-512 (512b), AVX2 (256b), and SSE (128b) instruction sets. Despite the

decreased vector width, the AVX2 and SSE implementations were not significantly slower than the reference

configuration–less than a 2% difference on average and less than 5% in any case. These results seemed to tell

5.2 Background 59

us that the CPU implementation may be bottlenecked. To inspect this bottleneck more closely, we monitored

the memory bandwidth utilization during each SSB query in the SSE configuration What we observed is

that, throughout the entire benchmark, memory bandwidth utilization was universally near the experimental

machine’s maximum memory bandwidth. Thus, these experiments demonstrate the memory-bound nature of

this database workload in two orthogonal ways: by showing that the CPU is not the performance bottleneck,

and by showing that a single core can saturate the memory interface. This further suggests that, for this

task, CPU-side hardware such as Intel’s IAA would be unlikely to improve performance.1

Materialization Strategies Each query has two key steps: Filter and Aggregate. The Filter scans the

columns required to satisfy the WHERE clause of each query and evaluates the conditions. The output of the

Filter is a bitmap that represents the rows that meet the WHERE clause’s conditions. The Aggregate takes

the bitmap produced by the Filter as input. For each set bit in the bitmap, the Aggregate retrieves the

corresponding record and performs the remaining work of the query, including any GROUP BY and ORDER BY

clauses.

Late materialization propagates the filter bitmap throughout the entire query, resulting in an aggregation

step that must perform a data retrieval operation in addition to the aggregation kernel. The traditional role

that PIM has filled in database acceleration, including prior PIM work, has been to act as a filter processor,

which relies on the CPU to perform the final fetch and aggregate query component [53, 88]. In contrast,

Early materialization performs the data retrieval at an earlier stage in the query (when evaluating Filter

steps), so the aggregation avoids this step. Depending on the query characteristics and PIM architecture,

early or late materialization may be better.

We explore the impact of varying the materialization strategy on the aggregation component of the

AVX-512 CPU baseline using the SSB benchmark. Our results are presented in Figure 5.1. We measured the

proportion of time spent on the aggregation step for each query and each materialization strategy. Figure 5.1

suggests that using PIM to accelerate only the Filter step may not be sufficient to achieve significant speedups

for some queries, such as Q3.1, which can only be accelerated by less than 25%. Therefore, we propose adding

a rank-level unit (RLU) to perform early materialization, using the bitmap produced by filtering to gather

the appropriate fields of the selected records into a contiguous block. This allows rank-level parallelism in

this gather step and also optimizes the traffic to the CPU by using the full width of the interface with useful

data, instead of requiring the memory controller to fetch scattered words.

1The IAA’s primary benefits appear to be in decryption/decompression and offloading streaming-memory tasks from the
cores; once the data have been fetched and decrypted/decompressed, the IAA can also perform the scan/filtering on the desired
columns, and then fetch and decrypt/decompress any additional desired fields from the selected records.

Membrane: A PIM-based Architecture to Accelerate Database OLAP Queries 60

10 6 10 5 10 4 10 3 10 2

Selectivity

0

25

50

75

100

Ag
gr

eg
at

e
Ti

m
e

(%
)

Q1.2Q1.3 Q2.3
Q3.1

Q3.4 Q1.1Q2.1Q2.2

Q3.2 Q4.1Q4.2Q3.3 Q4.3

Aggregate-Early Materialized
Aggregate-Late Materialized

Figure 5.1: The results show how long the Aggregate step takes for each query, with early/late materialization.
Using PIM may improve the remaining time (for the Filter step).

5.3 Architecture

In this section, we present two versions of the Membrane PIM architecture. Membrane-V (Vertical)

is a bit-serial and element-parallel architecture that extends the exact pattern-matching capabilities of

Sieve [53]/DRAM-CAM-style[39] architectures to process range queries. Membrane-H (Horizontal) is an

element-serial bit-parallel architecture based on Fulcrum [132].

For Membrane-V, because records are laid out vertically (column-wise) along a bitline, the retrieval of the

selected data would require many row activations to retrieve each bitslice of the selected records. Instead

Membrane-V uses a second copy of the WideTable data that is stored elsewhere in memory and in the

traditional horizontal format along a subarray row. The memory controller first issues the filtering command

and receives the resulting bitmask, and then retrieves the data. For Membrane-H, in which the data is

already in a row-wise horizontal layout, the processing unit can gather the data items immediately as they

are selected. Section IV presents more details on the orchestration with the memory controller.

5.3.1 Membrane-V

Membrane-V performs query predicate filtering in an element-parallel but bit-serial manner. This operation

can be carried out by laying the data vertically (column-major) along the bitlines of DRAM chips. Filtering

is performed as a series of row activations, with each activation processing a given bit position (bit slice across

many bitlines, i.e., data items. To support database query filtering, only simple bit-wise relational operations

are needed. DRAM-based PIM architectures that process data bit-serially, leveraging a vertical data layout,

5.3 Architecture 61

come in two categories: one utilizes a charge sharing (i.e., analog) triple-row-activation (TRA) operation,

which does not require additional logic at the row buffer level, and one that integrates digital logic into the

row buffer and can process data using normal DRAM single-row-activation (SRA).

Prior works such as Ambit [88], SIMDRAM [123], ComputeDRAM [93], and DRISA [87] adopt the

TRA-based approach. While the TRA-based DRAM-PIM is more area-efficient due to the lack of additional

digital logic along the width of the row boffer [88], other than the additional row decoders, it is more

energy-intensive and slower than the sequential single-row activation with digital circuits integrated at the

row buffer [53, 39]. The TRA overhead is primarily due to: (a) raising each additional wordline increases the

activation energy by 22% [88], and (b) there is an overhead of multiple row-wide copy operations to move

data operands to the PIM-capable rows [123, 88]. Furthermore, each TRA can only accomplish a bitwise

AND/OR/NOT/MAJ operation, and a series of TRA operations must be chained to support more complex

operations such as those needed for table scan [123]).

Alternatively, we can integrate bitwise digital relational logic directly into the local row buffers at the

DRAM subarray level. For example, Sieve [53] and DRAM-CAM [39] embed a matcher after each sense

amplifier for bit-serial exact pattern matching. We can extend this architecture by replacing the matcher

hardware with a one-bit comparator that can support inequality to enable table scans (Fig. 5.2).

SRA-based Membrane-V Architecture. Fig. 5.2 illustrates the overall architecture of Membrane-V,

including the vertical data layout and the circuit design to enable predicate table scans. The form factor

required to integrate Membrane-V into the host system can be flexible. Each Membrane-V chip comprises

multiple banks, similar to a commodity DRAM chip. However, within each bank, Membrane-V has an

additional layer of hierarchy called Subarray Groups.

Subarray Groups. Similar to Sieve Type-2 [53], in Membrane-V, a subset of adjacent subarrays within

a bank are connected through high-bandwidth links (isolation transistors) to form a subarray group. No

modifications are made to a subarray in Membrane-V, except the last subarray’s row buffer in each subarray

group is extended with a filter logic array, mainly consisting of a row of 1-bit comparators with auxiliary

bit-latches (described below). Subarray groups within a bank can independently scan their stored wide

table entries by sequentially activating rows of a subarray, transferring them into the last subarray’s filter

logic array using the LISA mechanism [96], and performing the bit-serial comparison between attributes of

the wide table entries (e.g., d year) and the target values (e.g., 1994). The LISA mechanism enables the

intra-subarray-group row-wide data relay by sequentially activating the local row buffers between the source

and last subarray [53]. The latency of making one “hop” from one row buffer to the next consists of enabling

the isolation transistors (link) and the activation of the sense amplifiers, which is only 1/8 of a regular row

activation [53].

Membrane: A PIM-based Architecture to Accelerate Database OLAP Queries 62

Membrane-V

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

SubArray_0

Sense Amps

Sense Amps

SubArray_2

Sense Amps
Filter Logic

SubArray
Group 0

SubArray
Group 3

SubArray
Group 2

SubArray
Group 1

...B
an

k

B
an

k

B
an

k

B
an

k
B
an

k

d_
ye

ar
d_

ye
ar

d_
ye

ar
d_

ye
ar

lo
_q

ty
lo

_q
ty

lo
_q

ty
lo

_q
ty

WT entries

19
94

re
sv

19
94

re
sv

...
Compare Compare

...

d_
ye

ar
d_

ye
ar

d_
ye

ar
d_

ye
ar

lo
_q

ty
lo

_q
ty

lo
_q

ty
lo

_q
ty

WT entries

P
at

te
rn

 G
ro

u
p

 1

P
at

te
rn

 G
ro

u
p

 0

Sense
Amp0

0

1

S0

BL0

1-bit Bus

Sense
Amp1

1-bit
Comparator

Logic

BL1

......

R_bit

S_bit

Figure 5.2: Membrane-V Architecture.

Data Layout. To support table scan in Membrane-V, we adopt a column-major bit layout similar to

that proposed in [123, 126]. The dictionary-encoded WideTable entries are thus transposed onto bitlines

for column-wise placement. Each attribute occupies consecutive bits in one column (i.e., spanning multiple

rows) in the order of MSB to LSB. Because the transmission delay of the long wordlines prevents a predicate

value bit from being dispatched to all comparators in a subarray row during one DRAM row cycle, the whole

subarray is further broken down into smaller groups of columns called pattern groups. Within each pattern

group, a block of WideTable entries is followed by a column of predicate value populated at run-time. All

pattern groups work in a lockstep manner by comparing the predicate value with WideTable entries in that

pattern group. This is somewhat similar to how a large logical subarray actually consists of smaller mats,

each with a wordline amplifier. After a row is latched into the row buffer of the last subarray through row

activation and LISA, the predicate bit is sent to all comparators within a pattern group through a 1-bit bus.

Filter Array. The crux of the Membrane-V architecture is its ability to perform a relational comparison

(e.g., =, <, >, etc.) between a block of table attributes (e.g., d year) and a predicate value (e.g., 1994)

bit-serially. This is handled by a filter array integrated at the last subarray in each group. The filter array

consists of a row of 1-bit filter logic, which connects to a sense amplifier and a 1-bit bus for inputs. Fig.

5.2 bottom (pre-synthesized gate-level diagram is shown for clarity) shows the hardware logic of the 1-bit

5.3 Architecture 63

comparator that determines if one attribute stored in a bitline is smaller, equal to, or larger than the predicate

value by making a comparison at every bit position and capturing the running result in the S bit (stop bit)

latch and R bit (result bit) latch. Each subarray row activation delivers one attribute bit (through the sense

amplifier) and one predicate bit (through the 1-bit bus) to each filter. If after n sequential row activations,

where n is the attribute bit-length, the value of an attribute is >/</= to the predicate value, then the R bit

latch stores 1/0/0, and the S bit latch stores 1/1/0. The final bits stored in the R bit latch and the S bit latch

are transferred to the Membrane controller to produce the bitmask. To support ranged predicate filtering,

such as 1994<d year≤ 1997, the Membrane-V runtime would break it down to multiple relational searches

(i.e., 1994<d year, d year<1997, and d year=1997), execute them separately and aggregate the final results.

Write Broadcast. We observed that the latency of writing predicate values to the query regions of

the subarrays takes substantially more time than the actual row-activation time spent on matching the

predicate (Sec 5.5.3.) Since the predicate value bits written into each subarray are identical and are destined

to the same row and column addresses, we propose a simple optimization that broadcasts the predicate bits

simultaneously by connecting all participant subarrays’ local row buffer to the global data lines, allowing

them to accept the predicate bits at the same time. The hardware cost to the Membrane chip is negligible

because the wires and the routing for the control signals are already in place [42].

5.3.2 Membrane-H

The Membrane-H design operates on one word at a time in the row buffer with a processing element (PE) or

an ALU present at the edge of a subarray optimised to perform scan operations. The Membrane-H unit filters

the database attributes held within the row buffer and produces a bitmap, whose length is equal to the number

of attributes that can be packed into a single page or row buffer width. Since entire attributes are checked in

each row access, Membrane-H is able to pursue early materialization. While database terminology defines the

early materialization to be at the granularity of each database record, we focus on early materialization at

the granularity of a row buffer worth of records to align with the access pattern of the PIM architecture.

We couple subarray-level processing elements with a rank-level unit (RLU) to perform the gather operation

necessary to materialize the result. The RLU is placed on the DIMM module, similar to [145] and [146].

The operation of Membrane-H breaks down into a scan phase performed in parallel across subarrays that

produces a bitmap; and gather phase, performed by the RLU to gather the desired fields from the selected

records, based on the bitmap. Our early investigations revealed that a single subarray unit performing both

the phases would result in a large logic overhead and increased delay at the subarray-level. With the RLU,

we not only pipeline scan and gather, but also optimize each unit for its respective task. An advantage of the

Membrane: A PIM-based Architecture to Accelerate Database OLAP Queries 64

SENSE AMPLIFIER

R
O

W
 D

EC
O

D
ER

M
EM

B
R

A
N

E-
H

CONTROL
UNIT

COLUMN
Mux

ROW
DECODER

BITMAP
Register

FROM
COL
Mux.

d_year lo_qty lo_disc

d_year lo_qty lo_disc

d_year lo_qty lo_disc

SUBARRAY

WideTable Entries

COMPARISON UNIT

(a) Membrane-H Overall Architecture

D
R

A
M

Rank-Level Unit (RLU)

Programmable Core

Bitmap Processing & Gather Unit

READ Queue

Cache Line Padding Unit

DDR
+

RLU
Interface

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

(b) Rank Level Processor

Figure 5.3: Membrane-H Architecture.

RLU is that it provides rank-level parallelism, compared to the traditional method of having the CPU or a

CPU-side accelerator such as the IAA perform the gather.

Subarray-Level Processing Element. These elements are distributed at the subarrays next to their

respective row buffers and consist of a comparison unit to perform the predicate operation and shift logic

5.4 System Integration 65

to feed data in the row buffer, one word at a time, to the PE. OLAP database workloads such as SSB

[144], TPC-H [147], etc. generally operate on string values and signed integers, and these can be dictionary

compressed, so the comparison unit only needs to operate on integers. A bitmap register is allocated to

hold the contents of the resultant bitmap after the predicate operation. Based on the analysis from the

SSB workload, we allocate a 32-bit bitmap register per subarray. When a query requires more than 32 bits,

it could divided into sub-queries and processed sequentially. A Control Unit associated with each PE is

responsible for orchestrating the operations and performing tasks such as iterating over attributes, updating

bitmap registers, and interfacing with the RLUs. In case of a limitation related to feeding data sequentially

off a row buffer due to mat-level barriers within the subarray, we propose to use a row of latches to store the

row buffer contents and process the data. We could avoid the large area overhead by conservatively placing

these latches for every 4 or 8 subarrays and bringing data to be processed via the LISA [96] mechanism.

Rank-Level Unit (RLU). The primary job of the RLU is to perform the gather operation and interact

with the memory controller. It consists of a small programmable core to orchestrate query execution depending

on the data layouts used within the subarrays. It also has a bitmap-gather unit where bitmaps are resolved,

and address offsets generated to perform a gather operation. These generated addresses are inserted into an

internal READ queue. The RLU also pushes the data gathered from the DIMM into the CPU. This process

of transferring data to the CPU can be achieved via a mechanism such as Data Direct I/O (DDIO) [148] that

features in most server-class Intel processors, which allows devices external to the CPU, such as network

interface cards, to push data directly into the cache [149, 150]. DDIO is built on top of Direct Cache Access

(DCA) [151] that allows I/O devices to provide prefetch hints to the CPU. Several works such as [152, 153, 154]

have studied the benefits and optimization techniques related to DCA to seamlessly integrate it with the OS

stack to get better performance. These mechanisms can be leveraged in the PIM context for pushing the

data from the Membrane-H DIMM to the CPU. This is discussed further in the following section.

5.4 System Integration

Membrane’s system integration consists of two levels of abstraction. First, a small set of Membrane-specific

ISA instructions expose the PIM functionalities that can be used by a programmer. Second, logic in the

DRAM controller is used to further decompose these new ISA instructions to DRAM-specific commands for

each Membrane (V/H) architecture.

Membrane ISA. There are three main types of Membrane ISA instructions: predicate, data movement,

and configuration instructions. Predicate instructions include equality and inequality flavors and take the

predicate value, the type of predicate (e.g., equal, not equal, less than or equal, greater than or equal, between,

Membrane: A PIM-based Architecture to Accelerate Database OLAP Queries 66

etc.), and the target column to which to apply the predicate. Data movement instructions are typically used

offline by the DBMS to orchestrate loading the WideTable into the PIM. (Since generating the WideTable is

considered a fixed cost that is paid once, we decided not to add dedicated hardware to accelerate it.)

In order to maintain a reasonably user-friendly interface of the Membrane ISA instructions and to keep

the instructions’ encoding lightweight, we add eight internal column-operand names c0 − c7 that can be

used by the PIM instructions.2 Similar to existing vector-length agnostic ISAs which maintain the state of

their vector register names using Control Status Registers [155], we augment the memory controllers with

bookkeeping logic to keep track of the start address, size, layout, and bitwidth of each column operand.

Then, data movement and predicate instructions addressing a specific column operand will read these data

structures to generate addresses for the required DRAM commands.

A DBMS would utilize the Membrane instructions as follows, assuming that space has been allocated

in row-aligned blocks where each row spans all channels/banks/ranks—see below for more detail on this

issue—and virtual-to-physical mappings have been established. 1) Use data movement instructions to load the

WideTable into Membrane. This is a one-time cost for an analytics session. 2) Use configuration instructions

or a system call to map specific columns from the WideTable that are used in the query to column operands

c0 − c7 by specifying the starting virtual address, size, layout, and bitwidth of the data elements. This

column setup step performs translation so that the memory controller knows the starting physical address of

the column—see below for more detail on support for virtual memory. These column setup operations are

broadcast to all memory controllers. 3) Call Membrane predicate instructions as part of the query execution

to execute the selection operators in Membrane. For example, suppose we want to filter on d year and return

lo date. We would set d year’s starting address, length, bitwidth, and data layout with a configuration

instruction and map it to c 0, and do the same with lo date and map it to c 1. Finally, we would execute a

predicate instruction on c 0 and project the masks on c 1. If the RLU is present, the projection command

is sent to the RLU. If not, the projection requires the memory controller to fetch the bitmap produced by

the predicate operation on c 0 and use it to fetch the selected items. Again, these predicate instructions are

broadcast to all memory controllers.

Virtual Memory. Modern DBMSs run on top of conventional operating systems and use the OS virtual

memory management techniques. Traditional virtual memory has considerable flexibility in mapping virtual

pages to physical frames in DRAM. But for subarray-level PIM, to maximize subarray parallelism during a

scan, data used by the DBMS should be mapped in a “breadth-first” fashion across all the subarrays being used

for PIM acceleration. Furthermore, to allow the memory controller to simply broadcast PIM commands to all

channels/ranks/banks and subarrays, rather than sending a separate command to each subarray, we need to

2When a query operates on more than 8 columns, the query is divided into sub-queries.

5.4 System Integration 67

ensure that for any PIM operation, all subarrays participating in that PIM operation are working on the same

row. The typical address interleaving helps with both these considerations: it spreads successive cache-lines

across channels, ranks, and banks before returning to the next column positions in a given row of a given

subarray. However, when a given row “position” is filled up across all the channels/ranks/banks, interleaving

typically moves on to the next row in the same subarray “position” across the channels/ranks/banks. This

suggests that a system performing PIM acceleration would benefit from a slight change in the interleaving

so that when one row is filled up across the channels/ranks/banks, the next row is in a different subarray.

If the PIM architecture uses subarray groups, the interleaving should prioritize subarrays with the filter

array, to avoid the overhead of the LISA data movement. Changing the interleaving in this way should not

affect performance of regular applications. It is also desirable that allocations for PIM should be in aligned

units that fill an entire row across all the channels/ranks/banks. This may require padding the end of the

WideTable with some canary values.

In Membrane, the PIM operation is driven by the memory controller in with PIM commands that operate

on one row of DRAM at a time, where a row spans all channels/ranks/banks. This means that rows not used

for PIM can be used for regular (non-PIM) data in the same or other processes.

The PIM support in the virtual memory system consists of an allocation system call for the WideTable,

with a descriptor for each column’s size. The allocator returns a descriptor with the starting virtual address

for each column, and ensures that each column is placed in a contiguous, row-aligned region of physical

memory. If a satisfactory allocation cannot be made, the allocator can return an error or move other processes’

data to free up sufficient space (this configuration choice is up to the system administrator.) The allocator

records each column’s virtual and physical starting address in a PIM mapping structure, so that when a

column is specified as part of a PIM computation (see “Membrane ISA” above), the specified starting virtual

address can be quickly mapped to a physical start address and the size can be checked. If no valid mapping

is found, a segmentation fault occurs. This mapping can be a system call or—preferably—supported at user

level with a new form of TLB for PIM, the PIM-TLB, that contains the column mappings. If the WideTable

has too many columns to fit in the PIM-TLB, a TLB-miss will raise a PIM-TLB-fault that checks the table

in the OS.

With the RLU, gathering and packing the data is performed on the DIMM side of the memory bus and

benefits from rank-level parallelism. To simplify the task of fetching the data from the RLU, a mechanism

such as Intel’s DDIO [148] approach could be extended to allow the RLU to push data into the last-level

cache. In this way, the memory controller does not need to wait for the RLU to have a block of data ready.

DDIO involves using a descriptor table as a means of specifying physical addresses that the I/O devices

can write to within the last-level cache, thereby avoiding expensive DMA transfers. Once an I/O device

Membrane: A PIM-based Architecture to Accelerate Database OLAP Queries 68

performs a write, it is indicated to the CPU by an interrupt mechanism or polling (which would be more

appropriate for Membrane). The CPU in turn updates the descriptor table to receive the next READ request

while processing the just-read data. We extend this mechanism in the context of Membrane by provisioning

additional PIM-specific descriptor tables, allowing the RLU to push data from its memory to the CPU’s

last-level cache at preconfigured addresses. Furthermore, because multiple RLUs share the interface to the

CPU, they can pipeline their writes to the CPU and hide delays at individual RLUs, e.g. because the data

being gathered are sparse.

5.5 Evaluation

5.5.1 Power, Latency, and Area Evaluation

Energy Evaluation. Table 5.1 reports area, delay, and power of each Membrane-H (M-H) ALU and the

Membrane-V (M-V) filter logic (i.e., 1-bit comparator). The dynamic energy of entire Membrane-V filter

array is calculated as the energy of the 1-bit comparator multiplied by the subarray width, and total dynamic

energy consumption on the table scan for each query can be estimated as the number of times the filter array

is accessed multiplied by energy cost of accessing the filter array once. The total dynamic energy consumption

for Membrane-H is calculated as the ALU energy cost multiplied by the times the ALU is used for predicate

filtering plus the energy consumed by RLUs. Our RTL simulation indicates that each bitmap processing and

gathering Unit consumes 417.38 µW and with presence of a programmable core, we have approximated the

overall power consumption of the RLU to 0.5 W. Membrane’s peak power usage depends on its subarray-level

parallelism as more active subarrays lead to a significant rise in static power.

Area Evaluation. To estimate the area overhead of a Membrane chip, we first obtain the area breakdown

of the DDR4 chip (Micron 8Gb x8) that is used to build the Membrane using Cacti-3DD [156]. Each subarray

contains 512 rows, and there are 128 subarrays per bank. For Membrane-V, the logic can only fit along the

sense amplifier’s long side as indicated in [53]. We adopt a DRAM sense amplifier layout described by Song

et al. [110] and a patent from Micron [111] for a conventional 4F2 DRAM layout. The short side and long

side of the sense amplifier are 6F and 90F, respectively. We estimate 990F needs to be added on the long

side of the local sense amplifiers to fit the 1-bit comparator logic. To support the LISA mechanism, an extra

60F on the long side is added to each sense amplifier for considering the area overhead of the links between

the subarrays. For Membrane-H, since the ALU does not need to be pitch-matched to the bitline, the area

overhead is much smaller. We estimate fitting 64 additional ALUs (shared by 128 subarrays) per bank, along

with the overhead of enabling SALP and LISA, incurs only 5.26% area overhead. The Rank-level Unit incurs

5.5 Evaluation 69

Table 5.1: Membrane Hardware Characteristics.

M-H ALU (16-bit) M-V Filter (1-bit)

Area (µm2) 301.08 11.36
Delay (ns) 0.36 0.47
Power (µW) 25.75 1.14

negligible area overhead (Table 5.1) compared to the overall chip area. Additionally, RLU would not affect

the storage density of the Membrane since it is integrated into the DIMM module. Overall, the area overhead

for Membrane-V with 1, 2, 4, 8, 16, 32, 64, and 128 filter arrays (i.e., SALP-1 – SALP-128) is 2.35%, 2.71%,

3.42%, 4.84%, 7.75%, 12.50%, 25.00%, and 46.0% respectively, and the area overhead for Membrane-H with 1,

2, 4, 8, 16, 32, and 64 ALUs (i.e., SALP-1 – SALP-64) is 2.02%, 2.04%, 2.07%, 2.14%, 2.28%, 2.55%, 3.10%,

and 5.26% respectively. For both Membrane-V and Membrane-H, we observe that enabling a modest amount

of subarray-level parallelism (SALP=2 or 4) achieves the best performance per watt, shown in Figure-5.7.

These results and a sensitivity study regarding the area efficiency w.r.t. subarray-level parallelism are also

shown in Figure 5.7(a) and Section 5.5.4. Additionally, introducing a row of latches to overcome the mat-level

organization within the subarray structure to store and feed data sequentially into the Membrane-H ALU

would introduce only a 1.9% area overhead to the DRAM cell-array area.

Latency Evaluation. The main latency of the filter array logic in Membrane-V is on the write broadcast

in the Membrane-V path of the row activation. However, it adds negligible overhead (∼0.47 ns) compared to

the DRAM row cycle (35∼50 ns). For Membrane-H, the ALU latency is also on the critical path. While

filtering on one attribute takes an insignificant amount of time (∼1 ns), the total ALU latency to check all

relevant attributes in a row can add up to a similar latency as a DRAM row cycle, depending on the data

layout. Still, it is sufficiently hidden by the data materialization cost. We show more insights on the latency

breakdown of Membrane-V/H in Section 5.5.3.

5.5.2 Overall Membrane Performance

Figure 5.4 shows the overall end-to-end performance improvement of Membrane over the CPU and two other

possible PIM-based OLAP solutions (SIMDRAM [123], and RVU [157]) in log scale. We select SIMDRAM

as an alternative DRAM-based bit-serial processing technology to the Membrane-V. SIMDRAM differs

from Membrane-V with its charge-sharing (analog) triple-row-activation-based computing. The RVU is a

3D-stacked near-memory-processing solution comparable to the Membrane-H because it employs an element-

parallel but bit-serial columnar data layout. We assume all PIM architectures only accelerate the table scan

portion of the workloads. The host cooperates with the PIM using the bitmask, which can fully leverage the

CPU and PIM processing potential. We compare the Membrane integrated system with the handcrafted

optimized AVX512 C++ query implementation. Membrane-V/H and SIMDRAM are configured to be eight

Membrane: A PIM-based Architecture to Accelerate Database OLAP Queries 70

Q1
.1

Q1
.2

Q1
.3

Q2
.1

Q2
.2

Q2
.3

Q3
.1

Q3
.2

Q3
.3

Q3
.4

Q4
.1

Q4
.2

Q4
.3

G.
M

.0.5
1
3

10
30

100
300

Sp
ee

du
p

SIMDRAM RVU Membrane-V Membrane-H

Figure 5.4: End-to-end SSB performance of various PIM techniques, compared against a hand-optimized
AVX-512 CPU baseline. Results are depicted as a speedup against the CPU baseline. Aside from Membrane-H,
which uses the RLU, all techniques are evaluated using a late materialization strategy.

channels with two ranks per channel using Micron’s DDR4 8Gb x8 DRAM chip as the building block. For

the RVU, we assume 16 HMCs (configuration in Table. 5.1) connected with zero communication overhead to

make up the same capacity as other architectures. We choose a moderate degree of subarray-level parallelism,

namely, four subarray groups (SALP=4) in Membrane-V and SIMDRAM[123] and four concurrently working

ALUs in Membrane-H. For Membrane-V, we also enable the write broadcast feature by assuming each write

command updates the query regions of two subarrays. For both Membrane-V and Membrane-H, we report

the performance of the row-major data layout.

First, the Membrane architecture consistently outperforms the CPU baseline in all queries. Membrane-V

and Membrane-H offer 1.26×/25.97×/5.94× and 7.20×/185.75×/45.39×

min/max/geomean speedup respectively. Second, Membrane achieves the best performance gain when

the query selectivity is high (i.e., few database records passed matched to the predicate), such as in Q1.3,

Q3.3, Q4.3. This characteristic is because Membrane can save data movement overhead by performing

an in-place table scan, significantly eliminating the overhead of fetching data into the CPU. However, for

queries with low selectivity, data retrieval for aggregation becomes the larger bottleneck. For example, Q3.1

selects the most data to aggregate; hence, the portion of the workload that benefits from Membrane-V’s late

materialization is limited. Third, Membrane-H almost doubles the performance of Membrane-V because H

5.5 Evaluation 71

Q1
.1

Q1
.2

Q1
.3

Q2
.1

Q2
.2

Q2
.3

Q3
.1

Q3
.2

Q3
.3

Q3
.4

Q4
.1

Q4
.2

Q4
.3

G.
M

.0

0.1

0.2

0.3

0.4

0.5

Ti
m

e
(m

s)

Setup Row Activation

Figure 5.5: Membrane-V SSB query breakdown.

works well with the RLU and thus provides densely packed data for the host to consume, saving the cost of

processing the bitmask and return trips from the CPU to memory for data retrieval.

Compared to SIMDRAM, Membrane-V is, on average (geomean) 34% faster. We notice that while

SIMDRAM is 15% faster than Membrane-V to set up the predicate due to its ability to leverage the DRAM

burst write feature better; it suffers performance loss in the actual predicate scan. Each triple-row activation

is 6.8X slower than a single-row activation, and additionally, SIMDRAM spends 3X more operations at

each bit location than Membrane-V. Compared to RVU, Membrane-H is, on average (geomean) 72% faster.

While both RVU and Membrane-H scans horizontally laid out data, RVU has a much smaller throughput

because of the narrow row buffer in HMC compared to 2D planar DRAM banks. Each row activation allows

the Membrane to process more database records than RVU. Additionally, the computing logic of RVU is

integrated at the logic layer; therefore, it is limited to DRAM bank-level parallelism, contrary to Membrane,

which further exploits subarray-level parallelism.

The energy reduction (not shown in a figure) is highly correlated to the execution time of the query.

Both Membrane-V and H versions achieve the best energy reduction for Q1.3 and the least for Q3.1.

Specifically, Membrane-V offers a min/max/geomean of 2.01×/48.09×/10.05× energy reduction, while H

offers a 8.46×/456.73×/71.40× energy reduction.

5.5.3 Membrane Performance Breakdown

Figures 5.5 and 5.6 show the execution time breakdown for both Membrane architectures (using the same

configuration that is used in Figure 5.4). In the case of Membrane-V, write broadcast is enabled. Figure 5.6

Membrane: A PIM-based Architecture to Accelerate Database OLAP Queries 72

also shows the effect of three different data layouts, namely, row-major, hybrid, and columnar, on Membrane-H.

We make several key observations. First, the actual time spent activating rows for table scans (Filter) is

relatively low for both Membrane-V and H. Membrane-V’s execution cycles are mostly spent on populating

the subarray query regions. Each query, i.e., predicate value, must be written vertically along the bitlines.

The predicate values are several hundreds of bitlines apart, which is a highly inefficient way to access the

DRAM. Furthermore, the write latency associated with setting up the queries in Membrane-V cannot be

sufficiently reduced by the subarray-level parallelism because column commands within a bank must be

served serially unless the write-broadcast hardware design is enabled (Figure. 5.7(b)). Membrane-V favors

queries that filter on fewer attributes or attributes with low cardinality. Membrane-H spends roughly the

same amount of cycles on row activation and processing the latched bits in the local row buffer using the

ALU, regardless of the data layout. A key aspect of Membrane-H is the benefit of the RLU in performing

data retrieval at a rank-level. The increased parallelism and bandwidth available with RLU helps in reducing

the data retrieval time by 2.66x across the benchmark. More in-depth analysis of the effect of data layout on

Membrane-H’s performance is in Section 5.5.4.

5.5.4 Sensitivity Study

Effect of Data Layout

Figure 5.6 illustrates how different data layouts affect the performance of the Membrane-H architectures.

The row-major layout activates the same number of rows across different queries because each row activation

brings a whole row of complete database records to filter, and all database records must be checked. The

hybrid layout is a combination of row-major and column-major layouts. Only rows containing attributes

used in the table scans are activated in the hybrid and columnar layout. The performance of the columnar

and hybrid data layouts improves as fewer attributes are scanned. The hybrid data layout improves the

row activation time (Row-Act bars in Figure. 5.6) of eight queries by 1.4× and five queries by 2.6×. The

columnar data layout improves the row activation time of three queries by 1.4×, seven queries by 1.9×, and

three queries by 2.7×.

The hybrid data layout favors queries that scan attributes concentrated in a few subarray rows. We spent

considerable time trying to find the optimal hybrid layout using the Louvain method for community detection

[158]. The data layout choice also affects the latency spent on the ALU. The amount of time the ALU spends

on each activated row depends on how many attributes in that row are participating in the table scan.

We observed marginal differences in performance between different data layouts across the query suite.

The hybrid approach demonstrates that in the presence of prior knowledge related to the queries to be

5.5 Evaluation 73

Q1
.1

Q1
.2

Q1
.3

Q2
.1

Q2
.2

Q2
.3

Q3
.1

Q3
.2

Q3
.3

Q3
.4

Q4
.1

Q4
.2

Q4
.3

G.
M

.1e-05
0.0001

0.001
0.01

0.1
1.0

10.0
100.0

Ti
m

e
(m

s)
Component

RowAct.
DataRtv.

Data Layout
RowMajor
Columnar
Hybrid

Figure 5.6: Membrane-H time to materialize each SSB query, by layout. For each query, the data layout with
the shortest time to materialize each query is labeled above.

1 10 100
Area Overhead (%)

45

55

65

75

85

Po
we

r (
W

)

1 2 4 8
16

32

64

128128

8 16

32

64

1

Membrane-H
Membrane-V

(a) The Membrane chip power and area
overhead at varying levels of subarray-
level parallelism.

1 2 4 8 16 32 64 128
Subarray-level Parallelism

0

2.5

5

7.5

10

Ti
m

e
(m

s)

Query Component
CPU Agg.
H-Mtz.
H-RowAct.
V-Setup
V-Setup (+B)
V-RowAct.

Membrane Mode
M.-H
M.-V
M.-V (+B)

(b) Query execution time breakdown in multiple Membrane modes, by
query component. H/V-: Membrane-H/V, RowAct.: Membrane latency
on row activation, Materialize (Mtz.): Membrane-H latency to materialize
data, and +B: write broadcast.

Figure 5.7: Effect of subarray-level parallelism on area, geometric mean query power consumption, and
performance.

executed, the data layout could be optimized for better performance. However, this is highly dependent on

data schema and the queries being run themselves. 5.6 demonstrates the empirical results observed from our

experiments with the data layout modifications on SSB.

Subarray-level Parallelism

Effect on Power and Area. Figure.5.7(a) illustrates the area (X-axis) and power (Y-axis) overhead that is

associated with subarray-level parallelism (SALP). Note the area and power overhead of the Membrane-H RLU

(integrated on the DIMM) are not included in the analysis since it is not affected by subarray-level parallelism.

Membrane-H chip stays low in area overhead even if we aggressively increase the potential subarray-level

parallelism. The ALU logic does not need to be pitch-matched to the sense amplifiers (Section.5.5.1),

Membrane: A PIM-based Architecture to Accelerate Database OLAP Queries 74

unlike Membrane-V. For low SALP values, such as SALP=2 and 4, Membrane-V and H have a similar area

overhead (∼2%). The geometric mean power consumption difference of Membrane-V and Membrane-H is

small regardless of the SALP values, but both grow rapidly with higher SALP values. The peak power

consumption associated with SALP=128 incurs over 60% overhead compared to SALP=1.

Effect on Performance. Figure 5.7(b) shows the geometric mean performance breakdown of query

processing with varying degrees of SALP. Increasing the SALP 1) reduces the overhead of inter-subarray data

movement (LISA) incurred by copying rows from non-PIM subarrays to the PIM-enabled subarrays, and 2)

overlaps multiple row activations that go to the same bank but different subarray groups/ALUs. Doubling

subarray-level parallelism adds 10% to 15% additional performance for Membrane-H and Membrane-V w/o

write-broadcast optimization. The subarray-level parallelism is most beneficial when the write broadcast

mechanism in Membrane-V is enabled, significantly reducing the predicate value setup time in Membrane-V.

However, the benefit of subarray-level parallelism plateaus after SALP=4 (without Membrane-V broadcasting)

or SALP=8 (with Membrane-V broadcasting) for both Membrane-V and Membrane-H for several reasons.

First, bank-level access conflicts can be eliminated with a moderate number of concurrently working subarrays.

Second, subarray-level parallelism can only parallelize the row activation of retrieving data from different

subarrays. However, for Membrane-H, the column commands are still performed serially. Finally, the data set

is not large enough to saturate the capacity of the Membrane device. From the above analysis, we conclude

that SALP=4 balances the performance and overhead the best for both Membrane-V/H.

5.6 Related Works

Prior works in the database field such as BitWeaving [126] exploited the “intra-cycle”/bit-level parallelism

of processors to accelerate the scan and filtering kernels. SIMD-scan [159] aimed to perform the same by

utilizing on-chip vector processing units with SSE instructions. The BitWeaving-V/H flavors inspired this

work to perform a similar PIM design-space exploration with Membrane-V/H, although Membrane-H uses

the traditional columnar database layout using a row-major placement in the DRAM.

Processing In Storage Solutions. With database machines [160], there were attempts in the 1970s

and 1980s to push query computation closer to where the data resided — at that time, spinning disks.

This shows that database processing was important enough to warrant specialized hardware even 40–50

years ago. However, these efforts were abandoned as the resulting custom storage package was expensive

to manufacture and commodity microprocessors were seeing exponential growth in performance. In the

end, database machines were unable to match the price and performance trajectory of traditional servers.

However, with the slowing of Moore’s Law, there is a need to revisit ideas for specialization in today’s context.

5.6 Related Works 75

Pinatubo [119] and SmartSSD [161] are examples of other works that have proposed pushing query processing

into the storage device. These designs, however, are limited by the storage I/O interface and suffer from

higher latency and lower degrees of parallelism.

DRAM-Based PIM Designs. As mentioned previously, several prior works such as Ambit [88] and

SIMDRAM [123] propose a triple-row activation design to perform logical operations at the subarray-level

that could be leveraged for processing OLAP queries, but these approaches require multiple row activations

per bit-level operation. JAFFAR [162] is a DIMM-level design that focuses on the scan operation by operating

on the I/O buffer present on each DIMM. Although it gains by reducing data that travels over the memory

bus, the amount of parallelism available in the I/O buffer is limited. The Reconfigurable Vector Unit [157]

proposes to implement vector processing units at a vault-level in an HMC design. Our approach would extend

to an HMC or HBM memory architecture but provides strong results even with more the more commoditized

DIMM architecture. Most of these solutions do not evaluate end-to-end query processing pipelines or explore

optimization techniques such as data layouts within the memory. Polynesia [163] is another work that aims

to accelerate the analytical portion of HTAP database workloads using vault-level processing elements on a

3D stacked DRAM design. Membrane differs significantly from [163] in that it thoroughly explores the design

space at the subarray-level.

Alternative Architectures. Prior works such as [164] accelerated the filtering step on the GPU but

omitted the data-retrieval portion, which we have shown will often consume a large portion of query processing

time. Crystal [165] was another recent work to accelerate analytical queries on the GPU. Ibex [166] and

[167] implemented query processing on FPGAs. However, GPUs and FPGAs are limited by PCIe bandwidth,

which is lower than typical memory-bus bandwidths. They also suffer from the limited scalability of onboard

memory compared to the main memory addressable by the CPU. Papaphilippou and Luk [168] provides a

comprehensive survey of works investigating acceleration of database systems using FPGAs and arrives at

similar conclusions.

GPUs should be compatible with the Membrane approach. CPUs, discrete GPUs, and similar processing

units can utilize Membrane PIM memory for scans and transfer intermediate results efficiently to CPUs or

GPUs for further operations. Note, however, that Nvidia’s A100 GPU thermal design power is 5.2/4.3× larger

than Membrane-V/-H peak power points with SALP=128, respectively. For the scan operation, Membrane

V/H outperformed Nvidia’s A100 GPU by 3.3 × /8.5× for SSB. We further tested potential peak scan

throughput of a P100 GPU not bounded by memory bandwidth. We populated the L1 cache with a vector of

required length and tested the Scan operation implemented using [169]. We found that Membrane-H would

still outperform by 3.73× even compared to this idealized, L1-resident baseline.

Membrane: A PIM-based Architecture to Accelerate Database OLAP Queries 76

5.7 Conclusion and Future Work

Our proposed PIM architecture, Membrane-V/H is shown to have a geomean end-to-end speedup of

5.94x/45.39x over a highly optimized reference CPU codebase implementing the SSB Benchmark while

achieving an energy reduction of 10.00x/70.77x. Membrane-V/H are also evaluated to have a speedup of

90.26x/359.21x over a state-of-the-art analytical database engine—DuckDB [170]—while having an area

overhead of 3.42%/2.07%. We have conducted a detailed design space analysis of not only the PIM architecture

but also describe the system integration and end-to-end performance. Membrane demonstrates the potential

of subarray-level processing-in-memory architectures to accelerate analytics-based OLAP workloads, and

shows the value of PIM for accelerating table scans. This work also shows the value of the H layout with

early materialization using Rank-level Units (RLUs) to perform data-retrieval related gather operations.

The growing memory wall, combined with rapid growth in data volumes, motivate processing-in memory

architectures such as Membrane to accelerate data-intensive workloads such as OLAP queries.

Chapter 6

DRAM-BitSIMD: Exploring the

Design Tradeoffs and Opportunities in

DRAM-based Bit-Serial Vector

Computing

6.1 Introduction

For applications with large datasets and low computational intensity (ops/byte), today’s computer systems

are bottlenecked by memory access bandwidth [171, 13]. These observations have motivated periodic attempts

over the past several decades to place computational capabilities inside the DRAM, e.g. [172, 173, 174, 175].

More recently, the slowdown in Moore’s Law and the vast difference in data bandwidth accessible to the

processor compared to that inside the DRAM has motivated a renewed look at DRAM processing in memory

(PIM).

One research direction has been to leverage the bit-level parallelism available in the local row buffers in

each subarray. A typical DRAM access reads an entire row of 4K–8K bits from the selected subarray in each

chip, multiplied by the number of chips in a rank (typically 4-8). Implementing some computation capability

bit position enables massive bulk bitwise parallelism. This approach is often called in-situ PIM.

77

DRAM-BitSIMD: Exploring the Design Tradeoffs and Opportunities in DRAM-based Bit-Serial Vector Computing78

The design space for in-situ PIM architectures involves jointly optimizing the capabilities of the per-bit

digital logic while imposing minimal overheads in area and power to leverage best the massive parallelism

offered by the subarray. The goal of this work is to explore this complex design space.

The bit-serial vector computing paradigm allows massive bitwise data-level parallelism to be realized by

laying out data in a vertical column-major fashion. This means that operating on an entire word requires

a series of bit-serial steps. Prior work on bit-serial computing in DRAM leverages charge sharing on the

bitlines, in which two or more operand rows are activated, and the charge sharing performs a simple Boolean

computation [34, 36, 33, 38]. This analog approach is sometimes called processing using memory (PUM).

While bit-serial computing requires a series of DRAM row activations, each row activation can operate on an

entire row’s worth of bits. These bit slices are 4-8K bits per chip, multiplied by the number of chips in the

rank, enabling massive parallelism that dwarfs the small number of steps required to complete a full-word

(e.g., 32-bit) computation. In addition, up to one-half of the subarrays in each bank and in each chip can be

activated simultaneously.1 With 32–64 subarrays per bank, subarray-level parallelism (SALP) substantially

increases the computing throughput, although activating several subarrays simultaneously requires more

power than traditional DRAM chips and system interfaces are designed to support.

If applications can indeed benefit from such high degrees of parallelism, new PIM-enabled memory

products support higher power draw. Until then, we envision that the in-situ PIM design space broadly

divides into two markets—“memory-first” and “accelerator-first” PIM. Memory-first designs focus on adding

PIM features with minimal area/power overhead so that the resulting product fits in existing memory-system

design constraints and has minimal impact on memory capacity. This limits subarray-level parallelism

(SALP) and other PIM features. Moreover, memory-first designs require supporting PIM computation while

simultaneously satisfying conventional memory accesses, entailing important system design considerations.

First, the memory allocator must ensure that physically contiguous memory regions are always available for

PIM computations, potentially necessitating periodic defragmentation. Second, although address interleaving

is somewhat configurable in most modern systems, individual 8- or 16-bit chunks in a cache line are typically

spread across the chips in a rank of DRAM, allowing for efficient retrieval of cache lines, but this means

that a memory-first deployment with a conventional row-major data-layout cannot assume that the bytes

of an individual word are even in the same DRAM chip.2 For vertical data layouts, this may require that

data transposition is implemented on the DRAM module or in the memory controller, which can fetch the

bytes from the appropriate locations and then transpose, reuniting the bytes of a word into a single column

1The limitation of one-half comes from the way that sense amplifiers (SAs) are typically laid out for pitch-matching purposes;
for more detail, see Section 6.2.

2Even adjacent bits may not be physically adjacent in the SAs; see Section 6.2.

6.1 Introduction 79

within the subarray. Further, note that successive cache lines from a physical memory page are spread across

channels and could also be spread across ranks and banks.

Accelerator-first PIM seeks to design the best data-parallel accelerator and uses DRAM as an implemen-

tation technology to achieve this without the constraints of the traditional memory interface. Data in an

accelerator-first architecture can still be read and written by the processor, for example, via CXL [16], but

data capacity and host read/write bandwidth would be lower and device power higher than what a traditional

memory interface supports. For example, in this paper, we explore the degree of SALP. For purposes of this

paper, we assume such an accelerator would be deployed as a separate accelerator board attached to the PCIe

bus, very much like a discrete GPU. This allows it to draw much considerably more power, even as much as a

GPU. Our exploration shows that the accelerator-first approach can outperform state-of-the-art GPUs by 5X

for memory-bound data-parallel tasks, with much lower power and, thus, much better energy efficiency.

In addition to the deployment models, the complexity of the bit-serial logic embedded into the DRAM

itself is another key axis we explore in this work, as it has important performance implications. First, we

explore the number of bit registers that could be accommodated within the bit-serial logic to avoid a “register

spilling” effect, where extra row accesses are needed to store intermediate results. Second, we explore various

configurations of a bit-serial logic unit (BLSU) that differ in the number and types of operations they can

support, offering interesting power-performance-area tradeoffs. In particular, we explore: 1) A NAND-only

version as the minimum logic complete design, 2) A MAJ3 + NOT design as a digital point of comparison to

charge-sharing triple row activation, 3) An XNOR + AND + SEL design that performs search and conditional

update primitives of Associative Processing, and 4) A much more capable design adding XOR/OR.

We also observe that a sequence of logic operations on local registers in the BSLU can operate at a

higher frequency than subarray reads/writes. Logic operations are limited by the latency of propagating

control signals to all columns, modeled as tCCD, a timing parameter describing the latency between two

DRAM column commands. This can be 5-10x faster than a regular row access cycle involving row activation

and precharge. This decoupled execution model is unique to digital in-situ PIM solutions and infeasible for

charge-sharing based solutions which tie the PIM computation to row access and is another novel contribution

over prior bit-serial PIM approaches such as Micron’s IMI architecture [18].

The main contributions of this paper are therefore:

• Our paper explores the design space for digital bit-serial in-situ techniques across several key axes,

including deployment models (memory-first vs. accelerator first), bit-serial logic complexity (simple vs.

complex operation sets and number of bit-serial registers) and evaluates the relevant power-performance-

area tradeoffs of the various designs in a detailed technical evaluation that compares against CPU,

GPU, and analog PUM (using SIMDRAM [34]) baselines.

DRAM-BitSIMD: Exploring the Design Tradeoffs and Opportunities in DRAM-based Bit-Serial Vector Computing80

1
1
0
0
1
0
0
0
0

0
0

a = 3

b = 2

s

cr
pr

Step 0
LSB

MSB

LSB

MSB

LSB

MSB

0
1
0
1
1
0
0
0
0

0
0

a

b

s

cr
pr

Step 1

1

0

1. pr = (cr == a)
2. if !pr: cr = b
3. s = (pr == b) 0

0

1

1
0

1
0

0
0

0
0

a

b

s

cr
pr

Step 2

1

0

1

0
1

0

1
0

1
0

1
0

1
0

a

b

s

cr
pr

Step 3

1

0

1

0
0

1

1
0

1
0

0
1

0
0

a

b

s

cr
pr

Result

1

0

1Bit-serial add

Figure 6.1: Bit-serial addition (a + b = s) example.

• Our exploration also evaluates the programmability aspect of in-DRAM bit-serial computing with

the help of a lightweight but comprehensive bit-serial ISA that includes memory row read and write,

bit-serial logic operations, and depending upon the design configuration, may support one or more

local bit registers, as well as register manipulation operations such as move and set. This allows us to

support 30+ high-level operations, including arithmetic (integer and floating-point), logical, relational,

etc., implemented using a microcode approach.

• We also propose a rank-level processing unit (RLU), which serves two purposes. First, it acts as a

controller to issue commands to the DRAM to run a PIM computation kernel. Second, the RLU can

access memory in a conventional way, thus enabling it to support any tasks that require cross-column

data access, allowing it to implement tasks such as reductions, shifts, and transpositions. The RLU

avoids the need to implement them in the memory controller.

• We also describe the system integration of various bit-serial designs with the host system, including

interaction with the memory controller, integration into the address space, mechanisms for the host CPU

to launch compute kernels and retrieve results, and support for concurrent utilization of PIM-enabled

memory between different PIM-enabled processes as well as between PIM- and non-PIM processes.

6.2 Background

Bit-Serial Computing. Figure 6.1 illustrates the bit-serial addition of two 3-bit words. The result

is computed sequentially from its LSB to MSB, and each bit position is computed by applying three logic

6.2 Background 81

DIMM_0
DIMM_1

DIMM_2
DIMM_3

ch
ip

B
an

k

I/O Logic

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

Core Core

Mem Ctrl

$ $

Processor

Memory
Channel

R
ow

 d
ec

od
er

Row buffer
Subarray_0

wordline

bi
tli

ne

capacitor

tra
ns

is
to

r C
ell array

bi
tli

ne

bi
tli

ne

Sense Amp

00110100
00011101

Vector A

Vector B

01010001

Vector Results

S
IM
D
-A
D
D

SA SA SA SA SA SA SA SA SA SA SA SA SA

logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic

In-DRAM bit-serial computing

Figure 6.2: In-situ bit-serial computing in DRAM.

operations. This particular example leverages two additional registers, namely cr and pr, for storing carry and

intermediary bits respectively. Other arithmetic, relational, and logical operations can be synthesized similarly

by executing different logical steps at each bit position. While traditional (i.e., bit-parallel) computing can

compute results in one shot, bit-serial computing can outperform it by simultaneously operating on a large

vector.

In-DRAM Bit-Serial Computing. Bit-serial computing in DRAM involves operating on the values

either (1) on the bitlines, with the result bit captured by the sense amplifier, in the case of analog PIM, or

(2) in the local row buffer, in the case of digital PIM, with the operand(s) coming from either/both the local

row buffer and/or a designated one-bit register, and the result either written back to the local row buffer

or written to a designated bit register (or two registers, in the case of arithmetic, where a carry bit is also

needed).

Prior work [37, 18, 34, 36, 33, 38] has demonstrated the benefits of leveraging a vertical data layout to

perform massively parallel bit-serial SIMD-style processing. The key idea is to treat each bitline as a vector

lane and align the source and destination data elements vertically on top of each other, as shown in Figure 6.2.

A series of subarray row activations perform the computation sequentially at each bit position. The vertical

layout allows each activation to access a bit slice across a row of vector elements (i.e., bitlines or vector lanes).

Two additional advantages of the vertical layout are that it enables arbitrary bit access within the operands

(e.g., left or right shifting within each word is cheap) and it supports flexible operand size, without having a

word spread across multiple chips.

Limitations of Analog Approaches. Many prior architectures leverage DRAM’s analog property by

connecting three DRAM rows to the sense amplifiers, AKA triple-row-activation (TRA), to force charge-

DRAM-BitSIMD: Exploring the Design Tradeoffs and Opportunities in DRAM-based Bit-Serial Vector Computing82

sharing at the row buffer, equivalent to performing a row-wide bitwise logical operation. More complex

operations, such as arithmetic, can be synthesized as a sequence of logical operations. However, analog-based

bit-serial DRAM computing has the disadvantages of high latency and energy overhead [12, 39]. First,

sustaining the activation of each additional wordline has been shown to require 22% more energy [33]. Second,

there is a substantial latency in setting up operand rows in a designated compute region (a group of 16

DRAM rows with an additional row decoder) and copying the result row back to the regular data storage

region in the DRAM subarrays. Moving operand rows to and from a dedicated compute region is needed

for analog in-DRAM computing because (1) charge-sharing destroys the values in the original rows, and (2)

selecting three arbitrary rows to activate requires a large row decoder [33].

Design Space of Digital Bit-Serial PIM. An alternative approach is integrating digital logic to each

sense amplifier [18]. In this case, the sense amplifier and 1-bit compute logic are pitch-matched, and an

arbitrary operand row can be selected and latched into the local row buffer for subsequent computing. For a

single 8-Gbit DDR4 chip (8 banks/chip) with 16K bitlines per bank, there would be 128K 1-bit processing

elements. The degree of hardware parallelism can be further increased with subarray-level parallelism,

although the degree of SALP is limited by power delivery. Digital bit-serial processing significantly reduces

the latency and energy spent on the intra-subarray data movement and only requires traditional, single-row

activation. There is a design space to be explored by varying the capability of the integrated bit-serial logic

to get different power, latency, area, and performance profiles while achieving varying degrees of flexibility,

versatility, and programmability. This work highlights key design considerations and discusses the tradeoffs

of different bit-serial PIM designs for massively data-parallel computing.

Bit-Serial Computing Performance. To illustrate the performance potential of an in-DRAM bit-serial

architecture, we provide a simple back-of-the-envelope calculation below. In-DRAM bit-serial computing relies

on cycling through operand rows for processing. For integer addition (a + b = c), a performance-optimized

design (Section 6.6.1) requires two DRAM reads (fetch ith bits of a and b into row buffer logic) and one DRAM

write (writeback ith bit of c to DRAM row) at each bit position. One DRAM row cycle takes a minimum of

∼ 40 ns (tRAS + tRP). Therefore, adding two 64-bit integers requires a total of 64 × 3 × 40 = 7, 680 ns. In

contrast, a modest CPU core clocked at 2.5GHz can perform a 64-bit integer addition in one cycle (0.4 ns),

which is 19, 200 times faster.

However, DRAM bit-serial PIM is optimized for throughput. To break even with the CPU’s performance

on a vector operation, the PIM only needs to achieve 19,200-way parallelism ×n cores to beat an n-core

CPU—for example, the PIM would need to achieve 614,400-way parallelism to beat a 32-core CPU. A DDR4

8Gib x4 chip has 16, 384 bitlines (i.e., vector lanes) per subarray, and a rank of such chips can process 262, 144

bits in a SIMD manner, outperforming the CPU by a factor of 81×. This means that even without SALP,

6.3 Related Work 83

PIM’s performance advantage over the CPU is large enough to accommodate the additional overheads in

end-to-end execution, such as data transposition and the cost to launch a PIM computation and return the

result to the CPU. Moreover, multiple DRAM subarrays can operate in parallel due to the rank-, bank-, and

even subarray-level parallelism, achieving the effect of an extremely large vector machine. For example, a 256

GB bit-serial processing enabled DRAM system (16 ranks of 8Gib chips without subarray-level parallelism)

can sustain a 16, 777, 216 bits/DRAM row cycle peak processing rate, translating to 2.2 × 1012 64-bit integer

addition per second. That means a total of 9, 166 aforementioned CPU cores are needed to achieve the same

level of parallelism.

6.3 Related Work

Charge Sharing Based Solutions. A key direction for DRAM in-situ PIM solutions is based on

charge sharing, which activates multiple rows simultaneously and performs a simple Boolean operation on

them. This approach minimizes DRAM circuit modification and area overhead. Examples include Ambit [33],

bit-serial addition [37], SIMDRAM [34], DRISA [36], and ELP2IM [38]. However, charge-sharing-based

solutions still require row decoder modification to activate multiple rows and often need dual-contact cells to

achieve the NOT functionality. ComputeDRAM [35] demonstrates the possibility of multi-row activation

with unmodified DRAM by intentionally violating DRAM command timing constraints, but it also requires

storing the negation of all data due to the lack of NOT functionality. It works with some current-day

DRAM products, but not all. These solutions often require multiple row copies, both because multi-row

activation can destroy the original row contents, and to place the operands into special rows designated

for computation. Furthermore, the reliability of charge-sharing-based solutions can be impacted by process

variations [176, 38, 34]. The PIPF-DRAM work demonstrates that bit-serial operations can be done based on

precharge-free DRAM (PF-DRAM) [177, 178]. The main idea of this architecture is to activate multiple rows

consecutively rather than simultaneously, and the charge sharing happens among a sequence of activations.

However, this solution faces the same challenges as other charge-sharing-based solutions: a limited set of

supported operations and the need for extra row copies.

Other Digital Bit-Serial Solutions. Micron’s In-Memory Intelligence (IMI) [18] demonstrates the

potential of attaching bit-serial logic to SAs, even though it was ultimately not brought to market. DRISA-

1T1C-mixed solution attaches XNOR/NOT gates to SA as a complement of charge-sharing based AND/OR.

The exploration undertaken in this work significantly expands the scope of these works by considering a

more complete and versatile microcode ISA with bit registers and proposing novel performance optimizations

through decoupled execution of memory access and bit-serial operations.

DRAM-BitSIMD: Exploring the Design Tradeoffs and Opportunities in DRAM-based Bit-Serial Vector Computing84

Associative Processing Solutions. Associative processing is a bit-serial technique based on search

and update operations. The search only requires comparison, and the update writes new values based on a

bitmask (typically produced by the comparison). This approach can leverage content addressable memory

(CAM) and lookup-table (LUT) PIM features. CAPE [179], pLUTo [180] and LAcc [181] are examples of

this style. However, arithmetic beyond simple integer add/subtract can be expensive, and prior work has

not implemented a floating-point. Sieve [12] and DRAM-CAM [39] are designed for accelerating pattern

matching with vertical data layout, with pop count peripheral circuits for result reduction, but lack generality

to support other types of computation.

PIM with Bit-Parallel Processing Units. Several proposed architectures place processing units that

can operate on full words in one step, at subarray, bank, or rank level, without modifying the subarray itself,

such as BLIMP-V [182]. Fulcrum [132] is an in-situ solution for 3D-stacked memories such as HBM and

implements scalar, bit-parallel processing units at the edge of each pair of subarrays. However, it requires

three local row buffers to hold the operand rows and the destination row, and support for left/right shift.

An advantage of a fully featured processing unit is that they are not limited to data-parallel operations;

for example, they can support conditionals, reductions, etc. However, they require changing the address

interleaving, thus affecting regular memory transactions.

Commercial products such as AiM [183] and Aquabolt [184] introduce low-cost multiplication and addition

units to accelerate specific deep-learning tasks. However, such solutions lack flexibility and cannot exploit the

massive subarray parallelism.

PIM Compiler Support. Devic et al. [182] introduce a compilation framework based on LLVM [185]

for the BLIMP PIM architecture, which features a bank-level design incorporating a general-purpose RISC-V

processor. They assume that the host CPU would stall until the PIM application completes execution. Vadibel,

et al. [186] develop a compiler framework that employs polyhedral optimization techniques [187]. Wang, et

al. [188] focus on a PIM compilation framework based on the TensorFlow model. Both impose restrictions on

the underlying data representation, limiting applications to matrix operations. The techniques described in

this work, in contrast, impose no such constraints. Hadidi, et al. [189] implement a compilation framework

for instruction-based PIM offloading, where individual instructions are offloaded for PIM processing. They

identify instructions beneficial for PIM execution during compile-time. In contrast, our accelerator-first

approach adopts a kernel-based offload model.

6.4 Design Space Exploration 85

6.4 Design Space Exploration

The design space of in-situ bit-serial PIM architectures is characterized by several key parameters, including

deployment models, power and area constraints, hardware design limitations, programmability aspects, and

performance considerations. This section examines each of these in detail and enumerates potential design

options.

6.4.1 Deployment Models

Memory-First Deployment. In the memory-first model, area overhead and memory capacity becomes

key consideration as we seek to integrate PIM features into conventional DRAM designs. We also need to

split memory space for regular usage and PIM computation and consider system integration details such as

virtual/physical addresses and memory paging. Thus, the PIM computation capability can be installed in

a few subarrays of the DRAM at most, so that area and power overhead are small. In our evaluation, we

explore configurations that fit within an area/power overhead budget of 5% or less, and discuss potential

system integration solutions in Section 6.6.

Accelerator-First Deployment. In this model, the PIM computation capability can be installed in a

large portion of subarrays, providing us with the flexibility to explore designs that offer varying degrees of

subarray-level parallelism (SALP). Although the chip organization such as channels, ranks, and banks can be

adjusted or enlarged as a stand-alone accelerator, we follow the traditional DRAM organization for simpler

analysis. The area overhead of bit-serial logic introduces tradeoffs of performance and capacity given fixed

chip area. Because sense amplifiers (SAs) are shared by two adjacent subarrays, up to 50% subarrays can be

activated simultaneously and perform PIM computation, while the rest subarrays can be used for storing

data or supporting another PIM context in a time-sharing manner.

6.4.2 Complexity of the Bit-Serial Logic

The level of complexity of the bit-serial logic not only affects programmability but has important performance

considerations. First, keeping the bit-serial logic simple implies that the number of bit-serial operations

required to realize high-level arithmetic and logic operations would increase. Second, and more importantly,

it could impact the number of row accesses required for storing intermediate results. Note that row accesses

are more costly than logic operations as each memory-row read or write takes a full row activation and

precharge cycle, typically 30–50 ns. On the other hand, bit-serial logic operations that only use the value in

the local row buffer and local registers can operate faster, at a cycle time determined by the control signal

propagation latency across all columns, which is modeled as tCCD, i.e., the delay between consecutive column

DRAM-BitSIMD: Exploring the Design Tradeoffs and Opportunities in DRAM-based Bit-Serial Vector Computing86

BSLU

...

NAND MAJ3
NOT

XNOR
AND
SEL

NOT
AND
OR

XOR
SEL

R1 R1
CR

R1
CR
PR

R1
CR
PR

RN

Memory
Column

1-bit I/O

Number of Bit Registers Set of Bit-Serial Operations

SA

?

Performance
Area

Performance
Area

Figure 6.3: Bit-serial logic unit design space.

commands, typically 5-10X faster than a row access cycle, so performance is largely dominated by row access.

The running time of a bit-serial program is the sum of the execution time of all row accesses and bit-serial

operations in this program. This measurement is slightly pessimistic because some bit-serial operations can

potentially overlap with row accesses with proper control sequence or pipelining technique.

We explore the design space of bit-serial logic units (BSLU) based on 1T1C DRAM architecture. In a

PIM-enabled subarray, each column has a BSLU pitch-matched and attached to the SA. With vertical data

layout, a row read operation can read a bit slice from the memory array to the local row buffer, and a row

write operation can write all bits stored in the local row buffer to a specific bit slice—i.e., row—in the memory

array. All the BSLUs operate in a lockstep, SIMD style. Figure 6.3 shows the model of a BSLU, where row

accesses can be abstracted as 1-bit I/O, and SA can be considered as a 1-bit register. The design space of the

bit-serial logic then includes (a) the number of bit registers and (b) the set of bit-serial operations. Since row

accesses largely dominate performance, the goal of designing the logic within BSLU is to reduce the number

of row accesses at a low area cost.

Number of Bit Registers

Introducing one or more additional bit registers can reduce the number of row accesses by leveraging

computation locality within BSLU and avoiding the “register spilling” effect. At the same time, more bit

registers require more area and register addressing logic. We analyze how different numbers of bit registers

affect bit-serial computing as follows.

0-Reg: Ignored due to incapability of performing two-operand Boolean operations.

1-Reg: With one additional bit register besides SA, the BSLU can perform two-operand Boolean

operations. With a logic complete set of bit-serial operations, the BSLU can compute complex tasks. But the

performance is limited due to the need of storing all temporary values in memory rows.

6.4 Design Space Exploration 87

2-Reg: By adding one more bit register, the BSLU can store a temporary bit value locally which can

significantly reduce the number of row accesses, such as the carry bit during integer addition. In addition,

the BSLU can support three-operand operations such as conditional selection (SEL).

3-Reg: Adding three bit registers provides more room to store temporary values during complex tasks

such as integer multiplication and floating-point arithmetic. Although all BSLUs operate in SIMD style,

complex tasks often require column-specific operations based on a condition. For example, for integer vector

multiplication A× B = Prod, we may read out a bit slice of A, and use it as a condition to determine in

which columns we need to shift and add B to Prod. Thus, there is a need to have three bit registers to store

the second operand, the carry bit, and the condition bit, shown as R1/CR/PR in Figure 6.3. This is our

preferred architecture.

N-Reg: More efficiency can be gained with additional registers, but the logic overhead becomes difficult

to pitch-match.

Set of Bit-Serial Operations

Due to hardware cost, a BSLU can only support a small set of native bit-serial logic operations. We study

the following representative set of bit-serial operations and analyze performance and area trade-offs. More

bit-serial operations result in better performance but higher hardware costs.

NAND-only – Minimal Logic Complete Design: This BSLU supports a single universal NAND

operation which is logic-complete. It requires the 1-Reg architecture (i.e., the SA plus one bit-register).

MAJ/NOT – Digital Version of Triple Row Activation: This BSLU supports three-input majority

(MAJ3) and NOT operations. The MAJ3 operation implements the same computation steps as triple row

activation analog PIM by serially reading in three bit operands and computing the majority. NOT is for logic

completeness. This BSLU uses 2-Reg.

XNOR/AND/SEL – Associative Processing Style: This BSLU supports XNOR, AND and SEL

operations. The XNOR operation can check the equality of two bits. Combined with AND, this BSLU can

serially match memory data with specific input patterns bit by bit, and use the AND operation to determine

if all bits are exactly matched. The SEL operation is for supporting conditional write, so the BSLU can

operate in an associative processing style using search + update primitives. This BSLU uses 2-Reg.

NOT/AND/OR/XOR/SEL – A General Purpose Setup: We consider this set of Boolean

operations as a good balance point between hardware cost and general-purpose computation functionality

and performance. The BSLU can use 2-Reg or 3-Reg. The latter is much more efficient for floating-point and

integer multiplication. This is our preferred bit-serial ISA.

DRAM-BitSIMD: Exploring the Design Tradeoffs and Opportunities in DRAM-based Bit-Serial Vector Computing88

Bi
t-S

er
ia

l (
BS

) M
ic

ro
Pr

og
ra

m
 M

em
or

y

DRAM Bank
Controller

Memory Subarray

R
ow

SA

CR

PR

R1

Bi
t R

eg
is

te
r F

ile

BS
LogicPC

BS
 M

ic
ro

-o
ps

 D
ec

od
er Row

Index
R/W

dest
src1
src2

opcode

BSLU

SA

CR

PR

R1

Bi
t R

eg
is

te
r F

ile

BS
Logic

BSLU

Column 1 Column 2 ...

...

BS Control Logic

mem

logic

Bank
Level

Subarray
Level

Rank
Level

+

Column Decoder

I/O

I/O

Rank Level
Processing
Unit (RLU)

D
ec

od
er

Figure 6.4: DRAM-BitSIMD architecture.

6.5 DRAM-BitSIMD Architecture

The high-level DRAM-BitSIMD architecture we use to evaluate the design tradeoffs discussed above is shown

as Figure 6.4. It consists of the following components.

Subarray-Level Bit-Serial Logic Unit (BSLU). This is the bit-serial processing element per subarray

column. It includes logic circuit to perform various bit-serial operations, bit registers, and register addressing

logic. In PIM computing mode, within each subarray, BSLUs associated with each column are operated in

lockstep.

The bit-serial ISA of each BSLU variant includes a unique set of bit-serial logic operations described in

Section 6.4.2, common register move/set operations, and regular memory row read/write.

Bank-Level Bit-Serial Control Logic (BSCL). At the bank level, there is a BSCL module for decoding

bit-serial micro-ops and sending control signals to all BSLUs within the bank. For memory read/write

operations, the control logic decodes the row index and sends the signals for reading a memory row to the SA

or writing the SA to a memory row. For bit-serial logic operations, the decoder decodes opcode and source

and destination registers, then sends control signals to the BSLUs to perform the computation. The control

logic also updates its PC for fetching next bit-serial micro-ops. The BSCL has a small instruction buffer

6.6 System Integration 89

to store the program. If the program is too large for the buffer, the computing task must be broken into

multiple compute kernels.

Rank-Level Processing Unit (RLU). The RLU is a microprocessor that sits on the DIMM and

can send commands to each chip and bank, and thus can perform cross-column computation that the

subarray-level BSLU does not support, such as reductions. The RLU is also responsible for translating the

RISC-V instructions into low-level bit-serial microprograms, using a lookup table indexed by the RISC-V

opcode. The subarray row indices in instruction encoding need to be updated based on actual row allocation.

6.6 System Integration

This section describes the software and hardware features that enable interaction with the host system. In

this work, we adopt a kernel offloading model, where programmers manually partition the workload to ease

the system integration effort. For now, we manually program the PIM kernels; we envision that in the future,

a vectorizing compiler with #pragma pim commands could replace much of that effort and that, eventually,

the pragma would not be required. We adopt this simplified approach to the programming aspect because

this work is focused on architectural exploration and tradeoff analysis.

6.6.1 Programming and Compiling

Bit-Serial Microcode

Because the bit-serial architecture uses only a small number of elementary logic elements, writing the

microprogram for a bit-serial operation benefits from logic synthesis tools, which can identify the sequence of

operations using these hardware elements and any intermediate values. Figure 6.5 demonstrates how to map

a high-level computation task to a NAND-only bit-serial microprogram. Given a task (a) for 1-bit addition, a

NAND-only circuit (b) is created by synthesis tools, then the circuit is converted into a bit-serial NAND

sequence with temporary variables (c). Depending on the architecture’s actual number of bit registers, some

temporary variables may be spilled to rows with extra reads and writes. Compiler backend techniques such

as instruction scheduling and register allocation can help to reduce the number of temporary rows.

High Level Operations

We implement a rich set of high-level operations, compatible with a typical vector instruction set, as shown

in Table 6.1, including bitwise logical, integer arithmetic, integer relational, floating-point arithmetic, and

other supporting operations. With the decoupled row access and bit-serial operation execution, we collect

DRAM-BitSIMD: Exploring the Design Tradeoffs and Opportunities in DRAM-based Bit-Serial Vector Computing90

(a) Computation Task: 1-Bit Addition

(b) NAND-only Circuit for 1-Bit Full Adder

BS_ADD(A,B,CR,S):
 nand t1,A,B
 nand t2,t1,A
 nand t3,t1,B
 nand t4,t2,t3
 nand t5,t4,CR
 nand t6,t4,t5
 nand t7,t5,CR
 nand S,t6,t7
 nand CR,t1,t5

(c) Bit-Serial Program

Figure 6.5: Bit-serial programming process for 1-bit addition on the NAND-only architecture.

the number of row read, row write, and logic operations separately in the table from a functional simulator

for measuring performance. Note that the bit-serial microprograms can likely be optimized further, and the

architecture can potentially support more data types and operations.
Table 6.1: Cycle Count for n-bit High-Level Operations on DRAM-BitSIMD 3-Reg Design

Category Operation Complexity #Read #Write #Logic #R/W/L Description

Logical
int32 not Linear n n n 32 / 32 / 32 dst32 = ¬src
int32 and,or,xor Linear 2n n 2n 64 / 32 / 64 dst32 = src1 &, |,⊕ src2
int32
nand,nor,xnor

Linear 2n n 3n 64 / 32 / 96 dst32 =
¬(src1 &, |,⊕ src2)

Arithmetic

int32 add,sub Linear 2n n 3n+1 64 / 32 / 97 dst32 = src1+,−src2
int32 abs Linear n+1 n 4n+2 33 / 32 / 130 dst32 = abs(src)
int32 min,max Linear 4n+1 n+1 4n+3 129 / 33 / 131 dst32 =

min,max(src1, src2)
uint32 mul Quadratic ∼ 1.9n2 ∼ n2 ∼ 3.5n2 1940 / 1095 /

3606
prod64 = src1 ∗ src2

uint32 div,rem Quadratic ∼ 3n2 ∼ 1.7n2 ∼ 4n2 3168 / 1712 /
4257

quo32, rem32 = src1/src2

Relational
uint32,int32
gt,lt

Linear 2n 1 2n+2 64 / 1 / 66 dst1 = src1 >,< src2

int32 eq Linear 2n 1 3n+2 64 / 1 / 98 dst1 = src1 == src2

FP

fp32 add,sub Quadratic ∼ 1.3n2 ∼ 0.7n2 ∼ 1.6n2 1331 / 685 /
1687

dst = src1+,−src2

fp32 mul Quadratic ∼ 1.8n2 ∼ n2 ∼ 3n2 1852 / 1000 /
3054

dst = src1 ∗ src2

fp32 div Quadratic ∼ 2.7n2 ∼ 1.4n2 ∼ 4n2 2744 / 1458 /
4187

dst = src1 / src2

Misc

uint32 copy Linear n n 0 32 / 32 / 0 dst32 = src
uint32 search Linear n 1 3n+2 31 / 1 / 98 dst1 = src == pattern
int32 if else Linear 2n+1 n 2n 65 / 32 / 64 dst32 = cond1 ? src1 : src2
int32 ReLU Linear n+1 n n+1 33 / 32 / 33 dst32 = src > 0 ? src : 0
uint32 bitcount Log-

Linear
∼ 4n ∼ 3n ∼

1.3nlogn
114 / 90 / 218 dst8 = bitcount(src)

uint32
var l,rshift

Log-
Linear

∼
2nlogn

∼
1.2nlogn

∼
2nlogn

326 / 192 / 299 dst32 = src1≪,≫ src2

Integer Arithmetic, Relational, and Logic Operations. Figure 6.6 shows the microprograms for

integer addition and subtraction. They minimize subarray row accesses to just reading out each bit of the

two operands and writing back the results by taking advantage of the bit registers (CR/PR) and complex

bit-serial operations (XOR/SEL) in the 2-Reg or 3-Reg model. Integer relational operations are implemented

6.6 System Integration 91

 int_add(A, B, S):
 set CR, 0
 for i in 0...31:
 read A + i
 xor PR, SA, CR
 read B + i
 sel CR, PR, SA, CR
 xor SA, PR, SA
 write S + i

 int_sub(A, B, S):
 set CR, 0
 for i in 0...31:
 read A + i
 xor PR, SA, CR
 read B + i
 sel CR, PR, CR, SA
 xor SA, PR, SA
 write S + i

Figure 6.6: Bit-serial int add/sub microprograms on DRAM-BitSIMD.

based on subtraction, with the necessary sign bit check. If not directly supported by the logic gates in the

BSLU, Boolean logic operations are implemented using a short microprogram.

The basic shift-and-add approach for integer multiplication has O(n2) complexity. We implement unsigned

integer multiplication with one level of Karatsuba recursion [190, 191], then fall back to the shift-and-add

approach. We implement the shift-and-sub approach described in [192] for division. Bit-serial addition or

subtraction can be done on two ranges of bits, i.e. row indices, without the need for shifting the data.

Floating-point Arithmetic. One of the main challenges with FP arithmetic is that mantissa alignment

and result normalization require data-value-specific shifting steps, which contradicts the principles of SIMD.

We implement the variable shifting in log-linear complexity by performing conditional shifting with 2i stride,

similar to the algorithms in [191].

Miscellaneous Operations. We can also effectively search for an exact pattern among data elements in

all columns by encoding the pattern as part of a bit-serial microprogram. The bit-serial ISA supports bit

population count (pop count) and variable shift in log-linear complexity.

Application Development

We assume a kernel-offloading model and envision that the kernel code can be written in two ways. If the

logic is simple, such as a single for loop with no inter-loop conditional or data dependencies, the user can

annotate the loop with a pragma, similar to the OpenMP parallel-for, and the compiler would generate

vectorized code. An LLVM auto-vectorization routine without user intervention is also possible. In this work,

we assume an expert programmer manually identifies kernels to offload and rewrites the applications using

custom macros.

Figure 6.7 shows two pseudocode snippets (some details omitted for brevity) comparing the baseline CPU

program, and the equivalent DRAM-BitSIMD accelerated code for Histogram [193]. The Histogram kernel

computes the frequency of each 8-bit R/G/B pixel pattern in an input image. The input image is a PNG file

DRAM-BitSIMD: Exploring the Design Tradeoffs and Opportunities in DRAM-based Bit-Serial Vector Computing92

for (int i = img.start; i < img.end; i+=3) {

 blue[img[i]]++;

 green[img[i+1]]++;

 red[img[i+2]]++;

}

1

3

4

5

6

CPU Histogram Pseudocode

 int blue[256]; rlu_res.blue = *blue; ... // also for green and red8

 char gid = 0, vl = rlu_arg.img_slice.size/rlu_arg.num_RLU, bl = 8;6

9

10

11

12

13

14

15

16

17

 bitSIMD_alloc(*img_v, gid, rv, bl);

 ... // bitSIMD_alloc for other vectors

 bitSIMD_vld(&img, img_v, vl, bl); // loading input image to vector

 bitSIMD_vfill(100, b_v, vl); // blue mask pattern 100100...

 ... // 010010... for g_v, 001001... for r_v

 for (int i = 0; i < 256; i++) { // search all 8-bit pixel patterns

18

bitSIMD_brdcst(0, res_v, vl, bl=1); // init paral search res

bitSIMD_brdcst(i, key_v, vl, bl=1); // init search pattern

bitSIMD_vxnor(res_v, key_v, img_v, vl, bl); // parallel match

19 bitSIMD_vand(tmp_v, res_v, bm_v, vl, bl=1);

20 bitSIMD_pcl(&b_cnt, tmp_v, vl, bl=1); // accumulate blue hits

22 rlu_res.blue[i] = b_cnt;

21 ... // repeat for green and red pixels

 }23

... // make a struct rlu_arg to set up RLU kernel arguments

rlu_args.img = *img_slice; rlu_args.num_RLU = ALL_RLUS;

bitSIMD_alloc(&rlu_set, ALL_RLUS)

void rlu_hist_kernel() { // RLU kernel code

bitSIMD_launch(&rlu_set, &rlu_args, rlu_kerne=rlu_hist_kernel)

bitSIMD_transfer(RLU_TO_HOST, rlu_res, ALL_RLUS)25

 ... // make a struct rlu_res to store intermediary results7

for (int i = 0; i < ALL_RLUS; i++) { ... // host merges RLU results }26

3

1

4

5

2

DRAM-BitSIMD Histogram Pseudocode

}24

 ... // declare variables: img_v, b_v, counters, etc...

Figure 6.7: Compare CPU and DRAM-BitSIMD histogram kernel.

with interleaved blue, green, and red pixels. The key idea of implementing the Histogram in DRAM-BitSIMD

is to perform a parallel bit-serial search of each pixel pattern from 00000000 to 11111111 and accumulate hits.

The host first sets up the kernel by allocating RLUs and distributing a slice of the input image to each RLU

(lines 1 to 4). Each RLU runs the same kernel code and generates three counter arrays independently. The

6.6 System Integration 93

data is transferred to the host (line 25) post computation. Note no cross-RLU communication is needed. The

host handles the final data merging (line 26).

Compilation. As previously described, DRAM-BitSIMD uses two levels of ISAs for programming and

execution. The first level (Section 6.5) is the DRAM-BitSIMD bit-serial micro-ops ISA. The second level

(Section 6.6.1 and Table 6.1) consists of extensible DRAM-BitSIMD high-level operations, aka macros, that

manipulate vectors (analogous to RISC-V Vector Extensions). The DRAM-BitSIMD macros are exposed

to the programmer as API functions. Each macro is a fixed functional routine (comparable to NVIDIA

PTX) agnostic of DRAM-BitSIMD architectural details, which is implemented as a microprogram of low-level

BitSIMD ops in the BitSIMD controller at the bank level (Figure 6.4). This decouples the backend code

generation from being tied to a specific PIM architecture, leaving room for future hardware and software

improvement and providing an abstraction for application and compiler developers.

DRAM-BitSIMD kernel and host codes are compiled separately. The kernel is compiled into sequences

of high-level DRAM-BitSIMD instructions (Section 6.6.1) mixed with RLU-compatible instructions (e.g.,

RISC-V) since the kernel execution is handled by both RLU and bit-serial logic at the subarray. The compiled

kernel code is stored in the memory and fetched into the RLU instruction cache at run-time.

6.6.2 Virtual Memory and PIM-kernel Launch

Virtual Memory. Unlike prior PIM work, of which we are aware, our goal is to make BitSIMD designs

work with existing OS virtual-memory systems with as few changes as possible. Each bitSIMD alloc command

allocates a data structure to a contiguous virtual memory region. Each data structure can be described

with a simple base and size. This does not necessarily map to a contiguous region of physical memory, as

we explain below. The allocation fails if the requested allocation is too large for the PIM-enabled memory

capacity. Large data structures cannot be allocated a single, contiguous region of physical memory (more on

this below), so if the OS cannot allocate the necessary physical-memory regions as needed the allocation also

fails. This may motivate OS support for defragmenting memory to support PIM, but that is left for future

work. To try to keep space available for PIM operation, the OS’s strategy for allocating physical memory

to non-PIM processes should try to keep blocks of space free for as long as possible. Another option is to

reserve space in systems with high utilization of PIM.

Vertical data layout requires us to allocate n rows together for n-bit words; we call this a word batch

of rows. In traditional interleaving, successive physical addresses rotate among channels, ranks, banks, etc.

but stay within a given row position until that row is filled and then move to the next row in the same

“horizontal set” of subarrays. This works well to accommodate vertical data, but SALP requires that once a

DRAM-BitSIMD: Exploring the Design Tradeoffs and Opportunities in DRAM-based Bit-Serial Vector Computing94

data structure has filled a word batch of rows across a horizontal set of subarrays, the next allocation to a

word batch should be in a different subarray so that a data structure is spread across as many subarrays as

possible to maximize SALP.

We also require the ability to align operands so that operands that are part of the same kernel are mapped

in the same way to the same subarrays. This requires the OS memory allocator to understand that a group

of operands is related, which is specified by the groupID in the alloc call, as well as word batches and the

address interleaving so that once A is allocated, B and S can be allocated to a physical address at appropriate

offsets that will align with A.

To achieve these goals, the OS maintains a table mapping base addresses for PIM allocations in virtual

memory to base addresses in physical memory. Both the OS and the RLU must agree on how to partition

a data structure into chunks that fill a horizontal set of subarrays and then place successive partitions at

appropriate offsets in the physical address space so that a data structure is indeed spread across different

horizontal sets of subarrays to maximize SALP. If only some subarrays are enabled with PIM, the allocation

should ensure that data for PIM computation are only placed in PIM-enabled subarrays. This is deterministic

so that the set of allocated regions can be determined by the OS and the RLU simply from the base address

and size. These allocated regions of physical memory are pinned and marked non-cacheable. They are also

removed from the OS-free list. When the data structure is later freed or the PIM process exits, these allocated

regions are released.

This means that once a data structure is successfully allocated, CPU operations on the PIM data structure

(loading data or launching a PIM computation kernel) only need to specify the base address and size. This is

checked in the mapping table to find the physical base address, so translation and permission checking is very

low overhead.

Data allocated in PIM memory are not accessible by regular loads and stores. They may only be accessed

through translation functions that load regular data into the PIM in vertical format, retrieve a block of PIM

data and convert it back to a traditional layout. For data previously computed by the CPU and where a large

portion of the data may reside in the last-level cache, a version of these functions should exist that checks

the cache. A streaming version should also exist that bypasses the cache, reading/writing data between

traditional and PIM vertical layouts. Both require the involvement of the RLU to perform the appropriate

sequence of row accesses to fetch the vertically laid-out data.

Kernel Launch. A PIM computation kernel is invoked with the virtual base address and size for the

PIM program and the virtual base address and size for each argument. The program must be smaller than

a traditional OS page; its physical address is found using the page table. The kernel calls first invoke the

OS. The data arguments are checked in the OS PIM-mapping table, producing the physical base addresses

6.6 System Integration 95

for the arguments. These are passed with the structure sizes to the RLU by writing them into a descriptor

in memory, along with the specific command to be performed (loading data, kernel execution, etc.). Then

launching the kernel is performed with a jpim instruction that transfers control to the memory controllers

and stalls the CPU core. There is no communication between channels during a PIM operation, so it is

sufficient for the CPU to broadcast the jpim; the memory controllers do not need to coordinate. However,

the memory controller should not reorder memory operations across a PIM operation. Initiating the PIM

operation on the RLU only requires a 1-bit “go” signal per rank from the memory controller. The RLU

fetches the program into its instruction buffer and then begins executing. Each PIM operation is sent to one

or more bank control units. The bank control unit understands how PIM structures are mapped to a vertical

layout and how they are partitioned across subarrays so that a single PIM command can leverage SALP.

Because traditional address interleaving means PIM operations use all channels, ranks, and banks (depending

on data size), regular memory read/write (from any process, including the PIM process) must stall until the

RLU indicates the completion of a PIM program.

When the RLU signals the completion of the PIM program, which requires an additional 1-bit signal, the

memory controller transfers control back to the CPU. The jpim instruction completes when all the memory

controllers have returned. And the CPU can retrieve the results with a command to read the appropriate

data from the PIM, which the RLU services. Note that this approach means this core is not interruptible,

and a PIM kernel is atomic; it cannot be interrupted.

Memory Controllers. Prior work such as SIMDRAM [34] adds decoding and execution logic for

each PIM instruction at the memory controller (MC). However, direct PIM support in the MC may not

be optimal for scalability and backward compatibility; future PIM products with new functionalities (e.g.,

instructions) require a new MC design. In this work, the host CPU delegates the MCs to oversee the overall

DRAM-BitSIMD kernel execution, which ensures proper execution and synchronization of the kernel among

participant RLUs. The RLUs decode and execute instructions that perform the actual DRAM-BitSIMD

operations. The DRAM-BitSIMD compatible memory controllers must support PIM and interface with the

RLU. However, this only requires a few extra signals and some modest logic to schedule memory operations,

whether PIM operations or regular read/write. In fact, a typical system contains multiple memory controllers

servicing multiple channels. Finally, we adapted a Data Transposition Unit (DTU) design from SIMDRAM

that converts input-output data from vertical to horizontal layout and vice versa if needed. We place the

DTU in the memory controller so that it has access to any data that are cached in the CPU.

DRAM-BitSIMD: Exploring the Design Tradeoffs and Opportunities in DRAM-based Bit-Serial Vector Computing96

Table 6.2: Selected Benchmarks (Notation: I: integer, F: floats, *: not executable in the stock version of
SIMDRAM)

Benchmark Input-Output Dataset

VA: Vector Addition (I/F) [195] 3.3× 108 (32 bit)
MV*: Matrix-Vector Multiply (I/F) [195] 20481× 8192 (64 bit)

SEL: Select (I/F) [195] 1.2× 1019 (64 bit)

BS: Binary Search [195] 2.0× 105+1.6× 107 (64 bit)

RED*: Reduction [195] 1.05× 109 (64 bit)

BC: Bitcount [194] 2.88× 108 (64 bit)
MLP*: Multi-layer Perceptron (I/F) [195] 61444× 8192 (64 bit)
SM: String Match [193] 5 million words, 110710 keys

LR*: Linear Regression [193] 1.5× 109 (8 bit)

HG*: Histogram [193] 4.7× 108 (24 bit)

PCA*: Principle Component Analysis (I/F) [193] 6.5× 107 (32-bit)
MML*: Matrix Multiply (I/F) [193] 2× 500× 500 (32 bit)

KM*: Kmeans [193] 1× 109 (32 bit) points, 20 centroids

6.7 Methodology

Workloads. We select a wide range of applications from three benchmark suites [194, 195, 193] to

evaluate DRAM-BitSIMD’s performance. Table 6.2 list all 13 workloads and their respective input data sets.

We modify the Binary Search kernel for DRAM-BitSIMD using massively parallel brute-force matching, and

replace the Euclidean distance with Manhattan distance in Kmeans to avoid computing square roots.

CPU and GPU Baselines. Our CPU baseline is a 24-core Intel Xeon operating at 2.4 GHz with 128GB

8-channel DDR4 memory, and our GPU baseline is NVIDIA Titan V.

RTL Synthesis of BSLUs. We implement five BSLU variants in RTL and synthesize them with

Synopsys Design Compiler and a 14-nm SAED library. Area and power numbers per BSLU are collected from

the synthesis tool. We project synthesized results to DRAM by first calculating the number of transistors

by dividing the synthesized area by transistor area, where the transistor area is one-fourth of the minimum

buffer area in this library (0.0666 um2). Then we assume each transistor can be implemented on DRAM in

the area similar to a 1T1C memory cell, e.g. typically 4F 2 in the unit of Fundamental-Feature Square for

scaling among technology nodes.

Area Evaluation To estimate the DRAM-BitSIMD chip area, we first use Cacti-3DD [156] to obtain the

area breakdown of the DDR4 chip (Micron 8GB x4) that is used as the building block. We adopt a DRAM

sense amplifier layout described by Song et al. [196] and a patent from Micron [111] for a conventional 4F2

DRAM layout. As suggested in [12], the BSLU is fitted along the sense amplifier’s long side. Our RLU is a 1

GHz RISC-V core operating at 9V that consumes 4.86mm2 [197].

Energy Evaluation We assume the background power of a DRAM-BitSIMD chip is always equivalent to

the peak power consumption of a DDR4 chip (worst-case assumption). We add 0.45µW for each additional

activated local row buffer to account for the subarray-level parallelism, as described in [12, 42]. We calculate

the dynamic power consumption of the subarray-level BSLU processing elements for each operation using

6.8 Evaluation 97

parameters from our circuit-level modeling. The overall energy consumption in a DRAM-BitSIMD integrated

system also includes the power consumption of the host, estimated using the PMC-power tool [198], and

the main memory, calculated by Micron’s DRAM power calculator [97]. We estimate each RLU incurs 0.5W

additional power.

Functional and Performance Modeling. We implement an in-house simulator for functional verifica-

tion and performance modeling. Our simulator can calculate the exact number of DRAM read/write and

digital logic operations for each design configuration we explore. To model the application-level speedup, we

first vectorize selected benchmarks using a set of DRAM-BitSIMD API calls to emulate kernel execution

and then map each API function to DRAM-BitSIMD hardware resources for optimal performance. Since

DRAM-BitSIMD adopts an offloading execution pattern where the host is responsible for the resource

(DRAM-BitSIMD compute units and memory) allocation, data transferring, and kernel launching, the

end-to-end benchmark performance is calculated by adding the host pre-/post-processing time with the

DRAM-BitSIMD kernel time. We account for the data preparation latency and energy cost by including (1)

the time of data movement between the host memory region and the PIM-eligible region before and after the

kernel execution and (2) the data transformation latency. The cost of input-output data movement is modeled

using Ramulator [199], and the data transformation cost is modeled using parameters from SIMDRAM [34].

For modeling DRAM-BitSIMD performance, we adopt the same approach as [200, 19] by building a

detailed analytical model for all DRAM-BitSIMD vector API functions that consider input characteristics

(data type, vector length, etc.) and hardware characteristics (PIM parallelism, micro/macro operation

complexity, etc.), and uses the bit-level simulator to drive the timing calculation, adding time to account for

RLU and host operations. DRAM parameters are extracted from Ramulator [199], and the logic operation

latency is extracted from our RTL circuit-level modeling. The latency and energy of PIM computing depend

primarily on row accesses and the logic complexity of the high-level operation (i.e., add, sub, FP, etc.) at

each bit position. We estimate the latency to latch a row of bits into the BSLU registers to be tRCD + tRP

(∼ 30ns), and the latency to write back from BSLU registers to the memory row to be tWR + tRP (∼ 30ns).

The latency for BSLU logic is conservatively clocked to match tCCD (2 ∼ 5ns). We plan to open-source all

code and analytical models.

6.8 Evaluation

BSLU Area and Power. The area, dynamic power, and leakage power of each BSLU variant are shown

in Table 6.3. Area results are projected to DRAM in F 2 unit.

DRAM-BitSIMD: Exploring the Design Tradeoffs and Opportunities in DRAM-based Bit-Serial Vector Computing98

Table 6.3: Area and Power of BSLU Variants, per 1-bit BSLU

BSLU Area Dynamic Power Leakage Power

BSLU-NAND-1Reg 508 F2 3.95 uW 4.40 nW

BSLU-MAJ-2Reg 776 F2 6.23 uW 5.46 nW

BSLU-AP-2Reg 788 F2 7.06 uW 6.47 nW

BSLU-BitSIMD-2Reg 924 F2 6.13 uW 6.31 nW

BSLU-BitSIMD-3Reg 1052 F2 7.07 uW 8.43 nW

12 12 10

53

4 5

32

293

4
3

0

6
10 9

13 12 10

34

2
4

12

6

12 19 10 211 4 5 35 313 15 3 1 22 40 16 13 19 10 37 7 13 49 13

12 21
10

425

4 5

36

317

29

3 2

39
79

20 13 21
10

37
12

24
96

24

0.1

1

10

100

1000

VA MV SEL BS RED BC MLP SM LR HG PCA KM MML GM VA_F MV_F SEL_F MLP_F PCA_F KM_F MML_F GM_F

SP_SALP4 SP_SALP16 SP_SALP32 EN_SALP4 EN_SALP16 EN_SALP32

Figure 6.8: DRAM-BitSIMD-3Reg speedup and energy saving over CPU. Bars=speedup (SP); data
points=energy reduction (EN).

Insights from our Design Exploration. Figure 6.8 reports the speedup (SP) and energy reduction

(EN) of three DRAM-BitSIMD-3Reg versions with varying degrees of SALP against the CPU. The SALP

increases the area and power overhead (See Section 5.5.4) but improves performance significantly. A 4-way/16-

way/32-way SALP design incurs 3.2%/12.8%/25.7% chip area overhead. With only 3.2% area overhead,

the 4-way-SALP configuration is a candidate for a memory-first deployment. The most aggressive design

(DRAM-SALP32) outperforms the CPU baseline by 2X/425X/20X and reduces energy consumption by

3x/693x/20x (min/max/geomean) and is our best accelerator-first design.

We observe that some benchmarks are not sensitive to the increasing SALP level. For VA, MV, SEL, and

BC, the data movement between host memory regions and PIM-eligible regions dominates the execution

time (> 80%). For HG, the execution time is bounded by the rank-level data aggregation (population count

or reduction sum). We leave the exploration of optimal reduction logic placement and strategy for future

work. For RED, since all DRAM-BitSIMD variations share the same reduction logic at the rank level, there

is no performance difference across different SALP configurations. Accelerating PCA is difficult because

PCA requires all input-output vectors to be placed in the same bank due to the lack of support for massively

internal data movement across banks, limiting the parallelism potential of bit-serial techniques. We also notice

DRAM-BitSIMD achieves comparable speedup and energy savings for floating point vs. integer computation.

Finally, energy reduction is highly correlated to the execution time.

Figure 6.8 reports the Geo-mean speedup and energy reduction over the CPU of five proposed BitSIMD

designs and SIMDRAM that only implements MAJ/NOT. The results are normalized to that of SIMDRAM,

6.8 Evaluation 99

1.0 0.9 1.2 1.4 1.6 1.7

0
0.5
1
1.5
2

SI
M
DR
AM
NA
ND M

AJ AP
2R
EG
3R
EG

G-
m

ea
n

Sp
ee

du
p

ov
er

 C
PU

Co

m
pa

ris
on

. N
or

m
ali

ze
d

to

SI
M

DR
AM

PIM Architectures

Figure 6.9: BitSIMD energy savings over SIMDRAM.

and all architectures share the same SALP level of 32. Note some of the benchmarks (indicated by ‘*’) cannot

be handled by SIMDRAM due to the lack of cross-column reduction logic and floating-point implementation.

We assume an updated SIMDRAM has these features for a more fair comparison. SIMDRAM only outperforms

the NAND-based DRAM-BitSIMD, showing the performance advantage of supporting a larger set of bit-serial

operations (see Section 6.4.2). The energy advantage of digital DRAM-BitSIMD is even greater (Figure 6.10)

because the SIMDRAM TRA, and its need for more row access per compute step, incur higher peak power

and latency.

Combining Figure 6.8 with the BSLU areas in Table 6.3 also shows that the BitSIMD-2Reg and 3Reg

designs are best in terms of raw performance as well as area- and energy-efficiency. The smallest BitSIMD

technique that seems viable is AP and is a viable option if area overhead is the overriding concern. But 2-Reg

and 3-Reg provide significantly better performance per unit area. We focus on 3-Reg because it provides

1.7x higher multiplication performance even though it is slightly worse (14% BSLU area) than 2Reg in area

efficiency.

Comparison against GPU. We compare DRAM-BitSIMD designs to GPU using both the same set of

16 compute primitives (32-bit operands) from [34] (Figure 6.11 and 6.12), as well as several PrIM benchmarks

[195]. For a fair comparison, we normalize DRAM-BitSIMD’s performance to the GPU silicon area (815mm2)

and power consumption (250W), and we exclude data transfer in both cases.

Figure 6.11 and 6.12 show that DRAM-BitSIMD has better power efficiency than area efficiency compared

to GPU. DRAM-BitSIMD provides better throughput for logical, relational, and non-quadratic arithmetic

(e.g., addition/subtraction) operations than GPU but performs worse for division and multiplication, which

has quadratic complexity for bit-serial implementation. This explains the performance degradation for MV

and MLP benchmarks, which are multiplication-intensive, and good speedup and energy saving for VA,

SEL, BS, and BC workloads, dominated by pattern matching and integer ops. RED is limited by rank-level

reductions.

DRAM-BitSIMD: Exploring the Design Tradeoffs and Opportunities in DRAM-based Bit-Serial Vector Computing100

1.0 1.7 2.6
3.5

4.9 5.5

0
1
2
3
4
5
6

SI
M
DR
AM
NA
ND M

AJ AP
2R
EG
3R
EG

G-
M

ea
n

En
er

gy
 R

ed
uc

tio
n

ov
er

 C
PU

 C
om

pa
ris

on
.

No
rm

ali
ze

d
to

 S
IM

DR
AM

PIM Architectures

Figure 6.10: BitSIMD energy savings over SIMDRAM.

221

0.4

34 51

0.3 0.2

9 5

0.1

1

10

100

1000

VA M
V
SE
L BS RE

D
M
LP BC GM

Sp
ee

du
p

ov
er

 G
PU

Figure 6.11: BitSIMD-3Reg speedup over GPU.

1,149

2

168 262

1 3

45 30

1

10

100

1000

10000

VA

GE
M
V
SE
L BS RE

D
M
LP BC GM

En
er

gy
 R

ed
uc

tio
n

ov
er

GP

U

Figure 6.12: BitSIMD-3Reg energy savings over GPU.

6.9 Conclusions

This paper explores the design space for subarray-level, bit-serial PIM, including the design space for

digital bit-serial logic, for both memory-first (low PIM overhead) and accelerator-first (optimized for PIM)

deployment scenarios. We also introduce a rank-level unit (RLU) as a PIM controller, offloading the memory

controller and orchestrating the PIM computation at the rank level, and the RLU also performs reductions

and other tasks that are not strictly data-parallel. We show that our best bit-serial architecture, the 3-register

6.9 Conclusions 101

39 26 10 16 24 25 14 24 5 16 14
52

8 17 0.2 0.6

161
114

42
69

102 107
63

104

24
73 59

228

36
75

0.9 2.6

0
50
100
150
200
250

ab
s
ad
d
btc
nt eq gt ge if_

el
ma
x
mi
n
rel
u
su
b
an
d or xo

r div mu
ltNo

rm
ali

ze
d

Sp
ee

du
p

ov
er

GP

U
Normalized to Area
Normalized to Power

Figure 6.13: DRAM-BitSIMD 3-Reg speedup over GPU. Results are normalized to GPU silicon die area and
power.

NOT/AND/OR/XOR/SEL, outperforms the CPU by 20x, GPU by 5x, and SIMDRAM by 1.7x, and is

substantially more energy- and area-efficient.

Chapter 7

Ultra Efficient Acceleration for De

Novo Genome Assembly via

Near-Memory Computing

7.1 Introduction

Next Generation Sequencing (NGS) has revolutionized genomics due to the high volume and low cost of

sequencing [201, 202, 203, 204]. A typical NGS system can generate 10TB of short DNA reads (100-300 base

pairs) in a single run [205, 206]. For most sequencing experiments in which a high-confidence reference genome

is known, the standard workflow is to align these reads against the appropriate reference genome [68, 65, 207].

However, the reference genome is not always available, especially when analyzing unknown species, such

as a new virus or bacteria [208, 209, 210], or meta-genome that is sequenced from diverse environmental

microbiomes [209, 208, 210]. Even when the reference genome is available (e.g., humans), the reference

genome may be missing rare genomic variants of biomedical interest [211, 212, 213, 214]. In these contexts, we

must assemble our reads de novo (without a reference genome). State-of-the-art de novo genome assemblers

use the reads to construct a de Bruijn graph (DBG) and subsequently find all maximal non-branching paths

of the DBG to produce contigs (contiguous segments of the assembled genome) [66, 71, 67, 68]. DBG-based

assemblers are both time- and memory-intensive, due to a large amount of sequence data and the explosive

number of nodes in the graph, posing significant challenges on conventional computing systems.

102

7.1 Introduction 103

Although most DBG-based de novo assemblers [71, 69, 70, 67, 215] adopt parallel algorithms to improve

performance and scalability, they are always memory-latency bound—the memory access takes up the

most portion of execution time. Furthermore, the memory bandwidth requirement of DBG assemblers

constantly increases at a linear rate as the degree of parallelism increases, which makes DBG assembly also

memory-bandwidth bound in a parallel environment.

Accelerating DBG processing is of paramount importance for several reasons. First, DBG processing is

the de facto de novo assembler for both large (mammalian-sized) or small (e.g. E.coli) single-cell genome

analysis [214, 67, 215, 68, 70, 71], as well as metagenomic studies where a large (up to TBs) mixture of

bacterial, viral, and fungal microbiome genomes obtained directly from a human body or an environment

needs to be assembled [216, 217]. Second, although primarily developed to assemble the 2nd gen (a.k.a. NGS)

reads, DBG processing retain its relevance as the foundation of assembling reads generated by the 3rd gen

sequencers [218, 219]. Third, DBG processing is on the critical path of many time-critical genome analysis

tasks. In the emerging precision medicine domain, a patient’s sample is first sequenced on the NovaSeq

instrument in under 48 hours, producing 6 to 12 TB microbiome and human DNA/RNA data. This raw

sequence data is then passed through various stages, including the DBG assembly (∼3600 CPU hours) [82].

Finally, the rate of genomes been sequenced is vastly outstripping Moore’s law [56], For example, the data

volume of unassembled bio-sequences surpasses that of astronomy, particle physics, and websites such as

YouTube and Twitter [220, 10].

Near-data processing (NDP) is an emerging memory-based approach that can provide scalable parallelism

and memory bandwidth by integrating massive cores in memory devices [46, 221, 17, 48, 222]. In this work,

we exploit NDP technology to accelerate DBG assembly. We design near-data parallel algorithms for graph

construction and graph traversal that exploit the hardware parallelism by distributing data and operations in

different memory locations. The near-data parallel implementation enables different NDP cores to process

different portions of data simultaneously for performance scaling.

However, naive NDP implementation faces several issues caused by data communication among NDP

cores. The graph construction phase requires intensive data movement among NDP cores, because the input

sequence and the intermediate data structures are distributed with different strategies. Furthermore, during

graph traversal, building a contig requires a series of accesses to k -mers (DNA strings of fixed length k)

located in different NDP cores. Our evaluation shows that such inter-core data communication can take up

to 60% to 75% of the execution. To reduce these overheads, we propose several optimization techniques,

based on domain-specific knowledge on genome assembly. In the graph construction phase, we shuffle the

distribution of DBG data structures based on the distribution of addresses for copy, using a greedy algorithm

to reduce the number of inter-core data movements. Furthermore, we propose message buffering and k -mer

Ultra Efficient Acceleration for De Novo Genome Assembly via Near-Memory Computing 104

compression to reduce the size of data communicated. For graph traversal, we design a speculative contig

expansion which parallelizes traversal operations in each core.

We summarize the contributions of this paper as follows:

• This is the first in-memory accelerator for DBG-based de novo genome assembly.

• We propose several optimization techniques based on domain-specific knowledge of DBG assembly to

reduce the data communication overhead in NDP systems.

• We improve upon a state-of-the-art DBG assembly on a NDP system, and we evaluate our design using

a application-level architecture simulator. We compare the performance of the proposed design with the

software baseline with real genomes. The results show that the proposed optimization techniques can

lead to 33-fold and 16-fold speedup over the software baseline for graph construction and graph traversal,

respectively. The performance gap between our NDP-based DBG assembler and a conventional one is

expected to grow even wider given larger genome size, as demonstrated in our evaluation. Furthermore,

the proposed NDP-based DBG assembler scales well when increasing the system size.

7.2 Key Ideas

We propose our NDP-accelerated DBG assembler by modifying the widely used MEGAHIT tool [70] (

Figure 7.1).

7.2.1 DBG Assembly Pipeline

We reuse the interface in MEGAHIT to support the NDP functionality in a general DBG assembly pipeline,

which includes read loading, graph construction, contig assembly, etc. We replace the implementation of

graph construction and contig assembly, which are performance bottlenecks in the pipeline, with our proposed

NDP method.

MEGAHIT uses several intermediate data structures for transitions between different pipeline phases. We

do not change these intermediate data structures used in MEGAHIT to keep the general pipeline intact in our

implementation. Specifically, the NDP graph construction takes in the binary sequence data generated from

the MEGAHIT read loading program, which supports general input formats of genome assembly, including

single-end and double-end reads using different sequencing technologies [201, 63]. The NDP-based graph

construction generates the sorted k -mers and writes them into files that can be processed by the graph

cleaning program in MEGAHIT. Then, the NDP-based contig assembly distributes the cleaned DBG (sorted

k -mers) in the NDP system and traverses the DBG to build contigs using the proposed techniques. The

7.2 Key Ideas 105

Cube
0

Cube
1

Cube
16…

Inter-cube network

Cube

Memory Layers

Vault
0

Vault
1

Vault
32…

Logic Layer
Inter-core network

Core
0

Core
1

Core
32…

NDP Graph Construction

Distribute
Sequence

K-mer Extraction
(Parallel)

K-mer Copy &
Sorting

(Parallel)

Bucket Shuffling

DBG (Sorted K-mers Table)

K-mer Hash Multiplicity
AAATATGC 1
AATATGCA 1
ATATGCAC 1
ATATTGCT 1
ATTGCTGG 1

… …

Graph
Cleaning

NDP Contig Assembly

Distribute
Hash Table

Speculative
Contig

Expansion
(Parallel)

Contigs
AAATA CATGCTAT
TGCTGCG ACGTT

…

Assemble
Sequence

CPU Implementation
(MEGAHIT) NDP Implementation

Reads File (Text)
AAATA TGCAC

CATAT
TGCTG GTCGT

ATTGGT …

Genome Sequence (Binary)
AAATATGCACCATATTGCTGG

TCGTATTGGT

Load Reads

Offloading to NDP system

NDP Implementation NDP system

Figure 7.1: The overview of NDP-accelerated DBG assembly.

NDP-based contig assembly generates the contig graph that will then be assembled by the original MEGAHIT

implementation for the final sequence.

7.2.2 NDP Acceleration

NDP is a type of architecture where the data processing and storage units are co-located in a single module.

Emerging 3D-stacked DRAMs, such as hybrid memory cubes (HMC) and high bandwidth memory (HBM),

are popular platforms to enable NDP functionality. A 3D-stacked DRAM integrates a logic layer in the

memory die, which features highly parallel compute units to leverage the low access latency and large internal

memory bandwidth. Take the HMC as an example. Each HMC cube has multiple vertical slices–vaults. The

memory layers and the logic layer communicate through fast through-silicon vias (TSVs). There have been

various HMC-based NDP systems [17, 48, 49, 50] where a small per-vault core (referred to as a NDP core) is

embedded at the logic layer, re-purposing a vault to a near-memory compute unit. The NDP system can

scale out by connecting multiple cubes using high-speed serial links to form a network of NDP cores. Scaling

out the NDP system simultaneously increases the memory capacity, parallelism, and aggregated memory

Ultra Efficient Acceleration for De Novo Genome Assembly via Near-Memory Computing 106

bandwidth, which is ideal for parallel genomics workloads with a large memory footprint and high bandwidth

demand. In this work, we evaluate the effectiveness of proposed designs in the context of HMC architecture,

which provides concrete parameters accessible to researchers. However, our optimizations may also be applied

seamlessly to other 3D-stacked memories like HBM, which shares a similar parallelism and partition strategy

(e.g., channels v.s. vaults) [43, 44].

The NDP architecture consists of multiple Hybrid Memory Cubes (HMC), and each HMC connects

to the others using an inter-cube network [50, 223]. Each cube’s memory is divided into several vertical

memory vaults, and each vault is coupled with an integrated processing core which is connected to a memory

controller for local vault access. We can schedule parallel applications on NDP systems by exploiting massive

NDP cores. NDP system supports remote function calls based on message passing to handle inter-core

communication without expensive coherence management [17]. In this work, we propose the implementation

of graph construction and graph traversal (contig assembly) on the NDP system with optimization based on

domain-specific knowledge.

7.3 NDP-based DBG Construction

Figure 7.2 illustrates the flow of parallel DBG construction, and Algorithm 1 shows the pseudo code. The

DBG is represented as a series of “buckets” distributed among all NDP vaults. The distributed DBG is built

through the following steps: (1) Reads distribution. (2) Bucket allocation. (3) k -mer address scan. (4) k -mer

extraction. (5) Post processing. We design an efficient bucket distribution procedure and message buffering

and compression to improve the performance by reducing the inter-core communication.

7.3.1 NDP parallel graph construction

Input reads are first distributed to all NDP vaults. Then the NDP system sets up several buckets for cores

to collaborate without interfering with each other. Building a DBG can be abstracted as putting k -mers

into different buckets based on their hash values. Each bucket is divided into N non-overlapping partitions

(lines 1 to 7), where N is the number of NDP cores. When an NDP core visits the bucket, it is confined to its

partition, making concurrent bucket accesses among different cores possible. Then the buckets are assigned

to NDP cores (line 8). The distribution of buckets is crucial to the performance of graph construction. Thus

we design an optimized bucket mapping scheme, which is described in 7.3.2.

Next, a batch of buckets are selected in each iteration, and NDP cores fill those buckets with k -mer

addresses by scanning its local reads (line 10 to 14). This is because decomposing reads into k -mers inflates

the size of the input dataset by a factor of (n-k+1)*k/n (n = read length, k = K-mer size), processing all

7.3 NDP-based DBG Construction 107

input :Distributed raw read data - reads[num reads]
→ cores[num cores].seq from
→ cores[num cores].seq to

input :num bucket
output : de Bruijn graph table - dbg[num kmers]
/* Calculate the size and partition for each bucket */
#ndp parallel for
for c← 1 to num cores do

for seq ← cores[c].seq from to cores[c].seq to do
for kmer : seq do

b = hash(kmer)%num buckets;
cores[c].bucket size[b] + +;
buckets[b].size + +;

end

end

end
/* Distributed buckets to NDP cores */
assign buckets(buckets, cores);
/* Copy k -mer addresses into buckets */
#ndp parallel for
for c← 1 to num cores do

for seq ← cores[c].seq from to cores[c].seq to do
for kmer : seq do

b = hash(kmer)%num buckets;
buckets[b].addresses.add(&kmer);

end

end

end
/* Copy k -mers from address */
#ndp parallel for
for c← 1 to num cores do

for bucket : cores[c].buckets do
for kmer addr : bucket.addresses do

target core = find core(kmer addr);
target core.copy(kmer addr, bucket.kmers);

end

end

end
/* Bucket post-processing: sorting, remove redundancy, calculate multiplicity, etc. */
#ndp parallel for
for c← 1 to num cores do

for bucket : cores[c].buckets do
post process(bucket);
dbg.add(bucket);

end

end

Algorithm 1: Pseudo code for building distributed De Bruijn Graph on a NDP system.

buckets simultaneously results in peak memory explosion. After addresses are filled for all buckets, each

NDP core takes the ownership of its buckets by copying k -mers based on the addresses gathered from the

previous step (lines 15 to 20). The two-pass creation of the buckets for DBG construction is superior than

pushing the k-mers directly into the buckets for several reasons: the algorithm iteratively selects a batch of

buckets to process, cores may have unbalanced amounts of k-mers belonging to the current buckets. If a

single-pass paradigm is adopted, some cores will be busy “pushing” K-mers into the network to the destination

buckets while other cores are idle. Furthermore, the “pushing” has a sequential-reads/random-writes pattern,

incurring low cache locality. Since K-mer addresses (8-byte) are smaller than the actual K-mers (32-byte

to 128-byte), “pushing” addresses incurs a smaller penalty. In the second-pass, cores fill their buckets with

K-mers, and since buckets are roughly the same size in each batch, cores have balanced workloads. The

second pass has a sequential-reads/sequential-writes pattern.

Ultra Efficient Acceleration for De Novo Genome Assembly via Near-Memory Computing 108

Core 0 (Vault 0)
ATGC... TACC... CTAA... ACGT... CGTT... TACT... ACTT... TTCC...

Bucket	0 Bucket	1 Bucket	2

Core 1 (Vault 1)

Bucket	3

0x12
0x36

0x80

...
0x95
...

0x10
0x29
...

0x81

...
0x90

0x80

...
0x30

0x73

...
0x88

0x40

...
0x16

0x91

...
0x98

AT	...,	AC
...,	AA	...

CA	...,	CA	...,	CC
...

TA	...,	TG
...

Bucket	0 Bucket	1 Bucket	2

GA	...,	GA	...,	GT
...

Bucket	3

AACTC...

ACAAC...

......

12

4

...

ACCTG...

CAACT...

......

15

2

...

CCTGA...

CCTGC...

......

6

13

...

TTAAT...

TTTAG...

......

14

12

...

Fetch	k-mers	into
buckets

Post-processing

Fill	buckets	with
k-mer	addresses

Raw	Input
Reads

K-mer	address
buckets

K-mer	buckets

Distributed
DBG

Figure 7.2: The overview of NDP-based DBG construction.

The k -mer may be stored in a remote core that requires a remote function call to copy the data. Since we

evenly distribute sequences to NDP cores in the original order, we can easily locate the target to send the

remote function. This step suffers from massive fine-grained communication overhead since many k -mers are

from reads distributed in remote vaults.

Finally, a post-processing stage (line 21 to 25) is involved to reduce bucket size, since many k -mers (as

many as 80% [224]) are redundant due to the deep sequencing coverage and repeat patterns in genomes

[224]. A common practice is to sort the k -mers in a bucket, allowing us to obtain the multiplicity (number of

occurrences) of each k -mer as a helpful by-product.

7.3.2 Bucket Distribution

To design a good bucket distribution scheme, one needs to consider the origins of k -mers in a bucket. Figure

7.3 shows an example of two buckets and three NDP cores (vaults). A large portion of read partition 0

(red) is hashed into bucket 0; thus, co-locating bucket 0 with read partition 0 can significantly reduce the

number of remote k -mer fetch requests. Similarly, bucket 1 has a high concentration of k -mers from the read

partition 1 (green), so it is more suitable to be assigned to the vault 1. There is anywhere between 29%

to 40% reduction of messages over a naive random bucket mapping if the origins of k -mers are considered.

One possible explanation for such a phenomenon is that real genomes often contain many regions of repeat

patterns. For example, about 8% of the human genome consists of so-called tandem repeats, which are

low complexity short sequences that occur multiple times in a row (e.g. ”CAGCAGCAG...”) [225]. The

7.3 NDP-based DBG Construction 109

Input Read _ Partition 0

Bucket 0 _ Partition 0 Bucket 0 _ Partition 1 Bucket 0 _ Partition 2

Bucket 1 _ Partition 0 Bucket 1 _ Partition 1 Bucket 1 _ Partition 1

Input Read _ Partition 1 Input Read _ Partition 2

Figure 7.3: Bucket shuffle based on the origins of k-mers.

0 1 2 3

1 2 3 4

2 3 4 5

3 4 5 6

2 1 2 3

1 0 1 2

2 1 2 3

3 2 3 4

4 3 4 5

3 2 3 4

2 1 2 3

1 0 1 2

a.	Bucket	at	vault	0 b.	Bucket	at	vault	5 c.	Bucket	at	vault	13

Figure 7.4: Hop distance from the source core (in white) to different remote cores (in color).

commonly adopted hashing schemes that operate on the binary form of a k -mer pattern will inevitably try to

fit k -mers obtained from these repeats into a small group of buckets.

However, simply reducing the number of messages passed among the NDP cores may not be the optimal

solution, as it fails to consider the non-uniform latency of switching a packet in some networks. For example,

in a mesh-style network, the latency of switching a packet is correlated to the distance between two nodes,

since a packet arrives at its destination through a series of hops, and each hop adds a certain amount of

additional latency. Figure 7.4 illustrate a situation where a message-reduction-based bucket shuffling strategy

does not work well. Suppose buckets have roughly equal amounts of k -mers that need to be fetched from each

remote vault in an NDP system with a mesh NOC. The total amount of remote messages generated is the same

regardless of the bucket location. However, when the hop count per message is considered, it is a poor choice

to put this bucket at the four corner vaults. For example, if each remote vault contributes 10 k -mers into the

bucket, then a bucket generates 10× 1× 2 + 10× 2× 3 + 10× 3× 4 + 10× 4× 3 + 10× 5× 2 + 10× 6× 1 = 480

total message hops at vault 0, 320 at vault 5, and 400 at vault 13. Therefore, total message hops should be

considered if we strive to reduce inter-core communication costs.

The slowest core limits the run time of the parallel graph construction, and the inter-core communication

takes the majority of the execution time. Thus the optimal bucket mapping is the one that generates the

Ultra Efficient Acceleration for De Novo Genome Assembly via Near-Memory Computing 110

least communication for the slowest core. For an NDP core, the communication cost of processing its share of

buckets can be approximated as the total message hops needed to fetch all k -mers. However, finding such

optimal bucket mapping is infeasible. Let’s consider a simpler case where the number of buckets mapped to

each core is the same. With 65536 buckets and 512 NDP cores (vaults), the number of possible mappings

that need to be checked is
(
65536
128

)
×

(
65408
128

)
×

(
65280
128

)
× ... ×

(
128
128

)
. A naive heuristic that selects the least

amount of communication cost for each bucket can easily suffer from workload imbalance. We describe below

a greedy solution that addresses both the run time concern and the imbalance concern.

After each bucket’s size is obtained (line 11), all buckets are ranked in descending order based on their

sizes and put into a list. The bucket distribution logic runs in a loop in which each iteration selects a batch

of n buckets from the list, with n being the number of NDP cores. For an NDP system with fully connected

networks, each bucket is assigned to a vault based on its largest partition. A bucket will be randomly selected

if two or more partitions have the same size. The vault that has been assigned with a bucket in this iteration

will not be assigned with another one. When a bucket needs to be assigned to an occupied vault, the bucket

is assigned to a vault with the second-highest k -mer contribution (second highest partition). This process

repeats until all buckets are assigned. For an NDP system without a fully connected network topology, the

bucket shuffling step is the same as the above procedure with minor tweaks. Instead of choosing a winning

vault for each bucket based on its partition sizes, the bucket is assigned to the vault that generates the

smallest hop count. This shuffling implementation adds an insignificant amount of overhead (<1%) and

works well in our evaluation.

Each NDP core is provisioned with a table that indexes buckets to their owner vaults/cores. The

number of table entries is equal to the number of buckets, which is 65536 in our evaluation. Each entry has

log2 65536 = 16 bits to represent bucket IDs, and additional bits to represent core IDs (9 bits for 512 cores).

The table adds 1.2% total storage overhead per HMC cube. Searching this table is a constant time operation

since the bucket index is the hash value of a k -mer.

7.3.3 Message Buffering and k-mer Compression

Message Buffering

In the graph construction step, each NDP core copies a k -mer from a remote vault by sending that vault’s

owner (an NDP core) an extraction request wrapped in a message. The remote NDP core responds to the

request immediately by sending the k -mer back in another message. This is inefficient since each message’s

payload can fit multiple k -mers, and each request has no dependency on each other. An obvious optimization

7.3 NDP-based DBG Construction 111

Vault	i

@0x120 @0x122 @0x124 @0x126 @0x1B2@0x1B0...

Bucket a

... AAAATGCTTCGGTGGTCTGCCCGGAGAGCGTGCGCCCGGAAGCATC ...

AAAATGCTTCGGTGGT
AAATGCTTCGGTGGTC
AATGCTTCGGTGGTCT
ATGCTTCGGTGGTCTG

AGAGCGTGCGCCCGGA
AGCGTGCGCCCGGAAG

@0x120
@0x122
@0x124
@0x126

@0x1B0
@0x1B2

Vault	j

...

Figure 7.5: Message compression by leveraging the overlapping bases of consecutive k-mers.

is to delay the responses and aggregate multiple k -mers into one message. At each vault, we provide n− 1

buffers corresponding to the rest n− 1 remote cores.

k-mer compression

This compression technique is used in conjunction with the message buffering to improve a message payload

density. The key observation is that since the k -mer addresses are put into a bucket by sequentially sliding a

window on input reads (with variable stride lengths), there is an opportunity for data reuse when copying

k -mers pointed by those addresses. Figure 7.5 illustrates this idea. A naive way of sending k -mers from Vault

j to Vault i is to lay them out exactly in the message payload one by one. Suppose the message payload size

is 64 bit and 2-bit/base. The uncompressed format allows two k -mers to be sent through one message. A

more compact representation of those k -mers is to copy the entire sequence from the first base of k -mer at

0x120 to the last base of k -mer at 0x126 (19 bases) and provide a small array of offset pointers to distinguish

each k -mer. This allows the same message payload to fit four k -mers.

The compressibility of k -mers in a packet depends on several variables: the number of buckets, size of

k, hash function, genome repeat patterns, etc. Deriving a formula to predict the effectiveness of packet

compression accurately is out of this project’s scope. We empirically evaluated this idea using an E.coli DNA

sequence and realistic DBG assembler settings: k=22, 65536 buckets, and the first four bytes of each k -mer

are hashed. We find that over 20% of consecutive k -mer pairs in a packet are overlapped, and the proposed

compression technique trims away more than 10% of redundant bases. We also analyze how many bases every

overlapping k -mer pair shares. The distribution is summarized in Figure 8. The result suggests that each

pair of overlapping k -mers have a high chance of sharing more than half of their content.

Ultra Efficient Acceleration for De Novo Genome Assembly via Near-Memory Computing 112

0
50
100
150
200
250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22#
of

 2
2-

m
er

s
(x

10
00

)

of Overlapping Bases

Figure 7.6: The distribution of the number of bases that are overlapped for each consecutive
22-mer pairs.

Traversal Table (Core 0)
K-mer HQE Visited In-degree
ACAAC T 0 0
ACCTG A 0 0
ACGCG G 0 0
….

DBG Table (Core 0)
K-mer Multiplicity
ACAAC 2
ACCGT 4
ACGCG 5
….

DBG Table (Core 1)
K-mer Multiplicity
CAACT 5
CCTGA 4
CCTGC 1
….

Traversal Table (Core 1)
K-mer HQE Visited In-degree
CAACT A 0 1
CCTGA T 0 1
CCTGC G 0 0
….

ACAAC CAACT
Extend T

Check
K-mer Extend A

AACTA … Store contigCore 0

Core 1 !Visited

If cannot
continue

Next
contig

ACCTG

Calculate Traversal Information

CCTGC
Extend G

CTGCG

Core 0

Core 1

Contig Assembly

… Store contig
If cannot continue

Next
contig

Check
K-mer

…

In-degree=0
Traversal on Core 0

Traversal on Core 1

Figure 7.7: The overview of NDP-based graph traversal.

7.4 NDP-based DBG Traversal

This section introduces the NDP-based graph traversal. We exploit the NDP system’s parallelism to construct

contigs and use a speculation mechanism to accelerate contig expansion.

7.4 NDP-based DBG Traversal 113

input :Distributed DBG table - dbg[num kmers]
→ cores[num cores].kmer from
→ cores[num cores.kmer to

output :Contigs built by traversal - contigs
/* Calculate k -mer information */
#ndp parallel for
for c← 1 to num cores do

for kmer ← cores[c].kmer from to cores[c].kmer to do
/* Find the high-quality extension (HQE) */

for c : [′A′,′ T ′,′ G′,′ C′] do
kmer.HQE = max multiplicity(kmer[1 :] + c);

end
/* Update the in-degree of HQE */
target core = find core(kmer.HQE);
target core.increament(kmer.HQE.in degree);

end

end
/* Parallel contig assembly */
#ndp parallel for
for c← 1 to num cores do

for kmer ← cores[c].kmer from to cores[c].kmer to do
if kmer.in degree == 0 then

contig = kmer; // Initiate a contig
target core = find core(kmer.HQE);
while !target core.get(kmer.HQE.visited) do

contig.expand(kmer.HQE);
kmer = kmer.HQE;
target core = find core(kmer.HQE);

end
contigs.add(contig);

end

end

end Algorithm 2: Pseudo code for NDP-based graph traversal (contig assembly).

7.4.1 NDP Parallel Graph Traversal

Figure 7.7 shows the high-level flow for NDP-based graph traversal, and Algorithm 2 shows the pseudo-code.

Data Initialization

The input of graph traversal is the DBG data (hash table) generated in the graph construction phase. The

hashing is supported in the general-purpose NDP cores. We use a leveled hashing scheme to resolve conflicts.

We distribute the DBG (hash table) over different NDP cores. The DBG is divided into buckets, each of

which is stored in a core.

Information Calculation

To efficiently construct contigs, we need to calculate k -mer information used during the traversal. Such

information includes the high- quality extensions (HQE) and in-degree of each k -mer. High-quality extension

(HQE) is the most likely extension for each k -mer. DBG assemblers use HQE to remove forward k -mers, which

are introduced by read errors [224]. We point out that the graph traversal step uses HQEs to generate contigs

(long sequences without branches), instead of the whole sequence. If a K-mer has multiple HQEs, the assembler

stops extending the current contig because the K-mer may be a branch. The branches caused by repeated

DNA patterns will be considered after the traversal phase to assembly the full DNA sequence. Furthermore,

Ultra Efficient Acceleration for De Novo Genome Assembly via Near-Memory Computing 114

in-degree is used to filter the start k -mer for each contig to remove redundant traversal. Specifically, the DBG

assembler only constructs a contig from a k -mer with no in-coming edges. This method avoids assembling

the same contig by different cores.

Each NDP core processes the information for its allocated k -mer independently (line 1 - 7). Each core

sequentially processes k -mers and checks all 4 possible bases that can extend the k -mer (line 4 - 5). The

HQE of each k -mer is determined by the base that leads a k -mer with the highest multiplicity. Then, the

core checks the pre-loaded bucket table to locate the core that handles the HQE k -mer (line 6), and increases

the in-degree of the HQE k -mer in the target core.

Parallel Contig Construction

The next step is to assemble contigs by graph traversal, where each NDP core constructs contigs independently

by selecting a local k -mer as the first segment of a contig (line 8 - 17). As mentioned previously, each NDP

core only selects k -mers without in-coming edges and expands the contig in one direction to avoid redundant

work (line 11). To extend a contig, the source core, which is the core constructing the contig, checks the

availability of the HQE of the current k -mer in the target core. If the k -mer is stored in the local vault, the

source core searches its DBG table. Otherwise, the source core uses a remote function call on the target core

to check the availability of HQE.

The result of k -mer expansion depends on two facts: 1) whether the k -mer exists, and 2) whether another

contig has already included the k -mer. If the k -mer exists, the target core checks the “visited” tag of the

k -mer to determine whether the k -mer has been used or not. If the source core receives a response from the

target core that the k -mer is available for the extension, the source core uses the HQE to extend the current

contig. Otherwise, the source core adds the current contig to the result (contigs) and selects another local

k -mer as the seed for the next contig construction.

7.4.2 Speculative Contig Expansion

The graph traversal phase also suffers from inefficient inter-core communications, especially during the contig

expansion where the source NDP core needs to send the query to a remote core and wait for the remote core

responses to search the requested k -mer in the k -mer table. All these operations, including bi-directional

communication and the search, are in the critical path of the contig expansion. Based on our experiments,

the contig expansion would spend 70% of its time on inter-core communication. Therefore, it is important to

reduce this time to achieve the full potential of NDP systems.

7.4 NDP-based DBG Traversal 115

Core 1

ACCT ACGT CCTA CTAT

CGTG GTGC TATC TGCA

ACCT

Core 0

CCTA
Extend A

CTAT
Extend T

TATC
Extend C

ACCT
CCTA

Extend A

CTAA
Speculate
A/T/C/G

CTAT
CTAC

CTAG

CTAT
Extend T

TATA
Speculate
A/T/C/G

TATT
TATC

TATG

(a) Distributed De Bruijn Graph

(b) Original sequential expansion

(c) Speculative parallel expansion (2-step)

Core 0

Core 0

Figure 7.8: The speculative search optimization.

Optimization Overview

We propose a speculative contig expansion shown in Figure 7.8. In the speculative contig expansion, each

NDP core searches multiple steps ahead, instead of only the HQE. The speculation’s insight is to hide the

latency of k -mer query by parallelizing subsequent operations.

Unlike the current contig that has the information of HQE, we do not know what will be in future steps

for a query if we successfully extend the current contig with the HQE. The NDP core needs to search for all

possible k -mers in the speculative steps to guarantee the speculative contig expansion’s correctness. The

number of possible k -mers is 4n−1, where n is the number of speculative steps. During speculative search, an

NDP core calculates hash values and sends search requests to target cores for all possible k -mers in the next

n steps.

Operation Combining

An n− step speculative search can achieve up to O(n)× performance improvement over the default one-step

expansion. However, the speculation would introduce significant overhead without any optimization because

of more data communications and operations for searching all possible k -mers. The number of messages that

Ultra Efficient Acceleration for De Novo Genome Assembly via Near-Memory Computing 116

k1 k3 k5

k4k2

k0

k6

Source
Core

Start
K-mer

Next
K-mer

1-step
spec.

2-step
spec.

Core 0 k0 k3 k5 k6
Core 1 k1 k3 k5 k6
Core 2 k2 k4 k3 k5

Select Core 1 based on speculation index to resolve the conflict

k3

Request
Core

Spec.
Idx.

Core 0 1
Core 1 1
Core 2 2

k5

Request
Core

Spec.
Idx.

Core 0 2
Core 1 2
Core 2 3

k6

Request
Core

Spec.
Idx.

Core 0 3
Core 1 3

Figure 7.9: Resolving speculation conflicts.

are generated could grow exponentially while the performance improvement is always linear as we increase the

speculation depth. Thanks to DNA sequences’ nature, we can significantly reduce the speculation overhead

by combining speculation for similar k -mers into a single move. All possibles k -mers in a speculation step

share the most significant bases. Therefore, these k -mers are stored in a contiguous memory location in the

sorted k -mers table (bucket). We may only need to send one message for all possible k -mers in a speculative

step since the same target core handles these k -mers. The target core can quickly access continuous memory

addresses by utilizing the data cache in the core. For example, in Figure 7.8(c), Core 0 may store all four

1-step speculative k-mers (CTA{A, T,C,G}), and Core 1 may store all sixteen 2-step speculative k-mers

(TA{A, T,C,G}{A, T,C,G}) based on the range of hash table. In this case, a two-step speculation only

requires 2 messages (1 per core). It is possible that k-mers in a speculation step are stored across cores,

requiring multiple messages. In our experiments, we only observe a trivial amount of speculations (up to

5-step) requiring multiple messages in a single step because of the large data size.

Conflict Resolution

Another issue with speculative contig expansion is that we need a more complex mechanism to resolve

the conflicts between cores that simultaneously access specific k -mers. Once an NDP core receives results

of all possible k -mers in the next n steps, it tries to extend its current contig by checking the HQEs and

corresponding “visited” tags of k -mers sequentially. It needs to send messages to cores handling the extended

k- mers to avoid redundant work (setting the ”visited” tags). However, without an efficient mechanism, the

overhead of synchronization can eliminate the benefit of speculation.

To efficiently resolve conflicts, we propose a lightweight mechanism, nearest source assignment, to solve

the conflict in the target core. Specifically, each source core extends all speculative k -mers locally as further as

7.5 Architecture 117

Table 7.1: Programming Interface

Operation Remote Function Call
Copy k -mer get(id, A func, A addr, A ret, S ret size)
Set Data put(id, A func, A addr, S size)
Request k -mer put(id, A func, A addr, S size)
Get Buffered k -mers get(id, A func, A ret, S ret size)
Search k -mer get(id, A func, V hash, A ret, S ret size)

possible and then sends the confirmation messages to all target cores to notify the success of k -mer extension.

The source code also sends a speculation index, which is the position of the k -mer in the speculation path,

along with each message. The target core receives confirmation messages from different source cores on the

same k -mer. It picks the source core, which sends the smallest speculation index in the message as the core

to use the k -mer for expansion. If multiple cores send the same speculation index, the target core picks the

core with the smallest core index to break the equality. This mechanism can effectively resolve the conflicts

because different contigs will follow the same path when they conflict on the same k -mer. Therefore, the

nearest source assignment can avoid potential deadlocks in a continuous k -mer path.

7.5 Architecture

This section discusses the implementation of software and hardware to support the proposed ideas.

7.5.1 Programming Interface

We utilize the message passing and remote function call in Tesseract [17] as the programming interface

for its versatile programming interface and lightweight hardware support for message-passing (i.e., message

queue). Table 7.1 lists implementations of key operations required in NDP-based DBG assembly. We use

the blocking (get) or non-blocking (put) remote function call to implement different operations, where the

remote function call is based on a message passing mechanism. Specifically, copying a k -mer from a remote

call requires a blocking remote function call (get), where the parameters require the target core, the address

of target k -mer, the address of return value, and the size of return value. We use A, S, and V to represent

the address type, the size type, and the value type respectively. However, the blocking get function cannot

support our proposed buffering and compression mechanism. Therefore, we propose a request operation that

uses the non-blocking put to notify a target call to store the target k -mer in the message buffer. During the

execution, each core calls the request function for each k -mer while maintaining a counter for the number of

messages that have been requested for remote cores. When the counter is equal to the buffer size (introduced

in Section 7.5.2), the core calls a get function to the target core to get all buffered k -mers. The target core

Ultra Efficient Acceleration for De Novo Genome Assembly via Near-Memory Computing 118

compresses the buffered k -mers and sends the results back to the source core. After the blocking get function

call, the source core resets the counter for a specific target core and continue execution.

To enable programmers to implement NDP-based DBG assemblers, we need a framework that combines

the parallel computing and the proposed programming interface based on message passing. Since we have

no access to the real NDP hardware, we use a simulation-based method to emulate the proposed NDP

assembler. In our implementation, we simulate OpenMP-based programs in Sniper simulator [226], which

uses Pin-tool [227] as the front-end to generate simulation statistics for multi-core architectures. We insert

specialized APIs using Sniper’s magic instruction in the OpenMP program so that Sniper can recognize the

message-passing based NDP operations. We implement the simulation logic for different message-passing

functions using Sniper’s synchronous and asynchronous timing models to generate the final simulation results

for NDP architectures. Future work can follow a similar scheme to realize the proposed assembler in a real

NDP hardware. For example, the framework can extend the syntax of widely used parallel programming

APIs (e.g., OpenMP) to include function calls of message-passing, and implement a specialized runtime to

schedule operations on NDP cores.

7.5.2 Hardware Support

We propose several lightweight hardware components inside each core in our NDP architecture to support

the NDP functionality. Similar to Tesseract [17], each core uses a message queue and a network controller

to process remote function calls based on message passing. In addition, we add two lightweight hardware

components, a k -mer fetcher (KMF) and a k -mer buffer (KMB) to support the proposed optimizations.

Figure 7.10(a) shows the architecture of the proposed NDP core. Specifically, the k -mer fetcher (KMF)

is the unit which we can offload operations for the proposed optimizations from the NDP core. KMF can

decode the potential memory addresses of k -mers based on the hash value, and generate memory commands

directly to the memory controller. The KMF contains several 64-bit hardware registers to store the working

information during the k -mer fetching, including the base address of the hash table (1 register), the k -mer

data (4 registers), and state control information (4 registers). To generate the address for k -mer fetching,

KMF first loads the base address of the hash table from the in-order core. Then, KMF uses a shifter to

generate the offset of a k -mer by concatenating different bits of k -mer registers. The offset is stored in a

32-bit register, which is added with the base address in a 64-bit adder. KMF then sends the generated

address to the memory controller and receives k -mer data in the k -mer registers for future operations (e.g.,

writing to the k -mer buffer. The k -mer buffer (KMB) stores k -mer related data which is configured to

different formats for graph construction and graph traversal, as shown in Figure 7.10(b). During the graph

7.5 Architecture 119

Compression Buffer
Core Buffered K-mers

1
AAACGGTG

…

2
AAACGGTG

…
… …

Speculation Table
K-mers Spec. Idx Core

AAATGTG 2 1
AAAACTG 1 3
AAATGTG 1 2

…

(b) KBM data structures

NDP Core

K-Mer Fetcher

Registers

Hash Tab. Base

Kmer Reg. 0

Kmer Reg. 3

…

State Ctr. Reg. 0

State Ctr. Reg. 4

…

Shifter

64b-Adder

Hash Ctrl.

32b-Reg.

K-mer entry
addr.

Memory
Controller

K-mer & Fetch result

K-Mer
Buffer
(KMB)

Reg. Ctlr.

R
ead

/W
rite

M
U

X

In-Order
Core

Message
Queue

Network
Controller

(a) NDP core design

Component Parameters
Shifter 2 cycles/load&shift
Adder 64-bit 4-pipelined, 4 cycles/add

K-mer buffer 64KB SRAM, 64B/block, 1 cycle/access

(c) Parameters of customized hardware components

Figure 7.10: Hardware support for NDP-based DBG assembly.

(b) Operations offloading during graph traversal.(a) Operations offloading during graph construction.

K-mer request

KMF
Mem.
Cntlr.

KMB

Request K-mer Insert K-mer

KMB KMF

Buffer Full
Message

Q.

Fetch & Compress
Network

Ctlr.

Send

K-mer
request
message

Compression & Send

KMF
Mem.
Cntlr.

Search K-mer

KMF KMB

Check speculation
table Message

Q.

Generate Msg.
Net.
Ctlr.

SendExtend
confirm

KMB

Message
Q.

Insert spec. entry

Reply

Speculative
k-mer

message

Speculative search

Conflict resolving

Figure 7.11: Operations in hardware components.

construction, in order to support the k -mer compression, KMB acts as a compression buffer which stores

the requested k -mers grouped by the requester core. During the graph traversal, KMB is organized as a

speculation table which stores the searched k -mer, requester core, and the speculation index for conflict

resolving. Figure 7.10(c) shows key parameters of the proposed hardware components used in our evaluation.

We implement the components of KMF using Verilog HDL and synthesize the design on Synopsys Design

Ultra Efficient Acceleration for De Novo Genome Assembly via Near-Memory Computing 120

Table 7.2: Workstation and NDP Configuration

CPU Model Intel(R) Xeon(R) E5-2658 v4
Core/ Thread/ Frequency 14/ 28/ 2.30 - 2.80 (GHz)
L1/L2/L3 Cache 32 (KB) / 256 (KB) / 35 (MB)
Main Memory DDR4-2400 MHz, 54GB/s
Memory Organization 32GB / 2 Channels / 2 Ranks
HMC 2.0 Organization 8 DRAM layers, 8Gb/layer, 8GB/cube, 32 vaults, internal (external) bandwidth:

512GB/s (480GB/s)

NDP cores 1 GHz, single-issue, in-order, 32 KB I$ and D$, LRU, 80 mW, 0.51 mm2

HMC Memory tCK = 1.6 ns, tRAS = 22.4 ns, tRCD = 11.2 ns, tCAS = 11.2 ns, tWR = 14.4 ns,
tRP = 11.2 ns

NOC Configuration Crossbar network, 64 KB/message payload
Inter-cube Network 2 cycles/hop, 64 bits/cycle, 2D-Mesh (default) / DragonFly / Fully-connected

Compiler. The synthesized design is placed and routed using Synopsys IC Compiler. The KMB parameters

are estimated using the analytical tool CACTI-3DD [228] on 22nm technology node.

Figure 7.11(a) and Figure 7.11(b) show the operations offloaded from the NDP core to the lightweight

components during graph construction and graph traversal phases. During graph construction, KMF of

each core handles k -mer requests to the local k -mer from other cores. When receiving a k -mer request

message (with the address), KMF generates memory commands to the memory controller which will fetch

the k -mer. KMF then stores the k -mer to the corresponding entry of compression buffer (stored in KMB). If

all entries of the requester core is full in the compression buffer, KMF compresses all k -mers requested by the

requester core and generate a compression message. During graph traversal, KMF handles speculative search

requests from other cores. Since the speculative search may request a non-existing k -mer, KMF generates

memory commands for search operation in the local hash table based on the k -mer’s hash value. If the

k -mer exists, KMF inserts the k -mer with the requester information (e.g., speculation ID) in the speculation

table. No matter whether the k -mer exists or not, KMF sends a message to the requester core about the

search result. If a requester core wants to confirm the extension with a speculation k -mer, KMF fetches all

entries about the requested k -mer in the speculation table and resolves the conflict. As compared to the

pure-software implementation, hardware-assisted optimizations reduce data movements between the memory

and the in-order core. Furthermore, the added hardware components can directly communicate with the

memory controller and message interface to reduce the latency of optimization in the critical path.

7.6 Methodology

7.6.1 Simulation

We emulate the execution of our NDP-based DBG assembler using multi-threading supported by OpenMP [229].

Specifically, we create a thread for each NDP core and manually assign different tasks and data structures to

threads. The proposed NDP system, including all DRAM vaults and NDP cores, is modeled in Sniper [226]

7.7 Results 121

Table 7.3: Genome Datasets

Genome Name Size
Escherichia coli O157 (E-Coli) 5,528,445 bp
Homo sapiens chromosome 3 (Human) 198,295,559 bp
Ananas comosus cultivar (pineapple) 24,880,688 bp

according to parameters reported in Table 7.2. The parameters are gathered from previously published

work [17, 48, 50, 49], data-sheet for commercial products [46], and simulation in Cacti [156] and McPAT [156].

We use a Pin-tool [227] front-end to tag NDP data structures’ addresses in the simulation. Therefore, Sniper

can recognize and operate on these NDP data structures using NDP-specific models of remote function call

based on message passing. We use Ramulator [199] to model the memory behaviors since Sniper lacks a

detailed memory model. We use Cacti [156] to simulate the performance and power of customized buffers at

32nm technology. Each NDP core takes 0.51mm2 chip area and 32 NDP cores only consume 7.2% of the chip

area available in the HMC logic layer (226mm2 [17]).

7.6.2 Baseline System

The baseline performance is measured from MEGAHIT [70] running on a workstation configured in Table

7.2. We should note that CPUs are the predominant platform for DBG assembly, instead of GPUs, and

MEGAHIT is one of the fastest implementations [70, 67, 215, 69] that is capable of assembling a large genome

in parallel. We do not compare to GPU, since all of the GPU-based DBG assemblers we find are deprecated

[230, 231, 70] due to lack of support and performance. In fact, we are informed by the authors of MEGAHIT

that the GPU-implemented MEGAHIT is slower and harder to use than its CPU counterpart.

7.6.3 Workloads

We test DNA sequences from three species downloaded from GenBank [232] as shown in Table 7.3. We use a

next-generation sequencing read simulator [233] to generate NGS reads using Illumina technology [202, 203,

204]. We set the fold of coverage, length of reads, and mean size of DNA fragments to 20, 150, and 200 to

generate sufficient simulation data.

7.7 Results

Figure 7.12 shows the results of comparing the 16-cube NDP system and the CPU baseline. We compare the

performance of the optimized NDP implementation (Opt-HW) to the CPU baseline and the NDP implemen-

tation without optimizations (Original NDP). Opt-SW represents software-implemented optimizations All

Ultra Efficient Acceleration for De Novo Genome Assembly via Near-Memory Computing 122

0

0.05

0.1

0.15

0.2

0.25

O
ri

gi
na

l N
D

P

O
pt

-S
W

O
pt

-H
W

O
ri

gi
na

l N
D

P

O
pt

-S
W

O
pt

-H
W

O
ri

gi
na

l N
D

P

O
pt

-S
W

O
pt

-H
W

O
ri

gi
na

l N
D

P

O
pt

-S
W

O
pt

-H
W

O
ri

gi
na

l N
D

P

O
pt

-S
W

O
pt

-H
W

O
ri

gi
na

l N
D

P

O
pt

-S
W

O
pt

-H
W

E.coli Human Pineapple E.coli Human Pineapple

Construction Traversal

N
or

m
al

iz
ed

 T
im

e
to

 C
PU

Local Function Remote Function

5.3

9.1

27.3
6.8

9.8

31.2

9.2
12.8

39.0

8.5

4.5

12.3

7.7
6.4

22.7

4.6 4.5

14.3

0
5
10
15
20
25
30
35
40
45

0

0.05

0.1

0.15

0.2

0.25

O
ri

gi
na

l N
D

P

O
pt

-S
W

O
pt

-H
W

O
ri

gi
na

l N
D

P

O
pt

-S
W

O
pt

-H
W

O
ri

gi
na

l N
D

P

O
pt

-S
W

O
pt

-H
W

O
ri

gi
na

l N
D

P

O
pt

-S
W

O
pt

-H
W

O
ri

gi
na

l N
D

P

O
pt

-S
W

O
pt

-H
W

O
ri

gi
na

l N
D

P

O
pt

-S
W

O
pt

-H
W

E.coli Human Pineapple E.coli Human Pineapple

Construction Traversal

Sp
ee

du
p

N
or

m
al

iz
ed

 T
im

e
to

 C
PU

Local Function Remote Function Speedup

Figure 7.12: Performance comparison with the baseline on graph construction and graph traversal.

results are normalized to the CPU baseline and we break the total execution time into the time on local

functions and remote functions.

Comparison to CPU and original NDP. On the one hand, the original NDP is 7.1× and 6.9× faster

than the CPU baseline on graph construction and graph traversal. This result indicates the simply parallel

NDP solution does not fully utilize the hardware, considering the number of cores in the NDP system is

much larger than that in the CPU baseline. On the other hand, the optimized solution is 32.5× and 16.4×

faster than the CPU baseline for graph construction and graph traversal, respectively. The performance

improvement provided by Opt-HW over Original NDP results from the reduced inter-core communication

caused by the proposed optimization techniques, including bucket shuffling, message buffer and compression,

and speculative contig expansion.

Comparison to software-implemented optimizations. The result shows that the performance

improvement for graph construction is more significant than that for graph traversal. It is because the de

Bruijn graph has a random structure that may cause cores to have unbalanced workloads. It is also consistent

with the observation that the NDP solution performs better on a large genome than a small genome. In

general, the proposed techniques perform better on large genomes that exhibit high-degree parallelism and

sufficient per-core workload to exploit the parallelism of NDP hardware. Opt-HW outperforms Opt-SW by

3.1× and 3.2× on average for graph construction and graph traversal respectively. The performance gain

7.7 Results 123

56.0

277.8

820.2
1273.4

41.0

229.1
543.5

895.8

8192

54

1

10

100

1000

10000

CPU
Baseline

Original
NDP

Opt-SW Opt-HW CPU
Baseline

Original
NDP

Opt-SW Opt-HW

Construction Traversal

P
ea

k
B

an
d

w
id

th
 U

ti
liz

at
io

n

(G
B

/s
)

Peak Bandwidth CPU Max NDP Max

Figure 7.13: Memory bandwidth utilization for Human genome.

0

5

10

15

20

Sp
ee

du
p

(X
)

#Cubes (1 to 16)
Graph Construction

E.coli Human Pineapple

0

5

10

15

Sp
ee

du
p

(X
)

#Cubes (1 to 16)
Graph Traversal

E.coli Human Pineapple

Figure 7.14: Scalability results from 1-cube to 16-cube.

provided by the hardware-implemented optimizations results from the reduction of memory accesses and

updates for the optimization data structures.

Bandwidth utilization. Figure 7.13 shows the memory utilization for different systems running graph

construction and graph traversal on Human genome. We get the CPU-baseline result from VTune [234]

and NDP configurations from simulation. The results show: (1) NDP solutions, which run 512 parallel

threads, require significantly more bandwidth than the CPU baseline maximum bandwidth. (2) The proposed

optimization can increase the memory bandwidth utilization because of the better performance than the

NDP baseline.

7.7.1 Performance Scalability

Figure 7.14 shows the performance of DBG assembly on the different number of NDP cubes for three genomes.

We scale the system from 1 cube to 16 cubes. The 16-cube NDP system is 12.4× to 15.6× faster than the

Ultra Efficient Acceleration for De Novo Genome Assembly via Near-Memory Computing 124

0
0.2
0.4
0.6
0.8

1

E
.c

ol
i

H
um

an

Pi
ne

ap
pl

e

E
.c

ol
i

H
um

an

Pi
ne

ap
pl

e

E
.c

ol
i

H
um

an

Pi
ne

ap
pl

e

4-cube 8-cube 16-cube

R
ed

uc
tio

n
ra

tio
Shuffling Buffer Compression

Figure 7.15: The reduction of inter-core message passing provided by optimizations for graph
construction.

single-cube system over three genomes for graph construction. Such results show good scalability of the

NDP implementation. The performance of NDP implementation depends on DNA patterns in the dataset.

Suppose the dataset has a lot of repeated patterns (e.g., Pineapple). In that case, the NDP implementation

has better scalability, because we can significantly reduce the data access time by mapping the buckets of

repeated patterns in the same core with the corresponding sequence.

For graph traversal, the 16-cube NDP system is only 6.0×, 12.0×, and 7.1× faster than the single-cube

system for E.coli, Human, and Pineapple, respectively. The overall improvement provided by the large

systems is much less than that in graph construction. The reason is that graph traversal has more randomness

in the workload, thus is less likely to schedule balanced workloads over the NDP cores in the large system.

The results over different genomes also show that the NDP implementation has better scalability in the large

genome.

7.7.2 Inter-core Communication Reduction

Figure 7.15 shows the effects of the proposed optimization on the reduction of the inter-core message. The

reduction ratio is calculated in the order of shuffling, buffering, and compression. Our experimental results

show that bucket shuffling can reduce 14% and 40% of inter-core messages in a 4-cube system and a 16-cube

system, respectively, over a random bucket mapping scheme. The gap between small systems and large

systems results from that small systems have an even distribution of buckets because each core is allocated

more sequences than larger systems.

7.7 Results 125

0

2

4

6

8

10

E.coli Human Pineapple E.coli Human Pineapple E.coli Human Pineapple

4-cube 8-cube 16-cube

Sp
ee

du
p

(X
)

1-spec. 2-spec. 3-spec. 4-spec. 5-spec.

Figure 7.16: The performance comparison among different steps for speculation.

Unlike the bucket shuffling, the message reduction provided by k -mer buffering and compression becomes

less when increasing the system size. Specifically, k -mer buffering (compression) reduces 24% (26%) of

messages in the 4-cube system while reducing only 10% (15%) of messages in the 16-cube system. This

is because large systems schedule fewer messages for each core, so that the opportunity for buffering and

compression becomes less than smaller systems. In general, our experiment on the data movement reduction

shows that the bucket shuffling and k -mer buffering and compression can work well together to reduce the

number of inter-core messages in different sizes of systems.

7.7.3 Exploration on Speculation

Figure 7.16 shows the exploration of the speculation steps for graph traversal. We test different speculation

steps and show the speedup over the baseline without any speculation. The result shows that the four-step

speculation has the best performance for all workloads on systems of different sizes. Smaller speculation steps

may not fully exploit the available memory bandwidth and parallelism of the NDP system, while a larger

speculation steps have larger overhead of resolving the conflicts between different NDP cores.

7.7.4 Exploration on Network

Because previous works show that the NDP system’s interconnect plays a critical role in the performance

and energy consumption, we also explore different interconnect structures in the baseline NDP architecture.

Figure 7.17 shows graph construction and graph traversal execution time on three structures: mesh, dragon-

fly [223], and an ideal fully-connected network. All results are normalized to the mesh structure. The

experiment shows that the dragon-fly network can improve the mesh structure’s performance by 1.3× on

average, while the performance-optimized ideal network is 1.7× faster than the mesh. However, the ideal

network incurs 5.4X and 2.7X higher area overhead than the mesh and dragon-fly configurations.

Ultra Efficient Acceleration for De Novo Genome Assembly via Near-Memory Computing 126

0
0.2
0.4
0.6
0.8

1
1.2

M
es

h

D
ra

go
n-

Fl
y

Id
ea

l

M
es

h

D
ra

go
n-

Fl
y

Id
ea

l

M
es

h

D
ra

go
n-

Fl
y

Id
ea

l

M
es

h

D
ra

go
n-

Fl
y

Id
ea

l

M
es

h

D
ra

go
n-

Fl
y

Id
ea

l

M
es

h

D
ra

go
n-

Fl
y

Id
ea

l

E.coli Human Pineapple E.coli Human Pineapple

Graph Construction Graph Traversal

N
or

m
al

iz
ed

 T
im

e
Local Function Remote Function

Figure 7.17: The performance comparison among different network structures.

7.7.5 Energy Efficiency

We estimate the energy of NDP system based on the average active cycles of cores and memory and the power

values reported in the official product description [46] and previous works [17, 49]. Our results show that the

proposed NDP system consumes 28.9 × and 15.0 × less energy for graph construction and graph traversal

than CPU. Such energy reduction mainly comes from the faster execution. The average power consumed by

NDP is higher than the CPU baseline because of the higher power consumed by the memory layers and the

NoC power consumption. However, previous work [17] shows that such power consumption density in the

memory chip will not exceed the thermal constraints. In this work, we only added a small storage component

with a controller in the original NDP hardware, which has trivial power and area overhead (< 2%). Therefore,

the proposed NDP-based DBG assembler is practical in terms of power and thermal efficiency.

7.7.6 Comparison with Other Distributed Algorithms

The DBG processing of large genomes is also deployed on distributed-memory parallel computers using

frameworks such as MPI due to their scalability (large capacity and high core count). Notable distributed-

memory assemblers are Ray [235], PASHA [69], YAGA [236], ABySS [67], HipMer [237], and PakMan [238].

This work shares similarities with distributed-memory DBG assemblers at high-level. For example, addressing

the communication imbalance issues during the parallel graph construction phase and avoiding traversing the

same contig by multiple processing nodes repeatedly. If handled inefficiently, the overhead of orchestrating

7.8 Related Works 127

nodes outweighs the performance benefit of parallelization. These challenges are typically not found in

shared-memory DBG assemblers, which primarily focus on optimizing algorithm complexity and assembly

quality. However, migrating existing distributed-memory DBG schemes into an NDP system is a complex

undertaking. Each node in the distributed-memory system handles multi-threading workloads with large

memory footprints, but each NDP core is single-threaded with limited memory capacity. For example,

PakMan [238] compresses the DBG into a compact graph with macro-nodes to ensure each compute node can

fit the whole compact graph during the graph traversal phase, where each process can concurrently traverse

multiple independent paths. Therefore, the optimization for cross-node communication in distributed-memory

systems is too coarse-grained in the NDP implementation.

We provide an indirect comparison with one of the state-of-the-art distributed assemblers. As reported

in the previous work [238], PaKman offers 9.3× speedup over IDBA-UD [239] with 40-cores@2.2GHz in

its MPI-based shared-memory mode. Assuming performance scales linearly with core frequency, and since

both PaKman and our work demonstrate linear scaling w.r.t core count, PaKman offers 54.08× speedup

over IDBA-UD with 512-cores@1GHz. With 512-cores@1GHz, our work outperforms MEGAHIT by 31.6×

which is already 3.5× faster than IDBA-UD (110.6×). This result shows our design is about 2× faster than

PaKman even if PaKman can be perfectly mapped to an NDP architecture. Finally, this work leverages

software/hardware codesign to speedup DBG assembly. Without the appropriate hardware support (e.g., the

latency/bandwidth advantages of PIM and our customized hardware components), the software optimizations

alone do not achieve the best results.

7.8 Related Works

Non-genome NDP accelerators. There are similar 3D-stacked NDP accelerators for graph processing

[17, 48], pointer chasing [118], and large-scale data analytics [50, 240, 49]. Some aspects of these work are

similar to ours, such as minimizing communication, optimizing data partitioning, and providing a framework

for the proposed architectures. However, these works are not directly applicable to DBG.

PIM bio-accelerators. There are several PIM accelerators for bioinformatics workloads. Wu et al.

[53] proposes an in-situ solution which fits minimalist bitwise operation logic inside DRAM chips, and

utilizes subarray-level parallelism to support massively parallel K -mer matching. GenCache [84] modifies the

SRAM chip to support sequence alignment. Medal [85] leverages off-the-shelf DRAM components to build a

DNA seeding accelerator. RADAR [86] is a 3D-ReRAM based accelerator for BLAST. AligneR [241] is a

ReRAM-based PIM architecture which accelerates the bottleneck stage of genome sequencing. FindeR [242]

enhances the FM-Index EPM search throughput in the gnomic sequencing step using commodity ReRAM

Ultra Efficient Acceleration for De Novo Genome Assembly via Near-Memory Computing 128

chips. These works target different stages of genome pipelines. To the best of our knowledge, this is the first

PIM-based De Novo assembly accelerator.

DBG assemblers. We have compared this work to prior distributed-memory DBG assemblers in Section

7.7.6. There has a limited effort of porting de Bruijn graph onto GPU such as [230, 231]. They either focus

on only one stage of DBG assembly or only work with small genome. In contrast, we provide comprehensive

support for every stage of DBG and work with a much larger genome.

7.9 Conclusion

In this work, we propose a software-hardware co-design for DBG assembly that leverages emerging 3D-stacked

memory architectures with high parallelism and bandwidth. We identify graph construction and contig

assembly as two bottleneck stages, as they suffer from high communication overhead due to frequent message

passing. By exploiting real DNA sequence characteristics, we optimize our design with an effective data

partitioning strategy and a message buffering and compression technique to reduce inter-core communication.

We also develop a speculation scheme to extend each contig by multiple bases each time tentatively. The

optimizations above synergistically offer the combined benefit of speedups and energy savings over the CPU

by 24× and 22×. Our NDP-based DBG processing framework can significantly reduce the run time of many

critical steps in analyzing human and microbial genomes, which aids in disease diagnosis, precision medicine,

vaccine development, and other tasks.

Chapter 8

Abakus: Accelerating k-mer Counting

With Storage Technology

8.1 Introduction

The scramble for vaccine development during the global COVID-19 pandemic has highlighted the profound

importance of accelerating key bioinformatics tasks, particularly those that aid in vaccine research, therapeutics

against bioterror, and pathogen surveillance. One of the most commonly occurring computational kernels in

many bioinformatics algorithms is k-mer counting, which involves building a histogram of genome sequence

substrings of a fixed size. For example, de novo genome assemblers that piece together an unknown genome

from a collection of short reads, such as in characterizing a new virus, require a filtering step where k-mers

that appear fewer times than a set threshold are regarded as erroneous and dismissed [59, 243, 244, 245,

246, 247, 248, 249, 250]. k-mer frequency information is also extensively used in the identification of repeat

sequence regions [251, 252, 253, 254, 255, 256], variant calling [257], and alignment of multiple DNA or

protein sequences [258, 259, 260].

This work seeks to address the critical need for accelerating k-mer counting in a scalable way for current

and future bioinformatics workloads. Bioinformatics pipelines typically analyze unknown genome samples

of various sizes, ranging from small viruses (e.g., a COVID test) to extremely large environmental data in

metagenomics (e.g., analyzing soil samples). Investigating a k -mer counting accelerator design has tremendous

economic and societal benefits. For example, the market share of metagenomics alone is expected to reach

$1.4 billion by 2025 [53]. As another example in the emerging precision medicine domain, a patient’s sample

is first sequenced on the NovaSeq instrument in under 48 hours, producing 6∼12 TB microbiome and human

129

Abakus: Accelerating k-mer Counting With Storage Technology 130

DNA/RNA data. This raw sequence data is then passed through various stages, including de novo genome

assembly for ∼3600 CPU hours, out of which ∼60% is spent on k -mer counting [59]. Overall, efficient

execution of k -mer counting can help transform many bioinformatics tasks important to human health from

vision to reality. With the rapid growth of NGS, genomics is projected to soon become the largest data

producer, surpassing astronomy, particle physics, and websites such as YouTube and Twitter [10], and the

number of reads that need to be assembled is growing at a rate vastly outstripping Moore’s Law [56], putting

forth a great pressure on executing k-mer counting more efficiently.

While the idea of counting k-mers is straightforward, doing so while achieving high memory- and time

efficiency is challenging. The traditional approach is to leverage large hash tables to count k-mers, and parallel

implementations of these approaches distribute the input reads among several worker threads, where each

thread independently extracts and counts k-mers from its share of the input [261, 262, 263, 264]. However,

the size of the hash table increases exponentially with the size of k, making it infeasible to store and maintain

it in memory for large genomes with many k-mer patterns [265]. Furthermore, multiple threads are bound to

compete for accessing the same set of k-mer entries, resulting in frequent serialization [264]. Therefore, these

approaches tend to scale poorly, imposing prohibitively high overheads in performance and hardware resource

requirements.

To alleviate these overheads, state-of-the-art k-mer counting tools [7, 266, 267, 268, 269, 270] typically

adopt a two-phase, disk-based (out-of-core) approach, where the input data is first partitioned into a set

of files containing a subset of all k-mers to be counted in a subsequent parallel counting phase. This not

only results in a much smaller memory footprint as the memory only needs to hold a few partitions and

their corresponding k-mer histograms at each iteration but also minimizes thread contention by allowing

each thread to independently build partial k-mer histograms from its share of partitions without competition

from other threads. However, these approaches are also easily susceptible to overheads imposed by secondary

storage devices. In particular, a large amount of data needs to be moved across the deep hardware stack

(hierarchies within an SSD, main memory, cache layers, etc.) and system software stack (flash transaction

layer, NVMe protocols, OS file systems, etc.) between CPU and the hard drive, which incurs significant

command and control overhead. Moreover, the external host I/O data links are typically lagging and difficult

to improve compared to the internal aggregated disk bandwidth potential. In fact, our profiling experiments

on a state-of-the-art disk-based k-mer counting software with optimized I/O access [7] reveal that a significant

portion of its execution time (over 75%, see Section 8.3.1) is spent on file handling alone, constantly stalling

the processor.

Several prior efforts have sought to accelerate k-mer counting using GPUs [7], FPGAs [271, 272], and

processing-in-memory architectures [273, 15, 59]. However, these approaches do not consider the I/O

8.1 Introduction 131

bottleneck – while some only accelerate the compute-intensive counting phase [7, 271] or assume that the

data is already loaded into memory [59, 273], others accelerate one-phase in-memory k-mer counting [272, 15]

algorithms that do not scale with larger workloads. To improve the end-to-end performance of state-of-the-art

k-mer counting algorithms, the I/O overhead, which is increasingly more likely to be the real bottleneck,

needs to be addressed.

Integrating logic as close to the data storage media as possible is a promising alternative that addresses

the I/O-bound nature of data-intensive applications. Such storage-centric architectures come in two flavors,

In-storage processing (ISP) and Processing-with-storage-technology (PWST), which are characterized by

different trade-offs and design philosophies. ISP typically directly leverages the embedded multi-core CPU

controllers and DRAM inside the solid state drive (SSD) with modified firmware to offload computation [274,

275, 276, 277, 278, 279, 280, 281]. Commercial products include Samsung’s SmartSSD [161], which features

an FPGA-enhanced SSD, can also be considered an ISP implementation. An ISP device is fundamentally

still a storage product with small hardware overhead to enable computing at the place where the data reside.

This solution is less intrusive but does not always guarantee speedups [275, 282, 277]. In contrast, a PWST

architecture from the ground up is built to be a standalone, performance-optimized accelerator leveraging

storage devices by aggressively integrate custom logic at different layers of the SSD internal hierarchy (i.e.,

chip-, channel-, and SSD-level) to handle a variety of applications [283, 284, 285, 282, 286], and SSD is simply

a helpful technology that enables processing near the huge volume of data involved in the task. This work

leverages PWST to propose novel and scalable accelerator designs, collectively named Abakus, to eliminate

the I/O overheads imposed by out-of-core k-mer counting.

To enable an effective end-to-end PWST-based acceleration of k-mer counting, we provide custom hardware

solutions for a set of key k-mer counting operations and distribute them at different SSD levels to (1) enhance

the limited computing capabilities of the existing SSD infrastructure and (2) take advantage of the multi-

channel, multi-way setup of an SSD for better parallelism. We optimize performance with bioinformatics

domain-specific knowledge, notably a set of hardware-implemented Bloom filters, to reduce the data volume

and subsequently improve execution efficiency. The add-on logic is not only lightweight but also reusable for

different purposes such as read partitioning, Bloom Filter operations, partition statistics calculations, and

counting table probing.

Note Abakus is first and foremost an accelerator, and SSD is a technology choice selected to build this

accelerator for its high capacity of storing a large volume of bio-sequence data, high bandwidth, and closest

proximity to raw data to largely eliminate data movement. We do not propose modifying the design of a

conventional, data-storage-oriented SSD; we leverage SSD technology to build a new accelerator. Although

Abakus can still act as a data storage unit, it does not need to compete in the commodity SSD market,

Abakus: Accelerating k-mer Counting With Storage Technology 132

similar to [283] and [285]. The large size of the bioinformatics market suggests that there is a potential

market for a product that is purely an accelerator that overcomes the I/O bottleneck. Furthermore, future

computing environments are increasingly more likely to be heterogeneous and accelerator-abundant [287, 288].

Therefore, we envision Abakus to be deployed in the cloud with other genomics accelerators to fulfill the

need for faster genome analysis, amortizing the Non-recurring engineering (NRE) cost and the Total cost of

ownership (TCO) of developing and maintaining Abakus among the entire community of users. Since data

centers comprised of proprietary accelerators for non-general-purpose computing such as Bitcoin mining,

high-frequency trading, and web search acceleration are common nowadays, and genomic analysis is growing

rapidly with high-performance sensitivity; it seems reasonable to posit interest in cloud support for faster

k -mer counting. Due to the extensive presence of k -mer matching in bioinformatics, Abakus has the potential

to be a staple residing in the genomic cloud to support many high-volume, planet-scale genomics analysis

tasks.

We propose three designs, namely (a) Abakus-Basic, where a set of near-storage-processing logic fits

at the chip level, (b) Abakus-BF, which significantly reduces the data volume by leveraging a set of

distributed Bloom filters, and (c) Abakus-OP (one-phase), which overlaps different operations to form a

pipeline. Designing a k -mer counting accelerator as a specialized product is a flexible solution to support

a variety of downstream bioinformatics pipelines because it is such a widely used bio-kernel. Through

hardware/software co-design and optimization, we incrementally add more complexity to unlock more

performance. We compare the performance of Abakus with that of CPU-, GPU-, and PIM-based accelerators

using large real-world genomes. Our evaluation suggests our most aggressive design, Abakus-OP, is able to

achieve 6.95×/11.20× average/maximum end-to-end speedup over a conventional system (CPU + GPU) and

2.32×/9.84× average/maximum end-to-end speedup over the state-of-the-art near-data processing accelerator.

8.2 Background

k -mer counting implementation has been thoroughly studied, and various data structures (hash tables, Tries,

suffix array, etc.) and methodologies (sorting, hashing, etc.) have been employed to accelerate it. A generic

histogram framework can be applied to solve the k -mer counting problem, but to achieve higher performance,

the characteristics of genome data have to be considered, such as those that leverage minimizers and Bloom

filters, introduced in the following sections.

One way of generating k -mer histogram is to use atomics and maintain an in-memory k -mer frequency

count table. An example is Jellyfish [264]. However, Jellyfish might have difficulty handling large genome files

because it keeps the histogram in memory [265]. This is the limitation of in-memory k -mer counting tools

8.2 Background 133

for (read in input_reads):
kmer_set = extract_kmers(read)
s-mer = " ", prev_minimizer = " "
for (k-mer in kmer_set):

mmer_set = extract_mmers(k-mer)
minimizer = get_minimizer(mmer_set)
if (prev_minimizer == minimizer):

s-mer = extend(k-mer)
 else:

 partitions[minimizer].add(s-mer)

prev_minimizer = minimizer
s-mer = " "

1
2
3
4
5
6
7
8
9

10
11
12

for (s-mer in partition):

for (partition in partitions):

kmer_set = extract_kmers(s-mer)
for (k-mer in kmer_set):

hashTbl[k-mer] += 1

histogram.initialize()

hashTbl.initialize()

histogram.add(hashTbl)

1
2
3
4
5
6
7
8

Phase Two Pseudocode

Phase One Pseudocode

(a) Phase one: input reads partitioning and distribution

(b) Phase Two: counting k-mers in each partition and build histogram

Figure 8.1: Illustration of a two-phase disk-based k-mer counting algorithm workflow (F: input sequence files,
P: s-mer partition files, C: k-mer counting table files.

in general. One solution is batched processing but then it creates partial histograms and requires merging,

degrading the benefit of in-memory counting by creating the I/O overhead. For data that fits in memory, it

performs similarly to other tools [265]. Since the number of distinct k-mer patterns in a production genome

dataset is often astronomical, resulting in a huge peak memory footprint. It is worthwhile to consider counting

k-mers out-of-core in a batched manner. The memory consumption of processing one batch can be tuned to

fit inside the memory of a workstation. Batches that are not currently being processed are temporarily saved

in the secondary storage devices and later brought into the memory. Such an out-of-core design allows a

small desktop to process large genomes.

Many high-performance out-of-core k-mer counting tools such as Gerbil [7], KMC3 [266], and DSK execute

in two distinct phases: a partition phase and a counting phase, and they differ mainly in their strategies to

partition input reads and their approaches to count k-mers (e.g., sorting vs. hashing). Fig. 8.1 illustrates the

high-level workflow of these tools.

Partitioning Phase. The partitioning phase splits reads into smaller chunks and shuffles them into a

number of files. Many partition algorithms make use of a minimizer, which is a substring of a k-mer whose

ranking is the lowest with respect to a total ordering (e.g., lexicographical order) of all possible substrings

of the same size m (m<k). Consecutive k-mers that share the same minimizer are grouped together into a

super-mer or s-mer and saved into a file. Fig. 8.1 illustrates the process of splitting one read CGAGCACT

into two s-mers. Let k=4, m=2, and all minimizer patterns are ranked based on their lexicographical

Abakus: Accelerating k-mer Counting With Storage Technology 134

Genomes

%
 E

xe
cu

tio
n

Ti
m

e

0

25

50

75

100

Vesca Balbisiana Crassa Gallus Thaliana

Others I/O

(a) Phase one I/O Overhead
Genomes

%
 E

xe
cu

tio
n

Ti
m

e

0

25

50

75

100

Vesca Balbisiana Crassa Gallus Thaliana

Others I/O

(b) Phase two I/O Overhead

Figure 8.2: Gerbil [7] I/O overhead.

order, i.e., A<C<G<T. Since the first three contiguous 4-mers {CGAG, GAGC, AGCA} share the same

lexicographically smallest 2-mer, AG, they are grouped into one s-mer CGAGCA. Similarly, GCAC and

CACT belong to the same s-mer GCACT. Phase one utilizes two nested sliding windows, an outer one of size

k that generates overlapping k-mers from the input reads, and an inner one of size m to identify a minimizer

within each k-mer. Each partition file is responsible for saving s-mers generated by one or more minimizer

pattern(s), which guarantees that identical k-mer patterns are saved into one partition file. Besides using the

lexicographical order to rank minimizers, there are numerous other strategies to achieve partitioning effects

such as even partition file sizes or shorter/longer average s-mers [7, 266].

Counting Phase. In this phase, each partition file is read from the disk to memory for k-mer extraction

and counting (Fig. 8.1). Both hashing and sorting-based approaches are viable, but sorting can be slower

for longer k values [265, 7]. The sorting-based approach puts identical k-mers in adjacent positions and

their counts naturally emerge. Hashing-based approaches store k-mers as keys and counters as values, and

collisions can be resolved through quadratic hashing. Since partitioning guarantees that no k-mers can be

found in more than one partition, the final k-mer frequency can be obtained by simply concatenating the

individual k-mer histograms.

8.3 Motivation

8.3.1 I/O Is the Bottleneck

Prior work [15] has shown that I/O greatly affects the performance of Gerbil, one of the best k-mer counting

tools available today [7, 265]. First, one-third of Gerbil’s instructions are composed of memory and I/O

operations. Such frequent data accesses result in poor CPU utilization (idle for over 75% of the time).

Second, as the number of intermediate files increases (necessary for larger genomes), Gerbil’s runtime also

linearly increases, further decreasing the CPU activity. These observations also broadly match our profiling

results using VTune [234] – Gerbil’s execution does not sufficiently exercise the computing capability of the

8.3 Motivation 135

underlying architecture. We then measure stalls caused by I/O. Gerbil adopts a pipelined design where

pipeline stages collaborate through a set of consumer-producer queues. In phase one, a set of threads read

raw sequence data from files and put them into a queue for subsequent ‘splitters’ threads to extract s-mers.

This requires minimal computation, and the data access is strictly sequential for both reading (from the disk)

and writing (to the queue), therefore, its latency approximates the I/O response time. The second phase

has a similar setup to read s-mers from the partition file. We estimate the I/O overhead by measuring how

often the splitter threads are idle due to an empty input queue. Fig. 8.2 shows the I/O overhead of two

Gerbil phases. Clearly, I/O causes a significant overhead, and simply removing I/O overhead could improve

performance by ∼10×.

Note the ratio of I/O in k -mer counting can be different for different input genomes due to factors such as

file types (compressed or uncompressed) and sequence formats (FASTQ or FASTA), which can change the

amount of time the CPU spends processing the raw input, subsequently resulting in different ratios of I/O in

the overall execution time. Genome characteristics also influence the I/O overhead. For example, in phase

one, genome patterns determine the size of each s-mer (also the total number of s-mers), leading to diverse

latencies to write back s-mer files; in phase two, some genomes work well with the hashing scheme (fewer

numbers of probings per k -mer insertion) while others do not, leading to longer/shorter CPU processing

time and thus decreasing/increasing I/O time ratio. Regardless, we found the I/O consistently occupies a

significant portion (¿ 50%) of runtime.

8.3.2 ISP k-mer Counting Considerations

Benefits of PWST. While k-mer counting can be accelerated through GPU [7], FPGA [271, 272], and even

near-data-processing approaches [273, 15], PWST can fundamentally solve the bottleneck caused by data

movement issues. Several characteristics of k-mer counting make it a good candidate to be processed at the

location where the data initially resides. First, SSD has a notable internal (between flash chips and the SSD

controller) and external (between host and SSD) bandwidth gap. Moreover, the internal bandwidth is easier

to scale up, for example, by providing more channels (∼1.2 GB/s per channel × number of channels [285]),

while the external bandwidth (∼7 GB/s for PCIe-4) is limited by expensive data pins. Furthermore, k-mer

counting features simple computation patterns that exhibit a low compute-to-data ratio. Thus moving the

computation into SSD is always a more effective and scalable solution than bringing data out to compute if

SSD can support sufficient compute throughput that saturates the internal bandwidth. Second, the input

genome data set contains a high percentage of erroneous k-mers, which are filtered out at the end. Moreover,

a standard genome input file may also include a large chunk of information that is useless to k-mer counting.

For example, genome files coded in the standard FASTQ format include a quality score for each base pair

Abakus: Accelerating k-mer Counting With Storage Technology 136

that are thrown away as soon as they arrive at the processor, meaning ∼50% of the data brought in is never

touched. However, prior accelerator work still has to pay the price of transferring such a bloated data set to

the main memory and compute units, which is sub-optimal, considering there are multiple choke points (e.g.,

limited external I/O and off-chip memory bandwidth) along the data path and k-mer counting exhibits a

strong streaming pattern with limited data reuse. In our evaluation, even when all computation is free, simply

reading the entire dataset into the memory makes up about 50% to 80% of the execution time. For this reason,

even if a workstation is fitted with enough main memory, the I/O bottleneck still persists. Additionally,

PWST approaches can offer better energy efficiency due to the reduction of unnecessary data movement.

Finally, processing genome data in storage can be more scalable and cost-effective than processing-in-memory,

considering an off-the-shelf dual-socket server supports over 16 NVMe SSDs that provide tens of TB of storage

capacity to accommodate large genome data and dozens of GB/s of bandwidth, all at a 20–40 times lower

price point than DRAM [289].

Which Storage-centric Solution is Suitable? We consider two storage-centric architectures: (1) a

centralized ISP organization that directly leverages the SSD controller and its DRAM [274, 275, 276, 277,

278, 279, 280, 281], and (2) a PWST solution with distributed and dedicated custom compute elements

deeply integrated along the SSD internal data path to do the processing [283, 284, 285, 282, 286]. While

both successfully reduce the data volume coming out of the storage devices, they have different capabilities

and trade-offs. We argue that the second approach is more suitable for k-mer counting. The embedded

commodity SSD controller is usually an energy-efficient CPU (3-4X lower power than the host CPU) clocked

at merely several hundred megahertz [275, 52, 282] and the DRAM is also usually smaller capacity (e.g.,

a few GBs), weaker (e.g., single-channel), and lower generation (DDR3). Besides that, an SSD controller

could only allocate 30% to 70% of its processing time for ISP kernels because it needs to perform other

management tasks such as garbage collection [274]. Simply executing k-mer counting logic using SSD core

results in compute-bound, offsetting the benefit of removing its I/O bottleneck.

Another motivation for adopting PWST is its better parallelism potential, which benefits both phase one

and phase two. Specifically, the key operation of phase one is scanning raw reads to extract s-mers, and

the key operation of phase two is scanning s-mers to extract k-mers from partitions. Both can be handled

independently by a pool of ‘workers’ (CPU threads or other comparable processing units). In addition, the

logic required by each phase is relatively simple (string manipulation and hashing, which are discussed in

Section 8.6.1), so we can implement a set of lightweight dedicated accelerator logic and distribute them

at different levels (e.g., SSD-channel and SSD-chip) to fully exploit parallelism. A high-end SSD with 32

channels and four chips/channel can provide 128 chip-level processing units, which is difficult to achieve

in a centralized ISP design where the application logic is handled in one place, such as the SSD controller.

8.4 Architecture 137

SSD DRAM (4GB)

S.mer Cache

S.mer
Mapping

Table

Cached S.mer
Partition 0

Cached S.mer
Partition N

…

Channel 0
Chip0 Chip1

Channel 1 Chip0 Chip1

Chip
Spad.

NSP
Unit

Bus Interface

D
ie 0

D
ie 1Mux

Intfc.

Read Partition 0

Read Partition 1

SSD Frontend

Address
Translation

S.mer
Management

Bus Intfc. Bus Intfc.

Bus Intfc.Bus Intfc.

S.mer
Partition 0

S.mer
Partition 1

Flash Chip
Controller 0

Flash Chip
Controller 1

Hash
Table 0

Hash
Table 1

Channel
Spad.

NSP
Unit

Hash Table Cache

Hash Table 0 Hash Table N…

NSP Unit

Multi-level
Hasher

S.mer
Extractor

Bloom
Filter

SSD Spad.

Figure 8.3: The overall architecture of Abakus.

This has been noticed in prior work [286, 283], whose design space explorations conclude that a group of

channel-level ‘weak’ processors outperforms a single ‘beefy’ SSD-level processor. Furthermore, a distributed

PWST scheme offers better performance scaling as adding more chips/channels increases both data bandwidth

and processing capabilities[286].

Finally, prior work [290] finds that SmartSSD [161] is limited by DRAM because the data from the flash

must be first written to the SSD DRAM and then read into the FPGA kernels. In comparison, PWST inserts

logic at the chip or channel level, gaining more direct access to the flash data page, thus avoiding the trip to

DRAM. k-mer counting is a stable algorithm and is unlikely to receive major updates; therefore, its need for

performance outweighs the need for flexibility.

8.4 Architecture

8.4.1 Overview of the PWST Architecture

Fig. 8.3 provides the architectural overview of Abakus for both the basic (Abakus-Basic) and the two

optimized versions (Abakus-BF and Abakus-OP), based on a standard SSD structure. Abakus contains

multiple channels, and each channel controls multiple flash chips through a flash memory controller (FMC).

The key components include an SSD controller (small CPU cores), a DRAM, and other control units for FTL

and garbage collection (not shown in the figure) along with a custom near-storage-processing unit (NSPU)

that is responsible for extracting k-mers from raw input reads and independently building partial histograms.

Each NSPU directly interfaces with the flash chip page buffer, alleviates the bandwidth pressure of the SSD

DRAM, and connects to a data buffer (SRAM scratchpad) to hold the data required for each operation. Note

that this basic design, dubbed Abakus-Basic, can only exploit chip-level parallelism. In the next section, we

describe mechanisms to integrate logic into the channel and SSD levels to extract greater performance.

Abakus: Accelerating k-mer Counting With Storage Technology 138

Read Partition 0 S.Mer Partition 0

Hash Table 0
(small)

Read Partition 1

Chip 0 NSPU 0

S.Mer Partition 1Chip 1 NSPU 1

SSD DRAM
Chip 0

Chip 1

S.Mer Partition 0Chip 0 NSPU 0 Chip 0

NSPU SRAM

Hash Table 1
(large)S.Mer Partition 1Chip 1 NSPU 1 Chip 1

SSD DRAM

(a) Phase 1: super-mer generation.

(b) Phase 2: hash table-based k-mer counting.

Bloom
Filter 0

Bloom
Filter 1

Figure 8.4: The basic two-phase hardware workflow of Abakus. Bloom filter is effective in Abakus-BF

8.4.2 Abakus-Basic Overview

Fig. 8.4 shows the design and workflow of Abakus-Basic that directly maps the two-phase algorithm onto the

SSD.

In the first phase, reads are split into s-mers that are then gathered into the same partition if they share

the same minimizer (Sec. 6.2). The raw input reads are evenly distributed to each chip a priori so that

each NSPU is able to continuously read pages containing raw inputs provided to it, generate s-mers, and

deposit them into its SRAM scratchpad. A partition tag is provided for each extracted s-mer to indicate its

destination partition. Once the scratchpad memory is full, the corresponding NSPU transfers its data (i.e.,

s-mers) to the SSD DRAM that stores the received s-mer in a reserved space called the s-mer cache that is

further divided into multiple sets, with each set storing s-mers that belong to the same partition. If a set is

full, all of its s-mers are written to its target chip based on the partition-to-chip mapping table, and the set

space is reclaimed. We generate the mapping table based on a partitioning strategy described in Sec. 8.5.

The partial partition is combined in the destination chip with those from the previous DRAM write-back to

form the final partition. Phase one concludes when every NSPU finishes its share of input reads and the

s-mer cache is emptied, with each chip storing a number of s-mer partitions as a result.

In the second phase, each chip-level NSPU reads pages that contain partitions and attempts to build one

hash table for each partition to count k-mers in that partition. We adopt hash-based counting rather than a

sorting-based approach given its more stable performance [7], and due to the fact that the hashing logic can

be reused to enable optimizations such as the Bloom filter, a feature we use in our optimized designs. Each

chip-level NSPU has a small bookkeeping data structure (∼2 KB) that tracks the address of each partition.

Once the NSPU completes counting the k-mers for a partition, its associated hash table is saved/written back

8.5 Partitioning Strategy 139

into the chip. For a large partition where its hash table exceeds the chip-level scratchpad memory at run

time, the unfinished partition and its hash table are transferred to the larger capacity SSD DRAM, and the

SSD controller takes over the work of building the hash table. Once the SSD controller completes counting

k-mer for the large partition, the hash table is written back to the chip. Note that while this basic version

executes phase one and phase two separately, similar to the CPU baseline, we later introduce a pipelined

version (Sec 8.9 Abakus-OP) as an optimization.

8.5 Partitioning Strategy

Clearly, the performance of the proposed design is bottlenecked by the number of large partitions whose

hash tables won’t fit in the chip-level NSPU’s scratchpad memory. Since large partitions need to be sent

to the SSD and processed using the SSD controller and DRAM, too many large partitions could degrade

performance. Given our ability to process multiple partitions in parallel, we reduce the number of large

partitions by dividing s-mers into a number of smaller partitions, allowing us to continue to exploit parallelism

while minimizing additional data transfer costs. In our design, we maintain a one-to-one mapping between

a minimizer and a partition, namely one partition containing all s-mers that are generated from the same

minimizer, therefore, the more the minimizers, the more partitions, and the smaller each partition will be.

For a minimizer of length m, there are 4m minimizers (4 possible base pairs at each position). If m = 9 and

we let the chip-level scratchpad size be 1 MB, for the set of genomes in our evaluation, only 0.03% to 1.04%

partitions are too large to be processed at the chip level. This percentage is expected to dwindle further with

a larger m and scratchpad memory.

The second factor that affects performance is the basis of the assignment of partitions to chips. Uneven

distribution of partitions could create a performance bottleneck similar to thread divergence resulting from

workload imbalance. However, the exact sizes of partitions are unknown until the end of the first phase.

To this end, we explore three possible mapping strategies – (1) a round-robin strategy where the partition

corresponding to minimizer i is assigned to chip i, (2) a random distribution scheme where any partition

can be assigned to any chip, and (3) a heuristic-based scheme that leverages the inherent ordering of all

minimizers. We observe that a minimizer with a lower ranking is likely to generate more s-mers than ones

with a higher ranking. Therefore, we assign pairs of partitions to chips where each pair contains a partition

corresponding to a low-ranking minimizer and another one corresponding to a high-ranking minimizer. Our

evaluation shows that the heuristic-based mapping has a slight performance edge compared to the random

scheme, and both outperform round-robin consistently.

Abakus: Accelerating k-mer Counting With Storage Technology 140

k-mer from NAND chip

s-mer Splitter

k-mer
Comparator

Minimizer

s-mer
Buffer

Hasher

SRAMto SRAM

to channel bus

Phase 1 Phase 2
SeaHash 1

SeaHash n

k-mer

· · ·

s-mer Hash value

k-mer 0

w-b word

(a) Hash Counting Table

CNT 0

k-mer i CNT i

· · ·
Bit 0-31

w-b word

(b) Bloom Filter

· · ·Depth-d Bit 32i+0-32i+31

k-mer d CNT d Bit 32d+0-32d+31

log2d bit
Hash value

log2d+log2w bit
Hash value

Figure 8.5: Diagram of the near-storage processing unit (NSPU).

Note that all aforementioned partition strategies in this work fully utilize the computation resources and

parallelism. The number of partitions can be calculated as 4m, where m is the minimizer size. We let m ≥ 9,

which leads to at least 26,2144 partitions. A high-end SSD comes with 32 4-way channels (128 chips or

NSPUs). It’s unlikely to have more NSPUs than partitions. All proposed partition schemes would distribute

an equal amount of partitions (2048) to each NSPU to process. Moreover, we find out that the proposed

prediction-based scheme can further minimize the tail latency, balance workload among NSPUs, and reduce

Flash chip wear (Sec. 8.11.4).

Finally, data reduction could also improve performance. In particular, phase one shuffles input reads in

the form of s-mers that are written first to DRAM and then to a chip, wasting bandwidth if they eventually

land back on the same chip. For such s-mers, we save them directly to their respective partitions. Our

evaluation suggests that trimming off this portion of data yields a small but noticeable (7-10%) speedup.

8.6 Custom Hardware Design

We introduce custom logic in different levels of SSD to accelerate k-mer counting. Specifically, in Abakus-Basic,

chip-level NSPUs process chip-independent operations (s-mer extraction and hash table building). We also

introduce a set of custom designs at the SSD level to handle global operations or those that exceed the

capability of chip-level hardware.

8.6.1 Chip-level NSPU

Each flash chip implements one NSPU to provide k-mer counting-related computations. As shown in Fig.

8.5, each NSPU contains three main components: (1) an s-mer splitter for s-mer extraction, (2) a Hasher

module to compute hash values for given k-mer, and (3) an SRAM that stores intermediate data. In phase

one, the s-mer splitter is activated to iteratively compare the incoming k-mer with the stored minimizer. The

k-mer is concatenated and cached in the s-mer buffer. When the next minimizer is detected (by a k-mer

8.7 Abakus Optimizations 141

comparator), the cached s-mer is sent to the SRAM. The hasher module implements n = 8 SeaHash [291], a

lightweight hashing scheme with low collision probability, with different seeds to calculate hash values. The

hasher is activated during phase two to support either the hash table or the Bloom filter, depending upon the

memory mapping in SRAM (shown in Fig. 8.6). While operating in the hash table mode, the k-mer string

and the counting value (CNT) are concatenated in one row with w-bit width, with the log2 d-bit address

truncated from the hash value. The Bloom filter mode needs bit-level data granularity, so an additional

log 2w-bit address is added to the address. In this case, the w-bit word is first fetched from SRAM by the

log2 d-bit hash, and the target bit in the row is indexed by the remaining log 2w-bit hash.

8.6.2 SSD-level Processing

While our design philosophy avoids heavy usage of SSD-level resources, we still need customized SSD-level

processing to efficiently support end-to-end k-mer counting. There are multiple use cases of SSD-level

processing in the Abakus workflow. First, phase one needs to merge s-mers from different chips for each

partition which is then written back to the corresponding chip. Second, during phase two, we need SSD-level

processing for a large counting table that cannot fit in the low-level (e.g., chip-level) scratchpad. To support

such operations, Abakus adds custom control logic and buffer at the SSD level and repurposes the SSD

DRAM to store various data structures.

In conventional SSD, the SSD-level DRAM primarily acts as a write cache to hide the latency of costly

SSD write. In Abakus, we re-purpose it to store the metadata as well as the global intermediate results. In

phase one, it stores an s-mer cache and an s-mer mapping table to merge s-mers from different chips and

track the locations of partitions for different s-mers. When chip-level NSPUs extract s-mers and send them

to the SSD-level, the Abakus front-end stores the received s-mers in the corresponding s-mer cache set and

writes the buffered set back to the chip if it is full as described earlier. In phase two, the SSD DRAM serves

as backup storage for counting hash tables when a partition requires a large hash table that cannot fit in the

low-level scratchpad. Since all chips share the DRAM, the SSD-level counting for different partitions needs

to be serialized. Therefore, too many large hash tables could result in a performance loss.

8.7 Abakus Optimizations

Abakus-Basic significantly improves the execution of k-mer counting. However, its performance can be

bottlenecked by the capacity of the chip-level scratchpad. In this section, we first describe an optimized

design, Abakus-BF, that integrates a Bloom filter per NSPU leveraging the characteristics of the k-mer data

Abakus: Accelerating k-mer Counting With Storage Technology 142

k-mer from NAND chip

s-mer Splitter

k-mer
Comparator

Minimizer

s-mer
Buffer

Hasher

SRAMto SRAM

to channel bus

Phase 1 Phase 2
SeaHash 1

SeaHash n

k-mer

· · ·

s-mer Hash value

k-mer 0

w-b word

(a) Hash Counting Table

CNT 0

k-mer i CNT i

· · ·
Bit 0-31

w-b word

(b) Bloom Filter

· · ·Depth-d Bit 32i+0-32i+31

k-mer d CNT d Bit 32d+0-32d+31

log2d bit
Hash value

log2d+log2w bit
Hash value

Figure 8.6: Mapping for Hash Table and Bloom Filter modes

set, and then propose a more aggressive design, Abakus-OP, which leverages a set of additional channel-level

and SSD-level NSPUs to aggressively overlap operations to merge two k-mer counting phases into one.

8.8 Abakus-BF

8.8.1 Abakus-BF Motivation

As alluded to in the previous sections, a Bloom filter can optimize the performance of k-mer counting since low-

frequency k-mers can be disregarded (as is typical in most use cases [59, 243, 244, 245, 246, 247, 248, 249, 250]).

The exact frequency threshold varies, but it is safe to assume that single-occurrence k-mers is always erroneous

and can be discarded. A Bloom filter is a space-efficient data structure that can be used to determine if an

item has appeared previously with a small false positive rate but with zero false negative rates. It consists of

n hash functions and a bit vector. When it encounters an item, it computes n hash values indexing into n

positions of the bit vector. If all indexed bits are ones, then it assumes that it has probably seen the item. If

some indexed bits are zeros, it assumes that it has definitely never seen the item and can be inserted into the

filter by flipping those zero bits to ones. In the context of k-mer counting, we integrate a Bloom filter to

preemptively filter out as many single-occurrence k-mers as possible before they make it to the hash table.

The procedure is to query the Bloom filter for each extracted k-mer before inserting it into the hash table. If

the Bloom filter returns true, then the k-mer is inserted into the hash table. Otherwise, it is inserted into

the Bloom filter. In other words, only k-mers that appear more than once are inserted into the hash table.

Filtering out single-occurrence k-mers can be immensely helpful in terms of reducing the hash table size for

each partition by reducing the number of keys because single-occurrences k-mers make up a large portion of

k-mer patterns (e.g., 98.32% for the Thaliana genome). See Table 8.2.

Notice each k -mer pattern can only appear in one specific partition, thanks to the minimizer-based

partitioning strategy. Since each partition is assigned to a specific chip/NSPU, and no partition is split to

more than one chip, there won’t be any k -mer patterns that appear in more than one private Bloom filter.

8.8 Abakus-BF 143

Read Partition 0 S.Mer Partition 0

Hash Table 0
(partial)

Read Partition 1

Chip 0 NSPU 0

S.Mer Partition 1Chip 1 NSPU 1

SSD DRAM

NSPU SRAM

Hash Table 1
(partial)

NSPU SRAM
Uncounted
k-mers

(b) Phase 2: hash table-based k-mer counting.

Bloom
Filter 0

Bloom
Filter 1

Chip 0

Chip 1

Hash Table 0
(small)

NSPU SRAM

Hash Table 1
(large)

SSD DRAM

Figure 8.7: Abakus-OP Workflow

Determining when, where, and how to incorporate a Bloom filter into Abakus is a large design space

exploration problem. In this section, we introduce one such solution (Abakus-BF) where a set of Bloom filters

are instantiated in phase two at the chip level. In the next section (Sec. 8.9), we discuss another variation

where the Bloom filters are used earlier.

8.8.2 Abakus-BF Overview

Fig. 8.4(b) illustrates the workflow of phase two in Abakus-BF. Most of the features of Abakus-Basic are

retained, with the additional step of probing Bloom filters before inserting k-mers into the hash tables during

phase two. Note that Abakus-BF maintains a separate Bloom filter for each partition instead of keeping

a centralized one. This is because a big Bloom filter that tracks the single k-mers in all of the partitions

would be too large to fit in the chip-level scratchpad, so it has to be kept in the SSD DRAM at run time.

Subsequently, all of the chip-level NSPUs have to access the DRAM to perform their Bloom filter operations,

creating a bottleneck. Alternatively, if each partition can maintain its own private (albeit smaller) Bloom

filter, then each chip-level NSPU can be fully independent, preserving the parallelism.

8.8.3 Estimate the Bloom filter Size

Building an effective Bloom filter for each partition entails solving several issues. The first is to determine

an appropriate false positive rate P to find an optimal size of the bit vector without taking up an excessive

amount of chip-level scratchpad memory. In Abakus-BF, both the Bloom filter, specifically its bit vector, and

the hash table have to be stored in the chip-level scratchpad memory. As previously stated, a Bloom filter

has a false positive rate, which means that it might incorrectly determine that a k-mer occurs multiple times,

even though it occurs only once, due to which a single-occurrence k-mer might slip through the Bloom filter

Abakus: Accelerating k-mer Counting With Storage Technology 144

and get added to the hash table, incurring unnecessary hash lookups and potentially making the hash table

too large to fit inside the scratchpad memory.

The interplay of the bit vector size m, false positive rate P , and the number of items to be inserted into

the Bloom filter n (i.e., number of unique k-mers of a partition) can be captured in the formula: m = −n×lnP
(ln 2)2

,

which indicates that the false positive rate declines as the bit vector size increases, given a certain number

of elements that need to be inserted to the Bloom filter. We first vary P from 1% to 25% and empirically

measure the expected Bloom filter and hash table sizes for all partitions of the five selected input genomes,

assuming n for each partition is known. We discover that as P decreases, the hash table sizes decrease because

more single-occurrence k-mers are filtered out. But at the same time, the Bloom filter size increases because

a more powerful Bloom filter requires a larger bit vector. A sweet spot is around P = 5%, where both the

bit vector and the hash table can be fit inside the chip-level scratchpad memory for the largest number of

partitions per genome. Another possibility is to develop a sophisticated control unit to dynamically adjust an

optimal P for each partition based on variables such as n, scratchpad memory, and the performance of the

previous Bloom filter, although it may entail additional latency and control complexity.

8.8.4 Estimate Partition Cardinality

The next challenge is to estimate n, the number of unique k-mers, for each partition. A näıve approach would

be to scan each partition and add its unique k-mers into a dictionary prior to phase two. However, this

approach is extremely expensive in terms of space and latency and, moreover, entails performing redundant

operations. Our solution is to leverage a cardinality approximation algorithm called Hyperloglog [292] that

stems from its basic form called Loglog which uses a counter x to track the longest streak of trailing (or

leading) zeros of the hashed values of all the elements (i.e., k-mers) in a set (i.e., partition). The total number

of unique elements in the set is then estimated as 2x. This algorithm only needs a few bits to count tens of

billions of unique elements, but it tends to have large variances, especially with smaller sets. Hyperloglog

improves its accuracy using additional counters and other statistical measures to remove outliers. To integrate

partition cardinality estimation into Abakus-BF, we store the counter bits per partition inside the SSD

DRAM. The SSD core performs the Hyperloglog computation for that s-mer set before it is evicted to the

target chip. This adds an insignificant overhead in execution time (< 1%) because the SSD core is mostly

idle and there is enough surplus computing power to spare (Abakus uses the SSD core very conservatively).

The additional storage overhead for counters is less than 14 MB for all partitions.

8.9 Abakus-OP 145

8.9 Abakus-OP

8.9.1 Motivation

The performance of Abakus-Basic and Abakus-BF is primarily limited by the chip-level SRAM scratchpad

memories (512KB in current design). If a partition’s Bloom filter and/or hash table is too large, then the

data and computation need to be transferred to the SSD core and the DRAM to handle (Sec. 8.4.2), creating

additional data movement and resource contention. Fitting a larger scratchpad at the chip level might be

challenging due to potential power delivery issues and area overheads. Previous works have explored the

placement of logic and memory at the channel and SSD levels [283, 284, 286], trading parallelism for better

processing power and area budget [283, 286]. In Abakus-OP, we propose keeping the chip-level NSPU phase

one logic unmodified but moving its phase two logic into the SSD and channel levels. Specifically, Abakus-OP

adds an SSD-level SRAM scratchpad memory (SSD S.pad in Fig. 8.3) to store Bloom filters and a series of

channel-level NSPUs and their SRAM scratchpad memories for hash tables. With the larger capacity of the

SSD and channel-level scratchpad memories, nearly all of the partitions’ Bloom filters and hash tables can be

accommodated without resorting to the DRAM.

Further, recall that in both Abakus-Basic and Abakus-BF, the s-mers partitions are written to the chips

in phase one and read out again in phase two. If the partitions are converted to hash tables right away, we

can skip the step of storing them back and eliminate the cost of reading the partitions out. To this end, in

Abakus-OP, we orchestrate the operations pertaining to the two phases to overlap in a pipelined fashion.

8.9.2 Abakus-OP Overview

Figure 8.3 illustrates the architecture, and Figure 8.7 illustrates the workflow of Abakus-OP, which represents

our most aggressive Abakus variation, where the custom logic is distributed and integrated along the SSD data

path at all levels. At the SSD level, there is a large (32 MB in the current design) SRAM scratchpad memory

that buffers Bloom filter(s) for one or more partition(s), and at each channel level, there is a scratchpad

memory (swept from 256KB to 32 MB for a sensitivity study in Sec. 8.11.4) to buffer hash tables. The chip

level NSP is simplified to only have the logic that extracts s-mers, as the counting is performed at the channel

level. We keep the total aggregated chip-level scratchpad memory of each channel at the same capacity as

that of channel-level scratchpad memory.

The chip-level NSPUs extract s-mers and send them to the SSD DRAM to aggregate partitions. This

step is exactly the same as that in Abakus-Basic and Abakus-BF. Once a set that contains s-mers for a

partition is full, Abakus-OP loads the Bloom filter for that partition into the SSD scratchpad memory from

the chip to filter out single k-mers by breaking each s-mers down to a bag of loose k-mers used to probe the

Abakus: Accelerating k-mer Counting With Storage Technology 146

Bloom filter. The SSD-level scratchpad typically has enough capacity to simultaneously cache more Bloom

filters than the number of channels, and further increasing its size offers no perceivable speedup. k-mers that

passed its Bloom filter will be directed to the channel-level NSPUs for hashing, and its hash table is cached at

the channel-level scratchpad that can store multiple hash tables for different partitions. As more s-mer sets

corresponding to different partitions arrive, some of the cached Bloom filters in the SSD-level scratchpad and

the hash tables in the channel-level scratchpad need to be evicted to make room. We once again leverage the

total ordering of the minimizers to keep the “hot” ones in the scratchpads and write those corresponding to

lower-ranking minimizers to the chips. This replacement scheme is highly effective because the lower-ranking

minimizers often generate smaller partitions, and their s-mer set only needs to be evicted once, with their

Bloom filters, and hash tables also used only once.

Once all s-mer sets in the DRAM are drained, the entire k-mer counting process terminates. Note that

the partitions are not saved and read back out in the process. However, we can still occasionally encounter

large partitions whose hash table memory requirement exceeds that of the channel-level scratchpad, even

after passing the Bloom filter. When this happens, the bag of loose k-mers created from the Bloom filter

probing and the corresponding hash table is temporarily saved to the chips to be later processed using the

SSD core and the DRAM. While this does negatively impact the performance of Abakus-OP due to the

additional data movement, it is also extremely rare. Of all the genomes that we evaluated, with a 4 MB

channel-level scratchpad setup, the worst case has only seven large partitions that need separate handling.

8.9.3 Abakus-OP Estimate Partition Cardinality

Although the separation of phase one (s-mer extraction at chip level) and phase two logic (k-mer counting

at channel level) allows for a pipelined implementation, the partition k-mer cardinality estimation, which

is essential to sizing the Bloom filters still remains unaddressed. In Abakus-BF, this step is piggybacked

with the s-mer set writeback in phase one, and Bloom filters are only later instantiated in phase two. But in

Abakus-OP, s-mer sets are used to build the hash tables right away, leaving us no chance of finalizing the

unique k-mer count for each partition. To this end, we add an additional stage called phase zero, where each

chip locally scans reads to estimate cardinality information and sends the results (i.e., Hyperloglog counters)

to the DRAM to aggregate a final estimation. The resulting data footprint is small since only the integer

counters are communicated, rather than the actual s-mers.

8.10 Methodology 147

Table 8.1: Area and power breakdown.

Component
Area Leakage Dynamic
(mm2) Power(mW) Energy(nJ)

k-mer splitter 0.004 0.001 0.001
SeaHash ×8 0.027 0.001 0.004
SRAM 512KB 0.48 63.5 0.008
SRAM 2MB 1.71 617.7 0.017

Abakus-Basic
0.51/chip

Peak Power (W)
(128 × 512KB SRAM/chip) 8.6

Abakus-BF
0.51/chip

Peak Power (W)
(128 × 512KB SRAM/chip) 8.6

Abakus-OP
1.83/channel

Peak Power (W)
(32 × 2MB SRAM/channel) 20.0

8.10 Methodology

Baseline. We compare the performance of Abakus against several existing platforms for k-mer counting,

including multi-core CPU, GPU, and previous DIMM-based accelerators [273]. For CPU and GPU baselines,

we use a state-of-the-art disk-based k-mer counting tool, Gerbil [7], that provides the best performance

and memory efficiency among other tools [265]. The DIMM-based accelerator, NEST [273], adds parallel

processing elements for k-mer counting in the rank-level of LDDIMM. NEST only accelerates the counting

phase (similar to phase 2 in our algorithm) when the DRAM can fit the whole original read and the counting

table. For a fair comparison, we adopt 128GB of memory (1 channel and 2 DIMMS) which can hold all

tested datasets. We use the timing and energy values reported in the NEST paper to build the roofline model

which takes in the k-mer statistics for performance evaluation. We also implement a roofline evaluation

for Abakus-OP on a commercial product (SmartSSD [161]) which has an SSD-level FPGA accelerator with

DDR4 SDRAM@2400Mbps, consuming 25W power in total. We assume SmartSSD has infinite (unrealistic)

compute throughput and DRAM capacity and evaluate the performance mainly based on internal SSD and

DRAM bandwidth.

The evaluation is conducted on a server with Intel i7-11700K CPU and 64GB DDR4-2400 RAM and

NVIDIA RTX 4090 GPU. We measure CPU and GPU energy consumption using Intel Power Gadget and

nvidia-smi. The equipped SSD is SK Hynix Gold P31 NVMe SSD with 2TB size and 3D TLC. It is an

integrated PCIe 3 ×4 bus and LPDDR4-4266 DRAM to realize a peak 3.5GB/s sequential read rate. For a

fair comparison, we follow a similar methodology described in a prior in-storage acceleration paper [283] for a

simulated host baseline using the same SSD specifications as Abakus. Specifically, we collect the real SSD

traces on the baseline systems and feed the collected traces to our simulation infrastructure. The performance

of simulated CPU and GPU baselines are 7.6% to 12.8% faster than the performance measured on the real

machine.

Abakus: Accelerating k-mer Counting With Storage Technology 148

Table 8.2: Input Genome Datasets (Default k = 28)

Dataset Size (GB) # 28-mers # Unique # Single

Balbisiana 91 20.5 billion 965.7 million 518.4 million
Crassa 23.3 15.7 billion 15.0 billion 14.8 billion
Gallus 28 6.3 billion 1.4 billion 479.2 million
Thaliana 17 8.9 billion 8.4 billion 8.3 billion
Vesca 13.5 5.8 billion 1.8 billion 1.4 billion

0

4

8

12

16

Balbisiana Crassa Gallus Thaliana Vesca Balbisiana Crassa Gallus Thaliana Vesca Balbisiana Crassa Gallus Thaliana Vesca

K=14 K=21 K=28

Sp
ee

du
p

CPU CPU+GPU NEST SmartSSD Abakus-Basic Abakus-BF Abakus-OP

1

10

100

1,000

10,000

100,000

Balbisiana Crassa Gallus Thaliana Vesca Balbisiana Crassa Gallus Thaliana Vesca Balbisiana Crassa Gallus Thaliana Vesca

K=14 K=21 K=28

E
ne

rg
y

(J
)

CPU CPU+GPU NEST SmartSSD Abakus-Basic Abakus-BF Abakus-OP

Figure 8.8: The overall performance and energy across different platforms, genomes, and k sizes.

Workloads. We evaluate five genome datasets from different species: Balbisiana, Crassa, Gallus, Thaliana,

and Vesca (see Table 8.2), that are large enough to sufficiently exercise all hardware components in Abakus.

All datasets are downloaded from NCBI [293] by entering their SRA codes from Gerbil [7].

Simulation Infrastructure. We model the performance of Abakus in a modified, trace-driven, state-of-

the-art SSD simulator, MQSim [52]. We implement several new SSD commands in MQSim to simulate read,

write, and k-mer counting computation in the chip and the channel level. We also implement a new DRAM

cache mode to simulate the behavior of SSD DRAM for k-mer counting. We first collect k-mer traces of Gerbil

running on the CPU workstation, as well as the statistics of each partition, and then sweep parameters relating

to various Bloom filter setups, partitioning strategies, Hyperloglog parameters, and NSPU configurations

including scratchpad memory sizes, to generate detailed traces that feed into the custom MQSim simulator

for performance modeling. We note that our simulation platform based on MQSim [52] simulates end-to-end

behaviors of SSD requests, including the host, the device, and host-device communication (e.g., PCIe bus).

Table 8.1 summarizes the parameters for Abakus. We assume that the SSD has 32 channels and each channel

has 4 chips by default. We use the triple-level cell (TLC) technology for flash chip, which features 60µs

read latency and 700µs write latency for an 8KB page [294, 295]. The configuration of NSPU and buffer

depends on the design. The NSPU is implemented using Verilog HDL and synthesized using Synopsys Design

Compiler using TSMC 40nm technology node. The clock frequency is 200 MHz and the design is scaled to

22nm. Timing and energy values of SRAM are extracted from CACTI-3DD [156] in 22 nm.

8.11 Results 149

8.11 Results

8.11.1 Area Overhead Analysis

Table 8.1 shows the area and power breakdown for NSPU and the three Abakus designs. The ASIC components

of Abakus-Basic and Abakus-BF are implemented in the flash chips, resulting in 0.51mm2 additional overhead

for each chip. Abakus-Basic and Abakus-BF have the same total area of 65.9mm2 while Abakus-OP (58.6mm2)

is slightly smaller because 2MB SRAM has higher area efficiency than 512KB SRAM. We observe that

state-of-the-art flash chips [296, 297] have over 120mm2 total area, and around 10% of the area is reserved

for peripheral circuits. Thus Abakus-Basic and Abakus-BF have around 4% area overhead for each flash chip.

For Abakus-OP, the overhead is negligible since the 2MB SRAM is implemented in FMC. Although we lack

the resources to model the exact area of FMC, we note that LDPC ECC [298], a module implemented in

FMC, has a comparable area with 2MB SRAM. Therefore, we believe that all three Abakus variants are

practical for manufacturing and have a minor impact on storage density.

8.11.2 Overall Performance and Energy Efficiency

Figure 8.8 shows the overall performance and energy consumption across the different platforms. All Abakus

architectures adopt 32 SSD channels where each channel consists of 4 chips. We assume the same amount of

distributed NSPU SRAM scratchpad (64MB) in all architectures for a fair comparison. Specifically, both

Abakus-Basic and Abakus-BF have a 512KB scratchpad in each chip, while Abakus-OP features a 2MB

scratchpad in each channel. We find that our most aggressive design, Abakus-OP, is 8.38×, 6.95×, and

2.32× faster and consumes 15.22×, 19.93×, and 3.23× less energy than Gerbil CPU, Gerbil CPU+GPU, and

NEST respectively. As compared to SmartSSD [161], Abakus-OP is 3.47× faster and consumes 2.18× less

energy. The speedup over NEST is more significant for larger k than smaller k, demonstrating its substantial

scalability benefits. We also observe that Abakus-OP significantly improves the performance of the näıve

design (Abakus-Basic) and its optimization (Abakus-BF), outperforming them by 2.57× and 1.76× while

consuming 0.98× and 1.66× energy respectively since the power of each scratchpad memory does not linearly

scale with capacity.

We make three major observations regarding Abakus’s performance in relation to its input data char-

acteristics. First, Abakus-BF improves upon Abakus-Basic the most when there are a large percentage

of single-occurrence k-mers, as evidenced by Crassa and Thaliana genomes when k = 28 (See Table 8.2).

This is because Bloom filters reduce the size of each partition’s hash table by preemptively removing the

single-occurrence k-mers, and the number of large partitions to be processed using SSD-core and DRAM

Abakus: Accelerating k-mer Counting With Storage Technology 150

0

0.2

0.4

0.6

0.8

1

Abakus-Basic

0

0.2

0.4

0.6

0.8

1

Abakus-BF

0

0.2

0.4

0.6

0.8

1

Abakus-OP

0
0.2
0.4
0.6
0.8

1

Balbisiana Crassa Gallus Thaliana Vesca

Abakus-Basic

Flash Read Flash Write DRAM Access Computation

Figure 8.9: Performance breakdown for the three Abakus designs.

(Sec. 8.4.2 and 8.6.2), resulting in an overall reduction in the number of Flash writes and DRAM accesses. In

fact, Abakus-BF only performs marginally better than Abakus-Basic when k = 14 because the percentage

of single-occurrence 14-mers per partition is low (2∼3%) and all partitions are small enough to fit in the

chip-level scratchpad. Second, on workloads that generate large s-mer partitions, such as Balbisiana and the

Crassa, where a large number of Flash writes is required, Abakus-OP significantly outperforms Abakus-BF

and Abakus-Basic by removing the latency spent on saving the s-mer partitions. In addition, for these

workloads, their resulting k-mer histograms, which can be estimated using # Unique - # Single k-mers in

Table 8.2, are rather small, further reducing the number of Flash writes, providing a substantial speedup.

Third, while Abakus-OP outperforms other Abakus setups as well as prior proposals in most cases, it might

suffer from data explosion and workload imbalance for some input, for example, Vesca at k=28. This is due

to one large s-mer partition, which generates an excessive amount of loose k -mers for the local channel-level

scratchpad to handle (Sec 8.9.2), resulting in a significant increase of read/write commands that are handled

by one chip.

8.11.3 Performance Breakdown

Fig. 8.9 shows the performance breakdown and bandwidth utilization of three designs. We measure the

execution time spent on SSD DRAM operations, chip read, chip write, and NSPU computation. As shown

in the Figure, Abakus-OP has the highest utilization of NSPU, where the computation takes up 59.3% of

execution time on average, more than doubling the utilization rate of Abakus-Basic and Abakus-BF that

spends more time on costly Flash write operations which are significantly reduced in Abakus-OP via hardware

Bloom filters, pipelined operation of the two phases, and an overall reduction in the DRAM access latency

due to fewer occurrences of large tables in the DRAM.

8.11 Results 151

0
1
2
3
4

B
al
bi
si
an
a

C
ra
ss
a

G
al
lu
s

T
ha
lia
na

V
es
ca

B
al
bi
si
an
a

C
ra
ss
a

G
al
lu
s

T
ha
lia
na

V
es
ca

B
al
bi
si
an
a

C
ra
ss
a

G
al
lu
s

T
ha
lia
na

V
es
ca

k-14 k-21 k-28

Sp
ee
du
p

Round-Robin Random Predict-based

Figure 8.10: The performance of different partitioning strategies.

8.11.4 Sensitivity Analysis

Partition Allocation

We first analyze the effect of different partitioning schemes for Abakus, including a näıve round-robin scheme,

a fully random scheme, and a scheme using the prediction-based heuristic method (See Sec. 8.5). Recall

that the partitioning scheme has an impact on data distribution (e.g., s-mers, Bloom filters, and hash tables)

and ISP operations, and an unbalanced partitioning may lead to long tail latency. Fig. 8.10 shows the

result of this exploration. We observe that the random scheme uniformly outperforms the round-robin (by

1.65-2.18×) for all values of k. The prediction-based heuristic scheme is 1.87×, 2.36×, and 1.97× faster

than the round-robin scheme when k is set to 14, 21, and 28, respectively. While the prediction-based

scheme overall only outperforms the random scheme slightly, it does offer the benefit of distributing the data

more evenly among chips, potentially limiting Flash wear. Thus we default the partitioning strategy to the

prediction-based scheme.

SSD Scalability

We scale the number of SSD channels from 8 to 32, which also increases the parallelism by 4×. We observe that

the 16- and 32-channel architectures are 1.63× and 2.44× faster than the 8-channel architecture, respectively.

The performance improvements due to the increased hardware parallelism vary across different workloads,

but overall, Abakus achieves good scalability because of its ability to limit contention for high-level shared

resources.

Buffer Size

Fig. 8.11 explores the performance sensitivity due to varying the SRAM buffer size. As compared to 4MB,

8MB, 16MB, and 32MB channel-level buffers, we observe that the 2MB buffer is 1.03×, 1.08×, 1.17×, and

1.43× slower. However, if the buffer size is larger than 4MB, the custom hardware requires more than 42.7W

power and 104.2mm2 area in a 32-channel SSD. At the same time, 2MB is 1.19× faster than 1MB while only

Abakus: Accelerating k-mer Counting With Storage Technology 152

requiring 19.8W power and 54.6mm2 area overhead. Therefore, 2MB channel-level buffers provide a good

balance of performance and area/power efficiency.

Overall, Abakus-OP with a smaller channel-level scratchpad suffers from performance degradation because

it cannot efficiently handle large partitions due to a larger number of additional chip read/write commands

generated for loose k -mers after Bloom Filter probing (Sec 8.9.2). However, smaller scratchpad designs can

exhibit better area/power efficiency than larger scratchpad designs. For example, Abakus-OP with 512KB

scratchpad per channel-level NSPU is 1.98× slower but only requires 15.47mm2/2.03W area/power overhead,

which is 3.53×/9.73× better than its 2MB counterpart. Furthermore, 512KB configuration is only 4% slower

than its 2MB counterpart in three out of five workloads. This observation shows the possibility of further

reducing the overhead of Abakus while maintaining the acceleration benefits for some workloads.

8.12 Discussion

Impact on Error Detection and Correction. A major concern of ISP and PWST is flash memory errors.

The error detection and correction mechanisms are typically located outside the flash. For example, there is

usually an ECC module at each channel-level FMC to ensure the data integrity of a page [299, 285, 276, 277].

However, the chip-level NSPUs in Abakus tap into the flash chips for fast data access which means the error

correction is skipped. Providing an ECC module per chip-level NSPU can be challenging. We argue this

should not present an issue for Abakus for several reasons. First, most bioinformatics algorithms, including

k-mer counting, are inherently error-tolerant. In fact, there have been accelerator designs using a probabilistic

data structure called counting bloom filters to approximately counting k-mers [273, 272]. In general, k-mer

counting algorithms do not have to be exact for most use cases [300]. Second, the raw NGS reads already

have an average error rate of 0.1%, meaning there is one erroneous base pair in every thousand base pairs,

which is much worse than the raw bit error rate of a flash chip (in the order of 10-6 [301]). Third, we simulate

a process of counting 28-mers of the E.coli genome without ECC by randomly flipping bits based on the flash

raw bit error rate [301]. We discover that roughly 7% of 28-mers are miscounted, but over 90% of them are

off by only one or two. We then input this miscounted 28-mer set into a DBG assembler [247] and get no

assembly score degradation, showing that ECC is likely not needed for the specific case of k-mer counting in

storage.

Wear-leveling and Write Amplification. As the initial effort of enabling a PWST k-mer counting

algorithm, Abakus does not lead to more severe endurance issues than the CPU baseline. First, the amount

of data that needs to be written to the chips are smaller (Abakus-OP) or at least equal to (Abakus-Basic

and Abakus-BF) that of the CPU baseline. Second, our partitioning scheme 8.5 ensures that each chip

8.13 Conclusion 153

0.1

1

10

100

1000

1

10

100

1000

128KB 256KB 512KB 1MB 2MB 4MB 8MB 16MB 32MB

Po
w

er
 (W

)

A
re

a
(m

m
2)

Area (mm^2) Power (W)

0

2

4

6

8

Balbisiana Crassa Gallus Thaliana Vesca
Sp

ee
du

p

128KB 256KB 512KB 1MB 2MB 4MB 8MB 16MB 32MB

Figure 8.11: Exploration of different buffer sizes for Abakus-OP.

handles a similar amount of writes for s-mer partitions and hash tables. Third, writes of s-mer partitions

and hash tables only access sequential data once in the SSD chip, making the offline remapping an effective

and simple wear-leveling scheme. Write amplification happens when an SSD writes more data to disk than

the host submits. Counting k -mers in Abakus would not cause significant write amplification since the

intermediary partitions can be written back to the chip in any order. Abakus simply appends a set of s-mers

from SSD-DRAM to a chip. Thus each write block can be written to an SSD chip without extensive meta-data

management to erase and copy blocks of data.

Interfacing/coordinating with SSD internals/frontend Similar to how a GPU-based DNN accel-

erator would not need to support gaming simultaneously, Abakus is intended to function primarily as an

accelerator/co-processor rather than a data storage unit; therefore its SSD internals does not handle requests

from other applications while it is processing k -mer counting, and data pages can be safely pinned in the

chip page buffers. Abakus interact with its SSD frontend (i.e., FTL and garbage collection) minimally when

counting k -mers because the physical addresses are statistically determined by the partitioning algorithm,

which happens to also support wear-leveling to a certain degree, avoiding the necessity of designing a custom

garbage collector.

8.13 Conclusion

This work proposes Abakus, a set of hardware accelerators for k-mer counting using emerging PWST

architecture. The key idea is to integrate a set of custom hardware logic at the chip, channel, and SSD levels

to take advantage of the internal bandwidth and parallelism potential of a modern SSD. By exploiting real

DNA sequence characteristics, we optimize our design with a set of distributed bloom filters to aggressively

prune data volume. Furthermore, we propose several hardware-aware algorithm-level modifications to the

classic two-phase algorithm to fully exploit the benefits of PWST. These optimizations synergistically offer

Abakus: Accelerating k-mer Counting With Storage Technology 154

the combined benefit of speedups and energy savings over the state-of-the-art CPU+GPU system by 6.95×

and 19.93×.

Chapter 9

New Hardware Trojan Threats in

Memristor-based Neuromorphic

Computing Systems

9.1 Introduction

Deep neural networks have been extensively employed in several applications. However, their execution on

traditional architectures has shown to be inefficient due to their inherently memory-bounded nature, a problem

that has been exacerbated by rapidly growing model and input data sizes. For example, data movement

in GoogLeNet accounts for roughly 70% of the overall energy consumption [14]. In recent years, emerging

non-volatile memory (eNVM)-based neuromorphic computing systems that emulate biological computing

with artificial neurons in the analog domain, have gained traction, due to their high energy efficiency and

throughput advantages [302]. Their security implications, however, remain largely unexplored.

The process of setting up a trusted end-to-end production line for eNVM-based neuromorphic accelerators

can be prohibitively expensive, especially considering frequent algorithmic updates and tuning of models.

This has paved the way for a decentralized design-manufacturing approach that involves a coordinated effort

among multiple stakeholders. However, it also inevitably invites exploitation from bad actors to stealthily

inject malicious hardware Trojans into the product [27]. Semiconductor supply chain attacks are critical

threats that can disrupt the operations of high-value mission-critical systems such as military, financial, and

medical infrastructure.

155

New Hardware Trojan Threats in Memristor-based Neuromorphic Computing Systems 156

This work is the first to demonstrate the feasibility of carrying out a hardware supply chain attack against

analog eNVM neural accelerators to leak IP-sensitive synaptic weights. We discuss potential Trojan insertion

points within the supply chain and due to the lack of openly available commercial implementations, we dissect

a generic eNVM accelerator derived from recent works to identify vulnerable probe points. The crux of this

work is the design and stealthy placement of a neuron-suppressing hardware Trojan that can be reliably

triggered by a colluding adversary. The findings from this research are expected to foster the design of such

eNVM neural accelerators with a security focus.

There are two major motivations for such a model extraction attack that aims at cloning a victim model

of similar performance without going through the expensive training process. First, the synaptic weights

of a neural network are considered core IP as they separate a properly trained network with high accuracy

from a poorly trained one. Second, stealing weights is increasingly more economical than training. To obtain

a model with competitive performance, typically, a large set of high-quality labeled data and proprietary

training algorithms are required [303]. Further, even with access to proprietary training data, the process of

training can take weeks and is likely to worsen with model sizes, affecting the time-to-market [304].

The key to our attack is the fact that synaptic weights are encoded as conductances of eNVM devices

in the analog eNVM device array, and the total current representing a dot-product result depends on the

synaptic weights. This allows for the isolation of the switching activity of a single neuron, enabling the

sequential extraction of all the synaptic weights using power side-channel analysis while evading detection.

9.2 Background

Analog eNVM Neuromorphic Devices. Fig. 9.1a illustrates the mapping of an MLP layer onto an

eNVM device. All incoming synaptic weights of the highlighted output neuron (W 0,1,W 1,1,W 2,1) are stored

as distinct conductances (G0,1, G1,1, G2,1) of the eNVM cells along the same column. Suppose the inputs to

this neuron are encoded as voltage levels applied to the wordlines (V 0, V 1, V 2), then each cell contributes a

small current of V i ×Gi,1 Ampere to the bitline. By Kirchoff’s Law, the total current passed to the neuron

circuit at the end of the bit line is the sum of the three partial currents generated at each cell, representing

the dot product of the input vector and the weight vector of a single neuron.

Synaptic cores (SC) are the fundamental building blocks of a neuromorphic architecture (Fig. 9.1b).

They consist of a 2D synaptic device array that stores a weight matrix in the form of conductance levels

and supporting peripheral circuits. An additional access transistor is inserted per eNVM cell to mitigate the

current sneak-path problem (Fig. 9.1d). During the weighted sum operation, wordlines (WLs) are switched

on in parallel, thereby selecting multiple rows of eNVM cells. Inputs are provided as serial bit vectors to

9.2 Background 157

C
ro

ss
ba

r W
L

D
ec

od
er

SL Switch Matrix

BL
 S

w
itc

h
M

at
rix

Mux

Pseudo-Crossbar
Memristor Array

(Synaptic Weight Matrix)

ADC ADC ADC
N

eu
ro

n
Pe

rip
he

ra
ls

N
eu

ro
n

Pe
rip

he
ra

ls

N
eu

ro
n

Pe
rip

he
ra

ls

M
ux

D
ec

od
er

...

Sy
na

pt
ic

C
or

e

Access
Transistor

WL

SL
BL

Memristor
(d). Individual Cell

(b). Synaptic Core Block Diagram (c). Sample Synaptic Core Layout(a). NN Layer to Synaptic Array

Figure 9.1: Synaptic Core layout[8] and Neuron Architecture.

the memory cell and the generated currents on the selectline (SLs) represent weighted sums that propagate

toward the neuron peripherals. The results of the matrix-vector multiplication are first converted by a series of

ADCs (described next) to digital values, then sent to the neuron peripherals for activation, in turn producing

the results bit vector to be sent to the next SC to select a set of BLs, subsequently activating neurons of the

next layer. To save area, both ADC and neuron peripherals are shared among artificial neurons through a

multiplexer [302, 19].

Neuron ADC. Fig. 9.2a shows a generic Integrate-and-Fire ADC, which consists of a thermometer

code generator and a Thermometer-to-Binary encoder. Such a design is popular as it provides good energy

efficiency [8, 302, 305]. Since the resulting cumulative current is to be integrated as a potential that represents

the weighted sum, the integration is carried out as a potential buildup on a capacitor (Ccolmn), and as the

potential crosses a threshold value (Vthr), the neuron fires in the form of a spike, causing an instantaneous

discharge of the potential buildup to a predetermined base potential (Vb). The circuit designed for generating

spikes is highlighted within the dashed lines and involves an inverter with a reset element that allows for

instantaneous discharge and regeneration of a spike potential. Fig. 9.2b depicts the transient waveform

showing the potential buildup on the capacitor up to Vthr and discharge to Vb. Fig. 9.2c shows the resulting

train of spikes.

New Hardware Trojan Threats in Memristor-based Neuromorphic Computing Systems 158

Figure 9.2: Schematics and waveforms that depict (a). Generic Integrate and Fire Neuron model;
transient signals that exhibit (b). current integration, and (c). spiking pattern.

9.3 Related

Related Work. An adversary with physical access to an eNVM device can probe it to extract the weights

directly [306, 307, 308]. However, such an attack is destructive as probing one cell could damage adjacent

ones [306]. Moreover, encrypting data before the system powers down is an effective countermeasure [306, 308].

On the other hand, stealing weights online is superior as it is non-destructive and cannot be mitigated by

encryption because, at any time, there is at least one layer of synaptic weights remaining in plaintext [308].

Rajamanikkam et al. [307] outline two attacks to compromise the availability of neuromorphic devices. The

first makes use of current sneak paths to mount a fault injection attack by sending malicious inputs and

leveraging leakage currents to alter synaptic weights, resulting in incorrect inference outputs. This can be

mitigated by inserting gating transistors. The other attack embeds hardware Trojans to degrade classification

accuracy, as opposed to our attack which steals IP-sensitive model weights, which is of greater interest because

properly trained weights are usually hard to obtain due to lack of high-quality and proprietary training data

and algorithms [303].

9.4 Threat Model

Attacker Intent. The attacker intends to extract the synaptic weights of a neural network from an analog

neuromorphic system in two phases. First, a Trojan is inserted at the hardware design or fabrication stage.

Second, the synaptic weights are extracted at the NN inference stage by activating the Trojan such that the

resulting power trace can be attributed to the requested synaptic weight. The attacker at each of these phases

might not necessarily be a single entity, but could involve two separate colluding malicious parties. A detailed

9.4 Threat Model 159

Neuromorphic
Chip Production

NN Training &
Inference

using MNCS

Synaptic
Weights

Recovery

Attack Phase 1:
Trojan Embedding

Untrusted parties
. Hardware IP vendors
. Design teams
. Foundry

Trusted parties
. ML service providers
. Individual end-users

Untrusted parties
. Rogue employees at ML
service providers
. 3rd parties w/ malicious intent
. Any parties from phase 1

Attack Phase 2:
Trojan Activation

Chip
Delivery

Weight
Extraction

Potentially colluding with each other

Normal use by
trusted parties Activate

Trojan

Figure 9.3: Trusted and untrusted parties in the supply chain.

overview that depicts a product development life-cycle and the potential parties involved in the two phases of

the threat model is shown in Fig. 9.3. The malicious entities in the supply chain do not possess the intricate

details of the NN models (including weights) but have the ability to embed a Trojan, given the distributed

nature of modern IC supply chains. A colluding entity could then trigger the Trojan post-deployment using a

known activation code and then steal sensitive IP information. Alternatively, a rogue engineer in the supply

chain can cause damage by simply publishing the Trojan activation code without explicitly colluding with

another player. Either way, even if a trusted entity is tasked with securely programming the synaptic weights

into the device, it would still remain vulnerable to a Trojan placed in the supply chain.

Trojan Insertion Points. We consider three possible insertion points. First, the Trojan could be

injected at a very early stage (e.g., in the HDL code). However, this might stand out under scrutiny during

post-design verification. Second, the Trojan could be placed in open spaces in the GDSII layout file after

the circuits have been placed and routed following the model described in [27]. Third, an attacker from an

untrusted fab house could inject the Trojan, which entails reverse engineering the victim wires to tap into,

leveraging the knowledge of algorithms used in floor-planning, placement, and layout tools, which has been

shown to be feasible [309].

Grey-box Model. As is common with conventional grey-box models [310], we assume that the attacker

is aware of the neural network structure, such as the number of layers, but not the IP-sensitive model

parameters, i.e., synaptic weights. Many production ML services leverage well-known neural networks whose

structures are publicly available (e.g., ResNet, VGG-16/19, etc.) [303], due to which, all entities along the

supply chain would have access to the model structures. However, the weights learned during the training

process is often proprietary. We also assume that a malicious entity with access to the Trojan trigger code

has the ability to buy such a device from the market and activate the Trojan by sending arbitrary inputs to

New Hardware Trojan Threats in Memristor-based Neuromorphic Computing Systems 160

covertly extract the synaptic weights through a power side-channel attack [310, 27]. We note that leaking

synaptic weights in the absence of a Trojan is likely more challenging as it entails attributing signal leakage

to particular weights.

9.5 Attack Overview
FFT FFT Pattern search

Transient
Power
Trace

Image w/
Trojan code

Trojan
triggered

Image w/
one dark

pixel

Fast Fourier
transform

Image w/
Trojan code

Trojan
untriggered

Identify current range

...
FFT (current) to

conductance
mapping

Identify Weight

Conductance to
weights
mapping

Suppress neurons Terminate Attack

Power Trace Collection Signal Denoise & Analysis Synaptic Weights Recovery

Collect Pwr Traces

ADC step
resolution graph

Figure 9.4: Synaptic weights recovery through a Trojan-created power side-channel.

9.5.1 Feasibility of Exploitation

The key insight to this attack is that the dot-product results are represented as analog currents, and the

strengths of those currents are directly correlated to the synaptic weights, i.e., larger weights (conductances)

produce larger currents. As this current is converted into a train of spikes by the Neuron ADC, it results

in dynamic switching transients within the power trace, allowing the attacker to approximate weights by

intercepting the power trace. Even if an alternative ADC is chosen, the generation of spikes would lead to a

certain amount of switching activity, exposing it as a possible target for exploitation. Furthermore, ADCs

consume over 80% of the total system power, allowing the attacker to estimate the power of ADCs using the

global power trace [310]. Finally, since the ADCs are time-shared due to their large area, the attacker can

target each ADC individually using our novel neuron suppression scheme that allows a malicious Trojan to

isolate a particular neuron ADC, ultimately correlating the switching activity of the architecture to a single

eNVM cell.

9.5.2 Attack Procedure

Online Weight Recovery. Fig. 9.4 illustrates the proposed Trojan-assisted power side-channel attack. The

key idea is to attribute the observed power activity to a single ADC by sending specially-crafted input images

containing Trojan codes (certain pixel patterns) to the device, which triggers the Trojan to iteratively select

only one ADC to be functional and forces it to process a current generated by a weighted sum operation of

one eNVM cell. An attacker can then collect power traces from a Trojan-infected chip using off-the-shelf

instruments such as oscilloscopes [27], to deduce the weights by comparing it to a library of reference power

traces obtained offline (described below). It is preferred that the attacker use a high sampling rate (≥ 10GS/s)

to capture sufficient sampling points within a read cycle. Once the conductance values associated with the

9.5 Attack Overview 161

currently functioning ADC are recovered, the attacker sends a reset signal using the same malicious image

that activates the Trojan (toggle trigger), putting all ADCs back in working order. A different activation code

is needed to target a different ADC. The attacker applies the above procedure repeatedly to cycle through all

ADCs to recover all synaptic weights.

Offline Characterization. The offline characterization step (highlighted in Fig. 9.4 dashed line) allows

the attacker to build a library of reference traces used for comparison during online weight recovery. This is

possible since: (1) the operational states of an ADC are finite, and (2) each conductance value generates a

unique ADC output spiking pattern, allowing the attacker to thoroughly sweep through an ADC’s current

resolution steps and collect a library of distinct power traces. The development of such a characterization

portfolio involves the generation of a step response chart (ADC step resolution graph in Fig. 9.4) that allows

the attacker to map a unique spike pattern to a deterministic range of input current values during the Trojan

embedding phase. Next, for each distinct ADC input current, its frequency domain signature (FFT) is

extracted, which is used to approximate the synaptic weights.

9.5.3 Establishing Power-to-Weight Correlation

Signal Processing (FFT). The attacker can infer the ADC input current based on the decomposed

frequency components of the power trace, as the frequency domain allows for a significantly higher fidelity

comparison than the time domain. As a result, a Fast Fourier transform (FFT) is performed on both the

victim and reference traces to compare and identify key frequency components, increasing the visibility

of individual sub-components within the trace, thereby isolating unique signatures. The strongest signals

within the spectrum can be attributed to the static (DC) energy costs, clock tree consumption, and spiking

signature. The FFT analysis reveals that, (1) larger the input current, higher the frequency signature, and

(2) each current step resolution emits a unique frequency signature. This allows the attacker to examine the

frequencies extracted from the victim traces and match them against the signature frequencies within the

library.

Synaptic Weights Recovery. There are two factors that determine the precision of recovered weights.

First, the ADC can only respond to a set of discrete current ranges (i.e., ADC resolution steps) rather than

continuous current values. This means two conductances (i.e., weights) with small differences could produce

similar currents that lead to a similar switching activity (ADC power traces). The larger the step count, the

more “sensitive” the ADC is to differentiate between input currents, and thus increase the resolution of the

stolen weights. Seconds, ADCs are typically calibrated to work with the cumulative current produced by

multiple eNVM cells. The current generated from one eNVM cell might be too small to excite the ADCs

New Hardware Trojan Threats in Memristor-based Neuromorphic Computing Systems 162

BL400

BL2

BL1

B1

B1

B1

B2

B2

B2

B1

B2

B3

B4

B400

B399B400

B400

B400

VDD

VSS

n

Tr igger
3

Tr igger
2

Tr igger
1

BL2 BL4 BL i BL400

BL2

BL4

BL i

BL400

Trigger1
CLK

T
F/F

Tr igger Ci r cu i t

To payload
cir cui t

 Icolmn

Tr igger 1

Rshor t

Tr igger 1

Tr igger 1

Ccolmn

I&F
Neuron

ADC

Payload Ci r cu i t

Figure 9.5: Trojan trigger module and payload circuit

thermometer circuits, as a result of which the power trace might not yield meaningful leakage information for

the attacker to extract weights. We assign minimal conductance values to those that are not recoverable

through the power side channel. While this results in a small loss in the overall model inference accuracy, in

some cases, it results in the cloned network outperforming the original (Sec. 9.8.2).

9.6 Trojan Design

The suppression of the neuron is achieved through the design of an analog Trojan that consists of a trigger

and a payload module. The trigger circuit determines the operating condition of the payload, i.e., if the

trigger state is high, the payload is active. If the payload is activated, the neuron circuit is suppressed through

bypassing the current generated by the synaptic array away from its signal path, thereby depriving it of a

valid input. Fig. 9.5, shows the circuit for a switched leakage short-circuit path (highlighted in red), that

deviates the current flow from its normal path (highlighted in blue). As long as the trigger state is high, the

cumulative current leaks through this path and prevents any switching activity. The possibility of current

leakage creeping into the neuron ADC is prevented using a DC blocking capacitor CDC and the average

sizing of the transistors ensures minimal charge leakage.

9.7 Methodology 163

Figure 9.6: Transient waveforms of payload circuit.

The functioning of the payload can be observed by analyzing the transient signal characteristics of the

neuron ADC between two trigger states (see Fig. 9.6). When the Trojan is inactive (shown as Trojan:Inactive),

the cumulative input current triggers a train of spikes. However, when the Trojan is active (shown as

Trojan:Active) and an input current stimulus is provided, it can be seen that the neuron is ”suppressed”. The

deviation of current by the payload element can be confirmed by analyzing the build-up of potential on the

capacitor, Vc. Hardware Trojans typically use combinational or sequential elements to monitor internal states

within a system and trigger a payload based on a predefined condition [75]. Since the attacker is capable

of sending specific input image vectors, combinational logic can be used, where the input vector contains a

unique combination of pixels to activate a trigger circuit. We prefer complementary pull-up and pull-down

network (PUN/PDN)-based combinational circuit over a standard cell-based logic tree circuit, to enable

microscopic design corruption. Fig. 9.5 depicts the schematic diagram of the trigger circuit that implements

a NAND function that directly taps the inputs from the BL switch matrix and the inclusion of a Toggle

flip-flop allows for the state of the trigger circuit to switch between the two operational conditions.

9.7 Methodology

Due to the lack of openly available commercial eNVM neuromorphic implementations, we customize a

high-fidelity simulation environment representative of several recently published designs (Fig. 9.1), using

New Hardware Trojan Threats in Memristor-based Neuromorphic Computing Systems 164

Neurosim [8]. A 3-layer MLP (400-neuron input layer, followed by a 100-neuron hidden layer, and a 10-

neuron output layer corresponding to 10 digits) is mapped to such architecture for training using 60,000

black-and-white images in 125 epochs until its inference accuracy stabilizes (∼93%). We then collect a set

of output currents making up the dot-product operations by opening different rows. Neurosim faithfully

models an analog synaptic device with many non-ideal device properties such as variations within Long-Term

Potentiation/Depression (LTP/LTD), cycle-to-cycle conductance variation, and, spatial variations across

a memory array. This ensures that a realistic weight-to-conductance mapping is implemented, and the

generated current traces encompasses both temporal and spatial variations. Note that, since this is an initial

foray into this field, we limit the scope of this work to target eNVM accelerators with limited hyperparameter

reconfigurability (e.g., number of layers and dimension of each layer). We leave the secret extraction of more

complex models for future work. However, the key insight of this work, namely that the spiking activity of

the neuron ADC can leak sensitive model parameters, is expected to hold for other architectures.

The overall neuron microarchitecture is designed and evaluated in Cadence Virtuoso and Calibre tool

using the TSMC 65nm Low Power(LP) flavor PDK. Transistor-level simulations are carried out to generate

power traces and other relevant transient signals that allow for generating the offline characterization power

traces, as well as mimicking conditions for triggering the payload. Process, Voltage, and Temperature (PVT)

variations within the neuron ADC design are considered during the offline characterization phase of the

attack. These variations result in a deviation in the step response mapping, which is visualized as a mismatch

in step width and height in comparison to ideal characteristics (Fig.9.7b). We inject stochastic noise sources

that replicate the average switching activities that potentially occur in a co-processor[311].

The switching transients are monitored over the power rail trace, and by denoising the baseline power

trace from the monitored signals, a higher SNR trace can be deduced upon which the FFT transform is

applied. The trace is sampled at a 100ps sampling interval and a 4096 FFT bin trace is generated, which

translates to approximately a 250 kHz resolution. To build the characterization portfolio, the dynamic input

current range is generated based on the parameters of selected eNVM characteristics. The most prominent

large signal frequency bins from each step of the sweep are collected and assigned to an input current value.

The relevance of their magnitude can be deduced from their unique frequency signatures, as they share a

similar spectral magnitude characteristic.

9.8 Results 165

Figure 9.7: (a) SNR comparison, (b) Offline characterization

Figure 9.8: Sensitivity to Conductance Levels and ADC Resolutions for add references for
devices.

(a) (b)

Figure 9.9: (a). Area overhead and (b). Pleak in comparison to the noise floor, as a function of
the input Trojan vector.

9.8 Results

9.8.1 Trojan Stealth

Design and Verification Time Detection. To remain stealthy, it is imperative that the Power Spectral

Density (PSD) of the Trojan-infected malicious unit under normal operating conditions must not significantly

deviate from the average PSD of unaffected hardware. The PSD of unaffected hardware (victim) is visualized

by extracting the switching current trace from the power rail across 400 read cycles under normal operating

conditions. The resulting spectrogram is then compared with that of a Trojan-infected (clone) malicious

unit, where the payload circuits are deactivated to mimic normal operating conditions. As seen in Fig. 9.7

the Signal-to-Noise Ratio (SNR) deviation is under 1.75 dB, with both spectrograms exhibiting a similar

fingerprint.

New Hardware Trojan Threats in Memristor-based Neuromorphic Computing Systems 166

To ensure the undetectability of the trigger and payload circuits through test pattern generation techniques,

we stipulate that the area overhead is under a margin of 0.5% [312]. The area overhead of the trigger element

is a function of the synaptic core area. The number of input bits that map to the payload element controls

the length of the Trojan code and hence the size of the PUN/PDN network. Every neuron ADC must be

embedded with a payload element, resulting in a fixed overhead. A similar trend can be observed with the

average leakage power dissipated by the Trojan (Fig. 9.9a and Fig. 9.9b).

While our ability to evaluate against verification-time detection frameworks is limited, as they are not

open source, we offer a qualitative discussion. Frameworks such as FANCI [313] that operate at the RTL

level would not be able to detect our Trojan, owing to its form factor and its ability to embed the Trojan at

the GDS-II levels and polygon pattern etching foundry stages. Methods such as UCI [314] mainly apply for

digital Trojans, which rely on analyzing switching activity.

Run-time Detection. By exploiting the input vector to encode the necessary bits, it is possible to

generate an extremely large set of combinations for the trigger code (there are 2400 possible codes that can

be uniquely assigned to each ADC). Our analysis shows that a 50-75 bit long trigger code results in a false

activation of a single Trojan, only once in 1000 random input test patterns. Furthermore, a trigger code that

is at least 35 bits long can ensure the prevention of two simultaneous false activations of Trojans across 1000

input test patterns, significantly enhancing our ability to evade run-time detection.

9.8.2 Sensitivity Study

We sweep the ADC resolution from 8 to 256 steps and vary the device conductance levels, thereby simulating

a wide array of neuromorphic design choices. Fig. 9.8 shows the inference accuracy of the original (victim)

model, the cloned model using the stolen weights, and the percentage of weights recovered by the attacker for

accelerators implemented using multiple eNVM technologies (EpiRAM(Ag:SiGe), HZO FeFET, TaOx/HfOx ,

and GST PCM). We draw four major conclusions. First, regardless of the underlying eNVM technology, we

are able to recover more than 90% of the weights. The remainder of the weights do not build a sufficient

input impulse to generate a spike train. Second, as the ADC resolution improves, more weights can be

recovered, because the ADC resolution becomes more sensitive to the small current generated by a single

eNVM cell. The overall weight extraction of our attack improves from 94.4% → 97.8% and 64.1% → 97.1%

for a 2-bit improvement in ADC resolution, when the hardware is simulated in EpiRAM and HZO FeFET,

respectively. The greater improvement in the case of HZO FeFET is attributed to the larger conductance

density characteristics offered by the device. Third, in many cases, even an ADC with a lower resolution,

poses a serious threat, as the attacker can reliably clone a model with comparable performance. For instance,

when evaluating the attack strategy for a 5-bit resolution ADC, the worst case performance delta between the

9.9 Mitigation 167

original and recovered inference accuracy across the four memory flavors is under 2.65%. Fourth, a higher

percentage of weights recovered by the attacker does not always translate to higher inference accuracy of the

cloned model. This is because ADCs are calibrated to segment continuous current ranges to resolution steps

and the current generated from a single cell may be mapped to a current value that is slightly off compared

to the true current. In some cases, we’re able to obtain a cloned network with higher accuracy than the

victim model. We suspect that this is because the weights of the victim models are sometimes stuck at local

minimums.

9.9 Mitigation

Trojan detection. Several techniques have been proposed to prevent the insertion of a hardware Trojan

into ICs. Waksman et al. [313] propose FANCI, a framework for profiling activities of wires inside a chip,

and flagging nearly unused ones as possible Trojan paths. Their insight stems from the fact that Trojan

functionalities are mostly dormant until triggered by external malicious inputs. This can potentially catch

the Trojan logic embedded in an eNVM device. However, FANCI, as described in the paper, examines the

hardware implementation at the RTL level, such as a netlist file, while the Trojan we describe can also be

placed inside a layout GDSII file, thereby circumventing it. Extending detection frameworks to enable more

comprehensive detection is interesting future work.

Trojan insertion prevention. To prevent insertion at the layout level, a potential countermeasure

that can be used is layout masking [315]. However, this is expected to prohibitively increase the power

and area overhead (by ∼ 10%). If an eNVM device is deployed as an IoT or a wearable device that is

power/area-constrained, layout masking may not be ideal. The weight recovery attack may also be defeated

by integrating an ultra-low resolution ADC with four or eight resolution steps, preventing the successful

extraction of most of the weights. However, this would severely limit the capabilities of such devices to scale

to larger workloads.

Side-channel prevention. Masking the signal (EM, power, thermal, etc.) signature, therefore, preventing

the side-channel attacks (SCA), usually requires dedicated SCA countermeasure hardware which can be

impractical (power and area overhead) to integrate for neuromorphic devices.

9.10 Conclusion

We explore the feasibility of a novel supply-chain threat against eNVM neuromorphic devices. We identify

ADC as the key element that exposes a vulnerability within the neuron core and further deduce the weights

New Hardware Trojan Threats in Memristor-based Neuromorphic Computing Systems 168

by analyzing and isolating the switching activities of the ADC. We also design a stealthy hardware Trojan

that allows the attacker to correlate the transient system power consumption to the synaptic weight and

subsequently reconstruct a cloned model with high fidelity.

Chapter 10

Conclusions and Future Work

10.1 Conclusions

For data-intensive tasks, data movement dominates computation. We hypothesize that near-data-processing

techniques that enable computation as close as possible to where data resides (e.g., DRAM or SSD) can be

optimal solutions to address the performance bottleneck caused by data movement in various applications.

Additionally, the NDP approach offers much higher data bandwidth and computational throughput than

traditional Von Neumann architectures. This dissertation explores design spaces of various NDP techniques

and architectures that accelerate application execution and save energy. We have made the following

contributions to this dissertation.

First, we examine a series of digital DRAM-based bit-serial SIMD-style processing architectures targeting

bioinformatics (Chapter 3 Sieve), exact-pattern matching (Chapter 4 DRAM-CAM), OLAP (Chapter 5

Membrane), and general-purpose computing (Chapter 6 DRAM-BitSIMD).

In Chapter 3, we present Sieve, a set of DRAM-based in-memory architectures to accelerate k -mer

matching by storing reference k -mer patterns along the bitlines and enhancing row buffers with a minimal

set of Boolean logic for k -mer matching. To explore optimal Sieve designs, we compare the placement of

custom k -mer matching logic at three different levels in the DRAM hierarchy: from the I/O interface of

the DRAM chips (Sieve Type-1) to the local row buffer of each subarray (Sieve Type-3), and Type-2 as the

middle ground where several subarrays share one matcher. In this work, we devise a novel data layout, an

indexing scheme, and an early termination mechanism that synergistically provides 1.01X/55.49X/404.48X

speedup and 3.80X/28.11X/55.89X energy saving over the state-of-the-art CPU baseline. Compared to GPU,

Type-1 is 3X to 5X slower than the GPU but more energy efficient, and Type-2 is only modestly faster (2.59x

169

Conclusions and Future Work 170

to 9.43x), but Type-3 offers speedups of 33.13X–55.0X and energy savings of 83.77X–141.15X, showing the

effectiveness of in-situ PIM processing, which is an aggressive form of NDP. This is the first work to

introduce and showcase the effectiveness of a column-wise data placement for k -mer matching with early

termination, substantially advancing the state-of-the-art in both throughput and efficiency.

In Chapter 4, we extend Sieve Type-3, which leverages subarray-level parallelism, with logic integrated

into each local row buffer. DRAM-CAM retains the core architectural designs of Sieve and serves as a

PCI-attached accelerator with an offload model. We introduce several new hardware components (population

count logic and a hardware data transposition unit) and runtime optimizations (chip-level parallelism, pattern

distribution, and pattern replication) to increase functionality and boost performance. DRAM-CAM can

accelerate a wide range of pattern-matching tasks and offers impressive performance benefits (6217X speedup

and 5888X energy savings over CPU).

In Chapter 5, we further investigated an alternative use of Sieve Type-3, which is for high-throughput

database scan operation, which often dominates the execution time in OLAP query processing. To this end,

we design a minimalist custom logic embedded at the DRAM subarray levels to enable high-throughput

in-situ table scans, dubbed Membrane-V. The integrated logic incurs a small area and power overhead

compared to a commodity DRAM chip, and supports ranged query comparison, which is more complicated

than exact pattern matching enabled in Sieve. We designed a non-intrusive co-processing scheme to integrate

Membrane into a DBMS to leverage its efficient predicate filtering potential fully. Specifically, Membrane-V

first returns a bitmask indicating which database records satisfy the conditions in the filter predicate, and

the host then “pulls” data from the DRAM based on the bitmask. Membrane-V offers 1.26×/25.97×/5.94×

min/max/geomean speedup compared to the CPU. Notably absent from the existing efforts in this domain

is a comprehensive consideration of hardware options (e.g., digital vs. analog) and software implications

(e.g., vertical VS. horizontal data layout). Moreover, prior research has rarely thoroughly examined end-

to-end query performance across a full benchmark. This work makes significant strides in PIM-based

data analytics accelerator, including comprehensive PIM architecture design space exploration, workload

distribution between CPU host and PIM accelerator, a WideTable pre-processing technique that pairs well

with PIM framework, and a Rank-level hardware unit that removes the data retrieval/selection bottleneck.

In Chapter 6, inspired by the performance of bit-serial DRAM processing for pattern matching, we

explored the design space of a general-purpose bit-serial DRAM-based PIM architecture. The key idea to

enable in-DRAM bit-serial computing is to treat each bitline as a vector lane and align the source and

destination data elements vertically on top of each other. A series of subarray row activations perform the

computation sequentially at each bit position. The vertical layout allows each activation to access a bit slice

across a row of vector elements (i.e., bitlines or lanes). Two additional advantages of the vertical layout

10.1 Conclusions 171

are that it enables arbitrary bit access within the operands (e.g., left or right shifting within each word is

cheap) and it supports flexible operand size without having a word spread across multiple chips. Many prior

architectures leverage DRAM’s analog property by connecting three DRAM rows to the sense amplifiers,

AKA triple-row-activation (TRA), to force charge-sharing at the row buffer, equivalent to performing a

row-wide bitwise logical operation. However, analog-based bit-serial DRAM computing has the disadvantages

of high latency and energy overhead. We show that our performance-optimized design bit-serial architecture

outperforms the CPU by 20X, GPU by 5X, and SIMDRAM (prior art) by 1.7X and is substantially more

energy- and area-efficient. This work explores the complex design space of digital bit-serial PIM, which is

not comprehensively analyzed in prior work. We also propose and discuss for the first time a new demarcation

of designing and evaluating PIM accelerator, namely accelerator-first vs. memory-first. Our evaluation also

shows that the analog-based designs popularized in prior work are less energy- and area-efficient than their

digital counterparts. This work also discussed various system integration challenges and solutions, which

opens up future research opportunities.

Second, in Chapter 7, we present a different NDP choice based on a 3D-stacked memory cube for de Bruijn

graph acceleration. The proposed NDP architecture consists of multiple Hybrid Memory Cubes (HMC),

and each HMC connects to the others using an inter-cube network [22, 23]. Each cube’s memory is divided

into several vertical memory vaults, and each vault is coupled with an integrated processing core connected

to a memory controller for local vault access. We can schedule parallel applications on NDP systems by

exploiting massive NDP cores (small CPU processors at the logic layer of HMC). NDP system supports remote

function calls based on message passing to handle inter-core communication without expensive coherence

management. Our evaluation shows that the proposed.NDP implementation can improve the performance of

graph construction by 33× and traversal by 16× compared to the state-of-the-art. This is the first work

that tackles in-memory accelerator for DBG-based de novo genome assembly.

Third, in Chapter 8, we step away from the memory technology and investigate the potential of processing-

with-storage-technology (PWST). PWST can fundamentally solve the bottleneck caused by data movement

issues. In this work, We design an architecture Abakus leveraging PWST to accelerate a key bioinformatics

kernel called k -mer counting, which involves processing large files of sequence data on the disk to build

a histogram of fixed-size genome sequence substrings and thereby entails prohibitively high I/O overhead.

Through a set of domain-specific hardware extensions to accelerate the key operations for k -mer counting at

various levels of the SSD hierarchy, Abakus can achieve 9.9×, 8.2×, and 3.3× speedup over the CPU-, GPU-,

and PIM NDP solutions. Unlike prior work, which does not consider the I/O bottleneck, this work for the

first time leverages PWST to propose novel and scalable accelerator designs to eliminate the I/O overheads,

improving the performance end-to-end.

Conclusions and Future Work 172

Finally, in Chapter 9, we contribute to NDP security analysis by demonstrating for the first time the

feasibility of carrying out a hardware supply chain attack against a neuromorphic DNN accelerator that

performs neuron computation inside resistive memory cell arrays. The crux of this attack is the design and

stealthy placement of a neuron-suppressing hardware Trojan that a colluding adversary can reliably trigger.

We also design the Trojan such that the attacker can correlate the transient system power consumption to an

eNVM cell conductance (i.e., synaptic weight). There are two major motivations for a weight-stealing attack.

First, the synaptic weights of a neural network are considered core IP. Second, stealing weights is increasingly

more economical than training. To obtain a model with competitive performance, typically, a large set of

high-quality labeled data and proprietary training algorithms are required [303]. Further, even with access

to proprietary training data, the training process can take weeks and will likely worsen with model sizes,

affecting the time-to-market [304]. Our evaluation suggests an adversary can stealthily recover 90% model

parameters while evading detection, highlighting the dire need for future NDP design with security in mind.

10.2 Future Research Opportunities

This dissertation opens a few future research directions.

• System-level support: To ease the adoption friction, NDP architectures need more system-level support.

For example, to integrate a PIM-enabled memory into an existing system, a new data allocation routine

and a new address interleaving are needed. To name a few challenges, the PIM-aware data allocation

routine needs to track available physical memory rows and columns for PIM data structures allocation,

gather data from the host memory region to the PIM-eligible region, and transpose the data between

vertical format and horizontal format if necessary. Developing a working allocation scheme means tapping

into OS layers and making non-trivial changes. In traditional address interleaving, consecutive words

are spread out in different physical chips to maximize data I/O, but PIM processes prefer data to be

physically adjacent. Figuring out an optimal address interleaving is a complex undertaking. It would

require researchers to generate many performance profiles of PIM processes running in a realistic system

with a mixture of different co-running workloads.

• Bit-serial architecture with a horizontal data layout: While the vertically laid out data format

supports massive parallelism and shows excellent kernel-level performance improvement, it has the

disadvantages of data transposition, which incurs extra data movement cost (relaying out data) and

a myriad of system-integration difficulties. A horizontal layout data might avoid several system-level

difficulties with slightly worse performance. We leave this as future work.

10.2 Future Research Opportunities 173

• Compiler and programming model: Adopting a new architecture is highly influenced by its pro-

grammability and ease of execution. The performance benefit of NDP is well understood, but the

corresponding APIs and library routines are lacking. There is also limited study on the compilation

support for NDP. A working compilation toolchain and expressive API library routines must be developed.

Currently, we manually select high-level operations (e.g., vector arithmetic) from application code, rewrite

them using intrinsics/macros that an NDP system can execute, and convert them to a series of micro-ops

for performance and functional evaluation. In the future, a non-expert developer can express the appli-

cation logic using traditional C/C++ style code with optional sets of pragmas to surround core loops,

and the NDP compiler automatically converts the high-level algorithm into vector-style intermediate

representations (IRs). The sequence of NDP IRs is then offloaded to the targeted NDP hardware to be

broken down into micro codes and executed.

• Mitigation for supply-chain Trojan attack: As we explained in Chapter 2.4, malicious circuits can

be implanted at many places in the supply chain during the IC life cycle, posing a serious threat to the

deployment of NDP devices. We have discussed a few conventional mitigation solutions in Chapter 9.9 to

detect and prevent the insertion of a hardware Trojan. However, NDP devices introduce a unique set

of challenges that can render prior hardware Trojan countermeasures ineffective. Due to the sensitive

deployment scenarios for NDP devices, defeating the supply-chain hardware Trojan attack is becoming

increasingly important. It has garnered much interest from the industry and various government agencies.

As we have demonstrated the possibility of stealing sensitive information from a recently proposed NDP

architecture, developing effective mitigation solutions is of great importance.

Conclusions and Future Work 174

10.3 Appendix

10.3.1 Accepted publications

• Sieve: Scalable In-situ DRAM-based Accelerator Designs for Massively Parallel k-mer Matching

Lingxi Wu, Rasool Sharifi, Marzieh Lenjani, Kevin Skadron, Ashish Venkat

ISCA 2021

• Ultra Efficient Acceleration for De Novo Genome Assembly via Near-Memory Computing

Minxuan Zhou, Lingxi Wu (Joint 1st author), Muzhou Li, Niema Moshiri, Kevin Skadron,

Tajana Rosing

PACT 2021

• DRAM-CAM: General-Purpose Bit-Serial Exact Pattern Matching

Lingxi Wu, Rasool Sharifi, Ashish Venkat, Kevin Skadron

Computer Architecture Letters 2022

• Hardware Trojans in eNVM Neuromorphic Devices

Lingxi Wu, Rahul Sreekumar (Joint 1st author), Rasool Sharifi, Mircea Stan, Kevin Skadron,

Ashish Venkat

DATE 2023

(Best Paper Nominee)

10.3.2 Under Review

• Membrane: A PIM-based Architecture to Accelerate Database OLAP Queries

Akhil Shekar, Lingxi Wu (Joint 1st author), Kevin P. Gaffney, Helena Caminal, Martin Prammer,

Yimin Gao, Ashish Venkat, Mircea Stan, José Mart́ınez, Jignesh M. Patel, Kevin Skadron

HPCA 2023

• Abakus: Accelerating k -mer Counting With Storage Technology

Lingxi Wu, Minxuan Zhou (Joint 1st author), Weihong Xu, Ashish Venkat, Tajana Rosing, Kevin

Skadron

TACO 2023

• DRAM-BitSIMD: DRAM-based Bit-Serial Vector Computing Architecture.

Deyuan Guo, Lingxi Wu (Joint 1st author), Farzana Siddique, Ashish Venkat, Kevin Skadron

ASPLOS 2023

Bibliography

[1] Derrick E Wood and Steven L Salzberg. Kraken: ultrafast metagenomic sequence classification
using exact alignments. Genome Biology, 15, 2014.

[2] Timothy J. Close Rachid Ounit, Steve Wanamaker and Stefano Lonardi. Scalable metagenomic
taxonomy classification using a reference genome database. BMC Genomics, 16, 2015.

[3] I King Jordan Anuj Gupta and Lavanya Rishishwar. stringMLST: a fast k-mer based tool for
multilocus sequence typing. Bioinformatics, 2017.

[4] Daniel Navarro-Gomez, Jeremy Leipzig, Lishuang Shen, Marie Lott, Alphons PM Stassen, Dou-
glas C Wallace, Janey L Wiggs, Marni J Falk, Mannis van Oven, and Xiaowu Gai. Phy-Mer: a
novel alignment-free and reference-independent mitochondrial haplogroup classifier. Bioinformatics,
31(8), 2015.

[5] Sasha K. Ames, David A. Hysom, Shea N. Gardner, G. Scott Lloyd, Maya B. Gokhale, and
Jonathan E. Allen. Scalable metagenomic taxonomy classification using a reference genome
database. Bioinformatics, 29(18), 2013.

[6] Stephen Altschul, Warren Gish, Webb Miller, Eugene Myers, and David J. Lipman. Basic local
alignment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

[7] Marius Erbert, Steffen Rechner, and Matthias Müller-Hannemann. Gerbil: A fast and memory-
efficient k-mer counter with gpu-support. Algorithms for Molecular Biology, 12(1), 2017.

[8] Pai-Yu Chen, Xiaochen Peng, and Shimeng Yu. Neurosim: A circuit-level macro model for bench-
marking neuro-inspired architectures in online learning. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 37(12):3067–3080, 2018.

[9] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and William J.
Dally. Eie: Efficient inference engine on compressed deep neural network. In ISCA, 2016.

[10] GRAND VIEW RESEARCH. Metagenomics market size, share & trends analysis report by
product (sequencing & data analytics), by technology (sequencing, function), by application
(environmental), and segment forecasts, 2018 - 2025. GRAND VIEW RESEARCH, 2017.

[11] Abraham Gonzalez, Aasheesh Kolli, Samira Khan, Sihang Liu, Vidushi Dadu, Sagar Karandikar,
Jichuan Chang, Krste Asanovic, and Parthasarathy Ranganathan. Profiling hyperscale big data
processing. In Proceedings of the 50th Annual International Symposium on Computer Architecture,
ISCA ’23, New York, NY, USA, 2023. Association for Computing Machinery.

[12] Lingxi Wu, Rasool Sharifi, Marzieh Lenjani, Kevin Skadron, and Ashish Venkat. Sieve: Scalable in-
situ DRAM-based accelerator designs for massively parallel k-mer matching. In 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA), pages 251–264. IEEE,
2021.

[13] Wm A Wulf and Sally A McKee. Hitting the memory wall: implications of the obvious. ACM
SIGARCH computer architecture news, 1995.

[14] Tien-Ju Yang, Yu-Hsin Chen, Joel Emer, and Vivienne Sze. A method to estimate the energy
consumption of deep neural networks. 2017 51st Asilomar Conference on Signals, Systems, and
Computers, 2017.

175

Bibliography 176

[15] Biresh Kumar Joardar, Priyanka Ghosh, Partha Pratim Pande, Ananth Kalyanaraman, and
Sriram Krishnamoorthy. Noc-enabled software/hardware co-design framework for accelerating
k-mer counting. In Proceedings of the 13th IEEE/ACM International Symposium on Networks-
on-Chip, NOCS ’19, New York, NY, USA, 2019. Association for Computing Machinery.

[16] Debendra Das Sharma. Compute Express Link®: An open industry-standard interconnect
enabling heterogeneous data-centric computing. In 2022 IEEE Symposium on High-Performance
Interconnects (HOTI), pages 5–12. IEEE, 2022.

[17] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K.Choi. A Scalable Processing-in-Memory Accelerator
for Parallel Graph Processing. In ISCA, 2015.

[18] Tim Finkbeiner, Glen Hush, Troy Larsen, Perry Lea, John Leidel, and Troy Manning. In-memory
intelligence. IEEE Micro, 37(4):30–38, 2017.

[19] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian, John Paul Strachan,
Miao Hu, R. Stanley Williams, and Vivek Srikumar. Isaac: A convolutional neural network acceler-
ator with in-situ analog arithmetic in crossbars. In 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA), pages 14–26, 2016.

[20] Karl Freund. Ibm research says analog ai will be 100x more efficient. yes, 100x., Sep 2021.

[21] Lixue Xia, Boxun Li, Tianqi Tang, Peng Gu, Xiling Yin, Wenqin Huangfu, Pai-Yu Chen, Shi-
meng Yu, Yu Cao, Yu Wang, Yuan Xie, and Huazhong Yang. Mnsim: Simulation platform for
memristor-based neuromorphic computing system. In 2016 Design, Automation and Test in Europe
Conference Exhibition (DATE), pages 469–474, 2016.

[22] Miao Hu, Hai Li, Yiran Chen, Qing Wu, Garrett S. Rose, and Richard W. Linderman. Memristor
crossbar-based neuromorphic computing system: A case study. IEEE Transactions on Neural
Networks and Learning Systems, 25(10):1864–1878, 2014.

[23] Xiaoxiao Liu, Mengjie Mao, Beiye Liu, Boxun Li, Yu Wang, Hao Jiang, Mark Barnell, Qing Wu,
Jianhua Yang, Hai Li, and Yiran Chen. Harmonica: A framework of heterogeneous computing
systems with memristor-based neuromorphic computing accelerators. IEEE Transactions on
Circuits and Systems I: Regular Papers, 63(5):617–628, 2016.

[24] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang, and Yuan
Xie. Prime: A novel processing-in-memory architecture for neural network computation in reram-
based main memory. In 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), pages 27–39, 2016.

[25] M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, and D. B. Strukov.
Training and operation of an integrated neuromorphic network based on metal-oxide memristors.
Nature, 521(7550):61–64, 2015.

[26] Accelerating edge ai.

[27] Kaiyuan Yang, Matthew Hicks, Qing Dong, Todd Austin, and Dennis Sylvester. A2: Analog
malicious hardware. In 2016 IEEE Symposium on Security and Privacy (SP), pages 18–37, 2016.

[28] Mohammad Tehranipoor and Farinaz Koushanfar. A survey of hardware trojan taxonomy and
detection. IEEE Design & Test of Computers, 27, 2010.

[29] Shivam Bhasin and Francesco Regazzoni. A survey on hardware trojan detection techniques. In
2015 IEEE International Symposium on Circuits and Systems (ISCAS), pages 2021–2024, 2015.

[30] Yier Jin, Nathan Kupp, and Yiorgos Makris. Experiences in hardware trojan design and implemen-
tation. In 2009 IEEE International Workshop on Hardware-Oriented Security and Trust, pages
50–57, 2009.

[31] Lang Lin, Wayne P. Burleson, and Christof Paar. Moles: Malicious off-chip leakage enabled by
side-channels. 2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of
Technical Papers, pages 117–122, 2009.

Bibliography 177

[32] Lang Lin, Markus Kasper, Tim Güneysu, Christof Paar, and Wayne Burleson. Trojan side-
channels: Lightweight hardware trojans through side-channel engineering. In Christophe Clavier
and Kris Gaj, editors, Cryptographic Hardware and Embedded Systems - CHES 2009, pages 382–
395, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[33] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie
Kim, Michael A Kozuch, Onur Mutlu, Phillip B Gibbons, and Todd C Mowry. Ambit: In-memory
accelerator for bulk bitwise operations using commodity DRAM technology. In Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture, pages 273–287, 2017.

[34] Nastaran Hajinazar, Geraldo F Oliveira, Sven Gregorio, João Dinis Ferreira, Nika Mansouri
Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gómez-Luna, and Onur Mutlu.
SIMDRAM: A framework for bit-serial SIMD processing using DRAM. In Proceedings of the
26th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 329–345, 2021.

[35] Fei Gao, Georgios Tziantzioulis, and David Wentzlaff. ComputeDRAM: In-memory compute using
off-the-shelf DRAMs. In Proceedings of the 52nd annual IEEE/ACM international symposium on
microarchitecture, pages 100–113, 2019.

[36] Shuangchen Li, Dimin Niu, Krishna T Malladi, Hongzhong Zheng, Bob Brennan, and Yuan Xie.
DRISA: A DRAM-based reconfigurable in-situ accelerator. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 288–301, 2017.

[37] Mustafa F Ali, Akhilesh Jaiswal, and Kaushik Roy. In-memory low-cost bit-serial addition using
commodity DRAM technology. IEEE Transactions on Circuits and Systems I: Regular Papers,
67(1):155–165, 2019.

[38] Xin Xin, Youtao Zhang, and Jun Yang. ELP2IM: Efficient and low power bitwise operation
processing in DRAM. In 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 303–314. IEEE, 2020.

[39] Lingxi Wu, Rasool Sharifi, Ashish Venkat, and Kevin Skadron. Dram-cam: General-purpose
bit-serial exact pattern matching. IEEE Computer Architecture Letters, 21(2):89–92, 2022.

[40] Minxuan Zhou, Lingxi Wu, Muzhou Li, Niema Moshiri, Kevin Skadron, and Tajana Rosing. Ultra
efficient acceleration for de novo genome assembly via near-memory computing. In PACT, 2021.

[41] Lingxi Wu, Rahul Sreekumar, Rasool Sharifi, Kevin Skadron, Mircea R. Stant, and Ashish
Venkat. Hardware trojans in envm neuromorphic devices. In 2023 Design, Automation and
Test in Europe Conference Exhibition (DATE), pages 1–6, 2023.

[42] Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu. A case for exploiting
subarray-level parallelism (SALP) in DRAM. In Proceedings of the ACM/IEEE International
Symposium on Computer Architecture (ISCA), pages 368–379, 2012.

[43] Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike O’Connor, Nandita
Vijaykumar, Onur Mutlu, and Stephen W. Keckler. Transparent offloading and mapping (tom):
Enabling programmer-transparent near-data processing in gpu systems. In Proceedings of the 43rd
International Symposium on Computer Architecture, ISCA ’16, page 204–216. IEEE Press, 2016.

[44] M. O’Connor, N. Chatterjee, D. Lee, J. Wilson, A. Agrawal, S. W. Keckler, and W. J. Dally.
Fine-grained dram: Energy-efficient dram for extreme bandwidth systems. In 2017 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 41–54, 2017.

[45] Ramyad Hadidi, Bahar Asgari, Burhan Ahmad Mudassar, Saibal Mukhopadhyay, Sudhakar Yala-
manchili, and Hyesoon Kim. Demystifying the characteristics of 3d-stacked memories: A case
study for hybrid memory cube. In Proceedings of the IEEE International Symposium on Workload
Characterization , pages 66–75, 2017.

[46] Micron. Hybrid memory cube specification 2.1. http://hybridmemorycube.org/

specification-v2-download/.

http://hybridmemorycube.org/specification-v2-download/
http://hybridmemorycube.org/specification-v2-download/

Bibliography 178

[47] Marzieh Lenjani, Patricia Gonzalez, Elaheh Sadredini, Shuangchen Li, Yuan Xie, Ameen Akel,
Sean Eilert, Mircea R. Stan, and Kevin Skadron. Fulcrum: A Simplified Control and Access
Mechanism Toward Flexible and Practical In-Situ Accelerators. In 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages 556–569, February
2020.

[48] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis, and X. Qian. Graphp:
Reducing communication for pim-based graph processing with efficient data partition. In HPCA,
2018.

[49] Seth Pugsley, Jeffrey Jestes, Huihui Zhang, Rajeev Balasubramonian, Vijayalakshmi Srinivasan,
Alper Buyuktosunoglu, Al Davis, and Feifei Li. Ndc: Analyzing the impact of 3d-stacked mem-
ory+logic devices on mapreduce workloads.

[50] Mario Drumond, Alexandros Daglis, Nooshin Mirzadeh, Dmitrii Ustiugov, Javier Picorel, Babak
Falsafi, Boris Grot, and Dionisios Pnevmatikatos. The Mondrian Data Engine. In ISCA, 2017.

[51] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark Manasse, and Rina
Panigrahy. Design tradeoffs for ssd performance. In USENIX 2008 Annual Technical Conference,
ATC’08, page 57–70, USA, 2008. USENIX Association.

[52] Arash Tavakkol, Juan Gómez-Luna, Mohammad Sadrosadati, Saugata Ghose, and Onur Mutlu.
MQSim: A framework for enabling realistic studies of modern Multi-Queue SSD devices. In 16th
USENIX Conference on File and Storage Technologies (FAST 18), pages 49–66, Oakland, CA,
February 2018. USENIX Association.

[53] Lingxi Wu et al. Sieve: Scalable in-situ dram-based accelerator designs for massively parallel k-mer
matching. In ISCA, 2021.

[54] Jonas Almeida Andrzej Zielezinski, Susana Vinga and Wojciech M. Karlowski. Alignment-free
sequence comparison: benefits, applications, and tools. Genome Biology, 18, 2017.

[55] Karen L. Adair Stinus Lindgreen and Paul P. Gardner. An evaluation of the accuracy and speed
of metagenome analysis tools. Scientific Reports, 6, 2016.

[56] Dna sequencing costs: Data. https://www.genome.gov/about-genomics/fact-sheets/

DNA-Sequencing-Costs-Data.

[57] Steven Flygare, Keith Simmon, Chase Miller, Yi Qiao, Brett Kennedy, Tonya Di Sera, Erin H
Graf, Keith D Tardif, Aurélie Kapusta, Shawn Rynearson, et al. Taxonomer: an interactive
metagenomics analysis portal for universal pathogen detection and host mRNA expression profil-
ing. Genome Biology, 17, 2016.

[58] Smithsonian Magazine. Ambitious project to sequence genomes of 1.5 million species kicks off, Nov
2018.

[59] Minxuan Zhou, Lingxi Wu, Muzhou Li, Niema Moshiri, Kevin Skadron, and Tajana Rosing. Ultra
efficient acceleration for de novo genome assembly via near-memory computing. In 2021 30th
International Conference on Parallel Architectures and Compilation Techniques (PACT), pages
199–212, 2021.

[60] Pavel A Pevzner, Haixu Tang, and Michael S Waterman. An eulerian path approach to dna
fragment assembly. Proceedings of the national academy of sciences, 98(17):9748–9753, 2001.

[61] Nathan A Baird, Paul D Etter, Tressa S Atwood, Mark C Currey, Anthony L Shiver, Zachary A
Lewis, Eric U Selker, William A Cresko, and Eric A Johnson. Rapid snp discovery and genetic
mapping using sequenced rad markers. PloS one, 3(10):e3376, 2008.

[62] Christian S Riesenfeld, Patrick D Schloss, and Jo Handelsman. Metagenomics: genomic analysis
of microbial communities. Annu. Rev. Genet., 38:525–552, 2004.

[63] Elaine R Mardis. The impact of next-generation sequencing technology on genetics. Trends in
genetics, 24(3):133–141, 2008.

[64] Jay Shendure and Hanlee Ji. Next-generation dna sequencing. Nature biotechnology, 26(10):1135–
1145, 2008.

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

Bibliography 179

[65] Can Alkan, Jeffrey M Kidd, Tomas Marques-Bonet, Gozde Aksay, Francesca Antonacci, Ferey-
doun Hormozdiari, Jacob O Kitzman, Carl Baker, Maika Malig, Onur Mutlu, S Cenk Sahinalp,
Richard A Gibbs, and Evan E Eichler. Personalized copy number and segmental duplication maps
using next-generation sequencing. Nature genetics, 41(10):1061, 2009.

[66] Pavel A Pevzner, Haixu Tang, and Michael S Waterman. An eulerian path approach to dna
fragment assembly. Proceedings of the national academy of sciences, 98(17):9748–9753, 2001.

[67] JT Simpson, K Wong, SD Jackman, JE Schein, SJ Jones, and I. Birol. Abyss: a parallel assembler
for short read sequence data. Genome Res, 2009.

[68] Ruiqiang Li, Hongmei Zhu, Jue Ruan, Wubin Qian, Xiaodong Fang, Zhongbin Shi, Yingrui Li,
Shengting Li, Gao Shan, Karsten Kristiansen, Songgang Li, Huanming Yang, Jian Wang, and
Jun Wang. De novo assembly of human genomes with massively parallel short read sequencing.
Genome research, 20(2):265–272, 2010.

[69] Yongchao Liu, Bertil Schmidt, and Douglas L Maskell. Parallelized short read assembly of large
genomes using de bruijn graphs. BMC Bioinformatics, 12(1), 2011.

[70] Dinghua Li, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane, and Tak-Wah Lam. Megahit: an
ultra-fast single-node solution for large and complex metagenomics assembly via succinct de
bruijn graph. Bioinformatics, 31(10):1674–1676, 2015.

[71] Daniel R Zerbino and Ewan Birney. Velvet: algorithms for de novo short read assembly using de
bruijn graphs. Genome research, 18(5):821–829, 2008.

[72] Mark Chaisson, Pavel Pevzner, and Haixu Tang. Fragment assembly with short reads. Bioinfor-
matics, 20(13):2067–2074, 2004.

[73] Anja Bog, Kai Sachs, and Alexander Zeier. Benchmarking database design for mixed OLTP and
OLAP workloads. In Proceeding of the Second Joint WOSP/SIPEW International Conference on
Performance Engineering (ICPE), page 417, 2011.

[74] Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing and OLAP technology.
ACM SIGMOD Record, 26(1):65–74, March 1997.

[75] M. Tehranipoor, J. Plusquellic, R. M. Rad, and X. Wang. Power supply signal calibration tech-
niques for improving detection resolution to hardware trojans. In Computer-Aided Design, In-
ternational Conference on, pages 632–639, Los Alamitos, CA, USA, nov 2008. IEEE Computer
Society.

[76] Xiaoxiao Wang, Hassan Salmani, Mark Mohammad Tehranipoor, and James F. Plusquellic. Hard-
ware trojan detection and isolation using current integration and localized current analysis. 2008
IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems, pages 87–95,
2008.

[77] You Li, Tayla B Heavican, Neetha N Vellichirammal, Javeed Iqbal, and Chittibabu Guda.
ChimeRScope: a novel alignment-free algorithm for fusion transcript prediction using paired-end
RNA-Seq data. Nucleic Acids Res., 2017.

[78] FP Breitwieser, DN Baker, and Steven L Salzberg. KrakenUniq: confident and fast metagenomics
classification using unique k-mer counts. Genome Biology, 19, 2018.

[79] Robert A Edwards, Robert Olson, Terry Disz, Gordon D Pusch, Veronika Vonstein, Rick Stevens,
and Ross Overbeek. Real time metagenomics: using k-mers to annotate metagenomes. Bioinfor-
matics, 28(24), 2012.

[80] Samuel S Minot, Niklas Krumm, and Nicholas B Greenfield. One Codex: A Sensitive and Accurate
Data Platform for Genomic Microbial Identification. BioRxiv, 2015.

[81] Ricardo Assunção Vialle, Fábio de Oliveira Pedrosa, Vinicius Almir Weiss, Dieval Guizelini,
Juliana Helena Tibaes, Jeroniza Nunes Marchaukoski, Emanuel Maltempi de Souza, and
Roberto Tadeu Raittz. RAFTS3: Rapid Alignment-Free Tool for Sequence Similarity Search.
bioRxiv, 2016.

Bibliography 180

[82] Tajana Simunic Rosing, Niema Moshiri, and Rob Knight. Acceleration of bioinformatics workloads.
DARPA ERI Summit, Jul 2020.

[83] C Lee. Ventola. The antibiotic resistance crisis: part 1: causes and threats. P & T : a peer-
reviewed journal for formulary management, 40(4):277–83, 2015.

[84] Anirban Nag, C. Ramachandra, Rajeev Balasubramonian, Ryan Stutsman, Edouard Giacomin,
Hari Kambalasubramanyam, and Pierre-Emmanuel Gaillardon. GenCache: Leveraging In-Cache
Operators for Efficient Sequence Alignment. In MICRO, 2019.

[85] Wenqin Huangfu, Xueqi Li, Shuangchen Li, Xing Hu, Peng Gu, , and Yuan Xie. MEDAL: Scalable
DIMM based Near Data Processing Accelerator for DNA Seeding Algorithm. In MICRO, 2019.

[86] Wenqin Huangfu, Shuangchen Li, Xing Hu, and Yuan Xie. RADAR: A 3D-reRAM Based DNA
Alignment Accelerator Architecture. In DAC, 2018.

[87] Shuangchen Li, Dimin Niu, Krishna T. Malladi, Hongzhong Zheng, Bob Brennan, and Yuan Xie.
DRISA: A DRAM-based Reconfigurable In-Situ Accelerator. In MICRO, 2017.

[88] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie
Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry. Ambit: In-
memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology. In
MICRO, 2017.

[89] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy, R. Nair, and S. Swanson.
Near-Data Processing: Insights from a MICRO-46 Workshop. MICRO, 2014.

[90] R. Sharifi and Z. Navabi. Online Profiling for Cluster-Specific Variable Rate Refreshing in High-
Density DRAM Systems. ETS, 2017.

[91] V. Seshadri, K. Hsieh, A. Boroum, D. Lee, M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C.
Mowry. Fast Bulk Bitwise AND and OR in DRAM. CAL, 2015.

[92] Arpith Jacob, Joseph Lancaster, Jeremy Buhler, and Roger Chamberlain. FPGA-accelerated seed
generation in mercury BLASTP. In FCCM, 2007.

[93] Fei Gao, Georgios Tziantzioulis, and David Wentzlaff. Computedram: In-memory compute using
off-the-shelf drams. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), page 100–113, 2019.

[94] N. Chatterjee, M. O’Connor, D. Lee, D. R. Johnson, S. W. Keckler, M. Rhu, and W. J. Dally.
Architecting an Energy-Efficient DRAM System for GPUs. In HPCA, 2017.

[95] E. Fernandez, W. Najjar, and S. Lonardi. String Matching in Hardware Using the FM-Index. In
FCMM, 2011.

[96] Kevin K Chang, Prashant J Nair, Donghyuk Lee, Saugata Ghose, Moinuddin K Qureshi, and
Onur Mutlu. Low-cost inter-linked subarrays (lisa): Enabling fast inter-subarray data movement
in dram. In HPCA, 2016.

[97] Micron. Tn-40-07: Calculating memory power for ddr4 sdram introduction. https://www.

micron.com/-/media/client/global/documents/products/technical-note/dram/tn4007_

ddr4_power_calculation.pdf, 2020.

[98] Ben Langmead Derrick E Wood, Jennifer Lu. Improved metagenomic analysis with kraken 2.
Genome Biology, 20, 2019.

[99] Müller André Kobus Robin, Hundt Christian and Bertil Schmidt. Accelerating metagenomic read
classification on CUDA-enabled GPUs. BMC Bioinformatics, 2009.

[100] Alif Ahmed and Kevin Skadron. Hopscotch: A Micro-benchmark Suite for Memory Performance
Evaluation. In MEMSYS, 2019.

[101] Intel Performance Counter Monitor. https://github.com/opcm/pcm.

[102] NVIDIA Visual Profiler. https://developer.nvidia.com/nvidia-visual-profiler.

[103] A. Jahanshahi, H. Sabzi, C. Lau, and D. Wong. GPU-NEST: Characterizing Energy Efficiency of
Multi-GPU Inference Servers. CAL, 2020.

https://www.micron.com/-/media/client/global/documents/products/technical-note/dram/tn4007_ddr4_power_calculation.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-note/dram/tn4007_ddr4_power_calculation.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-note/dram/tn4007_ddr4_power_calculation.pdf
https://github.com/opcm/pcm
https://developer.nvidia.com/nvidia-visual-profiler

Bibliography 181

[104] Predictive Technology Model (PTM). http://ptm.asu.edu/.

[105] FreePDK45: 45nm variant of the FreePDK Process Design Kit. https://www.eda.ncsu.edu/

wiki/FreePDK45:Contents.

[106] M. R. Guthaus, J. E. Stine, S. Ataei, Brian Chen, Bin Wu, and M. Sarwar. OpenRAM: An
open-source memory compiler. In ICCAD, 2016.

[107] Aaron Stillmaker, Zhibin Xiao, and Bevan M. Baas. Toward more accurate scaling estimates of
cmos circuits from 180 nm to 22 nm. 2012.

[108] J. B. Park, W. R. Davis, and P. D. Franzon. 3D-DATE: A Circuit-Level Three-Dimensional
DRAM Area, Timing, and Energy Model. IEEE Transactions on Circuits and Systems, 2019.

[109] PCI-E Specification. https://pcisig.com/specifications.

[110] K. Song, J. Kim, J. Yoon, S. Kim, H. Kim, H. Chung, H. Kim, K. Kim, H. Park, H. C. Kang,
N. Tak, D. Park, W. Kim, Y. Lee, Y. C. Oh, G. Jin, J. Yoo, D. Park, K. Oh, C. Kim, and
Y. Jun. A 31 ns Random Cycle VCAT-Based 4F 2 DRAM With Manufacturability and Enhanced
Cell Efficiency. IEEE Journal of Solid-State Circuits, 2010.

[111] Micron. 4 f2 folded bit line dram cell structure having buried bit and word lines. https://

patents.google.com/patent/US6689660B1/en, 2020.

[112] H. S. Stone. A Logic-in-Memory Computer. IEEE Transactions on Computers, C-19(1):73–78,
1970.

[113] Yi Kang, Wei Huang, Seung-Moon Yoo, D. Keen, Zhenzhou Ge, V. Lam, P. Pattnaik, and J. Tor-
rellas. FlexRAM: toward an advanced intelligent memory system. In ICCD, 1999.

[114] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas, and
K. Yelick. A case for intelligent RAM. MICRO, 1997.

[115] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCoss, J. Granacki, J. Brock-
man, A. Srivastava, W. Athas, V. Freeh, Jaewook Shin, and Joonseok Park. Mapping Irregular
Applications to DIVA, a PIM-based Data-Intensive Architecture. In SC, 1999.

[116] D. G. Elliott, W. M. Snelgrove, and M. Stumm. Computational RAM: A Memory-SIMD Hybrid
And Its Application To DSP. In CICC, 1992.

[117] M. Gokhale, B. Holmes, and K. Iobst. Processing in memory: the terasys massively parallel pim
array. Computer, 1995.

[118] Kevin Hsieh, Samira Manabi Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali Boroumand,
Saugata Ghose, and Onur Mutlu. Accelerating pointer chasing in 3d-stacked memory: Challenges,
mechanisms, evaluation. ICCD, 2016.

[119] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. Pinatubo: A
processing-in-memory architecture for bulk bitwise operations in emerging non-volatile memo-
ries. In Proceedings of the 53rd Annual Design Automation Conference (DAC), 2016.

[120] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and R. Das. Compute caches.
In HPCA, 2017.

[121] Qing Guo et al. A resistive TCAM accelerator for data-intensive computing. In Micro, 2011.

[122] Qing Guo et al. AC-DIMM: Associative computing with STT-MRAM. In ISCA, 2013.

[123] Nastaran Hajinazar et al. SIMDRAM: A framework for bit-serial simd processing using dram. In
ASPLOS, 2021.

[124] Rajaraman Ramanarayanan et al. Combined set bit count and detector logic, U.S. Patent
US8214414B2 Sep. 2008.

[125] Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed
Alser, Hasan Hassan, Oguz Ergin, Can Alkan, Onur Mutlu, and et al. Grim-filter: Fast seed
location filtering in dna read mapping using processing-in-memory technologies. BMC Genomics,
19(S2), 2018.

http://ptm.asu.edu/
https://www.eda.ncsu.edu/wiki/FreePDK45:Contents
https://www.eda.ncsu.edu/wiki/FreePDK45:Contents
https://pcisig.com/specifications
https://patents.google.com/patent/US6689660B1/en
https://patents.google.com/patent/US6689660B1/en

Bibliography 182

[126] Yinan Li and Jignesh M. Patel. BitWeaving: Fast scans for main memory data processing. In
Proceedings of the ACM International Conference on Management of Data (SIGMOD), 2013.

[127] In-Memory Database Market. https://www.alliedmarketresearch.com/

in-memory-database-market-A31497, October 2022.

[128] Utku Sirin and Anastasia Ailamaki. Micro-architectural analysis of OLAP: limitations and oppor-
tunities. Proceedings of the VLDB Endowment, 13(6):840–853, 2020.

[129] Shimeng Yu, Hongwu Jiang, Shanshi Huang, Xiaochen Peng, and Anni Lu. Compute-in-memory
chips for deep learning: Recent trends and prospects. IEEE Circuits and Systems Magazine,
21(3):31–56, 2021.

[130] Business Intelligence and Analytics Market. https://www.emergenresearch.com/

request-sample/467, January 2021.

[131] Daniel Abadi, Anastasia Ailamaki, David Andersen, Peter Bailis, Magdalena Balazinska,
Philip A. Bernstein, Peter Boncz, Surajit Chaudhuri, Alvin Cheung, Anhai Doan, Luna Dong,
Michael J. Franklin, Juliana Freire, Alon Halevy, Joseph M. Hellerstein, Stratos Idreos, Donald
Kossmann, Tim Kraska, Sailesh Krishnamurthy, Volker Markl, Sergey Melnik, Tova Milo, C. Mo-
han, Thomas Neumann, Beng Chin Ooi, Fatma Ozcan, Jignesh Patel, Andrew Pavlo, Raluca
Popa, Raghu Ramakrishnan, Christopher Re, Michael Stonebraker, and Dan Suciu. The seattle
report on database research. Communications of the ACM, 65(8):72–79, August 2022.

[132] Marzieh Lenjani, Patricia Gonzalez, Elaheh Sadredini, Shuangchen Li, Yuan Xie, Ameen Akel,
Sean Eilert, Mircea R Stan, and Kevin Skadron. Fulcrum: A simplified control and access mech-
anism toward flexible and practical in-situ accelerators. In 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pages 556–569. IEEE, 2020.

[133] Helena Caminal, Yannis Chronis, Tianshu Wu, Jignesh M. Patel, and José F. Mart́ınez. Acceler-
ating database analytic query workloads using an associative processor. ISCA ’22, 2022.

[134] Yinan Li and Jignesh M. Patel. WideTable: An accelerator for analytical data processing. Proceed-
ings of the VLDB Endowment, 7(10):907–918, June 2014.

[135] Ben Hannel and Kevin Leong. Rockset performance evaluation on the star schema benchmark.

[136] Clickhouse. https://clickhouse.com/docs/en/getting-started/example-datasets/star-schema, 2023.

[137] StarRocks. https://docs.starrocks.io/en-us/2.5/benchmarking/ SSB benchmarking, 2023.

[138] Jignesh M. Patel, Harshad Deshmukh, Jianqiao Zhu, Navneet Potti, Zuyu Zhang, Marc
Spehlmann, Hakan Memisoglu, and Saket Saurabh. Quickstep: A data platform based on the
scaling-up approach. Proc. VLDB Endow., 11(6):663–676, oct 2018.

[139] Ziqiang Feng, Eric Lo, Ben Kao, and Wenjian Xu. Byteslice: Pushing the envelope of main
memory data processing with a new storage layout. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’15, page 31–46, New York, NY,
USA, 2015. Association for Computing Machinery.

[140] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo Müller, Hannes Rauhe, and
Jonathan Dees. The SAP HANA database - an architecture overview. IEEE Data Eng. Bull.,
35:28–33, 03 2012.

[141] Jens Krueger, Changkyu Kim, Martin Grund, Nadathur Satish, David Schwalb, Jatin Chhugani,
Hasso Plattner, Pradeep Dubey, and Alexander Zeier. Fast updates on read-optimized databases
using multi-core CPUs. Proc. VLDB Endow., 5(1):61–72, sep 2011.

[142] Vijayshankar Raman, Garret Swart, Lin Qiao, Frederick Reiss, Vijay Dialani, Donald Kossmann,
Inderpal Narang, and Richard Sidle. Constant-time query processing. In 2008 IEEE 24th Interna-
tional Conference on Data Engineering, pages 60–69, 2008.

[143] Craig Chasseur and Jignesh M. Patel. Design and evaluation of storage organizations for read-
optimized main memory databases. Proc. VLDB Endow., 6(13):1474–1485, aug 2013.

[144] P. O’Neil, E. O’Neil, and X. Chen. The star schema benchmark. http://www.cs.umb.edu/

~poneil/StarSchemaB.pdf, Jan 2007.

https://www.alliedmarketresearch.com/in-memory-database-market-A31497
https://www.alliedmarketresearch.com/in-memory-database-market-A31497
https://www.emergenresearch.com/request-sample/467
https://www.emergenresearch.com/request-sample/467
http://www.cs.umb.edu/~poneil/StarSchemaB.pdf
http://www.cs.umb.edu/~poneil/StarSchemaB.pdf

Bibliography 183

[145] Liu Ke, Xuan Zhang, Jinin So, Jong-Geon Lee, Shin-Haeng Kang, Sukhan Lee, Songyi Han,
YeonGon Cho, Jin Hyun Kim, Yongsuk Kwon, KyungSoo Kim, Jin Jung, Ilkwon Yun, Sung Joo
Park, Hyunsun Park, Joonho Song, Jeonghyeon Cho, Kyomin Sohn, Nam Sung Kim, and Hsien-
Hsin S. Lee. Near-memory processing in action: Accelerating personalized recommendation with
AxDIMM. IEEE Micro, 42(1):116–127, 2022.

[146] Mohammad Alian, Seung Won Min, Hadi Asgharimoghaddam, Ashutosh Dhar, Dong Kai Wang,
Thomas Roewer, Adam McPadden, Oliver O’Halloran, Deming Chen, Jinjun Xiong, Daehoon
Kim, Wen-mei Hwu, and Nam Sung Kim. Application-transparent near-memory processing
architecture with memory channel network. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 802–814, 2018.

[147] Tpc-h benchmark specification.

[148] Intel® Data Direct I/O Technology (Intel® DDIO): A primer.

[149] Alireza Farshin, Amir Roozbeh, Gerald Q Maguire Jr, and Dejan Kostic. Reexamining direct
cache access to optimize i/o intensive applications for multi-hundred-gigabit networks. In USENIX
ATC’20, pages 673–689, 2020.

[150] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. Packet Chasing: Spying on Network
Packets over a Cache Side-Channel. In ISCA, 2020.

[151] R. Huggahalli, R. Iyer, and S. Tetrick. Direct cache access for high bandwidth network i/o. In
32nd International Symposium on Computer Architecture (ISCA’05), pages 50–59, 2005.

[152] Dan Tang, Yungang Bao, Weiwu Hu, and Mingyu Chen. DMA cache: Using on-chip storage to
architecturally separate i/o data from cpu data for improving i/o performance. In HPCA - 16 2010
The Sixteenth International Symposium on High-Performance Computer Architecture, pages 1–12,
2010.

[153] Minhu Wang, Mingwei Xu, and Jianping Wu. Understanding I/O direct cache access performance
for end host networking. Proc. ACM Meas. Anal. Comput. Syst., 6(1), feb 2022.

[154] Yifan Yuan, Mohammad Alian, Yipeng Wang, Ren Wang, Ilia Kurakin, Charlie Tai, and
Nam Sung Kim. Don’t forget the I/O when allocating your LLC. In 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA), pages 112–125, 2021.

[155] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanovic. The RISC-V instruction
set manual. Volume I User-level ISA, 2014.

[156] Steven JE Wilton and Norman P Jouppi. Cacti: An enhanced cache access and cycle time model.
IEEE Journal of Solid-State Circuits, 31(5):677–688, 1996.

[157] Paulo C. Santos, Geraldo F. Oliveira, Diego G. Tomé, Marco A. Z. Alves, Eduardo C.
de Almeida, and Luigi Carro. Operand size reconfiguration for big data processing in mem-
ory. In David Atienza and Giorgio Di Natale, editors, Design, Automation and Test in Europe
Conference & Exhibition, DATE 2017, Lausanne, Switzerland, March 27-31, 2017, pages 710–715.
IEEE, 2017.

[158] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfold-
ing of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment,
2008(10):P10008, oct 2008.

[159] Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, Alexander Zeier, and Jan
Schaffner. SIMD-Scan: Ultra fast in-memory table scan using on-chip vector processing units.
Proceedings of the VLDB Endowment, 2(1):385–394, Aug 2009.

[160] Haran Boral and David J DeWitt. Database machines: An idea whose time has passed? A critique
of the future of database machines, 1983.

[161] Samsung smartssd. https://www.xilinx.com/applications/data-center/

computational-storage/smartssd.html, 2023.

[162] Sam Likun Xi, Aurelia Augusta, Manos Athanassoulis, and Stratos Idreos. Beyond the wall:
Near-data processing for databases. In Proceedings of the 11th International Workshop on Data
Management on New Hardware, DaMoN’15, 2015.

https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html

Bibliography 184

[163] Amirali Boroumand, Saugata Ghose, Geraldo F. Oliveira, and Onur Mutlu. Polynesia: Enabling
high-performance and energy-efficient hybrid transactional/analytical databases with hardware/-
software co-design. In 2022 IEEE 38th International Conference on Data Engineering (ICDE),
pages 2997–3011, 2022.

[164] Peter Bakkum and Kevin Skadron. Accelerating SQL database operations on a gpu with cuda. In
Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units
(GPGPU), page 94–103, 2010.

[165] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. A study of the fundamental performance
characteristics of GPUs and CPUs for database analytics. In Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD), page 1617–1632, 2020.

[166] Louis Woods, Zsolt István, and Gustavo Alonso. Ibex: An intelligent storage engine with support
for advanced sql offloading. Proceedings of the VLDB Endowment, 7(11):963–974, Jul 2014.

[167] Daniel Ziener, Florian Bauer, Andreas Becher, Christopher Dennl, Klaus Meyer-Wegener, Ute
Schürfeld, Jürgen Teich, Jörg-Stephan Vogt, and Helmut Weber. FPGA-based dynamically
reconfigurable sql query processing. ACM Transactions on Reconfigurable Technology Systems, Aug
2016.

[168] Philippos Papaphilippou and Wayne Luk. Accelerating database systems using fpgas: A survey. In
2018 28th International Conference on Field Programmable Logic and Applications (FPL), pages
125–1255, 2018.

[169] Nvidia Thrust: Parallel algorithms library.

[170] Mark Raasveldt and Hannes Mühleisen. DuckDB: An Embeddable Analytical Database. In
Proceedings of the 2019 International Conference on Management of Data, pages 1981–1984,
Amsterdam Netherlands, June 2019. ACM.

[171] Oreste Villa, Daniel R Johnson, Mike Oconnor, Evgeny Bolotin, David Nellans, Justin Luitjens,
Nikolai Sakharnykh, Peng Wang, Paulius Micikevicius, Anthony Scudiero, et al. Scaling the
power wall: A path to exascale. In SC’14: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 830–841. IEEE, 2014.

[172] Mary Hall, Peter Kogge, Jeff Koller, Pedro Diniz, Jacqueline Chame, Jeff Draper, Jeff LaCoss,
John Granacki, Jay Brockman, Apoorv Srivastava, et al. Mapping irregular applications to DIVA,
a PIM-based data-intensive architecture. In Proceedings of the 1999 ACM/IEEE Conference on
Supercomputing, pages 57–es, 1999.

[173] Yi Kang, Wei Huang, Seung-Moon Yoo, Diana Keen, Zhenzhou Ge, Vinh Lam, Pratap Pattnaik,
and Josep Torrellas. FlexRAM: Toward an advanced intelligent memory system. In 2012 IEEE
30th International Conference on Computer Design (ICCD), pages 5–14. IEEE, 2012.

[174] Christoforos E Kozyrakis, Stylianos Perissakis, David Patterson, Thomas Anderson, Krste
Asanovic, Neal Cardwell, Richard Fromm, Jason Golbus, Benjamin Gribstad, Kimberly Keeton,
et al. Scalable processors in the billion-transistor era: IRAM. Computer, 30(9):75–78, 1997.

[175] Harold S Stone. A logic-in-memory computer. IEEE Transactions on Computers, 100(1):73–78,
1970.

[176] Kevin K Chang, Abhijith Kashyap, Hasan Hassan, Saugata Ghose, Kevin Hsieh, Donghyuk Lee,
Tianshi Li, Gennady Pekhimenko, Samira Khan, and Onur Mutlu. Understanding latency variation
in modern DRAM chips: Experimental characterization, analysis, and optimization. In Proceedings
of the 2016 ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Science, pages 323–336, 2016.

[177] Nezam Rohbani, Sina Darabi, and Hamid Sarbazi-Azad. PF-DRAM: A precharge-free DRAM
structure. In 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA), pages 126–138. IEEE, 2021.

[178] Nezam Rohbani, Mohammad Arman Soleimani, and Hamid Sarbazi-Azad. PIPF-DRAM: Pro-
cessing in precharge-free DRAM. In Proceedings of the 59th ACM/IEEE Design Automation
Conference, pages 1075–1080, 2022.

Bibliography 185

[179] Helena Caminal, Kailin Yang, Srivatsa Srinivasa, Akshay Krishna Ramanathan, Khalid Al-Hawaj,
Tianshu Wu, Vijaykrishnan Narayanan, Christopher Batten, and José F Mart́ınez. CAPE:
A content-addressable processing engine. In 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pages 557–569. IEEE, 2021.

[180] João Dinis Ferreira, Gabriel Falcao, Juan Gómez-Luna, Mohammed Alser, Lois Orosa, Moham-
mad Sadrosadati, Jeremie S Kim, Geraldo F Oliveira, Taha Shahroodi, Anant Nori, et al. pLUTo:
Enabling massively parallel computation in DRAM via lookup tables. In 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 900–919. IEEE, 2022.

[181] Quan Deng, Youtao Zhang, Minxuan Zhang, and Jun Yang. LAcc: Exploiting lookup table-based
fast and accurate vector multiplication in DRAM-based CNN accelerator. In Proceedings of the
56th Annual Design Automation Conference 2019, pages 1–6, 2019.

[182] Alexandar Devic, Siddhartha Balakrishna Rai, Anand Sivasubramaniam, Ameen Akel, Sean
Eilert, and Justin Eno. To PIM or not for emerging general purpose processing in DDR memory
systems. In Proceedings of the 49th Annual International Symposium on Computer Architecture,
pages 231–244, 2022.

[183] Mingxuan He, Choungki Song, Ilkon Kim, Chunseok Jeong, Seho Kim, Il Park, Mithuna Thot-
tethodi, and TN Vijaykumar. Newton: A DRAM-maker’s accelerator-in-memory (AiM) archi-
tecture for machine learning. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 372–385. IEEE, 2020.

[184] Jin Hyun Kim, Shin-haeng Kang, Sukhan Lee, Hyeonsu Kim, Woongjae Song, Yuhwan Ro, Se-
ungwon Lee, David Wang, Hyunsung Shin, Bengseng Phuah, et al. Aquabolt-XL: Samsung
HBM2-PIM with in-memory processing for ML accelerators and beyond. In 2021 IEEE Hot Chips
33 Symposium (HCS), pages 1–26. IEEE, 2021.

[185] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program analysis
& transformation. In International symposium on code generation and optimization, 2004. CGO
2004., pages 75–86. IEEE, 2004.

[186] Kanishkan Vadivel, Lorenzo Chelini, Ali BanaGozar, Gagandeep Singh, Stefano Corda, Roel
Jordans, and Henk Corporaal. TDO-CIM: Transparent detection and offloading for computation
in-memory. In 2020 Design, Automation and Test in Europe Conference & Exhibition (DATE),
pages 1602–1605. IEEE, 2020.

[187] Tobias Grosser, Armin Groesslinger, and Christian Lengauer. Polly—performing polyhedral opti-
mizations on a low-level intermediate representation. Parallel Processing Letters, 22(04):1250010,
2012.

[188] Zhengrong Wang, Christopher Liu, and Tony Nowatzki. Infinity stream: Enabling transparent and
automated in-memory computing. IEEE Computer Architecture Letters, 21(2):85–88, 2022.

[189] Ramyad Hadidi, Lifeng Nai, Hyojong Kim, and Hyesoon Kim. Cairo: A compiler-assisted tech-
nique for enabling instruction-level offloading of processing-in-memory. ACM Transactions on
Architecture and Code Optimization (TACO), 14(4):1–25, 2017.

[190] Anatolii Alekseevich Karatsuba and Yu P Ofman. Multiplication of many-digital numbers by
automatic computers. In Doklady Akademii Nauk, volume 145, pages 293–294. Russian Academy
of Sciences, 1962.

[191] Orian Leitersdorf, Dean Leitersdorf, Jonathan Gal, Mor Dahan, Ronny Ronen, and Shahar
Kvatinsky. AritPIM: High-throughput in-memory arithmetic. IEEE Transactions on Emerg-
ing Topics in Computing, 2023.

[192] Jingcheng Wang, Xiaowei Wang, Charles Eckert, Arun Subramaniyan, Reetuparna Das, David
Blaauw, and Dennis Sylvester. A 28-nm compute SRAM with bit-serial logic/arithmetic operations
for programmable in-memory vector computing. IEEE Journal of Solid-State Circuits, 55(1):76–86,
2019.

[193] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos Kozyrakis.
Evaluating MapReduce for multi-core and multiprocessor systems. In 2007 IEEE 13th Interna-
tional Symposium on High Performance Computer Architecture, pages 13–24. Ieee, 2007.

Bibliography 186

[194] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B. Brown. MiBench: A
free, commercially representative embedded benchmark suite. In Proceedings of the Fourth Annual
IEEE International Workshop on Workload Characterization. WWC-4 (Cat. No.01EX538), 2001.

[195] Juan Gómez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F. Oliveira, and
Onur Mutlu. Benchmarking memory-centric computing systems: Analysis of real processing-in-
memory hardware. In 2021 12th International Green and Sustainable Computing Conference
(IGSC), 2021.

[196] Ki-Whan Song, Jin-Young Kim, Jae-Man Yoon, Sua Kim, Huijung Kim, Hyun-Woo Chung,
Hyungi Kim, Kanguk Kim, Hwan-Wook Park, Hyun Chul Kang, et al. A 31 ns random cycle
vcat-based 4F2 DRAM with manufacturability and enhanced cell efficiency. IEEE Journal of
Solid-State Circuits, 45(4):880–888, 2010.

[197] Christopher Celio, Pi-Feng Chiu, Krste Asanović, Borivoje Nikolić, and David Patterson. BROOM:
An open-source out-of-order processor with resilient low-voltage operation in 28-nm CMOS. IEEE
Micro, 39(2):52–60, 2019.

[198] Intel. Intel performance counter monitor. http://www.intel.com/software/pcm, 2019.

[199] Yoongu Kim, Weikun Yang, and Onur Mutlu. Ramulator: A fast and extensible DRAM simulator.
IEEE Computer Architecture Letters, 15(1):45–49, 2016.

[200] Damla Senol Cali, Gurpreet S. Kalsi, Zülal Bingöl, Can Firtina, Lavanya Subramanian,
Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali
Boroumand, Anant Norion, Allison Scibisz, Sreenivas Subramoneyon, Can Alkan, Saugata Ghose,
and Onur Mutlu. GenASM: A high-performance, low-power approximate string matching accel-
eration framework for genome sequence analysis. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2020.

[201] Stephan C Schuster. Next-generation sequencing transforms today’s biology. Nature methods,
5(1):16–18, 2008.

[202] Illumina. Miseq system. https://www.illumina.com/systems/sequencing-platforms/miseq.

html/.

[203] Illumina. Nextseq 2000 system. https://www.illumina.com/systems/sequencing-platforms/

nextseq-1000-2000.html.

[204] Illumina. Novaseq 6000 system. https://www.illumina.com/systems/sequencing-platforms/

novaseq.html.

[205] M. Alser, Z. Bingöl, D. S. Cali, J. Kim, S. Ghose, C. Alkan, and O. Mutlu. Accelerating genome
analysis: A primer on an ongoing journey. IEEE Micro, 40(5):65–75, 2020.

[206] Jay Shendure, Shankar Balasubramanian, George M Church, Walter Gilbert, Jane Rogers, Jef-
fery A Schloss, and Robert H Waterston. Dna sequencing at 40: past, present and future. Nature,
550(7676):345–353, 2017.

[207] Hongyi Xin, Donghyuk Lee, Farhad Hormozdiari, Samihan Yedkar, Onur Mutlu, and Can Alkan.
Accelerating read mapping with fasthash. In BMC genomics, volume 14, page S13. Springer, 2013.

[208] Matthias Hess, Alexander Sczyrba, Rob Egan, Tae-Wan Kim, Harshal Chokhawala, Gary
Schroth, Shujun Luo, Douglas S Clark, Feng Chen, Tao Zhang, Roderick I. Mackie, Len A. Pen-
nacchio, Susannah G. Tringe, Axel Visel, Tanja Woyke, Zhong Wang, and Edward M. Rubin.
Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science,
331(6016):463–467, 2011.

[209] Adina Chuang Howe, Janet K Jansson, Stephanie A Malfatti, Susannah G Tringe, James M
Tiedje, and C Titus Brown. Tackling soil diversity with the assembly of large, complex
metagenomes. Proceedings of the National Academy of Sciences, 111(13):4904–4909, 2014.

[210] Junjie Qin, Ruiqiang Li, Jeroen Raes, Manimozhiyan Arumugam, Kristoffer Solvsten Burgdorf,
Chaysavanh Manichanh, Trine Nielsen, Nicolas Pons, Florence Levenez, Takuji Yamada, et al. A
human gut microbial gene catalogue established by metagenomic sequencing. nature, 464(7285):59–
65, 2010.

http://www.intel.com/software/pcm
 https://www.illumina.com/systems/sequencing-platforms/miseq.html/
 https://www.illumina.com/systems/sequencing-platforms/miseq.html/
 https://www.illumina.com/systems/sequencing-platforms/nextseq-1000-2000.html
 https://www.illumina.com/systems/sequencing-platforms/nextseq-1000-2000.html
 ” https://www.illumina.com/systems/sequencing-platforms/novaseq.html
 ” https://www.illumina.com/systems/sequencing-platforms/novaseq.html

Bibliography 187

[211] Erwin L van Dijk, Yan Jaszczyszyn, Delphine Naquin, and Claude Thermes. The third revolution
in sequencing technology. Trends in Genetics, 34(9):666–681, 2018.

[212] Can Alkan, Bradley P Coe, and Evan E Eichler. Genome structural variation discovery and
genotyping. Nature Reviews Genetics, 12(5):363–376, 2011.

[213] Lars Feuk, Andrew R Carson, and Stephen W Scherer. Structural variation in the human genome.
Nature Reviews Genetics, 7(2):85–97, 2006.

[214] Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A Gurevich, Mikhail Dvorkin, Alexan-
der S Kulikov, Valery M Lesin, Sergey I Nikolenko, Son Pham, Andrey D Prjibelski, Alexey V.
Pyshkin, Alexander V. Sirotkin, Nikolay Vyahhi, Glenn Tesler, Max A. Alekseyev, and Pavel A.
Pevzner. Spades: a new genome assembly algorithm and its applications to single-cell sequencing.
Journal of computational biology, 19(5):455–477, 2012.

[215] SD Jackman, BP Vandervalk, H Mohamadi, J Chu, S Yeo, SA Hammond, G Jahesh, H Khan,
L Coombe, RL Warren, and I. Birol. Abyss 2.0: resource-efficient assembly of large genomes using
a bloom filter. Genome Res, 2017.

[216] Sergey Nurk, Dmitry Meleshko, Anton Korobeynikov, and Pavel A. Pevzner. metaspades: a new
versatile metagenomic assembler. Genome Research, 27(5):824–834, 2017.

[217] Mikhail Kolmogorov, Derek M Bickhart, Bahar Behsaz, Alexey Gurevich, Mikhail Rayko,
Sung Bong Shin, Kristen Kuhn, Jeffrey Yuan, Evgeny Polevikov, Timothy PL Smith, et al.
metaflye: scalable long-read metagenome assembly using repeat graphs. Nature Methods,
17(11):1103–1110, 2020.

[218] Yu Lin, Jeffrey Yuan, Mikhail Kolmogorov, Max W Shen, Mark Chaisson, and Pavel A Pevzner.
Assembly of long error-prone reads using de bruijn graphs. Proceedings of the National Academy
of Sciences, 113(52):E8396–E8405, 2016.

[219] Mikhail Kolmogorov, Jeffrey Yuan, Yu Lin, and Pavel A Pevzner. Assembly of long, error-prone
reads using repeat graphs. Nature biotechnology, 37(5):540–546, 2019.

[220] R. Gebelhoff. Sequencing the genome creates so much data we don’t know what to do with it. ”
The Washington Post, 2015.

[221] Minxuan Zhou, Andreas Prodromou, Rui Wang, Hailong Yang, Depei Qian, and Dean Tullsen.
Temperature-aware dram cache management—relaxing thermal constraints in 3-d systems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39(10):1973–1986,
2019.

[222] Minxuan Zhou, Muzhou Li, Mohsen Imani, and Tajana Rosing. Hygraph: Accelerating graph
processing with hybrid memory-centric computing. In 2021 Design, Automation and Test in
Europe Conference & Exhibition (DATE), pages 330–335. IEEE, 2021.

[223] G. Kim, J. Kim, J. H. Ahn, and J. Kim. Memory-centric system interconnect design with hybrid
memory cubes. In Proceedings of the 22nd International Conference on Parallel Architectures and
Compilation Techniques, pages 145–155, 2013.

[224] Evangelos Georganas, Aydin Buluç, Jarrod Chapman, Leonid Oliker, Daniel Rokhsar, and
Katherine Yelick. Parallel de bruijn graph construction and traversal for de novo genome as-
sembly. In SC’14: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 437–448. IEEE, 2014.

[225] Jorge Duitama, Alena Zablotskaya, Rita Gemayel, An Jansen, Stefanie Belet, Joris R. Vermeesch,
Kevin J. Verstrepen, and Guy Froyen. Large-scale analysis of tandem repeat variability in the
human genome. Nucleic Acids Research, 42(9):5728–5741, 2014.

[226] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: Exploring the level of abstraction
for scalable and accurate parallel multi-core simulations. In International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), pages 52:1–52:12, November
2011.

Bibliography 188

[227] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven
Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building customized program analysis
tools with dynamic instrumentation. Acm sigplan notices, 40(6):190–200, 2005.

[228] Ke Chen, Sheng Li, Naveen Muralimanohar, Jung Ho Ahn, Jay B Brockman, and Norman P
Jouppi. Cacti-3dd: Architecture-level modeling for 3d die-stacked dram main memory. In 2012
Design, Automation and Test in Europe Conference & Exhibition (DATE), pages 33–38. IEEE,
2012.

[229] Rohit Chandra, Leo Dagum, David Kohr, Ramesh Menon, Dror Maydan, and Jeff McDonald.
Parallel programming in OpenMP. Morgan kaufmann, 2001.

[230] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga Govindaraju, Qiong Luo, and Pedro Sander.
Relational joins on graphics processors. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 511–524, 2008.

[231] Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. Gputerasort: high performance
graphics co-processor sorting for large database management. In Proceedings of the 2006 ACM
SIGMOD international conference on Management of data, pages 325–336, 2006.

[232] Dennis A Benson, Ilene Karsch-Mizrachi, David J Lipman, James Ostell, Barbara A Rapp, and
David L Wheeler. Genbank. Nucleic acids research, 28(1):15–18, 2000.

[233] Weichun Huang, Leping Li, Jason R Myers, and Gabor T Marth. Art: a next-generation sequenc-
ing read simulator. Bioinformatics, 28(4):593–594, 2012.

[234] Intel. Intel VTune Amplifier. https://software.intel.com/en-us/vtune, 2019.

[235] Sébastien Boisvert, François Laviolette, and Jacques Corbeil. Ray: Simultaneous assembly of
reads from a mix of high-throughput sequencing technologies. Journal of Computational Biology,
17(11):1519–1533, 2010.

[236] B. G. Jackson, M. Regennitter, X. Yang, P. S. Schnable, and S. Aluru. Parallel de novo assembly
of large genomes from high-throughput short reads. 2010 IEEE International Symposium on
Parallel & Distributed Processing (IPDPS), 2010.

[237] Evangelos Georganas, Aydın Buluç, Jarrod Chapman, Steven Hofmeyr, Chaitanya Aluru, Rob
Egan, Leonid Oliker, Daniel Rokhsar, and Katherine Yelick. Hipmer: an extreme-scale de novo
genome assembler. Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2015.

[238] Priyanka Ghosh, Sriram Krishnamoorthy, and Ananth Kalyanaraman. Pakman: Scalable assembly
of large genomes on distributed memory machines. In 2019 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 578–589, 2019.

[239] Yu Peng, Henry CM Leung, Siu-Ming Yiu, and Francis YL Chin. Idba-ud: a de novo assembler
for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics,
28(11):1420–1428, 2012.

[240] S. H. Pugsley, J. Jestes, R. Balasubramonian, V. Srinivasan, A. Buyuktosunoglu, A. Davis, and
F. Li. Comparing implementations of near-data computing with in-memory mapreduce workloads.
IEEE Micro, 2014.

[241] Farzaneh Zokaee, Hamid R. Zarandi, and Lei Jiang. Aligner: A process-in-memory architecture
for short read alignment in rerams. IEEE Computer Architecture Letters, 17(2):237–240, 2018.

[242] Farzaneh Zokaee, Mingzhe Zhang, and Lei Jiang. Finder: Accelerating fm-index-based exact
pattern matching in genomic sequences through reram technology. In PACT, 2019.

[243] De novo genome assembly from next-generation sequencing (ngs) reads. Next-Generation Sequenc-
ing Data Analysis, page 144–155, 2016.

[244] Pavel A. Pevzner, Haixu Tang, and Michael S. Waterman. An eulerian path approach to dna
fragment assembly. Proceedings of the National Academy of Sciences, 98(17):9748–9753, 2001.

[245] Daniel R. Zerbino and Ewan Birney. Velvet: Algorithms for de novo short read assembly using de
bruijn graphs. Genome Research, 18(5):821–829, 2008.

https://software.intel.com/en-us/vtune

Bibliography 189

[246] Jared T Simpson, Kim Wong, Shaun D Jackman, Jacqueline E Schein, Steven J M Jones, and
Inanç Birol. Abyss: A parallel assembler for short read sequence data, Jun 2009.

[247] Dinghua Li, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane, and Tak-Wah Lam. MEGAHIT:
an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de
Bruijn graph. Bioinformatics, 31(10):1674–1676, 01 2015.

[248] Jason R. Miller, Arthur L. Delcher, Sergey Koren, Eli Venter, Brian P. Walenz, Anushka Brown-
ley, Justin Johnson, Kelvin Li, Clark Mobarry, Granger Sutton, and et al. Aggressive assembly of
pyrosequencing reads with mates. Bioinformatics, 24(24):2818–2824, 2008.

[249] Myers EW;Sutton GG;Delcher AL;Dew IM;Fasulo DP;Flanigan MJ;Kravitz SA;Mobarry
CM;Reinert KH;Remington KA;Anson EL;Bolanos RA;Chou HH;Jordan CM;Halpern
AL;Lonardi S;Beasley EM;Brandon RC;Chen L;Dunn PJ;Lai Z;Liang Y;Nusskern DR;Zhan
M;Zhang Q;Zheng X;Rubin. A whole-genome assembly of drosophila.

[250] David B. Jaffe, Jonathan Butler, Sante Gnerre, Evan Mauceli, Kerstin Lindblad-Toh, Jill P.
Mesirov, Michael C. Zody, and Eric S. Lander. Whole-genome sequence assembly for mammalian
genomes: Arachne 2. Genome Research, 13(1):91–96, 2003.

[251] Binghang Liu, Yujian Shi, Jianying Yuan, Xuesong Hu, Hao Zhang, Nan Li, Zhenyu Li, Yanxiang
Chen, Desheng Mu, Wei Fan, and et al. Estimation of genomic characteristics by analyzing k-mer
frequency in de novo genome projects, Aug 2013.

[252] Price AL;Jones NC;Pevzner PA;. De novo identification of repeat families in large genomes.

[253] Ruiqiang Li, Jia Ye, Songgang Li, Jing Wang, Yujun Han, Chen Ye, Jian Wang, Huanming Yang,
Jun Yu, Gane Wong, and et al. Reas: Recovery of ancestral sequences for transposable ele-
ments from the unassembled reads of a whole genome shotgun. PLoS Computational Biology,
preprint(2005), 2005.

[254] D. Campagna, C. Romualdi, N. Vitulo, M. Del Favero, M. Lexa, N. Cannata, and G. Valle. Rap:
A new computer program for de novo identification of repeated sequences in whole genomes.
Bioinformatics, 21(5):582–588, 2004.

[255] A. Lefebvre, T. Lecroq, H. Dauchel, and J. Alexandre. Forrepeats: Detects repeats on entire
chromosomes and between genomes. Bioinformatics, 19(3):319–326, 2003.

[256] Stefan Kurtz, Apurva Narechania, Joshua C Stein, and Doreen Ware. A new method to compute
k-mer frequencies and its application to annotate large repetitive plant genomes. BMC Genomics,
9(1), 2008.

[257] Fanny-Dhelia Pajuste, Lauris Kaplinski, Märt Möls, Tarmo Puurand, Maarja Lepamets, and
Maido Remm. Fastgt: An alignment-free method for calling common snvs directly from raw
sequencing reads. 2016.

[258] Leena Salmela and Jan Schröder. Correcting errors in short reads by multiple alignments. Bioin-
formatics, 27(11):1455–1461, 04 2011.

[259] Robert C. Edgar. MUSCLE: multiple sequence alignment with high accuracy and high throughput.
Nucleic Acids Research, 32(5):1792–1797, 03 2004.

[260] L. Salmela and J. Schroder. Correcting errors in short reads by multiple alignments. Bioinformat-
ics, 27(11):1455–1461, 2011.

[261] Pandey P;Bender MA;Johnson R;Patro R;Berger B;. Squeakr: An exact and approximate k-mer
counting system, 2023.

[262] Páll Melsted and Jonathan K Pritchard. Efficient counting of k-mers in dna sequences using a
bloom filter. BMC Bioinformatics, 12(1), 2011.

[263] Roy RS;Bhattacharya D;Schliep A;. Turtle: Identifying frequent k-mers with cache-efficient
algorithms.

[264] Guillaume Marçais and Carl Kingsford. A fast, lock-free approach for efficient parallel counting
of occurrences of k-mers. Bioinformatics, 27(6):764–770, 01 2011.

Bibliography 190

[265] Swati C Manekar and Shailesh R Sathe. A benchmark study of k-mer counting methods for
high-throughput sequencing. GigaScience, 2018.

[266] Marek Kokot, Maciej D lugosz, and Sebastian Deorowicz. KMC 3: counting and manipulating
k-mer statistics. Bioinformatics, 33(17):2759–2761, 05 2017.

[267] Sebastian Deorowicz, Agnieszka Debudaj-Grabysz, and Szymon Grabowski. Disk-based k-mer
counting on a pc. BMC Bioinformatics, 14(1), 2013.

[268] Peter Audano and Fredrik Vannberg. Kanalyze: A fast versatile pipelined k-mer toolkit. Bioinfor-
matics, 30(14):2070–2072, 2014.

[269] Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, and Agnieszka Debudaj-Grabysz. Kmc
2: Fast and resource-frugal k-mer counting. Bioinformatics, 31(10):1569–1576, 2015.

[270] Lauris Kaplinski, Maarja Lepamets, and Maido Remm. Genometester4: A toolkit for performing
basic set operations - union, intersection and complement on k-mer lists. GigaScience, 4(1), 2015.

[271] Nicola Cadenelli, Zoran Jaksić, Jordà Polo, and David Carrera. Considerations in using opencl on
gpus and fpgas for throughput-oriented genomics workloads. Future Generation Computer Systems,
94:148–159, 2019.

[272] Nathaniel Mcvicar, Chih-Ching Lin, and Scott Hauck. K-mer counting using bloom filters with an
fpga-attached hmc. In 2017 IEEE 25th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 203–210, 2017.

[273] Wenqin Huangfu, Krishna T. Malladi, Shuangchen Li, Peng Gu, and Yuan Xie. Nest: Dimm based
near-data-processing accelerator for sea counting. In 2020 IEEE/ACM International Conference
On Computer Aided Design (ICCAD), pages 1–9, 2020.

[274] Yu-Ching Hu, Murtuza Taher Lokhandwala, Te I., and Hung-Wei Tseng. Dynamic multi-resolution
data storage. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO ’52, page 196–210, New York, NY, USA, 2019. Association for Computing
Machinery.

[275] Jianguo Wang, Dongchul Park, Yang-Suk Kee, Yannis Papakonstantinou, and Steven Swanson.
Ssd in-storage computing for list intersection. In Proceedings of the 12th International Workshop
on Data Management on New Hardware, DaMoN ’16, New York, NY, USA, 2016. Association for
Computing Machinery.

[276] Gunjae Koo, Kiran Kumar Matam, Te I., H.V. Krishna Giri Narra, Jing Li, Hung-Wei Tseng,
Steven Swanson, and Murali Annavaram. Summarizer: Trading communication with computing
near storage. In 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 219–231, 2017.

[277] Sungchan Kim, Hyunok Oh, Chanik Park, Sangyeun Cho, and Sang-Won Lee. Fast, energy efficient
scan inside flash memory. In ADMS@VLDB, 2011.

[278] Hung-Wei Tseng, Qianchen Zhao, Yuxiao Zhou, Mark Gahagan, and Steven Swanson. Morpheus:
Creating application objects efficiently for heterogeneous computing. In 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA), pages 53–65, 2016.

[279] Young-Sik Lee, Luis Cavazos Quero, Youngjae Lee, Jin-Soo Kim, and Seungryoul Maeng. Accel-
erating external sorting via On-the-fly data merge in active SSDs. In 6th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage 14), Philadelphia, PA, June 2014. USENIX
Association.

[280] Simona Boboila, Youngjae Kim, Sudharshan S. Vazhkudai, Peter Desnoyers, and Galen M. Ship-
man. Active flash: Out-of-core data analytics on flash storage. In 2012 IEEE 28th Symposium on
Mass Storage Systems and Technologies (MSST), pages 1–12, 2012.

[281] Yunjae Lee, Jinha Chung, and Minsoo Rhu. Smartsage: Training large-scale graph neural networks
using in-storage processing architectures. In Proceedings of the 49th Annual International Sympo-
sium on Computer Architecture, ISCA ’22, page 932–945, New York, NY, USA, 2022. Association
for Computing Machinery.

Bibliography 191

[282] Sungchan Kim, Hyunok Oh, Chanik Park, Sangyeun Cho, Sang-Won Lee, and Bongki Moon.
In-storage processing of database scans and joins. Inf. Sci., 327(C):183–200, jan 2016.

[283] Vikram Sharma Mailthody, Zaid Qureshi, Weixin Liang, Ziyan Feng, Simon Garcia de Gonzalo,
Youjie Li, Hubertus Franke, Jinjun Xiong, Jian Huang, and Wen-mei Hwu. Deepstore: In-storage
acceleration for intelligent queries. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO ’52, page 224–238, New York, NY, USA, 2019. Associa-
tion for Computing Machinery.

[284] Jilan Lin, Ling Liang, Zheng Qu, Ishtiyaque Ahmad, Liu Liu, Fengbin Tu, Trinabh Gupta, Yufei
Ding, and Yuan Xie. Inspire: In-storage private information retrieval via protocol and architecture
co-design. ISCA ’22, page 102–115, New York, NY, USA, 2022. Association for Computing
Machinery.

[285] Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu. Genstore: A high-
performance in-storage processing system for genome sequence analysis. In Proceedings of the
27th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2022, page 635–654, New York, NY, USA, 2022. Association for
Computing Machinery.

[286] Duck-Ho Bae, Jin-Hyung Kim, Yong-Yeon Jo, Sang-Wook Kim, Hyun-Kyo Oh, and Chanik Park.
Intelligent ssd: a turbo for big data mining. Proceedings of the 22nd ACM international conference
on Information & Knowledge Management, 2013.

[287] I. Magaki, M. Khazraee, L. V. Gutierrez, and M. B. Taylor. ASIC Clouds: Specializing the
Datacenter. In ISCA, 2016.

[288] Moein Khazraee, Lu Zhang, Luis Vega, and Michael Bedford Taylor. Moonwalk: NRE optimization
in asic clouds. In ASPLOS, 2017.

[289] Guanyu Feng, Huanqi Cao, Xiaowei Zhu, Bowen Yu, Yuanwei Wang, Zixuan Ma, Shengqi Chen,
and Wenguang Chen. TriCache: A User-Transparent block cache enabling High-Performance
Out-of-Core processing with In-Memory programs. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pages 395–411, Carlsbad, CA, 2022. USENIX
Association.

[290] Weikang Qiao, Jihun Oh, Licheng Guo, Mau-Chung Frank Chang, and Jason Cong. Fans: Fpga-
accelerated near-storage sorting. In 2021 IEEE 29th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 106–114, 2021.

[291] Crate seahash, 2023.

[292] Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyperloglog: The analysis of
a near-optimal cardinality estimation algorithm. Discrete Mathematics & Theoretical Computer
Science, DMTCS Proceedings vol. AH, 03 2012.

[293] national center for biotechnology information, 2023.

[294] Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and Jooyoung Hwang. Zns+: Advanced zoned
namespace interface for supporting in-storage zone compaction. In 15th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 21), pages 147–162, 2021.

[295] Hiroshi Maejima, Kazushige Kanda, Susumu Fujimura, Teruo Takagiwa, Susumu Ozawa, Jumpei
Sato, Yoshihiko Shindo, Manabu Sato, Naoaki Kanagawa, Junji Musha, et al. A 512gb 3b/cell 3d
flash memory on a 96-word-line-layer technology. In 2018 IEEE International Solid-State Circuits
Conference-(ISSCC), pages 336–338. IEEE, 2018.

[296] Chulbum Kim, Doo-Hyun Kim, Woopyo Jeong, Hyun-Jin Kim, Il Han Park, Hyun-Wook Park,
JongHoon Lee, JiYoon Park, Yang-Lo Ahn, Ji Young Lee, et al. A 512-gb 3-b/cell 64-stacked wl
3-d-nand flash memory. IEEE Journal of Solid-State Circuits, 53(1):124–133, 2017.

Bibliography 192

[297] Doo-Hyun Kim, Hyunggon Kim, Sungwon Yun, Youngsun Song, Jisu Kim, Sung-Min Joe,
Kyung-Hwa Kang, Joonsuc Jang, Hyun-Jun Yoon, Kanabin Lee, et al. 13.1 a 1tb 4b/cell nand
flash memory with t prog= 2ms, t r= 110µs and 1.2 gb/s high-speed io rate. In 2020 IEEE
International Solid-State Circuits Conference-(ISSCC), pages 218–220. IEEE, 2020.

[298] Yuta Toriyama and Dejan Marković. A 2.267-gb/s, 93.7-pj/bit non-binary ldpc decoder with
logarithmic quantization and dual-decoding algorithm scheme for storage applications. IEEE
journal of solid-state circuits, 53(8):2378–2388, 2018.

[299] Yu Cai, Saugata Ghose, E. Haratsch, Yixin Luo, and O. Mutlu. Errors in flash-memory-based
solid-state drives: Analysis, mitigation, and recovery: Semantic scholar, Jan 1970.

[300] Páll Melsted and Jonathan K Pritchard. Efficient counting of k-mers in dna sequences using a
bloom filter. BMC Bioinformatics, 12(1), 2011.

[301] Shigui Qi, Dan Feng, Nan Su, Linjun Mei, and Jingning Liu. Cdf-ldpc: A new error correction
method for ssd to improve the read performance. ACM Trans. Storage, 13(1), feb 2017.

[302] Pai-Yu Chen, Xiaochen Peng, and Shimeng Yu. Neurosim+: An integrated device-to-algorithm
framework for benchmarking synaptic devices and array architectures. In 2017 IEEE International
Electron Devices Meeting (IEDM), pages 6.1.1–6.1.4, 2017.

[303] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Stealing
machine learning models via prediction apis. In 25th USENIX Security Symposium (USENIX
Security 16), pages 601–618, Austin, TX, August 2016. USENIX Association.

[304] IBM. Ibm advances research in analog ai computing. https://cambrian-ai.com/downloads/

ibm-advances-research-in-analog-ai-computing/, 2021.

[305] Deepak Kadetotad, Zihan Xu, Abinash Mohanty, Pai-Yu Chen, Binbin Lin, Jieping Ye, Sarma
Vrudhula, Shimeng Yu, Yu Cao, and Jae-sun Seo. Parallel architecture with resistive crosspoint
array for dictionary learning acceleration. IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, 5(2):194–204, 2015.

[306] Chaofei Yang, Beiye Liu, Hai Li, Yiran Chen, Mark Barnell, Qing Wu, Wujie Wen, and Jeyavi-
jayan Rajendran. Security of neuromorphic computing: Thwarting learning attacks using memris-
tor’s obsolescence effect. In 2016 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 1–6, 2016.

[307] Chidhambaranathan Rajamanikkam, S. RajeshJ., Sanghamitra Roy, and Koushik Chakraborty.
Understanding security threats in emerging neuromorphic computing architecture. Journal of
Hardware and Systems Security, 5:45–57, 2021.

[308] Yi Cai, Xiaoming Chen, Lu Tian, Yu Wang, and Huazhong Yang. Enabling secure in-memory
neural network computing by sparse fast gradient encryption. In ICCAD, pages 1–8, 2019.

[309] Jeyavijayan Rajendran, Ozgur Sinanoglu, and Ramesh Karri. Is split manufacturing secure? In
2013 Design, Automation and Test in Europe Conference Exhibition (DATE), pages 1259–1264,
2013.

[310] Lingxiao Wei, Bo Luo, Yu Li, Yannan Liu, and Qiang Xu. I know what you see: Power side-
channel attack on convolutional neural network accelerators. In Proceedings of the 34th Annual
Computer Security Applications Conference, ACSAC ’18, page 393–406, New York, NY, USA,
2018. Association for Computing Machinery.

[311] Vasileios Tenentes et al. Run-time protection of multi-core processors from power-noise denial-of-
service attacks. TDMR ’20.

[312] Rajat Subhra Chakraborty, Francis G. Wolff, Somnath Paul, Christos A. Papachristou, and
Swarup Bhunia. Mero: A statistical approach for hardware trojan detection. In Cryptographic
Hardware and Embedded Systems - CHES 2009, 11th International Workshop, Lausanne, Switzer-
land, September 6-9, 2009, Proceedings, volume 5747 of Lecture Notes in Computer Science,
pages 396–410. Springer, 2009.

https://cambrian-ai.com/downloads/ibm-advances-research-in-analog-ai-computing/
https://cambrian-ai.com/downloads/ibm-advances-research-in-analog-ai-computing/

Bibliography 193

[313] Adam Waksman, Matthew Suozzo, and Simha Sethumadhavan. Fanci: Identification of stealthy
malicious logic using boolean functional analysis. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer amp; Communications Security, CCS ’13, page 697–708, New York, NY,
USA, 2013. Association for Computing Machinery.

[314] Matthew Hicks et al. Overcoming an untrusted computing base: Detecting and removing malicious
hardware automatically. In 2010 IEEE Symposium on Security and Privacy, pages 159–172, 2010.

[315] Maxime Montoya, Thomas Hiscock, Simone Bacles-Min, Anca Molnos, and Jacques Fournier.
Adaptive masking: a dynamic trade-off between energy consumption and hardware security. In
2019 IEEE 37th International Conference on Computer Design (ICCD), pages 559–566, 2019.

[316] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with bowtie 2. Nature Methods,
9(4):357–359, 2012.

[317] Eric A. Franzosa, Lauren J. Mciver, Gholamali Rahnavard, Luke R. Thompson, Melanie
Schirmer, George Weingart, Karen Schwarzberg Lipson, Rob Knight, J. Gregory Caporaso,
Nicola Segata, and et al. Species-level functional profiling of metagenomes and metatranscriptomes.
Nature Methods, 15(11):962–968, 2018.

[318] Sergey Nurk, Dmitry Meleshko, Anton Korobeynikov, and Pavel A. Pevzner. metaspades: a new
versatile metagenomic assembler. Genome Research, 27(5):824–834, 2017.

[319] D. Takashima, S. Watanabe, H. Nakano, Y. Oowaki, and K. Ohuchi. Open/folded bit-line arrange-
ment for ultra-high-density dram’s. IEEE Journal of Solid-State Circuits, 1994.

[320] Derrick Wood and Jennifer Lu. Kraken website. https://ccb.jhu.edu/software/kraken/, 2020.

[321] Samsung. Samsung hbm. https://semiconductor.samsung.com/dram/hbm/, 2023.

[322] Albert Einstein. Zur Elektrodynamik bewegter Körper. (German) [On the electrodynamics of
moving bodies]. Annalen der Physik, 322(10):891–921, 1905.

[323] Saul B. Needleman and Christian D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3):443–
453, 1970.

[324] Temple F. Smith and Michael S. Waterman. Identification of common molecular subsequences.
Journal of Molecular Biology, 147(1):195–197, 1981.

[325] M. F. Chang, Y. Chen, J. Cong, P. Huang, C. Kuo, and C. H. Yu. The smem seeding acceleration
for dna sequence alignment. In 2016 IEEE 24th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 32–39, 2016.

[326] Panagiotis D. Vouzis and Nikolaos V. Sahinidis. Gpu-blast: using graphics processors to accelerate
protein sequence alignment. Bioinformatics, 27(2):182–188, 2011.

[327] Intel. Intel Performance Counter Monitor. http://www.intel.com/software/pcm, 2019.

[328] Heshan Lin Jing Zhang, Hao Wang and Wu chun Feng. cublastp: Fine-grained parallelization
of protein sequence search on a gpu. In Proceedings of the 28th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2014.

[329] JiaShun Xiao. BLAST-bioinfor-tool. https://github.com/JiaShun-Xiao/

BLAST-bioinfor-tool, 2019.

[330] Heng Li. Aligning sequence reads, clone sequences and assembly contigs with bwa-mem, 2013.

[331] Heng Li and Richard Durbin. Fast and accurate short read alignment with Burrows–Wheeler
transform. Bioinformatics, 25(14):1754–1760, 2009.

[332] Onur Mutlu. Processing data where it makes sense in modern computing systems: Enabling in-
memory computation. In 2018 7th Mediterranean Conference on Embedded Computing (MECO),
pages 8–9, 2018.

[333] Klus Petr, Lam Simon, Lyberg Dag, Cheung Ming Sin, Pullan Graham, McFarlane Ian,
Yeo Giles SH, and Lam Brian YH. Barracuda - a fast short read sequence aligner using graphics
processing units. BMC Research Notes, 5, 2012.

https://ccb.jhu.edu/software/kraken/
https://semiconductor.samsung.com/dram/hbm/
http://www.intel.com/software/pcm
https://github.com/JiaShun-Xiao/BLAST-bioinfor-tool
https://github.com/JiaShun-Xiao/BLAST-bioinfor-tool

Bibliography 194

[334] Yongchao Liu and Bertil Schmidt. Long read alignment based on maximal exact match seeds.
Bioinformatics, 28(18):318—-324, 2012.

[335] Mohammed Alser, Hasan Hassan, Hongyi Xin, Oğuz Ergin, Onur Mutlu, and Can Alkan. Gate-
keeper: a new hardware architecture for accelerating pre-alignment in dna short read mapping.
Bioinformatics, 33(21):3355–3363, 2017.

[336] W. James Kent. BLAT–the BLAST-like alignment tool. Genome research, 12(4):656––664, 2002.

[337] Matei David, Misko Dzamba, Dan Lister, Lucian Ilie, and Michael Brudno. SHRiMP2: Sensitive
yet Practical Short Read Mapping. Bioinformatics, 27(7):1011–1012, 2011.

[338] Barry Merriman Nils Homer and Stanley F. Nelson. BFAST: An Alignment Tool for Large Scale
Genome Resequencing. PLoS ONE, 4(11).

[339] U Kang, Hak soo Yu, Churoo Park, Hongzhong Zheng, John B. Halbert, Kuljit S. Jalandhar
Bains, Seong-Jin Jang, and Joo Sun Choi. Co-architecting controllers and dram to enhance dram
process scaling. 2014.

[340] Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya Subramanian, and Onur Mutlu.
Tiered-latency DRAM: enabling low-latency main memory at low cost. CoRR, abs/1805.03048,
2018.

[341] H. Hassan, N. Vijaykumar, S. Khan, S. Ghose, K. Chang, G. Pekhimenko, D. Lee, O. Ergin, and
O. Mutlu. Softmc: A flexible and practical open-source infrastructure for enabling experimental
dram studies. In 2017 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 241–252, 2017.

[342] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes. An efficient and scalable
semiconductor architecture for parallel automata processing. IEEE Transactions on Parallel and
Distributed Systems, 25(12):3088–3098, 2014.

[343] Samuel S. Minot, Niklas Krumm, and Nicholas B. Greenfield. One Codex: A Sensitive and Accu-
rate Data Platform for Genomic Microbial Identification. bioRxiv, 2015.

[344] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. Dramsim2: A cycle accurate memory system simu-
lator. IEEE Computer Architecture Letters, 10(1):16–19, 2011.

[345] J. T. Pawlowski. Hybrid Memory Cube (HMC). In HCS, 2011.

[346] R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen, C. . Cher, C. H. A. Costa,
J. Doi, C. Evangelinos, B. M. Fleischer, T. W. Fox, D. S. Gallo, L. Grinberg, J. A. Gunnels,
A. C. Jacob, P. Jacob, H. M. Jacobson, T. Karkhanis, C. Kim, J. H. Moreno, J. K. O’Brien,
M. Ohmacht, Y. Park, D. A. Prener, B. S. Rosenburg, K. D. Ryu, O. Sallenave, M. J. Serrano,
P. D. M. Siegl, K. Sugavanam, and Z. Sura. Active memory cube: A processing-in-memory
architecture for exascale systems. IBM Journal of Research and Development, 59(2/3):17:1–17:14,
2015.

[347] Wei Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and M. R. Stan. Hotspot:
a compact thermal modeling methodology for early-stage vlsi design. TVLSI, 14(5):501–513, 2006.

[348] High Bandwidth Memory (HBM) DRAM. https://www.amd.com/en/technologies/hbm.

[349] 4Gb: x4, x8, x16 DDR3 SDRAM Features. https://www.micron.com/-/media/documents/

products/data%20sheet/dram/ddr3/4gb_ddr3_sdram.pdf.

[350] Bruce Jacob, David Wang, and Spencer Ng. Memory systems: cache, DRAM, disk. Morgan
Kaufmann, 2010.

[351] J. Meza, Q. Wu, S. Kumar, and O. Mutlu. Revisiting memory errors in large-scale production data
centers: Analysis and modeling of new trends from the field. In 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, pages 415–426, 2015.

[352] Helena Caminal, Kailin Yang, Srivatsa Srinivasa, Akshay Krishna Ramanathan, Khalid Al-Hawaj,
Tianshu Wu, Vijaykrishnan Narayanan, Christopher Batten, and José F. Mart́ınez. Cape:
A content-addressable processing engine. In 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pages 557–569, 2021.

https://www.amd.com/en/technologies/hbm
https://www.micron.com/-/media/documents/products/data%20sheet/dram/ddr3/4gb_ddr3_sdram.pdf
https://www.micron.com/-/media/documents/products/data%20sheet/dram/ddr3/4gb_ddr3_sdram.pdf

Bibliography 195

[353] Daniel J. Abadi, Daniel S. Myers, David J. DeWitt, and Samuel R. Madden. Materialization
strategies in a column-oriented dbms. In 2007 IEEE 23rd International Conference on Data
Engineering, pages 466–475, 2007.

[354] Lakshmikant Shrinivas, Sreenath Bodagala, Ramakrishna Varadarajan, Ariel Cary, Vivek
Bharathan, and Chuck Bear. Materialization strategies in the vertica analytic database: Lessons
learned. In 2013 IEEE 29th International Conference on Data Engineering (ICDE), pages 1196–
1207, 2013.

[355] George Chernishev, Viacheslav Galaktionov, Valentin Grigorev, Evgeniy Klyuchikov, and Kir-
ill Smirnov. A comprehensive study of late materialization strategies for a disk-based column-
store. In Proceedings of the 24th International Workshop on Design, Optimization, Languages
and Analytical Processing of Big Data (DOLAP) co-located with the 25th International Con-
ference on Extending Database Technology and the 25th International Conference on Database
Theory(EDBT/ICDT 2022), DOLAP’ 22, 2022.

[356] Intel. Intel In-Memory Analytics Accelerator Architecture Specification. https://www.intel.com/
content/www/us/en/developer/articles/technical/intel-sdm.html, Apr 2023.

[357] Amazon Web Services. AQUA (Advanced Query Accelerator). https://aws.amazon.com/blogs/
aws/new-aqua-advanced-query-accelerator-for-amazon-redshift/, Apr 2021.

[358] Oracle. Oracle Data Analytics Accelerator (DAX) for SPARC. https://blogs.oracle.com/

linux/post/oracle-data-analytics-accelerator-dax-for-sparc, Jul 2018.

[359] Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya Subramanian, and Onur Mutlu.
Tiered-latency DRAM: A low latency and low cost DRAM architecture. In 2013 IEEE 19th
International Symposium on High Performance Computer Architecture (HPCA), pages 615–626,
February 2013.

[360] Clark D French. “one size fits all” database architectures do not work for dss. In Proceeding of the
Second Joint WOSP/SIPEW International Conference on Performance Engineering - ICPE ’11,
SIGMOD ’95, 1995.

[361] Micron System Power Calculator for SDRAM devices. https://www.micron.com/support/

tools-and-utilities/power-calc.

[362] Alexandar Devic, Siddhartha Balakrishna Rai, Anand Sivasubramaniam, Ameen Akel, Sean
Eilert, and Justin Eno. To PIM or not for emerging general purpose processing in DDR memory
systems. In Proceedings of the 49th Annual International Symposium on Computer Architecture
(ISCA), page 231–244, 2022.

[363] Dong He, Supun C Nakandala, Dalitso Banda, Rathijit Sen, Karla Saur, Kwanghyun Park, Carlo
Curino, Jesús Camacho-Rodŕıguez, Konstantinos Karanasos, and Matteo Interlandi. Query
processing on tensor computation runtimes. Proc. VLDB Endow., 15(11):2811–2825, sep 2022.

[364] Kevin Gaffney. ssb-baselines.

[365] Compute express link.

[366] R. Huggahalli, R. Iyer, and S. Tetrick. Direct cache access for high bandwidth network i/o. In
32nd International Symposium on Computer Architecture (ISCA’05), pages 50–59, 2005.

[367] Arm cache stashing.

[368] Tim Kaldewey, Guy Lohman, Rene Mueller, and Peter Volk. Gpu join processing revisited. In
Proceedings of the Eighth International Workshop on Data Management on New Hardware, pages
55–62, 2012.

[369] Emily Furst, Mark Oskin, and Bill Howe. Profiling a gpu database implementation: a holistic view
of gpu resource utilization on tpc-h queries. In Proceedings of the 13th International Workshop
on Data Management on New Hardware, pages 1–6, 2017.

[370] Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl. Pump up the
volume: Processing large data on gpus with fast interconnects. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’20, page 1633–1649, New
York, NY, USA, 2020. Association for Computing Machinery.

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://aws.amazon.com/blogs/aws/new-aqua-advanced-query-accelerator-for-amazon-redshift/
https://aws.amazon.com/blogs/aws/new-aqua-advanced-query-accelerator-for-amazon-redshift/
https://blogs.oracle.com/linux/post/oracle-data-analytics-accelerator-dax-for-sparc
https://blogs.oracle.com/linux/post/oracle-data-analytics-accelerator-dax-for-sparc
https://www.micron.com/support/tools-and-utilities/power-calc
https://www.micron.com/support/tools-and-utilities/power-calc

Bibliography 196

[371] Chaemin Lim, Suhyun Lee, Jinwoo Choi, Jounghoo Lee, Seongyeon Park, Hanjun Kim, Jinho
Lee, and Youngsok Kim. Design and analysis of a processing-in-dimm join algorithm: A case study
with upmem dimms. Proc. ACM Manag. Data, 1(2), jun 2023.

[372] Fabrice Devaux. The true processing in memory accelerator. In 2019 IEEE Hot Chips 31 Sympo-
sium (HCS), pages 1–24, 2019.

[373] Michael Jungmair, André Kohn, and Jana Giceva. Designing an open framework for query opti-
mization and compilation. Proc. VLDB Endow., 15(11):2389–2401, jul 2022.

[374] Kevin P. Gaffney, Martin Prammer, Larry Brasfield, D. Richard Hipp, Dan Kennedy, and Jig-
nesh M. Patel. SQLite: Past, present, and future. Proc. VLDB Endow., 15(12):3535–3547, aug
2022.

[375] Aarati Kakaraparthy, Jignesh M. Patel, Brian P. Kroth, and Kwanghyun Park. VIP hashing:
Adapting to skew in popularity of data on the fly. Proc. VLDB Endow., 15(10):1978–1990, jun
2022.

[376] Markus Dreseler, Martin Boissier, Tilmann Rabl, and Matthias Uflacker. Quantifying tpc-h choke
points and their optimizations. Proc. VLDB Endow., 13(8):1206–1220, apr 2020.

[377] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun, Gennady
Pekhimenko, Yixin Luo, Onur Mutlu, Phillip B Gibbons, Michael A Kozuch, et al. RowClone: Fast
and energy-efficient in-DRAM bulk data copy and initialization. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 185–197, 2013.

[378] Sven Verdoolaege, Serge Guelton, Tobias Grosser, and Albert Cohen. Schedule trees. In Interna-
tional Workshop on Polyhedral Compilation Techniques, Date: 2014/01/20-2014/01/20, Location:
Vienna, Austria, 2014.

[379] BLAS: Basic linear algebra subprograms.

[380] Brent Keeth and R Jacob Baker. DRAM circuit design: a tutorial. IEEE, 2001.

[381] National Human Genome Research Institute. The cost of sequencing a human genome. https:

//www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost.

[382] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen, and Norman P
Jouppi. Mcpat: an integrated power, area, and timing modeling framework for multicore and many-
core architectures. In Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM International
Symposium on, pages 469–480. IEEE, 2009.

[383] Rasool Sharifi and Zainalabedin Navabi. Online profiling for cluster-specific variable rate refreshing
in high-density dram systems. In 2017 22nd IEEE European Test Symposium (ETS), pages 1–6,
2017.

[384] Charles Eckert, Xiaowei Wang, Jingcheng Wang, Arun Subramaniyan, Ravi Iyer, Dennis
Sylvester, David Blaauw, and Reetuparna Das. Neural cache: Bit-serial in-cache acceleration
of deep neural networks, 2018.

[385] Matthias Hess, Alexander Sczyrba, Rob Egan, Tae-Wan Kim, Harshal Chokhawala, Gary
Schroth, Shujun Luo, Douglas S Clark, Feng Chen, Tao Zhang, et al. Metagenomic discovery
of biomass-degrading genes and genomes from cow rumen. Science, 331(6016):463–467, 2011.

[386] Adina Chuang Howe, Janet K Jansson, Stephanie A Malfatti, Susannah G Tringe, James M
Tiedje, and C Titus Brown. Tackling soil diversity with the assembly of large, complex
metagenomes. Proceedings of the National Academy of Sciences, 111(13):4904–4909, 2014.

[387] Elizabeth T Cirulli and David B Goldstein. Uncovering the roles of rare variants in common
disease through whole-genome sequencing. Nature Reviews Genetics, 11(6):415–425, 2010.

[388] Claudia Gonzaga-Jauregui, James R Lupski, and Richard A Gibbs. Human genome sequencing in
health and disease. Annual review of medicine, 63:35–61, 2012.

[389] Cynthia C Steiner, Andrea S Putnam, Paquita EA Hoeck, and Oliver A Ryder. Conservation
genomics of threatened animal species. Annu. Rev. Anim. Biosci., 1(1):261–281, 2013.

https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost

Bibliography 197

[390] Richard Frankham. Challenges and opportunities of genetic approaches to biological conservation.
Biological conservation, 143(9):1919–1927, 2010.

[391] Mark T Ross, Darren V Grafham, Alison J Coffey, Steven Scherer, Kirsten McLay, Donna Muzny,
Matthias Platzer, Gareth R Howell, Christine Burrows, Christine P Bird, et al. The dna sequence
of the human x chromosome. Nature, 434(7031):325, 2005.

[392] Marcel Margulies, Michael Egholm, William E Altman, Said Attiya, Joel S Bader, Lisa A Bem-
ben, Jan Berka, Michael S Braverman, Yi-Ju Chen, Zhoutao Chen, et al. Genome sequencing in
microfabricated high-density picolitre reactors. Nature, 437(7057):376–380, 2005.

[393] Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike O’Connor, Nandita
Vijaykumar, Onur Mutlu, and Stephen W. Keckler. Transparent offloading and mapping (tom):
Enabling programmer-transparent near-data processing in gpu systems. SIGARCH Comput. Archit.
News, 44(3):204–216, June 2016.

[394] Jintao Meng, Bingqiang Wang, Yanjie Wei, Shengzhong Feng, and Pavan Balaji. Swap-assembler:
Scalable and efficient genome assembly towards thousands of cores. BMC Bioinformatics, 15(Suppl
9), 2014.

[395] Jintao Meng, Sangmin Seo, Pavan Balaji, Yanjie Wei, Bingqiang Wang, and Shenzhong Feng.
Swap-assembler 2: Optimization of de novo genome assembler at extreme scale. 2016 45th Inter-
national Conference on Parallel Processing (ICPP), 2016.

[396] G. Rizk, D. Lavenier, and R. Chikhi. Dsk: K-mer counting with very low memory usage. Bioinfor-
matics, 29(5):652–653, 2013.

[397] Yatish Turakhia, Gill Bejerano, and William J. Dally. Darwin: A Genomics Co-Processor Provides
up to 15,000X Acceleration on Long Read Assembly, page 199–213. Association for Computing
Machinery, New York, NY, USA, 2018.

[398] Daichi Fujiki, Shunhao Wu, Nathan Ozog, Kush Goliya, David Blaauw, Satish Narayanasamy,
and Reetuparna Das. Seedex: A genome sequencing accelerator for optimal alignments in sub-
minimal space. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 937–950, 2020.

[399] L. Jiang and F. Zokaee. Exma: A genomics accelerator for exact-matching. In 2021 IEEE Inter-
national Symposium on High-Performance Computer Architecture (HPCA), pages 399–411, Los
Alamitos, CA, USA, mar 2021. IEEE Computer Society.

[400] Daichi Fujiki, Arun Subramaniyan, Tianjun Zhang, Yu Zeng, Reetuparna Das, David Blaauw,
and Satish Narayanasamy. Genax: A genome sequencing accelerator. In 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA), pages 69–82, 2018.

[401] Lisa Wu, David Bruns-Smith, Frank A. Nothaft, Qijing Huang, Sagar Karandikar, Johnny Le,
Andrew Lin, Howard Mao, Brendan Sweeney, Krste Asanović, David A. Patterson, and An-
thony D. Joseph. Fpga accelerated indel realignment in the cloud. In 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages 277–290, 2019.

[402] Tae Jun Ham, David Bruns-Smith, Brendan Sweeney, Yejin Lee, Seong Hoon Seo, U Gyeong
Song, Young H. Oh, Krste Asanovic, Jae W. Lee, and Lisa Wu Wills. Genesis: A hardware
acceleration framework for genomic data analysis. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pages 254–267, 2020.

[403] Yoohyuk Lim, Jaemin Lee, Cassiano Campes, and Euiseong Seo. {Parity-Stream} separa-
tion and {SLC/MLC} convertible programming for life span and performance improvement of
{SSD}{RAIDs}. In 9th USENIX Workshop on Hot Topics in Storage and File Systems (HotStor-
age 17), 2017.

[404] Wooseong Cheong, Chanho Yoon, Seonghoon Woo, Kyuwook Han, Daehyun Kim, Chulseung Lee,
Youra Choi, Shine Kim, Dongku Kang, Geunyeong Yu, Jaehong Kim, Jaechun Park, Ki-Whan
Song, Ki-Tae Park, Sangyeun Cho, Hwaseok Oh, Daniel D.G. Lee, Jin-Hyeok Choi, and Jaeheon
Jeong. A flash memory controller for 15s ultra-low-latency ssd using high-speed 3d nand flash
with 3s read time. In 2018 IEEE International Solid - State Circuits Conference - (ISSCC), pages
338–340, 2018.

Bibliography 198

[405] Leslie Lamport. LATEX: A Document Preparation System. Addison-Wesley, Reading, Massachusetts,
2nd edition, 1994.

[406] Binghui Wang and Neil Zhenqiang Gong. Stealing hyperparameters in machine learning. 2018
IEEE Symposium on Security and Privacy (SP), pages 36–52, 2018.

[407] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference
attacks against machine learning models. In 2017 IEEE Symposium on Security and Privacy (SP),
pages 3–18, 2017.

[408] Shayan Moini, Shanquan Tian, Daniel Holcomb, Jakub Szefer, and Russell Tessier. Power side-
channel attacks on bnn accelerators in remote fpgas. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, 11(2):357–370, 2021.

[409] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. CSI NN: Reverse engineering
of neural network architectures through electromagnetic side channel. In 28th USENIX Security
Symposium (USENIX Security 19), pages 515–532, Santa Clara, CA, August 2019. USENIX
Association.

[410] Johanna Sepulveda, Cezar Reinbrecht, and Jean-Philippe Diguet. Security aspects of neuromorphic
mpsocs. In Proceedings of the International Conference on Computer-Aided Design, ICCAD ’18,
New York, NY, USA, 2018. Association for Computing Machinery.

[411] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi Chen,
Zhiwei Xu, Ninghui Sun, and Olivier Temam. Dadiannao: A machine-learning supercomputer.
In 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture, pages 609–622,
2014.

[412] Sachhidh Kannan, Naghmeh Karimi, Ozgur Sinanoglu, and Ramesh Karri. Security vulnerabilities
of emerging nonvolatile main memories and countermeasures. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 34(1):2–15, 2015.

[413] Fatih Gül. Addressing the sneak-path problem in crossbar rram devices using memristor-based
one schottky diode-one resistor array. Results in Physics, 12:1091–1096, 2019.

[414] Mohammed Affan Zidan, Hossam Aly Hassan Fahmy, Muhammad Mustafa Hussain, and
Khaled Nabil Salama. Memristor-based memory: The sneak paths problem and solutions. Micro-
electronics Journal, 44(2):176–183, 2013.

[415] Yuval Cassuto, Shahar Kvatinsky, and Eitan Yaakobi. Sneak-path constraints in memristor
crossbar arrays. In 2013 IEEE International Symposium on Information Theory, pages 156–160,
2013.

[416] Jiale Liang and H.-S. Philip Wong. Cross-point memory array without cell selectors—device
characteristics and data storage pattern dependencies. IEEE Transactions on Electron Devices,
57(10):2531–2538, 2010.

[417] Shinhyun Choi, Scott H. Tan, Zefan Li, Yunjo Kim, Chanyeol Choi, Pai-Yu Chen, Hanwool Yeon,
Shimeng Yu, and Jeehwan Kim. Sige epitaxial memory for neuromorphic computing with re-
producible high performance based on engineered dislocations. Nature Materials, 17(4):335–340,
2018.

[418] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit
confidence information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, CCS ’15, page 1322–1333, New York,
NY, USA, 2015. Association for Computing Machinery.

[419] Shuangchen Li, Alvin Oliver Glova, Xing Hu, Peng Gu, Dimin Niu, Krishna T. Malladi,
Hongzhong Zheng, Bob Brennan, and Yuan Xie. Scope: A stochastic computing engine for
dram-based in-situ accelerator. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 696–709, 2018.

[420] Jennifer Hasler and Bo Marr. Finding a roadmap to achieve large neuromorphic hardware systems.
Frontiers in Neuroscience, 7, 2013.

Bibliography 199

[421] Mark Randolph and William Diehl. Power side-channel attack analysis: A review of 20 years of
study for the layman. Cryptography, 4(2):15, 2020.

[422] Deepak Kadetotad, Zihan Xu, Abinash Mohanty, Pai-Yu Chen, Binbin Lin, Jieping Ye, Sarma
Vrudhula, Shimeng Yu, Yu Cao, and Jae-sun Seo. Parallel architecture with resistive crosspoint
array for dictionary learning acceleration. IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, 5(2):194–204, 2015.

[423] Yandong Luo, Xiaochen Peng, and Shimeng Yu. Mlp+neurosimv3.0: Improving on-chip learning
performance with device to algorithm optimizations. In Proceedings of the International Conference
on Neuromorphic Systems, ICONS ’19, New York, NY, USA, 2019. Association for Computing
Machinery.

[424] Manu Rastogi, Vaibhav Garg, and John G. Harris. Low power integrate and fire circuit for data
conversion. In 2009 IEEE International Symposium on Circuits and Systems, pages 2669–2672,
2009.

[425] Jonathan Tapson and André van Schaik. An asynchronous parallel neuromorphic adc architecture.
In 2012 IEEE International Symposium on Circuits and Systems (ISCAS), pages 2409–2412,
2012.

[426] Manu Rastogi, Alexander Singh Alvarado, John G. Harris, and José C. Pŕıncipe. Integrate and
fire circuit as an adc replacement. In 2011 IEEE International Symposium of Circuits and Systems
(ISCAS), pages 2421–2424, 2011.

[427] Rozhin Yasaei, Sina Faezi, and Mohammad Abdullah Al Faruque. Hardware trojan power em
side-channel dataset, 2021.

[428] Juan Ai, Zhu Wang, Xinping Zhou, and Changhai Ou. Improved wavelet transform for noise
reduction in power analysis attacks. In 2016 IEEE International Conference on Signal and Image
Processing (ICSIP), pages 602–606, 2016.

[429] Deepak Kadetotad, Zihan Xu, Abinash Mohanty, Pai-Yu Chen, Binbin Lin, Jieping Ye, Sarma
Vrudhula, Shimeng Yu, Yu Cao, and Jae-sun Seo. Parallel architecture with resistive crosspoint
array for dictionary learning acceleration. IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, 5(2):194–204, 2015.

	Contents
	List of Tables
	List of Figures

	Introduction
	Thesis Statement and Contributions
	Digital bit-serial DRAM-based SIMD Processing
	Ultra Efficient Acceleration for De Novo Genome Assembly via Near-Memory Computing
	Abakus: Accelerating k-mer Counting With Storage Technology
	New Hardware Trojan Threats in Memristor-based Neuromorphic Computing Systems

	Dissertation Organization

	Background
	DRAM Memory Technology and SSD
	2D Planar DRAM
	3D-stacked Memory Cube
	SSD

	Bioinformatics
	k-mer matching
	k-mer counting
	de Bruijn Graph (DBG) Genome Assembly

	Database OLAP
	Hardware Trojans

	Sieve: Scalable In-situ DRAM-based Accelerator Designs for Massively Parallel k-mer Matching
	Introduction
	Motivation
	Architecture
	Sieve Type-2 and Type-3
	Sieve Type-1
	System Integration
	k-mer to Subarray Mapping
	Sieve: Putting it all together

	Methodology
	Results
	Energy, Latency, and Area Estimation
	Kernel Performance Improvement
	Sensitivity Analysis

	Related Works
	conclusions

	DRAM-CAM: General-Purpose Bit-Serial Exact Pattern Matching
	Introduction
	Architecture
	Evaluation
	Conclusion

	Membrane: A PIM-based Architecture to Accelerate Database OLAP Queries
	Introduction
	Background
	Architecture
	Membrane-V
	Membrane-H

	System Integration
	Evaluation
	Power, Latency, and Area Evaluation
	Overall Membrane Performance
	Membrane Performance Breakdown
	Sensitivity Study

	Related Works
	Conclusion and Future Work

	DRAM-BitSIMD: Exploring the Design Tradeoffs and Opportunities in DRAM-based Bit-Serial Vector Computing
	Introduction
	Background
	Related Work
	Design Space Exploration
	Deployment Models
	Complexity of the Bit-Serial Logic

	DRAM-BitSIMD Architecture
	System Integration
	Programming and Compiling
	Virtual Memory and PIM-kernel Launch

	Methodology
	Evaluation
	Conclusions

	Ultra Efficient Acceleration for De Novo Genome Assembly via Near-Memory Computing
	Introduction
	Key Ideas
	DBG Assembly Pipeline
	NDP Acceleration

	NDP-based DBG Construction
	NDP parallel graph construction
	Bucket Distribution
	Message Buffering and k-mer Compression

	NDP-based DBG Traversal
	NDP Parallel Graph Traversal
	Speculative Contig Expansion

	Architecture
	Programming Interface
	Hardware Support

	Methodology
	Simulation
	Baseline System
	Workloads

	Results
	Performance Scalability
	Inter-core Communication Reduction
	Exploration on Speculation
	Exploration on Network
	Energy Efficiency
	Comparison with Other Distributed Algorithms

	Related Works
	Conclusion

	Abakus: Accelerating k-mer Counting With Storage Technology
	Introduction
	Background
	Motivation
	I/O Is the Bottleneck
	ISP -mer Counting Considerations

	Architecture
	Overview of the PWST Architecture
	Abakus-Basic Overview

	Partitioning Strategy
	Custom Hardware Design
	Chip-level NSPU
	SSD-level Processing

	Abakus Optimizations
	Abakus-BF
	Abakus-BF Motivation
	Abakus-BF Overview
	Estimate the Bloom filter Size
	Estimate Partition Cardinality

	Abakus-OP
	Motivation
	Abakus-OP Overview
	Abakus-OP Estimate Partition Cardinality

	Methodology
	Results
	Area Overhead Analysis
	Overall Performance and Energy Efficiency
	Performance Breakdown
	Sensitivity Analysis

	Discussion
	Conclusion

	New Hardware Trojan Threats in Memristor-based Neuromorphic Computing Systems
	Introduction
	Background
	Related
	Threat Model
	Attack Overview
	Feasibility of Exploitation
	Attack Procedure
	Establishing Power-to-Weight Correlation

	Trojan Design
	Methodology
	Results
	Trojan Stealth
	Sensitivity Study

	Mitigation
	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Research Opportunities
	Appendix
	Accepted publications
	Under Review

	Bibliography

