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Abstract

The information technology sector has experienced explosive growth in data-intensive applications such
as bioinformatics, big data analytics, and deep neural networks (DNNs). These computing tasks have
a tremendous economic impact and societal benefits, but their execution on conventional Von Neumann
architectures is inefficient due to excessive data movement, a problem that rapidly growing input data
sizes have exacerbated. To tackle this bottleneck, the computer architecture research community has put
forward many data-centric solutions that place logic inside memory or the disk drive, commonly referred to as
Near-data-processing (NDP), to reduce the latency and energy cost of data access significantly. Additionally,
NDP architectures usually offer much larger parallelism, higher data bandwidth, and lower peak power
consumption than CPU and GPU, allowing them to achieve orders of magnitude speedup and energy saving
when executing data-intensive kernels.

This dissertation outlines four new contributions to NDP, including (1) a digital bit-serial DRAM-based
processing scheme that targets a wide range of computing tasks, including bioinformatics, data analytics,
pattern matching, and general-purpose arithmetic, (2) a 3D-stacked memory technology with an integrated
compute layer that accelerates de novo genome assembly, (3) a processing-with-storage-technology (PWST)
HW/SW codesigned framework that targets k-mer counting, a key bottleneck of many bioinformatics tasks,
and (4) a case study of how privacy and data integrity can be breached in a recent NDP-based DNN accelerator
leveraging the non-volatile memory technologies (NVM), highlighting the importance of fostering future NDP

accelerator design with a security focus.
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Chapter 1

Introduction

Data movement dominates the execution time and energy consumption of software with large data footprints
due to the strict separation of computing devices (i.e., CPU) and data storage devices (i.e., main memory or

disk) in modern computing systems.

First, fetching data to the processor is expensive. For example, transferring data from the off-chip main
memory to the processor takes two orders of magnitude more time and consumes three orders of magnitude
higher energy than a single-precision addition [9]. For applications designed to handle large data sets beyond
the available memory of a machine by using a disk to cache intermediate results (i.e., out-of-core processing),
the data movement overhead is even worse. In such cases, a large amount of data needs to be moved across
the deep hardware stack (hierarchies within an SSD, main memory, cache layers, etc.) and system software
stack (flash transaction layer, NVMe protocols, OS file systems, etc.) between CPU and the hard drive,

which incurs significant command and control overhead.

Second, the growing dataset sizes and random access patterns further exacerbate the data movement
challenges. However, the underlying hardware is having an increasingly difficult time keeping up with the
data growth rate due to the end of Moore’s Law and Dennard’s scaling. In bioinformatics alone, the amount
of data that needs to be analyzed is projected to surpass astronomy, particle physics, and popular websites
such as YouTube and Twitter, far exceeding the pace of Moore’s Law [10]. A similar trend is observed
in enterprise database analytics. A recent Google report indicates that more than 2.5 quintillion bytes of
data are expected to be generated daily worldwide. Currently, BitQuery, a database analytics platform, has
already consumed 10% total cycles within the hyperscalar fleet [11]. For years, traditional Von Neumann
architectures have relied on caches to hide the data access latency. However, the memory access patterns

of these data-intensive applications are typically random, and their working sets are often large, leading to
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poor cache behavior, even on high-end servers that feature large last-level caches [12], forcing applications to
initiate frequent and slow off-chip data retrieval.

Third, The impact of data movement is most severe when the computing task required by those applications
is simple and unable to mask the long data access latency, amplifying the inefficiency caused by the memory
wall [13], where the processor’s speed outpaces the rate at which data can be transferred to and from the
memory system. Essentially, for data-intensive applications, the processors frequently stall for memory
requests to be serviced across all levels due to the random nature of their data access, only to perform a
small computational task on that data; therefore, the overall execution time is dominated by the idle gaps
created by data movements.

Across different application domains, data movement has already been shown to be the bottleneck. In deep
neural networks (DNN), a recent study demonstrates that data movement in a production DNN (GoogLeNet)
accounts for roughly 70% of the overall energy consumption [14]. For example, in bioinformatics, many
key kernels such as k-mer counting, which builds a histogram of short DNA sequences of size k are also
bottlenecked by data access [15]. Our performance profiling experiments on a state-of-the-art k-mer counting
tool [7] suggest 49% to 89% of execution stalls are caused by bringing data from a secondary data storage
device to the CPU and writing data back. In Online Analytic Processing (OLAP), a key step is to apply a
scan operator to filter out desired data items based on predicates, which can incur large overhead because
the entire database records need to be brought into the CPU to process. Our workload profiling also suggests
that this key database operation is largely memory-bound and not compute-bound (see Chapter 5.2).

The above observations have inspired numerous attempts to place compute capabilities inside the data
storage devices, commonly called near-data-processing (NDP), to address the data movement challenge. NDP
comes with a variety of design choices. To our knowledge, a comprehensive taxonomy that fully captures the
diverse world of the NDP landscape has not been officially proposed and accepted. Here, we introduce a few
design principles to interpret and categorize the NDP design space. Based on the underlying data storage
technology, NDP architectures are memory-based, such as DRAM or SRAM (a.k.a Processing-in-memory or
PIM), or storage-based, such as SSD. Based on functionalities, there are domain-specific NDP accelerators
that target high-value individual applications or kernels (DNN, bio, database, graph, etc.) or general-purpose,
which can perform a set of common compute primitives (arithmetic, logical, relational, etc.). Based on the
specific locations that the compute logic is integrated (e.g., data row buffer, I/O interface, logic layer, etc.),
an NDP work is described as either near-data or in-situ. There are also NDP works that leverage the analog
charge-sharing property of the data array to perform computing and those that rely on digital circuits.

Adding to the complexity of categorizing different NDP designs, another consideration is the deployment

scenarios for NDP architectures. The NDP architectures can also be broadly divided into two markets—
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“memory /storage-first” and “accelerator-first” NDP, that each offer varying degrees of power-performance-area
tradeoffs and present unique system integration challenges. Memory /storage-first NDP design focuses on
adding compute capabilities to the memory or data storage units with minimal hardware complexity. Hence,
the resulting product fits in existing memory/storage-system design constraints and has minimal impact
on memory capacity. The compute-enabled memory /storage still competes in the memory/storage market
with other commodity memory/storage products. Accelerator-first NDP designs seek to design the best
data-parallel accelerator and use memory/storage architecture as an implementation technology to achieve this
without the constraints of the traditional memory interface. The end result is an accelerator that competes
with other data-parallel architectures such as GPU. Data in an accelerator-first architecture can still be read
and written by the processor, for example, via CXL [16]. Potentially, the data capacity and host read/write
bandwidth would be lower and device power higher than what a traditional memory interface supports.
While a memory/storage-first NDP design is attractive in terms of cost because it does not significantly step
away from existing memory /storage architecture, it usually entails solving many system-level challenges,
such as addressing mapping, maintaining data coherency, data reshaping, and more (see Chapter 6.1 and
10.2). An accelerator-first design would be easier to integrate into a host system using existing approaches
similar to other PCle-connected co-processors. However, there are still challenges regarding developing
custom compilation toolchains and APIs, and it would be more expensive to manufacture than commodity
memory /storage products.

NDP is suitable for many data-intensive applications because it reduces data movement by processing
at the place where data resides. Additionally, the underlying memory or storage technology that forms
the foundation of NDP architecture can sustain much higher internal data bandwidth and parallelism if
the compute elements can be directly connected to the data arrays. For example, the SSD has a notable
internal (between flash chips and the SSD controller) vs. external (between host and SSD) bandwidth gap.
Moreover, the internal bandwidth is easier to scale by providing more channels, while expensive data pins
limit the external bandwidth. For a 3D-stacked memory cube where the aggregated internal bandwidth of
all vaults (i.e., vertical slices similar to channels) can be an order of magnitude larger than its external I/O
bandwidth [17]. For a traditional 2D planar DIMM memory, the external I/O width is limited to 64-bit,
but a local row buffer in each memory subarray (see also Chapter 2.1.1) has access to 1024 bytes to 4096
bytes. Second, using a bit-serial DRAM-based NDP as an example, we argue that a well-designed NDP
provides much larger data parallelism. In such architecture, each memory bit sense amplifier is augmented
with a 1-bit compute unit. For a single 8-Gbit DDR4 chip (8 banks/chip) with 16K bitlines per bank, there
would be 128K 1-bit processing elements. The degree of hardware parallelism can be further increased with

subarray-level parallelism. Recent prototypes by Micron have demonstrated that 8 million 1-bit processing
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units can be fired up simultaneously in an NDP system built on top of a DDR4 8Gib_x4 chip [18] with much

smaller peak power consumption (~ 7W) than CPU and GPU.

While several recent proposals [19, 20, 21, 22, 23, 19, 24, 25, 26] have tackled the challenge of improving
the performance and efficiency of NDP designs, the security and privacy implications of these architectures
remain largely unexplored. Notably, semiconductor supply chain attacks are critical threats that have the
ability to disrupt the operations of high-value mission-critical systems. The process of setting up a trusted
end-to-end production line for emerging analog eNVM-based neuromorphic accelerators can be prohibitively
time-consuming and expensive, which has paved the way for a more decentralized design-manufacturing
approach that inevitably invites exploitation from bad actors to stealthily inject malicious hardware Trojans
into the product [27, 28, 29, 30, 31, 32]. Successful transformation of NDP designs from prototypes to
products will entail solving many challenges, and the security and privacy implications of these designs
remain largely unexplored despite the potential sensitive deployment scenarios for NDP devices, including
mission-critical or privacy-sensitive machine learning tasks such as medical diagnostic imaging and virtual

assistance.

1.1 Thesis Statement and Contributions

Observing the recent progress and unaddressed challenges of NDP, we hypothesize in this dissertation
that NDP systems can significantly mitigate the cost of data movement, improving the application execution
speed and energy consumption for data-intensive applications. However, as NDP technology matures, the
security implications of future designs should be thoroughly analyzed to achieve wide adoption. Accordingly,
we design and evaluate a set of NDP accelerators to alleviate the data movement bottleneck for data-intensive
workloads across different application domains. In addition to exploring the design space from performance
and efficiency perspectives, we explore potential security threats in the supply chain to facilitate the design of

future NDP accelerators with a security focus.

This dissertation advances the area of NDP further by primarily making four contributions
(detailed in the following subsections). First, we explore applying a bit-serial DRAM-based SIMD processing
scheme to accelerate various computing tasks, including bioinformatics, data analytics, pattern matching, and
general-purpose computing. Second, we propose a 3D-stacked memory technology with an integrated compute
layer that accelerates de novo genome assembly. Third, we evaluate a processing-with-storage-technology
(PWST) HW/SW codesigned framework that targets k-mer counting, a key bottleneck of many bioinformatics

tasks. Fourth, we conduct a case study of how privacy and data integrity can be breached in a recent
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NDP-based DNN accelerator, highlighting the importance of fostering future NDP accelerator design with

security in mind.

1.1.1 Digital bit-serial DRAM-based SIMD Processing

Bit-serial computing sequentially processes from operands’ LSB to MSB, and each bit position is computed
by applying different logic operations (AND, XOR, NOT, etc.). While traditional bit-parallel computing
can compute results in one shot, bit-serial computing can outperform it by simultaneously operating on a
large vector of elements bit-by-bit since its performance is sensitive to the bit-length of each element rather
than the number of elements. In-DRAM bit-serial computing relies on cycling through operand DRAM rows
for processing. Prior work [33, 34, 35, 36, 37, 38] have explored the potential of enabling massively-parallel
bit-serial SIMD-style processing with a vertical data layout in DRAM architecture. The vertical layout allows
each activation to access a bit slice across a row worth of vector elements (i.e., bitlines or lanes), hence the
name bit-serial computing. Our approach differs from the prior analog-based works by performing bit-serial
logic digitally using a minimalistic logic integrated at the DRAM local row buffer. Based on the underlying
implemented logic, such digital bit-serial architecture can be adapted to accelerate different applications with

different performance and energy profiles. Specifically, we explore the following four variations.

Variation one. Sieve: Scalable In-situ DRAM-based Accelerator Designs for Massively Parallel

k-mer Matching

The rapid influx of biosequence data, coupled with the stagnation of the processing power of modern
computing systems, highlights the critical need for exploring high-performance accelerators that can meet the
ever-increasing throughput demands of modern bioinformatics applications. This work argues that processing
in memory (PIM) is an effective solution to enhance the performance of k-mer matching, a critical bottleneck
stage in standard bioinformatics pipelines characterized by random access patterns and low computational
intensity.

This work proposes three DRAM-based in-situ k-mer matching accelerator designs (one optimized for
area, one optimized for throughput, and one that strikes a balance between hardware cost and performance),
dubbed Sieve, that leverage a novel data mapping scheme to allow for simultaneous comparisons of millions
of DNA base pairs, lightweight matching circuitry for fast pattern matching, and an early termination
mechanism that prunes unnecessary DRAM row activation to reduce latency and save energy. Evaluation of

Sieve using state-of-the-art workloads with real-world datasets shows that the most aggressive design provides
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an average of 326X/32X speedup and 74X /48X energy savings over multi-core-CPU/GPU baselines for k-mer

matching.

Variation two. DRAM-CAM: General-Purpose Bit-Serial Exact Pattern Matching

Exact pattern matching is a widely used kernel in many applications. We observe that exact-pattern-matching-
intensive workloads share similarity with k-mer matching and thus can benefit from a similar architecture
like Sieve. We decided to extend Sieve with several cost-effective modifications, such as a population count
logic, chip-level parallelism support, and a hardware data transposition unit, making a general-purpose

DRAM-CAM and key-value store that outperforms CPU and various PIM solutions.

Variation three. Membrane: A PIM-based Architecture to Accelerate Database OLAP Queries

We then apply the DRAM-based bit-serial techniques to Online Analytical Processing (OLAP) database
workloads. We explore how to map queries onto subarray-level PIM, which enables parallelism across subarrays
and banks. We systematically explore mapping strategies and trade-offs between bit-serial/element-parallel
and bit-parallel/element-serial designs adapted from the prior Sieve and Fulcrum architectures, respectively.
We find that join operations do not map well to subarray-level PIM architectures. Thus, we need to use
a software pre-join/denormalization method to transform join operations into selection/filter operations.
We also learn that certain operations, such as aggregation, remain better served using the CPU. Thus, we
propose a cooperative approach for analytic query processing between CPU and PIM. We then explore several
dimensions in the design space of PIM architectures, including different ways to perform filter operations
and a new way to return data to the CPU. We conclude that a traditional columnar database layout with a
scalar processing element in the PIM-enabled subarrays (Membrane-H) for the table scan, combined with a
rank-level unit (RLU) for gathering the selected elements, is the best configuration. An evaluation of an
end-to-end query processing on the popular analytic benchmark SSB at scale factor 100 (a 60GB database)

yields a 45.39x geometric-mean speedup over a hand-optimized AVX-512 implementation of SSB.

Variation four. DRAM-BitSIMD: Exploring the Design Tradeoffs and Opportunities in DRAM-

based Bit-Serial Vector Computing

Finally, after observing the speedup and energy-saving of bit-serial DRAM-based pattern matching in
bioinformatics and data analytics, we hypothesize such NDP processing can be applied to more compute
primitives such as arithmetic, logical, relational, and more. We comprehensively explore the design space

for bit-serial general-purpose computing logic embedded in the DRAM subarray, leveraging the massive
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parallelism of DRAM row operations. We show that digital techniques can outperform prior analog charge-
sharing techniques. Digital techniques require more area but support a wider range of computing primitives
and allow a sequence of logic operations to be performed at higher clock speeds between slower subarray
row reads/writes. We describe a range of bit-serial architecture choices and evaluate raw performance area
and energy efficiency. We also describe a high-level vector-oriented instruction set. By analyzing bit-serial
operations with different complexity levels, we identify essential hardware components for performing such
operations efficiently. With software and hardware co-designing, we propose a programmable DRAM-BitSIMD
architecture that achieves a good balance between bit-serial computing performance and hardware costs by
introducing a bit-serial logic unit with bit registers, highly optimized bit-serial instruction set, and decoupled
memory and logic instruction execution. We implement a rich set of high-level operations with bit-serial
microprograms, explore the system integration approaches, and evaluate the performance on multiple widely
used benchmarks. Results show that the digital architecture demonstrates a 20X speedup over CPU, 5X over
GPU, and 1.7X over SIMDRAM, an analog architecture.

1.1.2 Ultra Efficient Acceleration for De Novo Genome Assembly via Near-

Memory Computing

De novo assembly of genomes for which there is no reference is essential for novel species discovery and
metagenomics. In this work, we accelerate two key performance bottlenecks of DBG-based assembly, graph
construction and graph traversal with near-data processing (NDP) architecture based on a 3D-stacked
memory product with a logic layer. The proposed framework distributes key operations across NDP cores to
exploit a high degree of parallelism and high memory bandwidth. We propose several optimizations based on

domain-specific properties to improve the performance of our design.

we map the graph construction to many independent in-memory tasks that can be allocated to a specific
in-memory core. We design a new memory organization for sequence data and the resulting DBG in the NDP
architecture to maximize the parallelism and balance the workload in all in-memory cores. We also propose a
synchronization-based parallel in-memory traversal to generate genome contigs efficiently. We integrate the
proposed techniques into an existing DBG assembly tool, and our simulation-based evaluation shows that the
proposed NDP implementation can improve the performance of graph construction by 33x and traversal by

16x compared to the state-of-the-art.
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1.1.3 Abakus: Accelerating k-mer Counting With Storage Technology

This work seeks to leverage Processing-with-storage-technology (PWST) to accelerate a key bioinformatics
kernel called k-mer counting, which involves processing large files of sequence data on the disk to build
a histogram of fixed-size genome sequence substrings and thereby entails prohibitively high I/O overhead.
In particular, this work proposes a set of accelerator designs called Abakus that offer varying degrees of
tradeoffs in terms of performance, efficiency, and hardware implementation complexity. The key to these
designs is a set of domain-specific hardware extensions to accelerate the key operations for k-mer counting at
various levels of the SSD hierarchy to enhance the limited computing capabilities of conventional SSDs while
exploiting the parallelism of the multi-channel, multi-way SSDs. Our evaluation suggests that Abakus can

achieve 8.42x, 6.91x, and 2.32x speedup over the CPU-, GPU-, and near-data processing solutions.

1.1.4 New Hardware Trojan Threats in Memristor-based Neuromorphic Com-

puting Systems

Fast and energy-efficient execution of a DNN on traditional von Neumann architectures is challenging
due to excessive data movement and inefficient digital computation. Recently, emerging memristor-based
neuromorphic computing systems (MNCS), which is a form of NDP architecture that mimics biological
neuron computations, are gaining traction. These neuromorphic chips perform neuron computation using
arrays of resistive memory cells, and the computation results are directly represented with the analog current.
However, MNCS designs focus on performance, while security concerns take a back seat. Previous works
have shown that DNNs running in traditional platforms such as CPU, GPU, and FPGA environments are
subject to various attacks, suggesting that MNCS is also likely vulnerable.

This work demonstrates a hardware supply chain attack (i.e., insertion of hardware Trojan during design
and production) against emerging MNCS devices consisting of leakage of neuron network model parameters
through a covert power side-channel that could be inserted at several points in the supply chain. We then
dissect a common MNCS architecture derived from several published works and identify the analog-to-digital
converters (ADC), which convert the MNCS’ analog output current to digital output as an attack target.
The ADCs generate a series of voltage spikes that allow the adversary to correlate MNCS switching activities
with secret model parameters (i.e., synaptic weights). We design a stealthy hardware Trojan that taps into
the ADC circuits to create a covert power side-channel. An adversary can infer the synaptic weights by
collecting a series of power traces of the victim MNCS devices. Our evaluation suggests a simple power signal
analysis can recover over 90% of synaptic weights of an MNIST MLP, and the reconstructed MLP performs

similarly with the victim model, making this a viable threat to MNCS.
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1.2 Dissertation Organization

The remainder of this dissertation is organized as follows:

Chapter 2: Background and Prior Works introduces various memory and data storage technologies
that form the foundation of our NDP designs, the background of the computational tasks that we aim to
accelerate, and the fundamentals of hardware security.

Chapter 3 - 6: Digital bit-serial DRAM-based SIMD-style Processing presents the design space
exploration of fitting 1-bit digital logic in the DRAM local row buffer to process data and bit-serially. This
NDP architecture is characterized by its bit-serial element-parallel processing scheme, which is highly parallel
and energy efficient. We discuss the tradeoffs and design decisions of the digital DRAM-based bit-serial
architectures through four variations, which target different domains and have different capabilities. This
chapter, in full, is a reprint of the material as it appears in the proceeding of ISCA 2021 [12] (Chapter 3) and
CAL 2022 [39] (Chapter 4). A full list of authors for Chapters 3 and 4 can be found in Appendix 10.3.1.
I am the primary investigator and author of these two papers. Chapter 5 (HPCA 2024 Membrane) and
Chapter 6 (ASPLOS 2024 DRAM-BitSIMD) are adapted from the material of the two works under review.
A full list of authors for Chapters 5 and 6 can be found in Appendix 10.3.2. Chapter 5 is a joint effort with
Akhil Shekar (UVA), Kevin P. Gaffney (UW), Martin Prammer (UW), and Helena Caminal (Cornell). My
primary contribution to this work is the design of the Membrane-V architecture and area, power, and
performance evaluation of both Membrane-V and Membrane-H. Chapter 6 is a joint effort with Deyuan
Guo (UVA). My primary contribution to this work is the programming interface, overall performance
evaluation and modeling, and the overall shaping of the design space.

Chapter 7: Custom Logic in 3D-stacked DRAM memory cube presents a HW/SW codesigned
framework that integrates lightweight processing cores in the logic layer of the 3D-stacked memory cube
to accelerate the de Bruijn graph (DBG) based genome assembler. This chapter, in full, is a reprint of the
material as it appears in the proceeding of PACT 2021 [40]. This is a joint effort with Minxuan Zhou (UCSD).
A full list of authors for Chapter 7 can be found in Appendix 10.3.1. My primary contribution to this
work is the design of the NDP parallel DBG graph construction and its evaluation.

Chapter 8: Processing with storage technology presents an NDP architecture that leveraging
Processing-with-storage-technology (PWST) to accelerate a key bioinformatics kernel called k-mer counting.
This chapter, in full, is a preprint of the material submitted to TACO. This is a joint effort with Minxuan Zhou
(UCSD). A full list of authors for Chapter 8 can be found in Appendix 10.3.2. My primary contribution
to this work is the design of Abakus-Basic, Abakus-BF, Abakus-OP, and several major experiments to

evaluate their performance.
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Chapter 9: Hardware Trojan in DNIN NDP Accelerator presents for the first time the feasibility
of carrying out a hardware supply chain attack against a neuromorphic DNN accelerator that performs
neuron computation inside resistive memory cell arrays. This chapter, in full, is a reprint of the material as it
appears in the proceeding of DATE 2023 [41]. This is a joint effort with Rahul Sreekumar (UVA). A full list
of authors of Chapter 9 can be found in Appendix 10.3.1. My primary contribution to this work is the
design of the overall attack scheme and evaluating the effectiveness of the weight recovery attack.

Chapter 10: Conclusions summarizes the dissertation and describes potential future research directions.



Chapter 2

Background

In this section, we introduce the fundamentals of DRAM memories.

2.1 DRAM Memory Technology and SSD

2.1.1 2D Planar DRAM
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Figure 2.1: DRAM memory organization

DRAM Organization Figure 2.1 (a) illustrates the key components of a commodity 2D planar DRAM,
which is usually organized as a hierarchy of memory cells with peripheral controls and I/O logic to support
high-density data storage and high-bandwidth data read and write. The host CPU communicates with a set
of DDR (double data rate) DRAM modules (DIMMSs) through one or more memory channels controlled by
the memory controller. Each DIMM contains one or two ranks of chips. Chips grouped into the same rank
react to the same DRAM commands and behave in a lockstep manner, i.e., accessing a row from bank_i in

one chip entails simultaneously accessing the same row in bank_i from all chips in the same rank. Organizing

11
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conventional (i.e., DDR) DRAM into ranks is primarily for two reasons. (1) A large monolithic single-chip
DRAM bank would be slow due to the wire delay. (2) The I/O width of a DDR DRAM chip is limited to 8 -
16 bits, so to support a cache fill, a rank is needed to achieve a wide read/write. Essentially, each logical

DRAM bank is physically partitioned among a rank of chips.

Banks are further broken down into groups (32 to 64) of 2D arrays of cells called subarrays, and each
subarray typically consists of 512-1024 rows. However, these values may vary from product to product to
optimize overall DRAM density and performance. Conventionally, only one subarray per bank is activated
to respond to a DRAM command. Additional performance can be extracted by exploiting subarray-level
parallelism (SALP) [12]. SALP has three variations, and we leverage the most aggressive form called MASA
(Multitude of Activated Subarrays). MASA exploits the fact that each subarray has its own local row buffer
that latches a recently activated DRAM row; therefore, by adding one additional single-bit latch to each
subarray’s peripheral logic as well as a new 1-bit global control signal, the SALP mechanism can keep multiple
subarrays in the same bank active, reducing bank-level request conflict and improve row-buffer hit rate to
the same bank. When applied to NDP designs, subarray-level parallelism (SALP) substantially increases
the computing throughput. However, sustaining the activation of several subarrays simultaneously requires
more power than traditional DRAM chips and system interfaces are designed to support. However, the

performance benefit usually justifies the cost.

DRAM Data Access Bits are stored as charges in the DRAM cell’s capacitor and converted to digital
values upon access by a row of sense amplifiers known as the row buffer. Accessing DRAM includes three
essential steps: (1). Row activate, which selects a row of cells by asserting the wordline and connecting
the cells’ transistors to the bitlines, at which point the charge flows to the sense amplifiers. It takes tRCD
(= 15ns) delay for the sense amps to detect and stabilize the charges. Note connecting a DRAM row to the
row buffer destroys the original values, and the sense amplifiers take additional time to restore the charges.
The delay between the row activation and cell charge restoration is governed by the timing parameter tRAS
(= 35ns). (2). After the bits are latched in the row buffer, the memory controller can issue a Read or Write
command and a column address to access the desired bits. (3). Finally, to access another DRAM row, a
precharge stage lasting ~ 15 ns (tRP) is needed to disconnect the current capacitors from the bitlines by

disabling the wordline and restore the bitline voltage to their quiescent state.

2.1.2 3D-stacked Memory Cube

Emerging 3D-stacked DRAMsS, such as Micron’s hybrid memory cube (HMC) illustrated in Figure 2.1 (b),

and high bandwidth memory (HBM) [413, 41] of different vendors such as Samsung, SK Hynix, and Micron,
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are popular platforms to enable NDP functionality. Since HMC and HBM share many high-level design
principles, we use an HMC cube illustrated in Figure 2.1 (b) to explain the core concepts of a 3D-stacked

memory product.

HMC Organizations For each of a 3D-stacked memory module (AKA a cube in HMC’s terminology),
there are multiple (4 - 8) vertically-stacked memory dies on top of a logic die (e.g., a logic layer in HMC or
a layer of interposer in HBM). A HMC cube is vertically sliced into multiple (16 - 32) independent vaults
(8 - 32 MB / vault), similar to pseudo channels in HBM. Each vault has its own memory controller in the
logic layer, and the data is transferred from the DRAM dies to the logic die through fast through-silicon
vias (TSVs), which provide higher bandwidth, lower latency, and lower communication energy consumption

within a cube than comparable 2D DIMM organizations [45].

HMC Characteristics Differs from traditional 2D DIMM-based memory, HMC adopts a packet-based
(16B to 128B) communication protocol implemented with high-speed serialization /deserialization (SerDes)
circuits [45], which archives higher raw link bandwidth than achievable with synchronous bus-based interfaces
implemented in the traditional DIMM memory. Such communication protocols provide a much wider interface
than DDR DIMM, which has a narrow I/O: 4 - 16 bits per chip and 64 bits per rank. In terms of the
bandwidth, externally, there are eight 60 GB/s high-speed serial links as the off-chip interface, which means
a single HMC cube providing 480 GB/s of host-to-memory bandwidth [16]. To scale out the HMC-based
memory, multiple cubes can be connected using a crossbar network. Internally, with 32 vaults per cube and
2Gb/s of TSV signaling rate, an HMC archives an internal bandwidth of 512 GB/s [17]. Additionally, 3D

stacking has the advantage of a smaller form factor compared to DIMM technology.

HMC-based Accelerators Due to its advantages, 3D-stacked memory has been used by some high-end
GPUs and FPGAs to improve performance. It is also a starting point for potential consideration to achieve
NDP. 3D-stacked memory-based NDP solutions come in various forms. Recent proposals can be separated
into two categories: (1) in-situ processing where the logic is embedded at the row-buffer level such as
Fulcrum [47], or integrating a custom core/application logic at the logic layer per vault [17, 48, 49, 50]. The
NDP system can scale out by connecting multiple cubes using high-speed serial links to form a network of
NDP cores. Scaling out the NDP system built on top of HMC can simultaneously increase the memory
capacity, parallelism, and aggregated memory bandwidth, which is ideal for many big-data applications such
as parallel genomics workloads with a large memory footprint and high bandwidth demand. We evaluate the
effectiveness of NDP design in the context of HMC architecture, which provides concrete parameters accessible
to researchers. However, our optimizations may also be applied directly to other 3D-stacked memories like

HBM, which shares a similar organization (e.g., channels vs. vaults) [13, 44].
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Figure 2.2: Solid State Drive (SSD) organization

2.1.3 SSD

Figure 2.2 shows the block diagram of a commodity SSD. An SSD can be conceptually divided into a front-end
and a backend. The backend consists of NAND flash chips organized into multiple (8 ~ 32) independent
channels to increase the I/O parallelism. In addition, each chip comprises several dies; each can serve a
different memory request but must compete with other sibling dies for the same data and control paths
[51]. Each die comprises multiple data blocks (groups of 4~8 KB pages), organized into several planes that
generally respond to commands in a lock-step manner [51]. There is usually a register at the die level [51, 52]
to buffer a data page for an R/W command. The front end consists of a controller core, DRAM, and a set of
flash memory controllers (FMC). An SSD controller, usually a low-frequency, energy-efficient CPU, has three
responsibilities: (1) communicate with the host through SATA or NVMe protocols to handle I/O requests,
(2) convert I/0 requests to flash transactions and submit them to chip-level queues, in addition to supporting
address translation, read/write caching, garbage collection, among other tasks, and (3) coordinate with FMCs
which issue commands to and transfer data to/from the chips. The DRAM stores the data structures the

controller requires to execute various flash management tasks and buffers data.

2.2 Bioinformatics

The field of bioinformatics has enabled significant advances in human health through its contributions to
precision medicine, disease surveillance, population genetics, and many other critical applications. Bioin-
formatics pipelines typically analyze unknown genome samples of various sizes, ranging from small viruses
(e.g., a COVID test) to extremely large environmental data in metagenomics (e.g., analyzing soil samples).
Investigating bio-accelerator designs has tremendous economic and societal benefits. The market share
of metagenomics alone is expected to reach $1.4 billion by 2025 [53]. In the emerging precision medicine
domain, a patient’s sample is first sequenced on the NovaSeq instrument in under 48 hours, producing 6 12

TB microbiome and human DNA /RNA data. To develop personalized treatment from these samples, raw
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Figure 2.3: k-mer matching pseudo code and illustration

sequences are passed through, often in parallel, various metagenomics stages with k-mer matching, DBG
genome assembly, and k-mer counting on the critical path. ~68 days can be spent on software called Kraken
[1] during the critical k-mer matching stage, ~3600 CPU hours on the de novo genome assembly. Efficient
execution of k-mer matching, DBG genome assembly, and k-mer counting can help transform many life-saving

tasks from vision to reality. Each of the three bioinformatics kernels is described as follows.

2.2.1 k-mer matching

A DNA sequence is a series of nucleotide bases commonly denoted by four letters (bases): A, C, G, and T.
k-mer are subsequences of size k. Metagenomic algorithms attempt to assign taxonomic labels to genetic
fragments (sequences) with unknown origins. A “taxonomic label” assigns a sequence to a particular organism
or species. Traditionally, this is done by aligning an individual query sequence against reference sequences,
which can be prohibitively slow. Processing a metagenomics file containing 107 sequences using an alignment-
based BLAST algorithm takes weeks of CPU time [54, 55]. Experts predict that genomics will soon become
the most prominent data producer in the next decade [56], demanding more scalable sequence analysis
infrastructure. More recently, alignment-free tools that rely on simple k-mer matching have emerged to aid
large-scale genome analysis tasks, because properly labeled k-mers are often sufficient to infer taxonomic and
functional information of a sequence [5, 1, 2, 57].

Figure 2.3 (a) illustrates the process of a typical k-mer-matching-based sequence classifier. In an offline
stage, a reference k-mer database is built, which maps unique k-mer patterns to their taxon labels. For
example, if a 5-mer "AACTG” can only be found in the E.coli bacteria sequence, an entry that maps
"AACTG” to E.coli is stored. At run time, k-mer matching algorithms slide a window of size k across the
query sequence, and for each resulting k-mer, they attempt to retrieve the associated taxon label from the
database. The function query_kmer in line 6 is repeatedly called to search each k-mer in the database. If
the query k-mer exists in the database (k-mer hit), its taxon label (payload) is retrieved; otherwise, we move

on and compare the next k-mer in the query. Once all k-mers in a query are processed, the taxon labels of
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Figure 2.4: The application of k-mer counting in bioinformatic pipelines.
the matched k-mers are used to make a final decision on the originating organism for the query sequence. A
popular choice is to keep a counter for each retrieved taxon label, and the taxon label with the most hits is
used to classify the query sequence. See Figure 2.3 (b)for example. The reference k-mer set itself can be
implemented in several ways. CLARK [2] and LMAT [5] leverage a hash table, with the k-mer pattern as the
key and the taxon label as the value. Kraken [1] uses a more sophisticated data structure that is a hybrid
between a hash table and a sorted list, in which k-mers that share the same “signature” are put into the
same hash bucket, which is then looked up using binary search. The assumption here is that two adjacent
k-mers within a query sequence are likely to share the same “signature” since they overlap by (k-1) bases and
are thereby likely to get indexed into the same bucket. In theory, this improves the cache locality over purely
hash table or sorted list approaches since matching the first query k-mer often brings the bucket to the cache,
which will be used for the subsequent query k-mers. In our workload analysis, we find out that even with this

optimization, cache performance remains poor.

2.2.2 k-mer counting

Use Case. The predominant genome sequencer today is based on the Next Generation Sequencing (NGS)
technology, which cannot output the entirety of a genome sequence in one sitting but instead produces many
overlapping short reads that are pieced together into the underlying genome through genome assembly. Due
to the errors introduced in the underlying chemical and electrical processes of the sequencers, the output
reads have an error rate of roughly one in a thousand bps. To ensure each region of the genome is correctly
covered at least a minimum threshold times for a highly accurate assembly result, genomes need to pass the
sequencer multiple times.

A quintessential use case of k-mer counting arises in the context of de novo genome assemblers based on
the de Bruijn graph (DBG), which leverages the overlapping portion of the NGS reads to put them together

into a complete genome. De novo assembly is used when the sequenced reads are from an organism whose
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Figure 2.5: The stages in de novo genome assembly using de Bruijn graph.

genome sequence is yet to be constructed, and there is no available reference sequence. Currently, there are
only 3,500 species of complex life that have been sequenced, and only about 100 have been sequenced at
“reference quality” [58], so DBG assemblers will remain an essential stage of the genome sequencing pipeline.
DBG is a form of directed multigraph where each unique k-mer is represented as a node in the graph, and an
edge is formed between two nodes if the ‘k-1’ suffix of the first node exactly matches the ‘k-1’ prefix of the

second node. An Eulerian path that visits each node exactly once represents the target genome sequence.

The primary purpose of k-mer counting in a DBG assembler is to reduce the data size by removing
potentially erroneous k-mers, represented as graph nodes. Since each genome region has coverage of multiple
NGS reads to defeat the inherent sequencing error rate, low-frequency k-mers such as those that appear only
once or twice are likely caused by sequencing errors and, therefore, disregarded. The number of erroneous
k-mers can be fairly large in real-world genome datasets (up to 80%) because one incorrect base pair can
result in k erroneous overlapping k-mers. For this reason, k-mer counting is an essential step to address the
genome sequencing and assembly data explosion problem. Furthermore, k-mer frequency information is also

used to resolve branches in DBG graph traversal [59].

Definition. Let ¥ = {A, C, G, T} denote the alphabet of DNA nucleotide (AKA base pair) sequences.
A read r of length [ is a sequence of nucleotides over the alphabet ¥. A k-mer is a substring of length & in r
(k<I). All k-mers of a read r can be obtained by sliding a window of size k over r. Let R be a collection of
such input reads. k-mer counting is defined as finding the total number of occurrences of each distinct k-mer
pattern that is present in R. Consider a read set R of 3 reads: {ACGGTA, CGGTAC, TTTAC}. For k = 3,
a k-mer counting algorithm would recover eight distinct 3-mers and their respective number of occurrences
from read set R: {ACG:1, CGG: 2, GGT: 2, GTA:2, TAC:2, TTT:1, TTA:1, TAC:1}. k-mer is a critical step
in several bioinformatic pipelines including sequence assembly [60], genetic analysis [(1], metagenomics [62],

etc., as shown in Fig. 2.4.
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2.2.3 de Bruijn Graph (DBG) Genome Assembly

Genome sequencing is the process of determining a segment or the whole DNA sequence of an organism. De
novo assembly is a key step of genome sequencing, where the short sequenced reads are assembled without
using a reference genome [63, 64, 65, 66, 67, 68, 69, 70, 71, 72]. Currently, the most successful de novo
assembly algorithm is based on the de Bruijn graph (DBG) algorithm. DBG is a form of directed multigraph
that stores the overlapping information of k-mers (DNA subsequences of size k) extracted from DNA sequence
reads. Each unique k-mer is represented as a node in the graph, and an edge is formed between two nodes if
the ‘k-1° suffix of the first node exactly matches the ‘k-1¢ prefix of the second node. DBG assembler finds a
path that visits each node exactly once to assemble the DNA sequence. The DBGs are of special interest
because the assembly algorithm can finish in polynomial time with respect to graph size [(66].

Figure 2.5 shows the full pipeline of DBG-based genome assembly. It takes in NGS short reads sampled
in the genome sequence step and then extracts k-mers from every position. The de Bruijn graph is built on
the coverage relation between k-mers. Unlike a general graph, DBG follows a simple pattern where each
node can only have up to four outgoing edges and four incoming edges (four possible nucleobases). Therefore,
the most common data structure for DBG is a hash table, which enables efficient traversal on a forward or
backward path by searching the next/previous possible k-mers[71, 67, 70]. When a k-mer appears more than
once during the graph construction process, they are merged into one node and increase the count. DBG
assembly can build many long sequences, which are called contigs, by traversing the Eulerian path in the
DBG. DBG assemblers have many common steps, including data loading, error removal, and contig assembly.

The most time-consuming phases in a DBG assembly process are graph construction, which saves unique
k-mers along with their multiplicity and connectivity from raw input reads to a hash table, and graph
traversal, which traverses the graph to connect a chain of k-mers as contigs. Based on our experiments on
several popular tools [71, 67, 70, 69], graph construction takes 60% of the execution time, and graph traversal
for contig assembly takes 30% of execution time. Therefore, this dissertation focuses on accelerating these

two phases.

2.3 Database OLAP

Ounline Analytic Processing (OLAP) systems are critical technologies enterprises use to unlock the potential of
their vast enterprise databases. These systems employ analytic SQL queries to transform database data into
visual graphs on live dashboards and generate summary reports. Many OLAP workloads are characterized by

their emphasis on analyzing historical data, as compared to Online Transaction Processing (OLTP) workloads
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Figure 2.6: An example OLAP scenario. Image credit Akhil Shekar
that generally facilitate business transactions [73]. The differences between OLAP and OLTP workloads

have driven specialization in database platforms, where two separate database solutions regularly perform
analytical and transactional query processing. In many cases, the archived data is stored as a read-mostly,
append-only database, commonly referred to as a data warehouse [74], while the transactional database,

typically much smaller, stores the latest copy of the key tables in the database.

An OLAP database typically consists of a small number (often 1) fact tables and many dimension tables.
Fact tables contain historical transaction records and the dimension tables contain detailed information for
specific columns in the fact table records. As an example in a shopping cart application, the fact table record
may contain a record for each item that is purchased, including the id of the customer (a foreign key). A
separate customer dimension table may contain one record for each customer, recording the unique (primary
key) customer_id along with detailed information for that customer, such as the customer’s email and address.
There may be other dimension tables to record other details about the purchase, including the product
description, the shipping method, etc. The fact table is generally large in size, and the dimensions tables are
significantly smaller. Typical OLAP queries involve “slicing and dicing” the data along the dimensions (they
do that by applying selection predicates on the dimension table columns, AKA table scan), then joining the
selected dimension records with the fact table, and finally aggregating the combined results to produce a

result (e.g., an ordered list of the top trending products purchased last year.)
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Figure 2.7: The stages in integrated circuits design and manufacturing.

2.4 Hardware Trojans

Fig. 2.7 captures the major milestones and deliverables of the IC design and manufacturing process [27].
Chip vendors increasingly subcontract several key steps to third parties to save costs. One popular movement
is to go fabless due to the astronomically high upfront investment to set up a fabrication facility ($20 billion
in 2020 for the current process node [27]). While outsourcing is economically sensible, it inevitably opens the
door to an unforeseen security threat — hardware Trojans. Previous works have shown that every stage in the
distributed IC supply chain is susceptible to the insertion of hardware Trojans by any entities involved. The
design team might unintentionally use tainted 3rd party IP blocks or CAD tools for its RTL designs, resulting
in Trojan-infected netlist or layout files(GDSII) [28, 29]. A rogue engineer in the design team can insert a
Trojan directly at the RTL level [30, 31, 32]. Even if the chip specifications are correctly implemented by the
design house and verified by the backend design house, the malicious foundry can tamper with the mask
layout during the fabrication phase [27, 29]. Finally, the genuine IC’s can be intercepted and replaced with
counterfeited ones containing Trojans during the transportation at the post-fabrication phase. This work

focuses on inserting a Trojan at the design or backend design phase.

Typically, a hardware Trojan consists of a trigger circuit that activates a Trojan on a specific condition and
a payload circuit that causes functional perturbations, carries out catastrophic failures, or establishes a covert
channel to leak private information. A good Trojan design is stealthy, which implies that the underlying
malicious circuitry occupies minimal area, consumes negligible standby power, and remains dormant during

its lifetime, only to be triggered by extremely rare events.

Fig. 2.8 shows a widely acknowledged classification of hardware Trojans based on action types, physical
characteristics, and activation mechanisms [75, 28, 76], with the highlighted boxes indicating properties
that the Trojan we design possesses. In particular, we embed our Trojan inside a memristor-based NN
accelerator to disable some neurons from firing, allowing us to steal and transmit sensitive model parameters
(i.e., the synaptic weights) to an adversary in the untrusted domain. The Trojan is implemented by adding
small trigger circuits (layout change), separately located with the payload circuits (loosely distributed). It is
considered functional instead of parametric because our Trojan is realized through inserting new transistors

and gates, rather than tweaking the physical characteristics of existing circuits (e.g., thinning of wires,
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weakening of transistors, etc.) Finally, our Trojan is conditionally activated by monitoring specific input

patterns, which change the internal logic state of the accelerator.



Chapter 3

Sieve: Scalable In-situ DRAM-based
Accelerator Designs for Massively

Parallel k-mer Matching

3.1 Introduction

The field of bioinformatics has enabled significant advances in human health through its contributions to
precision medicine, disease surveillance, population genetics, and many other critical applications. The
centerpiece of a bioinformatics pipeline is genome sequence comparison and classification, which involves
aligning query sequences against reference sequences, with the goal of identifying patterns of structural
similarity and divergence. While traditional sequence alignment algorithms employ computationally-intensive
dynamic programming techniques, there has been a growing shift to a high-performance heuristic-based
approach called k-mer matching, that breaks a given query sequence into a set of short subsequences of size k,
which are then scanned against a reference database for hits, with the underlying assumption that biologically
correlated sequences share many short lengths of exact matches. k-mer matching has been deployed in a
wide array of bioinformatics tasks, including but not limited to, population genetics [4], cancer diagnosis [77],
metagenomics [1, 78, 79, 2, 5, 80], bacterial typing [3], and protein classification [31]. k-mer matching may

also show up in other application domains, but in this paper, we focus on bioinformatics.

The acceleration of bulk k-mer matching is of paramount importance for two major reasons. First,

k-mer matching sits on the critical path of many genome analysis pipelines. Figure 3.1 shows the execution

22
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Figure 3.1: Execution time breakdown of Kraken [1], CLARK [2], stringMLST [3], Phymer [4],
LMAT [5], BLASTN [6]

breakdown of several important bioinformatics applications that target a variety of tasks ranging from
metagenomics to population genetics, and clearly, k-mer matching dominates the execution time in all
applications. Second, modern sequencing technologies have been shown to generate data at a rate surpassing
Moore’s Law [56]. In fact, by 2025, the market share of metagenomics alone is expected to reach $1.4 billion,
and the amount of data that needs to be analyzed by metagenomics pipelines is projected to surpass that
of YouTube and Twitter [10]. To further exemplify the scale of data explosion and processing overhead,
consider the case of precision medicine, where a patient’s sample can be sequenced in roughly 48 hours on
the NovaSeq instrument, producing 10 TB of microbiome and DNA/RNA data [32]. To develop personalized
treatment from these samples, raw sequences are passed through, often in parallel, various metagenomics
stages with k-mer matching on the critical path (e.g., ~68 days on Kraken [1]). These tasks play a critical
role in combating pandemics and treating antibiotic-resistant infections, saving billions of dollars in health
care costs [32, 83].

However, despite its significance, the acceleration of k-mer matching on modern high-end computing
platforms remains a challenge, due to its inherently memory-bound nature, considerably limiting downstream
genome analysis tasks from realizing their full potential. In particular, k-mer matching algorithms are
typically characterized by random accesses across large memory regions, leading to poor cache behavior, even
on high-end servers that feature large last-level caches. The cache-unfriendliness of k-mer matching will
continue to get worse with the rapid growth in the size and complexity of genomic databases, making the
task a major bottleneck in modern bioinformatics pipelines. This is further exacerbated by the fact that the
computation per k-mer lookup is too small to mask the high data access latency, thereby rendering existing
compute-centric platforms such as multi-core CPUs and GPUs inadequate for large-scale genome analysis

tasks.
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Memory-centric solutions to accelerate bioinformatics applications come in a variety of flavors, but
recent proposals demonstrate that near-data [34, 85, 86] and in-memory processing systems [37, 88, ?] have
promising potential to improve the efficiency of large-scale genome analysis tasks, owing to the fact that these
applications are increasingly characterized by their high data movement (from memory to the processor) and
low computation (within the processor) costs [13].

This work explores the design space for high-performance k-mer matching accelerators that use logic in
DRAM as the basis for acceleration, including the most aggressive form of processing-in-memory (PIM),
in-situ computing, with the goal of parallel processing of sequence data within DRAM row buffers. To this end,
we propose Sieve, a set of novel Scalable in-situ DRAM-based accelerator designs for massively parallel k-mer
matching. Specifically, we offer three separate designs: Sieve Type-1, Type-2, and Type-3. Each architecture
incrementally adds extra hardware complexity to unlock more performance benefits. Note that, although
our approach involves modifying conventional DRAM organization, we do not propose change conventional
DRAM; our goal is to only leverage DRAM technology to build a new accelerator. Ultimately, the value of
the accelerator will determine whether a new DRAM-based chip is worth the design and manufacturing effort.

The advantage of in-situ computing is that the bandwidth at the row buffer is six orders of magnitude
larger than that at the CPU, while the energy for data access is three orders of magnitude lower [39, 90].
However, in-situ computing also introduces several key challenges. First, in-situ acceleration necessarily
requires the tight integration of processing logic with core DRAM components, which has been shown to
result in prohibitively high area overheads [37, ?]. In fact, even a highly area-efficient state-of-the-art in-situ
accelerator is only half as dense as regular DRAM [87]. However, bioinformatics applications typically favor
accelerators with larger memory capacity due to their ability to accommodate the ever-increasing DNA
datasets that need to be analyzed within short time budgets. Second, existing in-situ approaches [87, 88] rely
on multi-row activation and row-wise data mapping to perform bulk Boolean operations of data within row
buffers, resulting in substantial loss of throughput and efficiency [?]. Finally, to capitalize on the performance
benefit of in-situ computing for k-mer matching, it is imperative that the accelerator is provisioned with
an efficient k-mer indexing scheme that avoids query broadcasting, and a mechanism to quickly locate and
transfer payloads (e.g., genome taxon records).

Key Contributions. The distinguishing feature of Sieve is the placement of reference k-mers vertically
along the bitlines of DRAM chips and subsequently utilizing sequential single-row activation rather than
the multi-row activation proposed in prior works, to look up queries against thousands of reference k-mers
simultaneously. The column-wise placement of k-mers further allows us to employ a novel Early Termination
Mechanism (ETM) that interrupts further row activation upon the successful detection of a k-mer mismatch,

thereby considerably alleviating the latency and energy overheads due to serial row activation. To the best of
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our knowledge, this is the first work to introduce and showcase the effectiveness of such a column-wise data
mapping scheme for k-mer matching with early termination, substantially advancing the state-of-the-art in
terms of both throughput and efficiency.

By exploiting the fact that matching individual k-mers is relatively less complex than most other
conventional PIM tasks such as graph processing, in this work, we design a specialized circuit for k-mer
matching, with the goal of minimizing the associated hardware cost. We then meticulously explore the
design space of in-situ PIM-based accelerators by placing such custom logic at different levels of the DRAM
hierarchy from the chip I/O interface (Type-1) to the subarray level (Type-2/3), with a detailed analysis of
the performance-area-complexity trade-offs, and a discussion of system integration issues, deployment models,
and thermal concerns.

We compare each Sieve design with state-of-the-art k-mer-matching implementations on CPU and GPU,
and perform rigorous sensitivity analyses to demonstrate their effectiveness. We show that the processing
power of Sieve scales linearly with respect to its storage capacity, considerably enhancing the performance of
modern genome analysis pipelines. Our most aggressive design provides an average speedup of 210X /35X

and an average energy savings of 35X/71X over conventional multi-core-CPU/GPU baselines

3.2 DMotivation

In this section, we explain why memory bottlenecks the overall k-mer matching execution, and we address the
main challenge of designing in-situ k-mer matching accelerators, namely integrating logic into DRAM dies
with low hardware overhead. We propose three separate Sieve designs to combat this issue. We then identify
the key limitations of prior in-situ work when adapted for k-mer matching and motivate our novel data layout
and pattern matching mechanisms. Finally, we introduce an Early Termination Mechanism (ETM) to further
optimize Sieve by exploiting characteristics of real-world sequence datasets.

Memory Is the Bottleneck for k-mer Matching. Real-world k-mer matching applications expose
limited cache locality. For sequence classifiers that store reference k-mers in a hash table, accessing a hash
table generates a large number of cache misses due to the linked list traversal or repeated hashes (to resolve
hash collision). While a hash table/sorted list hybrid can provide better locality, since the k-mer bucket can
be fetched into the cache from the previous k-mer lookup, using Kraken and its supplied datasets, we discover
that only 8% of consecutive k-mers index into the same bucket, resulting in new buckets fetched repeatedly
from memory to serve requests. k-mer matching also benefits from finer-grained memory access—k-mer
records are typically around 12 bytes [1], while each memory access retrieves a cache line of data, which

usually serves only one request due to poor locality, resulting in waste of bandwidth and energy. Finally,
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the computational intensity of k-mer matching is too little to mask extended data access latency. While
retrieving k-mers from a database takes many cycles due to cache misses, updating counters for matched
k-mers is trivially inexpensive, amplifying the effects of the memory wall [13].

DRAM Overhead Concerns. While in-situ accelerators can provide dramatic performance gains
for memory-intensive applications, building them with reasonable area overhead is difficult [87, ?]. The
sense amplifiers in row buffers are laid out in a pitch-matched manner, and the DRAM layout is carefully
optimized to provide high storage density, fitting additional logic into the row buffer in a minimally invasive
way is non-trivial. Moreover, since the number of metal layers of a DRAM process is substantially smaller
than that of the logic process, building complex logic with a DRAM process incurs significant interconnect
overhead [37, ?].

We design a set of core k-mer matching operations for Sieve using simple Boolean logic. Sieve has very
little hardware overhead compared to other PIM architectures, because k-mer matching, which is mainly
accomplished by exact pattern matching, can be supported by a minimal set of Boolean logic.

Trade-offs of Different Sieve Designs. To explore optimal Sieve designs, we compare the placement
of custom k-mer matching logic at three different levels in the DRAM hierarchy: from the I/O interface of
the DRAM chips (Sieve Type-1) to the local row buffer of each subarray (Sieve Type-3), and Type-2 as the
middle ground where several subarrays share one k-mer matching unit. Recall that a DRAM bank’s transistor
layout is highly optimized for storage, and inserting extra logic, however minimal, requires significant redesign
effort. Type-1, illustrated in Figure 3.10, keeps the bank layout intact, and thus is the least intrusive design.
However, it suffers from the lowest parallelism and the highest latency, because the comparison is restricted

to a column of bits rather than the entire row. Sieve Type-2 increases parallelism and energy efficiency
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over Type-1 by accessing a row of bits. Type-3 leverages subarray-level parallelism (SALP) [42], providing
the highest performance potential, but it comes at the cost of the highest design complexity and hardware
overhead.

Novel Data Layout and Pattern Matching Mechanism. We show that our column-wise k-mer
data layout and row-wise matching mechanism, combined with early termination outperforms prior in-situ
accelerators that rely on multi-row activation and conventional row-wise mapping. The majority of the
k-mer matching workload is exact pattern matching, which can be performed using bulk bitwise XNOR
between two operand DRAM rows. The prior arts such as Ambit and DRISA implement XNOR operation
by first ANDing two rows along with a third control row (populated with 1s or 0s), and send the results to
an additional logic. In the following analysis, we only consider the timing delay of the AND operation to give
advantage to the previous in-situ PIM work. Ambit [88] is used as a baseline. Both Ambit and 171C-based
DRISA [37] are inspired by the same work [91] for in-situ AND procedure. Thus, their performance for k-mer
pattern matching is similar. Ambit performs bulk bitwise AND in reserved DRAM rows (see Figure 3.2).
Assuming a DNA base is encoded with two bits (by NCBI standard [92]), a common k value of 31, and a
typical DRAM row width of 8192 bits, then each row fits 128 k-mer patterns if k-mers are stored in a row-wise
manner. To search a query against a group of references, Ambit first copies 128 reference patterns from the
data region to Rrer. It then makes 128 copies of the same query in Rquery. Since the target operation is
AND, the control row (Rety1) is populated with Os (copied from a preset row). Next, a triple-row activation
is performed on RRref, RQuery, and Rcgr. Finally, the result bits are copied to another row Rresuic. One
row-wide AND takes 8 row activations and 4 precharge commands from setting up to completion, which is
8 X tRAS + 4 x tRP =~ 340ns for a typical DRAM chip.

In contrast to these approaches, ComputeDRAM [93] enables in-memory computation in commodity
DRAMs, without the need for integrating any additional circuitry. The key to this approach is the fact that
issuing a constraint-violating sequence of DRAM commands in rapid succession leaves multiple rows open
simultaneously, allowing row-wide copy, logical AND, and logical OR operations to be performed via bit line
charge sharing, essentially free of hardware cost.

While all of these approaches can be leveraged to perform k-mer matching, our analysis suggests that
significant gains in performance and energy efficiency can be achieved by employing the column-major
approach we propose in this work, that not only eliminates the need for multi-row activation, but also enables
a synergistic early termination mechanism that inhibits further row activations upon finding a match.

More specifically, Sieve does not compare a full-length query k-mer against a set of full-length reference
k-mers at once. Instead, it compares a query with a more extensive set of references in a shorter time window

(1 xtRAS +1xtRP =~ 50ns), but progresses only one bit at a time (see Figure 3.3). Reference bits in Sieve
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Figure 3.4: Characterization of mismatches between k-mers.

are laid out column-wise, along bitlines. Thus, a single row activation transfers 8K bits into the matchers
embedded in row buffers for comparison. Each matcher has a one-bit latch to keep track of the matching
result. The next row is activated, and a new batch of reference bits is compared, until ETM (introduced
next) interrupts when all latches return zero.

Processing only one bit at a time does not hurt Sieve’s performance, because it leverages parallelism
across the rows; i.e., it performs 8K comparisons at once. The vertical data layout greatly expands the initial
search space (128 reference k-mers to 8192 reference k-mers), and our early termination mechanism (ETM)
quickly eliminates most of the candidates after just a few row activations. Besides the latency reduction for
each row-wide pattern matching by adopting single-row activation (~340 ns to ~50 ns), Sieve also reduces
activation energy, since raising each additional wordline increases the activation energy by 22% [38]. Thus,
even if the same data mapping strategy is applied, the multi-row activation-based approach is still slower
and less energy efficient than Sieve simply because of the internal data movement. Note that the internal
data movements associated with multi-row activation is unavoidable, because the operand rows have to be
copied to the designated area. Furthermore, arbitrarily activating three rows inside the DRAM requires a
prohibitively large decoder (possibly over 200% area overhead [37]), and activating more than one row could
potentially destroy the original values.

The Motivation for Early Termination.Activating consecutive rows in the same bank results in
highly unfavorable DRAM access patterns that are characterized by long delays (due to more row cycles) and
high energy costs (row opening dominates DRAM energy consumption [94]).

We identify a novel optimization opportunity that exploits the concept of the Expected Shared Prefix
(ESP), which describes the first mismatch location between two random sequences. On average, for DNA
sequences between 1k and 16k bases, the first mismatch is known to occur between the sixth and the eighth

base [95]. The ESP is even smaller than six for short k-mers, as shown in in Figure 3.4. For random k-mers
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Figure 3.5: Sieve Overview. (a) DRAM banks. (b) Type-2 Zoom-in. Subarray group facilitates
inter-subarray data copy, and a compute buffer is added for each subarray group which has the
matcher circuits. (c) Type-3 Zoom-in. Similar to Type-2 but the matchers reside in the local
row buffers. (d) Matcher. (e) Data layout of subarray. Each subarray is partitioned into three
regions for storing k-mer pattern groups, payload offsets, and payloads.

extracted from metagenomics reads, when matched against reference k-mers, 97% of the first mismatch can

be found within the first five bases (first 10 bits if each base is encoded by two bits).

3.3 Architecture

This section describes the three Sieve designs. We introduce Types-2 and 3 first, as they exploit greater

parallelism, and follow it up with Type-1 due to difference in design details.

3.3.1 Sieve Type-2 and Type-3

Figures 3.5 (b) and (c) show the functional block diagrams of Type-2/3. They differ mainly in the placement
of the add-on logic (e.g., matching circuitry) at the bank vs. subarray level, but share the same data mapping
scheme.

Data Layout. k-mer patterns are encoded in binary (A: 00, C: 01, G: 10, T: 11) and transposed onto
bitlines, for column-wise placement, as described in the previous section. Bit cells within each subarray are
divided into three regions (Figure 3.5 (e)). However, we note that no physical modification is made to the bit
cells. Region-1 stores the interleaved reference and query k-mers. Region-2 stores the offsets to the starting

address of payloads (one for each reference k-mer), allowing us to precisely locate the payloads. Region-3
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Figure 3.6: Column Finder in Type-2/3. Segments with k-mer hits are shown in red, otherwise
green.

stores the actual payloads such as taxon labels. Data in Region-2/3 is stored in conventional row-major
format. The main motivation to co-locate patterns and payloads is to minimize contention and achieve higher
levels of parallelism. If patterns are densely packed into several dedicated banks/subarrays, all matching
requests will be routed to them, creating bank access contention and serializing such requests.

Region-1 is further broken down into smaller pattern groups and a batch of 64 (different) query k-mers
are replicated in each pattern group in the middle (red in Figure 3.5(e)). This is because the transmission
delay of long wires inside DRAM chips prevents us from broadcasting a query bit to all matchers (discussed
next) during one DRAM row cycle. All pattern groups in a subarray work in the lockstep manner. The exact
size of a pattern group is equivalent to the number of matchers that a query bit can reach in one DRAM
row cycle. In this example (DDR3_micron_32M_8B_x4_sg125), it happens to be 576 (512 reference k-mers +
64 query k-mers). The number of query k-mers per batch is determined by the chip’s prefetch size. In this
example, a chip with a prefetch size of 8 bytes writes 64 bits with a single command. A chip with smaller
(larger) prefetch size has smaller (larger) batch size. After a batch of query k-mers finishes matching in a
subarray, they are replaced by a new batch. The total number of write commands needed to replace a batch
of 64 k-mers can be computed as (# of pattern groups / subarray) x (k x 2).

Matcher. We enhance each sense amplifier in a row buffer with a matcher shown in Figure 3.5 (d). The
matcher of Type-2/3 is made of an XNOR gate, an AND gate, and a one-bit latch. The XNOR gate checks
if the reference bit and the query bit at the current base are equal. The bit latch stores the result of the
XNOR operation, indicating if a reference and a query have been matched exactly up until the current base.
The value in each bit latch is set to 1 initially (default to match). The AND gate compares the previous
matching result stored in the bit latch with the current result from the XNOR gate and updates the bit
latch accordingly, capturing the running outcome bit-by-bit. Finally, we allow the matcher to be bypassed or
engaged by toggling the Match Enable signal.

When a row is opened, both query and reference bits are sent to sense amplifiers. A subarray controller [87]

(sCtrl) then selects which query to process among the 64 queries in the subarray. Each pattern group has a
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Figure 3.7: ETM in Type-2/3.

1-bit shared bus connecting all matchers. The selected query bit is distributed to all matchers in a pattern

group through this shared bus.

Early Termination Module (ETM). The ETM interrupts further row activation by checking if the
entire row of latches is storing zeros. The k-mer matching process continues if at least one latch stores 1.
The natural way is to OR the whole row of latches. However, the challenge of this approach is that each
OR gate adds to the latency, and during one DRAM row cycle, only a small fraction of result latches can
propagate their results through OR gates. We propose a solution that breaks the row of latches into segments
and propagates partial results in a pipelined fashion. (shown in Figure 3.7). One segment register (SR) is
inserted for every 256 latches to implement the pipeline. During one DRAM row cycle, each segment takes
the value from the previous SR, ORs it with all its latches, and outputs the value to the next SR. Notice
that in Figure 3.7, although at row cycle 3, all latches store zeros, the last SR still holds 1. An extra cycle is

needed to flush the result

Column Finder (CF). Uunless interrupted by the ETM, the row activation continues until all bases of a
query are checked. If a query is previously matched to a reference, one and only one latch in a row buffer
stores one. The Column Finder identifies the column (bitline) that is connected to that latch. The column
numbers are needed to retrieve offsets, and subsequently, payloads. Our solution is to shift a row of latched
bits until we find a one. The challenge of this approach is to design a shifter with reasonable hardware cost
and latency. In the worst case, where the matched column (reference k-mer) is located at the end of the row,
the CF needs to shift an entire row of latched bits. We propose a pipelined, two-level shifter solution for
CF. Figure 3.6 illustrates this. The CF circuits are re-purposed mainly from those of the ETM. For each
ETM segment, a MUX (1) and a 1-bit Backup Segment Register (BSR) (2) are added (Figure 3.6 (a)). BSRs
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Figure 3.8: Type-3 Timing Analysis. WL, SA, and PRE indicate latencies associated with raising
the wordlines, enabling sense amplifiers and precharging the rows. (a) ETM and matchers
operations overlap with row opening. (b) ETM is on the critical path only when there is a hit,
as it needs extra cycles to identify the hit. Then the BSRs are shifted, followed by a copy into
the RS. CF operates in parallel with row opening and ETM for the next k-mer.

and SRs maintain the same values and are updated simultaneously during the ETM operation. Zero in a
BSR means that its associated segment does not contain a match, and one implies it does. Further, we add
another set of bit latches called the Reserved Segment (RS) shown in Figure 3.6 (c¢), which includes the same

amount of 1-bit latches and OR gates as a segment.

For Column Finder, the BSRs are first shifted until we find a one, to narrow down the appropriate segment
that contains a match (3) in Figure 3.6 (b)). We then copy this segment over to the Reserved Segment (RS)
where the final round of shifting happens (4). From this point on, all ETM segments are freed to support the
pattern matching for the next k-mer, while the CF works in the background to retrieve the column number
(see Figure 3.8 (b)). The shifting of bits in RS is overlapped with the matching of the subsequent k-mer. We
point out two details here. First, after the last row activation for a given query k-mer finishes, ETM takes up
to 256 DRAM row cycles to flush the pipeline in the worst case, when the one is at the very end. During
this time, no new row activation is issued, and the CF operation is stalled until ETM completes. Second,
note that each k-mer hit takes up to 4800 DRAM cycles, while the CF operation takes up to 1032 DRAM
cycles in the worst-case scenario. Therefore, we observe no contention at the CF, even when there are two

consecutive hits in the same subarray.

Sieve Type-2. While Type-2 retains most of the high-level design from Type-3 (ETM, data mapping,
matching circuits, etc.), it differs in one key aspect — instead of integrating logic to all subarrays at the local
row buffer level, logic is added to a subarray group — a subset of adjacent subarrays within a bank (e.g., 1/2,
1/4, 1/8 of subarrays) connected through high bandwidth links (isolation transistors). Each subarray group is
equipped with a compute buffer, which retains much of the capabilities (k-mer matching, ETM, and column

finding) of a local row buffer in Type-3 without its sense amplifiers. Unlike type-3, where k-mer matching is
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Figure 3.9: Row-wide data copy across subarrays.

performed locally at each individual subarray, Type-2 processes k-mer matching inside the compute buffer
regardless of the target subarray query k-mers get dispatched to. This involves transferring a row of bits
across subarrays to reach the compute buffer at the bottom of the subarray group. To enable fast row copy
across subarrays, we leverage LISA [96], albeit adapted to the folded-bitline architecture that Sieve is built

upon. We validate the feasibility of our design with a detailed circuit-level SPICE simulation.

Figure 3.9 illustrates the process of transferring a row from the source subarray to its compute buffer —
(a) the DRAM row in the subarray 0 is activated and the data is latched onto its local sense amplifiers, (b)
when the bitlines of subarray 0 are fully driven, the links between the subarray 0 and subarray 1 are enabled.
Due to charge sharing between the bitlines of subarrays 0 and 1, the local sense amplifiers in the subarray
1 senses the voltage difference between the bitlines and amplifies it further, as a result of which, (c¢) local
sense amplifiers in both subarrays 0 and 1 start driving their bitlines to the same voltage levels, and finally,
(d) when both sets of bitlines in subarrays 0 and 1 reach their fully driven states, the isolation transistors
between them are disconnected and the local sense amplifiers in the subarray 0 are precharged. The process
is repeated until the data reaches the computed buffer. Note that — (1) only two sets of local sense amplifiers
are enabled at any time in a bank, and (2) as validated in our Spice simulation, the latency of activating the
subsequent sense amplifiers (tSA in Figure 3.9 is much smaller (~ 8X) than activating the ones of the source
subarray (tRAS). The latency for one row to cross a subarray (except for the first one) is referred to as "hop

delay” which consists of enabling the isolation transistors (link) and the activation of the sense amplifiers.

k-mer Matching Walkthrough. We use Type-3 as an example to illustrate the k-mer matching process.
Once a row is selected for activation, both the query and the reference bits are sent to the local row buffer for
comparison using the mechanisms described above. The ETM checks all segments and propagates the values

of Segment Registers (SRs) to determine if a match is found.Once a match is found, the payload associated
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Figure 3.10: Sieve Type-1. A query k-mer is sent to the Query Register, and a row activation
is issued. 1. The controller logic uses the column address to select a batch and indexes into
the SRAM Buffer to get the batch result bits entry. 2: The query bit, the reference bits, and
the result bits are sent to the Matcher Array. 3: Matchers write back to the result bits entry
stored in the SRAM Buffer.

with that k-mer pattern is retrieved as follows. The CF first determines the segment number by shifting all
BSRs. It then gets the column index by shifting all 1-bit latches in that segment until the one is found. The
column number is calculated as segment_number x (# of columns / segment) + column_indez and sent to

subarray controller to index into the payload address offsets.

3.3.2 Sieve Type-1

Sieve Type-1 is not a quintessential in-situ architecture, due to the lack of processing unit embedded in
row buffers. However, Type-1 preserves the overall high-level ideas, such as the data layout, ETM, and the
matching unit. In addition, Type-1 is the least intrusive implementation of Sieve because it does not change
the physical layout of DRAM banks. The bank I/O width is 64 bits, and each row is 8192 bits. Thus, a row
is divided into 128 batches. A batch is a set of bits retrieved by a DRAM read burst of a read command.
Batch size varies depending on the column width, which can be 32, 64, or 128 bits. Next, we introduce each
component of Type-1.

SRAM Buffer (SB). SB stores the match result bits, organized in a 2D array. The number of entries is

equal to the number of batches, and the entry width is the batch size. Before matching, all batch result bits
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are preset to one, and are updated as the matching progresses, again capturing the running match outcome.
Figure 3.10 highlights the result of batch two, where zero indicates a mismatch.

Matcher Array (MA). MA consists of 64 matching units. It compares a query bit with the reference
bit using an XNOR gate, and updates (writes back) the result bit by ANDing the match result bit stored in
SB with the output from XNOR.

Skip Bits Register (SkBR). SkBR is used for ETM. It contains one bit for each batch indicating if we
need to process the current batch. All bits in SkBR are preset to one. As the matching progresses, more and
more bits in SkBR is set to zero, meaning more and more batches will be skipped. Without SkBR, each row
activation is followed by 128 batch comparisons. Since most comparisons result in mismatches, SkBR leads
to significant energy and latency reduction.

Start Batch Register (StBR). StBR reduces processing time further. Due to the ETM, Type-1 checks
the skip bits to find proper batches to send to the MA. The search time is one DRAM cycle per skip bit. In
the worst case where only the last batch is valid, 127 DRAM cycles are wasted to check all the previous skip
bits. With the help of the StBR, whose value points to the first batch that needs to be processed, Type-1 can
quickly determine the first batch to open.

Column Finder and Payload Retrieval. The control logic first checks the skip bits to locate the
batches that contain a one, given the one-to-one mapping between batches and skip bits. A small shifter is
applied to get the index of the matched column in the batch. The column number is calculated as (batch

index) * (batch size) 4+ (column index), and is then used by the control logic to get offsets and payload.

3.3.3 System Integration

We consider both Dual-Inline Memory Module (DIMM), and PCle form factors for integrating Sieve into a
host. While PCle incurs extra communication overhead due to packet generation, DIMM suffers from limited
power supply. A typical DDR4 DIMM provides around 0.37 Watt/GB [97] of power delivery and 25 GB/s of
bandwidth, which is sufficient for Type-1. To satisfy the bandwidth and power requirement, Type-2 needs at
least PCle 3.0 with 8 lanes, and Type-3 needs at least PCle 4.0 with 16 lanes.

We use a 32 GB Type-2 Sieve to illustrate how Sieve communicates with the host using a PCle interconnect.
Uunlike Type-1, which communicates with the host on individual k-mer requests, Type-2/3 uses a packet-based
protocol that delivers hundreds of k-mer requests per PCle packet. A PCle Type-2/3 accelerator maintains
a (PCle Input Queue) and a (PCle Out Queue) for sending/receiving PCle packets, and a response ready
queue (RRQ) to hold serviced k-mer requests. The CPU scans the query sequences to generate k-mers, and

for each k-mer, it makes a 12-byte request that contains the pattern, sequence ID, destination subarray 1D,
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and other header information. Each PCle packet contains 340 requests, assuming 4 KB PCle packet payload
size. Each Sieve bank buffers 64 requests. To fully saturate the capacity of a 32 GB Sieve, the depth of the
PCle queue is set to 24 (24 PCle packets x 340 requests / packet =~ 16 ranks x 8 banks / rank x 64 requests
/ bank). Sieve removes the PCle packets from PCle Input Queue, unpacks them, and distributes requests to
the target banks. A finished request gets moved to the RR(Q. Once the RR( is full, a batch of PCle packets
is moved to the PCle Out Queue. Sieve sends an interrupt to the CPU if the packets are waiting in the PCle
Out Queue or if there are empty slots in the PCle Input Queue.

The entire space of Sieve is memory-mapped to host as a noncacheable memory region, avoiding virtual
memory translation and cache coherence management. Regardless of configuration (DIMM or PCle), a
program interacts with the Sieve device through the Sieve API, which supports calls to transpose a conventional
database into the format needed for column-wise access (this can be stored for later use and is thus a one-time
cost); load a database into the Sieve device; and make k-mer queries. The API implementation requires a
user-level library and an associated kernel module or driver to interface to the Sieve hardware. The exact
API and implementation are a subject to future work. k-mer databases are relatively stable over time, so
once a database is loaded into the Sieve device, it can be used for long periods of time, until the user wishes
to change a database. The same databases are often standard within the genomics community, high reuse

can be expected to amortize the cost of database loading.

3.3.4 k-mer to Subarray Mapping

Without an appropriate mapping scheme, each query needs to be broadcast across all regions of the accelerator.
A naive mapping scheme would involve looking up an index table that maps queries to banks (Type-1) or
subarrays (Type-2/3). Such a scheme would quickly stop scaling, as the size of such an index table increases
exponentially with the length of a k-mer. We design an efficient and a scalable indexing scheme, wherein
the size of the index table scales linearly with the main memory capacity rather than the length of a k-mer.
More specifically, the reference k-mers in each subarray are sorted alphanumerically from left to right, and
then each entry in our index table maintains an 8-byte subarray ID along with the integer values of the first
and the last k-mers at the respective subarray (identified by the index). Upon receiving a matching request,
Sieve first converts the query k-mer to its integer representation, and consults the index table to select the
bank/subarray that contains a match. While Type-2/3 exploit different levels of parallelism, they share the
same indexing scheme, i.e., if Type-2 only provides the bank address to our indexing scheme, a query needs
to be checked against every subarray in that bank. The size of the index table stays well under 2 MB even

for Type-2/3 with 500 GB of capacity, which is reasonable for a dedicated bioinformatics workstation.
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Table 3.1: Workstation Configuration

CPU Model Intel(R) Xeon(R) E5-2658 v4
Core/ Thread/ Frequency 14/ 24/ 2.30 - 2.80 (GHz)

L1 (KB)/L2 (KB)/L3 (MB) § | 32 / 256 / 35

Main Memory DDR4-2400MHz

Memory Organization 32GB / 2 Channels / 2 Ranks
GPU Model Pascal NVIDIA Titan X

Table 3.2: Query Sequence Summary

Query files # Sequences Seq Length # k-mer
HiSeq-Accuracy.fa (HA) 1.0e4 sequences 92 bases 6.2e4 k-mers
MiSeq-Accuracy.fa (MA) 1.0e4 sequences 157 bases 1.27e6 k-mers
simBA5_Accuracy.fa (SA)  1.0e4 sequences 100 bases 7.0e5 k-mers
HiSeq-Timing.fa (HT) 1.0e8 sequences 92 bases 6.2e8 k-mers
MiSeq-Timing.fa (MT) 1.0e8 sequences 157 bases 1.27e10 k-mers
simBA5_Timing.fa (ST) 1.0e8 sequences 100 bases 7.0€9 k-mers

3.3.5 Sieve: Putting it all together

For Type-2/3, the host reads the input query sequences and extracts k-mer patterns. For each k-mer, the
k-mer to subarray index table is consulted to locate the destination subarray, and a k-mer request is made, as
described in Section 3.3.3. A number of k-mer requests that need to be sent to the same subarray is grouped
into one “batch”. The exact number of k-mer requests per batch is equal to the number of query k-mers in
a pattern group (64 in our example). These query batches are placed in a buffer, ready to be shipped to
the PCle device buffer by DMA. PClIe bundles several such batches into one PCle packet (also described
in Section 3.3.3) sent to the Sieve device. Sieve dispatches each batch of query k-mers to the destination

subarray, and replaces an already processed query k-mer batch with a new (to-be-processed) batch.

Individual k-mer requests in the same batch potentially complete at different times as (1) they get issued
out-of-order (as soon as their bank/subarray becomes available), and (2) each request may involve checking a
different number of rows. Thus, response packets may arrive out-of-order at the host, where their sequence
IDs and payloads are examined, as part of a post-processing step. Upon completion of all k-mer requests for
a given sequence, the accumulated payloads are fed into a classification step. Note that there is no additional
reordering step required at the host end as the accumulated payloads are typically used to build a histogram

of taxons for a given DNA sequence.

3.4 Methodology

Workloads. We use Kraken2 [98] and CLARK [2] for the CPU baseline, and cuCLARK [99] for the GPU
baseline. We use MiniKraken 4GB (4GB), MiniKraken 8GB (8GB), NCBI Bacteria (2785 genomes 6.24GB).

The query sequences are summarized in Table 3.2, and K is set to 31.
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Baseline Performance Modeling. We report our workstation configurations in Table 3.1. The GPU
baseline is idealized because (1) the energy and latency of data transfer from host to GPU are not included,
and (2) the on-board memory is assumed to always be large enough to avoid running each query multiple
times. The baseline DRAM energy consumption is estimated by feeding memory traces associated with k-mer
matching functions, obtained using Hopscotch [100], to DRAMSim2 configured to match our workstation.
The CPU energy is measured using the Intel PMC-power tool [101], then scaled down by 30% to exclude
the interference from other system components, and the GPU energy is measured using NVIDIA Visual
Profiler [102] as it is performed in [103] to characterise the multi-GPU inference server energy efficiency and
scaled down by 50% to exclude energy spent on cooling and other operations, consistent with the methodology
from DRISA [87].

Circuit-level SPICE Validation. Of all the Sieve components, only the Matchers are in direct contact
with the sense amplifiers’ BLs. In the presence of the Matcher circuit, the load capacitance on the BL is
increased. We use SPICE simulations to confirm that Sieve works reliably. The sense amplifier and matcher
circuits are implemented using 45nm PTM transistor models [104]. Because of the relatively small input
capacitance of the matcher circuit (~0.2 pf), in comparison with the BL capacitance (~22pf), the matcher
has a negligible effect on the operation of the sense amplifiers.We find that, after the row activation and when
the BL voltage is at a safe level to read, the result of the matcher is ready after less than 1 ns. To validate
correct operation of links in Type-2, we use our DRAM circuit model to simulate transfer of data between
local row buffers of two adjacent subarrays. In both simulations, the initial charge of the cell is varied across
different values to consider the effect of DRAM cell charge variations. Even in the worst case, the matcher
and the link between two subarrays cause no bit flips or distortions.

Energy, Area, and Latency Modeling. We estimate the power and latency overhead of each Sieve

component using FreePDK45 [105]. Further, we use OpenRAM[106] to model and synthesize the SRAM
buffer in Type-1. We use scaling factors from Stillmaker, et al. [107] to scale down results to the 22nm
technology node, and use the planar DRAM area model proposed by Park, et al. [108] to estimate area
overhead.

Modeling Sieve. We assume a pipelined implementation of Sieve, where the host (CPU) performs
pre-processing (k-mer generation, driver invocation, and PCle transfer) and post-processing (accumulation of
response payloads for genome sequence classification), while Sieve is responsible for k-mer matching. Our
analysis confirms that the latency of this pipeline is limited by k-mer processing on Sieve. In particular,
k-mer matching on Sieve is either comparable to (for Type-3) or slower than (for Types-1/2) both pre- and
post-processing steps on the CPU, so the CPU is always able to send enough k-mer requests to Sieve to keep

it fully utilized.
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We model the pre- and post-processing steps using the baseline CPU described in Table 3.1. We treat the
classification step as a separate pipeline by itself, as (1) the algorithm differs for each application, and (2) it
is independent of k-mer matching, which is the primary focus of this work. Thus, we forgo modeling the
effort required for genome classification and other post k-mer processing. For modeling the k-mer matching
itself, we use a trace-driven, in-house simulator with a custom DRAMSim2-based front-end. The simulator
also models PCle communication overhead, using standard PCle parameters [109]. We use a Micron DDR4
chip (DDR4_4Gb_8B_x16) as the building block for Sieve. DRAM parameters are extracted from the same
datasheet and modified to account for the estimated latency and energy overhead of matchers, ETM, column

finder, and segment finder.

3.5 Results

3.5.1 Energy, Latency, and Area Estimation

Energy Evaluation. Table 3.3 summarizes the dynamic energy and static power of each Sieve component.
Type-3 incurs additional power consumption for each DRAM row activation. However, using formula 10a
from Micron’s technical documentation [97], we find that Sieve consumes only 6% more energy for each row
activation than a regular DRAM, because the area and the load of the extra transistors we introduce is so
small compared to the sense amplifier and the bitline drivers. We further break down this energy overhead to
understand the effect of the different Sieve components. We find that the Matcher Array (MA) and the ETM
dominate the energy consumption, capturing 78.9% and 15.8% of the 6% energy overhead incurred by Sieve,
with the energy spent by the Segment Finder and the Column Finder being negligible (less than 5%). Type-1
adds no overhead on top of the regular DRAM row activation because no modification is made to the row
buffer, and it is less energy-intensive than Type-2/3.

Latency Evaluation. Table 3.3 shows the latency of each Sieve component. For Type-1, we assume
that (1) accessing the SRAM buffer and the Query Register can be overlapped entirely with a column read
command (~15 ns) that retrieves a batch of reference bits, and (2) although the pattern matching and register
checking are on the critical path, they add negligible overhead (~0.5 ns) to the DRAM row cycle (~50 ns).
For Type-2/3, each ETM segment (256 OR gates) meets the timing requirement of completing its operation
within one DRAM row cycle. Further, since the segment and column finders are composed of simple shifters,
their latency of operation is well within one DRAM cycle (0.625 ns).

Area Evaluation. To estimate area the overhead of Sieve, we use the model proposed by Park et al. [108].

We adopt the DRAM sense amplifier layout described by Song, et al. [110] and a patent from Micron [111]
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Table 3.3: Sieve Components Energy and Latency Analysis

Component Dynamic Static Power Latency
Energy (pJ) (uW) (ns)
(T1) 64-bit MA 0.867 1.4592 0.353
(T1) QR, SkBR, StBR 1.92 5.28 0.154
(T1) SRAM Buffer 5.12 4.445 0.177
(T2/3) 8192-bit MA 181.683 0.289 0.535
(T2/3) ETM Segment 73.5 56.185 43.653
(T2/3) Segment Finder 2.44 0.294 0.362
(T2/3) Column Finder 20.69 28.16 0.152

for a conventional 4F2 DRAM layout. The short side and long side of the sense amplifier are 6F and 90F,
respectively. In Type-2/3, for the accommodation of the matcher, ETM, segment, and column finder circuits
in the local row buffer, we add 340F in total on the long side of the local sense amplifiers. For Type-2, an
extra 60F in long side is added to each sense amplifier for considering the area overhead of the links between

the subarrays.

The area overheads for Type-2 with 1, 64, and 128 compute buffers (CB) are 1.03%, 6.3% and 10.75%, for
an 8-bank DRAM chip. In Type-3, each local sense amplifier is enhanced with k-mer matching logic, and for
enabling subarray parallelism, a row-address latch is added to each subarray [12], resulting in 10.90% area
overhead. For Type-1, all components are added to the center strip of our DRAM model. The SRAM buffer
of 8 Kbits (128 Rows X 64 Bits) and matching circuit in each bank increase the area by 2.4% and 0.08%,

individually.

3.5.2 Kernel Performance Improvement

Comparison Against Row-major In-Situ Accelerators. We simulate an ideal row-major baseline which
mimics prior proposals [87, 88, 91] (Row_Major in Figure 3.11), and an improved row-major accelerator based
on ComputeDRAM [93]. We measure their speedup over the CPU baseline. We also implement Sieve without
ETM (Col-major).

We make the following assumptions for the Row-major, ComputeDRAM-based, and Col-major accelerators.
First, their latency for locating and transferring payloads is assumed to be similar to that of Sieve. Second,
both architectures are configured to be the same capacity with the same subarray-level parallelism. Third,
they share the same indexing scheme. Fourth, we assume that ComputeDRAM has a much shorter Triple-row
Activation latency due to the fact that it issues memory commands in rapid succession.

Figure 3.11 shows the results from this experiment. The convention for the workloads on the X-axis is

kernel.query.size. The kernel is either Kraken2 or CLARK, the query files are listed in Table 3.2, the sizes are
4GB, 8GB, and NCBI Bacterial reference (6.24GB). We make the following observations.
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First, row-major perform similarly to column-major without ETM (slightly worse), but for different
reasons. Column-major must activate all the rows that store k-mer data (64 rows if k=32). Row-major and
ComputeDRAM stop when it finds a hit, but requires ~10X more writes to set up the comparison, as each
query k-mer must be replicated across the length of the row. Second, ComputeDRAM is able to outperform
both the row-major and column-major (without ETM) approaches, owing to its fast triple-row activation.
Third, the column-major approach used in Sieve allows it to benefit from our ETM strategy (that provides
an additional speedup of 5.2X to 7.2X), in contrast to both row-major and ComputeDRAM designs that
lack such an opportunity. We conclude that the chief contribution of column-major layout is therefore 1) in
enabling ETM and 2) in amortizing the setup cost across a pattern group of 64 writes. The row-major design
performs slightly worse than Type-3 without ETM because, in the event of a k-mer mismatch, both designs
on average open roughly the same number of rows (62 8192-bit rows), but the row-major design stops when
it finds a hit. We note that, from our evaluation, real sequence datasets are typically characterized by low
k-mer hit rates (around 1%), thus favoring Sieve designs.

Leveraging ComputeDRAM to build a column-major k-mer matching accelerator entails solving many
challenges. If we populate the query section with the same query, we will need 128 x64 write commands per
query (630X more than Sieve). Populating the query section with different queries brings more challenges.
For example, there could be more than one match, impacting our ability to design an efficient indexing
scheme. We note that addressing these challenges while maintaining the performance, efficiency, and cost
benefits of these approaches is the subject of future work.

Improvement Over CPU. Figure 3.12 shows the average speedup and energy savings. All results are
normalized to CPU measurement. In this experiment, we constrain the memory capacity of all designs to
32 GB. For Type-2, we consider all possible numbers of compute buffers per bank and select the midpoint
of 16 (T2.16CB). We present the performance of other Type-2 configurations in Section 3.5.2. For Type-3,
we choose the best performer, which supports 8 concurrently working subarrays (T3.8SA). While clearly
more energy-efficient, Type-1 offers limited speedup (1.01X to 3.8X) for 8 out of 9 benchmarks, showing that
for many workloads, there is significant additional performance potential that can be tapped via an in-situ
approach. However, we also point out that Type-1 is likely to outperform CPU/GPU as its memory capacity
grows (more banks thus more parallelism and bandwidth), while the similar memory-capacity-proportional
performance scaling is hard to achieve in a non-PIM traditional architecture [17], due to the memory wall.
Type-3 designs offer a speedup and an energy savings of as much as 404.48X and 55.89X respectively, over
the CPU baseline. Note that this is in comparison to a Type-2 design that offers a speedup of 55.49X and an
energy reduction of 28.11X over the CPU baseline, clearly showcasing the substantial benefits that can be

realized by exploiting finer-grained parallelism at the subarray-level. We also find that Sieve is sensitive to
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Figure 3.13: Comparison with GPU baseline.

the characteristics of the application. For example, the C.MT.BG benchmark performs worse than C.ST.BG
benchmark as the number of k-mer matches for C.MT.BG is 3.28X higher than C.ST.BG benchmark, resulting
in more row activations, increasing the overall query turnaround time and energy. Furthermore, our early
termination mechanism interrupts row activations as soon as we detect a mismatch, minimizing the overall

turnaround time and energy consumption for workloads with fewer k-mer matches.

Improvement Over GPU. Figure 3.13 shows the speedup and energy savings of various Sieve designs
(32 GB) over the GPU baselines. Type-1 is 3X to 5X slower than the GPU but more energy efficient, and
Type-2 is only modestly faster (2.59x to 9.43x). However, as the memory capacity of Sieve and dataset size
increase, Type-1/2 are likely to outperform the GPU unless GPU memory capacity scales as fast, because all

reference datasets can fit onto Sieve, avoiding the repetitive data transfer from host memory to GPU board.
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Type-3 dramatically outperforms the GPU, because it leverages subarray-level parallelism. Type-3 offers

speedups of 33.13X-55.0X and energy savings of 83.77X-141.15x.

Effect of Increased DRAM Bandwidth. Simply increasing bandwidth to DRAM in the CPU and
GPU baselines is not sufficient to address the performance bottleneck in k-mer matching, because we find
that it is not bottlenecked by bandwidth. While it is memory-intensive (high percentage of loads in the
ROB), memory bandwidth is underutilized because each MSHR, is unable to serve multiple loads and the
available MSHRs are quickly depleted, stalling subsequent loads in the ROB and preventing the bandwidth
from being fully saturated. Even if we overprovision those Broadwell cores with enough MSHRs to sustain all
outstanding memory accesses, and all loads are served concurrently with a memory latency of 40 ns to reach
the same level of throughput as Type-3, the workstation has to be equipped with over 215 cores, not only
resulting in a substantial increase in power consumption, but a considerable wastage in DRAM bandwidth as
only a small portion of the retrieved cache line is useful. cuCLARK is highly optimized, so we suspect that
GPUs are constrained by similar bottlenecks as CPUs, although we have not yet pinpointed the exact set of

microarchitectural structures.

3.5.3 Sensitivity Analysis

Number of Subarrays per Bank. We analyze the impact of subarray-level parallelism on performance and
energy by comparing various Type-3 design configurations (see Figure 3.14) at different memory capacities
and number of subarrays per bank. The results are averaged across all benchmarks. Supporting all subarrays
performing k-mer matching simultaneously without increasing the area overhead significantly is not yet
feasible, due to power delivery constraints. However, for this experiment, we assume this is not an issue.
In any case, although Sieve’s k-mer matching throughput increases with more concurrent subarrays, the
speedup plateaus after 8 subarrays—probably because most bank-access conflicts can be resolved by a small

number of subarrays [12].
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Number of Compute Buffers. We explore the performance-area tradeoff of Type-2 designs, by varying
the number of compute buffers (shown in Figure 3.15). For reference, we include Type-1 (the left-most bar
T1) and Type-3 (the right-most bar T3.1SA) designs without subarray-level parallelism. The middle eight
bars represent Type-2 with 1-128 compute buffers per bank. We make the following observations. First,
Type-2 with one compute buffer is faster than Type-1 (1.39X to 1.94X) but not by a large margin. For each
row activation, in the worst case, Type-1 has to burst read 128 batches to the matchers, which is similar
to T2.1CB where the opened row needs to "hop” across 128 subarrays to reach the compute buffer. Since
the hop delay (~4ns) is faster than a burst latency (tCCD: 5~7ns), and both design are equipped with
some forms of ETM, T2.1CB is likely to spend less time on data movement than Type-1 in the average
case. However, the chain activation of sense amplifiers in Type-2, which relays the row to the compute
buffer, consumes significant energy, making Type-2 with sparse compute buffers less energy efficient. Second,
generally speaking, increasing the number of compute buffers per bank also increases the speed and energy
efficiency of Type-2. As we have explained previously, adding more compute buffers reduces the activation of
sense amplifiers, which in turn reduces the delay and energy consumption. Third, the area overhead scales
with the number of compute buffers per bank. Finally, the speedup and energy reduction of T2.128CB slightly
trails behind those of T3.1SA, because T2.128CB still requires one hop per row activation. However, Type-3
also has a higher area overhead than T2.128CB for enabling subarray-level parallelism.

ETM. To simulate the adversarial case where every query k-mer has a match, we turn ETM off in
Type-2/3, and measure the speedup and energy reduction over CPU/GPU baselines (averaged across all
benchmarks). Type-2/3 without ETM are still 1.34x-155.37x faster and 4.15x—36.17x more energy efficient
than CPU, and 1.3X-9.54X faster and 6.60X-18.43X more energy efficient than GPU.

PClIe Overhead. We use PCle 4.0 x16 in our simulation. Overall, PCle adds 4.6% to 6.7% communication
overhead to the ideal case where k-mer matching requests are dispatched to the destination bank/subarray as

soon as they arrive, and returned to the host when they complete.

3.6 Related Works

In this section we discuss previous work that shares similar interests concerning Sieve. The concept of PIM
dates back to the 70s [112]. Since then, there have been many proposals integrating heavy logic into 2D
planar DRAM dies [113, , , , ]. These early efforts largely remain at their inception stage due
to the challenges of fabricating logic using the DRAM process. Recently, the 3D-stacked technology, which
takes a more practical approach by placing a separate logic die underneath the DRAM dies, revitalizes the

interests in PIM research. To fully exploit the benefit of 3D-stacked architectures, many domain specific
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Figure 3.15: The effect of varying the number of compute buffers. T = Type, #CB = number of
compute buffers.

accelerators for graph processing [17, 48], pointer chasing [118], and data analytics [50] have been proposed.

We plan to evaluate Sieve in 3D-stacked context as future work.

Non-DRAM-based In-situ Accelerators. NVM- and SRAM-based in-situ accelerators such as
Pinatubo [119] and Compute Caches [120] have been proposed, but we choose DRAM for its maturity and
availability, which can lead to quicker development and deployment cycles. Furthermore, SRAM generally
has a lower capacity than that of DRAM, a smaller number of subarrays, and shorter row buffers. We plan

to evaluate NVM-based Sieve in future work.

PIM-based Genomics Accelerators. Recently, PIM has been explored for several algorithm-specific
PIM architectures for genomics. For example, GenCache [34] modifies commodity SRAM cache with algorithm-
specific operators, achieving energy reduction and speedup for DNA sequence aligners. Medal [385] leverages
commodity Load-Reduced Dual-Inline Memory Module (LRDIMM) and augments its data buffers with
custom logic to exploit additional bandwidth and parallelism for DNA seeding. Radar [36] provides a high
scalability solution for BLAST by mapping seeding and seed-extension onto dense 3D non-volatile memory.
However, these efforts are not ideal for k-mer matching. GenCache has hardwired logic in SRAM to compute
Shifted Hamming Distance and Myer’s Levenshtein Distance, which are not used for k-mer matching. Medal
is highly optimized for FM-index based DNA seeding, which relies on different data structures (suffix arrays,

accumulative count arrays, occurrence arrays) than those in k-mer matching (associative data structures such
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as dictionaries). Radar binds seed-extension, a stage irrelevant to k-mer matching, with seeding to maximize
speedup.

PIM-based Genomics Accelerators. PIM has been explored for several algorithm-specific architectures
for genomics. For example, GenCache [34] is an SRAM-based accelerator for DNA sequence alignment.
Medal [35] augments the data buffers of commodity DIMM to exploit additional bandwidth and parallelism
for DNA seeding. Radar [30] provides a high-scalability solution for BLAST by mapping seeding and
seed-extension onto dense 3D NVM. These efforts rely on domain-specific knowledge to achieve maximal

speedup for specific algorithms that are not applicable to k-mer matching, but are complementary to Sieve.

3.7 conclusions

In this work, we identify k-mer matching as a bottleneck stage in many genomics pipelines, due to its
memory-intensive nature. We propose Sieve, a set of DRAM-based in-memory architectures to accelerate
k-mer matching, by storing reference k-mer patterns along the bitlines and enhancing row buffers with a
minimal set of Boolean logic for k-mer matching. We optimize Sieve with an Early Termination Mechanism.
Type-1 offers limited benefit over CPUs and GPUs. Type-2 offers extensive speedups over CPUs (3.74x to
76.62x) but only modest benefit over GPUs (1.33x to 12.97x). Type-3 offers compelling benefits over both,
with speedups and energy savings over the CPU of as much as 389.49X and 93.97X respectively; and 6.05x
and 68.74x over the GPU.



Chapter 4

DRAM-CAM: General-Purpose

Bit-Serial Exact Pattern Matching

4.1 Introduction

Exact pattern matching is a widely used computation kernel. A common software implementation is a
lookup or hash table, but large data sets do not fit into the last-level cache (LLC) and exhibit poor locality.
Furthermore, the computation per pattern lookup is also too small to mask the high memory-access latency,
resulting in frequent processor stalls [53], making the task memory-bound. An alternative is a coarse-grained
index that fits in the LLC, in which a key is mapped to a bucket of potential matches, with linear or binary
search within a bucket. However, our prior results [53] show poor temporal locality in which buckets are
accessed.

To address these limitations, data-centric architectures leveraging content addressable memory (CAM)
have been proposed [121, ]. This paper describes how to implement CAM functionalities inside DRAM,
which offers several advantages over non-volatile memory (NVM) and SRAM alternatives. Even a highly
compact 3T3R PCM NV-CAM cell is over 3X larger than a DRAM cell, and SRAM is much less dense and
more power-hungry.

The proposed architecture, DRAM-CAM, is built on Sieve [53], a recently-proposed processing-in-memory
(PIM) key-value accelerator designed originally for massively-parallel k-mer matching (searching for short DNA
sequence patterns of size k), but more generally suitable for a variety of key-value applications. Sieve provides
an average of 326X/32X speedup and 74X /48X energy savings over multi-core-CPU/GPU baselines for

k-mer matching, using a column-wise data layout for patterns, allowing element-parallel, bit-serial matching

47
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Table 4.1: Mapping exact matching kernels onto DRAM-CAM

Benchmarkl Index ET PCI DTU CLE Input Payloads DRAM-CAM pat- | DRAM-CAM computing
| i e i

String Yes | Yes | No | No | Yes | Key file None Encrypted file Search keys in the encrypted file

Match

Histogram No Yes | Yes | Yes | No | 8-bit pixels None Image binary pixel | Aggregate hits for each pixel

values pattern

Word No Yes Yes | Yes | No Unique words None Words from text file Aggregate hits for each input

Count word

Bitcount Yes No No No | Yes | 32-bit binaries Num of set 32-bit binaries Retrieve number of set bits

bits

Apriort No No Yes | No No | Itemsets bit vec- | None 1-hot encoded trans- | Check if transactions contain an

tors actions itemset

(each bit position is checked across a large number of bitlines, i.c. data items). Sieve and SIMDRAM [123]
showed that this offers better matching throughput than a traditional, row-wise data layout. This allows
Sieve to integrate low-overhead bit-wise logic inside row buffers, coupled with subarray-level parallelism, to
simultaneously compare thousands of patterns in each row cycle without incurring expensive data movement.
Although a similar in-situ approach has been explored in prior proposals such as Ambit [38] and SIMDRAM,
their multi-row activation-based approach, which relies on charge-sharing, is more energy-intensive and
slower than the sequential single row activation and digital comparisons employed in Sieve [53], due to
the overhead of row-copy operations involved to set up operand rows in the “Bitwise” group for pattern
matching[123, 88]. Furthermore, column-wise data layout and single-row activation allow Sieve to exploit an
Early Termination Mechanism (ETM) that prevents unnecessary DRAM row activation if all columns have
encountered a mismatch. Therefore, even if the slow multi-row activation mechanism is replaced with rapid
timing-constraint-violating DRAM commands that leave multiple rows open to perform fast row-wide logic
operations, as described in ComputeDRAM [93], Sieve still performs better by a large margin due to the
benefit of ETM, which is not possible in a row-wise data mapping. Furthermore, combining ComputeDRAM
with a vertical data layout is unlikely to outperform Sieve, because of the much larger overhead of setting up

queries for the target subarrays [53].

In this paper, we add several features that enable a wider range of pattern-matching applications, including
population-count logic to count matches (in Sieve, a given k-mer will have at most one match), hardware
support for faster transposition of data into the column-wise format, and optimizations for greater parallelism.
The evaluation shows that DRAM-CAM provides up to three orders of magnitude of speedup and energy

reduction over the CPU baselines, and on average outperforms the closest PIM competitor by 3.7X.
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Figure 4.1: Population count logic.

4.2 Architecture

DRAM-CAM retains the core architectural designs of Sieve and serves as a PCl-attached accelerator with
an offload model. We introduce several hardware components and runtime optimizations pertaining to
DRAM-CAM.

Population Count Logic (PCL). A population count logic (PCL) unit returns the total number of
matches for each query. The PCL accumulates the number of ones from the row of latched bits at the subarray
level, then aggregated at the controller level for the total number of hits. In many use cases, aggregating hits
for each query accounts for nearly the entirety of the workload. Integrating PCL at the subarray level is
difficult since it needs to process a large bit vector in a timely fashion with minimal hardware overhead.

Our PCL design, shown in Fig. 4.1, works on 1024 bits by processing chunks of 64 bits. To count the 1s
in a group of 64 bits, we explore two options: lookup table (LUT) and Wallace-tree-architecture compressor
tree circuit [124]. The first level of the LUT-based PCL requires 16 four-input LUTSs that take four bits from
the latches and output the number of ones in binary. The remaining levels of this PCL are like an adder tree,
aggregating ones from all LUTs. One optimization is to insert registers between levels to form a pipelined
PCL, which reduces latency but increases area and power overhead (see Table 4.2). The compressor-tree
PCL is based on [124], which uses 57 3:2 compressors and 8 half-adders in ten cascading stages. The 3:2
compressor has the same truth table as a full adder. Each compressor processes 3 bits, outputting the number
of ones in its sum and carry bits as sum + 2 x carry.

Data Transposition Unit (DTU). If the reference patterns are reused across different executions,
transposing the data in software is a one-time cost amortized over a long period of use. However, some
workloads require input data to be transposed on the fly and written to the DRAM-CAM prior to matching,
which places the data transposition operation on the critical path. We integrate a simplified data transposition
unit (DTU) from SIMDRAM [123] into DRAM-CAM. The DRAM-CAM DTU requires only one 4KB SRAM
transposition buffer. DRAM-CAM’s DTU works at a rate of transposing one cache line worth of data (512

bits) in one cycle. We estimate that such hardware DTU is 381.3X faster than a software one (estimated
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using a modified DRAMSim?2), and adds an insignificant (<0.1%) amount of execution time. Once the CPU
with the help of a dedicated runtime environment (future work) instructs the DRAM-CAM device to load the
reference pattern sets (e.g., image data for Histogram) from disk using DMA, data first arrive at this SRAM
buffer, then transposed row by row by simple custom logic and written into DRAM-CAM using DRAM
commands.

Chip-level Parallelism (CLP). Sieve chips in a rank respond to queries in a lockstep manner due to
the shared chip select signal (CS), a design carried over from a traditional DDR, architecture. Chip-level
parallelism (CLP) can be achieved to a certain degree by providing each chip with a dedicated chip select
wire. Note this solution does not make each chip truly autonomous, because the data line (DL) still has to be
shared inside a rank due to limited high-frequency data pin count, which is prohibitively expensive to scale.
DRAM-CAM chips receive their input queries once the shared DL is available, thus only pattern matching is
parallelizable, while query input is serialized. The downside of CLP is that the number of entries in the index
table will be increased since chips need to be indexed. However, the granularity of the indexing scheme can
be adjusted if needed to keep the index within L2 capacity.

Runtime Optimizations. To leverage the parallelism of DRAM, we want to leverage as many subarrays
as possible, which reduces congestion and maximizes parallelism. DRAM-CAM starts offloading patterns by
choosing a random subarray for pattern storage, and after it is filled with subarray_width patterns, randomly
chooses the next subarray from a different channel/rank/bank for pattern placement. Further optimization is
to replicate small reference pattern sets multiple times by storing them in unused subarrays, which allows
applications to use them for greater parallelism. To support this optimization, the main changes occur in the
index table, where one additional busy bit for each entry is needed to indicate if the subarray is currently
being used or not. When a new query arrives, the index table chooses a subarray whose busy bit is 0 that
stores the same reference patterns. If all candidate subarrays are busy, we choose a random one to wait upon.
Pattern distribution (PD) offers 22% to 7.4X speedup while pattern replication (PR) offers 4X to 29.4X
speedup over an unoptimized pattern storage scheme (Fig. 4.2). PR generally offers better performance than
PD, because it allows DRAM-CAM to utilize subarray-level parallelism on top of bank-level parallelism.

Application Mapping. While some kernels map to DRAM-CAM naturally, such as String Match (SM)
and Bitcount (BC), others are not so straightforward and require algorithmic changes. Histogram (HG)
and Word Count (WC) differ most from their CPU counterparts, where the input images or text files are
transposed into DRAM-CAM prior to the matching process. Then a standardized input set such as all 8-bit
pixel patterns or unique English words are passed as input to aggregate hits. For Aprior (AP), the entire
transaction database is transcribed using one-hot encoding, with each column representing a transaction

and each row representing an item. To check if a candidate itemset is a subset of a transaction, the i*" row
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Table 4.2: Population Count Logic Characteristics

[ [ LUT no Pipeline [ LUT Pipeline [ Compressor Tree ]

Area (nm?) 201 554 148
Delay (ns) 0.76 0.34 0.84
Power (uW) 0.03 0.06 0.02

Table 4.3: Workstation Configuration

CPU Model Intel(R) Xeon(R) E5-2658 v4
L1 /L2 /L3 $ 32 KB / 256 KB / 35 MB
Main Memory | DDR4-2400MHz (32 GB/2 Chan)

corresponding to the i" 1 of the bit vector is opened. Table 4.1 shows more details of mapping each kernel
onto DRAM-CAM. One interesting discovery is that the best way to utilize ETM in natural language (e.g.,

Word Count) is to match the patterns backward, due to the significant prefix overlapping.

4.3 Evaluation

The experimental setup and evaluation methodology are identical to those of [53]. The baseline DRAM energy
is estimated by feeding memory traces to DRAMSim2, configured to match our workstation. The CPU energy
is measured using the Intel PMC-power tool, then scaled down by 30% to exclude the interference from
other system components, consistent with the methodology from DRISA [87] For application performance
modeling, we use a trace-driven, in-house simulator that has a custom DRAMSim2 as the front end. We
use the Micron DDR4 4Gb 8B x16 chip as the building block. We assume a pipelined implementation of
DRAM-CAM, where the host (CPU) performs pre-processing and post-processing, while DRAM-CAM is
responsible for pattern matching. We use Verilog to implement different versions of the population count
circuit. Then, we estimate power/area/latency using Synopsys in 90nm. Finally, we use scaling factors from
[107] to scale down results to 22nm. See the original Sieve paper [53] for more methodology details. Table 4.3
reports the CPU hardware setup. We measure the portion that can be offloaded to DRAM-CAM, which is
98.97% for String Match, 75.88% for Histogram, 92.99% for Word Count, 100% for Bitcount, and 63.00% for
Apriori. Table 4.2 summarizes performance characteristics for PCL. The compressor-based PCL has lower
area and power, while the pipelined LUT-based PCL is the fastest. We propose to fit PCL in the center strip
of each DRAM chip, and each PCL is time-shared among subarrays of a bank. This setup increases the
latency slightly. Decoupling CS signals to enable chip-level parallelism requires negligible hardware changes.
For the data transposition unit, the primary component is a 4KB SRAM buffer. We estimate its area to be
0.015 mm?, and it consumes 2.22 uW.

Exact Pattern Matching Workloads. We select the same applications from [121] (Table 4.1), minus

Vortex, which is deprecated and not open source, and Reverselndex, which does not map well to DRAM-CAM.
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String Match processes a key file of strings and a file of hashed (encrypted) strings to find which keys
occur in the encrypted file. Histogram counts frequencies of pixel values in the RGB channels of a bitmap.
Word Count generates the frequency for each word in a text file. Apriori performs associative rule mining,
building a candidate itemset, and counts itemset frequencies in a transaction database. Our results suggest
DRAM-CAM’s bit-serial nature favors workloads with shorter patterns (several hundred bits or less). The
Reverse Index is a “bad fit” because each pattern (URL links) is too long for DRAM-CAM to handle.
DRAM-CAM also favors kernels that can issue large batches of pattern search requests to fully leverage
parallelism in the DRAM hierarchy.

Performance improvement over CPU. Figure 4.2 reports the speedup and energy saving over a CPU
baseline of various DRAM-CAM configurations, including the performance of our unoptimized (UNOPT)
setup, which is closest to the original Sieve architecture while enabling these other applications, and the
benefit of three optimizations: pattern distribution (PD), pattern replication (PR), and chip-level parallelism
(CLP). For applications that need PCL, we model LUT with the pipeline. The optimizations are highly
effective when the reference pattern set is small, because it can be distributed and replicated many times to
leverage the massive internal parallelism of DRAM. Additionally, chip-level parallelism offers approximately
2.9X speedup when applicable, but it does not help when a query needs to visit all subarrays to aggregate
hits. String Match (SM) shares the most similarities with k-mer matching and benefits the most from such
an accelerator. Word Count (WC) only experiences modest speedup. In fact, UNOPT is 1.5X slower than
CPU. There are two reasons: (1) long string patterns and high match rates cause frequent and long sequences
of DRAM row openings, and (2) a large input set (reference patterns) that limits optimization potential.
This is in contrast to Apriori (AP), which also stores large reference sets and long patterns. but only opens
a few rows (<10). DRAM-CAM outperforms Bitcount (BC) on the CPU, because it stores a much larger
lookup table (32-bit vs. 8-bit patterns).

The baseline DRAM-CAM (UNOPT) tends to show the best energy efficiency because the dynamic power
consumption of DRAM-CAM depends on the number of banks that are used for pattern matching, and the
UNOPT setup uses only a small percentage (0.7% ~ 50%) of banks, resulting in up to 126.4X lower power
than the CPU baseline. There is a tradeoff between greater parallelism and higher energy. PD shows worse
energy saving than UNOPT, even though it offers better speedup, because UNOPT uses all subarrays of a
smaller set of banks, but leverages subarray-level parallelism (SALP) to its full potential, thus making up the
performance loss due to increased bank conflicts. On the other hand, PD usually utilizes fewer subarrays
from a larger set of banks, resulting in sublinear speedup w.r.t. bank count. PR usually shows better energy
saving than PD, except for the SM benchmark, by exploiting more SALP. SM has a small input set, and
PD utilizes only two banks (low power). PR offers 16X speedup, but needs 128 banks, However, HG, WC,



4.3 | Evaluation 53

\ B UNOPT E PD N PR CLP
10000 T oo T T

= UNOPT
T0000

1000 || "
. I i
SM
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and AP have larger data sets, and PD requires the same amount of banks as PR, meaning they have similar
dynamic power consumption. Since PR significantly reduces the execution time of those benchmarks, it offers
better energy efficiency for those benchmarks. Finally, CLP increases power consumption minimally, but the

performance improvement is significant, so the energy savings approach or surpass UNOPT.

Comparison to alternative PIM designs. We compare DRAM-CAM with several prior DRAM-
based in-situ proposals. Fig. 4.3 reports the results, and the performance numbers are normalized to CPU
baselines. We assume all indispensable architectural features such as population count logic are enabled for
all architectures, even though they are missing from some prior works, and all appropriate hardware and
software optimizations proposed in this work are equally applied to prior works. Ambit adopts the traditional
horizontal data layout (row-major) and triple-row-activation (TRA) based logical operation (XNOR) for
pattern matching. Compute DRAM-H reduces TRA latency by half but retains the horizontal data layout.
ComputeDRAM-V /| SIMDRAM switches to vertical data layout (column-major) with TRA. In addition to
charge-sharing based in-situ accelerators, we also simulate variations of DRISA, which combines analog bit-line
functionality with digital logic in the row-buffer. DRISA-H uses horizontal data layout while DRISA-V uses

vertical, and DRISA-V-Batch-Input is DRISA-V but utilizes Sieve-style batched queries.

TRA-based pattern matching is inherently slow, even with the modified version proposed in Comput-
eDRAM. Each row-wide comparison takes multiple DRAM cycles, whereas in-row-buffer logic takes only
one. Moreover, exact matching needs to XNOR operand rows, which requires two TRA operations. Second,
while for general-purpose computing, vertical data layout has shown better performance, for exact matching,
horizontal data layout is better because each query only needs to populate one row, whereas vertical data
layout has to populate a two-dimensional block of bits (subarray-width x query_bit_length) for each query
to support the bit-serial matching. Third, PIM generally favors short patterns over longer patterns, and this
is especially true for column-major layouts. Fourth, DRAM-CAM outperforms DRISA because it has a more
efficient way of setting up queries, plus early termination (ETM). Note also that GRIM-filter [125], an HMC
PIM for short-sequence DNA alignment, may also support exact pattern matching, an interesting direction

for future work.
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Figure 4.3: Comparison to other in-DRAM accelerators.

4.4 Conclusion

This work develops general CAM functionality inside DRAM, making it capable of accelerating a wide range

of exact pattern-matching workloads while achieving significant energy reduction over the CPU, with up to

6217X speedup and 5888X energy savings.



Chapter 5

Membrane: A PIM-based Architecture

to Accelerate Database OLAP Queries

5.1 Introduction

Online Analytic Processing (OLAP) systems are critical technologies used by enterprises to unlock the
potential of their vast enterprise databases. These systems employ analytic SQL queries to transform database
data into visual graphs on live dashboards, generate summary reports depicting the progression of key
performance indicators (KPIs) over time, and trigger alerts when KPIs deviate from the norm. In modern
enterprise settings, these analytic SQL queries often serve to convert raw data in enterprise databases, often
referred to as warehouses, for downstream machine learning (ML) pipelines.

Enterprise databases have consistently grown in size over the past five decades. Despite this growth, the
prevailing expectation remains that the underlying OLAP analytic SQL queries will continue to execute quickly
and efficiently. Historically, much of this demand has been met by the progressive doubling of performance
(both in computation and storage) of the underlying hardware, all while maintaining a near-constant cost
from one hardware generation to the next. This phenomenon, a combination of Moore’s Law and Dennard’s
scaling, has fueled this progress. However, it is now evident that this trajectory is no longer sustainable.
Indeed, Google recently showed results from profiling its hyperscalar fleet and found that BigQuery, an
analytics platform, consumed about 10% total cycles within the fleet, and proposed analytics as a candidate
for acceleration. [11]

There is a rich history of enhancing database query speed through hardware innovations. Noteworthy

instances of this approach include Oracle’s 2009 acquisition of Sun, followed by endeavors to develop database-
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specific hardware. Another example involves IBM’s acquisition of Netezza, initially intended to capitalize
on FPGA-based acceleration, a pursuit that has since been abandoned. In parallel, efforts have also been
directed towards enhancing database software to extract greater performance from underlying hardware. This
has involved rethinking fundamental mechanisms employed in analytic database engines. Notably, there was
a transition from row-store to column-stores, analogous to shifting the underlying data representation from a
row-major order to a column-major order. This shift resulted in significant performance improvements, given
that analytic queries typically access data in a primarily column-oriented fashion, such as when scanning for
records whose fields match certain criteria.

A more recent approach involves additional vertical data shredding at the bit-level using techniques like
BitWeaving [126]. This involves transforming the underlying computation into bit-level arithmetic, which can
be efficiently evaluated at the circuit level using a concept referred to as intra-cycle parallelism. For example,
when evaluating a predicate (such as “columnValue > 5%), data is fetched by the bit position. So, if the
memory system is used to fetch 8 bytes of data, what gets fetched is 8 x 8 = 64 bits of the most significant
bit (MSB) for 64 consecutive column values. These MSB bits are then compared with the MSB of the value
(5), and predicate evaluation proceeds by bit positions but bit-parallel operations like XOR and AND. In
many cases, the least significant bits (LSBs) for the column values need not be fetched, reducing the memory
fetches and the number of cycles used to evaluate the predicate on the batch of columns (64 in the example
above).

Furthermore, the importance of in-memory database organizations is growing rapidly for OLAP systems,
including in data science and business analytics settings where complex analytic queries are often performed
with a human-in-the-loop (a key driver behind the rise of DuckDB) [127]. A PIM-based approach is
especially appealing for these workloads because they are often bound by the memory system’s performance
in conventional von Neumann-style processing systems (which dominates the server landscape on which
database systems are deployed). As noted in [128], OLAP applications hit the memory wall [129], and
this problem is likely to grow over time as memory densities are likely to grow faster than memory bus
speeds (both latency and throughput impact OLAP workload performance) [130]. Furthermore, even when
the database does not fit in memory, smart methods of caching data from disk are used by the database
management system (DBMS) to keep hot data in memory. Thus the CPU-DRAM level is critical for overall
query performance [131].

Our paper explores processing-in-memory (PIM) for analytic SQL queries. Notably absent from the
existing efforts in this domain is a comprehensive consideration of both hardware options and software
implications. For instance, Ambit [38]) and SIMDRAM [123]) focus on a data layout called BitWeaving-V

(where data is stored by the bit positions), while others have considered only traditional column-major layouts,
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e.g. [132]. However, no prior work has compared the benefits of these different layouts in a comprehensive
way. Moreover, prior research (except for Castle in the SRAM domain [133]) has not thoroughly examined
end-to-end query performance across a full benchmark.

In this paper, we show that end-to-end query processing does indeed benefit from PIM and present the
following contributions:

1. We concentrate on DRAM-based PIM and explore the hardware design possibilities suitable for data
laid out in either the BitWeaving-V or the traditional columnar formats. We introduce two distinct hardware
designs: Membrane-V and Membrane-H, based on vertical or horizontal data layouts. These designs highlight
the necessity for different architectural elements based on the software approach.

2. We devise query processing mechanisms to comprehensively evaluate a popular SSB database benchmark.
Our findings indicate that while our PIM approach accelerates most segments of analytic queries, certain
parts, notably aggregation and sorting, are more effectively executed on the CPU. Consequently, we recognize
the continued significance of CPUs in analytic query processing.

3. We note that our benchmarking employs a prevalent software-based data acceleration technique
called WideTable [134], to convert intricate queries into simple, PIM-friendly scans by joining the data
upfront and storing the data in this “denormalized” form. With suitable encoding, the space overhead is
modest, approximately 18-22% in our experiments with SSB. In fact, the benefits of eliminating joins and
137,

4. Our investigation reveals that our initial Membrane-V and Membrane-H designs significantly enhance

the associated query planning overheads has led to adoption in several commercial products [135,

the performance of the most data-intensive component of analytic queries—the table-scan (i.e., filtering)
operation. However, a new bottleneck emerges: gathering the selected records for the subsequent query
processing phase. To address this need, we show the benefits of a rank-level unit (RLU) on the DRAM side
of the memory bus for gathering the results of a table scan (i.e., for early materialization).

5. Collectively, we analyze the design space encompassing V- and H-based hardware as well as software
methods for analytic query processing. Through experimentation on a large 60 GB in-memory SSB database
(Scale Factor-100), we demonstrate that our methods yield orders-of-magnitude improvements over existing
approaches. As a result, we propose a potential novel avenue for accelerating analytic queries in OLAP

systems.

5.2 Background

OLAP Basics There are two main categories of database workloads: online transaction processing (OLTP)

and online analytical processing (OLAP) [73]. These two workloads have starkly different characteristics and
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are regularly serviced by two separate database systems. Typically, new data (e.g., orders in an e-commerce
application), are first recorded in an OLTP system that uses transactions to safely record the data. Periodically,
data from the OLTP system is transferred to a read-mostly, append-only OLAP system commonly known as
a data warehouse [74]. The OLAP system—the focus of this paper—is used to analyze this historical data.

An OLAP database usually has few fact tables (often just one) and many dimension tables. Fact tables
hold transaction records, while dimension tables provide detailed information for specific columns in the fact
table records. For example, an e-commerce application may have an orders fact table with one record per
purchased item, including the customer ID as a foreign key. A separate customer dimension table would have
one record per customer, including detailed customer information and a unique customer ID as the primary
key. Other dimension tables may record more purchase details, such as product descriptions. Fact tables tend
to be large, while dimensions tables are smaller. OLAP queries often involve selecting and joining dimension
table records with fact tables and then aggregating values to produce informative results, such as a list of top
products in the last month.

Given the read-mostly and append-only nature of data warehouses, a common method to speed up query
processing is to denormalize the database schema. This technique folds information from the dimension
table(s) into the fact table so that a join is no longer needed to evaluate OLAP queries. In research, it
has already become a common requirement for software-based OLAP acceleration methods [134, , 88,

, ]. Denormalization is now emerging in multiple commercial products as well (e.g., [135, , D.
WideTable [134] is a specific, widely-used style of denormalization. Although denormalization comes at the
cost of increasing the database size, dictionary-based encoding can limit this overhead (to 18-22% in our
experiments with SSB, and generally small for a wide range of schema) [134, , , , .

OLAP queries are data-intensive, involving relatively few processor cycles per byte of input data. For
example, when a query asks for all customers in a given zip code, it may scan an entire table while only
applying a simple comparison operation on each input record. As CPU speed and memory size have increased
faster than both the memory speed and memory bus bandwidth, OLAP query evaluation in main-memory
environments (the focus of this paper) is often memory-bound [128].

OLAP is Memory Bound To demonstrate the memory-bound nature of OLAP workloads, we evaluated
hand-optimized C++ implementations of the thirteen queries in the Star Schema Benchmark (SSB) [144]
on a typical server (two Intel Xeon Platinum 8260 CPUs, each with 24 cores and 376 GiB of memory),
with scale factor 100, which corresponds to a ~60GB database. Our query implementations used explicit
SIMD instructions from the AVX-512 (512b), AVX2 (256b), and SSE (128b) instruction sets. Despite the
decreased vector width, the AVX2 and SSE implementations were not significantly slower than the reference

configuration—less than a 2% difference on average and less than 5% in any case. These results seemed to tell
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us that the CPU implementation may be bottlenecked. To inspect this bottleneck more closely, we monitored
the memory bandwidth utilization during each SSB query in the SSE configuration What we observed is
that, throughout the entire benchmark, memory bandwidth utilization was universally near the experimental
machine’s maximum memory bandwidth. Thus, these experiments demonstrate the memory-bound nature of
this database workload in two orthogonal ways: by showing that the CPU is not the performance bottleneck,
and by showing that a single core can saturate the memory interface. This further suggests that, for this

task, CPU-side hardware such as Intel’s IAA would be unlikely to improve performance.’

Materialization Strategies Each query has two key steps: Filter and Aggregate. The Filter scans the
columns required to satisfy the WHERE clause of each query and evaluates the conditions. The output of the
Filter is a bitmap that represents the rows that meet the WHERE clause’s conditions. The Aggregate takes
the bitmap produced by the Filter as input. For each set bit in the bitmap, the Aggregate retrieves the
corresponding record and performs the remaining work of the query, including any GROUP BY and ORDER BY

clauses.

Late materialization propagates the filter bitmap throughout the entire query, resulting in an aggregation
step that must perform a data retrieval operation in addition to the aggregation kernel. The traditional role
that PIM has filled in database acceleration, including prior PIM work, has been to act as a filter processor,
which relies on the CPU to perform the final fetch and aggregate query component [53, 88]. In contrast,
Early materialization performs the data retrieval at an earlier stage in the query (when evaluating Filter
steps), so the aggregation avoids this step. Depending on the query characteristics and PIM architecture,

early or late materialization may be better.

We explore the impact of varying the materialization strategy on the aggregation component of the
AVX-512 CPU baseline using the SSB benchmark. Our results are presented in Figure 5.1. We measured the
proportion of time spent on the aggregation step for each query and each materialization strategy. Figure 5.1
suggests that using PIM to accelerate only the Filter step may not be sufficient to achieve significant speedups
for some queries, such as Q3.1, which can only be accelerated by less than 25%. Therefore, we propose adding
a rank-level unit (RLU) to perform early materialization, using the bitmap produced by filtering to gather
the appropriate fields of the selected records into a contiguous block. This allows rank-level parallelism in
this gather step and also optimizes the traffic to the CPU by using the full width of the interface with useful

data, instead of requiring the memory controller to fetch scattered words.

IThe TAA’s primary benefits appear to be in decryption/decompression and offloading streaming-memory tasks from the
cores; once the data have been fetched and decrypted/decompressed, the IAA can also perform the scan/filtering on the desired
columns, and then fetch and decrypt/decompress any additional desired fields from the selected records.
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Figure 5.1: The results show how long the Aggregate step takes for each query, with early/late materialization.
Using PIM may improve the remaining time (for the Filter step).

5.3 Architecture

In this section, we present two versions of the Membrane PIM architecture. Membrane-V (Vertical)
is a bit-serial and element-parallel architecture that extends the exact pattern-matching capabilities of
Sieve [53]/DRAM-CAM-style[39] architectures to process range queries. Membrane-H (Horizontal) is an
element-serial bit-parallel architecture based on Fulcrum [132].

For Membrane-V, because records are laid out vertically (column-wise) along a bitline, the retrieval of the
selected data would require many row activations to retrieve each bitslice of the selected records. Instead
Membrane-V uses a second copy of the WideTable data that is stored elsewhere in memory and in the
traditional horizontal format along a subarray row. The memory controller first issues the filtering command
and receives the resulting bitmask, and then retrieves the data. For Membrane-H, in which the data is
already in a row-wise horizontal layout, the processing unit can gather the data items immediately as they

are selected. Section IV presents more details on the orchestration with the memory controller.

5.3.1 Membrane-V

Membrane-V performs query predicate filtering in an element-parallel but bit-serial manner. This operation
can be carried out by laying the data vertically (column-major) along the bitlines of DRAM chips. Filtering
is performed as a series of row activations, with each activation processing a given bit position (bit slice across
many bitlines, i.e., data items. To support database query filtering, only simple bit-wise relational operations

are needed. DRAM-based PIM architectures that process data bit-serially, leveraging a vertical data layout,



5.3 | Architecture 61

come in two categories: one utilizes a charge sharing (i.e., analog) triple-row-activation (TRA) operation,
which does not require additional logic at the row buffer level, and one that integrates digital logic into the
row buffer and can process data using normal DRAM single-row-activation (SRA).

Prior works such as Ambit [38], SIMDRAM [123], ComputeDRAM [93], and DRISA [37] adopt the
TRA-based approach. While the TRA-based DRAM-PIM is more area-efficient due to the lack of additional
digital logic along the width of the row boffer [38], other than the additional row decoders, it is more
energy-intensive and slower than the sequential single-row activation with digital circuits integrated at the
row buffer [53, 39]. The TRA overhead is primarily due to: (a) raising each additional wordline increases the
activation energy by 22% [38], and (b) there is an overhead of multiple row-wide copy operations to move
data operands to the PIM-capable rows [123, 88]. Furthermore, each TRA can only accomplish a bitwise
AND/OR/NOT/MAJ operation, and a series of TRA operations must be chained to support more complex
operations such as those needed for table scan [123]).

Alternatively, we can integrate bitwise digital relational logic directly into the local row buffers at the
DRAM subarray level. For example, Sieve [53] and DRAM-CAM [39] embed a matcher after each sense
amplifier for bit-serial exact pattern matching. We can extend this architecture by replacing the matcher
hardware with a one-bit comparator that can support inequality to enable table scans (Fig. 5.2).

SRA-based Membrane-V Architecture. Fig. 5.2 illustrates the overall architecture of Membrane-V,
including the vertical data layout and the circuit design to enable predicate table scans. The form factor
required to integrate Membrane-V into the host system can be flexible. Each Membrane-V chip comprises
multiple banks, similar to a commodity DRAM chip. However, within each bank, Membrane-V has an
additional layer of hierarchy called Subarray Groups.

Subarray Groups. Similar to Sieve Type-2 [53], in Membrane-V, a subset of adjacent subarrays within
a bank are connected through high-bandwidth links (isolation transistors) to form a subarray group. No
modifications are made to a subarray in Membrane-V, except the last subarray’s row buffer in each subarray
group is extended with a filter logic array, mainly consisting of a row of 1-bit comparators with auxiliary
bit-latches (described below). Subarray groups within a bank can independently scan their stored wide
table entries by sequentially activating rows of a subarray, transferring them into the last subarray’s filter
logic array using the LISA mechanism [96], and performing the bit-serial comparison between attributes of
the wide table entries (e.g., d_year) and the target values (e.g., 1994). The LISA mechanism enables the
intra-subarray-group row-wide data relay by sequentially activating the local row buffers between the source
and last subarray [53]. The latency of making one “hop” from one row buffer to the next consists of enabling
the isolation transistors (link) and the activation of the sense amplifiers, which is only 1/8 of a regular row

activation [53].



Membrane: A PIM-based Architecture to Accelerate Database OLAP Queries 62

' WT entries ' WT entries .

Membrane-V

SubArray . SubArray_0
Group 0 SIS s sl 19SS
SR Sense Amps ggggg g. ggggé%
croup1 | ] NEEEEEEE CEEERH EEEER)
SubArray sense Amps | IEEEEERIEEEERE
Group 2 : >>>>§3 >>>>§g
\ SubArray_2 oo o ¥ | oooo | =
SubArra ] . = [ IS
SN ===t | 1 100 (& 1101 ]a

Compare Compare

gttt _;—‘:;-‘ = TR

BLO r;‘ ;{f s SJ:JR;IE{:)
i

AmpU |8 | i e & (oot B
g e B o

\"{Wi‘
™
N

T =
P r P J}:ﬁffrﬂ(’{::’ésg){j 1-bit Bus

Figure 5.2: Membrane-V Architecture.

Data Layout. To support table scan in Membrane-V, we adopt a column-major bit layout similar to
that proposed in [123, 126]. The dictionary-encoded WideTable entries are thus transposed onto bitlines
for column-wise placement. Each attribute occupies consecutive bits in one column (i.e., spanning multiple
rows) in the order of MSB to LSB. Because the transmission delay of the long wordlines prevents a predicate
value bit from being dispatched to all comparators in a subarray row during one DRAM row cycle, the whole
subarray is further broken down into smaller groups of columns called pattern groups. Within each pattern
group, a block of WideTable entries is followed by a column of predicate value populated at run-time. All
pattern groups work in a lockstep manner by comparing the predicate value with WideTable entries in that
pattern group. This is somewhat similar to how a large logical subarray actually consists of smaller mats,
each with a wordline amplifier. After a row is latched into the row buffer of the last subarray through row
activation and LISA, the predicate bit is sent to all comparators within a pattern group through a 1-bit bus.

Filter Array. The crux of the Membrane-V architecture is its ability to perform a relational comparison
(e.g., =, <, >, etc.) between a block of table attributes (e.g., d_year) and a predicate value (e.g., 1994)
bit-serially. This is handled by a filter array integrated at the last subarray in each group. The filter array
consists of a row of 1-bit filter logic, which connects to a sense amplifier and a 1-bit bus for inputs. Fig.

5.2 bottom (pre-synthesized gate-level diagram is shown for clarity) shows the hardware logic of the 1-bit
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comparator that determines if one attribute stored in a bitline is smaller, equal to, or larger than the predicate
value by making a comparison at every bit position and capturing the running result in the S_bit (stop bit)
latch and R_bit (result bit) latch. Each subarray row activation delivers one attribute bit (through the sense
amplifier) and one predicate bit (through the 1-bit bus) to each filter. If after n sequential row activations,
where n is the attribute bit-length, the value of an attribute is >/</= to the predicate value, then the R_bit
latch stores 1/0/0, and the S_bit latch stores 1/1/0. The final bits stored in the R_bit latch and the S_bit latch
are transferred to the Membrane controller to produce the bitmask. To support ranged predicate filtering,
such as 1994<d_year< 1997, the Membrane-V runtime would break it down to multiple relational searches

(i.e., 1994<d_year, d_year<1997, and d_year=1997), execute them separately and aggregate the final results.

Write Broadcast. We observed that the latency of writing predicate values to the query regions of
the subarrays takes substantially more time than the actual row-activation time spent on matching the
predicate (Sec 5.5.3.) Since the predicate value bits written into each subarray are identical and are destined
to the same row and column addresses, we propose a simple optimization that broadcasts the predicate bits
simultaneously by connecting all participant subarrays’ local row buffer to the global data lines, allowing
them to accept the predicate bits at the same time. The hardware cost to the Membrane chip is negligible

because the wires and the routing for the control signals are already in place [42].

5.3.2 Membrane-H

The Membrane-H design operates on one word at a time in the row buffer with a processing element (PE) or
an ALU present at the edge of a subarray optimised to perform scan operations. The Membrane-H unit filters
the database attributes held within the row buffer and produces a bitmap, whose length is equal to the number
of attributes that can be packed into a single page or row buffer width. Since entire attributes are checked in
each row access, Membrane-H is able to pursue early materialization. While database terminology defines the
early materialization to be at the granularity of each database record, we focus on early materialization at

the granularity of a row buffer worth of records to align with the access pattern of the PIM architecture.

We couple subarray-level processing elements with a rank-level unit (RLU) to perform the gather operation
necessary to materialize the result. The RLU is placed on the DIMM module, similar to [145] and [146].
The operation of Membrane-H breaks down into a scan phase performed in parallel across subarrays that
produces a bitmap; and gather phase, performed by the RLU to gather the desired fields from the selected
records, based on the bitmap. Our early investigations revealed that a single subarray unit performing both
the phases would result in a large logic overhead and increased delay at the subarray-level. With the RLU,

we not only pipeline scan and gather, but also optimize each unit for its respective task. An advantage of the



Membrane: A PIM-based Architecture to Accelerate Database OLAP Queries

/

! | SUBARRAY
1 [
ROW 1 v _ _
DECODER ll g ] WideTable Entries
F \ § — |d_year lo_qty lo_disc
1 (m)] —
1| = —{ |d_year lo _qty lo_disc
CONTROL | COLUMN 1 8 ]
N Mux || 1 |d_year lo_qgty lo_disc
1 —
1y =
FROM :7\—
coL || | HIRRRREENEEIR
Mux.

SENSE AMPLIFIER

<

COMPARISON UNIT

4

MEMBRANE-H

~

BITMAP :1>
Register
-~

(a) Membrane-H Overall Architecture

DRAM
DRAM
DRAM
DRAM
DRAM
DRAM
DRAM
DRAM

Rank-Level Unit (RLU)

.

Programmable Core <>
DDR
| Bitmap Processing & Gather Unit l«—>| +
v RLU
| READ Queue [*“—Interface

Y
|  Cache Line Padding Unit [«

(b) Rank Level Processor

Figure 5.3: Membrane-H Architecture.

RLU is that it provides rank-level parallelism, compared to the traditional method of having the CPU or a
CPU-side accelerator such as the ITAA perform the gather.

Subarray-Level Processing Element. These elements are distributed at the subarrays next to their

respective row buffers and consist of a comparison unit to perform the predicate operation and shift logic



5.4 | System Integration 65

to feed data in the row buffer, one word at a time, to the PE. OLAP database workloads such as SSB
[144], TPC-H [147], etc. generally operate on string values and signed integers, and these can be dictionary
compressed, so the comparison unit only needs to operate on integers. A bitmap register is allocated to
hold the contents of the resultant bitmap after the predicate operation. Based on the analysis from the
SSB workload, we allocate a 32-bit bitmap register per subarray. When a query requires more than 32 bits,
it could divided into sub-queries and processed sequentially. A Control Unit associated with each PE is
responsible for orchestrating the operations and performing tasks such as iterating over attributes, updating
bitmap registers, and interfacing with the RLUs. In case of a limitation related to feeding data sequentially
off a row buffer due to mat-level barriers within the subarray, we propose to use a row of latches to store the
row buffer contents and process the data. We could avoid the large area overhead by conservatively placing
these latches for every 4 or 8 subarrays and bringing data to be processed via the LISA [96] mechanism.
Rank-Level Unit (RLU). The primary job of the RLU is to perform the gather operation and interact
with the memory controller. It consists of a small programmable core to orchestrate query execution depending
on the data layouts used within the subarrays. It also has a bitmap-gather unit where bitmaps are resolved,
and address offsets generated to perform a gather operation. These generated addresses are inserted into an
internal READ queue. The RLU also pushes the data gathered from the DIMM into the CPU. This process
of transferring data to the CPU can be achieved via a mechanism such as Data Direct I/O (DDIO) [148] that
features in most server-class Intel processors, which allows devices external to the CPU, such as network
interface cards, to push data directly into the cache [149, ]. DDIO is built on top of Direct Cache Access
(DCA) [151] that allows I/O devices to provide prefetch hints to the CPU. Several works such as [152, 153, 154]
have studied the benefits and optimization techniques related to DCA to seamlessly integrate it with the OS
stack to get better performance. These mechanisms can be leveraged in the PIM context for pushing the

data from the Membrane-H DIMM to the CPU. This is discussed further in the following section.

5.4 System Integration

Membrane’s system integration consists of two levels of abstraction. First, a small set of Membrane-specific
ISA instructions expose the PIM functionalities that can be used by a programmer. Second, logic in the
DRAM controller is used to further decompose these new ISA instructions to DRAM-specific commands for
each Membrane (V/H) architecture.

Membrane ISA. There are three main types of Membrane ISA instructions: predicate, data movement,
and configuration instructions. Predicate instructions include equality and inequality flavors and take the

predicate value, the type of predicate (e.g., equal, not equal, less than or equal, greater than or equal, between,
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etc.), and the target column to which to apply the predicate. Data movement instructions are typically used
offline by the DBMS to orchestrate loading the WideTable into the PIM. (Since generating the WideTable is
considered a fixed cost that is paid once, we decided not to add dedicated hardware to accelerate it.)

In order to maintain a reasonably user-friendly interface of the Membrane ISA instructions and to keep
the instructions’ encoding lightweight, we add eight internal column-operand names cy — ¢7 that can be
used by the PIM instructions.? Similar to existing vector-length agnostic ISAs which maintain the state of
their vector register names using Control Status Registers [155], we augment the memory controllers with
bookkeeping logic to keep track of the start address, size, layout, and bitwidth of each column operand.
Then, data movement and predicate instructions addressing a specific column operand will read these data
structures to generate addresses for the required DRAM commands.

A DBMS would utilize the Membrane instructions as follows, assuming that space has been allocated
in row-aligned blocks where each row spans all channels/banks/ranks—see below for more detail on this
issue—and virtual-to-physical mappings have been established. 1) Use data movement instructions to load the
WideTable into Membrane. This is a one-time cost for an analytics session. 2) Use configuration instructions
or a system call to map specific columns from the WideTable that are used in the query to column operands
co — ¢y by specifying the starting virtual address, size, layout, and bitwidth of the data elements. This
column setup step performs translation so that the memory controller knows the starting physical address of
the column—see below for more detail on support for virtual memory. These column setup operations are
broadcast to all memory controllers. 3) Call Membrane predicate instructions as part of the query execution
to execute the selection operators in Membrane. For example, suppose we want to filter on d_year and return
lo_date. We would set d_year’s starting address, length, bitwidth, and data layout with a configuration
instruction and map it to ¢_0, and do the same with lo_date and map it to c_1. Finally, we would execute a
predicate instruction on c¢_0 and project the masks on c_1. If the RLU is present, the projection command
is sent to the RLU. If not, the projection requires the memory controller to fetch the bitmap produced by
the predicate operation on c_0 and use it to fetch the selected items. Again, these predicate instructions are
broadcast to all memory controllers.

Virtual Memory. Modern DBMSs run on top of conventional operating systems and use the OS virtual
memory management techniques. Traditional virtual memory has considerable flexibility in mapping virtual
pages to physical frames in DRAM. But for subarray-level PIM, to maximize subarray parallelism during a
scan, data used by the DBMS should be mapped in a “breadth-first” fashion across all the subarrays being used
for PIM acceleration. Furthermore, to allow the memory controller to simply broadcast PIM commands to all

channels/ranks /banks and subarrays, rather than sending a separate command to each subarray, we need to

2When a query operates on more than 8 columns, the query is divided into sub-queries.
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ensure that for any PIM operation, all subarrays participating in that PIM operation are working on the same
row. The typical address interleaving helps with both these considerations: it spreads successive cache-lines
across channels, ranks, and banks before returning to the next column positions in a given row of a given
subarray. However, when a given row “position” is filled up across all the channels/ranks/banks, interleaving
typically moves on to the next row in the same subarray “position” across the channels/ranks/banks. This
suggests that a system performing PIM acceleration would benefit from a slight change in the interleaving
so that when one row is filled up across the channels/ranks/banks, the next row is in a different subarray.
If the PIM architecture uses subarray groups, the interleaving should prioritize subarrays with the filter
array, to avoid the overhead of the LISA data movement. Changing the interleaving in this way should not
affect performance of regular applications. It is also desirable that allocations for PIM should be in aligned
units that fill an entire row across all the channels/ranks/banks. This may require padding the end of the
WideTable with some canary values.

In Membrane, the PIM operation is driven by the memory controller in with PIM commands that operate
on one row of DRAM at a time, where a row spans all channels/ranks/banks. This means that rows not used
for PIM can be used for regular (non-PIM) data in the same or other processes.

The PIM support in the virtual memory system consists of an allocation system call for the WideTable,
with a descriptor for each column’s size. The allocator returns a descriptor with the starting virtual address
for each column, and ensures that each column is placed in a contiguous, row-aligned region of physical
memory. If a satisfactory allocation cannot be made, the allocator can return an error or move other processes’
data to free up sufficient space (this configuration choice is up to the system administrator.) The allocator
records each column’s virtual and physical starting address in a PIM mapping structure, so that when a
column is specified as part of a PIM computation (see “Membrane ISA” above), the specified starting virtual
address can be quickly mapped to a physical start address and the size can be checked. If no valid mapping
is found, a segmentation fault occurs. This mapping can be a system call or—preferably—supported at user
level with a new form of TLB for PIM, the PIM-TLB, that contains the column mappings. If the WideTable
has too many columuns to fit in the PIM-TLB, a TLB-miss will raise a PIM-TLB-fault that checks the table
in the OS.

With the RLU, gathering and packing the data is performed on the DIMM side of the memory bus and
benefits from rank-level parallelism. To simplify the task of fetching the data from the RLU, a mechanism
such as Intel’s DDIO [148] approach could be extended to allow the RLU to push data into the last-level
cache. In this way, the memory controller does not need to wait for the RLU to have a block of data ready.
DDIO involves using a descriptor table as a means of specifying physical addresses that the I/O devices

can write to within the last-level cache, thereby avoiding expensive DMA transfers. Once an I/O device
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performs a write, it is indicated to the CPU by an interrupt mechanism or polling (which would be more
appropriate for Membrane). The CPU in turn updates the descriptor table to receive the next READ request
while processing the just-read data. We extend this mechanism in the context of Membrane by provisioning
additional PIM-specific descriptor tables, allowing the RLU to push data from its memory to the CPU’s
last-level cache at preconfigured addresses. Furthermore, because multiple RLUs share the interface to the
CPU, they can pipeline their writes to the CPU and hide delays at individual RLUs, e.g. because the data

being gathered are sparse.

5.5 Evaluation

5.5.1 Power, Latency, and Area Evaluation

Energy Evaluation. Table 5.1 reports area, delay, and power of each Membrane-H (M-H) ALU and the
Membrane-V (M-V) filter logic (i.e., 1-bit comparator). The dynamic energy of entire Membrane-V filter
array is calculated as the energy of the 1-bit comparator multiplied by the subarray width, and total dynamic
energy consumption on the table scan for each query can be estimated as the number of times the filter array
is accessed multiplied by energy cost of accessing the filter array once. The total dynamic energy consumption
for Membrane-H is calculated as the ALU energy cost multiplied by the times the ALU is used for predicate
filtering plus the energy consumed by RLUs. Our RTL simulation indicates that each bitmap processing and
gathering Unit consumes 417.38 W and with presence of a programmable core, we have approximated the
overall power consumption of the RLU to 0.5 W. Membrane’s peak power usage depends on its subarray-level
parallelism as more active subarrays lead to a significant rise in static power.

Area Evaluation. To estimate the area overhead of a Membrane chip, we first obtain the area breakdown
of the DDR4 chip (Micron_8Gb_x8) that is used to build the Membrane using Cacti-3DD [156]. Each subarray
contains 512 rows, and there are 128 subarrays per bank. For Membrane-V, the logic can only fit along the
sense amplifier’s long side as indicated in [53]. We adopt a DRAM sense amplifier layout described by Song
et al. [110] and a patent from Micron [111] for a conventional 4F2 DRAM layout. The short side and long
side of the sense amplifier are 6F and 90F, respectively. We estimate 990F needs to be added on the long
side of the local sense amplifiers to fit the 1-bit comparator logic. To support the LISA mechanism, an extra
60F on the long side is added to each sense amplifier for considering the area overhead of the links between
the subarrays. For Membrane-H, since the ALU does not need to be pitch-matched to the bitline, the area
overhead is much smaller. We estimate fitting 64 additional ALUs (shared by 128 subarrays) per bank, along
with the overhead of enabling SALP and LISA, incurs only 5.26% area overhead. The Rank-level Unit incurs
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Table 5.1: Membrane Hardware Characteristics.

| [ M-H ALU (16-bit) | M-V Filter (1-bit) |

Area (um?) 301.08 11.36
Delay (ns) 0.36 0.47
Power (uW) 25.75 1.14

negligible area overhead (Table 5.1) compared to the overall chip area. Additionally, RLU would not affect
the storage density of the Membrane since it is integrated into the DIMM module. Overall, the area overhead
for Membrane-V with 1, 2, 4, 8, 16, 32, 64, and 128 filter arrays (i.e., SALP-1 — SALP-128) is 2.35%, 2.71%,
3.42%, 4.84%, 7.75%, 12.50%, 25.00%, and 46.0% respectively, and the area overhead for Membrane-H with 1,
2,4, 8,16, 32, and 64 ALUs (i.e., SALP-1 — SALP-64) is 2.02%, 2.04%, 2.07%, 2.14%, 2.28%, 2.55%, 3.10%,
and 5.26% respectively. For both Membrane-V and Membrane-H, we observe that enabling a modest amount
of subarray-level parallelism (SALP=2 or 4) achieves the best performance per watt, shown in Figure-5.7.
These results and a sensitivity study regarding the area efficiency w.r.t. subarray-level parallelism are also
shown in Figure 5.7(a) and Section 5.5.4. Additionally, introducing a row of latches to overcome the mat-level
organization within the subarray structure to store and feed data sequentially into the Membrane-H ALU
would introduce only a 1.9% area overhead to the DRAM cell-array area.

Latency Evaluation. The main latency of the filter array logic in Membrane-V is on the write broadcast
in the Membrane-V path of the row activation. However, it adds negligible overhead (~0.47 ns) compared to
the DRAM row cycle (35~50 ns). For Membrane-H, the ALU latency is also on the critical path. While
filtering on one attribute takes an insignificant amount of time (~1 ns), the total ALU latency to check all
relevant attributes in a row can add up to a similar latency as a DRAM row cycle, depending on the data
layout. Still, it is sufficiently hidden by the data materialization cost. We show more insights on the latency

breakdown of Membrane-V/H in Section 5.5.3.

5.5.2 Overall Membrane Performance

Figure 5.4 shows the overall end-to-end performance improvement of Membrane over the CPU and two other
possible PIM-based OLAP solutions (SIMDRAM [123], and RVU [157]) in log scale. We select SIMDRAM
as an alternative DRAM-based bit-serial processing technology to the Membrane-V. SIMDRAM differs
from Membrane-V with its charge-sharing (analog) triple-row-activation-based computing. The RVU is a
3D-stacked near-memory-processing solution comparable to the Membrane-H because it employs an element-
parallel but bit-serial columnar data layout. We assume all PIM architectures only accelerate the table scan
portion of the workloads. The host cooperates with the PIM using the bitmask, which can fully leverage the
CPU and PIM processing potential. We compare the Membrane integrated system with the handcrafted

optimized AVX512 C++ query implementation. Membrane-V/H and SIMDRAM are configured to be eight
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Figure 5.4: End-to-end SSB performance of various PIM techniques, compared against a hand-optimized
AVX-512 CPU baseline. Results are depicted as a speedup against the CPU baseline. Aside from Membrane-H,
which uses the RLU, all techniques are evaluated using a late materialization strategy.

channels with two ranks per channel using Micron’s DDR4_8Gb_x8 DRAM chip as the building block. For
the RVU, we assume 16 HMCs (configuration in Table. 5.1) connected with zero communication overhead to
make up the same capacity as other architectures. We choose a moderate degree of subarray-level parallelism,
namely, four subarray groups (SALP=4) in Membrane-V and SIMDRAM]123] and four concurrently working
ALUs in Membrane-H. For Membrane-V, we also enable the write broadcast feature by assuming each write
command updates the query regions of two subarrays. For both Membrane-V and Membrane-H, we report

the performance of the row-major data layout.

First, the Membrane architecture consistently outperforms the CPU baseline in all queries. Membrane-V
and Membrane-H offer 1.26x/25.97x /5.94x and 7.20x /185.75x /45.39x
min/max/geomean speedup respectively. Second, Membrane achieves the best performance gain when
the query selectivity is high (i.e., few database records passed matched to the predicate), such as in Q1.3,
Q3.3, Q4.3. This characteristic is because Membrane can save data movement overhead by performing
an in-place table scan, significantly eliminating the overhead of fetching data into the CPU. However, for
queries with low selectivity, data retrieval for aggregation becomes the larger bottleneck. For example, Q3.1
selects the most data to aggregate; hence, the portion of the workload that benefits from Membrane-V’s late

materialization is limited. Third, Membrane-H almost doubles the performance of Membrane-V because H
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Figure 5.5: Membrane-V SSB query breakdown.

works well with the RLU and thus provides densely packed data for the host to consume, saving the cost of
processing the bitmask and return trips from the CPU to memory for data retrieval.

Compared to SIMDRAM, Membrane-V is, on average (geomean) 34% faster. We notice that while
SIMDRAM is 15% faster than Membrane-V to set up the predicate due to its ability to leverage the DRAM
burst write feature better; it suffers performance loss in the actual predicate scan. Each triple-row activation
is 6.8X slower than a single-row activation, and additionally, SIMDRAM spends 3X more operations at
each bit location than Membrane-V. Compared to RVU, Membrane-H is, on average (geomean) 72% faster.
While both RVU and Membrane-H scans horizontally laid out data, RVU has a much smaller throughput
because of the narrow row buffer in HMC compared to 2D planar DRAM banks. Each row activation allows
the Membrane to process more database records than RVU. Additionally, the computing logic of RVU is
integrated at the logic layer; therefore, it is limited to DRAM bank-level parallelism, contrary to Membrane,
which further exploits subarray-level parallelism.

The energy reduction (not shown in a figure) is highly correlated to the execution time of the query.
Both Membrane-V and H versions achieve the best energy reduction for Q1.3 and the least for Q3.1.
Specifically, Membrane-V offers a min/max/geomean of 2.01x/48.09x /10.05x energy reduction, while H
offers a 8.46x/456.73x /71.40x energy reduction.

5.5.3 Membrane Performance Breakdown

Figures 5.5 and 5.6 show the execution time breakdown for both Membrane architectures (using the same

configuration that is used in Figure 5.4). In the case of Membrane-V, write broadcast is enabled. Figure 5.6
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also shows the effect of three different data layouts, namely, row-major, hybrid, and columnar, on Membrane-H.
We make several key observations. First, the actual time spent activating rows for table scans (Filter) is
relatively low for both Membrane-V and H. Membrane-V’s execution cycles are mostly spent on populating
the subarray query regions. Each query, i.e., predicate value, must be written vertically along the bitlines.
The predicate values are several hundreds of bitlines apart, which is a highly inefficient way to access the
DRAM. Furthermore, the write latency associated with setting up the queries in Membrane-V cannot be
sufficiently reduced by the subarray-level parallelism because column commands within a bank must be
served serially unless the write-broadcast hardware design is enabled (Figure. 5.7(b)). Membrane-V favors
queries that filter on fewer attributes or attributes with low cardinality. Membrane-H spends roughly the
same amount of cycles on row activation and processing the latched bits in the local row buffer using the
ALU, regardless of the data layout. A key aspect of Membrane-H is the benefit of the RLU in performing
data retrieval at a rank-level. The increased parallelism and bandwidth available with RLU helps in reducing

the data retrieval time by 2.66x across the benchmark. More in-depth analysis of the effect of data layout on

Membrane-H’s performance is in Section 5.5.4.

5.5.4 Sensitivity Study
Effect of Data Layout

Figure 5.6 illustrates how different data layouts affect the performance of the Membrane-H architectures.
The row-major layout activates the same number of rows across different queries because each row activation
brings a whole row of complete database records to filter, and all database records must be checked. The
hybrid layout is a combination of row-major and column-major layouts. Only rows containing attributes
used in the table scans are activated in the hybrid and columnar layout. The performance of the columnar
and hybrid data layouts improves as fewer attributes are scanned. The hybrid data layout improves the
row activation time (Row-Act bars in Figure. 5.6) of eight queries by 1.4x and five queries by 2.6x. The
columnar data layout improves the row activation time of three queries by 1.4x, seven queries by 1.9x, and
three queries by 2.7x.

The hybrid data layout favors queries that scan attributes concentrated in a few subarray rows. We spent
considerable time trying to find the optimal hybrid layout using the Louvain method for community detection
[158]. The data layout choice also affects the latency spent on the ALU. The amount of time the ALU spends
on each activated row depends on how many attributes in that row are participating in the table scan.

We observed marginal differences in performance between different data layouts across the query suite.

The hybrid approach demonstrates that in the presence of prior knowledge related to the queries to be
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Figure 5.6: Membrane-H time to materialize each SSB query, by layout. For each query, the data layout with
the shortest time to materialize each query is labeled above.
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Figure 5.7: Effect of subarray-level parallelism on area, geometric mean query power consumption, and
performance.

executed, the data layout could be optimized for better performance. However, this is highly dependent on
data schema and the queries being run themselves. 5.6 demonstrates the empirical results observed from our

experiments with the data layout modifications on SSB.

Subarray-level Parallelism

Effect on Power and Area. Figure.5.7(a) illustrates the area (X-axis) and power (Y-axis) overhead that is
associated with subarray-level parallelism (SALP). Note the area and power overhead of the Membrane-H RLU
(integrated on the DIMM) are not included in the analysis since it is not affected by subarray-level parallelism.
Membrane-H chip stays low in area overhead even if we aggressively increase the potential subarray-level

parallelism. The ALU logic does not need to be pitch-matched to the sense amplifiers (Section.5.5.1),
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unlike Membrane-V. For low SALP values, such as SALP=2 and 4, Membrane-V and H have a similar area
overhead (~2%). The geometric mean power consumption difference of Membrane-V and Membrane-H is
small regardless of the SALP values, but both grow rapidly with higher SALP values. The peak power
consumption associated with SALP=128 incurs over 60% overhead compared to SALP=1.

Effect on Performance. Figure 5.7(b) shows the geometric mean performance breakdown of query
processing with varying degrees of SALP. Increasing the SALP 1) reduces the overhead of inter-subarray data
movement (LISA) incurred by copying rows from non-PIM subarrays to the PIM-enabled subarrays, and 2)
overlaps multiple row activations that go to the same bank but different subarray groups/ALUs. Doubling
subarray-level parallelism adds 10% to 15% additional performance for Membrane-H and Membrane-V w/o
write-broadcast optimization. The subarray-level parallelism is most beneficial when the write broadcast
mechanism in Membrane-V is enabled, significantly reducing the predicate value setup time in Membrane-V.
However, the benefit of subarray-level parallelism plateaus after SALP=4 (without Membrane-V broadcasting)
or SALP=8 (with Membrane-V broadcasting) for both Membrane-V and Membrane-H for several reasons.
First, bank-level access conflicts can be eliminated with a moderate number of concurrently working subarrays.
Second, subarray-level parallelism can only parallelize the row activation of retrieving data from different
subarrays. However, for Membrane-H, the column commands are still performed serially. Finally, the data set
is not large enough to saturate the capacity of the Membrane device. From the above analysis, we conclude

that SALP=4 balances the performance and overhead the best for both Membrane-V /H.

5.6 Related Works

Prior works in the database field such as BitWeaving [126] exploited the “intra-cycle” /bit-level parallelism
of processors to accelerate the scan and filtering kernels. SIMD-scan [159] aimed to perform the same by
utilizing on-chip vector processing units with SSE instructions. The BitWeaving-V /H flavors inspired this
work to perform a similar PIM design-space exploration with Membrane-V/H, although Membrane-H uses
the traditional columnar database layout using a row-major placement in the DRAM.

Processing In Storage Solutions. With database machines [160], there were attempts in the 1970s
and 1980s to push query computation closer to where the data resided — at that time, spinning disks.
This shows that database processing was important enough to warrant specialized hardware even 40-50
years ago. However, these efforts were abandoned as the resulting custom storage package was expensive
to manufacture and commodity microprocessors were seeing exponential growth in performance. In the
end, database machines were unable to match the price and performance trajectory of traditional servers.

However, with the slowing of Moore’s Law, there is a need to revisit ideas for specialization in today’s context.
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Pinatubo [119] and SmartSSD [161] are examples of other works that have proposed pushing query processing
into the storage device. These designs, however, are limited by the storage I/O interface and suffer from

higher latency and lower degrees of parallelism.

DR AM-Based PIM Designs. As mentioned previously, several prior works such as Ambit [38] and
SIMDRAM [123] propose a triple-row activation design to perform logical operations at the subarray-level
that could be leveraged for processing OLAP queries, but these approaches require multiple row activations
per bit-level operation. JAFFAR [162] is a DIMM-level design that focuses on the scan operation by operating
on the I/O buffer present on each DIMM. Although it gains by reducing data that travels over the memory
bus, the amount of parallelism available in the I/O buffer is limited. The Reconfigurable Vector Unit [157]
proposes to implement vector processing units at a vault-level in an HMC design. Our approach would extend
to an HMC or HBM memory architecture but provides strong results even with more the more commoditized
DIMM architecture. Most of these solutions do not evaluate end-to-end query processing pipelines or explore
optimization techniques such as data layouts within the memory. Polynesia [163] is another work that aims
to accelerate the analytical portion of HTAP database workloads using vault-level processing elements on a
3D stacked DRAM design. Membrane differs significantly from [163] in that it thoroughly explores the design

space at the subarray-level.

Alternative Architectures. Prior works such as [164] accelerated the filtering step on the GPU but
omitted the data-retrieval portion, which we have shown will often consume a large portion of query processing
time. Crystal [165] was another recent work to accelerate analytical queries on the GPU. Ibex [166] and
[167] implemented query processing on FPGAs. However, GPUs and FPGAs are limited by PCle bandwidth,
which is lower than typical memory-bus bandwidths. They also suffer from the limited scalability of onboard
memory compared to the main memory addressable by the CPU. Papaphilippou and Luk [168] provides a
comprehensive survey of works investigating acceleration of database systems using FPGAs and arrives at

similar conclusions.

GPUs should be compatible with the Membrane approach. CPUs, discrete GPUs, and similar processing
units can utilize Membrane PIM memory for scans and transfer intermediate results efficiently to CPUs or
GPUs for further operations. Note, however, that Nvidia’s A100 GPU thermal design power is 5.2/4.3x larger
than Membrane-V/-H peak power points with SALP=128, respectively. For the scan operation, Membrane
V/H outperformed Nvidia’s A100 GPU by 3.3 x /8.5x for SSB. We further tested potential peak scan
throughput of a P100 GPU not bounded by memory bandwidth. We populated the L1 cache with a vector of
required length and tested the Scan operation implemented using [169]. We found that Membrane-H would

still outperform by 3.73x even compared to this idealized, L1-resident baseline.
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5.7 Conclusion and Future Work

Our proposed PIM architecture, Membrane-V/H is shown to have a geomean end-to-end speedup of
5.94x/45.39x over a highly optimized reference CPU codebase implementing the SSB Benchmark while
achieving an energy reduction of 10.00x/70.77x. Membrane-V/H are also evaluated to have a speedup of
90.26x/359.21x over a state-of-the-art analytical database engine—DuckDB [170]—while having an area
overhead of 3.42%/2.07%. We have conducted a detailed design space analysis of not only the PIM architecture
but also describe the system integration and end-to-end performance. Membrane demonstrates the potential
of subarray-level processing-in-memory architectures to accelerate analytics-based OLAP workloads, and
shows the value of PIM for accelerating table scans. This work also shows the value of the H layout with
early materialization using Rank-level Units (RLUs) to perform data-retrieval related gather operations.
The growing memory wall, combined with rapid growth in data volumes, motivate processing-in memory

architectures such as Membrane to accelerate data-intensive workloads such as OLAP queries.



Chapter 6

DRAM-BitSIMD: Exploring the
Design Tradeoffs and Opportunities in

DRAM-based Bit-Serial Vector

Computing

6.1 Introduction

For applications with large datasets and low computational intensity (ops/byte), today’s computer systems
are bottlenecked by memory access bandwidth [171, 13]. These observations have motivated periodic attempts
over the past several decades to place computational capabilities inside the DRAM, e.g. [172, , , ]
More recently, the slowdown in Moore’s Law and the vast difference in data bandwidth accessible to the
processor compared to that inside the DRAM has motivated a renewed look at DRAM processing in memory

(PIM).

One research direction has been to leverage the bit-level parallelism available in the local row buffers in
each subarray. A typical DRAM access reads an entire row of 4K—8K bits from the selected subarray in each
chip, multiplied by the number of chips in a rank (typically 4-8). Implementing some computation capability

bit position enables massive bulk bitwise parallelism. This approach is often called in-situ PIM.

77
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The design space for in-situ PIM architectures involves jointly optimizing the capabilities of the per-bit
digital logic while imposing minimal overheads in area and power to leverage best the massive parallelism

offered by the subarray. The goal of this work is to explore this complex design space.

The bit-serial vector computing paradigm allows massive bitwise data-level parallelism to be realized by
laying out data in a vertical column-major fashion. This means that operating on an entire word requires
a series of bit-serial steps. Prior work on bit-serial computing in DRAM leverages charge sharing on the
bitlines, in which two or more operand rows are activated, and the charge sharing performs a simple Boolean
computation [34, 36, 33, 38]. This analog approach is sometimes called processing using memory (PUM).
While bit-serial computing requires a series of DRAM row activations, each row activation can operate on an
entire row’s worth of bits. These bit slices are 4-8K bits per chip, multiplied by the number of chips in the
rank, enabling massive parallelism that dwarfs the small number of steps required to complete a full-word
(e.g., 32-bit) computation. In addition, up to one-half of the subarrays in each bank and in each chip can be
activated simultaneously.! With 32-64 subarrays per bank, subarray-level parallelism (SALP) substantially
increases the computing throughput, although activating several subarrays simultaneously requires more

power than traditional DRAM chips and system interfaces are designed to support.

If applications can indeed benefit from such high degrees of parallelism, new PIM-enabled memory
products support higher power draw. Until then, we envision that the in-situ PIM design space broadly
divides into two markets—“memory-first” and “accelerator-first” PIM. Memory-first designs focus on adding
PIM features with minimal area/power overhead so that the resulting product fits in existing memory-system
design constraints and has minimal impact on memory capacity. This limits subarray-level parallelism
(SALP) and other PIM features. Moreover, memory-first designs require supporting PIM computation while
simultaneously satisfying conventional memory accesses, entailing important system design considerations.
First, the memory allocator must ensure that physically contiguous memory regions are always available for
PIM computations, potentially necessitating periodic defragmentation. Second, although address interleaving
is somewhat configurable in most modern systems, individual 8- or 16-bit chunks in a cache line are typically
spread across the chips in a rank of DRAM, allowing for efficient retrieval of cache lines, but this means
that a memory-first deployment with a conventional row-major data-layout cannot assume that the bytes
of an individual word are even in the same DRAM chip.? For vertical data layouts, this may require that
data transposition is implemented on the DRAM module or in the memory controller, which can fetch the

bytes from the appropriate locations and then transpose, reuniting the bytes of a word into a single column

IThe limitation of one-half comes from the way that sense amplifiers (SAs) are typically laid out for pitch-matching purposes;
for more detail, see Section 6.2.
2Even adjacent bits may not be physically adjacent in the SAs; see Section 6.2.
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within the subarray. Further, note that successive cache lines from a physical memory page are spread across
channels and could also be spread across ranks and banks.

Accelerator-first PIM seeks to design the best data-parallel accelerator and uses DRAM as an implemen-
tation technology to achieve this without the constraints of the traditional memory interface. Data in an
accelerator-first architecture can still be read and written by the processor, for example, via CXL [16], but
data capacity and host read/write bandwidth would be lower and device power higher than what a traditional
memory interface supports. For example, in this paper, we explore the degree of SALP. For purposes of this
paper, we assume such an accelerator would be deployed as a separate accelerator board attached to the PCle
bus, very much like a discrete GPU. This allows it to draw much considerably more power, even as much as a
GPU. Our exploration shows that the accelerator-first approach can outperform state-of-the-art GPUs by 5X
for memory-bound data-parallel tasks, with much lower power and, thus, much better energy efficiency.

In addition to the deployment models, the complexity of the bit-serial logic embedded into the DRAM
itself is another key axis we explore in this work, as it has important performance implications. First, we
explore the number of bit registers that could be accommodated within the bit-serial logic to avoid a “register
spilling” effect, where extra row accesses are needed to store intermediate results. Second, we explore various
configurations of a bit-serial logic unit (BLSU) that differ in the number and types of operations they can
support, offering interesting power-performance-area tradeoffs. In particular, we explore: 1) A NAND-only
version as the minimum logic complete design, 2) A MAJ3 + NOT design as a digital point of comparison to
charge-sharing triple row activation, 3) An XNOR + AND + SEL design that performs search and conditional
update primitives of Associative Processing, and 4) A much more capable design adding XOR/OR.

We also observe that a sequence of logic operations on local registers in the BSLU can operate at a
higher frequency than subarray reads/writes. Logic operations are limited by the latency of propagating
control signals to all columns, modeled as tC'CD, a timing parameter describing the latency between two
DRAM column commands. This can be 5-10x faster than a regular row access cycle involving row activation
and precharge. This decoupled execution model is unique to digital in-situ PIM solutions and infeasible for
charge-sharing based solutions which tie the PIM computation to row access and is another novel contribution
over prior bit-serial PIM approaches such as Micron’s IMI architecture [18].

The main contributions of this paper are therefore:

e Our paper explores the design space for digital bit-serial in-situ techniques across several key axes,
including deployment models (memory-first vs. accelerator first), bit-serial logic complexity (simple vs.
complex operation sets and number of bit-serial registers) and evaluates the relevant power-performance-
area tradeoffs of the various designs in a detailed technical evaluation that compares against CPU,

GPU, and analog PUM (using SIMDRAM [34]) baselines.
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Figure 6.1: Bit-serial addition (a + b = s) example.

e Our exploration also evaluates the programmability aspect of in-DRAM bit-serial computing with
the help of a lightweight but comprehensive bit-serial ISA that includes memory row read and write,
bit-serial logic operations, and depending upon the design configuration, may support one or more
local bit registers, as well as register manipulation operations such as move and set. This allows us to
support 30+ high-level operations, including arithmetic (integer and floating-point), logical, relational,
etc., implemented using a microcode approach.

e We also propose a rank-level processing unit (RLU), which serves two purposes. First, it acts as a
controller to issue commands to the DRAM to run a PIM computation kernel. Second, the RLU can
access memory in a conventional way, thus enabling it to support any tasks that require cross-column
data access, allowing it to implement tasks such as reductions, shifts, and transpositions. The RLU
avoids the need to implement them in the memory controller.

e We also describe the system integration of various bit-serial designs with the host system, including
interaction with the memory controller, integration into the address space, mechanisms for the host CPU
to launch compute kernels and retrieve results, and support for concurrent utilization of PIM-enabled

memory between different PIM-enabled processes as well as between PIM- and non-PIM processes.

6.2 Background

Bit-Serial Computing. Figure 6.1 illustrates the bit-serial addition of two 3-bit words. The result

is computed sequentially from its LSB to MSB, and each bit position is computed by applying three logic
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Figure 6.2: In-situ bit-serial computing in DRAM.

operations. This particular example leverages two additional registers, namely cr and pr, for storing carry and
intermediary bits respectively. Other arithmetic, relational, and logical operations can be synthesized similarly
by executing different logical steps at each bit position. While traditional (i.e., bit-parallel) computing can
compute results in one shot, bit-serial computing can outperform it by simultaneously operating on a large
vector.

In-DRAM Bit-Serial Computing. Bit-serial computing in DRAM involves operating on the values
either (1) on the bitlines, with the result bit captured by the sense amplifier, in the case of analog PIM, or
(2) in the local row buffer, in the case of digital PIM, with the operand(s) coming from either/both the local
row buffer and/or a designated one-bit register, and the result either written back to the local row buffer
or written to a designated bit register (or two registers, in the case of arithmetic, where a carry bit is also
needed).

Prior work [37, 18, 34, 36, 33, 38] has demonstrated the benefits of leveraging a vertical data layout to
perform massively parallel bit-serial SIMD-style processing. The key idea is to treat each bitline as a vector
lane and align the source and destination data elements vertically on top of each other, as shown in Figure 6.2.
A series of subarray row activations perform the computation sequentially at each bit position. The vertical
layout allows each activation to access a bit slice across a row of vector elements (i.e., bitlines or vector lanes).
Two additional advantages of the vertical layout are that it enables arbitrary bit access within the operands
(e.g., left or right shifting within each word is cheap) and it supports flexible operand size, without having a
word spread across multiple chips.

Limitations of Analog Approaches. Many prior architectures leverage DRAM’s analog property by

connecting three DRAM rows to the sense amplifiers, AKA triple-row-activation (TRA), to force charge-
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sharing at the row buffer, equivalent to performing a row-wide bitwise logical operation. More complex
operations, such as arithmetic, can be synthesized as a sequence of logical operations. However, analog-based
bit-serial DRAM computing has the disadvantages of high latency and energy overhead [12, 39]. First,
sustaining the activation of each additional wordline has been shown to require 22% more energy [33]. Second,
there is a substantial latency in setting up operand rows in a designated compute region (a group of 16
DRAM rows with an additional row decoder) and copying the result row back to the regular data storage
region in the DRAM subarrays. Moving operand rows to and from a dedicated compute region is needed
for analog in-DRAM computing because (1) charge-sharing destroys the values in the original rows, and (2)
selecting three arbitrary rows to activate requires a large row decoder [33].

Design Space of Digital Bit-Serial PIM. An alternative approach is integrating digital logic to each
sense amplifier [18]. In this case, the sense amplifier and 1-bit compute logic are pitch-matched, and an
arbitrary operand row can be selected and latched into the local row buffer for subsequent computing. For a
single 8-Gbit DDR4 chip (8 banks/chip) with 16K bitlines per bank, there would be 128K 1-bit processing
elements. The degree of hardware parallelism can be further increased with subarray-level parallelism,
although the degree of SALP is limited by power delivery. Digital bit-serial processing significantly reduces
the latency and energy spent on the intra-subarray data movement and only requires traditional, single-row
activation. There is a design space to be explored by varying the capability of the integrated bit-serial logic
to get different power, latency, area, and performance profiles while achieving varying degrees of flexibility,
versatility, and programmability. This work highlights key design considerations and discusses the tradeoffs
of different bit-serial PIM designs for massively data-parallel computing.

Bit-Serial Computing Performance. To illustrate the performance potential of an in-DRAM bit-serial
architecture, we provide a simple back-of-the-envelope calculation below. In-DRAM bit-serial computing relies
on cycling through operand rows for processing. For integer addition (a + b = ¢), a performance-optimized
design (Section 6.6.1) requires two DRAM reads (fetch ith bits of a and b into row buffer logic) and one DRAM
write (writeback ith bit of ¢ to DRAM row) at each bit position. One DRAM row cycle takes a minimum of
~ 40 ns (tRAS + tRP). Therefore, adding two 64-bit integers requires a total of 64 x 3 x 40 = 7,680 ns. In
contrast, a modest CPU core clocked at 2.5GHz can perform a 64-bit integer addition in one cycle (0.4 ns),
which is 19, 200 times faster.

However, DRAM bit-serial PIM is optimized for throughput. To break even with the CPU’s performance
on a vector operation, the PIM only needs to achieve 19,200-way parallelism xn cores to beat an n-core
CPU—for example, the PIM would need to achieve 614,400-way parallelism to beat a 32-core CPU. A DDR4
8Gib_x4 chip has 16, 384 bitlines (i.e., vector lanes) per subarray, and a rank of such chips can process 262, 144

bits in a SIMD manner, outperforming the CPU by a factor of 81x. This means that even without SALP,
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PIM’s performance advantage over the CPU is large enough to accommodate the additional overheads in
end-to-end execution, such as data transposition and the cost to launch a PIM computation and return the
result to the CPU. Moreover, multiple DRAM subarrays can operate in parallel due to the rank-, bank-, and
even subarray-level parallelism, achieving the effect of an extremely large vector machine. For example, a 256
GB bit-serial processing enabled DRAM system (16 ranks of 8Gib chips without subarray-level parallelism)
can sustain a 16,777,216 bits/DRAM row cycle peak processing rate, translating to 2.2 x 1012 64-bit integer
addition per second. That means a total of 9,166 aforementioned CPU cores are needed to achieve the same

level of parallelism.

6.3 Related Work

Charge Sharing Based Solutions. A key direction for DRAM in-situ PIM solutions is based on
charge sharing, which activates multiple rows simultaneously and performs a simple Boolean operation on
them. This approach minimizes DRAM circuit modification and area overhead. Examples include Ambit [33],
bit-serial addition [37], SIMDRAM [34], DRISA [30], and ELP2IM [38]. However, charge-sharing-based
solutions still require row decoder modification to activate multiple rows and often need dual-contact cells to
achieve the NOT functionality. ComputeDRAM [35] demonstrates the possibility of multi-row activation
with unmodified DRAM by intentionally violating DRAM command timing constraints, but it also requires
storing the negation of all data due to the lack of NOT functionality. It works with some current-day
DRAM products, but not all. These solutions often require multiple row copies, both because multi-row
activation can destroy the original row contents, and to place the operands into special rows designated
for computation. Furthermore, the reliability of charge-sharing-based solutions can be impacted by process
variations [176, 38, 34]. The PIPF-DRAM work demonstrates that bit-serial operations can be done based on
precharge-free DRAM (PF-DRAM) [177, 178]. The main idea of this architecture is to activate multiple rows
consecutively rather than simultaneously, and the charge sharing happens among a sequence of activations.
However, this solution faces the same challenges as other charge-sharing-based solutions: a limited set of
supported operations and the need for extra row copies.

Other Digital Bit-Serial Solutions. Micron’s In-Memory Intelligence (IMI) [18] demonstrates the
potential of attaching bit-serial logic to SAs, even though it was ultimately not brought to market. DRISA-
1T1C-mixed solution attaches XNOR/NOT gates to SA as a complement of charge-sharing based AND/OR.
The exploration undertaken in this work significantly expands the scope of these works by considering a
more complete and versatile microcode ISA with bit registers and proposing novel performance optimizations

through decoupled execution of memory access and bit-serial operations.
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Associative Processing Solutions. Associative processing is a bit-serial technique based on search
and update operations. The search only requires comparison, and the update writes new values based on a
bitmask (typically produced by the comparison). This approach can leverage content addressable memory
(CAM) and lookup-table (LUT) PIM features. CAPE [179], pLUTo [180] and LAcc [181] are examples of
this style. However, arithmetic beyond simple integer add/subtract can be expensive, and prior work has
not implemented a floating-point. Sieve [12] and DRAM-CAM [39] are designed for accelerating pattern
matching with vertical data layout, with pop count peripheral circuits for result reduction, but lack generality

to support other types of computation.

PIM with Bit-Parallel Processing Units. Several proposed architectures place processing units that
can operate on full words in one step, at subarray, bank, or rank level, without modifying the subarray itself,
such as BLIMP-V [182]. Fulcrum [132] is an in-situ solution for 3D-stacked memories such as HBM and
implements scalar, bit-parallel processing units at the edge of each pair of subarrays. However, it requires
three local row buffers to hold the operand rows and the destination row, and support for left/right shift.
An advantage of a fully featured processing unit is that they are not limited to data-parallel operations;
for example, they can support conditionals, reductions, etc. However, they require changing the address

interleaving, thus affecting regular memory transactions.

Commercial products such as AiM [183] and Aquabolt [184] introduce low-cost multiplication and addition
units to accelerate specific deep-learning tasks. However, such solutions lack flexibility and cannot exploit the

massive subarray parallelism.

PIM Compiler Support. Devic et al. [182] introduce a compilation framework based on LLVM [185]
for the BLIMP PIM architecture, which features a bank-level design incorporating a general-purpose RISC-V
processor. They assume that the host CPU would stall until the PIM application completes execution. Vadibel,
et al. [186] develop a compiler framework that employs polyhedral optimization techniques [187]. Wang, et
al. [188] focus on a PIM compilation framework based on the TensorFlow model. Both impose restrictions on
the underlying data representation, limiting applications to matrix operations. The techniques described in
this work, in contrast, impose no such constraints. Hadidi, et al. [189] implement a compilation framework
for instruction-based PIM offloading, where individual instructions are offloaded for PIM processing. They
identify instructions beneficial for PIM execution during compile-time. In contrast, our accelerator-first

approach adopts a kernel-based offload model.
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6.4 Design Space Exploration

The design space of in-situ bit-serial PIM architectures is characterized by several key parameters, including
deployment models, power and area constraints, hardware design limitations, programmability aspects, and
performance considerations. This section examines each of these in detail and enumerates potential design

options.

6.4.1 Deployment Models

Memory-First Deployment. In the memory-first model, area overhead and memory capacity becomes
key consideration as we seek to integrate PIM features into conventional DRAM designs. We also need to
split memory space for regular usage and PIM computation and consider system integration details such as
virtual /physical addresses and memory paging. Thus, the PIM computation capability can be installed in
a few subarrays of the DRAM at most, so that area and power overhead are small. In our evaluation, we
explore configurations that fit within an area/power overhead budget of 5% or less, and discuss potential
system integration solutions in Section 6.6.

Accelerator-First Deployment. In this model, the PIM computation capability can be installed in a
large portion of subarrays, providing us with the flexibility to explore designs that offer varying degrees of
subarray-level parallelism (SALP). Although the chip organization such as channels, ranks, and banks can be
adjusted or enlarged as a stand-alone accelerator, we follow the traditional DRAM organization for simpler
analysis. The area overhead of bit-serial logic introduces tradeoffs of performance and capacity given fixed
chip area. Because sense amplifiers (SAs) are shared by two adjacent subarrays, up to 50% subarrays can be
activated simultaneously and perform PIM computation, while the rest subarrays can be used for storing

data or supporting another PIM context in a time-sharing manner.

6.4.2 Complexity of the Bit-Serial Logic

The level of complexity of the bit-serial logic not only affects programmability but has important performance
considerations. First, keeping the bit-serial logic simple implies that the number of bit-serial operations
required to realize high-level arithmetic and logic operations would increase. Second, and more importantly,
it could impact the number of row accesses required for storing intermediate results. Note that row accesses
are more costly than logic operations as each memory-row read or write takes a full row activation and
precharge cycle, typically 30-50 ns. On the other hand, bit-serial logic operations that only use the value in
the local row buffer and local registers can operate faster, at a cycle time determined by the control signal

propagation latency across all columns, which is modeled as tCCD, i.e., the delay between consecutive column
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Figure 6.3: Bit-serial logic unit design space.

commands, typically 5-10X faster than a row access cycle, so performance is largely dominated by row access.
The running time of a bit-serial program is the sum of the execution time of all row accesses and bit-serial
operations in this program. This measurement is slightly pessimistic because some bit-serial operations can

potentially overlap with row accesses with proper control sequence or pipelining technique.

We explore the design space of bit-serial logic units (BSLU) based on 1T1C DRAM architecture. In a
PIM-enabled subarray, each column has a BSLU pitch-matched and attached to the SA. With vertical data
layout, a row read operation can read a bit slice from the memory array to the local row buffer, and a row
write operation can write all bits stored in the local row buffer to a specific bit slice—i.e., row—in the memory
array. All the BSLUs operate in a lockstep, SIMD style. Figure 6.3 shows the model of a BSLU, where row
accesses can be abstracted as 1-bit I/O, and SA can be considered as a 1-bit register. The design space of the
bit-serial logic then includes (a) the number of bit registers and (b) the set of bit-serial operations. Since row
accesses largely dominate performance, the goal of designing the logic within BSLU is to reduce the number

of row accesses at a low area cost.

Number of Bit Registers

Introducing one or more additional bit registers can reduce the number of row accesses by leveraging
computation locality within BSLU and avoiding the “register spilling” effect. At the same time, more bit
registers require more area and register addressing logic. We analyze how different numbers of bit registers

affect bit-serial computing as follows.
0-Reg: Ignored due to incapability of performing two-operand Boolean operations.

1-Reg: With one additional bit register besides SA, the BSLU can perform two-operand Boolean
operations. With a logic complete set of bit-serial operations, the BSLU can compute complex tasks. But the

performance is limited due to the need of storing all temporary values in memory rows.



6.4 | Design Space Exploration 87

2-Reg: By adding one more bit register, the BSLU can store a temporary bit value locally which can
significantly reduce the number of row accesses, such as the carry bit during integer addition. In addition,
the BSLU can support three-operand operations such as conditional selection (SEL).

3-Reg: Adding three bit registers provides more room to store temporary values during complex tasks
such as integer multiplication and floating-point arithmetic. Although all BSLUs operate in SIMD style,
complex tasks often require column-specific operations based on a condition. For example, for integer vector
multiplication A x B = Prod, we may read out a bit slice of A, and use it as a condition to determine in
which columns we need to shift and add B to Prod. Thus, there is a need to have three bit registers to store
the second operand, the carry bit, and the condition bit, shown as R1/CR/PR in Figure 6.3. This is our
preferred architecture.

N-Reg: More efficiency can be gained with additional registers, but the logic overhead becomes difficult

to pitch-match.

Set of Bit-Serial Operations

Due to hardware cost, a BSLU can only support a small set of native bit-serial logic operations. We study
the following representative set of bit-serial operations and analyze performance and area trade-offs. More
bit-serial operations result in better performance but higher hardware costs.

NAND-only — Minimal Logic Complete Design: This BSLU supports a single universal NAND
operation which is logic-complete. It requires the 1-Reg architecture (i.e., the SA plus one bit-register).

MAJ/NOT — Digital Version of Triple Row Activation: This BSLU supports three-input majority
(MAJ3) and NOT operations. The MAJ3 operation implements the same computation steps as triple row
activation analog PIM by serially reading in three bit operands and computing the majority. NOT is for logic
completeness. This BSLU uses 2-Reg.

XNOR/AND/SEL — Associative Processing Style: This BSLU supports XNOR, AND and SEL
operations. The XNOR operation can check the equality of two bits. Combined with AND, this BSLU can
serially match memory data with specific input patterns bit by bit, and use the AND operation to determine
if all bits are exactly matched. The SEL operation is for supporting conditional write, so the BSLU can
operate in an associative processing style using search + update primitives. This BSLU uses 2-Reg.

NOT/AND/OR/XOR/SEL — A General Purpose Setup: We consider this set of Boolean
operations as a good balance point between hardware cost and general-purpose computation functionality
and performance. The BSLU can use 2-Reg or 3-Reg. The latter is much more efficient for floating-point and

integer multiplication. This is our preferred bit-serial ISA.
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Figure 6.4: DRAM-BitSIMD architecture.

6.5 DRAM-BitSIMD Architecture

The high-level DRAM-BitSIMD architecture we use to evaluate the design tradeoffs discussed above is shown

as Figure 6.4. It consists of the following components.

Subarray-Level Bit-Serial Logic Unit (BSLU). This is the bit-serial processing element per subarray
column. It includes logic circuit to perform various bit-serial operations, bit registers, and register addressing
logic. In PIM computing mode, within each subarray, BSLUs associated with each column are operated in

lockstep.

The bit-serial ISA of each BSLU variant includes a unique set of bit-serial logic operations described in

Section 6.4.2, common register move/set operations, and regular memory row read/write.

Bank-Level Bit-Serial Control Logic (BSCL). At the bank level, there is a BSCL module for decoding
bit-serial micro-ops and sending control signals to all BSLUs within the bank. For memory read/write
operations, the control logic decodes the row index and sends the signals for reading a memory row to the SA
or writing the SA to a memory row. For bit-serial logic operations, the decoder decodes opcode and source
and destination registers, then sends control signals to the BSLUs to perform the computation. The control

logic also updates its PC for fetching next bit-serial micro-ops. The BSCL has a small instruction buffer
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to store the program. If the program is too large for the buffer, the computing task must be broken into
multiple compute kernels.

Rank-Level Processing Unit (RLU). The RLU is a microprocessor that sits on the DIMM and
can send commands to each chip and bank, and thus can perform cross-column computation that the
subarray-level BSLU does not support, such as reductions. The RLU is also responsible for translating the
RISC-V instructions into low-level bit-serial microprograms, using a lookup table indexed by the RISC-V

opcode. The subarray row indices in instruction encoding need to be updated based on actual row allocation.

6.6 System Integration

This section describes the software and hardware features that enable interaction with the host system. In
this work, we adopt a kernel offloading model, where programmers manually partition the workload to ease
the system integration effort. For now, we manually program the PIM kernels; we envision that in the future,
a vectorizing compiler with #pragma pim commands could replace much of that effort and that, eventually,
the pragma would not be required. We adopt this simplified approach to the programming aspect because

this work is focused on architectural exploration and tradeoff analysis.

6.6.1 Programming and Compiling
Bit-Serial Microcode

Because the bit-serial architecture uses only a small number of elementary logic elements, writing the
microprogram for a bit-serial operation benefits from logic synthesis tools, which can identify the sequence of
operations using these hardware elements and any intermediate values. Figure 6.5 demonstrates how to map
a high-level computation task to a NAND-only bit-serial microprogram. Given a task (a) for 1-bit addition, a
NAND-only circuit (b) is created by synthesis tools, then the circuit is converted into a bit-serial NAND
sequence with temporary variables (c¢). Depending on the architecture’s actual number of bit registers, some
temporary variables may be spilled to rows with extra reads and writes. Compiler backend techniques such

as instruction scheduling and register allocation can help to reduce the number of temporary rows.

High Level Operations

We implement a rich set of high-level operations, compatible with a typical vector instruction set, as shown
in Table 6.1, including bitwise logical, integer arithmetic, integer relational, floating-point arithmetic, and

other supporting operations. With the decoupled row access and bit-serial operation execution, we collect
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(a) Computation Task: 1-Bit Addition
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(b) NAND-only Circuit for 1-Bit Full Adder

(c) Bit-Serial Program

Figure 6.5: Bit-serial programming process for 1-bit addition on the NAND-only architecture.

the number of row read, row write, and logic operations separately in the table from a functional simulator

for measuring performance. Note that the bit-serial microprograms can likely be optimized further, and the

architecture can potentially support more data types and operations.

Table 6.1: Cycle Count for n-bit High-Level Operations on DRAM-BitSIMD 3-Reg Design

[ Category [ Operation [ Complexity] #Read [ #Write | #Logic [ #R/W/L [ Description
int32 not Linear n n n 32 /32/ 32 dstzo = —sre
Logical int32 and,or,xor Linear 2n n 2n 64 /32 / 64 dstza = srcl &, |, ® src2
int32 Linear 2n n 3n 64 / 32 / 96 dstza =
nand,nor,xnor —(srcl &, |, @ sre2)
int32 add,sub Linear 2n n 3n+1 64 /32 /97 dstzs = srcl+, —src2
int32 abs Linear n+1 n 4n+2 33 /32 /130 dstza = abs(src)
Arithmetic| int32 min,max Linear 4n+1 n+1 4n+3 129 / 33 / 131 dstzo =
min, mazx(srcl, src2)
uint32 mul Quadratic ~ 1.9n% ~n ~ 3.5n2 1940 / 1095 / | prodes = srcl * src2
3606
uint32 div,rem Quadratic ~ 3n? ~ 1.7n2 ~ 4n? 3168 / 1712 / | quozz,remsz = srcl/src2
4257
uint32,int32 Linear 2n 1 2n+2 64 /1 /66 dst; = srcl >, < src2
Relational | gt,lt
int32 eq Linear 2n 1 3n+2 64 /1 /98 dst) = srcl == src2
fp32 add,sub Quadratic ~ 1.3n2 ~ 0.7n2 ~ 1.6n2 1331 / 685 / | dst = srcl4, —src2
FP 1687
fp32 mul Quadratic ~ 1.8n? ~n? ~ 3n? 1852 / 1000 / | dst = srcl * src2
3054
fp32 div Quadratic | ~ 2.7n2 ~ 1.4n? ~ 4n? 2744 / 1458 / | dst = srcl / sre2
4187
uint32 copy Linear n n 0 32/32/0 dstsa = src
uint32 search Linear n 1 3n+2 31/1/98 dst) = src == pattern
Misc int32 if_else Linear 2n+1 n 2n 65 /32 /64 dstzp = condy ? srcl : src2
int32 ReLU Linear n+1 n n+1 33 /32 /33 dstze = src>07 src: 0
uint32 bitcount Log- ~4n ~3n ~ 114 /90 / 218 dstg = bitcount(src)
Linear 1.3nlogn
uint32 Log- ~ ~ ~ 326 / 192 / 299 dstzo = srcl <, > src2
var_l,rshift Linear 2nlogn 1.2nlogn 2nlogn

Integer Arithmetic, Relational, and Logic Operations. Figure 6.6 shows the microprograms for

integer addition and subtraction. They minimize subarray row accesses to just reading out each bit of the

two operands and writing back the results by taking advantage of the bit registers (CR/PR) and complex

bit-serial operations (XOR/SEL) in the 2-Reg or 3-Reg model. Integer relational operations are implemented
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int add(aA, B, S): int sub(A, B, S):

set CR, O set CR, O

for i in 0...31: for i in 0...31:
read A + 1 read A + i
xor PR, SA, CR xor PR, SA, CR
read B + 1 read B + 1
sel CR, PR, SA, CR sel CR, PR, CR, SA
xor SA, PR, SA xor SA, PR, SA
write S + i write S + 1

Figure 6.6: Bit-serial int add/sub microprograms on DRAM-BitSIMD.

based on subtraction, with the necessary sign bit check. If not directly supported by the logic gates in the
BSLU, Boolean logic operations are implemented using a short microprogram.

The basic shift-and-add approach for integer multiplication has O(n?) complexity. We implement unsigned
integer multiplication with one level of Karatsuba recursion [190, 191], then fall back to the shift-and-add
approach. We implement the shift-and-sub approach described in [192] for division. Bit-serial addition or
subtraction can be done on two ranges of bits, i.e. row indices, without the need for shifting the data.

Floating-point Arithmetic. One of the main challenges with FP arithmetic is that mantissa alignment
and result normalization require data-value-specific shifting steps, which contradicts the principles of SIMD.
We implement the variable shifting in log-linear complexity by performing conditional shifting with 2¢ stride,
similar to the algorithms in [191].

Miscellaneous Operations. We can also effectively search for an exact pattern among data elements in
all columns by encoding the pattern as part of a bit-serial microprogram. The bit-serial ISA supports bit

population count (pop count) and variable shift in log-linear complexity.

Application Development

We assume a kernel-offloading model and envision that the kernel code can be written in two ways. If the
logic is simple, such as a single for loop with no inter-loop conditional or data dependencies, the user can
annotate the loop with a pragma, similar to the OpenMP parallel-for, and the compiler would generate
vectorized code. An LLVM auto-vectorization routine without user intervention is also possible. In this work,
we assume an expert programmer manually identifies kernels to offload and rewrites the applications using
custom macros.

Figure 6.7 shows two pseudocode snippets (some details omitted for brevity) comparing the baseline CPU
program, and the equivalent DRAM-BitSIMD accelerated code for Histogram [193]. The Histogram kernel

computes the frequency of each 8-bit R/G/B pixel pattern in an input image. The input image is a PNG file
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1 for (int i = img.start; i < img.end; i+=3) {

3 bluel[img[i]]++;
4 green[img[i+1]]++;
5 redimg[i+2]]++;
6 }
CPU Histogram Pseudocode
1 ... // make a struct rlu_arg to set up RLU kernel arguments
2 rlu_args.img = *img_slice; rlu_args.num_RLU = ALL_RLUS;

3 bitSIMD_alloc(&rlu_set, ALL_RLUS)
4 bitSIMD_launch(&rlu_set, &rlu_args, rlu_kerne=rlu_hist_kernel)
5 void rlu_hist_kernel() { // RLU kernel code

6 char gid = 0, vl = rlu_arg.img_slice.size/rlu_arg.num_RLU, bl = 8;
7 ... // make a struct rlu_res to store intermediary results

8 int blue[256]; rlu_res.blue = *blue; ... // also for green and red
9 ... // declare variables: img_v, b_v, counters, etc...

10 bitSIMD_alloc(*img_v, gid, rv, bl);

11 ... // bitsiMp_alloc for other vectors

12 bitSIMD_v1d(&img, img_v, vl, bl); // loading input image to vector
13 bitsimp_vfill(100, b_v, v1); // blue mask pattern 100100...

14 ... // 010010... for g_v, 001001... for r_v

15 for (int i = 0; i < 256; i++) { // search all 8-bit pixel patterns
16 bitSIMD_brdcst(0, res_v, vl, bl=1); // init paral search res
17 bitSIMD_brdcst(i, key_v, vl, bl=1); // init search pattern

18 bitSIMD_vxnor(res_v, key_v, img_v, v1, b1l); // parallel match
19 bitSIMD_vand(tmp_v, res_v, bm_v, vl, bl=1);

20 bitSIMD_pcl(&b_cnt, tmp_v, vl, bl=1); // accumulate blue hits
21 ... // repeat for green and red pixels

22 rfu_res.blue[i] = b_cnt;

23 }

24 }

25 bitSIMD_transfer(RLU_TO_HOST, rlu_res, ALL_RLUS)

26 for (int i = 0; i < ALL_RLUS; i++) { ... // host merges RLU results }

DRAM-BitSIMD Histogram Pseudocode

Figure 6.7: Compare CPU and DRAM-BitSIMD histogram kernel.

with interleaved blue, green, and red pixels. The key idea of implementing the Histogram in DRAM-BitSIMD
is to perform a parallel bit-serial search of each pixel pattern from 00000000 to 11111111 and accumulate hits.
The host first sets up the kernel by allocating RLUs and distributing a slice of the input image to each RLU

(lines 1 to 4). Each RLU runs the same kernel code and generates three counter arrays independently. The
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data is transferred to the host (line 25) post computation. Note no cross-RLU communication is needed. The
host handles the final data merging (line 26).

Compilation. As previously described, DRAM-BitSIMD uses two levels of ISAs for programming and
execution. The first level (Section 6.5) is the DRAM-BitSIMD bit-serial micro-ops ISA. The second level
(Section 6.6.1 and Table 6.1) consists of extensible DRAM-BitSIMD high-level operations, aka macros, that
manipulate vectors (analogous to RISC-V Vector Extensions). The DRAM-BitSIMD macros are exposed
to the programmer as API functions. Each macro is a fixed functional routine (comparable to NVIDIA
PTX) agnostic of DRAM-BitSIMD architectural details, which is implemented as a microprogram of low-level
BitSIMD ops in the BitSIMD controller at the bank level (Figure 6.4). This decouples the backend code
generation from being tied to a specific PIM architecture, leaving room for future hardware and software
improvement and providing an abstraction for application and compiler developers.

DRAM-BitSIMD kernel and host codes are compiled separately. The kernel is compiled into sequences
of high-level DRAM-BitSIMD instructions (Section 6.6.1) mixed with RLU-compatible instructions (e.g.,
RISC-V) since the kernel execution is handled by both RLU and bit-serial logic at the subarray. The compiled

kernel code is stored in the memory and fetched into the RLU instruction cache at run-time.

6.6.2 Virtual Memory and PIM-kernel Launch

Virtual Memory. Unlike prior PIM work, of which we are aware, our goal is to make BitSIMD designs
work with existing OS virtual-memory systems with as few changes as possible. Each bitSIMD_alloc command
allocates a data structure to a contiguous virtual memory region. Each data structure can be described
with a simple base and size. This does not necessarily map to a contiguous region of physical memory, as
we explain below. The allocation fails if the requested allocation is too large for the PIM-enabled memory
capacity. Large data structures cannot be allocated a single, contiguous region of physical memory (more on
this below), so if the OS cannot allocate the necessary physical-memory regions as needed the allocation also
fails. This may motivate OS support for defragmenting memory to support PIM, but that is left for future
work. To try to keep space available for PIM operation, the OS’s strategy for allocating physical memory
to non-PIM processes should try to keep blocks of space free for as long as possible. Another option is to
reserve space in systems with high utilization of PIM.

Vertical data layout requires us to allocate n rows together for n-bit words; we call this a word batch
of rows. In traditional interleaving, successive physical addresses rotate among channels, ranks, banks, etc.
but stay within a given row position until that row is filled and then move to the next row in the same

“horizontal set” of subarrays. This works well to accommodate vertical data, but SALP requires that once a
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data structure has filled a word batch of rows across a horizontal set of subarrays, the next allocation to a
word batch should be in a different subarray so that a data structure is spread across as many subarrays as
possible to maximize SALP.

We also require the ability to align operands so that operands that are part of the same kernel are mapped
in the same way to the same subarrays. This requires the OS memory allocator to understand that a group
of operands is related, which is specified by the groupID in the alloc call, as well as word batches and the
address interleaving so that once A is allocated, B and S can be allocated to a physical address at appropriate
offsets that will align with A.

To achieve these goals, the OS maintains a table mapping base addresses for PIM allocations in virtual
memory to base addresses in physical memory. Both the OS and the RLU must agree on how to partition
a data structure into chunks that fill a horizontal set of subarrays and then place successive partitions at
appropriate offsets in the physical address space so that a data structure is indeed spread across different
horizontal sets of subarrays to maximize SALP. If only some subarrays are enabled with PIM, the allocation
should ensure that data for PIM computation are only placed in PIM-enabled subarrays. This is deterministic
so that the set of allocated regions can be determined by the OS and the RLU simply from the base address
and size. These allocated regions of physical memory are pinned and marked non-cacheable. They are also
removed from the OS-free list. When the data structure is later freed or the PIM process exits, these allocated
regions are released.

This means that once a data structure is successfully allocated, CPU operations on the PIM data structure
(loading data or launching a PIM computation kernel) only need to specify the base address and size. This is
checked in the mapping table to find the physical base address, so translation and permission checking is very
low overhead.

Data allocated in PIM memory are not accessible by regular loads and stores. They may only be accessed
through translation functions that load regular data into the PIM in vertical format, retrieve a block of PIM
data and convert it back to a traditional layout. For data previously computed by the CPU and where a large
portion of the data may reside in the last-level cache, a version of these functions should exist that checks
the cache. A streaming version should also exist that bypasses the cache, reading/writing data between
traditional and PIM vertical layouts. Both require the involvement of the RLU to perform the appropriate
sequence of row accesses to fetch the vertically laid-out data.

Kernel Launch. A PIM computation kernel is invoked with the virtual base address and size for the
PIM program and the virtual base address and size for each argument. The program must be smaller than
a traditional OS page; its physical address is found using the page table. The kernel calls first invoke the

OS. The data arguments are checked in the OS PIM-mapping table, producing the physical base addresses
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for the arguments. These are passed with the structure sizes to the RLU by writing them into a descriptor
in memory, along with the specific command to be performed (loading data, kernel execution, etc.). Then
launching the kernel is performed with a jpim instruction that transfers control to the memory controllers
and stalls the CPU core. There is no communication between channels during a PIM operation, so it is
sufficient for the CPU to broadcast the jpim; the memory controllers do not need to coordinate. However,
the memory controller should not reorder memory operations across a PIM operation. Initiating the PIM
operation on the RLU only requires a 1-bit “go” signal per rank from the memory controller. The RLU
fetches the program into its instruction buffer and then begins executing. Each PIM operation is sent to one
or more bank control units. The bank control unit understands how PIM structures are mapped to a vertical
layout and how they are partitioned across subarrays so that a single PIM command can leverage SALP.
Because traditional address interleaving means PIM operations use all channels, ranks, and banks (depending
on data size), regular memory read/write (from any process, including the PIM process) must stall until the

RLU indicates the completion of a PIM program.

When the RLU signals the completion of the PIM program, which requires an additional 1-bit signal, the
memory controller transfers control back to the CPU. The jpim instruction completes when all the memory
controllers have returned. And the CPU can retrieve the results with a command to read the appropriate
data from the PIM, which the RLU services. Note that this approach means this core is not interruptible,

and a PIM kernel is atomic; it cannot be interrupted.

Memory Controllers. Prior work such as SIMDRAM [34] adds decoding and execution logic for
each PIM instruction at the memory controller (MC). However, direct PIM support in the MC may not
be optimal for scalability and backward compatibility; future PIM products with new functionalities (e.g.,
instructions) require a new MC design. In this work, the host CPU delegates the MCs to oversee the overall
DRAM-BIitSIMD kernel execution, which ensures proper execution and synchronization of the kernel among
participant RLUs. The RLUs decode and execute instructions that perform the actual DRAM-BitSIMD
operations. The DRAM-BitSIMD compatible memory controllers must support PIM and interface with the
RLU. However, this only requires a few extra signals and some modest logic to schedule memory operations,
whether PIM operations or regular read/write. In fact, a typical system contains multiple memory controllers
servicing multiple channels. Finally, we adapted a Data Transposition Unit (DTU) design from SIMDRAM
that converts input-output data from vertical to horizontal layout and vice versa if needed. We place the

DTU in the memory controller so that it has access to any data that are cached in the CPU.
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Table 6.2: Selected Benchmarks (Notation: I: integer, F: floats, *: not executable in the stock version of
SIMDRAM)

[ Benchmark [ Input-Output Dataset
VA: Vector Addition (I/F) [195] 3.3 x 10° (32 bit)
MV*: Matrix-Vector Multiply (I/F) [105] 20431 x 8192 (64 bit)
SEL: Select (I/F) [195] 1.2 x 107 (64 bit)
BS: Binary Search [195] 2.0 x 10°+1.6 x 107 (64 bit)
RED*: Reduction [107] 1.05 x 107 (64 bit)
BC: Bitcount [101] 2.88 x 10° (64 bit)
MLP*: Multi-layer Perceptron (I/F) [195] 61444 x 8192 (64 bit)
SM: String Match [193] 5 million words, 110710 keys
LR*: Linear Regression [193] 1.5 x 10° (8 bit)
HG*: Histogram [193] 4.7 x 10° (24 bit)
PCA*: Principle Component Analysis (I/F) [193] 6.5 x 107 (32-bit)
MML*: Matrix Multiply (I/F) [10J] 2 x 500 x 500 (32 bit)
KM*: Kmeans [193] 1 x 107 (32 bit) points, 20 centroids

6.7 Methodology

Workloads. We select a wide range of applications from three benchmark suites [194, , ] to
evaluate DRAM-BitSIMD’s performance. Table 6.2 list all 13 workloads and their respective input data sets.
We modify the Binary Search kernel for DRAM-BitSIMD using massively parallel brute-force matching, and
replace the Euclidean distance with Manhattan distance in Kmeans to avoid computing square roots.

CPU and GPU Baselines. Our CPU baseline is a 24-core Intel Xeon operating at 2.4 GHz with 128GB
8-channel DDR4 memory, and our GPU baseline is NVIDIA Titan V.

RTL Synthesis of BSLUs. We implement five BSLU variants in RTL and synthesize them with
Synopsys Design Compiler and a 14-nm SAED library. Area and power numbers per BSLU are collected from
the synthesis tool. We project synthesized results to DRAM by first calculating the number of transistors
by dividing the synthesized area by transistor area, where the transistor area is one-fourth of the minimum
buffer area in this library (0.0666 um?). Then we assume each transistor can be implemented on DRAM in
the area similar to a 1T1C memory cell, e.g. typically 4F2 in the unit of Fundamental-Feature Square for
scaling among technology nodes.

Area Evaluation To estimate the DRAM-BitSIMD chip area, we first use Cacti-3DD [156] to obtain the
area breakdown of the DDR4 chip (Micron-8GB_x4) that is used as the building block. We adopt a DRAM
sense amplifier layout described by Song et al. [196] and a patent from Micron [111] for a conventional 4F2
DRAM layout. As suggested in [12], the BSLU is fitted along the sense amplifier’s long side. Our RLU is a 1
GHz RISC-V core operating at 9V that consumes 4.86mm? [197].

Energy Evaluation We assume the background power of a DRAM-BitSIMD chip is always equivalent to
the peak power consumption of a DDR4 chip (worst-case assumption). We add 0.45uW for each additional
activated local row buffer to account for the subarray-level parallelism, as described in [12, 42]. We calculate

the dynamic power consumption of the subarray-level BSLU processing elements for each operation using
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parameters from our circuit-level modeling. The overall energy consumption in a DRAM-BitSIMD integrated
system also includes the power consumption of the host, estimated using the PMC-power tool [198], and
the main memory, calculated by Micron’s DRAM power calculator [97]. We estimate each RLU incurs 0.5W

additional power.

Functional and Performance Modeling. We implement an in-house simulator for functional verifica-
tion and performance modeling. Our simulator can calculate the exact number of DRAM read/write and
digital logic operations for each design configuration we explore. To model the application-level speedup, we
first vectorize selected benchmarks using a set of DRAM-BitSIMD API calls to emulate kernel execution
and then map each API function to DRAM-BitSIMD hardware resources for optimal performance. Since
DRAM-BitSIMD adopts an offloading execution pattern where the host is responsible for the resource
(DRAM-BIitSIMD compute units and memory) allocation, data transferring, and kernel launching, the
end-to-end benchmark performance is calculated by adding the host pre-/post-processing time with the
DRAM-BitSIMD kernel time. We account for the data preparation latency and energy cost by including (1)
the time of data movement between the host memory region and the PIM-eligible region before and after the
kernel execution and (2) the data transformation latency. The cost of input-output data movement is modeled

using Ramulator [199], and the data transformation cost is modeled using parameters from SIMDRAM [34].

For modeling DRAM-BitSIMD performance, we adopt the same approach as [200, 19] by building a
detailed analytical model for all DRAM-BitSIMD vector API functions that consider input characteristics
(data type, vector length, etc.) and hardware characteristics (PIM parallelism, micro/macro operation
complexity, etc.), and uses the bit-level simulator to drive the timing calculation, adding time to account for
RLU and host operations. DRAM parameters are extracted from Ramulator [199], and the logic operation
latency is extracted from our RTL circuit-level modeling. The latency and energy of PIM computing depend
primarily on row accesses and the logic complexity of the high-level operation (i.e., add, sub, FP, etc.) at
each bit position. We estimate the latency to latch a row of bits into the BSLU registers to be tRCD + tRP
(~ 30ns), and the latency to write back from BSLU registers to the memory row to be tWR + tRP (~ 30ns).
The latency for BSLU logic is conservatively clocked to match tCCD (2 ~ 5ns). We plan to open-source all

code and analytical models.

6.8 Evaluation

BSLU Area and Power. The area, dynamic power, and leakage power of each BSLU variant are shown

in Table 6.3. Area results are projected to DRAM in F? unit.
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Table 6.3: Area and Power of BSLU Variants, per 1-bit BSLU

[ BSLU [ Area [ Dynamic Power | Leakage Power |
BSLU-NAND-1Reg 508 F?2 3.95 uW 4.40 nW
BSLU-MAJ-2Reg 776 F? 6.23 uW 5.46 nW
BSLU-AP-2Reg 788 F2 7.06 uW 6.47 nW
BSLU-BitSIMD-2Reg 924 F? 6.13 ulW 6.31 nW
BSLU-BitSIMD-3Reg 1052 F? 7.07 uW 8.43 nW
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Figure 6.8: DRAM-BitSIMD-3Reg speedup and energy saving over CPU. Bars=speedup (SP); data
points=energy reduction (EN).

Insights from our Design Exploration. Figure 6.8 reports the speedup (SP) and energy reduction
(EN) of three DRAM-BitSIMD-3Reg versions with varying degrees of SALP against the CPU. The SALP
increases the area and power overhead (See Section 5.5.4) but improves performance significantly. A 4-way/16-
way /32-way SALP design incurs 3.2%/12.8%/25.7% chip area overhead. With only 3.2% area overhead,
the 4-way-SALP configuration is a candidate for a memory-first deployment. The most aggressive design
(DRAM-SALP32) outperforms the CPU baseline by 2X /425X /20X and reduces energy consumption by

3x/693x/20x (min/max/geomean) and is our best accelerator-first design.

We observe that some benchmarks are not sensitive to the increasing SALP level. For VA, MV, SEL, and
BC, the data movement between host memory regions and PIM-eligible regions dominates the execution
time (> 80%). For HG, the execution time is bounded by the rank-level data aggregation (population count
or reduction sum). We leave the exploration of optimal reduction logic placement and strategy for future
work. For RED, since all DRAM-BitSIMD variations share the same reduction logic at the rank level, there
is no performance difference across different SALP configurations. Accelerating PCA is difficult because
PCA requires all input-output vectors to be placed in the same bank due to the lack of support for massively
internal data movement across banks, limiting the parallelism potential of bit-serial techniques. We also notice
DRAM-BIitSIMD achieves comparable speedup and energy savings for floating point vs. integer computation.

Finally, energy reduction is highly correlated to the execution time.

Figure 6.8 reports the Geo-mean speedup and energy reduction over the CPU of five proposed BitSIMD
designs and SIMDRAM that only implements MAJ/NOT. The results are normalized to that of SIMDRAM,



6.8 | Evaluation 99

G-mean Speedup over CPU
Comparison. Normalized to
SIMDRAM

> PIM Architectures

Figure 6.9: BitSIMD energy savings over SIMDRAM.

and all architectures share the same SALP level of 32. Note some of the benchmarks (indicated by ‘*’) cannot
be handled by SIMDRAM due to the lack of cross-column reduction logic and floating-point implementation.
We assume an updated SIMDRAM has these features for a more fair comparison. SIMDRAM only outperforms
the NAND-based DRAM-BitSIMD, showing the performance advantage of supporting a larger set of bit-serial
operations (see Section 6.4.2). The energy advantage of digital DRAM-BitSIMD is even greater (Figure 6.10)
because the SIMDRAM TRA, and its need for more row access per compute step, incur higher peak power
and latency.

Combining Figure 6.8 with the BSLU areas in Table 6.3 also shows that the BitSIMD-2Reg and 3Reg
designs are best in terms of raw performance as well as area- and energy-efficiency. The smallest BitSIMD
technique that seems viable is AP and is a viable option if area overhead is the overriding concern. But 2-Reg
and 3-Reg provide significantly better performance per unit area. We focus on 3-Reg because it provides
1.7x higher multiplication performance even though it is slightly worse (14% BSLU area) than 2Reg in area
efficiency.

Comparison against GPU. We compare DRAM-BitSIMD designs to GPU using both the same set of
16 compute primitives (32-bit operands) from [34] (Figure 6.11 and 6.12), as well as several PrIM benchmarks
[195]. For a fair comparison, we normalize DRAM-BitSIMD’s performance to the GPU silicon area (815mm?)
and power consumption (250W), and we exclude data transfer in both cases.

Figure 6.11 and 6.12 show that DRAM-BitSIMD has better power efficiency than area efficiency compared
to GPU. DRAM-BitSIMD provides better throughput for logical, relational, and non-quadratic arithmetic
(e.g., addition/subtraction) operations than GPU but performs worse for division and multiplication, which
has quadratic complexity for bit-serial implementation. This explains the performance degradation for MV
and MLP benchmarks, which are multiplication-intensive, and good speedup and energy saving for VA,
SEL, BS, and BC workloads, dominated by pattern matching and integer ops. RED is limited by rank-level

reductions.
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Figure 6.12: BitSIMD-3Reg energy savings over GPU.

6.9 Conclusions

This paper explores the design space for subarray-level, bit-serial PIM, including the design space for
digital bit-serial logic, for both memory-first (low PIM overhead) and accelerator-first (optimized for PIM)
deployment scenarios. We also introduce a rank-level unit (RLU) as a PIM controller, offloading the memory
controller and orchestrating the PIM computation at the rank level, and the RLU also performs reductions

and other tasks that are not strictly data-parallel. We show that our best bit-serial architecture, the 3-register
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Figure 6.13: DRAM-BitSIMD 3-Reg speedup over GPU. Results are normalized to GPU silicon die area and
power.

NOT/AND/OR/XOR/SEL, outperforms the CPU by 20x, GPU by 5x, and SIMDRAM by 1.7x, and is

substantially more energy- and area-efficient.



Chapter 7

Ultra Efficient Acceleration for De
Novo Genome Assembly via

Near-Memory Computing

7.1 Introduction

Next Generation Sequencing (NGS) has revolutionized genomics due to the high volume and low cost of
sequencing [201, , , ]. A typical NGS system can generate 10TB of short DNA reads (100-300 base
pairs) in a single run [205, |. For most sequencing experiments in which a high-confidence reference genome
is known, the standard workflow is to align these reads against the appropriate reference genome [63, 65, ]

However, the reference genome is not always available, especially when analyzing unknown species, such

as a new virus or bacteria [208, , |, or meta-genome that is sequenced from diverse environmental
microbiomes [209, , ]. Even when the reference genome is available (e.g., humans), the reference
genome may be missing rare genomic variants of biomedical interest [211, , , ]. In these contexts, we

must assemble our reads de novo (without a reference genome). State-of-the-art de novo genome assemblers
use the reads to construct a de Bruijn graph (DBG) and subsequently find all maximal non-branching paths
of the DBG to produce contigs (contiguous segments of the assembled genome) [66, 71, 67, 68]. DBG-based
assemblers are both time- and memory-intensive, due to a large amount of sequence data and the explosive

number of nodes in the graph, posing significant challenges on conventional computing systems.

102
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Although most DBG-based de novo assemblers [71, 69, 70, 67, ] adopt parallel algorithms to improve
performance and scalability, they are always memory-latency bound—the memory access takes up the
most portion of execution time. Furthermore, the memory bandwidth requirement of DBG assemblers
constantly increases at a linear rate as the degree of parallelism increases, which makes DBG assembly also
memory-bandwidth bound in a parallel environment.

Accelerating DBG processing is of paramount importance for several reasons. First, DBG processing is
the de facto de novo assembler for both large (mammalian-sized) or small (e.g. E.coli) single-cell genome
analysis [214, 67, , 68, 70, 71], as well as metagenomic studies where a large (up to TBs) mixture of
bacterial, viral, and fungal microbiome genomes obtained directly from a human body or an environment
needs to be assembled [216, ]. Second, although primarily developed to assemble the 2nd gen (a.k.a. NGS)
reads, DBG processing retain its relevance as the foundation of assembling reads generated by the 3rd gen
sequencers [218, ]. Third, DBG processing is on the critical path of many time-critical genome analysis
tasks. In the emerging precision medicine domain, a patient’s sample is first sequenced on the NovaSeq
instrument in under 48 hours, producing 6 to 12 TB microbiome and human DNA/RNA data. This raw
sequence data is then passed through various stages, including the DBG assembly (~3600 CPU hours) [82].
Finally, the rate of genomes been sequenced is vastly outstripping Moore’s law [56], For example, the data
volume of unassembled bio-sequences surpasses that of astronomy, particle physics, and websites such as
YouTube and Twitter [220, 10].

Near-data processing (NDP) is an emerging memory-based approach that can provide scalable parallelism
and memory bandwidth by integrating massive cores in memory devices [10, , 17, 48, ]. In this work,
we exploit NDP technology to accelerate DBG assembly. We design near-data parallel algorithms for graph
construction and graph traversal that exploit the hardware parallelism by distributing data and operations in
different memory locations. The near-data parallel implementation enables different NDP cores to process
different portions of data simultaneously for performance scaling.

However, naive NDP implementation faces several issues caused by data communication among NDP
cores. The graph construction phase requires intensive data movement among NDP cores, because the input
sequence and the intermediate data structures are distributed with different strategies. Furthermore, during
graph traversal, building a contig requires a series of accesses to k-mers (DNA strings of fixed length k)
located in different NDP cores. Our evaluation shows that such inter-core data communication can take up
to 60% to 75% of the execution. To reduce these overheads, we propose several optimization techniques,
based on domain-specific knowledge on genome assembly. In the graph construction phase, we shuffle the
distribution of DBG data structures based on the distribution of addresses for copy, using a greedy algorithm

to reduce the number of inter-core data movements. Furthermore, we propose message buffering and k-mer
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compression to reduce the size of data communicated. For graph traversal, we design a speculative contig
expansion which parallelizes traversal operations in each core.
We summarize the contributions of this paper as follows:
e This is the first in-memory accelerator for DBG-based de novo genome assembly.
e We propose several optimization techniques based on domain-specific knowledge of DBG assembly to
reduce the data communication overhead in NDP systems.
e We improve upon a state-of-the-art DBG assembly on a NDP system, and we evaluate our design using
a application-level architecture simulator. We compare the performance of the proposed design with the
software baseline with real genomes. The results show that the proposed optimization techniques can
lead to 33-fold and 16-fold speedup over the software baseline for graph construction and graph traversal,
respectively. The performance gap between our NDP-based DBG assembler and a conventional one is
expected to grow even wider given larger genome size, as demonstrated in our evaluation. Furthermore,

the proposed NDP-based DBG assembler scales well when increasing the system size.

7.2 Key Ideas

We propose our NDP-accelerated DBG assembler by modifying the widely used MEGAHIT tool [70] (

Figure 7.1).

7.2.1 DBG Assembly Pipeline

We reuse the interface in MEGAHIT to support the NDP functionality in a general DBG assembly pipeline,
which includes read loading, graph construction, contig assembly, etc. We replace the implementation of
graph construction and contig assembly, which are performance bottlenecks in the pipeline, with our proposed
NDP method.

MEGAHIT uses several intermediate data structures for transitions between different pipeline phases. We
do not change these intermediate data structures used in MEGAHIT to keep the general pipeline intact in our
implementation. Specifically, the NDP graph construction takes in the binary sequence data generated from
the MEGAHIT read loading program, which supports general input formats of genome assembly, including
single-end and double-end reads using different sequencing technologies [201, 63]. The NDP-based graph
construction generates the sorted k-mers and writes them into files that can be processed by the graph
cleaning program in MEGAHIT. Then, the NDP-based contig assembly distributes the cleaned DBG (sorted

k-mers) in the NDP system and traverses the DBG to build contigs using the proposed techniques. The
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Figure 7.1: The overview of NDP-accelerated DBG assembly.

NDP-based contig assembly generates the contig graph that will then be assembled by the original MEGAHIT

implementation for the final sequence.

7.2.2 NDP Acceleration

NDP is a type of architecture where the data processing and storage units are co-located in a single module.
Emerging 3D-stacked DRAMSs, such as hybrid memory cubes (HMC) and high bandwidth memory (HBM),
are popular platforms to enable NDP functionality. A 3D-stacked DRAM integrates a logic layer in the
memory die, which features highly parallel compute units to leverage the low access latency and large internal
memory bandwidth. Take the HMC as an example. Each HMC cube has multiple vertical slices—vaults. The
memory layers and the logic layer communicate through fast through-silicon vias (TSVs). There have been
various HMC-based NDP systems [17, 18, 19, 50] where a small per-vault core (referred to as a NDP core) is
embedded at the logic layer, re-purposing a vault to a near-memory compute unit. The NDP system can

scale out by connecting multiple cubes using high-speed serial links to form a network of NDP cores. Scaling

out the NDP system simultaneously increases the memory capacity, parallelism, and aggregated memory
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bandwidth, which is ideal for parallel genomics workloads with a large memory footprint and high bandwidth
demand. In this work, we evaluate the effectiveness of proposed designs in the context of HMC architecture,
which provides concrete parameters accessible to researchers. However, our optimizations may also be applied
seamlessly to other 3D-stacked memories like HBM, which shares a similar parallelism and partition strategy
(e.g., channels v.s. vaults) [43, 44].

The NDP architecture consists of multiple Hybrid Memory Cubes (HMC), and each HMC connects
to the others using an inter-cube network [50, ]. Each cube’s memory is divided into several vertical
memory vaults, and each vault is coupled with an integrated processing core which is connected to a memory
controller for local vault access. We can schedule parallel applications on NDP systems by exploiting massive
NDP cores. NDP system supports remote function calls based on message passing to handle inter-core
communication without expensive coherence management [17]. In this work, we propose the implementation
of graph construction and graph traversal (contig assembly) on the NDP system with optimization based on

domain-specific knowledge.

7.3 NDP-based DBG Construction

Figure 7.2 illustrates the flow of parallel DBG construction, and Algorithm 1 shows the pseudo code. The
DBG is represented as a series of “buckets” distributed among all NDP vaults. The distributed DBG is built
through the following steps: (1) Reads distribution. (2) Bucket allocation. (3) k-mer address scan. (4) k-mer
extraction. (5) Post processing. We design an efficient bucket distribution procedure and message buffering

and compression to improve the performance by reducing the inter-core communication.

7.3.1 NDP parallel graph construction

Input reads are first distributed to all NDP vaults. Then the NDP system sets up several buckets for cores
to collaborate without interfering with each other. Building a DBG can be abstracted as putting k-mers
into different buckets based on their hash values. Each bucket is divided into N non-overlapping partitions
(lines 1 to 7), where N is the number of NDP cores. When an NDP core visits the bucket, it is confined to its
partition, making concurrent bucket accesses among different cores possible. Then the buckets are assigned
to NDP cores (line 8). The distribution of buckets is crucial to the performance of graph construction. Thus
we design an optimized bucket mapping scheme, which is described in 7.3.2.

Next, a batch of buckets are selected in each iteration, and NDP cores fill those buckets with k-mer
addresses by scanning its local reads (line 10 to 14). This is because decomposing reads into k-mers inflates

the size of the input dataset by a factor of (n-k+1)*k/n (n = read length, k = K-mer size), processing all



7.3 | NDP-based DBG Construction 107

input :Distributed raw read data - reads[num_reads]
— cores[nume_cores].seq-from
— cores[num_cores].seq-to
input :num_bucket
output : de Bruijn graph table - dbg[num_kmers]
/* Calculate the size and partition for each bucket */
#ndp_parallel_for
for ¢ < 1 to num_cores do
for seq < cores[c].seq_from to cores|c].seq-to do
for kmer: seq do
b = hash(kmer)%num_buckets;
cores|c].bucket_size[b] + +;
buckets([b].size + +;

end
end
end
/* Distributed buckets to NDP cores */
assign_buckets(buckets, cores);
/* Copy k-mer addresses into buckets */

#ndp_parallel_for
for ¢ < 1 to num_cores do
for seq < cores[c].seq_from to cores|c].seq-to do
for kmer: seq do
b = hash(kmer)%num_buckets;
buckets[b].addresses.add(&kmer);
end
end
end
/* Copy k-mers from address */
#ndp_parallel_for
for ¢ < 1 to num_cores do
for bucket: cores|c|.buckets do
for kmer_addr: bucket.addresses do
target_core = find_core(kmer_addr);
target_core.copy(kmer_addr, bucket.kmers);
end
end

end
/* Bucket post-processing: sorting, remove redundancy, calculate multiplicity, etc. */
#ndp_parallel_for
for ¢ < 1 to num_cores do
for bucket: cores[c].buckets do
post_process(bucket);
dbg.add(bucket);
end
end

Algorithm 1: Pseudo code for building distributed De Bruijn Graph on a NDP system.

buckets simultaneously results in peak memory explosion. After addresses are filled for all buckets, each
NDP core takes the ownership of its buckets by copying k-mers based on the addresses gathered from the
previous step (lines 15 to 20). The two-pass creation of the buckets for DBG construction is superior than
pushing the k-mers directly into the buckets for several reasons: the algorithm iteratively selects a batch of
buckets to process, cores may have unbalanced amounts of k-mers belonging to the current buckets. If a
single-pass paradigm is adopted, some cores will be busy “pushing” K-mers into the network to the destination
buckets while other cores are idle. Furthermore, the “pushing” has a sequential-reads/random-writes pattern,
incurring low cache locality. Since K-mer addresses (8-byte) are smaller than the actual K-mers (32-byte
to 128-byte), “pushing” addresses incurs a smaller penalty. In the second-pass, cores fill their buckets with
K-mers, and since buckets are roughly the same size in each batch, cores have balanced workloads. The

second pass has a sequential-reads/sequential-writes pattern.
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Figure 7.2: The overview of NDP-based DBG construction.

The k-mer may be stored in a remote core that requires a remote function call to copy the data. Since we
evenly distribute sequences to NDP cores in the original order, we can easily locate the target to send the
remote function. This step suffers from massive fine-grained communication overhead since many k-mers are

from reads distributed in remote vaults.

Finally, a post-processing stage (line 21 to 25) is involved to reduce bucket size, since many k-mers (as
many as 80% [224]) are redundant due to the deep sequencing coverage and repeat patterns in genomes
[224]. A common practice is to sort the k-mers in a bucket, allowing us to obtain the multiplicity (number of

occurrences) of each k-mer as a helpful by-product.

7.3.2 Bucket Distribution

To design a good bucket distribution scheme, one needs to consider the origins of k-mers in a bucket. Figure
7.3 shows an example of two buckets and three NDP cores (vaults). A large portion of read partition 0
(red) is hashed into bucket 0; thus, co-locating bucket 0 with read partition 0 can significantly reduce the
number of remote k-mer fetch requests. Similarly, bucket 1 has a high concentration of k-mers from the read
partition 1 (green), so it is more suitable to be assigned to the vault 1. There is anywhere between 29%
to 40% reduction of messages over a naive random bucket mapping if the origins of k-mers are considered.
One possible explanation for such a phenomenon is that real genomes often contain many regions of repeat
patterns. For example, about 8% of the human genome consists of so-called tandem repeats, which are

low complexity short sequences that occur multiple times in a row (e.g. "CAGCAGCAG...”) [225]. The
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Figure 7.4: Hop distance from the source core (in white) to different remote cores (in color).

commonly adopted hashing schemes that operate on the binary form of a k-mer pattern will inevitably try to
fit k-mers obtained from these repeats into a small group of buckets.

However, simply reducing the number of messages passed among the NDP cores may not be the optimal
solution, as it fails to consider the non-uniform latency of switching a packet in some networks. For example,
in a mesh-style network, the latency of switching a packet is correlated to the distance between two nodes,
since a packet arrives at its destination through a series of hops, and each hop adds a certain amount of
additional latency. Figure 7.4 illustrate a situation where a message-reduction-based bucket shuffling strategy
does not work well. Suppose buckets have roughly equal amounts of k-mers that need to be fetched from each
remote vault in an NDP system with a mesh NOC. The total amount of remote messages generated is the same
regardless of the bucket location. However, when the hop count per message is considered, it is a poor choice
to put this bucket at the four corner vaults. For example, if each remote vault contributes 10 k-mers into the
bucket, then a bucket generates 10 x 1 x2+10x2x34+10x3x44+10x4x34+10x5x24+10x6x 1 =480
total message hops at vault 0, 320 at vault 5, and 400 at vault 13. Therefore, total message hops should be
considered if we strive to reduce inter-core communication costs.

The slowest core limits the run time of the parallel graph construction, and the inter-core communication

takes the majority of the execution time. Thus the optimal bucket mapping is the one that generates the
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least communication for the slowest core. For an NDP core, the communication cost of processing its share of
buckets can be approximated as the total message hops needed to fetch all k-mers. However, finding such
optimal bucket mapping is infeasible. Let’s consider a simpler case where the number of buckets mapped to
each core is the same. With 65536 buckets and 512 NDP cores (vaults), the number of possible mappings
that need to be checked is (6?326) X (6‘?‘2128) X (6?320) X o X (32) A naive heuristic that selects the least

amount of communication cost for each bucket can easily suffer from workload imbalance. We describe below

a greedy solution that addresses both the run time concern and the imbalance concern.

After each bucket’s size is obtained (line 11), all buckets are ranked in descending order based on their
sizes and put into a list. The bucket distribution logic runs in a loop in which each iteration selects a batch
of n buckets from the list, with n being the number of NDP cores. For an NDP system with fully connected
networks, each bucket is assigned to a vault based on its largest partition. A bucket will be randomly selected
if two or more partitions have the same size. The vault that has been assigned with a bucket in this iteration
will not be assigned with another one. When a bucket needs to be assigned to an occupied vault, the bucket
is assigned to a vault with the second-highest k-mer contribution (second highest partition). This process
repeats until all buckets are assigned. For an NDP system without a fully connected network topology, the
bucket shuffling step is the same as the above procedure with minor tweaks. Instead of choosing a winning
vault for each bucket based on its partition sizes, the bucket is assigned to the vault that generates the
smallest hop count. This shuffling implementation adds an insignificant amount of overhead (<1%) and

works well in our evaluation.

Each NDP core is provisioned with a table that indexes buckets to their owner vaults/cores. The
number of table entries is equal to the number of buckets, which is 65536 in our evaluation. Each entry has
log, 65536 = 16 bits to represent bucket IDs, and additional bits to represent core IDs (9 bits for 512 cores).
The table adds 1.2% total storage overhead per HMC cube. Searching this table is a constant time operation

since the bucket index is the hash value of a k-mer.

7.3.3 Message Buffering and k-mer Compression
Message Buffering

In the graph construction step, each NDP core copies a k-mer from a remote vault by sending that vault’s
owner (an NDP core) an extraction request wrapped in a message. The remote NDP core responds to the
request immediately by sending the k-mer back in another message. This is inefficient since each message’s

payload can fit multiple k-mers, and each request has no dependency on each other. An obvious optimization
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Figure 7.5: Message compression by leveraging the overlapping bases of consecutive k-mers.

is to delay the responses and aggregate multiple k-mers into one message. At each vault, we provide n — 1

buffers corresponding to the rest n — 1 remote cores.

k-mer compression

This compression technique is used in conjunction with the message buffering to improve a message payload
density. The key observation is that since the k-mer addresses are put into a bucket by sequentially sliding a
window on input reads (with variable stride lengths), there is an opportunity for data reuse when copying
k-mers pointed by those addresses. Figure 7.5 illustrates this idea. A naive way of sending k-mers from Vault
j to Vault i is to lay them out exactly in the message payload one by one. Suppose the message payload size
is 64 bit and 2-bit/base. The uncompressed format allows two k-mers to be sent through one message. A
more compact representation of those k-mers is to copy the entire sequence from the first base of k-mer at
0x120 to the last base of k-mer at 0x126 (19 bases) and provide a small array of offset pointers to distinguish

each k-mer. This allows the same message payload to fit four k-mers.

The compressibility of k-mers in a packet depends on several variables: the number of buckets, size of
k, hash function, genome repeat patterns, etc. Deriving a formula to predict the effectiveness of packet
compression accurately is out of this project’s scope. We empirically evaluated this idea using an E.coli DNA
sequence and realistic DBG assembler settings: k=22, 65536 buckets, and the first four bytes of each k-mer
are hashed. We find that over 20% of consecutive k-mer pairs in a packet are overlapped, and the proposed
compression technique trims away more than 10% of redundant bases. We also analyze how many bases every
overlapping k-mer pair shares. The distribution is summarized in Figure 8. The result suggests that each

pair of overlapping k-mers have a high chance of sharing more than half of their content.
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Figure 7.7: The overview of NDP-based graph traversal.

7.4 NDP-based DBG Traversal

This section introduces the NDP-based graph traversal. We exploit the NDP system’s parallelism to construct

contigs and use a speculation mechanism to accelerate contig expansion.
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input :Distributed DBG table - dbg[num_kmers]
— cores[num_cores].kmer_from
— cores[num_cores.kmer_to
output : Contigs built by traversal - contigs
/* Calculate k-mer information */
#ndp_parallel_for
for ¢ < 1 to num_cores do
for kmer < cores[c].kmer_from to cores|c].kmer_to do
/* Find the high-quality extension (HQE) */
for c: A’/ T’/ G, C'] do
|  Ekmer.HQE = maz_multiplicity(kmer|1 :] + ¢);
end
/* Update the in-degree of HQE */
target_core = find_core(kmer. HQE);
target_core.increament(kmer. HQE .in_degree);
end
end
/* Parallel contig assembly */
#ndp_parallel_for
for ¢ < 1 to num_cores do
for kmer < cores[c].kmer_from to cores|c].kmer_to do
if kmer.in_degree == 0 then
contig = kmer; // Initiate a contig
target_core = find_core(kmer.HQE);
while !target_core.get(kmer. HQE visited) do
contig.expand(kmer. HQE);
kmer = kmer.HQE;
target_core = find_core(kmer. HQE);
end
contigs.add(contig);
end

end
end

Algorithm 2: Pseudo code for NDP-based graph traversal (contig assembly).

7.4.1 NDP Parallel Graph Traversal

Figure 7.7 shows the high-level flow for NDP-based graph traversal, and Algorithm 2 shows the pseudo-code.

Data Initialization

The input of graph traversal is the DBG data (hash table) generated in the graph construction phase. The
hashing is supported in the general-purpose NDP cores. We use a leveled hashing scheme to resolve conflicts.
We distribute the DBG (hash table) over different NDP cores. The DBG is divided into buckets, each of

which is stored in a core.

Information Calculation

To efficiently construct contigs, we need to calculate k-mer information used during the traversal. Such
information includes the high- quality extensions (HQE) and in-degree of each k-mer. High-quality extension
(HQE) is the most likely extension for each k-mer. DBG assemblers use HQE to remove forward k-mers, which
are introduced by read errors [224]. We point out that the graph traversal step uses HQEs to generate contigs
(long sequences without branches), instead of the whole sequence. If a K-mer has multiple HQEs, the assembler
stops extending the current contig because the K-mer may be a branch. The branches caused by repeated

DNA patterns will be considered after the traversal phase to assembly the full DNA sequence. Furthermore,
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in-degree is used to filter the start k-mer for each contig to remove redundant traversal. Specifically, the DBG
assembler only constructs a contig from a k-mer with no in-coming edges. This method avoids assembling

the same contig by different cores.

Each NDP core processes the information for its allocated k-mer independently (line 1 - 7). Each core
sequentially processes k-mers and checks all 4 possible bases that can extend the k-mer (line 4 - 5). The
HQE of each k-mer is determined by the base that leads a k-mer with the highest multiplicity. Then, the
core checks the pre-loaded bucket table to locate the core that handles the HQE k-mer (line 6), and increases

the in-degree of the HQE k-mer in the target core.

Parallel Contig Construction

The next step is to assemble contigs by graph traversal, where each NDP core constructs contigs independently
by selecting a local k-mer as the first segment of a contig (line 8 - 17). As mentioned previously, each NDP
core only selects k-mers without in-coming edges and expands the contig in one direction to avoid redundant
work (line 11). To extend a contig, the source core, which is the core constructing the contig, checks the
availability of the HQE of the current k-mer in the target core. If the k-mer is stored in the local vault, the
source core searches its DBG table. Otherwise, the source core uses a remote function call on the target core

to check the availability of HQE.

The result of k-mer expansion depends on two facts: 1) whether the k-mer exists, and 2) whether another
contig has already included the k-mer. If the k-mer exists, the target core checks the “visited” tag of the
k-mer to determine whether the k-mer has been used or not. If the source core receives a response from the
target core that the k-mer is available for the extension, the source core uses the HQE to extend the current
contig. Otherwise, the source core adds the current contig to the result (contigs) and selects another local

k-mer as the seed for the next contig construction.

7.4.2 Speculative Contig Expansion

The graph traversal phase also suffers from inefficient inter-core communications, especially during the contig
expansion where the source NDP core needs to send the query to a remote core and wait for the remote core
responses to search the requested k-mer in the k-mer table. All these operations, including bi-directional
communication and the search, are in the critical path of the contig expansion. Based on our experiments,
the contig expansion would spend 70% of its time on inter-core communication. Therefore, it is important to

reduce this time to achieve the full potential of NDP systems.
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Figure 7.8: The speculative search optimization.
Optimization Overview

We propose a speculative contig expansion shown in Figure 7.8. In the speculative contig expansion, each
NDP core searches multiple steps ahead, instead of only the HQE. The speculation’s insight is to hide the
latency of k-mer query by parallelizing subsequent operations.

Unlike the current contig that has the information of HQE, we do not know what will be in future steps
for a query if we successfully extend the current contig with the HQE. The NDP core needs to search for all
possible k-mers in the speculative steps to guarantee the speculative contig expansion’s correctness. The
number of possible k-mers is 4”1, where n is the number of speculative steps. During speculative search, an
NDP core calculates hash values and sends search requests to target cores for all possible k-mers in the next

n steps.

Operation Combining

An n — step speculative search can achieve up to O(n)x performance improvement over the default one-step
expansion. However, the speculation would introduce significant overhead without any optimization because

of more data communications and operations for searching all possible k-mers. The number of messages that
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Figure 7.9: Resolving speculation conflicts.

are generated could grow exponentially while the performance improvement is always linear as we increase the
speculation depth. Thanks to DNA sequences’ nature, we can significantly reduce the speculation overhead
by combining speculation for similar k-mers into a single move. All possibles k-mers in a speculation step
share the most significant bases. Therefore, these k-mers are stored in a contiguous memory location in the
sorted k-mers table (bucket). We may only need to send one message for all possible k-mers in a speculative
step since the same target core handles these k-mers. The target core can quickly access continuous memory
addresses by utilizing the data cache in the core. For example, in Figure 7.8(c), Core 0 may store all four
1-step speculative k-mers (CTA{A,T,C,G}), and Core 1 may store all sixteen 2-step speculative k-mers
(TA{A,T,C,G}{A,T,C,G}) based on the range of hash table. In this case, a two-step speculation only
requires 2 messages (1 per core). It is possible that k-mers in a speculation step are stored across cores,
requiring multiple messages. In our experiments, we only observe a trivial amount of speculations (up to

5-step) requiring multiple messages in a single step because of the large data size.

Conflict Resolution

Another issue with speculative contig expansion is that we need a more complex mechanism to resolve
the conflicts between cores that simultaneously access specific k-mers. Once an NDP core receives results
of all possible k-mers in the next n steps, it tries to extend its current contig by checking the HQEs and
corresponding “visited” tags of k-mers sequentially. It needs to send messages to cores handling the extended
k- mers to avoid redundant work (setting the "visited” tags). However, without an efficient mechanism, the
overhead of synchronization can eliminate the benefit of speculation.

To efficiently resolve conflicts, we propose a lightweight mechanism, nearest source assignment, to solve

the conflict in the target core. Specifically, each source core extends all speculative k-mers locally as further as
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Table 7.1: Programming Interface

Operation Remote Function Call

Copy k-mer get(id, A func, A addr, A ret, S ret_size)
Set Data put(id, A func, A addr, S size)

Request k-mer put(id, A func, A addr, S size)

Get Buffered k-mers | get(id, A func, A ret, S ret_size)

Search k-mer get(id, A func, V hash, A ret, S ret_size)

possible and then sends the confirmation messages to all target cores to notify the success of k-mer extension.
The source code also sends a speculation index, which is the position of the k-mer in the speculation path,
along with each message. The target core receives confirmation messages from different source cores on the
same k-mer. It picks the source core, which sends the smallest speculation index in the message as the core
to use the k-mer for expansion. If multiple cores send the same speculation index, the target core picks the
core with the smallest core index to break the equality. This mechanism can effectively resolve the conflicts
because different contigs will follow the same path when they conflict on the same k-mer. Therefore, the

nearest source assignment can avoid potential deadlocks in a continuous k-mer path.

7.5 Architecture

This section discusses the implementation of software and hardware to support the proposed ideas.

7.5.1 Programming Interface

We utilize the message passing and remote function call in Tesseract [17] as the programming interface
for its versatile programming interface and lightweight hardware support for message-passing (i.e., message
queue). Table 7.1 lists implementations of key operations required in NDP-based DBG assembly. We use
the blocking (get) or non-blocking (put) remote function call to implement different operations, where the
remote function call is based on a message passing mechanism. Specifically, copying a k-mer from a remote
call requires a blocking remote function call (get), where the parameters require the target core, the address
of target k-mer, the address of return value, and the size of return value. We use A, S, and V' to represent
the address type, the size type, and the value type respectively. However, the blocking get function cannot
support our proposed buffering and compression mechanism. Therefore, we propose a request operation that
uses the non-blocking put to notify a target call to store the target k-mer in the message buffer. During the
execution, each core calls the request function for each k-mer while maintaining a counter for the number of
messages that have been requested for remote cores. When the counter is equal to the buffer size (introduced

in Section 7.5.2), the core calls a get function to the target core to get all buffered k-mers. The target core
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compresses the buffered k-mers and sends the results back to the source core. After the blocking get function

call, the source core resets the counter for a specific target core and continue execution.

To enable programmers to implement NDP-based DBG assemblers, we need a framework that combines
the parallel computing and the proposed programming interface based on message passing. Since we have
no access to the real NDP hardware, we use a simulation-based method to emulate the proposed NDP
assembler. In our implementation, we simulate OpenMP-based programs in Sniper simulator [226], which
uses Pin-tool [227] as the front-end to generate simulation statistics for multi-core architectures. We insert
specialized APIs using Sniper’s magic instruction in the OpenMP program so that Sniper can recognize the
message-passing based NDP operations. We implement the simulation logic for different message-passing
functions using Sniper’s synchronous and asynchronous timing models to generate the final simulation results
for NDP architectures. Future work can follow a similar scheme to realize the proposed assembler in a real
NDP hardware. For example, the framework can extend the syntax of widely used parallel programming
APIs (e.g., OpenMP) to include function calls of message-passing, and implement a specialized runtime to

schedule operations on NDP cores.

7.5.2 Hardware Support

We propose several lightweight hardware components inside each core in our NDP architecture to support
the NDP functionality. Similar to Tesseract [17], each core uses a message queue and a network controller
to process remote function calls based on message passing. In addition, we add two lightweight hardware
components, a k-mer fetcher (KMF) and a k-mer buffer (KMB) to support the proposed optimizations.
Figure 7.10(a) shows the architecture of the proposed NDP core. Specifically, the k-mer fetcher (KMF)
is the unit which we can offload operations for the proposed optimizations from the NDP core. KMF can
decode the potential memory addresses of k-mers based on the hash value, and generate memory commands
directly to the memory controller. The KMF contains several 64-bit hardware registers to store the working
information during the k-mer fetching, including the base address of the hash table (1 register), the k-mer
data (4 registers), and state control information (4 registers). To generate the address for k-mer fetching,
KMF first loads the base address of the hash table from the in-order core. Then, KMF uses a shifter to
generate the offset of a k-mer by concatenating different bits of k-mer registers. The offset is stored in a
32-bit register, which is added with the base address in a 64-bit adder. KMF then sends the generated
address to the memory controller and receives k-mer data in the k-mer registers for future operations (e.g.,
writing to the k-mer buffer. The k-mer buffer (KMB) stores k-mer related data which is configured to

different formats for graph construction and graph traversal, as shown in Figure 7.10(b). During the graph
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Figure 7.11: Operations in hardware components.

construction, in order to support the k-mer compression, KMB acts as a compression buffer which stores
the requested k-mers grouped by the requester core. During the graph traversal, KMB is organized as a
speculation table which stores the searched k-mer, requester core, and the speculation index for conflict
resolving. Figure 7.10(c) shows key parameters of the proposed hardware components used in our evaluation.

We implement the components of KMF using Verilog HDL and synthesize the design on Synopsys Design
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Table 7.2: Workstation and NDP Configuration

CPU Model Intel(R) Xeon(R) E5-2658 v4

Core/ Thread/ Frequency 14/ 28/ 2.30 - 2.80 (GHz)

L1/L2/L3 Cache 32 (KB) / 256 (KB) / 35 (MB)

Main Memory DDR4-2400 MHz, 54GB/s

Memory Organization 32GB / 2 Channels / 2 Ranks

HMC 2.0 Organization 8 DRAM layers, 8Gb/layer, 8GB/cube, 32 vaults, internal (external) bandwidth:
512GB/s (480GB/s)

NDP cores 1 GHz, single-issue, in-order, 32 KB I$ and D$, LRU, 80 mW, 0.51 mm?

HMC Memory tCK = 1.6 ns, tRAS = 22.4 ns, tRCD = 11.2 ns, tCAS = 11.2 ns, tWR = 14.4 ns,
tRP = 11.2 ns

NOC Configuration Crossbar network, 64 KB/message payload

Inter-cube Network 2 cycles/hop, 64 bits/cycle, 2D-Mesh (default) / DragonFly / Fully-connected

Compiler. The synthesized design is placed and routed using Synopsys IC Compiler. The KMB parameters
are estimated using the analytical tool CACTI-3DD [228] on 22nm technology node.

Figure 7.11(a) and Figure 7.11(b) show the operations offloaded from the NDP core to the lightweight
components during graph construction and graph traversal phases. During graph construction, KMF of
each core handles k-mer requests to the local k-mer from other cores. When receiving a k-mer request
message (with the address), KMF generates memory commands to the memory controller which will fetch
the k-mer. KMF then stores the k-mer to the corresponding entry of compression buffer (stored in KMB). If
all entries of the requester core is full in the compression buffer, KMF compresses all k-mers requested by the
requester core and generate a compression message. During graph traversal, KMF handles speculative search
requests from other cores. Since the speculative search may request a non-existing k-mer, KMF generates
memory commands for search operation in the local hash table based on the k-mer’s hash value. If the
k-mer exists, KMF inserts the k-mer with the requester information (e.g., speculation ID) in the speculation
table. No matter whether the k-mer exists or not, KMF sends a message to the requester core about the
search result. If a requester core wants to confirm the extension with a speculation k-mer, KMF fetches all
entries about the requested k-mer in the speculation table and resolves the conflict. As compared to the
pure-software implementation, hardware-assisted optimizations reduce data movements between the memory
and the in-order core. Furthermore, the added hardware components can directly communicate with the

memory controller and message interface to reduce the latency of optimization in the critical path.

7.6 Methodology

7.6.1 Simulation

We emulate the execution of our NDP-based DBG assembler using multi-threading supported by OpenMP [229].
Specifically, we create a thread for each NDP core and manually assign different tasks and data structures to

threads. The proposed NDP system, including all DRAM vaults and NDP cores, is modeled in Sniper [220]
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Table 7.3: Genome Datasets

Genome Name Size
Escherichia coli 0157 (E-Coli) 5,528,445 bp
Homo sapiens chromosome 3 (Human) | 198,295,559 bp
Ananas comosus cultivar (pineapple) 24,880,688 bp

according to parameters reported in Table 7.2. The parameters are gathered from previously published
work [17, 18, 50, 19], data-sheet for commercial products [16], and simulation in Cacti [156] and McPAT [156].
We use a Pin-tool [227] front-end to tag NDP data structures’ addresses in the simulation. Therefore, Sniper
can recognize and operate on these NDP data structures using NDP-specific models of remote function call
based on message passing. We use Ramulator [199] to model the memory behaviors since Sniper lacks a
detailed memory model. We use Cacti [156] to simulate the performance and power of customized buffers at
32nm technology. Each NDP core takes 0.51mm? chip area and 32 NDP cores only consume 7.2% of the chip

area available in the HMC logic layer (226mm? [17]).

7.6.2 Baseline System

The baseline performance is measured from MEGAHIT [70] running on a workstation configured in Table
7.2. We should note that CPUs are the predominant platform for DBG assembly, instead of GPUs, and
MEGAHIT is one of the fastest implementations [70, 67, , 69] that is capable of assembling a large genome
in parallel. We do not compare to GPU, since all of the GPU-based DBG assemblers we find are deprecated
[230, , 70] due to lack of support and performance. In fact, we are informed by the authors of MEGAHIT

that the GPU-implemented MEGAHIT is slower and harder to use than its CPU counterpart.

7.6.3 Workloads

We test DNA sequences from three species downloaded from GenBank [232] as shown in Table 7.3. We use a
next-generation sequencing read simulator [233] to generate NGS reads using Illumina technology [202, ,
]. We set the fold of coverage, length of reads, and mean size of DNA fragments to 20, 150, and 200 to

generate sufficient simulation data.

7.7 Results

Figure 7.12 shows the results of comparing the 16-cube NDP system and the CPU baseline. We compare the
performance of the optimized NDP implementation (Opt-HW) to the CPU baseline and the NDP implemen-

tation without optimizations (Original NDP). Opt-SW represents software-implemented optimizations All
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Figure 7.12: Performance comparison with the baseline on graph construction and graph traversal

results are normalized to the CPU baseline and we break the total execution time into the time on local

functions and remote functions.

Comparison to CPU and original NDP. On the one hand, the original NDP is 7.1x and 6.9x faster
than the CPU baseline on graph construction and graph traversal. This result indicates the simply parallel
NDP solution does not fully utilize the hardware, considering the number of cores in the NDP system is
much larger than that in the CPU baseline. On the other hand, the optimized solution is 32.5x and 16.4x
faster than the CPU baseline for graph construction and graph traversal, respectively. The performance
improvement provided by Opt-HW over Original NDP results from the reduced inter-core communication

caused by the proposed optimization techniques, including bucket shuffling, message buffer and compression,

and speculative contig expansion.

Comparison to software-implemented optimizations. The result shows that the performance
improvement for graph construction is more significant than that for graph traversal. It is because the de
Bruijn graph has a random structure that may cause cores to have unbalanced workloads. It is also consistent
with the observation that the NDP solution performs better on a large genome than a small genome. In
general, the proposed techniques perform better on large genomes that exhibit high-degree parallelism and
sufficient per-core workload to exploit the parallelism of NDP hardware. Opt-HW outperforms Opt-SW by

3.1x and 3.2x on average for graph construction and graph traversal respectively. The performance gain
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Figure 7.14: Scalability results from 1-cube to 16-cube.

provided by the hardware-implemented optimizations results from the reduction of memory accesses and
updates for the optimization data structures.

Bandwidth utilization. Figure 7.13 shows the memory utilization for different systems running graph
construction and graph traversal on Human genome. We get the CPU-baseline result from VTune [234]
and NDP configurations from simulation. The results show: (1) NDP solutions, which run 512 parallel
threads, require significantly more bandwidth than the CPU baseline maximum bandwidth. (2) The proposed
optimization can increase the memory bandwidth utilization because of the better performance than the

NDP baseline.

7.7.1 Performance Scalability

Figure 7.14 shows the performance of DBG assembly on the different number of NDP cubes for three genomes.

We scale the system from 1 cube to 16 cubes. The 16-cube NDP system is 12.4x to 15.6x faster than the
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Figure 7.15: The reduction of inter-core message passing provided by optimizations for graph
construction.

single-cube system over three genomes for graph construction. Such results show good scalability of the
NDP implementation. The performance of NDP implementation depends on DNA patterns in the dataset.
Suppose the dataset has a lot of repeated patterns (e.g., Pineapple). In that case, the NDP implementation
has better scalability, because we can significantly reduce the data access time by mapping the buckets of

repeated patterns in the same core with the corresponding sequence.

For graph traversal, the 16-cube NDP system is only 6.0x, 12.0x, and 7.1x faster than the single-cube
system for E.coli, Human, and Pineapple, respectively. The overall improvement provided by the large
systems is much less than that in graph construction. The reason is that graph traversal has more randomness
in the workload, thus is less likely to schedule balanced workloads over the NDP cores in the large system.
The results over different genomes also show that the NDP implementation has better scalability in the large

genome.

7.7.2 Inter-core Communication Reduction

Figure 7.15 shows the effects of the proposed optimization on the reduction of the inter-core message. The
reduction ratio is calculated in the order of shuffling, buffering, and compression. Our experimental results
show that bucket shuffling can reduce 14% and 40% of inter-core messages in a 4-cube system and a 16-cube
system, respectively, over a random bucket mapping scheme. The gap between small systems and large
systems results from that small systems have an even distribution of buckets because each core is allocated

more sequences than larger systems.
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Unlike the bucket shuffling, the message reduction provided by k-mer buffering and compression becomes
less when increasing the system size. Specifically, k-mer buffering (compression) reduces 24% (26%) of
messages in the 4-cube system while reducing only 10% (15%) of messages in the 16-cube system. This
is because large systems schedule fewer messages for each core, so that the opportunity for buffering and
compression becomes less than smaller systems. In general, our experiment on the data movement reduction
shows that the bucket shuffling and k-mer buffering and compression can work well together to reduce the

number of inter-core messages in different sizes of systems.

7.7.3 Exploration on Speculation

Figure 7.16 shows the exploration of the speculation steps for graph traversal. We test different speculation
steps and show the speedup over the baseline without any speculation. The result shows that the four-step
speculation has the best performance for all workloads on systems of different sizes. Smaller speculation steps
may not fully exploit the available memory bandwidth and parallelism of the NDP system, while a larger

speculation steps have larger overhead of resolving the conflicts between different NDP cores.

7.7.4 Exploration on Network

Because previous works show that the NDP system’s interconnect plays a critical role in the performance
and energy consumption, we also explore different interconnect structures in the baseline NDP architecture.
Figure 7.17 shows graph construction and graph traversal execution time on three structures: mesh, dragon-
fly [223], and an ideal fully-connected network. All results are normalized to the mesh structure. The
experiment shows that the dragon-fly network can improve the mesh structure’s performance by 1.3x on
average, while the performance-optimized ideal network is 1.7x faster than the mesh. However, the ideal

network incurs 5.4X and 2.7X higher area overhead than the mesh and dragon-fly configurations.
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Figure 7.17: The performance comparison among different network structures.

7.7.5 Energy Efficiency

We estimate the energy of NDP system based on the average active cycles of cores and memory and the power
values reported in the official product description [46] and previous works [17, 49]. Our results show that the
proposed NDP system consumes 28.9 x and 15.0 x less energy for graph construction and graph traversal
than CPU. Such energy reduction mainly comes from the faster execution. The average power consumed by
NDP is higher than the CPU baseline because of the higher power consumed by the memory layers and the
NoC power consumption. However, previous work [17] shows that such power consumption density in the
memory chip will not exceed the thermal constraints. In this work, we only added a small storage component
with a controller in the original NDP hardware, which has trivial power and area overhead (< 2%). Therefore,

the proposed NDP-based DBG assembler is practical in terms of power and thermal efficiency.

7.7.6 Comparison with Other Distributed Algorithms

The DBG processing of large genomes is also deployed on distributed-memory parallel computers using
frameworks such as MPI due to their scalability (large capacity and high core count). Notable distributed-
memory assemblers are Ray [235], PASHA [69], YAGA [236], ABySS [67], HipMer [237], and PakMan [238].
This work shares similarities with distributed-memory DBG assemblers at high-level. For example, addressing
the communication imbalance issues during the parallel graph construction phase and avoiding traversing the

same contig by multiple processing nodes repeatedly. If handled inefficiently, the overhead of orchestrating
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nodes outweighs the performance benefit of parallelization. These challenges are typically not found in
shared-memory DBG assemblers, which primarily focus on optimizing algorithm complexity and assembly
quality. However, migrating existing distributed-memory DBG schemes into an NDP system is a complex
undertaking. Each node in the distributed-memory system handles multi-threading workloads with large
memory footprints, but each NDP core is single-threaded with limited memory capacity. For example,
PakMan [238] compresses the DBG into a compact graph with macro-nodes to ensure each compute node can
fit the whole compact graph during the graph traversal phase, where each process can concurrently traverse
multiple independent paths. Therefore, the optimization for cross-node communication in distributed-memory
systems is too coarse-grained in the NDP implementation.

We provide an indirect comparison with one of the state-of-the-art distributed assemblers. As reported
in the previous work [238], PaKman offers 9.3x speedup over IDBA-UD [239] with 40-cores@2.2GHz in
its MPI-based shared-memory mode. Assuming performance scales linearly with core frequency, and since
both PaKman and our work demonstrate linear scaling w.r.t core count, PaKman offers 54.08x speedup
over IDBA-UD with 512-cores@1GHz. With 512-cores@1GHz, our work outperforms MEGAHIT by 31.6x
which is already 3.5x faster than IDBA-UD (110.6x). This result shows our design is about 2x faster than
PaKman even if PaKman can be perfectly mapped to an NDP architecture. Finally, this work leverages
software/hardware codesign to speedup DBG assembly. Without the appropriate hardware support (e.g., the
latency /bandwidth advantages of PIM and our customized hardware components), the software optimizations

alone do not achieve the best results.

7.8 Related Works

Non-genome NDP accelerators. There are similar 3D-stacked NDP accelerators for graph processing
[17, 48], pointer chasing [118], and large-scale data analytics [50, , 19]. Some aspects of these work are
similar to ours, such as minimizing communication, optimizing data partitioning, and providing a framework
for the proposed architectures. However, these works are not directly applicable to DBG.

PIM bio-accelerators. There are several PIM accelerators for bioinformatics workloads. Wu et al.
[53] proposes an in-situ solution which fits minimalist bitwise operation logic inside DRAM chips, and
utilizes subarray-level parallelism to support massively parallel K-mer matching. GenCache [34] modifies the
SRAM chip to support sequence alignment. Medal [85] leverages off-the-shelf DRAM components to build a
DNA seeding accelerator. RADAR [36] is a 3D-ReRAM based accelerator for BLAST. AligneR [211] is a
ReRAM-based PIM architecture which accelerates the bottleneck stage of genome sequencing. FindeR [242]

enhances the FM-Index EPM search throughput in the gnomic sequencing step using commodity ReRAM
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chips. These works target different stages of genome pipelines. To the best of our knowledge, this is the first
PIM-based De Novo assembly accelerator.

DBG assemblers. We have compared this work to prior distributed-memory DBG assemblers in Section
7.7.6. There has a limited effort of porting de Bruijn graph onto GPU such as [230, ]. They either focus
on only one stage of DBG assembly or only work with small genome. In contrast, we provide comprehensive

support for every stage of DBG and work with a much larger genome.

7.9 Conclusion

In this work, we propose a software-hardware co-design for DBG assembly that leverages emerging 3D-stacked
memory architectures with high parallelism and bandwidth. We identify graph construction and contig
assembly as two bottleneck stages, as they suffer from high communication overhead due to frequent message
passing. By exploiting real DNA sequence characteristics, we optimize our design with an effective data
partitioning strategy and a message buffering and compression technique to reduce inter-core communication.
We also develop a speculation scheme to extend each contig by multiple bases each time tentatively. The
optimizations above synergistically offer the combined benefit of speedups and energy savings over the CPU
by 24x and 22x. Our NDP-based DBG processing framework can significantly reduce the run time of many
critical steps in analyzing human and microbial genomes, which aids in disease diagnosis, precision medicine,

vaccine development, and other tasks.



Chapter 8

Abakus: Accelerating k-mer Counting

With Storage Technology

8.1 Introduction

The scramble for vaccine development during the global COVID-19 pandemic has highlighted the profound
importance of accelerating key bioinformatics tasks, particularly those that aid in vaccine research, therapeutics
against bioterror, and pathogen surveillance. One of the most commonly occurring computational kernels in
many bioinformatics algorithms is k-mer counting, which involves building a histogram of genome sequence
substrings of a fixed size. For example, de novo genome assemblers that piece together an unknown genome
from a collection of short reads, such as in characterizing a new virus, require a filtering step where k-mers
that appear fewer times than a set threshold are regarded as erroneous and dismissed [59, , , ,

, , , , ]. k-mer frequency information is also extensively used in the identification of repeat
sequence regions [251, , , , , ], variant calling [257], and alignment of multiple DNA or
protein sequences [258, , ].

This work seeks to address the critical need for accelerating k-mer counting in a scalable way for current
and future bioinformatics workloads. Bioinformatics pipelines typically analyze unknown genome samples
of various sizes, ranging from small viruses (e.g., a COVID test) to extremely large environmental data in
metagenomics (e.g., analyzing soil samples). Investigating a k-mer counting accelerator design has tremendous
economic and societal benefits. For example, the market share of metagenomics alone is expected to reach
$1.4 billion by 2025 [53]. As another example in the emerging precision medicine domain, a patient’s sample

is first sequenced on the NovaSeq instrument in under 48 hours, producing 6~12 TB microbiome and human
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DNA/RNA data. This raw sequence data is then passed through various stages, including de novo genome
assembly for ~3600 CPU hours, out of which ~60% is spent on k-mer counting [59]. Overall, efficient
execution of k-mer counting can help transform many bioinformatics tasks important to human health from
vision to reality. With the rapid growth of NGS, genomics is projected to soon become the largest data
producer, surpassing astronomy, particle physics, and websites such as YouTube and Twitter [10], and the
number of reads that need to be assembled is growing at a rate vastly outstripping Moore’s Law [50], putting
forth a great pressure on executing k-mer counting more efficiently.

While the idea of counting k-mers is straightforward, doing so while achieving high memory- and time
efficiency is challenging. The traditional approach is to leverage large hash tables to count k-mers, and parallel
implementations of these approaches distribute the input reads among several worker threads, where each
thread independently extracts and counts k-mers from its share of the input [261, , , ]. However,
the size of the hash table increases exponentially with the size of k, making it infeasible to store and maintain
it in memory for large genomes with many k-mer patterns [265]. Furthermore, multiple threads are bound to
compete for accessing the same set of k-mer entries, resulting in frequent serialization [264]. Therefore, these
approaches tend to scale poorly, imposing prohibitively high overheads in performance and hardware resource
requirements.

To alleviate these overheads, state-of-the-art k-mer counting tools [7, , , , , | typically
adopt a two-phase, disk-based (out-of-core) approach, where the input data is first partitioned into a set
of files containing a subset of all k-mers to be counted in a subsequent parallel counting phase. This not
only results in a much smaller memory footprint as the memory only needs to hold a few partitions and
their corresponding k-mer histograms at each iteration but also minimizes thread contention by allowing
each thread to independently build partial k-mer histograms from its share of partitions without competition
from other threads. However, these approaches are also easily susceptible to overheads imposed by secondary
storage devices. In particular, a large amount of data needs to be moved across the deep hardware stack
(hierarchies within an SSD, main memory, cache layers, etc.) and system software stack (flash transaction
layer, NVMe protocols, OS file systems, etc.) between CPU and the hard drive, which incurs significant
command and control overhead. Moreover, the external host I/O data links are typically lagging and difficult
to improve compared to the internal aggregated disk bandwidth potential. In fact, our profiling experiments
on a state-of-the-art disk-based k-mer counting software with optimized I/O access [7] reveal that a significant
portion of its execution time (over 75%, see Section 8.3.1) is spent on file handling alone, constantly stalling
the processor.

Several prior efforts have sought to accelerate k-mer counting using GPUs [7], FPGAs [271, 272], and

processing-in-memory architectures [273, 15, 59]. However, these approaches do not consider the 1/0O
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bottleneck — while some only accelerate the compute-intensive counting phase [7, ] or assume that the
data is already loaded into memory [59, ], others accelerate one-phase in-memory k-mer counting [272, 15]
algorithms that do not scale with larger workloads. To improve the end-to-end performance of state-of-the-art
k-mer counting algorithms, the I/O overhead, which is increasingly more likely to be the real bottleneck,
needs to be addressed.

Integrating logic as close to the data storage media as possible is a promising alternative that addresses
the I/O-bound nature of data-intensive applications. Such storage-centric architectures come in two flavors,
In-storage processing (ISP) and Processing-with-storage-technology (PWST), which are characterized by
different trade-offs and design philosophies. ISP typically directly leverages the embedded multi-core CPU
controllers and DRAM inside the solid state drive (SSD) with modified firmware to offload computation [274,

, , , , , , ]. Commercial products include Samsung’s SmartSSD [161], which features
an FPGA-enhanced SSD, can also be considered an ISP implementation. An ISP device is fundamentally
still a storage product with small hardware overhead to enable computing at the place where the data reside.
This solution is less intrusive but does not always guarantee speedups [275, , ]. In contrast, a PWST
architecture from the ground up is built to be a standalone, performance-optimized accelerator leveraging
storage devices by aggressively integrate custom logic at different layers of the SSD internal hierarchy (i.e.,
chip-, channel-, and SSD-level) to handle a variety of applications [283, , , , ], and SSD is simply
a helpful technology that enables processing near the huge volume of data involved in the task. This work
leverages PWST to propose novel and scalable accelerator designs, collectively named Abakus, to eliminate
the I/O overheads imposed by out-of-core k-mer counting.

To enable an effective end-to-end PWST-based acceleration of k-mer counting, we provide custom hardware
solutions for a set of key k-mer counting operations and distribute them at different SSD levels to (1) enhance
the limited computing capabilities of the existing SSD infrastructure and (2) take advantage of the multi-
channel, multi-way setup of an SSD for better parallelism. We optimize performance with bioinformatics
domain-specific knowledge, notably a set of hardware-implemented Bloom filters, to reduce the data volume
and subsequently improve execution efficiency. The add-on logic is not only lightweight but also reusable for
different purposes such as read partitioning, Bloom Filter operations, partition statistics calculations, and
counting table probing.

Note Abakus is first and foremost an accelerator, and SSD is a technology choice selected to build this
accelerator for its high capacity of storing a large volume of bio-sequence data, high bandwidth, and closest
proximity to raw data to largely eliminate data movement. We do not propose modifying the design of a
conventional, data-storage-oriented SSD; we leverage SSD technology to build a new accelerator. Although

Abakus can still act as a data storage unit, it does not need to compete in the commodity SSD market,
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similar to [283] and [285]. The large size of the bioinformatics market suggests that there is a potential
market for a product that is purely an accelerator that overcomes the I/O bottleneck. Furthermore, future
computing environments are increasingly more likely to be heterogeneous and accelerator-abundant [287, ].
Therefore, we envision Abakus to be deployed in the cloud with other genomics accelerators to fulfill the
need for faster genome analysis, amortizing the Non-recurring engineering (NRE) cost and the Total cost of
ownership (TCO) of developing and maintaining Abakus among the entire community of users. Since data
centers comprised of proprietary accelerators for non-general-purpose computing such as Bitcoin mining,
high-frequency trading, and web search acceleration are common nowadays, and genomic analysis is growing
rapidly with high-performance sensitivity; it seems reasonable to posit interest in cloud support for faster
k-mer counting. Due to the extensive presence of k-mer matching in bioinformatics, Abakus has the potential
to be a staple residing in the genomic cloud to support many high-volume, planet-scale genomics analysis
tasks.

We propose three designs, namely (a) Abakus-Basic, where a set of near-storage-processing logic fits
at the chip level, (b) Abakus-BF, which significantly reduces the data volume by leveraging a set of
distributed Bloom filters, and (c) Abakus-OP (one-phase), which overlaps different operations to form a
pipeline. Designing a k-mer counting accelerator as a specialized product is a flexible solution to support
a variety of downstream bioinformatics pipelines because it is such a widely used bio-kernel. Through
hardware/software co-design and optimization, we incrementally add more complexity to unlock more
performance. We compare the performance of Abakus with that of CPU-; GPU-, and PIM-based accelerators
using large real-world genomes. Our evaluation suggests our most aggressive design, Abakus-OP, is able to
achieve 6.95x /11.20x average/maximum end-to-end speedup over a conventional system (CPU + GPU) and

2.32x/9.84x average/maximum end-to-end speedup over the state-of-the-art near-data processing accelerator.

8.2 Background

k-mer counting implementation has been thoroughly studied, and various data structures (hash tables, Tries,
suffix array, etc.) and methodologies (sorting, hashing, etc.) have been employed to accelerate it. A generic
histogram framework can be applied to solve the k-mer counting problem, but to achieve higher performance,
the characteristics of genome data have to be considered, such as those that leverage minimizers and Bloom
filters, introduced in the following sections.

One way of generating k-mer histogram is to use atomics and maintain an in-memory k-mer frequency
count table. An example is Jellyfish [264]. However, Jellyfish might have difficulty handling large genome files

because it keeps the histogram in memory [265]. This is the limitation of in-memory k-mer counting tools
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Figure 8.1: Illustration of a two-phase disk-based k-mer counting algorithm workflow (F: input sequence files,
P: s-mer partition files, C: k-mer counting table files.

in general. One solution is batched processing but then it creates partial histograms and requires merging,
degrading the benefit of in-memory counting by creating the I/O overhead. For data that fits in memory, it
performs similarly to other tools [265]. Since the number of distinct k-mer patterns in a production genome
dataset is often astronomical, resulting in a huge peak memory footprint. It is worthwhile to consider counting
k-mers out-of-core in a batched manner. The memory consumption of processing one batch can be tuned to
fit inside the memory of a workstation. Batches that are not currently being processed are temporarily saved
in the secondary storage devices and later brought into the memory. Such an out-of-core design allows a
small desktop to process large genomes.

Many high-performance out-of-core k-mer counting tools such as Gerbil [7], KMC3 [266], and DSK execute
in two distinct phases: a partition phase and a counting phase, and they differ mainly in their strategies to
partition input reads and their approaches to count k-mers (e.g., sorting vs. hashing). Fig. 8.1 illustrates the
high-level workflow of these tools.

Partitioning Phase. The partitioning phase splits reads into smaller chunks and shuffles them into a
number of files. Many partition algorithms make use of a minimizer, which is a substring of a k-mer whose
ranking is the lowest with respect to a total ordering (e.g., lexicographical order) of all possible substrings
of the same size m (m<k). Consecutive k-mers that share the same minimizer are grouped together into a
super-mer or s-mer and saved into a file. Fig. 8.1 illustrates the process of splitting one read CGAGCACT

into two s-mers. Let k=4, m=2, and all minimizer patterns are ranked based on their lexicographical
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Figure 8.2: Gerbil [7] I/O overhead.
order, i.e., A<C<G<T. Since the first three contiguous 4-mers {CGAG, GAGC, AGCA} share the same

lexicographically smallest 2-mer, AG, they are grouped into one s-mer CGAGCA. Similarly, GCAC and
CACT belong to the same s-mer GCACT. Phase one utilizes two nested sliding windows, an outer one of size
k that generates overlapping k-mers from the input reads, and an inner one of size m to identify a minimizer
within each k-mer. Each partition file is responsible for saving s-mers generated by one or more minimizer
pattern(s), which guarantees that identical k-mer patterns are saved into one partition file. Besides using the
lexicographical order to rank minimizers, there are numerous other strategies to achieve partitioning effects
such as even partition file sizes or shorter/longer average s-mers [7, 266].

Counting Phase. In this phase, each partition file is read from the disk to memory for k-mer extraction
and counting (Fig. 8.1). Both hashing and sorting-based approaches are viable, but sorting can be slower
for longer k values [265, 7]. The sorting-based approach puts identical k-mers in adjacent positions and
their counts naturally emerge. Hashing-based approaches store k-mers as keys and counters as values, and
collisions can be resolved through quadratic hashing. Since partitioning guarantees that no k-mers can be
found in more than one partition, the final k-mer frequency can be obtained by simply concatenating the

individual k-mer histograms.

8.3 Motivation

8.3.1 1I/0O Is the Bottleneck

Prior work [15] has shown that I/O greatly affects the performance of Gerbil, one of the best k-mer counting
tools available today [7, 265]. First, one-third of Gerbil’s instructions are composed of memory and 1/0
operations. Such frequent data accesses result in poor CPU utilization (idle for over 75% of the time).
Second, as the number of intermediate files increases (necessary for larger genomes), Gerbil’s runtime also
linearly increases, further decreasing the CPU activity. These observations also broadly match our profiling

results using VTune [234] — Gerbil’s execution does not sufficiently exercise the computing capability of the
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underlying architecture. We then measure stalls caused by I/O. Gerbil adopts a pipelined design where
pipeline stages collaborate through a set of consumer-producer queues. In phase one, a set of threads read
raw sequence data from files and put them into a queue for subsequent ‘splitters’ threads to extract s-mers.
This requires minimal computation, and the data access is strictly sequential for both reading (from the disk)
and writing (to the queue), therefore, its latency approximates the I/O response time. The second phase
has a similar setup to read s-mers from the partition file. We estimate the I/O overhead by measuring how
often the splitter threads are idle due to an empty input queue. Fig. 8.2 shows the I/O overhead of two
Gerbil phases. Clearly, I/O causes a significant overhead, and simply removing I/O overhead could improve
performance by ~10x.

Note the ratio of I/O in k-mer counting can be different for different input genomes due to factors such as
file types (compressed or uncompressed) and sequence formats (FASTQ or FASTA), which can change the
amount of time the CPU spends processing the raw input, subsequently resulting in different ratios of I/0 in
the overall execution time. Genome characteristics also influence the I/O overhead. For example, in phase
one, genome patterns determine the size of each s-mer (also the total number of s-mers), leading to diverse
latencies to write back s-mer files; in phase two, some genomes work well with the hashing scheme (fewer
numbers of probings per k-mer insertion) while others do not, leading to longer/shorter CPU processing
time and thus decreasing/increasing I/O time ratio. Regardless, we found the I/O consistently occupies a

significant portion (; 50%) of runtime.

8.3.2 ISP k-mer Counting Considerations

Benefits of PWST. While k-mer counting can be accelerated through GPU [7], FPGA [271, 272], and even
near-data-processing approaches [273, 15], PWST can fundamentally solve the bottleneck caused by data
movement issues. Several characteristics of k-mer counting make it a good candidate to be processed at the
location where the data initially resides. First, SSD has a notable internal (between flash chips and the SSD
controller) and external (between host and SSD) bandwidth gap. Moreover, the internal bandwidth is easier
to scale up, for example, by providing more channels (~1.2 GB/s per channel x number of channels [285]),
while the external bandwidth (~7 GB/s for PCle-4) is limited by expensive data pins. Furthermore, k-mer
counting features simple computation patterns that exhibit a low compute-to-data ratio. Thus moving the
computation into SSD is always a more effective and scalable solution than bringing data out to compute if
SSD can support sufficient compute throughput that saturates the internal bandwidth. Second, the input
genome data set contains a high percentage of erroneous k-mers, which are filtered out at the end. Moreover,
a standard genome input file may also include a large chunk of information that is useless to k-mer counting.

For example, genome files coded in the standard FASTQ format include a quality score for each base pair
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that are thrown away as soon as they arrive at the processor, meaning ~50% of the data brought in is never
touched. However, prior accelerator work still has to pay the price of transferring such a bloated data set to
the main memory and compute units, which is sub-optimal, considering there are multiple choke points (e.g.,
limited external I/O and off-chip memory bandwidth) along the data path and k-mer counting exhibits a
strong streaming pattern with limited data reuse. In our evaluation, even when all computation is free, simply
reading the entire dataset into the memory makes up about 50% to 80% of the execution time. For this reason,
even if a workstation is fitted with enough main memory, the I/O bottleneck still persists. Additionally,
PWST approaches can offer better energy efficiency due to the reduction of unnecessary data movement.
Finally, processing genome data in storage can be more scalable and cost-effective than processing-in-memory,
considering an off-the-shelf dual-socket server supports over 16 NVMe SSDs that provide tens of TB of storage
capacity to accommodate large genome data and dozens of GB/s of bandwidth, all at a 20-40 times lower
price point than DRAM [289].

Which Storage-centric Solution is Suitable? We consider two storage-centric architectures: (1) a
centralized ISP organization that directly leverages the SSD controller and its DRAM [274, , , ,

, , , ], and (2) a PWST solution with distributed and dedicated custom compute elements
deeply integrated along the SSD internal data path to do the processing [283, , , , ]. While
both successfully reduce the data volume coming out of the storage devices, they have different capabilities
and trade-offs. We argue that the second approach is more suitable for k-mer counting. The embedded
commodity SSD controller is usually an energy-efficient CPU (3-4X lower power than the host CPU) clocked
at merely several hundred megahertz [275, 52, ] and the DRAM is also usually smaller capacity (e.g.,
a few GBs), weaker (e.g., single-channel), and lower generation (DDR3). Besides that, an SSD controller
could only allocate 30% to 70% of its processing time for ISP kernels because it needs to perform other
management tasks such as garbage collection [274]. Simply executing k-mer counting logic using SSD core
results in compute-bound, offsetting the benefit of removing its I/O bottleneck.

Another motivation for adopting PWST is its better parallelism potential, which benefits both phase one
and phase two. Specifically, the key operation of phase one is scanning raw reads to extract s-mers, and
the key operation of phase two is scanning s-mers to extract k-mers from partitions. Both can be handled
independently by a pool of ‘workers’ (CPU threads or other comparable processing units). In addition, the
logic required by each phase is relatively simple (string manipulation and hashing, which are discussed in
Section 8.6.1), so we can implement a set of lightweight dedicated accelerator logic and distribute them
at different levels (e.g., SSD-channel and SSD-chip) to fully exploit parallelism. A high-end SSD with 32
channels and four chips/channel can provide 128 chip-level processing units, which is difficult to achieve

in a centralized ISP design where the application logic is handled in one place, such as the SSD controller.
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Figure 8.3: The overall architecture of Abakus.
This has been noticed in prior work [286, 283], whose design space explorations conclude that a group of
channel-level ‘weak’ processors outperforms a single ‘beefy’ SSD-level processor. Furthermore, a distributed
PWST scheme offers better performance scaling as adding more chips/channels increases both data bandwidth
and processing capabilities[286].

Finally, prior work [290] finds that SmartSSD [161] is limited by DRAM because the data from the flash
must be first written to the SSD DRAM and then read into the FPGA kernels. In comparison, PWST inserts
logic at the chip or channel level, gaining more direct access to the flash data page, thus avoiding the trip to
DRAM. k-mer counting is a stable algorithm and is unlikely to receive major updates; therefore, its need for

performance outweighs the need for flexibility.

8.4 Architecture

8.4.1 Overview of the PWST Architecture

Fig. 8.3 provides the architectural overview of Abakus for both the basic (Abakus-Basic) and the two
optimized versions (Abakus-BF and Abakus-OP), based on a standard SSD structure. Abakus contains
multiple channels, and each channel controls multiple flash chips through a flash memory controller (FMC).
The key components include an SSD controller (small CPU cores), a DRAM, and other control units for FTL
and garbage collection (not shown in the figure) along with a custom near-storage-processing unit (NSPU)
that is responsible for extracting k-mers from raw input reads and independently building partial histograms.
Each NSPU directly interfaces with the flash chip page buffer, alleviates the bandwidth pressure of the SSD
DRAM, and connects to a data buffer (SRAM scratchpad) to hold the data required for each operation. Note
that this basic design, dubbed Abakus-Basic, can only exploit chip-level parallelism. In the next section, we

describe mechanisms to integrate logic into the channel and SSD levels to extract greater performance.
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Figure 8.4: The basic two-phase hardware workflow of Abakus. Bloom filter is effective in Abakus-BF

8.4.2 Abakus-Basic Overview

Fig. 8.4 shows the design and workflow of Abakus-Basic that directly maps the two-phase algorithm onto the
SSD.

In the first phase, reads are split into s-mers that are then gathered into the same partition if they share
the same minimizer (Sec. 6.2). The raw input reads are evenly distributed to each chip a priori so that
each NSPU is able to continuously read pages containing raw inputs provided to it, generate s-mers, and
deposit them into its SRAM scratchpad. A partition tag is provided for each extracted s-mer to indicate its
destination partition. Once the scratchpad memory is full, the corresponding NSPU transfers its data (i.e.,
s-mers) to the SSD DRAM that stores the received s-mer in a reserved space called the s-mer cache that is
further divided into multiple sets, with each set storing s-mers that belong to the same partition. If a set is
full, all of its s-mers are written to its target chip based on the partition-to-chip mapping table, and the set
space is reclaimed. We generate the mapping table based on a partitioning strategy described in Sec. 8.5.
The partial partition is combined in the destination chip with those from the previous DRAM write-back to
form the final partition. Phase one concludes when every NSPU finishes its share of input reads and the
s-mer cache is emptied, with each chip storing a number of s-mer partitions as a result.

In the second phase, each chip-level NSPU reads pages that contain partitions and attempts to build one
hash table for each partition to count k-mers in that partition. We adopt hash-based counting rather than a
sorting-based approach given its more stable performance [7], and due to the fact that the hashing logic can
be reused to enable optimizations such as the Bloom filter, a feature we use in our optimized designs. Each
chip-level NSPU has a small bookkeeping data structure (~2 KB) that tracks the address of each partition.

Once the NSPU completes counting the k-mers for a partition, its associated hash table is saved/written back
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into the chip. For a large partition where its hash table exceeds the chip-level scratchpad memory at run
time, the unfinished partition and its hash table are transferred to the larger capacity SSD DRAM, and the
SSD controller takes over the work of building the hash table. Once the SSD controller completes counting
k-mer for the large partition, the hash table is written back to the chip. Note that while this basic version
executes phase one and phase two separately, similar to the CPU baseline, we later introduce a pipelined

version (Sec 8.9 Abakus-OP) as an optimization.

8.5 Partitioning Strategy

Clearly, the performance of the proposed design is bottlenecked by the number of large partitions whose
hash tables won’t fit in the chip-level NSPU’s scratchpad memory. Since large partitions need to be sent
to the SSD and processed using the SSD controller and DRAM, too many large partitions could degrade
performance. Given our ability to process multiple partitions in parallel, we reduce the number of large
partitions by dividing s-mers into a number of smaller partitions, allowing us to continue to exploit parallelism
while minimizing additional data transfer costs. In our design, we maintain a one-to-one mapping between
a minimizer and a partition, namely one partition containing all s-mers that are generated from the same
minimizer, therefore, the more the minimizers, the more partitions, and the smaller each partition will be.
For a minimizer of length m, there are 4™ minimizers (4 possible base pairs at each position). If m =9 and
we let the chip-level scratchpad size be 1 MB, for the set of genomes in our evaluation, only 0.03% to 1.04%
partitions are too large to be processed at the chip level. This percentage is expected to dwindle further with

a larger m and scratchpad memory.

The second factor that affects performance is the basis of the assignment of partitions to chips. Uneven
distribution of partitions could create a performance bottleneck similar to thread divergence resulting from
workload imbalance. However, the exact sizes of partitions are unknown until the end of the first phase.
To this end, we explore three possible mapping strategies — (1) a round-robin strategy where the partition
corresponding to minimizer 4 is assigned to chip i, (2) a random distribution scheme where any partition
can be assigned to any chip, and (3) a heuristic-based scheme that leverages the inherent ordering of all
minimizers. We observe that a minimizer with a lower ranking is likely to generate more s-mers than ones
with a higher ranking. Therefore, we assign pairs of partitions to chips where each pair contains a partition
corresponding to a low-ranking minimizer and another one corresponding to a high-ranking minimizer. Our
evaluation shows that the heuristic-based mapping has a slight performance edge compared to the random

scheme, and both outperform round-robin consistently.
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Figure 8.5: Diagram of the near-storage processing unit (NSPU).

Note that all aforementioned partition strategies in this work fully utilize the computation resources and
parallelism. The number of partitions can be calculated as 4™, where m is the minimizer size. We let m > 9,
which leads to at least 26,2144 partitions. A high-end SSD comes with 32 4-way channels (128 chips or
NSPUs). It’s unlikely to have more NSPUs than partitions. All proposed partition schemes would distribute
an equal amount of partitions (2048) to each NSPU to process. Moreover, we find out that the proposed
prediction-based scheme can further minimize the tail latency, balance workload among NSPUs, and reduce
Flash chip wear (Sec. 8.11.4).

Finally, data reduction could also improve performance. In particular, phase one shuffles input reads in
the form of s-mers that are written first to DRAM and then to a chip, wasting bandwidth if they eventually
land back on the same chip. For such s-mers, we save them directly to their respective partitions. Our

evaluation suggests that trimming off this portion of data yields a small but noticeable (7-10%) speedup.

8.6 Custom Hardware Design

We introduce custom logic in different levels of SSD to accelerate k-mer counting. Specifically, in Abakus-Basic,
chip-level NSPUs process chip-independent operations (s-mer extraction and hash table building). We also
introduce a set of custom designs at the SSD level to handle global operations or those that exceed the

capability of chip-level hardware.

8.6.1 Chip-level NSPU

Fach flash chip implements one NSPU to provide k-mer counting-related computations. As shown in Fig.
8.5, each NSPU contains three main components: (1) an s-mer splitter for s-mer extraction, (2) a Hasher
module to compute hash values for given k-mer, and (3) an SRAM that stores intermediate data. In phase
one, the s-mer splitter is activated to iteratively compare the incoming k-mer with the stored minimizer. The

k-mer is concatenated and cached in the s-mer buffer. When the next minimizer is detected (by a k-mer
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comparator), the cached s-mer is sent to the SRAM. The hasher module implements n = 8 SeaHash [291], a
lightweight hashing scheme with low collision probability, with different seeds to calculate hash values. The
hasher is activated during phase two to support either the hash table or the Bloom filter, depending upon the
memory mapping in SRAM (shown in Fig. 8.6). While operating in the hash table mode, the k-mer string
and the counting value (CNT) are concatenated in one row with w-bit width, with the log, d-bit address
truncated from the hash value. The Bloom filter mode needs bit-level data granularity, so an additional
log 2w-bit address is added to the address. In this case, the w-bit word is first fetched from SRAM by the

log, d-bit hash, and the target bit in the row is indexed by the remaining log 2,,-bit hash.

8.6.2 SSD-level Processing

While our design philosophy avoids heavy usage of SSD-level resources, we still need customized SSD-level
processing to efficiently support end-to-end k-mer counting. There are multiple use cases of SSD-level
processing in the Abakus workflow. First, phase one needs to merge s-mers from different chips for each
partition which is then written back to the corresponding chip. Second, during phase two, we need SSD-level
processing for a large counting table that cannot fit in the low-level (e.g., chip-level) scratchpad. To support
such operations, Abakus adds custom control logic and buffer at the SSD level and repurposes the SSD
DRAM to store various data structures.

In conventional SSD, the SSD-level DRAM primarily acts as a write cache to hide the latency of costly
SSD write. In Abakus, we re-purpose it to store the metadata as well as the global intermediate results. In
phase one, it stores an s-mer cache and an s-mer mapping table to merge s-mers from different chips and
track the locations of partitions for different s-mers. When chip-level NSPUs extract s-mers and send them
to the SSD-level, the Abakus front-end stores the received s-mers in the corresponding s-mer cache set and
writes the buffered set back to the chip if it is full as described earlier. In phase two, the SSD DRAM serves
as backup storage for counting hash tables when a partition requires a large hash table that cannot fit in the
low-level scratchpad. Since all chips share the DRAM, the SSD-level counting for different partitions needs

to be serialized. Therefore, too many large hash tables could result in a performance loss.

8.7 Abakus Optimizations

Abakus-Basic significantly improves the execution of k-mer counting. However, its performance can be
bottlenecked by the capacity of the chip-level scratchpad. In this section, we first describe an optimized

design, Abakus-BF, that integrates a Bloom filter per NSPU leveraging the characteristics of the k-mer data
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Figure 8.6: Mapping for Hash Table and Bloom Filter modes

set, and then propose a more aggressive design, Abakus-OP, which leverages a set of additional channel-level

and SSD-level NSPUs to aggressively overlap operations to merge two k-mer counting phases into one.

8.8 Abakus-BF

8.8.1 Abakus-BF Motivation

As alluded to in the previous sections, a Bloom filter can optimize the performance of k-mer counting since low-
frequency k-mers can be disregarded (as is typical in most use cases [59, , , , , , , , 250]).
The exact frequency threshold varies, but it is safe to assume that single-occurrence k-mers is always erroneous
and can be discarded. A Bloom filter is a space-efficient data structure that can be used to determine if an
item has appeared previously with a small false positive rate but with zero false negative rates. It consists of
n hash functions and a bit vector. When it encounters an item, it computes n hash values indexing into n
positions of the bit vector. If all indexed bits are ones, then it assumes that it has probably seen the item. If
some indexed bits are zeros, it assumes that it has definitely never seen the item and can be inserted into the
filter by flipping those zero bits to ones. In the context of k-mer counting, we integrate a Bloom filter to
preemptively filter out as many single-occurrence k-mers as possible before they make it to the hash table.
The procedure is to query the Bloom filter for each extracted k-mer before inserting it into the hash table. If
the Bloom filter returns true, then the k-mer is inserted into the hash table. Otherwise, it is inserted into
the Bloom filter. In other words, only k-mers that appear more than once are inserted into the hash table.
Filtering out single-occurrence k-mers can be immensely helpful in terms of reducing the hash table size for
each partition by reducing the number of keys because single-occurrences k-mers make up a large portion of
k-mer patterns (e.g., 98.32% for the Thaliana genome). See Table 8.2.

Notice each k-mer pattern can only appear in one specific partition, thanks to the minimizer-based
partitioning strategy. Since each partition is assigned to a specific chip/NSPU, and no partition is split to

more than one chip, there won’t be any k-mer patterns that appear in more than one private Bloom filter.
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Figure 8.7: Abakus-OP Workflow

Determining when, where, and how to incorporate a Bloom filter into Abakus is a large design space
exploration problem. In this section, we introduce one such solution (Abakus-BF) where a set of Bloom filters
are instantiated in phase two at the chip level. In the next section (Sec. 8.9), we discuss another variation

where the Bloom filters are used earlier.

8.8.2 Abakus-BF Overview

Fig. 8.4(b) illustrates the workflow of phase two in Abakus-BF. Most of the features of Abakus-Basic are
retained, with the additional step of probing Bloom filters before inserting k-mers into the hash tables during
phase two. Note that Abakus-BF maintains a separate Bloom filter for each partition instead of keeping
a centralized one. This is because a big Bloom filter that tracks the single k-mers in all of the partitions
would be too large to fit in the chip-level scratchpad, so it has to be kept in the SSD DRAM at run time.
Subsequently, all of the chip-level NSPUs have to access the DRAM to perform their Bloom filter operations,
creating a bottleneck. Alternatively, if each partition can maintain its own private (albeit smaller) Bloom

filter, then each chip-level NSPU can be fully independent, preserving the parallelism.

8.8.3 Estimate the Bloom filter Size

Building an effective Bloom filter for each partition entails solving several issues. The first is to determine
an appropriate false positive rate P to find an optimal size of the bit vector without taking up an excessive
amount of chip-level scratchpad memory. In Abakus-BF, both the Bloom filter, specifically its bit vector, and
the hash table have to be stored in the chip-level scratchpad memory. As previously stated, a Bloom filter
has a false positive rate, which means that it might incorrectly determine that a k-mer occurs multiple times,

even though it occurs only once, due to which a single-occurrence k-mer might slip through the Bloom filter
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and get added to the hash table, incurring unnecessary hash lookups and potentially making the hash table

too large to fit inside the scratchpad memory.

The interplay of the bit vector size m, false positive rate P, and the number of items to be inserted into

__ nxInP
(In2)2 "’

the Bloom filter n (i.e., number of unique k-mers of a partition) can be captured in the formula: m =
which indicates that the false positive rate declines as the bit vector size increases, given a certain number
of elements that need to be inserted to the Bloom filter. We first vary P from 1% to 25% and empirically
measure the expected Bloom filter and hash table sizes for all partitions of the five selected input genomes,
assuming n for each partition is known. We discover that as P decreases, the hash table sizes decrease because
more single-occurrence k-mers are filtered out. But at the same time, the Bloom filter size increases because
a more powerful Bloom filter requires a larger bit vector. A sweet spot is around P = 5%, where both the
bit vector and the hash table can be fit inside the chip-level scratchpad memory for the largest number of
partitions per genome. Another possibility is to develop a sophisticated control unit to dynamically adjust an
optimal P for each partition based on variables such as n, scratchpad memory, and the performance of the

previous Bloom filter, although it may entail additional latency and control complexity.

8.8.4 Estimate Partition Cardinality

The next challenge is to estimate n, the number of unique k-mers, for each partition. A naive approach would
be to scan each partition and add its unique k-mers into a dictionary prior to phase two. However, this
approach is extremely expensive in terms of space and latency and, moreover, entails performing redundant
operations. Our solution is to leverage a cardinality approximation algorithm called Hyperloglog [292] that
stems from its basic form called Loglog which uses a counter x to track the longest streak of trailing (or
leading) zeros of the hashed values of all the elements (i.e., k-mers) in a set (i.e., partition). The total number
of unique elements in the set is then estimated as 2*. This algorithm only needs a few bits to count tens of
billions of unique elements, but it tends to have large variances, especially with smaller sets. Hyperloglog
improves its accuracy using additional counters and other statistical measures to remove outliers. To integrate
partition cardinality estimation into Abakus-BF, we store the counter bits per partition inside the SSD
DRAM. The SSD core performs the Hyperloglog computation for that s-mer set before it is evicted to the
target chip. This adds an insignificant overhead in execution time (< 1%) because the SSD core is mostly
idle and there is enough surplus computing power to spare (Abakus uses the SSD core very conservatively).

The additional storage overhead for counters is less than 14 MB for all partitions.
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8.9 Abakus-OP

8.9.1 Motivation

The performance of Abakus-Basic and Abakus-BF is primarily limited by the chip-level SRAM scratchpad
memories (512KB in current design). If a partition’s Bloom filter and/or hash table is too large, then the
data and computation need to be transferred to the SSD core and the DRAM to handle (Sec. 8.4.2), creating
additional data movement and resource contention. Fitting a larger scratchpad at the chip level might be
challenging due to potential power delivery issues and area overheads. Previous works have explored the
placement of logic and memory at the channel and SSD levels [283, , ], trading parallelism for better
processing power and area budget [283, ]. In Abakus-OP, we propose keeping the chip-level NSPU phase
one logic unmodified but moving its phase two logic into the SSD and channel levels. Specifically, Abakus-OP
adds an SSD-level SRAM scratchpad memory (SSD S.pad in Fig. 8.3) to store Bloom filters and a series of
channel-level NSPUs and their SRAM scratchpad memories for hash tables. With the larger capacity of the
SSD and channel-level scratchpad memories, nearly all of the partitions’ Bloom filters and hash tables can be
accommodated without resorting to the DRAM.

Further, recall that in both Abakus-Basic and Abakus-BF, the s-mers partitions are written to the chips
in phase one and read out again in phase two. If the partitions are converted to hash tables right away, we
can skip the step of storing them back and eliminate the cost of reading the partitions out. To this end, in

Abakus-OP, we orchestrate the operations pertaining to the two phases to overlap in a pipelined fashion.

8.9.2 Abakus-OP Overview

Figure 8.3 illustrates the architecture, and Figure 8.7 illustrates the workflow of Abakus-OP, which represents
our most aggressive Abakus variation, where the custom logic is distributed and integrated along the SSD data
path at all levels. At the SSD level, there is a large (32 MB in the current design) SRAM scratchpad memory
that buffers Bloom filter(s) for one or more partition(s), and at each channel level, there is a scratchpad
memory (swept from 256KB to 32 MB for a sensitivity study in Sec. 8.11.4) to buffer hash tables. The chip
level NSP is simplified to only have the logic that extracts s-mers, as the counting is performed at the channel
level. We keep the total aggregated chip-level scratchpad memory of each channel at the same capacity as
that of channel-level scratchpad memory.

The chip-level NSPUs extract s-mers and send them to the SSD DRAM to aggregate partitions. This
step is exactly the same as that in Abakus-Basic and Abakus-BF. Once a set that contains s-mers for a
partition is full, Abakus-OP loads the Bloom filter for that partition into the SSD scratchpad memory from

the chip to filter out single k-mers by breaking each s-mers down to a bag of loose k-mers used to probe the
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Bloom filter. The SSD-level scratchpad typically has enough capacity to simultaneously cache more Bloom
filters than the number of channels, and further increasing its size offers no perceivable speedup. k-mers that
passed its Bloom filter will be directed to the channel-level NSPUs for hashing, and its hash table is cached at
the channel-level scratchpad that can store multiple hash tables for different partitions. As more s-mer sets
corresponding to different partitions arrive, some of the cached Bloom filters in the SSD-level scratchpad and
the hash tables in the channel-level scratchpad need to be evicted to make room. We once again leverage the
total ordering of the minimizers to keep the “hot” ones in the scratchpads and write those corresponding to
lower-ranking minimizers to the chips. This replacement scheme is highly effective because the lower-ranking
minimizers often generate smaller partitions, and their s-mer set only needs to be evicted once, with their

Bloom filters, and hash tables also used only once.

Once all s-mer sets in the DRAM are drained, the entire k-mer counting process terminates. Note that
the partitions are not saved and read back out in the process. However, we can still occasionally encounter
large partitions whose hash table memory requirement exceeds that of the channel-level scratchpad, even
after passing the Bloom filter. When this happens, the bag of loose k-mers created from the Bloom filter
probing and the corresponding hash table is temporarily saved to the chips to be later processed using the
SSD core and the DRAM. While this does negatively impact the performance of Abakus-OP due to the
additional data movement, it is also extremely rare. Of all the genomes that we evaluated, with a 4 MB

channel-level scratchpad setup, the worst case has only seven large partitions that need separate handling.

8.9.3 Abakus-OP Estimate Partition Cardinality

Although the separation of phase one (s-mer extraction at chip level) and phase two logic (k-mer counting
at channel level) allows for a pipelined implementation, the partition k-mer cardinality estimation, which
is essential to sizing the Bloom filters still remains unaddressed. In Abakus-BF, this step is piggybacked
with the s-mer set writeback in phase one, and Bloom filters are only later instantiated in phase two. But in
Abakus-OP, s-mer sets are used to build the hash tables right away, leaving us no chance of finalizing the
unique k-mer count for each partition. To this end, we add an additional stage called phase zero, where each
chip locally scans reads to estimate cardinality information and sends the results (i.e., Hyperloglog counters)
to the DRAM to aggregate a final estimation. The resulting data footprint is small since only the integer

counters are communicated, rather than the actual s-mers.
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Table 8.1: Area and power breakdown.

Component Area Leakage Dynamic
p (mm?) Power(mW) Energy(nJ)

k-mer splitter 0.004 0.001 0.001

SeaHash x8 0.027 0.001 0.004

SRAM 512KB 0.48 63.5 0.008

SRAM 2MB 1.71 617.7 0.017

Abakus-Basic 0.51/chi Peak Power (W)

(128 x 512KB SRAM/chip) O/ P 8.6

Abakus-BF 0.51/chi Peak Power (W)

(128 x 512KB SRAM/chip) : p 8.6

Abakus-OP Peak Power (W)

(32 x 2MB SRAM /channel) | [-83/channel ‘ 20.0

8.10 Methodology

Baseline. We compare the performance of Abakus against several existing platforms for k-mer counting,
including multi-core CPU, GPU, and previous DIMM-based accelerators [273]. For CPU and GPU baselines,
we use a state-of-the-art disk-based k-mer counting tool, Gerbil [7], that provides the best performance
and memory efficiency among other tools [265]. The DIMM-based accelerator, NEST [273], adds parallel
processing elements for k-mer counting in the rank-level of LDDIMM. NEST only accelerates the counting
phase (similar to phase 2 in our algorithm) when the DRAM can fit the whole original read and the counting
table. For a fair comparison, we adopt 128GB of memory (1 channel and 2 DIMMS) which can hold all
tested datasets. We use the timing and energy values reported in the NEST paper to build the roofline model
which takes in the k-mer statistics for performance evaluation. We also implement a roofline evaluation
for Abakus-OP on a commercial product (SmartSSD [161]) which has an SSD-level FPGA accelerator with
DDR4 SDRAM@2400Mbps, consuming 25W power in total. We assume SmartSSD has infinite (unrealistic)
compute throughput and DRAM capacity and evaluate the performance mainly based on internal SSD and

DRAM bandwidth.

The evaluation is conducted on a server with Intel i7-11700K CPU and 64GB DDR4-2400 RAM and
NVIDIA RTX 4090 GPU. We measure CPU and GPU energy consumption using Intel Power Gadget and
nvidia-smi. The equipped SSD is SK Hynix Gold P31 NVMe SSD with 2TB size and 3D TLC. It is an
integrated PCle 3 x4 bus and LPDDR4-4266 DRAM to realize a peak 3.5GB/s sequential read rate. For a
fair comparison, we follow a similar methodology described in a prior in-storage acceleration paper [283] for a
simulated host baseline using the same SSD specifications as Abakus. Specifically, we collect the real SSD
traces on the baseline systems and feed the collected traces to our simulation infrastructure. The performance
of simulated CPU and GPU baselines are 7.6% to 12.8% faster than the performance measured on the real

machine.
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Table 8.2: Input Genome Datasets (Default k = 28)

[ Dataset | Size (GB) | # 28-mers | # Unique [ # Single |
Balbisiana 91 20.5 billion 965.7 million 518.4 million
Crassa 23.3 15.7 billion 15.0 billion 14.8 billion
Gallus 28 6.3 billion 1.4 billion 479.2 million
Thaliana 17 8.9 billion 8.4 billion 8.3 billion
Vesca 13.5 5.8 billion 1.8 billion 1.4 billion
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Figure 8.8: The overall performance and energy across different platforms, genomes, and k sizes.

Workloads. We evaluate five genome datasets from different species: Balbisiana, Crassa, Gallus, Thaliana,
and Vesca (see Table 8.2), that are large enough to sufficiently exercise all hardware components in Abakus.

All datasets are downloaded from NCBI [293] by entering their SRA codes from Gerbil [7].

Simulation Infrastructure. We model the performance of Abakus in a modified, trace-driven, state-of-
the-art SSD simulator, MQSim [52]. We implement several new SSD commands in MQSim to simulate read,
write, and k-mer counting computation in the chip and the channel level. We also implement a new DRAM
cache mode to simulate the behavior of SSD DRAM for k-mer counting. We first collect k-mer traces of Gerbil
running on the CPU workstation, as well as the statistics of each partition, and then sweep parameters relating
to various Bloom filter setups, partitioning strategies, Hyperloglog parameters, and NSPU configurations
including scratchpad memory sizes, to generate detailed traces that feed into the custom MQSim simulator
for performance modeling. We note that our simulation platform based on MQSim [52] simulates end-to-end
behaviors of SSD requests, including the host, the device, and host-device communication (e.g., PCle bus).
Table 8.1 summarizes the parameters for Abakus. We assume that the SSD has 32 channels and each channel
has 4 chips by default. We use the triple-level cell (TLC) technology for flash chip, which features 60us
read latency and 700us write latency for an 8KB page [294, 295]. The configuration of NSPU and buffer
depends on the design. The NSPU is implemented using Verilog HDL and synthesized using Synopsys Design
Compiler using TSMC 40nm technology node. The clock frequency is 200 MHz and the design is scaled to
22nm. Timing and energy values of SRAM are extracted from CACTI-3DD [156] in 22 nm.
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8.11 Results

8.11.1 Area Overhead Analysis

Table 8.1 shows the area and power breakdown for NSPU and the three Abakus designs. The ASIC components
of Abakus-Basic and Abakus-BF are implemented in the flash chips, resulting in 0.51mm? additional overhead
for each chip. Abakus-Basic and Abakus-BF have the same total area of 65.9mm? while Abakus-OP (58.6mm?)
is slightly smaller because 2MB SRAM has higher area efficiency than 512KB SRAM. We observe that
state-of-the-art flash chips [296, ] have over 120mm? total area, and around 10% of the area is reserved
for peripheral circuits. Thus Abakus-Basic and Abakus-BF have around 4% area overhead for each flash chip.
For Abakus-OP, the overhead is negligible since the 2MB SRAM is implemented in FMC. Although we lack
the resources to model the exact area of FMC, we note that LDPC ECC [298], a module implemented in
FMC, has a comparable area with 2MB SRAM. Therefore, we believe that all three Abakus variants are

practical for manufacturing and have a minor impact on storage density.

8.11.2 Overall Performance and Energy Efficiency

Figure 8.8 shows the overall performance and energy consumption across the different platforms. All Abakus
architectures adopt 32 SSD channels where each channel consists of 4 chips. We assume the same amount of
distributed NSPU SRAM scratchpad (64MB) in all architectures for a fair comparison. Specifically, both
Abakus-Basic and Abakus-BF have a 512KB scratchpad in each chip, while Abakus-OP features a 2MB
scratchpad in each channel. We find that our most aggressive design, Abakus-OP, is 8.38%, 6.95x, and
2.32x faster and consumes 15.22x, 19.93x, and 3.23x less energy than Gerbil CPU, Gerbil CPU+GPU, and
NEST respectively. As compared to SmartSSD [161], Abakus-OP is 3.47x faster and consumes 2.18x less
energy. The speedup over NEST is more significant for larger k£ than smaller k, demonstrating its substantial
scalability benefits. We also observe that Abakus-OP significantly improves the performance of the naive
design (Abakus-Basic) and its optimization (Abakus-BF), outperforming them by 2.57x and 1.76x while
consuming 0.98x and 1.66x energy respectively since the power of each scratchpad memory does not linearly
scale with capacity.

We make three major observations regarding Abakus’s performance in relation to its input data char-
acteristics. First, Abakus-BF improves upon Abakus-Basic the most when there are a large percentage
of single-occurrence k-mers, as evidenced by Crassa and Thaliana genomes when k = 28 (See Table 8.2).
This is because Bloom filters reduce the size of each partition’s hash table by preemptively removing the

single-occurrence k-mers, and the number of large partitions to be processed using SSD-core and DRAM



Abakus: Accelerating k-mer Counting With Storage Technology 150

= Flash Read = Flash Write DRAM Access ®HComputation
Abakus-Basic Abakus-BF Abakus-OP

1 - - 1 - 1
0.8 I I I 0.8 I I I I 0.8 I
0.6 0.6 0.6
0.4 0.4 0.4
0.2 I I I I I 0.2 I I I I 0.2 I
| n = ||
‘)Q‘b

0 0 0
d> > D Qd Qo Q4 > > Qo < > >
S 3 O 3 S N (9
@Qd’% S & @"Qc}”% N ¢ x%"oo*"% N e
& < & < & S

Figure 8.9: Performance breakdown for the three Abakus designs.

(Sec. 8.4.2 and 8.6.2), resulting in an overall reduction in the number of Flash writes and DRAM accesses. In
fact, Abakus-BF only performs marginally better than Abakus-Basic when k£ = 14 because the percentage
of single-occurrence 14-mers per partition is low (2~3%) and all partitions are small enough to fit in the
chip-level scratchpad. Second, on workloads that generate large s-mer partitions, such as Balbisiana and the
Crassa, where a large number of Flash writes is required, Abakus-OP significantly outperforms Abakus-BF
and Abakus-Basic by removing the latency spent on saving the s-mer partitions. In addition, for these
workloads, their resulting k-mer histograms, which can be estimated using #_Unique - #_Single k-mers in
Table 8.2, are rather small, further reducing the number of Flash writes, providing a substantial speedup.
Third, while Abakus-OP outperforms other Abakus setups as well as prior proposals in most cases, it might
suffer from data explosion and workload imbalance for some input, for example, Vesca at k=28. This is due
to one large s-mer partition, which generates an excessive amount of loose k-mers for the local channel-level
scratchpad to handle (Sec 8.9.2), resulting in a significant increase of read/write commands that are handled

by one chip.

8.11.3 Performance Breakdown

Fig. 8.9 shows the performance breakdown and bandwidth utilization of three designs. We measure the
execution time spent on SSD DRAM operations, chip read, chip write, and NSPU computation. As shown
in the Figure, Abakus-OP has the highest utilization of NSPU, where the computation takes up 59.3% of
execution time on average, more than doubling the utilization rate of Abakus-Basic and Abakus-BF that
spends more time on costly Flash write operations which are significantly reduced in Abakus-OP via hardware
Bloom filters, pipelined operation of the two phases, and an overall reduction in the DRAM access latency

due to fewer occurrences of large tables in the DRAM.
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Figure 8.10: The performance of different partitioning strategies.

8.11.4 Sensitivity Analysis
Partition Allocation

We first analyze the effect of different partitioning schemes for Abakus, including a naive round-robin scheme,
a fully random scheme, and a scheme using the prediction-based heuristic method (See Sec. 8.5). Recall
that the partitioning scheme has an impact on data distribution (e.g., s-mers, Bloom filters, and hash tables)
and ISP operations, and an unbalanced partitioning may lead to long tail latency. Fig. 8.10 shows the
result of this exploration. We observe that the random scheme uniformly outperforms the round-robin (by
1.65-2.18x%) for all values of k. The prediction-based heuristic scheme is 1.87x, 2.36x, and 1.97x faster
than the round-robin scheme when k is set to 14, 21, and 28, respectively. While the prediction-based
scheme overall only outperforms the random scheme slightly, it does offer the benefit of distributing the data

more evenly among chips, potentially limiting Flash wear. Thus we default the partitioning strategy to the

prediction-based scheme.

SSD Scalability

We scale the number of SSD channels from 8 to 32, which also increases the parallelism by 4x. We observe that
the 16- and 32-channel architectures are 1.63x and 2.44x faster than the 8-channel architecture, respectively.
The performance improvements due to the increased hardware parallelism vary across different workloads,

but overall, Abakus achieves good scalability because of its ability to limit contention for high-level shared

resources.

Buffer Size

Fig. 8.11 explores the performance sensitivity due to varying the SRAM buffer size. As compared to 4MB,
8MB, 16MB, and 32MB channel-level buffers, we observe that the 2MB buffer is 1.03x, 1.08x, 1.17x, and
1.43x slower. However, if the buffer size is larger than 4MB, the custom hardware requires more than 42.7W

power and 104.2mm? area in a 32-channel SSD. At the same time, 2MB is 1.19x faster than 1MB while only
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requiring 19.8W power and 54.6mm? area overhead. Therefore, 2MB channel-level buffers provide a good
balance of performance and area/power efficiency.

Overall, Abakus-OP with a smaller channel-level scratchpad suffers from performance degradation because
it cannot efficiently handle large partitions due to a larger number of additional chip read/write commands
generated for loose k-mers after Bloom Filter probing (Sec 8.9.2). However, smaller scratchpad designs can
exhibit better area/power efficiency than larger scratchpad designs. For example, Abakus-OP with 512KB
scratchpad per channel-level NSPU is 1.98x slower but only requires 15.47mm?/2.03W area/power overhead,
which is 3.53x/9.73x better than its 2MB counterpart. Furthermore, 512KB configuration is only 4% slower
than its 2MB counterpart in three out of five workloads. This observation shows the possibility of further

reducing the overhead of Abakus while maintaining the acceleration benefits for some workloads.

8.12 Discussion

Impact on Error Detection and Correction. A major concern of ISP and PWST is flash memory errors.
The error detection and correction mechanisms are typically located outside the flash. For example, there is
usually an ECC module at each channel-level FMC to ensure the data integrity of a page [299, , , ]
However, the chip-level NSPUs in Abakus tap into the flash chips for fast data access which means the error
correction is skipped. Providing an ECC module per chip-level NSPU can be challenging. We argue this
should not present an issue for Abakus for several reasons. First, most bioinformatics algorithms, including
k-mer counting, are inherently error-tolerant. In fact, there have been accelerator designs using a probabilistic
data structure called counting bloom filters to approximately counting k-mers [273, ]. In general, k-mer
counting algorithms do not have to be exact for most use cases [300]. Second, the raw NGS reads already
have an average error rate of 0.1%, meaning there is one erroneous base pair in every thousand base pairs,
which is much worse than the raw bit error rate of a flash chip (in the order of 10 [301]). Third, we simulate
a process of counting 28-mers of the E.coli genome without ECC by randomly flipping bits based on the flash
raw bit error rate [301]. We discover that roughly 7% of 28-mers are miscounted, but over 90% of them are
off by only one or two. We then input this miscounted 28-mer set into a DBG assembler [247] and get no
assembly score degradation, showing that ECC is likely not needed for the specific case of k-mer counting in
storage.

Wear-leveling and Write Amplification. As the initial effort of enabling a PWST k-mer counting
algorithm, Abakus does not lead to more severe endurance issues than the CPU baseline. First, the amount
of data that needs to be written to the chips are smaller (Abakus-OP) or at least equal to (Abakus-Basic

and Abakus-BF) that of the CPU baseline. Second, our partitioning scheme 8.5 ensures that each chip
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Figure 8.11: Exploration of different buffer sizes for Abakus-OP.

handles a similar amount of writes for s-mer partitions and hash tables. Third, writes of s-mer partitions
and hash tables only access sequential data once in the SSD chip, making the offline remapping an effective
and simple wear-leveling scheme. Write amplification happens when an SSD writes more data to disk than
the host submits. Counting k-mers in Abakus would not cause significant write amplification since the
intermediary partitions can be written back to the chip in any order. Abakus simply appends a set of s-mers
from SSD-DRAM to a chip. Thus each write block can be written to an SSD chip without extensive meta-data
management to erase and copy blocks of data.

Interfacing/coordinating with SSD internals/frontend Similar to how a GPU-based DNN accel-
erator would not need to support gaming simultaneously, Abakus is intended to function primarily as an
accelerator /co-processor rather than a data storage unit; therefore its SSD internals does not handle requests
from other applications while it is processing k-mer counting, and data pages can be safely pinned in the
chip page buffers. Abakus interact with its SSD frontend (i.e., FTL and garbage collection) minimally when
counting k-mers because the physical addresses are statistically determined by the partitioning algorithm,
which happens to also support wear-leveling to a certain degree, avoiding the necessity of designing a custom

garbage collector.

8.13 Conclusion

This work proposes Abakus, a set of hardware accelerators for k-mer counting using emerging PWST
architecture. The key idea is to integrate a set of custom hardware logic at the chip, channel, and SSD levels
to take advantage of the internal bandwidth and parallelism potential of a modern SSD. By exploiting real
DNA sequence characteristics, we optimize our design with a set of distributed bloom filters to aggressively
prune data volume. Furthermore, we propose several hardware-aware algorithm-level modifications to the

classic two-phase algorithm to fully exploit the benefits of PWST. These optimizations synergistically offer
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the combined benefit of speedups and energy savings over the state-of-the-art CPU+GPU system by 6.95x
and 19.93x.



Chapter 9

New Hardware Trojan Threats in
Memristor-based Neuromorphic

Computing Systems

9.1 Introduction

Deep neural networks have been extensively employed in several applications. However, their execution on
traditional architectures has shown to be inefficient due to their inherently memory-bounded nature, a problem
that has been exacerbated by rapidly growing model and input data sizes. For example, data movement
in GoogLeNet accounts for roughly 70% of the overall energy consumption [14]. In recent years, emerging
non-volatile memory (eNVM)-based neuromorphic computing systems that emulate biological computing
with artificial neurons in the analog domain, have gained traction, due to their high energy efficiency and

throughput advantages [302]. Their security implications, however, remain largely unexplored.

The process of setting up a trusted end-to-end production line for eNVM-based neuromorphic accelerators
can be prohibitively expensive, especially considering frequent algorithmic updates and tuning of models.
This has paved the way for a decentralized design-manufacturing approach that involves a coordinated effort
among multiple stakeholders. However, it also inevitably invites exploitation from bad actors to stealthily
inject malicious hardware Trojans into the product [27]. Semiconductor supply chain attacks are critical
threats that can disrupt the operations of high-value mission-critical systems such as military, financial, and

medical infrastructure.

155
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This work is the first to demonstrate the feasibility of carrying out a hardware supply chain attack against
analog eNVM neural accelerators to leak IP-sensitive synaptic weights. We discuss potential Trojan insertion
points within the supply chain and due to the lack of openly available commercial implementations, we dissect
a generic eNVM accelerator derived from recent works to identify vulnerable probe points. The crux of this
work is the design and stealthy placement of a neuron-suppressing hardware Trojan that can be reliably
triggered by a colluding adversary. The findings from this research are expected to foster the design of such
eNVM neural accelerators with a security focus.

There are two major motivations for such a model extraction attack that aims at cloning a victim model
of similar performance without going through the expensive training process. First, the synaptic weights
of a neural network are considered core IP as they separate a properly trained network with high accuracy
from a poorly trained one. Second, stealing weights is increasingly more economical than training. To obtain
a model with competitive performance, typically, a large set of high-quality labeled data and proprietary
training algorithms are required [303]. Further, even with access to proprietary training data, the process of
training can take weeks and is likely to worsen with model sizes, affecting the time-to-market [304].

The key to our attack is the fact that synaptic weights are encoded as conductances of eNVM devices
in the analog eNVM device array, and the total current representing a dot-product result depends on the
synaptic weights. This allows for the isolation of the switching activity of a single neuron, enabling the

sequential extraction of all the synaptic weights using power side-channel analysis while evading detection.

9.2 Background

Analog eNVM Neuromorphic Devices. Fig. 9.1a illustrates the mapping of an MLP layer onto an
eNVM device. All incoming synaptic weights of the highlighted output neuron (Wg 1, W11, Wa 1) are stored
as distinct conductances (Go 1, G1,1,G2,1) of the eNVM cells along the same column. Suppose the inputs to
this neuron are encoded as voltage levels applied to the wordlines (Vo, V1, V3), then each cell contributes a
small current of V; x Gj; Ampere to the bitline. By Kirchoff’s Law, the total current passed to the neuron
circuit at the end of the bit line is the sum of the three partial currents generated at each cell, representing
the dot product of the input vector and the weight vector of a single neuron.

Synaptic cores (SC) are the fundamental building blocks of a neuromorphic architecture (Fig. 9.1b).
They consist of a 2D synaptic device array that stores a weight matrix in the form of conductance levels
and supporting peripheral circuits. An additional access transistor is inserted per eNVM cell to mitigate the
current sneak-path problem (Fig. 9.1d). During the weighted sum operation, wordlines (WLs) are switched

on in parallel, thereby selecting multiple rows of eNVM cells. Inputs are provided as serial bit vectors to
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Figure 9.1: Synaptic Core layout[8] and Neuron Architecture.

the memory cell and the generated currents on the selectline (SLs) represent weighted sums that propagate
toward the neuron peripherals. The results of the matrix-vector multiplication are first converted by a series of
ADCs (described next) to digital values, then sent to the neuron peripherals for activation, in turn producing
the results bit vector to be sent to the next SC to select a set of BLs, subsequently activating neurons of the
next layer. To save area, both ADC and neuron peripherals are shared among artificial neurons through a

multiplexer [302, 19].

Neuron ADC. Fig. 9.2a shows a generic Integrate-and-Fire ADC, which consists of a thermometer
code generator and a Thermometer-to-Binary encoder. Such a design is popular as it provides good energy
efficiency [8, 302, 305]. Since the resulting cumulative current is to be integrated as a potential that represents
the weighted sum, the integration is carried out as a potential buildup on a capacitor (Ceoimn), and as the
potential crosses a threshold value (Vij,.), the neuron fires in the form of a spike, causing an instantaneous
discharge of the potential buildup to a predetermined base potential (V;). The circuit designed for generating
spikes is highlighted within the dashed lines and involves an inverter with a reset element that allows for
instantaneous discharge and regeneration of a spike potential. Fig. 9.2b depicts the transient waveform
showing the potential buildup on the capacitor up to Vi, and discharge to V4. Fig. 9.2c shows the resulting

train of spikes.
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Figure 9.2: Schematics and waveforms that depict (a). Generic Integrate and Fire Neuron model;
transient signals that exhibit (b). current integration, and (c). spiking pattern.

9.3 Related

Related Work. An adversary with physical access to an eNVM device can probe it to extract the weights

directly [306, , ]. However, such an attack is destructive as probing one cell could damage adjacent

, 308].

On the other hand, stealing weights online is superior as it is non-destructive and cannot be mitigated by

ones [306]. Moreover, encrypting data before the system powers down is an effective countermeasure |

encryption because, at any time, there is at least one layer of synaptic weights remaining in plaintext [308].
Rajamanikkam et al. [307] outline two attacks to compromise the availability of neuromorphic devices. The
first makes use of current sneak paths to mount a fault injection attack by sending malicious inputs and
leveraging leakage currents to alter synaptic weights, resulting in incorrect inference outputs. This can be
mitigated by inserting gating transistors. The other attack embeds hardware Trojans to degrade classification
accuracy, as opposed to our attack which steals IP-sensitive model weights, which is of greater interest because
properly trained weights are usually hard to obtain due to lack of high-quality and proprietary training data

and algorithms [303].

9.4 Threat Model

Attacker Intent. The attacker intends to extract the synaptic weights of a neural network from an analog
neuromorphic system in two phases. First, a Trojan is inserted at the hardware design or fabrication stage.
Second, the synaptic weights are extracted at the NN inference stage by activating the Trojan such that the
resulting power trace can be attributed to the requested synaptic weight. The attacker at each of these phases

might not necessarily be a single entity, but could involve two separate colluding malicious parties. A detailed
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Figure 9.3: Trusted and untrusted parties in the supply chain.

overview that depicts a product development life-cycle and the potential parties involved in the two phases of
the threat model is shown in Fig. 9.3. The malicious entities in the supply chain do not possess the intricate
details of the NN models (including weights) but have the ability to embed a Trojan, given the distributed
nature of modern IC supply chains. A colluding entity could then trigger the Trojan post-deployment using a
known activation code and then steal sensitive IP information. Alternatively, a rogue engineer in the supply
chain can cause damage by simply publishing the Trojan activation code without explicitly colluding with
another player. Either way, even if a trusted entity is tasked with securely programming the synaptic weights
into the device, it would still remain vulnerable to a Trojan placed in the supply chain.

Trojan Insertion Points. We consider three possible insertion points. First, the Trojan could be
injected at a very early stage (e.g., in the HDL code). However, this might stand out under scrutiny during
post-design verification. Second, the Trojan could be placed in open spaces in the GDSII layout file after
the circuits have been placed and routed following the model described in [27]. Third, an attacker from an
untrusted fab house could inject the Trojan, which entails reverse engineering the victim wires to tap into,
leveraging the knowledge of algorithms used in floor-planning, placement, and layout tools, which has been
shown to be feasible [309].

Grey-box Model. As is common with conventional grey-box models [310], we assume that the attacker
is aware of the neural network structure, such as the number of layers, but not the IP-sensitive model
parameters, i.e., synaptic weights. Many production ML services leverage well-known neural networks whose
structures are publicly available (e.g., ResNet, VGG-16/19, etc.) [303], due to which, all entities along the
supply chain would have access to the model structures. However, the weights learned during the training
process is often proprietary. We also assume that a malicious entity with access to the Trojan trigger code

has the ability to buy such a device from the market and activate the Trojan by sending arbitrary inputs to
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covertly extract the synaptic weights through a power side-channel attack [310, 27]. We note that leaking
synaptic weights in the absence of a Trojan is likely more challenging as it entails attributing signal leakage

to particular weights.

9.5 Attack Overview
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9.5.1 Feasibility of Exploitation

The key insight to this attack is that the dot-product results are represented as analog currents, and the
strengths of those currents are directly correlated to the synaptic weights, i.e., larger weights (conductances)
produce larger currents. As this current is converted into a train of spikes by the Neuron ADC, it results
in dynamic switching transients within the power trace, allowing the attacker to approximate weights by
intercepting the power trace. Even if an alternative ADC is chosen, the generation of spikes would lead to a
certain amount of switching activity, exposing it as a possible target for exploitation. Furthermore, ADCs
consume over 80% of the total system power, allowing the attacker to estimate the power of ADCs using the
global power trace [310]. Finally, since the ADCs are time-shared due to their large area, the attacker can
target each ADC individually using our novel neuron suppression scheme that allows a malicious Trojan to
isolate a particular neuron ADC, ultimately correlating the switching activity of the architecture to a single

eNVM cell.

9.5.2 Attack Procedure

Online Weight Recovery. Fig. 9.4 illustrates the proposed Trojan-assisted power side-channel attack. The
key idea is to attribute the observed power activity to a single ADC by sending specially-crafted input images
containing Trojan codes (certain pixel patterns) to the device, which triggers the Trojan to iteratively select
only one ADC to be functional and forces it to process a current generated by a weighted sum operation of
one eNVM cell. An attacker can then collect power traces from a Trojan-infected chip using off-the-shelf
instruments such as oscilloscopes [27], to deduce the weights by comparing it to a library of reference power
traces obtained offline (described below). It is preferred that the attacker use a high sampling rate (> 10GS/s)

to capture sufficient sampling points within a read cycle. Once the conductance values associated with the
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currently functioning ADC are recovered, the attacker sends a reset signal using the same malicious image
that activates the Trojan (toggle trigger), putting all ADCs back in working order. A different activation code
is needed to target a different ADC. The attacker applies the above procedure repeatedly to cycle through all
ADC:s to recover all synaptic weights.

Offline Characterization. The offline characterization step (highlighted in Fig. 9.4 dashed line) allows
the attacker to build a library of reference traces used for comparison during online weight recovery. This is
possible since: (1) the operational states of an ADC are finite, and (2) each conductance value generates a
unique ADC output spiking pattern, allowing the attacker to thoroughly sweep through an ADC’s current
resolution steps and collect a library of distinct power traces. The development of such a characterization
portfolio involves the generation of a step response chart (ADC step resolution graph in Fig. 9.4) that allows
the attacker to map a unique spike pattern to a deterministic range of input current values during the Trojan
embedding phase. Next, for each distinct ADC input current, its frequency domain signature (FFT) is

extracted, which is used to approximate the synaptic weights.

9.5.3 Establishing Power-to-Weight Correlation

Signal Processing (FFT). The attacker can infer the ADC input current based on the decomposed
frequency components of the power trace, as the frequency domain allows for a significantly higher fidelity
comparison than the time domain. As a result, a Fast Fourier transform (FFT) is performed on both the
victim and reference traces to compare and identify key frequency components, increasing the visibility
of individual sub-components within the trace, thereby isolating unique signatures. The strongest signals
within the spectrum can be attributed to the static (DC) energy costs, clock tree consumption, and spiking
signature. The FFT analysis reveals that, (1) larger the input current, higher the frequency signature, and
(2) each current step resolution emits a unique frequency signature. This allows the attacker to examine the
frequencies extracted from the victim traces and match them against the signature frequencies within the
library.

Synaptic Weights Recovery. There are two factors that determine the precision of recovered weights.
First, the ADC can only respond to a set of discrete current ranges (i.e., ADC resolution steps) rather than
continuous current values. This means two conductances (i.e., weights) with small differences could produce
similar currents that lead to a similar switching activity (ADC power traces). The larger the step count, the
more “sensitive” the ADC is to differentiate between input currents, and thus increase the resolution of the
stolen weights. Seconds, ADCs are typically calibrated to work with the cumulative current produced by

multiple eNVM cells. The current generated from one eNVM cell might be too small to excite the ADCs
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Figure 9.5: Trojan trigger module and payload circuit

thermometer circuits, as a result of which the power trace might not yield meaningful leakage information for
the attacker to extract weights. We assign minimal conductance values to those that are not recoverable
through the power side channel. While this results in a small loss in the overall model inference accuracy, in

some cases, it results in the cloned network outperforming the original (Sec. 9.8.2).

9.6 Trojan Design

The suppression of the neuron is achieved through the design of an analog Trojan that consists of a trigger
and a payload module. The trigger circuit determines the operating condition of the payload, i.e., if the
trigger state is high, the payload is active. If the payload is activated, the neuron circuit is suppressed through
bypassing the current generated by the synaptic array away from its signal path, thereby depriving it of a
valid input. Fig. 9.5, shows the circuit for a switched leakage short-circuit path (highlighted in red), that
deviates the current flow from its normal path (highlighted in blue). As long as the trigger state is high, the
cumulative current leaks through this path and prevents any switching activity. The possibility of current
leakage creeping into the neuron ADC is prevented using a DC blocking capacitor Cpc and the average

sizing of the transistors ensures minimal charge leakage.
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Figure 9.6: Transient waveforms of payload circuit.

The functioning of the payload can be observed by analyzing the transient signal characteristics of the
neuron ADC between two trigger states (see Fig. 9.6). When the Trojan is inactive (shown as Trojan:Inactive),
the cumulative input current triggers a train of spikes. However, when the Trojan is active (shown as
Trojan:Active) and an input current stimulus is provided, it can be seen that the neuron is "suppressed”. The
deviation of current by the payload element can be confirmed by analyzing the build-up of potential on the
capacitor, V.. Hardware Trojans typically use combinational or sequential elements to monitor internal states
within a system and trigger a payload based on a predefined condition [75]. Since the attacker is capable
of sending specific input image vectors, combinational logic can be used, where the input vector contains a
unique combination of pixels to activate a trigger circuit. We prefer complementary pull-up and pull-down
network (PUN/PDN)-based combinational circuit over a standard cell-based logic tree circuit, to enable
microscopic design corruption. Fig. 9.5 depicts the schematic diagram of the trigger circuit that implements
a NAND function that directly taps the inputs from the BL switch matrix and the inclusion of a Toggle

flip-flop allows for the state of the trigger circuit to switch between the two operational conditions.

9.7 Methodology

Due to the lack of openly available commercial eNVM neuromorphic implementations, we customize a

high-fidelity simulation environment representative of several recently published designs (Fig. 9.1), using
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Neurosim [8]. A 3-layer MLP (400-neuron input layer, followed by a 100-neuron hidden layer, and a 10-
neuron output layer corresponding to 10 digits) is mapped to such architecture for training using 60,000
black-and-white images in 125 epochs until its inference accuracy stabilizes (~93%). We then collect a set
of output currents making up the dot-product operations by opening different rows. Neurosim faithfully
models an analog synaptic device with many non-ideal device properties such as variations within Long-Term
Potentiation/Depression (LTP/LTD), cycle-to-cycle conductance variation, and, spatial variations across
a memory array. This ensures that a realistic weight-to-conductance mapping is implemented, and the
generated current traces encompasses both temporal and spatial variations. Note that, since this is an initial
foray into this field, we limit the scope of this work to target eNVM accelerators with limited hyperparameter
reconfigurability (e.g., number of layers and dimension of each layer). We leave the secret extraction of more
complex models for future work. However, the key insight of this work, namely that the spiking activity of

the neuron ADC can leak sensitive model parameters, is expected to hold for other architectures.

The overall neuron microarchitecture is designed and evaluated in Cadence Virtuoso and Calibre tool
using the TSMC 65nm Low Power(LP) flavor PDK. Transistor-level simulations are carried out to generate
power traces and other relevant transient signals that allow for generating the offline characterization power
traces, as well as mimicking conditions for triggering the payload. Process, Voltage, and Temperature (PVT)
variations within the neuron ADC design are considered during the offfine characterization phase of the
attack. These variations result in a deviation in the step response mapping, which is visualized as a mismatch
in step width and height in comparison to ideal characteristics (Fig.9.7b). We inject stochastic noise sources

that replicate the average switching activities that potentially occur in a co-processor[311].

The switching transients are monitored over the power rail trace, and by denoising the baseline power
trace from the monitored signals, a higher SNR trace can be deduced upon which the FFT transform is
applied. The trace is sampled at a 100ps sampling interval and a 4096 FFT bin trace is generated, which
translates to approximately a 250 kHz resolution. To build the characterization portfolio, the dynamic input
current range is generated based on the parameters of selected eNVM characteristics. The most prominent
large signal frequency bins from each step of the sweep are collected and assigned to an input current value.
The relevance of their magnitude can be deduced from their unique frequency signatures, as they share a

similar spectral magnitude characteristic.
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Figure 9.9: (a). Area overhead and (b). P in comparison to the noise floor, as a function of
the input Trojan vector.

9.8 Results

9.8.1 Trojan Stealth

Design and Verification Time Detection. To remain stealthy, it is imperative that the Power Spectral
Density (PSD) of the Trojan-infected malicious unit under normal operating conditions must not significantly
deviate from the average PSD of unaffected hardware. The PSD of unaffected hardware (victim) is visualized
by extracting the switching current trace from the power rail across 400 read cycles under normal operating
conditions. The resulting spectrogram is then compared with that of a Trojan-infected (clone) malicious
unit, where the payload circuits are deactivated to mimic normal operating conditions. As seen in Fig. 9.7
the Signal-to-Noise Ratio (SNR) deviation is under 1.75 dB, with both spectrograms exhibiting a similar

fingerprint.
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To ensure the undetectability of the trigger and payload circuits through test pattern generation techniques,
we stipulate that the area overhead is under a margin of 0.5% [312]. The area overhead of the trigger element
is a function of the synaptic core area. The number of input bits that map to the payload element controls
the length of the Trojan code and hence the size of the PUN/PDN network. Every neuron ADC must be
embedded with a payload element, resulting in a fixed overhead. A similar trend can be observed with the
average leakage power dissipated by the Trojan (Fig. 9.9a and Fig. 9.9b).

While our ability to evaluate against verification-time detection frameworks is limited, as they are not
open source, we offer a qualitative discussion. Frameworks such as FANCI [313] that operate at the RTL
level would not be able to detect our Trojan, owing to its form factor and its ability to embed the Trojan at
the GDS-IT levels and polygon pattern etching foundry stages. Methods such as UCI [314] mainly apply for
digital Trojans, which rely on analyzing switching activity.

Run-time Detection. By exploiting the input vector to encode the necessary bits, it is possible to

2400 hossible codes that can

generate an extremely large set of combinations for the trigger code (there are
be uniquely assigned to each ADC). Our analysis shows that a 50-75 bit long trigger code results in a false
activation of a single Trojan, only once in 1000 random input test patterns. Furthermore, a trigger code that

is at least 35 bits long can ensure the prevention of two simultaneous false activations of Trojans across 1000

input test patterns, significantly enhancing our ability to evade run-time detection.

9.8.2 Sensitivity Study

We sweep the ADC resolution from 8 to 256 steps and vary the device conductance levels, thereby simulating
a wide array of neuromorphic design choices. Fig. 9.8 shows the inference accuracy of the original (victim)
model, the cloned model using the stolen weights, and the percentage of weights recovered by the attacker for
accelerators implemented using multiple eNVM technologies (EpiRAM(Ag:SiGe), HZO FeFET, TaOx/HfOx ,
and GST PCM). We draw four major conclusions. First, regardless of the underlying eNVM technology, we
are able to recover more than 90% of the weights. The remainder of the weights do not build a sufficient
input impulse to generate a spike train. Second, as the ADC resolution improves, more weights can be
recovered, because the ADC resolution becomes more sensitive to the small current generated by a single
eNVM cell. The overall weight extraction of our attack improves from 94.4% — 97.8% and 64.1% — 97.1%
for a 2-bit improvement in ADC resolution, when the hardware is simulated in EpiRAM and HZO FeFET,
respectively. The greater improvement in the case of HZO FeFET is attributed to the larger conductance
density characteristics offered by the device. Third, in many cases, even an ADC with a lower resolution,
poses a serious threat, as the attacker can reliably clone a model with comparable performance. For instance,

when evaluating the attack strategy for a 5-bit resolution ADC, the worst case performance delta between the
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original and recovered inference accuracy across the four memory flavors is under 2.65%. Fourth, a higher
percentage of weights recovered by the attacker does not always translate to higher inference accuracy of the
cloned model. This is because ADCs are calibrated to segment continuous current ranges to resolution steps
and the current generated from a single cell may be mapped to a current value that is slightly off compared
to the true current. In some cases, we’re able to obtain a cloned network with higher accuracy than the
victim model. We suspect that this is because the weights of the victim models are sometimes stuck at local

minimums.

9.9 Mitigation

Trojan detection. Several techniques have been proposed to prevent the insertion of a hardware Trojan
into ICs. Waksman et al. [313] propose FANCI, a framework for profiling activities of wires inside a chip,
and flagging nearly unused ones as possible Trojan paths. Their insight stems from the fact that Trojan
functionalities are mostly dormant until triggered by external malicious inputs. This can potentially catch
the Trojan logic embedded in an eNVM device. However, FANCI, as described in the paper, examines the
hardware implementation at the RTL level, such as a netlist file, while the Trojan we describe can also be
placed inside a layout GDSII file, thereby circumventing it. Extending detection frameworks to enable more
comprehensive detection is interesting future work.

Trojan insertion prevention. To prevent insertion at the layout level, a potential countermeasure
that can be used is layout masking [315]. However, this is expected to prohibitively increase the power
and area overhead (by ~ 10%). If an eNVM device is deployed as an IoT or a wearable device that is
power /area~constrained, layout masking may not be ideal. The weight recovery attack may also be defeated
by integrating an ultra-low resolution ADC with four or eight resolution steps, preventing the successful
extraction of most of the weights. However, this would severely limit the capabilities of such devices to scale
to larger workloads.

Side-channel prevention. Masking the signal (EM, power, thermal, etc.) signature, therefore, preventing
the side-channel attacks (SCA), usually requires dedicated SCA countermeasure hardware which can be

impractical (power and area overhead) to integrate for neuromorphic devices.

9.10 Conclusion

We explore the feasibility of a novel supply-chain threat against eNVM neuromorphic devices. We identify

ADC as the key element that exposes a vulnerability within the neuron core and further deduce the weights
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by analyzing and isolating the switching activities of the ADC. We also design a stealthy hardware Trojan
that allows the attacker to correlate the transient system power consumption to the synaptic weight and

subsequently reconstruct a cloned model with high fidelity.



Chapter 10

Conclusions and Future Work

10.1 Conclusions

For data-intensive tasks, data movement dominates computation. We hypothesize that near-data-processing
techniques that enable computation as close as possible to where data resides (e.g., DRAM or SSD) can be
optimal solutions to address the performance bottleneck caused by data movement in various applications.
Additionally, the NDP approach offers much higher data bandwidth and computational throughput than
traditional Von Neumann architectures. This dissertation explores design spaces of various NDP techniques
and architectures that accelerate application execution and save energy. We have made the following

contributions to this dissertation.

First, we examine a series of digital DRAM-based bit-serial SIMD-style processing architectures targeting
bioinformatics (Chapter 3 Sieve), exact-pattern matching (Chapter 4 DRAM-CAM), OLAP (Chapter 5

Membrane), and general-purpose computing (Chapter 6 DRAM-BitSIMD).

In Chapter 3, we present Sieve, a set of DRAM-based in-memory architectures to accelerate k-mer
matching by storing reference k-mer patterns along the bitlines and enhancing row buffers with a minimal
set of Boolean logic for k-mer matching. To explore optimal Sieve designs, we compare the placement of
custom k-mer matching logic at three different levels in the DRAM hierarchy: from the I/O interface of
the DRAM chips (Sieve Type-1) to the local row buffer of each subarray (Sieve Type-3), and Type-2 as the
middle ground where several subarrays share one matcher. In this work, we devise a novel data layout, an
indexing scheme, and an early termination mechanism that synergistically provides 1.01X/55.49X/404.48X
speedup and 3.80X/28.11X/55.89X energy saving over the state-of-the-art CPU baseline. Compared to GPU,

Type-1 is 3X to 5X slower than the GPU but more energy efficient, and Type-2 is only modestly faster (2.59x

169
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to 9.43x), but Type-3 offers speedups of 33.13X-55.0X and energy savings of 83.77X-141.15X, showing the
effectiveness of in-situ PIM processing, which is an aggressive form of NDP. This is the first work to
introduce and showcase the effectiveness of a column-wise data placement for k-mer matching with early
termination, substantially advancing the state-of-the-art in both throughput and efficiency.

In Chapter 4, we extend Sieve Type-3, which leverages subarray-level parallelism, with logic integrated
into each local row buffer. DRAM-CAM retains the core architectural designs of Sieve and serves as a
PClI-attached accelerator with an offload model. We introduce several new hardware components (population
count logic and a hardware data transposition unit) and runtime optimizations (chip-level parallelism, pattern
distribution, and pattern replication) to increase functionality and boost performance. DRAM-CAM can
accelerate a wide range of pattern-matching tasks and offers impressive performance benefits (6217X speedup
and 5888X energy savings over CPU).

In Chapter 5, we further investigated an alternative use of Sieve Type-3, which is for high-throughput
database scan operation, which often dominates the execution time in OLAP query processing. To this end,
we design a minimalist custom logic embedded at the DRAM subarray levels to enable high-throughput
in-situ table scans, dubbed Membrane-V. The integrated logic incurs a small area and power overhead
compared to a commodity DRAM chip, and supports ranged query comparison, which is more complicated
than exact pattern matching enabled in Sieve. We designed a non-intrusive co-processing scheme to integrate
Membrane into a DBMS to leverage its efficient predicate filtering potential fully. Specifically, Membrane-V
first returns a bitmask indicating which database records satisfy the conditions in the filter predicate, and
the host then “pulls” data from the DRAM based on the bitmask. Membrane-V offers 1.26x/25.97x /5.94x
min/max/geomean speedup compared to the CPU. Notably absent from the existing efforts in this domain
is a comprehensive consideration of hardware options (e.g., digital vs. analog) and software implications
(e.g., vertical VS. horizontal data layout). Moreover, prior research has rarely thoroughly examined end-
to-end query performance across a full benchmark. This work makes significant strides in PIM-based
data analytics accelerator, including comprehensive PIM architecture design space exploration, workload
distribution between CPU host and PIM accelerator, a WideTable pre-processing technique that pairs well
with PIM framework, and a Rank-level hardware unit that removes the data retrieval/selection bottleneck.

In Chapter 6, inspired by the performance of bit-serial DRAM processing for pattern matching, we
explored the design space of a general-purpose bit-serial DRAM-based PIM architecture. The key idea to
enable in-DRAM bit-serial computing is to treat each bitline as a vector lane and align the source and
destination data elements vertically on top of each other. A series of subarray row activations perform the
computation sequentially at each bit position. The vertical layout allows each activation to access a bit slice

across a row of vector elements (i.e., bitlines or lanes). Two additional advantages of the vertical layout
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are that it enables arbitrary bit access within the operands (e.g., left or right shifting within each word is
cheap) and it supports flexible operand size without having a word spread across multiple chips. Many prior
architectures leverage DRAM’s analog property by connecting three DRAM rows to the sense amplifiers,
AKA triple-row-activation (TRA), to force charge-sharing at the row buffer, equivalent to performing a
row-wide bitwise logical operation. However, analog-based bit-serial DRAM computing has the disadvantages
of high latency and energy overhead. We show that our performance-optimized design bit-serial architecture
outperforms the CPU by 20X, GPU by 5X, and SIMDRAM (prior art) by 1.7X and is substantially more
energy- and area-efficient. This work explores the complex design space of digital bit-serial PIM, which is
not comprehensively analyzed in prior work. We also propose and discuss for the first time a new demarcation
of designing and evaluating PIM accelerator, namely accelerator-first vs. memory-first. Our evaluation also
shows that the analog-based designs popularized in prior work are less energy- and area-efficient than their
digital counterparts. This work also discussed various system integration challenges and solutions, which
opens up future research opportunities.

Second, in Chapter 7, we present a different NDP choice based on a 3D-stacked memory cube for de Bruijn
graph acceleration. The proposed NDP architecture consists of multiple Hybrid Memory Cubes (HMC),
and each HMC connects to the others using an inter-cube network [22, 23]. Each cube’s memory is divided
into several vertical memory vaults, and each vault is coupled with an integrated processing core connected
to a memory controller for local vault access. We can schedule parallel applications on NDP systems by
exploiting massive NDP cores (small CPU processors at the logic layer of HMC). NDP system supports remote
function calls based on message passing to handle inter-core communication without expensive coherence
management. Our evaluation shows that the proposed.NDP implementation can improve the performance of
graph construction by 33x and traversal by 16x compared to the state-of-the-art. This is the first work
that tackles in-memory accelerator for DBG-based de novo genome assembly.

Third, in Chapter 8, we step away from the memory technology and investigate the potential of processing-
with-storage-technology (PWST). PWST can fundamentally solve the bottleneck caused by data movement
issues. In this work, We design an architecture Abakus leveraging PWST to accelerate a key bioinformatics
kernel called k-mer counting, which involves processing large files of sequence data on the disk to build
a histogram of fixed-size genome sequence substrings and thereby entails prohibitively high I/O overhead.
Through a set of domain-specific hardware extensions to accelerate the key operations for k-mer counting at
various levels of the SSD hierarchy, Abakus can achieve 9.9x, 8.2x, and 3.3x speedup over the CPU-, GPU-,
and PIM NDP solutions. Unlike prior work, which does not consider the I/O bottleneck, this work for the
first time leverages PWST to propose novel and scalable accelerator designs to eliminate the I/O overheads,

improving the performance end-to-end.
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Finally, in Chapter 9, we contribute to NDP security analysis by demonstrating for the first time the
feasibility of carrying out a hardware supply chain attack against a neuromorphic DNN accelerator that
performs neuron computation inside resistive memory cell arrays. The crux of this attack is the design and
stealthy placement of a neuron-suppressing hardware Trojan that a colluding adversary can reliably trigger.
We also design the Trojan such that the attacker can correlate the transient system power consumption to an
eNVM cell conductance (i.e., synaptic weight). There are two major motivations for a weight-stealing attack.
First, the synaptic weights of a neural network are considered core IP. Second, stealing weights is increasingly
more economical than training. To obtain a model with competitive performance, typically, a large set of
high-quality labeled data and proprietary training algorithms are required [303]. Further, even with access
to proprietary training data, the training process can take weeks and will likely worsen with model sizes,
affecting the time-to-market [304]. Our evaluation suggests an adversary can stealthily recover 90% model

parameters while evading detection, highlighting the dire need for future NDP design with security in mind.

10.2 Future Research Opportunities

This dissertation opens a few future research directions.

e System-level support: To ease the adoption friction, NDP architectures need more system-level support.
For example, to integrate a PIM-enabled memory into an existing system, a new data allocation routine
and a new address interleaving are needed. To name a few challenges, the PIM-aware data allocation
routine needs to track available physical memory rows and columns for PIM data structures allocation,
gather data from the host memory region to the PIM-eligible region, and transpose the data between
vertical format and horizontal format if necessary. Developing a working allocation scheme means tapping
into OS layers and making non-trivial changes. In traditional address interleaving, consecutive words
are spread out in different physical chips to maximize data I/O, but PIM processes prefer data to be
physically adjacent. Figuring out an optimal address interleaving is a complex undertaking. It would
require researchers to generate many performance profiles of PIM processes running in a realistic system

with a mixture of different co-running workloads.

e Bit-serial architecture with a horizontal data layout: While the vertically laid out data format
supports massive parallelism and shows excellent kernel-level performance improvement, it has the
disadvantages of data transposition, which incurs extra data movement cost (relaying out data) and
a myriad of system-integration difficulties. A horizontal layout data might avoid several system-level

difficulties with slightly worse performance. We leave this as future work.
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e Compiler and programming model: Adopting a new architecture is highly influenced by its pro-
grammability and ease of execution. The performance benefit of NDP is well understood, but the
corresponding APIs and library routines are lacking. There is also limited study on the compilation
support for NDP. A working compilation toolchain and expressive API library routines must be developed.
Currently, we manually select high-level operations (e.g., vector arithmetic) from application code, rewrite
them using intrinsics/macros that an NDP system can execute, and convert them to a series of micro-ops
for performance and functional evaluation. In the future, a non-expert developer can express the appli-
cation logic using traditional C/C++ style code with optional sets of pragmas to surround core loops,
and the NDP compiler automatically converts the high-level algorithm into vector-style intermediate
representations (IRs). The sequence of NDP IRs is then offloaded to the targeted NDP hardware to be

broken down into micro codes and executed.

e Mitigation for supply-chain Trojan attack: As we explained in Chapter 2.4, malicious circuits can
be implanted at many places in the supply chain during the IC life cycle, posing a serious threat to the
deployment of NDP devices. We have discussed a few conventional mitigation solutions in Chapter 9.9 to
detect and prevent the insertion of a hardware Trojan. However, NDP devices introduce a unique set
of challenges that can render prior hardware Trojan countermeasures ineffective. Due to the sensitive
deployment scenarios for NDP devices, defeating the supply-chain hardware Trojan attack is becoming
increasingly important. It has garnered much interest from the industry and various government agencies.
As we have demonstrated the possibility of stealing sensitive information from a recently proposed NDP

architecture, developing effective mitigation solutions is of great importance.
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10.3 Appendix

10.3.1 Accepted publications

e Sieve: Scalable In-situ DRAM-based Accelerator Designs for Massively Parallel k-mer Matching
Lingxi Wu, Rasool Sharifi, Marzieh Lenjani, Kevin Skadron, Ashish Venkat
ISCA 2021

e Ultra Efficient Acceleration for De Novo Genome Assembly via Near-Memory Computing
Minxuan Zhou, Lingxi Wu (Joint 1st author), Muzhou Li, Niema Moshiri, Kevin Skadron,
Tajana Rosing
PACT 2021

e DRAM-CAM: General-Purpose Bit-Serial Exact Pattern Matching
Lingxi Wu, Rasool Sharifi, Ashish Venkat, Kevin Skadron
Computer Architecture Letters 2022

e Hardware Trojans in eNVM Neuromorphic Devices
Lingxi Wu, Rahul Sreekumar (Joint 1st author), Rasool Sharifi, Mircea Stan, Kevin Skadron,
Ashish Venkat
DATE 2023

(Best Paper Nominee)

10.3.2 Under Review

e Membrane: A PIM-based Architecture to Accelerate Database OLAP Queries
Akhil Shekar, Lingxi Wu (Joint 1st author), Kevin P. Gaffney, Helena Caminal, Martin Prammer,
Yimin Gao, Ashish Venkat, Mircea Stan, José Martinez, Jignesh M. Patel, Kevin Skadron
HPCA 2023
e Abakus: Accelerating k-mer Counting With Storage Technology
Lingxi Wu, Minxuan Zhou (Joint 1st author), Weihong Xu, Ashish Venkat, Tajana Rosing, Kevin
Skadron
TACO 2023
e DRAM-BitSIMD: DRAM-based Bit-Serial Vector Computing Architecture.
Deyuan Guo, Lingxi Wu (Joint 1st author), Farzana Siddique, Ashish Venkat, Kevin Skadron

ASPLOS 2023
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