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Abstract

The SeaQuest and SpinQuest experiments at Fermilab were designed to probe

the internal dynamics of protons and neutrons via the angular dependence of

muons created by colliding 120 GeV protons into stationary targets. To do this,

it is necessary to translate the detector data into coherent information about the

particles detected in the experiment. This dissertation describes the development

and implementation of QTracker, a neural network-based algorithm designed to

reconstruct muons.

The application of QTracker to experimental data yields improved reconstruc-

tion of muon tracks, allowing for a more precise investigation of the transverse

momentum distributions and angular modulations in the Drell-Yan process. This

work highlights the potential of neural network-based methods to advance particle

tracking and enhance our understanding of nucleon structure.
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Chapter 1

Introduction

The SeaQuest (Fermilab E906) and SpinQuest (Fermilab E1039) experiments at

Fermilab were designed to probe the internal dynamics of protons and neutrons.

These experiments focus on the Drell-Yan process, which is extremely useful for

studying the partonic structure of nucleons. This dissertation explores the ap-

plication of deep neural network-based techniques for reconstructing muon parti-

cle tracks, with a primary emphasis on the development and implementation of

QTracker, a novel neural network-based reconstruction algorithm.

Probing the internal structure of protons and neutrons has been a goal of nu-

clear physics for decades. Understanding how quarks and gluons, the fundamental

constituents of nucleons, are distributed and how they interact is essential for a

comprehensive theory of strong interactions. The SeaQuest and SpinQuest exper-

iments aim to provide insights into these questions by measuring the Drell-Yan

process, where a quark from a beam nucleon and an antiquark from a target

nucleon annihilate to produce a muon pair. The angular distributions and trans-

verse momentum spectra of these muons are sensitive to the partonic structure

and dynamics within the nucleons.

Traditional methods of tracking particles in high-energy physics experiments rely

on geometrical and statistical techniques to reconstruct the paths of charged par-

ticles through detectors. However, these methods face limitations in terms of

accuracy and computational efficiency, especially in environments with high noise.

Machine learning, particularly deep learning, offers promising alternatives for par-

ticle track reconstruction. Neural networks’ ability to model complex, non-linear

1
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relationships can potentially outperform conventional algorithms in both precision

and speed.

The SeaQuest experiment (E906) at Fermilab employed a 120 GeV proton beam

from the Fermilab Main Injector to bombard various fixed targets, including liq-

uid hydrogen and deuterium. The primary objective was to measure the Drell-Yan

process and extract information about the antiquark content of the nucleon. Build-

ing on SeaQuest, the SpinQuest experiment (E1039) employs a polarized target to

study spin-dependent effects in the same process. These experiments utilize a spec-

trometer equipped with multiple detectors, including drift chambers, hodoscopes,

and proportional tubes, to measure the trajectories of produced particles with high

precision.

The complexity and volume of the data in these experiments necessitates advanced

algorithms for accurate track reconstruction. This is where QTracker, the focus of

this dissertation, comes into play. QTracker uses the power of deep neural networks

to speed up and improve the reconstruction of muon tracks, thereby enhancing the

quality of the data analysis.

QTracker is a deep learning-based reconstruction algorithm specifically designed to

process data from the SeaQuest and SpinQuest experiments. It comprises several

neural network models, each tailored to different aspects of the reconstruction

process. The key components of QTracker include:

• Event Filter: A neural network that filters out noise and irrelevant events

from the raw data, ensuring that only meaningful events are processed fur-

ther.

• Track Finder: This component identifies potential muon tracks within the

filtered events. It uses a convolutional neural network (CNN) architecture

to recognize patterns indicative of particle tracks.

• Momentum Reconstruction: Once potential tracks are identified, this model

evaluates the three-momentum of the particles that generated that track.

• Vertex Finder: This component reconstructs the interaction vertices, pro-

viding crucial information about the points where particles originated.

The development of QTracker involved training and validation using both sim-

ulated and real experimental data. The training process used labeled datasets
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generated by Monte Carlo simulations, which attempt to accurately represent

the physical processes and detector responses. The performance of QTracker was

benchmarked against traditional tracking algorithms, demonstrating significant

improvements in both speed and precision.

By enhancing the accuracy of muon track reconstruction, QTracker enables more

precise measurements of the Drell-Yan process. This, in turn, could lead to better

constraints on parton distribution functions (PDFs) and a deeper understanding

of nucleon structure. Moreover, the techniques developed for QTracker can be

generalized and applied to other high-energy physics experiments, paving the way

for broader adoption of deep learning in particle physics.

In addition, this dissertation illustrates the transformative potential of neural net-

works in experimental physics. It showcases how interdisciplinary approaches,

combining physics with advanced computational techniques, can address long-

standing challenges and open new avenues for research.

This dissertation is structured as follows:

• Chapter 2 provides a detailed review of the theoretical framework under-

pinning the SeaQuest and SpinQuest experiments, including the Standard

Model of particle physics and the specifics of the Drell-Yan process.

• Chapter 3 describes the experimental setup, including the Fermilab Main

Injector, the targets, and the detection systems. It also describes a novel

method we have developed to irradiate large amounts of material for polar-

ized target experiments in an efficient way.

• Chapter 4 details the traditional reconstruction methods and introduces

QTracker, detailing its design, training, and validation.

• Chapter 5 presents the application of QTracker to experimental data, high-

lighting its performance and the insights gained from the improved track

reconstruction.

• Chapter 6 discusses the broader implications of this work and potential fu-

ture directions for research and technology development in particle tracking.

By integrating deep learning techniques into the analysis pipeline, this dissertation

not only advances the specific goals of the SeaQuest and SpinQuest experiments
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but also contributes to the broader field of particle physics by demonstrating the

utility of machine learning in high-energy physics research.



Chapter 2

Physics Theory

In this chapter, we will discuss the physics theory behind the SeaQuest and Spin-

Quest experiments. First, we will explore on the standard model, its history, and

the parts of it pertaining to the strong nuclear force. We will then examine the

physics of protons and neutrons (collectively referred to as nucleons). Finally,

different scattering processes, including the main ones present in SeaQuest and

SpinQuest, will be covered.

2.1 The Standard Model

The Standard Model is one of the most successful theories in the history of sci-

ence. It has been developed and explored over the past 50 years and has provided

numerous predictions that experiments have later confirmed. It describes the in-

teractions of the fundamental building blocks of our universe and the forces that

drive those interactions.

2.1.1 History of the Standard Model

After the success of Quantum Electrodynamics (QED) in the late 1940s in explain-

ing the electromagnetic force, theoretical physicists turned their attention to the

weak and strong forces. Unfortunately, the methods that had proved so effective

in QED, namely perturbation theory, proved ineffective in explaining the other

forces.[19]

5
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In the weak force, the then-prevalent four-fermion theory posited by Enrico Fermi

in 1933[20] worked well at the lowest-order, but the next order introduced non-

removable infinities. The strong force, meanwhile, faced another problem: Yukawa’s

scalar theory of elementary particle interaction[21] proved inhospitable to pertur-

bation theory.

The deeper problem was that all of the leading theories had no cohesive links

between them. They were all mainly phenomenological, and the strong force

theories had no concrete evidence to support any one or another. These difficulties

led many physicists to abandon quantum field theory (QFT) in favor of other

theories to explain the strong and weak theories. None proved successful.[19]

Through the 1950s and 1960s, the individual parts of the Standard Model were

developed piecemeal by many physicists. Yan Chen-Ning and Robert Mills de-

veloped a non-abelian gauge theory in 1954. Extending the abelian gauge theory

used in QED to allow it to explain the strong force.[22] In 1956, Chien-Shiung

Wu conducted a groundbreaking experiment that showed parity violation in the

weak force.[23] Sheldon Glashow was able to combine the electromagnetic and

weak forces in 1961, which was combined with the Higgs mechanism by both

Steven Weinberg and Abdus Salam later in the decade.[24] [25] [26] The three

later shared the Nobel Prize in 1979 for this theory.

Parallel to developing the theories for the weak force, work was being done to

explain the strong force that holds protons, neutrons, and other hadrons to-

gether. In 1964, both Murray Gell-Mann and George Zweig formulated theories

that included fundamental particles, quarks, that, when combined in different

ways, form all the hadrons being discovered en-mass by new accelerator-based

experiments.[27][28] At the end of the decade, Richard Feynman published a pa-

per in which he presented a model to describe hadron collisions utilizing par-

tons, which overlapped with Gell-Mann and Zweig’s theories.[29] In 1973, David

Politzer, David Gross, and Frank Wilczek discovered that interactions between

particles reduced in strength at shorter and shorter distances (are asymptotically

free) in Quantum Chromodynamics (QCD).[30][31]

This development was the final piece to the Standard Model of physics, which

has remained essentially unchanged in the last 50 years. Equation 2.1 shows the

simplest form of the Standard Model Lagrangian, which encodes the behavior of

electromagnetism, the strong force, and the weak force. The theory includes 17
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fundamental particles, which are shown in figure 2.1. Although we know that

this model is not a complete theory (it does not include the gravitational force

and cannot explain dark matter and dark energy), it represents one of the most

successful theories scientists have ever formulated.

L = −1

4
FµνF

µν + iψ̄��Dψ + h.c.+ ψ̄iyijψjϕ+ h.c.+ |Dµϕ|2 − V (ϕ) (2.1)

Figure 2.1: The 12 fermions and the 5 bosons of the Standard Model. [1]

2.1.2 Generalized Hadronic Physics

A hadron is a bound state of two or more quarks held together by strong-force me-

diating gluons. The most famous and common hadrons are protons and neutrons,

which make up the vast majority of all matter. The nucleons are both baryons, a
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term encompassing all hadrons with an odd number of valence quarks, as opposed

to mesons, which contain an even number.

As shown in figure 2.1, there are six flavors of quark, split into three generations.

They are up, down, charm, strange, top, and bottom quarks. They each have

a charge, spin, and isospin, which together define the overall properties of the

hadron they comprise. For instance, the neutron is a combination of an up quark

and two down quarks, as given by the wave function:

∣∣n↑〉 =
1

6
(2

∣∣d↑d↓u↑〉− ∣∣d↑d↑u↓〉− ∣∣d↓d↑u↑〉) (2.2)

Since the up quark has a charge of +2/3 and the down quark has a charge of −1/3,

the neutron has a net charge of zero and a spin of +1/2.

In addition to the valence quarks, there are also a large number of virtual quark-

antiquark pairs present inside a given hadron, known as the sea quarks. Although

they are virtual and therefore only exist for a very short amount of time (as

defined by the uncertainty principle), they do contribute to the overall properties

of hadrons and can be observed in scattering experiments.

Quarks cannot exist in isolation, a property known as color confinement.[32] In

addition to electric charge and spin, all quarks (antiquarks) carry one of three

color (anti-color) charges , referred to as red, green, and blue (anti-red, anti-green,

and anti-blue). The color charge is the charge for the strong force, analogous to

the electrical charge.

The necessity of the color charge arises from the Pauli exclusion principle, which

states that no two spin 1/2 particles in a system may occupy the same quantum

state. If we consider the ∆++ baryon, which is a spin 3/2 particle comprised of

three up quarks, it would naively have a wave function given by

∣∣∆++
〉
=

∣∣u↑u↑u↑〉 (2.3)

If this were the case, however, it would break the Pauli principal, as switching

any of the three quarks would result in no change to the system. To fix this,
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Figure 2.2: Examples of colorless hadrons: a triquark baryon with red, green,
and blue quarks, a triquark baryon with anti-red, anti-green, and anti-blue
quarks, a meson with blue and anti-blue quarks, and a tetraquark meson with

blue, anti-blue, green, and anti-green quarks.

there must be some difference between the up quarks comprising the baryon. If

we assign them each a color, red, blue, and green, we can redefine the ∆++ wave

function as

∣∣∆++
〉
=

√
1

6
ϵαβγ

∣∣∣u↑αu↑βu↑γ〉 , (2.4)

with α, β, γ as color quantas, which eliminates the issue.

All quarks are found within hadrons, which must be net-colorless. Colorlessness

can be achieved in one of two ways: having an equal number of red (anti-red), blue

(anti-blue), and green (anti-green) quarks, or having an equal number of color and

anti-color quarks (red and anti-red, etc.). Examples of possible combinations are

shown in figure 2.2.
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As previously mentioned, the force-mediating boson for the strong force is the

gluon. Unlike the photon, the force-mediating boson for the electromagnetic force,

the gluon carries the charge for the force that it mediates. This drastically com-

plicates the theory surrounding the strong force, as it is possible for gluons to

interact with other gluons.

Gluons carry both color and anti-color charges in a quantum state. Because the

possible color combinations are given by a 3× 3 group, gluons can come in either

a singlet state or an octet state. The octet states can be given by

rḡ, rb̄, gb̄, gr̄, br̄, bḡ,

√
1

2
(rr̄ − gḡ),

√
1

6
(rr̄ + gḡ − 2bb̄) (2.5)

and the singlet state by

√
1

3
(rr̄ + gḡ + bb̄) (2.6)

The singlet state, however, is symmetric in color space, meaning that it cannot be

exchanged between particles with color charge. Therefore, the octet states define

the eight types of gluons that mediate the strong force between particles.[33]

2.1.3 Quantum Chromodynamics

The interactions in the strong force are described by a theory known as Quan-

tum Chromodynamics (QCD). It is an SU(3) non-abelian gauge theory and has

three properties that define most of its results. Those properties are color confine-

ment, as defined in the previous section, asymptotic freedom, and chiral symmetry

breaking.

Chiral symmetry refers to an approximate symmetry of the QCD Lagrangian under

transformations between left-handed and right-handed quarks. In an idealized

situation where quarks are massless, this symmetry would be exact. However,

in the real world, quarks have small but nonzero masses, and chiral symmetry is

spontaneously broken.
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Figure 2.3: First-order Feynman loops in QCD and QED. In QCD, quarks
may form loops of particles and anti-particles, as well as two gluons. In QED,

the photon may only form particle-antiparticle loops.

This spontaneous breaking occurs because the vacuum state of QCD, the lowest

energy state, does not respect chiral symmetry. In a chiral-symmetric vacuum,

the quark condensate—an expectation value of the quark bilinear—would be zero.

However, in reality, this condensate is nonzero, indicating that the chiral sym-

metry is not preserved. This nonzero quark condensate gives rise to the masses

of hadrons, which are not solely due to the masses of the constituent quarks but

rather arise from the dynamics of chiral symmetry breaking.

Asymptotic freedom, as a property of QCD, means that the strong force interaction

becomes asymptotically weaker as the energy scale increases and the length scale

decreases. Conversely, this means that at low energy scales and long distances, the

coupling between quarks becomes infinitely strong, meaning that quarks cannot

be found in isolation.

The asymptotic freedom of QCD is the direct result of the color charge of gluons.

In quantum field theories, there exists a phenomenon known as screening, which

results from the polarization of the vacuum around a charge. Examples of this in

QED and QCD are shown in figure 2.3.

In the case of QED, a photon may form a virtual particle-antiparticle pair, with

the opposite charge virtual particle attracted to the original particle, and the like
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charge repelled. This has the effect that the larger the energy scale and the smaller

the distance, the greater the coupling constant of the interaction.

Gluons, however, throw a wrench into this picture, as they are able to couple

with themselves. This leads to the production of virtual gluon-gluon pairs, which

results in anti-screening. This works in opposition to screening and gives a first-

order QCD coupling constant of

αs(Q
2) =

12π

(33− 2nf ) ∗ ln(Q2/Λ2
QCD)

(2.7)

where Q2 is the energy scale, ΛQCD is a free constant known as the QCD scale,

and nf is the number of quark flavors. From this, we can draw two conclusions:

First, the sign of this coupling constant is determined by the number of quark

flavors present in the theory. For a theory with greater than 16 types of quarks,

there is a sign change. In our universe, however, there appear to be six distinct

types of quarks.

Second, this coupling constant has an asymptote at Q = ΛQCD. This means that

at energies approaching the QCD scale, perturbation theory becomes less and less

useful in calculating predictions of QCD.

2.1.4 Cross-Sections

Cross-sections are perhaps the most important quantity in particle physics, as

they are what link the theoretical concepts of particle physics with the measurable

realities of experiments. A cross-section is the probability of a specific interaction

occurring in a collision between two particles. It is typically measured as an area

in units of barns (100 fm2), which is roughly the cross-sectional area of a Uranium

nucleus. Although it is measured as an area, it cannot be simply given as the area

of a target particle, as the likelihood of a specific interaction also contributes to

the cross-section. The name ”barn” was chosen during the Manhattan Project to

refer to a large cross-sectional area, partly in hopes of it obscuring its connection

to nuclear structure.[34]
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Cross-sections serve as a window into the structure of nucleons, shedding light

on their inner composition and the interactions between their constituent quarks

and gluons. When particles such as protons and neutrons are bombarded with

other particles, the resulting cross-sections provide insights into the spatial and

kinematic distributions of quarks within these nucleons.

Particles like nucleons can act either as unified entities or as a grouping of parti-

cles. This behavior depends on the specific interaction and context involved. For

instance, when a proton is struck by a low-energy electron, the electron treats the

proton as a single, compact particle. However, if the electron carries significant en-

ergy, it becomes capable of distinguishing the individual quarks within the proton

and exploring how they are distributed.[35]

2.1.5 Differential Cross-Sections

Differential cross-sections provide more details of particle interactions by capturing

how the cross-section changes with respect to specific kinematic variables. Unlike

total cross-sections, which provide a global measure of interaction probability,

differential cross-sections measure how the interaction probability changes as a

function of particular observables such as scattering angle, energy transfer, or

momentum transfer.

One class of differential cross-sections are expressed as functions of solid scatter-

ing angles. It is represented as a differential of the total cross-section over an

infinitesimal angle: dσ/dΩ, where dΩ = sin θdθdϕ.

The angular distribution of scattered particles can reveal information about the

scattering process and the forces involved. For instance, in elastic scattering ex-

periments, where incoming particles are deflected without any internal changes,

the angular distribution of the scattered particles can provide insights into the

spatial distributions of charges within the interacting particles.

Differential cross-sections for variables other than angles are also commonly used,

as they can reveal other aspects of the interaction. For instance, the invariant

mass-dependent cross-section or target and beam x-dependent cross-sections might

be given by dσ/dM or d2σ/dx1dx2. More complex interactions, such as inelastic

scattering, involve energy transfers between particles, and studying the differential
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cross-sections as a function of energy transfer helps reveal the dynamics of these

interactions.[36]

2.2 Nucleon Structure

In parton theory’s simplest form, protons and neutrons are made of three quarks:

two up quarks and a down quark for the proton; two down quarks and an up

quark for the neutron. This, it turns out, is an oversimplification, but serves as a

good starting point for discussion of nucleon structure. In QCD, the proton and

neutron systems are complex, involving not only the three valence quarks but also

the force mediating gluons and virtual quark-antiquark pairs, the sea quarks. For

this discussion, we will focus on the quarks and antiquarks.

All of the possible information about quarks’ position and momentum is encoded

by the quark-quark correlator. From the correlation function, it is possible to

derive the Wigner distribution of each of the partons, giving a six-dimensional

quasi-distribution over the position 3-space and the momentum 3-space, W (x⃗, k⃗).

The Wigner distributions, however, are not particularly useful to experimentalists,

as they are inaccessible via direct measurements. For that reason, it is useful

to integrate or take the limit of the quark-quark correlator to find observable

quantities.[37]

The quark-quark correlator can be written as follows in the symmetric infinite

momentum frame, from Lorce et al [2]:

W̃
[Γ]
Λ′Λ(P, k,∆, N ; η) =

∫
d4z

(2π)4
eik·z ⟨p′,Λ′| ψ̄(−z

2
)ΓWψ(

z

2
) |p,Λ⟩ . (2.8)

In this formalism, Λ and Λ′ are the initial and final helicities of the hadron in the

light-cone reference frame. P = (p′ + p)/2 is the average hadron four-momentum,

k is the quark four-momentum, ∆ = p′ − p is the four-momentum transfer, and Γ

is a member of the basis {1, γ5, γµ, γµγ5, iσµνγ5} in Dirac space.

W ≡ W(− z
2
, z
2
|n) makes sure that the correlator is color gauge invariant, and

connects

−z
2
→ −z

2
+∞ · n→ z

2
+∞ · n→ z

2
, (2.9)
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Figure 2.4: The projections of the Generalied Transverse Momentum Depen-
dent distributions (GTMDs) onto other representations of parton distributions
and form factors. Solid red arrows represent the forward momentum limit of
the hadron, dotted black arrows correspond to integrating over the transverse
momentum of the quark and dashed blue lines represent integrating over the

quark’s longitudinal momentum. Diagram taken from Lorce et al.[2]

which means that the Wilson line is dependent on the light cone direction, n,

which is a member of the set [0,±1, 0⃗⊥]. Because the magnitude of n is irrelevant

(it is multiplied by infinity), the correlator instead depends on the value

N =
M2n

P · n
(2.10)

where M is the hadron mass. We can introduce η =sign(n0), which can equal ±1

and indicates whether the Wilson line is future- or past-pointing.

Transverse momentum-dependent parton distributions, parton distribution func-

tions, and form factors all correspond to limits or projections of equation 2.8.

They all have in common that they are taken at light-cone time of z+ = 0, so we

can integrate equation 2.8 over k−.
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W
[Γ]
Λ′Λ(P, x, k⃗⊥,∆, N ; η) =

∫
dk−W̃

[Γ]
Λ′Λ(P, k,∆, N, η) (2.11)

=
1

2

∫
dz−d2z⊥
(2π)3

eixP
+z−=ik⃗⊥·z⃗⊥ ⟨p′,Λ′| ψ̄(−z

2
)ΓWψ(

z

2
) |p,Λ⟩

∣∣∣∣
z+=0

(2.12)

where we are using aµ = [a+, a−, a⃗⊥] where a
± = (a0 ± a3)/

√
2 and a⃗⊥ = (a1, a2).

x = k+/P+, which is the longitudinal momentum fraction of the quark (also known

as the Bjorken-x), and k⃗⊥ is the transverse momentum of the quark.

There are three “directions” that one can go from the GTMDs to arrive at ob-

servables, as shown in figure 2.4. One can take the forward momentum limit of

the hadron, or integrate over either the transverse or longitudinal momentum of

the parton. In the sections below, we will follow each of those steps to show the

derivations of three important observables: the transverse momentum-dependent

distributions, the parton distribution functions, and charges.[2]

2.2.1 Transverse Momentum Distributions

Transverse Momentum Distributions (TMDs) are useful probes into the internal

dynamics of nucleons. As their name would suggest, they measure the distribu-

tion of the parton momenta that are transverse to the momentum transfer in an

interaction. The Quark TMDs can be defined via the quark-quark correlator, by

taking the ∆ = 0 limit of equation 2.12.

Φq(P, x, k⃗T , N ; η) = W
[Γ]
Λ′Λ(P, x, k⃗⊥, 0, N, η) (2.13)

=
1

2

∫
dz−d2z⊥
(2π)3

eixP
+z−=ik⃗⊥·z⃗⊥ ⟨p′,Λ′| ψ̄(−z

2
)ΓWψ(

z

2
) |p,Λ⟩

∣∣∣∣
z+=0

(2.14)

=

∫
dz−d2z⃗⊥
(2π)2

eiP
+z−−ik⃗⊥·z⃗⊥ ⟨P, S| ψ̄q(z) |P, S⟩ , (2.15)

= Φq[γ+]γ
−

2
+ Φq[γ+γ5]γ

−γ5

2
+ Φq[iσαγ5] iσ

αγ5

2
(2.16)
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where α is a transverse index, and Φq[Γ] = 1
2
Tr[ΦqΛ]. This allows us to write the

eight TMDs as follows:

Φq[γ+] = f q1 (x, k⃗T
2
)− ϵ+ T ijkiTS

j
T

M
f⊥q
1T (x, k̄T

2
), (2.17)

Φq[γ+γ5] = SLg
q
1L(xk⃗T

2
) +

k⃗T · S⃗T
M

gq1T (x, k⃗T
2
), (2.18)

Φq[iσαγ5] = SαTh
q
1(x, k⃗T

2
) +

kαT (k⃗T · S⃗T )− 1
2
k⃗T

2
SαT

M2
h⊥q1T (x, k⃗T

2
) (2.19)

+SL
kαT
M
h⊥q1L(x, k⃗T

2
) +

ϵ+ T ijkiTS
j
T

M
h⊥q1 (x, k⃗T

2
) (2.20)

where SL,T are the nucleon longitudinal and transverse polarization vectors. These

terms are shown in terms of their quark/nucleon polarization relation in figure

2.5. The simplest of these, f1(x, k⃗T
2
), describes the probability of finding a parton

with a given longitudinal momentum fraction x and a transverse momentum of

kT . It is directly related to the more general Parton Distribution Function f1(x)

by integrating over all possible transverse momenta, f1(x) =
∫
f1(x, k⃗T

2
)dk2T .[38]

Two other TMDs: the Boer-Mulders function, which describes “the net polariza-

tion of quarks inside an unpolarized proton”[4], and the Sivers function, which

describes “the correlation between the spin of the proton and the orbital motion

of its constituents”[39], merit more discussion for the purposes of this dissertation.

2.2.2 Boer Mulders Function

Denoted as h⊥1 in Figure 2.5, the Boer-Mulders function was formally defined in a

1997 paper by D. Boer and P.J. Mulders.[40] It quantifies a spin-orbit correlation,

and a non-zero value indicates that the nucleon has a certain handedness, (P ·(kT×
ST )), and is time-reversal odd, meaning it changes sign when time is reversed. This

means that the values found using different processes in experiment will have equal

magnitude but no consistent sign. As Boer explains,

It turns out that the quarks can be polarized on average even inside ...

an unpolarized proton, as long as they are not moving exactly along

the proton direction. If the proton moves along the z direction say,
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Figure 2.5: The leading Twist Transverse Momentum Dependent Parton Dis-
tribution Functions from Acardi et al.[3]

then the quarks can have some transverse momentum kT with respect

to the proton momentum, which together define a plane. The quarks

can then have a net polarization orthogonal (or transverse) to that

plane. A nonzero Boer-Mulders function means that there is such a

net quark polarization.[4]

Lattice QCD, a non-perturbative way to solve QCD, predicts a non-zero Boer-

Mulders function.[41] It is also suggested by Boer to be an explanation for an

asymmetry in unpolarized Drell-Yan scattering.[9] Since the SeaQuest experiment

measured unpolarized Drell-Yan scattering, it is possible to use that data to mea-

sure the angular dependence of the process and thereby access the Boer-Mulders

function.

2.2.3 Sivers Function

The Sivers Function, f⊥
1T , “describes the distribution of unpolarized quarks inside a

transversely polarized nucleon, through a correlation between the quark transverse

momentum p⃗T and the nucleon transverse spin ST .”[38] Like the Boer-Mulders
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Figure 2.6: Illustration of quark polarization in an unpolarized proton: If
the proton moves along the z direction, the quarks can possess transverse mo-
mentum kT relative to the proton’s momentum. This creates a plane, and the
quarks can exhibit a net polarization ST that is transverse to this plane, as

described by the Boer-Mulders function.[4].

function, it is time-reversal odd. Probably the most studied TMD, it can give

insight into the orbital angular momentum of partons within the nucleon, which

is thought to be an important component of the overall spin of the nucleon, as

shown in figure 2.8.

Because it is time-reversal odd and believed to be process-dependent, the Sivers

functions measured via Semi-Inclusive Deep Elastic Scattering and the Drell-Yan

process have an equal magnitude but opposite sign. It can be measured via the

angular distribution of Drell-Yan scattering in a polarized process, and its mea-

surement is the main goal of the SpinQuest experiment.

2.2.4 Parton Distribution Functions

Parton distribution functions (PDFs) measure the distribution of partons inside

the nucleon as a function of the longitudinal momentum fraction x, and the Q2 of

the interaction, f(x,Q2). They can be obtained from the correlator Φ, as defined

in equation 2.16 by integrating over the transverse momentum k⃗⊥ as follows:

F q(P, x,N) =

∫
d2k⃗⊥Φ

q(P, x, k⃗T , N ; η) (2.21)

=
1

2

∫
dz−

2π
eixP

+z− ⟨p′,Λ′| ψ̄(−z
2
)ΓWψ(

z

2
) |p,Λ⟩

∣∣∣∣
z+=z⊥=0

. (2.22)

This is parameterized as
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F =


f1 0 0 0

0 h1 0 0

0 0 h1 0

0 0 0 g1

 , (2.23)

where f1, h1, and g1 are the unpolarized parton distribution function, the transver-

sity, and the helicity, respectively. These have very simple relations to specific

TMDs, as follows:[2]

f1(x) =

∫
d2k⊥f1(x, k⃗

2
⊥), (2.24)

g1(x) =

∫
d2k⊥g1L(x, k⃗

2
⊥), (2.25)

h1(x) =

∫
d2k⊥h1(x, k⃗

2
⊥). (2.26)

Next-to-leading-order PDFs are especially useful for experimentalists in Monte

Carlo simulations of physics processes.[42] Most cross-sections are dependent on

the parton distribution at leading order, meaning that a good estimate of the

PDFs can allow for good predictions of yields in scattering experiments. To that

end, there are several collaborations that use the results of scattering experiments

to calculate or predict the parton distributions for the different types of partons

in the nucleon.[5] An example of one of these is shown in figure 2.7.

2.2.5 Charges

The third and final “direction” in figure 2.4 is to integrate over x. By doing that

to the PDFs, we can get the charge:

Q(P ) =

∫
dxF(p, x,N) (2.27)

=
1

2P+
⟨p′,Λ′| ψ̄(−z

2
)ΓWψ(

z

2
) |p,Λ⟩ , (2.28)

which can be parameterized as:
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Figure 2.7: The Next-to-next-to-leading order MMHT 2014 PDFs for up,
down, charm, and strange quarks, as well as gluons at Q2 = 10GeV. Curves are
derived by fitting QCD to global hard-scattering data. Uncertainties shown are

one standard deviation[5].

Q =


q 0 0 0

0 δq 0 0

0 0 δq 0

0 0 0 ∆q

 . (2.29)

In this, q is the vector charge, which is the number of quarks with flavor q. ∆q

and δq are the axial charge and tensor charges, which represent the fraction of the

helicity and transversity carried by quarks of flavor q.[2]

2.2.6 The Spin Crisis

[This section was excerpted from the author’s master’s thesis [43]]

In the original parton model, the spin of the nucleon was carried entirely by

the valence quarks. The stability of nucleons’ measured spin seemed to confirm

this, as chaotic internal dynamics would seem to add a degree of randomness in

the observable. Problems began to arise in the late 1980s when the European
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Muon Collaboration measured the valence quark contribution to the spin of the

proton. They found that the intrinsic spin of the valence quarks contributed a

very small amount to the entire spin. Their analysis found that the spin of the

quarks contributed (14 ± 9 ± 21)% of the spin of the proton, which is consistent

with zero.[44]

More recent studies have found that although the spin of the valence quarks does

contribute to the overall spin of the nucleon, the intrinsic spin of the constituent

quarks and gluons is not sufficient to account for the entire spin. For that reason, it

is now believed that the orbital angular momentum of the partons also contributes

to the spin of the nucleon. Recent studies using lattice quantum chromodynamics

(LQCD), a non-perturbative method to solve QCD, estimate that 60% of the spin

comes from the intrinsic spins of quarks and gluons, and the remaining 40% comes

from the orbital angular momentum of the quarks, as shown in Figure 2.8.

LQCD evaluates QCD by dividing space-time into discrete points, with connecting

links between neighboring points. The fermion fields are defined at each point

of the lattice, and the gauge fields are defined on the links between the points.

This allows QCD to be solved without any assumptions, letting theorists calculate

observables from first principles. As the spacing between the points approaches

zero, the limit of continuous QCD is recovered.

Figure 2.8: Spin breakdown of a proton (Wiese et al.)[6]. Approximately 80%
of the spin is contributed by the quarks, of which half is from the orbital angular

momentum of the quarks.

According to a calculation by Wieste et al.,[6] the majority of the contribution

from orbital angular momentum comes from the antiquarks in the nucleon sea,

with the valence quarks accounting for a fairly small portion of the spin. This has

led a large focus of spin physics research to be the dynamics of the sea quarks.
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2.3 Scattering Processes

Many processes can be used in nuclear physics experiments to probe the internal

dynamics of nucleons. In this section, we will discuss three of them: Deep inelastic

scattering, Drell-Yan scattering, and quarkonium production. Drell-Yan scatter-

ing and quarkonium production, specifically J/ψ production, play major roles in

the SeaQuest and SpinQuest experiments, as they are important hadron-hadron

processes. Deep inelastic scattering does not play a role in these experiments,

but discussing it provides insight into other experiments that measure nucleon

structure, as well as deepening understanding of Drell-Yan scattering, as they are

closely related processes.

2.3.1 Deep Inelastic Scattering

When an electron and a proton interact, a virtual photon is exchanged between

the two, which changes the trajectory of the electron and the proton. Electron-

proton scattering can be categorized into four regimes based on the wavelength of

the virtual photon, each of which provides a different probe of the proton.

Figure 2.9: The four regimes of electron scattering from Thomson.[7]

Those regimes are shown in figure 2.9 and described below.

a. λ ≫ rp. In this regime, the proton is treated as a point-like charge and

the scattering can be treated as electromagnetic scattering off of a static

potential, known as elastic scattering.

b. λ ≈ rp. At this energy, the proton cannot be treated as point-like, and its

charge and magnetic moment distributions need to be taken into account.
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c. λ < rp. When the virtual photon wavelength decreases, inelastic scattering

begins to dominate over elastic scattering. In inelastic scattering, the virtual

photon is exchanged with a specific quark, allowing for probing of the internal

nucleon structure, mostly of the valence quarks.

d. λ ≪ rp. At high electron energies, the wavelength of the virtual photon

starts to be small enough to see the complex interior nature of the proton,

including the sea quarks and gluons. At this energy, the proton is able to

break up, meaning that there are several hadrons in the final state.

Elastic scattering is well described by only the outgoing angle of the electron, as

in Rutherford scattering:

dσ

dΩ
=

α2

16E2
ksin

4(θ/2)
, (2.30)

where α = e2/4π and Ek = p2/2me, e is the fundamental charge, p is the momen-

tum of the incoming electron, and me is the mass of the electron.

Figure 2.10: The Deep Inelastic Scattering process from Thompson. [7]

For inelastic scattering, however, it is necessary to use two kinematic variables. We

have some options in choosing these variables, but it is useful to choose between

W , x, y, v, and Q2, which are, respectively, the invariant mass of the hadronic

system, the Bjorken-x of the struck parton, the inelasticity, the energy loss, and the
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negative square of the four-momentum of the virtual photon. For a given center-

of-mass energy, you can describe the kinematics of the process fully by choosing

two of the quantities, as they are related by the following:

Q2 ≡ −q2, x ≡ Q2

2p2 · q
, y ≡ p2 · q

p2 · p1
, (2.31)

v ≡ p2 · q
mp

, W ≡ p4 (2.32)

Where p1,2,3,4 are the four-momenta of the incoming and outgoing particles, and q

is the four-momentum of the virtual photon, as shown in figure 2.10.[7]

Deep inelastic scattering has been used to probe the interior dynamics of nucleons

for over 50 years. In 1968, it was the first direct confirmation of the quark model of

protons, when DIS at the Stanford Linear Accelerator Center observed resonances

at three low momentum transfer values.[45]

In modern experiments, it is more common for experiments to measure semi-

inclusive deep inelastic scattering (SIDIS). SIDIS and DIS are the same process,

but to capture more information about the interaction, SIDIS measures not just

the outgoing electron, but also the highest momentum hadron that leaves the

collision.

2.3.2 Drell-Yan Scattering

Drell-Yan Scattering is closely related to DIS by a rotation of the Feynman di-

agram. When two hadrons interact, it is possible for a quark from one and an

antiquark from the other to annihilate, forming a virtual photon. This virtual

photon produces a dilepton pair, as shown in the Feynman diagram in figure

2.11.[8][46]

Similarly to SIDIS, we can define the following quantities (as in [47]):

q = (q0, qT , qL) Q2 =M2 = (−q)2 y =
1

2
ln
q0 + qL
q0 − qL

(2.33)

xF =
2qL√
s
= x1 − x2 s = (E1 + E2)

2 sx1x2 =M, (2.34)
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Figure 2.11: The Drell-Yan Scattering process.[8]

where q is the four-momentum, q0 is the rest mass, and qT,L are the transverse/-

longitudinal momenta of the Drell-Yan virtual photon, respectively. Q2 is the

square of the sum of the invariant masses of the leptons, and s is the square of the

center-of-mass energy. xF is the Fermi-x, and x1/2 are the Bjorken-x for the beam

and target, respectively. These can be calculated from the xF , s and M via

x1,2 =
1

2
(

√
x2F +

4M2

s
∓ xF ). (2.35)

At leading order, the x-dependent Drell-Yan differential cross-section is only de-

pendent on the PDFs of the quarks and anti-quarks, as follows:

dσ

dx1dx2
=

4πα2

9sx1x2

∑
i

e2i (q
1
i (x1, Q

2)q̄2i (x2, Q
2) + q̄2i (x1, Q

2)q1i (x2, Q
2)), (2.36)

αs is the fine structure constant, e is the charge of the quark, and the sum is over

the different quark flavors.

Because of the x dependence of the PDFs for quarks and antiquarks, by selecting

the x1 and x2 values that we are measuring, we can isolate the two terms. By

measuring where x2 << x1, as is done in both SeaQuest and SpinQuest, the

cross-section becomes approximately
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dσ

dx1dx2
≈ 4πα2

9sx1x2

∑
i

e2i q
B
i (x1, Q

2)q̄Ti (x2, Q
2). (2.37)

Because a proton has two up quarks, and the up quark has an electric charge

of +2/3 (as opposed to the −1/3 of down), proton-proton Drell-Yan scattering

is dominated by up-antiup annihilation. Therefore, in order to access the down-

antidown annihilation, one must first perform proton-proton scattering, and use

that information to extract the information from proton-deuteron scattering.

Figure 2.12: The Drell-Yan process in the Collins-Soper frame from [9].

In the Collins-Soper frame, as seen in figure 2.12, Drell-Yan scattering has an

angular dependence given by:

1

σ

dσ

dΩ
=

3

4π

1

λ+ 3
(1 + λcos2(θ) + µsin(2θ)cos(ϕ) +

ν

2
sin2(θ)cos(2ϕ)) (2.38)

where θ is the polar angle and ϕ is the azimuthal angle of the virtual photon in

the Collins-Soper frame.[48] λ, µ, and ν are not dependent on θ and ϕ, but are

dependent on other kinematic variables.

At leading-order, λ = 1, while µ = ν = 0. At next-to-leading-order, however, we

can have λ ̸= 1 and µ ̸= ν ̸= 0. Another condition, however, is imposed, where

λ + 2ν = 1. This is known as the Lam-Tung Relation.[49][50] At higher orders

this relation does not appear to hold, and the Lam-Tung breaking coefficient,

2ν − (1− λ), is a useful probe of parton transverse momentum.[51]

These angular dependencies, as well as the Lam-Tung Relation, have been mea-

sured in p→ p and p→ d before by E866 at Fermilab, albeit with a much higher
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energy than SeaQuest (SeaQuest used a 120 GeV beam, E866 used an 800 GeV

beam). Other experiments, such as CERN NA10 and Fermilab E-615, measured

the angular dependence of Drell-Yan scattering with a pion beam. Because of the

parton distribution functions of quarks and antiquarks in protons versus pions,

proton beams are better at probing the sea quarks distributions, while pions are

better at probing the valence quark distributions. A plot of the angular distribu-

tions for these three experiments are shown in Figure 2.13.

Figure 2.13: The pT dependence of the Drell-Yan asymmetry variables from
E866.[10][11]

As pointed out by Boer in [9], the presence of a non-zero ν can be explained by

a non-zero Boer Mulders function. He calculated that the Boer-Mulders function,

h⊥1 gives rise to a non-zero ν value:

ν ∝ h⊥1
f1

h̄⊥1
f̄1

(2.39)

Because of this, by measuring the cos(2ϕ) dependence of Drell-Yan scattering, we

are able to access the Boer-Mulders function. Both SeaQuest and SpinQuest were

designed to measure the muons produced by Drell-Yan scattering, making it the

most important process for the purpose of this dissertation.
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As can be seen in Figure 2.13, there is a large discrepancy between the ν values

in pion-induced Drell-Yan compared to proton-induced Drell-Yan. While the pion

data shows a strong pT dependence to ν, the proton data shows no such relation.

The absence of a pT dependence in the proton-induced Drell-Yan data implies that

the sea quark Boer-Mulders function is relatively small compared to the valence

quark distributions. Additionally, the Lam-Tung Relation is clearly broken in

pion-induced data, while it is consistent with zero in proton-induced data.

The discrepancies in the angular dependencies between pion-induced and proton-

induced Drell-Yan scattering highlight differences in the Boer-Mulders functions

for sea and valence quarks. These results highlight the importance of proton-

induced experiments like SeaQuest and SpinQuest in providing additional data on

sea quark distributions. By analyzing the angular dependencies, we gain deeper

insights into parton dynamics and the internal structure of hadrons.

2.3.3 Quarkonium Production

Quarkonia are bound states of a heavy quark and its antiquark. They can be cre-

ated in particle collisions via either quark-antiquark annihilation or gluon-gluon

fusion. Because they consist only of a particle and its antiparticle, they are ex-

tremely short-lived, and their production is a large source of muon pairs in detector

experiments.

Figure 2.14: Feynman diagrams showing different first-order (no loop) path-
ways of quark-antiquark production in QCD. The left diagram shows quark-
antiquark annihilation, resulting in a charmonium pair, and the middle and left

diagrams show two versions of gluon-gluon fusion.

Because quarkonia have a well-defined mass, they exhibit spectroscopic behavior

in the mass spectrum of an experiment’s measured leptons. This can be both

useful and a hindrance in analysis. The relatively higher differential cross-section

of quarkonia production makes it difficult to measure Drell-Yan muons close to
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Figure 2.15: A quarkonium: a meson comprising of a heavy quark and its
antiquark bonded by the strong force.

the masses of quarkonia. Because the muons produced by quarkonia decays have

very specific masses, however, they do not appear in other mass ranges, allowing a

simple cut of the data around the mass of quarkonia to isolate them from Drell-Yan

data.

There are several quarkonia, most notably the J/ψ meson and the Υ meson, which

are bound states of charm-anticharm and bottom-antibottom pairs, respectively.

The SeaQuest/SpinQuest spectrometer is highly sensitive to the kinematic range

at which the J/ψ is found, but not very sensitive to the Υ. As such, we will

primarily discuss the J/ψ. Υ meson production is largely analogous to that of the

J/ψ meson.

The J/ψ meson, a quarkonium comprised of a charm and anti-charm quark (cc̄)

was discovered in 1974 by researchers at both Brookhaven National Laboratory

and the Stanford Linear Accelerator Center. Independent teams, led by Ting and

Richter (at Brookhaven and SLAC, respectively), measured lepton production

resonance at a mass of 3.1 GeV, with a narrow decay width (later shown to be

only around 100 keV). The group at SLAC named the particle the ψ, while the

Brookhaven named it the J particle, leading to its common name. It has a spin of

1 and a neutral electric charge. Since it is the lowest mass charmonium and spin

1, it is the most common charmonium. Excited states of the J/ψ have also been

measured, most notably the ψ′ meson, with a mass of around 3.7 GeV. [12][52][53]



The SeaQuest and SpinQuest Experiments 31

Figure 2.16: A plot showing the mass spectrum measured in the Brookhaven
experiment showing the existence of a then-unknown particle, now known to be

the J/ψ meson.[12]

J/ψ meson production, unlike the Drell-Yan process, is not only a quark-antiquark

process in nucleons. Although it can be created by the annihilation of quarks and

antiquarks, it is also able to be created via gluon-gluon fusion, as shown in Figure

2.14. The levels at which these different processes contribute to the overall cross-

section of the process depend heavily on the parton distributions.

At higher energies, gluons carry more of the longitudinal momentum of nucleons,

which means that at high energies the gluon-gluon fusion is expected to dominate

J/ψ production, while at lower energies quark-antiquark annihilation is expected

to be a large contribution to the overall process cross-section, dependent on xF .

At the SeaQuest/SpinQuest center-of-mass energy of
√
s = 15.4 GeV, it was cal-

culated by Bhaduri et al. that at low xF the gluon process dominates, while at

high xF , the quark annihilation dominates.[54]

Because of the kinematic range at which SeaQuest and SpinQuest operate, a large

number of the dimuons detected originate from the decay of the J/ψ process. That

means that although it is not the main focus of the experiment, understanding

the process is very important for signal/background analysis. In addition, by

reconstructing the J/ψ invariant mass peak, we are able to get a measure of the

quality of our kinematic variable resolution.



Chapter 3

The SeaQuest and SpinQuest

Experiments

The understanding of the proton’s inner structure, its quark constituents, and their

dynamics has been a central pursuit in the field of nuclear and particle physics.

To this end, two experiments, SeaQuest and SpinQuest, were designed to explore

the nucleons’ compositions, shedding light on their quark distributions. Both of

these experiments use the Fermilab main injector beam and employ the E906

spectrometer for data acquisition. However, they differ in their specific objectives,

focusing on sea quark distribution and Sivers asymmetry in Drell-Yan reactions,

respectively. This chapter will discuss the motivations behind each experiment,

outline their distinctive characteristics, and provide details of the experimental

setup.

3.1 Motivations

As discussed in Chapter 2, nucleons consists of a complex interplay of quarks, anti-

quarks, and gluons, collectively shaping their properties. Among the constituents,

the behavior of quarks, particularly the sea quarks, plays a pivotal role in defining

their characteristics. Sea quarks are constantly emerging and annihilating in the

proton, influencing its internal structure. The SeaQuest experiment was designed

to explore the flavor dependence of sea quarks, particularly the ratio of anti-down

to anti-up quarks in the nucleons, and to investigate any potential modifications

of the sea quark structure within heavier nuclei.

32
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The SeaQuest experiment (E906) sought to measure the distributions of sea quarks

in the nucleon and explore the anti-quark EMC effect. It also provided data with

which to study Boer-Mulders function by analyzing the azimuthal distributions of

muons resulting from Drell-Yan scattering.

The SIDIS experiments at various facilities have provided insights into the Sivers

function. However, Drell-Yan scattering can help to provide more insight, as it is

a cleaner probe of the Sivers function than SIDIS.

The SpinQuest experiment (E1039) seeks to address questions about the Sivers

function by using the E906 spectrometer and a newly developed transversely po-

larized proton target with high polarization. This experiment aims to provide

more precise measurements of the Sivers asymmetry of sea quarks.

3.2 Fermilab

The Fermi National Accelerator Laboratory, or Fermilab, is a particle physics

research facility run by the US Department of Energy. It was founded in 1967

and has been a leader in particle physics research over the past half-century. It is

primarily focused on probing the nature of energy and matter through the study

of high-energy particles.[55]

Over its history, Fermilab has hosted numerous experiments that use particle

accelerators to study high-energy interactions. Groups working at Fermilab have

discovered several important discoveries, such as discovering the Bottom Quark

(1977) the Top Quark (1995), and the Tau Neutrino (2000). These three particles

were the last fermions to be discovered and completed all three generations of

leptons and quarks. In addition, Fermilab has conducted experiments searching

for particles that could explain dark matter and the matter/antimatter asymmetry

observed in the universe.

3.3 The Main Injector Beam

The Main Injector Beam (MIB) at Fermilab is a proton accelerator with a circum-

ference of approximately 3.9 kilometers. The MIB can accelerate protons to ener-

gies up to 120 GeV, making it an important tool for various physics experiments.
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Figure 3.1: The intensity of the beam delivered to the SeaQuest experiment,
as measured by the Beam Intensity Monitor. The red line represents the trigger
cutoff threshold. If the threshold was reached, the trigger was inhibited for the
previous 9 and next 9 RF buckets. These two strips are approximately 33 µs
plots taken from the same spill within half a second of each other, showing that

the intensity varied dramatically, even within the same spill.[13]

This is accomplished by subjecting the particles to a series of radiofrequency cav-

ities, which provide the necessary electromagnetic fields to increase the particles’

energy.

The MIB is used in a wide array of experiments conducted at Fermilab. It can

provide beams for experiments in diverse fields of high-energy physics, including

neutrino physics, dark matter research, and precision measurements of particle

properties, such as SeaQuest and SpinQuest.

For SeaQuest and SpinQuest, the MIB delivers 120 GeV protons to the NM3

hall. The protons are delivered in approximately 4-second spills. The MIB has

a frequency of 54.1 MHz, which divides the beam into “RF Buckets” that occur

every 18.8 ns and are approximately 2 ns long. Ideally, each of these buckets has an

equal, predictable number of protons. During the SeaQuest experiment, however,

the number of protons in each bucket varied significantly, as shown in figure 3.1.

Each spill therefore has approximately 200 million buckets in a pulse structure.

The SeaQuest and SpinQuest experiments use a trigger that is designed to detect

when two oppositely charged high-mass muons pass through the detector array.

Although the trigger is able to differentiate between muons from interactions from

different RF buckets, it is not able to differentiate between interactions in the
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same bucket. Therefore, when the intensity of a single bucket has too many pro-

tons, the trigger system can be saturated with false-positive dimuon pairs, which

leads to missing true dimuon pairs. To combat this, the SeaQuest experiment de-

signed a Beam Intensity Monitor that inhibited the event trigger when the beam

intensity exceeded a certain threshold per bin (around 65,000-90,000 protons per

bucket).[13]

3.4 The SeaQuest/SpinQuest Detector

The SeaQuest/SpinQuest spectrometer at Fermilab was constructed with the pur-

pose of detecting oppositely charged pairs of muons, or dimuons. These dimuons

are generated through the interactions between the MIB and the target (discussed

in sections 3.5 and 3.6). It was specifically designed to explore the antiquark

distributions within the nucleons of the target via Drell-Yan scattering.

The spectrometer’s configuration comprises several key components, including two

dipole magnets and four detector stations. The initial magnet positioned upstream

is a closed-aperture solid iron magnet, which serves a dual role as both a magnet

and a beam dump. In contrast, the second magnet is designed as an open-aperture

magnet.

Each of the four detector stations within the spectrometer is equipped with scin-

tillator hodoscopes and either proportional tubes or drift chambers. To effi-

ciently trigger the data acquisition process, the spectrometer employs a Field

Programmable Gate Array (FPGA) based trigger system. This trigger system

analyzes the signals from the hodoscopes and compares them to a predetermined

set of roadmaps, effectively determining whether the event under scrutiny contains

oppositely-signed, high-mass muon pairs. The trigger decision is returned in 770

ns. A diagram of the spectrometer is shown in figure 3.2.[13]

3.4.1 Magnets

The upstream magnet, known as FMag, is a solid iron magnet with dimensions of

43.2 cm in width, 160 cm in height, and 503 cm in length. This magnet was assem-

bled using iron slabs reclaimed from the dismantled Columbia University Nevis
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Figure 3.2: A schematic of the SeaQuest/SpinQuest spectrometer. It is com-
prised of two magnets and four tracking stations. The two magnets, FMag and
KMag, are both dipole magnets. The first three stations are made of groups of
drift chambers and hodoscopes, and the fourth station is comprised of propor-
tional tubes and hodoscopes. The beam enters from the far left, and charged

particles pass through the stations.[13]

Laboratory target cell insulation vacuum in 1980. FMAG is able to accommodate

a current of 2000 amperes at 25 volts, consuming 50 kW of power. This config-

uration yields a magnetic field strength of 1.8 Tesla. This deflects the particles

passing through it by angle θ =
0.3

∫
Bdl

p
= 3.3GeV

p
FMag utilizes one of the three

sets of ”bedstead” coils that were repurposed from the decommissioned E866 SM3

magnet. These coils are constructed from 5 cm square extruded aluminum.

Monitoring of the current in FMag is integrated into the Fermilab accelerator

control system, and this data is relayed to the slow data acquisition system during

each acceleration cycle. To ensure safety, the magnet current is incorporated

into the safety system, preventing beam particles from colliding with the E906

spectrometer unless FMag is energized to a minimum level. The final calibration

of the magnetic field was achieved through the examination of the reconstructed

mass of the J/Ψ resonance.

FMag serves a dual purpose, acting both as a spectrometer magnet and as the

beam dump for the 120 GeV beam directed toward the SeaQuest spectrometer.

To increase the target-dump seperation, there is a 5 cm diameter, 25 cm deep hole

drilled into the upstream end of FMag along the beam axis.
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The downstream magnet, referred to as KMag, is an iron rectangular magnet,

measuring 300 cm in length, with a central air gap of 289 cm in width and 203 cm in

height. KMag is excited to a central magnetic field strength of 0.4 Tesla, equivalent

to a 0.39 GeV/c magnetic deflection, achieved by applying 1600 amperes at 270

volts, consuming 430 kW of power. This deflects the particles passing through it

by angle θ =
∫
Bdl

p
= 0.36GeV

p
.

Like FMag, the final calibration of the magnetic field is anchored in the precise

measurement of the mass of the J/Ψ resonance. Both FMag and KMag are config-

ured with their magnetic fields oriented vertically, ensuring that the bend plane is

horizontal. In the normal operational state, both magnets collectively bend muons

in the same direction, allowing for easier particle identification.

3.4.2 Hodoscopes

The detector hodoscopes work by using a combination of scintillating materials

and photodetectors. When charged particles traverse a scintillating material, they

interact with the atoms, inducing the excitation of electrons to higher energy

levels. Subsequently, as these excited electrons return to their ground state, they

emit photons in the form of visible or ultraviolet light.

Surrounding the scintillating material within hodoscopes are arrays of photodetec-

tors, which detect the scintillation light and convert it into electrical signals. The

spectrometer uses photomultiplier tubes (PMTs) on each end of the scintillator

bars.

The spectrometer’s primary trigger relies on four hodoscope stations constructed

with plastic scintillators. These stations are configured with both x-planes (mea-

suring the x-position) and y-planes (measuring the y-position). Station 1 and 2

each consist of a single x-y plane with 1-inch PMTs, Station 3 has a single x-

plane, and Station 4 comprises two y-planes and one x-plane, all equipped with

2-inch PMTs. To enhance efficiency, the scintillator bars in each plane are slightly

overlapped.

An example of one of these stations is shown in figure 3.3.
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Figure 3.3: A drawing of the hodoscopes located in station 1, named H1X
and H1Y. The X array has 46 scintillating tubes and the Y array has 40.[14]
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Detector Width Overlap # of paddles x-position y-position z-position
(cm) (cm) (cm) (cm) (cm)

H1T 7.32 0.32 23 162.00 69.85 667.12
H1B 7.32 0.32 23 162.00 69.85 667.12
H1L 7.32 0.32 20 78.74 140.12 654.03
H1R 7.32 0.32 20 78.74 140.12 654.03
H2T 13.04 0.32 16 203.24 152.00 1421.06
H2B 13.04 0.32 16 203.24 152.00 1421.06
H2L 13.07 0.32 19 132.00 241.29 1402.86
H2R 13.07 0.32 19 132.00 241.29 1402.86
H3T 14.59 0.32 16 227.52 167.64 1958.51
H3B 14.59 0.32 16 227.52 167.64 1958.51
H4T 19.65 0.32 16 304.52 182.88 2234.50
H4B 19.65 0.32 16 304.52 182.88 2250.68

H4Y1L 23.48 0.32 16 152.40 365.80 2130.27
H4Y1R 23.48 0.32 16 152.40 365.80 2146.45
H4Y2L 23.48 0.32 16 152.40 365.80 2200.44
H4Y2R 23.48 0.32 16 152.40 365.80 2216.62

Table 3.1: The hodoscopes present in the spectrometer, with the dimensions,
positions, and number of scintillating paddles in each detector.

3.4.3 Drift Chambers

Drift chambers are designed to detect charged particles as they traverse through

a gas-filled chamber. These chambers are equipped with wire planes, arranged

as vertical x-position planes and left-right stereo-angle planes (u and v). When a

charged particle passes through the gas, it ionizes the atoms along its path, creating

free electrons. An electric field is maintained within the chamber, causing these

free electrons to drift towards the wire planes. The time it takes for these electrons

to reach the wires is recorded, allowing for the calculation of the particle’s position.

By measuring the drift times and positions in multiple wire planes, the trajectory

of the particle can be reconstructed with high precision.

For the SeaQuest and SpinQuest experiments, the drift chambers each have a total

of six wire planes. These chambers were the main source of tracking information for

the experiment. To achieve high-precision mass measurements, it was important

to ensure that the position resolution of each individual plane was very high.

Specifically, the spatial resolution of an individual plane needed to be within the

range of 400 µm. The resolution are defined as the average RMS value for each

chamber, calculated by taking the difference between the measured position in a

plane and the position calculated at the z-coordinate of that plane, using a fit where
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Figure 3.4: A drawing of the drift chambers located in station 1. The X-plane
wires are oriented vertically, while the V and U (not shown) are angled 0.245
radians (14 degrees) from vertical. This allows for high resolution in the x-
direction, which corresponds to the direction of bending from the spectrometer

magnets.[14]

the plane is excluded from the calculation. This level of precision corresponds to

a momentum resolution of 0.03%. This requirement ensures that the contribution

of the position resolution to the overall mass resolution remains under 10%.

The tracking stations were not only designed for precision but also for efficiency.

All the planes of all the detectors have over a 95% efficiency, based on analysis of

drift chamber and hodoscope hits.

3.4.4 Proportional Tubes

Proportional tubes operate based on the principle of proportional gas amplifica-

tion. When a high-energy charged particle travels through these tubes, it ionizes

the gas within the chamber, creating free electrons, similarly to in a drift chamber.

The applied electric field accelerated these electrons toward the central anode wire,

where the wire acts as the primary collection electrode. As these electrons drift

toward the anode wire, they create a detectable electrical signal, the magnitude of

which is proportional to the number of ionization events initiated by the passing

muon.

The proportional tubes are all located at station 4, downstream of a 1-meter-

thick iron wall. Because of the previous beam dump, magnetic fields, and the
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Detector Cell Size # of Cells Tilt Angle Width Height z-position
(cm) (rad) (cm) (cm) (cm)

D1U 0.635 201 0.245 101.60 121.92 594.49
D1Up 0.635 201 0.245 101.60 121.92 595.13
D1X 0.635 160 0 101.60 121.92 617.09
D1Xp 0.635 160 0 101.60 121.92 617.72
D1V 0.635 201 -0.245 101.60 121.92 637.17
D1Vp 0.635 201 -0.245 101.60 121.92 637.81
D2V 2.021 128 -0.245 233.27 264.16 1314.98
D2Vp 2.021 128 -0.245 233.27 264.16 1321.96
D2Xp 2.083 112 0 233.27 264.16 1340.36
D2X 2.083 112 0 233.27 264.16 1347.34
D2U 2.021 128 0.245 233.27 264.16 1365.99
D2Up 2.021 128 0.245 233.27 264.16 1372.98
D3pVp 2.000 134 0.245 320.00 166.00 1923.33
D3pV 2.000 134 0.245 320.00 166.00 1925.33
D3pXp 2.000 116 0 320.00 166.00 1929.33
D3pX 2.000 116 0 320.00 166.00 1931.33
D3pUp 2.000 134 -0.245 320.00 166.00 1935.33
D3pU 2.000 134 -0.245 320.00 166.00 1937.33
D3mVp 2.000 134 0.245 320.00 166.00 1886.77
D3mV 2.000 134 0.245 320.00 166.00 1888.77
D3mXp 2.000 116 0 320.00 166.00 1892.77
D3mX 2.000 116 0 320.00 166.00 1894.77
D3mUp 2.000 134 -0.245 320.00 166.00 1898.77
D3mU 2.000 134 -0.245 320.00 166.00 1900.77

Table 3.2: Parameters of all the drift chambers. Stations 1 and 2 have one
array of six drift chambers each, while station 3 has two arrays, which are in

the same z-plane but offset in the y-plane.

final iron wall, the vast majority of particles passing through station 4 are muons.

Much like the other stations, station 4 encompasses both triggering hodoscopes,

as previously described, and tracking detectors. The tracking detectors in station

4 comprise four layers of proportional tube planes. Each of these planes is com-

prised of nine proportional tube modules, with every module constructed from 16

proportional tubes. These proportional tubes are 12 feet (3.66 meters) in length,

with a diameter of 2 inches (5.08 centimeters), staggered to form two sub-layers.

The proportional tubes are oriented along either the horizontal or vertical direc-

tion, providing precise tracking in either the y or x-coordinate for the first and

fourth planes and the second and third planes, respectively. The wall thickness

of each tube is 1/16 inch, with the central anode wire having a diameter of 20
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Detector Radius Layers Modules Tubes in Tilt x y z
(cm) in Layer Module (rad) (cm) (cm) (cm)

P1H 5.08 2 9 8 0 368.3 388.6 2102.1
P1V 5.08 2 9 8 π 388.6 368.3 2178.8
P2H 5.08 2 9 8 0 368.3 388.6 2394.4
P2V 5.08 2 9 8 π 388.6 368.3 2371.3

Table 3.3: The properties of the four detectors comprised of proportional
tubes. There are four detectors, each with 2 layers, 9 modules per layer and 8
tubes per module (for a total of 576 tubes). The detectors are split into two

sub-stations, each with one detector each in the x- and y-orientations.

micrometers. The same gas mixture used in the drift chambers is employed within

the proportional tubes.

Typically, a high-energy muon passing through the proportional tubes traverses

two of these tubes in each plane, inducing hit signals on two anode wires. In

the process of muon identification, a total of 8 hits from the four planes of the

proportional tubes are used to construct a track that points back to the target.

3.5 The SeaQuest Target

The SeaQuest target was located 130 cm upstream of the first detector station.

It had five target materials: liquid hydrogen, liquid deuterium, iron, carbon, and

tungsten. There were also two target positions that were used to measure the

background: an empty liquid flask and an empty solid-target holder. These targets

were all placed on a movable table that moved the different materials in and out

of the beamline between spills, as shown in figure 3.5.

The number of interactions expected from a target is dependent on both the

density and length of the target material. Because of this, it is useful to consider

the number of interaction lengths of a target. An interaction length is similar to a

mean free path and is a measure of the average distance that a particle can travel

through a material before it undergoes an inelastic interaction.

Because of their low density, the H2 and D2 targets were made significantly longer

than the solid targets. With this design, the active targets all have interaction

lengths on the same order.
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Figure 3.5: A top-view of the movable SeaQuest target. The target had seven
possible positions, depending on the desired target.[13]

Position Material
Density
(g/cm2)

Thickness
(cm)

Interaction Lengths
Spills/
Cycle

1 H2 0.071 50.8 0.069 10
2 Empty Flask - - 0.0016 2
3 D2 0.163 50.8 0.120 5
4 No Target - - 0 2
5 Iron 7.87 1.905 0.114 1
6 Carbon 1.80 3.322 0.209 2
7 Tungsten 19.3 0.953 0.096 1

Table 3.4: A summary of the seven target positions in the SeaQuest exper-
iment. The number of spills per cycle is approximate and was decided on to
balance the expected number of interactions (from interaction lengths) with im-

portance to physics analysis.
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Because of the importance of the H2 and D2 measurements, the decision was made

to collect more data from the cryogenic liquid targets. A cycle, comprised of 23

spills, was comprised of ten spills to the H2 target, five spills to the D2 target, two

each to the empty flask, no target, and carbon target, and one each to the iron

and tungsten targets. A summary of the target characteristics is shown in table

3.4.

3.6 The SpinQuest Target

For SpinQuest, the desired measurement of polarized Drell-Yan scattering requires

a target capable of high levels of polarization that can withstand the high intensity

and energy of the Main Injector Beam. The total beam energy is 22 kW, delivered

over a 4.4-second spill, which means the beam delivers approximately 100 kJ every

minute. This presents several challenges:

• Preventing magnet quenches

• Electronics cannot survive in target cave due to radiation exposure

• Radiation damage to the target

• Keeping the target polarized

• High helium expenditure

These challenges all influenced the design and operation of the target. Below, we

discuss the different subsystems of the SpinQuest target, built by the University

of Virginia and Los Alamos National Laboratory.

3.6.1 Target Material

There are many solid polarizable target materials that have been used in experi-

ments. There are several factors that need to be considered when selecting a target

material.
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Figure 3.6: The SpinQuest targets and its subsystems. The target was de-
signed and built by Los Alamos National Laboratory and the University of

Virginia Target Group.[15]

The first two of these considerations are the degree of polarization of the material,

P , and the ratio of the polarizable cross-section to the total cross-section of the

target, known as the dilution factor f .

In a polarized scattering experiment, an asymmetry A is measured by comparing

the number of events N in one spin configuration to the opposite spin configura-

tion. If the experiment was able to achieve a polarization of 100%, this corresponds

exactly to the cross-sections of the processes in the up and down spin configura-

tions:

A =
σ ↑ −σ ↓
σ ↑ +σ ↓

(3.1)

=
N ↑ −N ↓
N ↑ +N ↓

. (3.2)

Unfortunately, due to a design flaw in the universe, this is not possible in any

experiment. We can instead measure a counting asymmetry ϵ, given by
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ϵ =
N ↑ −N ↓
N ↑ +N ↓

, (3.3)

This can be related to the desired asymmetry A by the relationship

A =
ϵ

Pf
. (3.4)

This correction accounts for the target having neither perfect polarization nor

purity. Since we know the total number of events is proportional to the total

measurement time, we can give the following relationship for the time required for

the experiment to reach a given level of statistical error:

t ∝ 1

ρ(Pf)2
(3.5)

where ρ is the density of the material. It is therefore important to select a material

with a combination of high dilution factor and polarization level to reduce the

required run time of the experiment.

Other important considerations for selecting a material include the difficulty of

preparation and handling, the temperature at which it is polarized, the speed at

which it is polarized (polarization build-up time), the presence of other polarizable

nuclei, and resistance to radiation damage. Table 3.5 shows a summary of some

of the more common materials used in polarized target experiments.[56]

Ammonia (NH3) and deuterated ammonia (d-ammonia or ND3) were selected as

the best options for the target material for SpinQuest. This is due to their high

dilution factors, polarizability, and radiation characteristic flux. Additionally, they

polarize very quickly, which is helpful, since the targets will need to be replaced

regularly in the experiment.

Since each spill delivers on the order of 1012 protons, and the radiation character-

istic flux for ammonia and d-ammonia are on the order of 1016, we will have to

replace the target material on the order of once every 104 spills. Since a spill hap-

pens each minute, that is approximately one week1. Ammonia and d-Ammonia

have a polarization build-up time on the scale of hours, as opposed to a scale

1This can be easily calculated using the Rent method of time calculation. Since there are
525,600 minutes in a year, 10,000 minutes is approximately one fifty-second of a year, or a week.
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Material Temp.
Required
(K)

Dilution
Factor

Maximum
Polariza-
tion %

Radiation
characteristic
flux
particles/cm2

Butanol
C2H4(OH)2

0.3 0.135 93 3× 1014

d-Butanol
C4D9OD

0.3 0.238 50 3× 1014

Ammonia
NH3

1 0.175 97 7× 1015

d-Ammonia
ND3

1 0.30 50 1.3× 1016

Lithium
deuteride
LiH

0.2 0.50 70 4× 1016

Table 3.5: A summary of some common polarizable target materials used.
The radiation characteristic flux is a measure of the radiation dose that reduces

the maximum polarization of the material by a factor of 1/e.

of days for Lithium deuteride, which saves a considerable amount of time in the

experiment.

3.6.2 Target Material Production

Ammonia (NH3) is a highly caustic and hazardous material, which means that it

must be produced, handled, and stored carefully. It is dangerous to the eyes and

can cause suffocation by destruction of the airways in high concentration. It is

intolerable at densities larger than 35 mg/m3. It freezes at 195.5 K and boils at

239.8 K. As a solid at 194 K, it has a density of 0.817 g/cm3.

Because it freezes at nearly 200 K, it is easy to freeze ammonia in liquid nitrogen,

which boils at 77 K. This can be done by percolating gaseous ammonia through

liquid nitrogen. This tends to create a slug of solid ammonia, which must be

crushed and sifted through screens to turn it into 1 mm beads.

To enable dynamic nuclear polarization, it is necessary to deposit paramagnetic

radicals into the ammonia. This is done in two stages: first at “high” temperatures

(80-90 K) and then at a low temperature (1 K). The high-temperature irradiation
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has historically been performed using high-current, low-energy beams, on the or-

der of 1014 10 MeV electrons per second. The ammonia is held under cryogenic

conditions in the beamline and accumulates dose. This was initially done with

liquid nitrogen, but that caused unexpected explosions, which led to the use of

liquid argon.[57]

This process requires the use of high-intensity, relatively low-energy electron beams.

The UVA target group has irradiated materials at the Bates Linear Accelerator

Laboratory, the SUNSHINE facility at SLAC, the Monterey Naval Research Fa-

cility, the Thomas Jefferson National Accelerator Facility, and the Saskatchewan

Accelerator Laboratory.

Unfortunately, the availability of these beams for use to irradiate target material

has become limited, with the vast majority of high-temperature irradiation now

being done at one facility – the Medical-Industrial Radiation Facility (MIRF) at

the National Institute of Standards and Technology (NIST).

Because beam time is limited, it is important to optimize the time that we have

available at this facility. While effective at creating highly polarizable material,

the existing method for irradiation is time-consuming and requires frequent ma-

nipulation of the ammonia, which requires beam downtime. For details on the

existing method, see [58].

To help address this issue, we designed a new method for the irradiation of ammo-

nia for use in polarized target experiments. It employs a larger, rotating basket

to hold the ammonia to be polarized, which eliminates the need for the ammonia

to be turned halfway through the irradiation, and presents a larger target for the

beam, allowing a greater portion of the energy to be deposited in the ammonia.

A larger, rotating basket has two main benefits for the irradiation of target ma-

terial. First, because a greater portion of the beam energy is deposited into the

material, it increases the yield of irradiated ammonia for a set amount of beam-

time. Second, it increases the homogeneity of the dose deposited to the ammonia,

as the rotation eliminates the inhomogeneity created by the Gaussian beam profile.

The MIRF houses a traveling-wave linear accelerator (linac) with an energy range

of 7 to 32 MeV. It can generate a beam current of up to 20 µA (the maximum

current has decreased as the linac has aged).
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Figure 3.7: The Medical-Industrial Radiation Facility (MIRF) at the National
Institute of Standards and Technology (NIST). Image of a poster created by Fred

Bateman of NIST.

The linac was originally a radiotherapy machine used for fifteen years on an es-

timated 5 to 10 thousand patients before was donated to NIST by the Yale New

Haven Radiation Oncology Center in 1992. The linac has been modified since its

medical use, including converting it to 60 cycle, which allows for 120 beam pulses

per second.

At NIST, the MIRF is used in a wide variety of applications. Its original primary

application was to calibrate standards for radiation treatment for cancer patients.

It has also been used to test the radiation hardness of materials, electron-beam

curing, municipal waste sterilization, mail sanitation and to study material modi-

fication, which is the purpose for which we use it.[59]

When used for irradiating ammonia, the beam is set to an energy of 12.5 GeV,

and a beam current of 10 µA, or approximately 6 × 1013 electrons per second

delivered to the ammonia. The dose required to achieve good polarization is

typically measured in electrons per square centimeter. For NH3, the optimal dose

is approximately 1016 to 1017 electrons per square centimeter.[56] The cup holding

the target material has a cross-section of 8 square centimeters, which means that to

achieve the desired dose, we irradiate the material for approximately 40 minutes.

Because the cup is approximately 6 cm long, we irradiate on one side for 40

minutes, then turn the cup 180 degrees, and irradiate for another 40 minutes.

Figure 3.9 shows a simulation of the dose delivered per electron to the target cup

along its length, in the existing geometry. This geometry assumes a beam widener

400 mm downstream of the beam exit, with the target material separated from
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Figure 3.8: A photograph of the MIRF Linac.

Figure 3.9: A simulation, performed by Fred Bateman of NIST, showing the
dose delivered to the central axis of the target cup for the existing irradiation

method.

the widener with 15 mm of liquid Argon. The total radiation delivered to the

ammonia during the irradiation process is approximately 500 kGy/cc.

To increase the yield, as well as increase the homogeneity of the delivered dose,

we have designed a rotary basket (as shown in figure 3.10). It is 8 cm in diameter

and 3 cm in height. The basket sits in the beam path and in rotated at 1 rpm to
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Figure 3.10: A design for a rotary target basket to increase yields of irradiated
ammonia.

evenly distribute the dose angularly. The basket is closed with two quarter-turn

cam latches on the lid. The frame is made of solid aluminum to reduce activation,

and the bottom and sides of the basket have an aluminum mesh outer wall to

hold the target material. It has a total interior volume of 151 cc, allowing us to

irradiate a large amount of ammonia in a single batch.

The purpose of the new design is twofold: increasing the amount of material held

in the basket and increasing the homogeneity of the dose received. In order to

determine the optimal size of the basket, we need to determine two things: how

homogeneous the dose received is, and how much more (or less) efficiently the

material is produced. Other design considerations included the ease of access to

the ammonia inside the basket and limiting the amount of material directly in the

beam path that could be activated.

To calculate the dose to the target, we can model the electron beam as a Gaussian

beam. A Gaussian beam has an intensity given by

I(r, z) = I0

(
w0

w(z)

)2

exp

(
−2r2

w(z)2

)
, (3.6)

where r is the radial distance from the central beam axis, z is the axial distance

from the beam waist, w0 is the waist radius, and w(z) is the radius of the beam

at a given z. Because we are only interested in modeling a small portion of the z
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axis, we can assume that w(z) is constant over the area of interest, giving a beam

intensity of

I(r) = I0exp

(
−2r2

σ2

)
, (3.7)

The dose deposited per electron is attenuated exponentially as the beam travels

through the argon and ammonia. As such, we can model the dose received as

a combination of an exponential decay in the x-direction and a Gaussian in the

y-direction, where x is the direction of the electron beam. Thus,

Flux ∝ e−λze−
r2

σ2 (3.8)

From the simulation of our setup, we get values of λ = 0.432 and σ = 1.776. To

determine the ideal diameter of the basket, we calculated the dose delivered to the

ammonia as a function of the radius at which it sits. This is shown in figure 3.11.

To compare the dose distribution, we calculated the standard deviation of the

normalized radial dose (non-uniformity). In addition, we calculated the length of

time needed to irradiate the basket to an average dose of 500 kGy/cc, the total

volume of the basket, and the improvement over the older basket design in terms

of cubic centimeters irradiated per hour. The results for baskets of diameter 1 cm

to 16 cm are shown in table 3.6.

The old version of the target cup has a non-uniformity value of 0.21, and takes

80 minutes to irradiate 29 cc of ammonia. Based on these calculations, baskets

with a diameter of between 6 cm and 14 cm have an improved yield per hour (not

counting the reduction in time needed to manipulate and change ammonia target

cups). All sizes under 14 cm also improve the homogeneity of the dose delivered

to the ammonia.

Based only on yield and homogeneity, a basket diameter of 9 or 10 cm would be

ideal. However, there is one additional consideration that we need to take into

account: the length of a workday. The MIRF is only available for use for 8 hours

a day, which limits beamtime to approximately 6 hours per day with setup and

cleanup accounted for. For that reason, an 8 cm diameter for our basket was

determined to be the correct choice. At another facility with more flexible hours,

a 9 or 10 cm diameter basket would probably be ideal.
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Figure 3.11: The radial dependence of the received dose for different dimen-
sions of rotary baskets. Doses are normalized so that the average for each plot

is 1.
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Diameter
(cm)

Non-
Unifor-mity

Irradia-
tion time
(hours)

Volume
(cc)

Improvement

2 0.03 1.1 9.42 -60%
4 0.10 2.0 37.7 -16%
6 0.15 3.5 84.8 10%
8 0.16 5.4 151 26%
10 0.15 8.3 236 28%
12 0.15 13 339 20%
14 0.21 20 462 6%
16 0.31 30 603 -10%

Table 3.6: Non-uniformity, irradiation time, volume, and improvement in pro-
duction over traditional irradiation baskets for differently sized rotary baskets.
The old style of basket has a non-uniformity of 0.21, a volume of approximately
29 cc, and takes 80 minutes to irradiate. Therefore, baskets smaller than 14 cm
in diameter have an improved uniformity, and baskets between 6 cm and 14 cm

in diameter have an improved yield compared to the older style.

Figure 3.12: Ammonia irradiated using the new basket design. The dark pur-
ple color indicates that the desired dose for high polarization has been achieved.

The novel method has effectively and efficiently irradiated NH3. Following irra-

diation, the entire 125 g batch of ammonia exhibited a uniformly deep purple

color, indicating that the polarizable electrons were evenly distributed throughout

the sample. A photograph of the material after being placed in a storage bottle

demonstrates these promising results, as shown in Fig. 3.12.

In the initial run, approximately 125 g of optimized target material was produced
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Figure 3.13: Polarization measurement of ammonia at the SpinQuest exper-
iment irradiated using the novel basket design. Ammonia reached 95% polar-

ization while recieving a dose of 1011 protons per second.

per day, involving 2.5 hours for setup and cleanup, and 5.5 hours for irradiation at

NIST. In comparison, the previous method produced around 75 g of target material

per day, requiring 4 hours for setup and cleanup, and 4 hours for irradiation. This

represents an approximate 67% increase in daily material production.

Early results from the SpinQuest experiment indicate that the method does indeed

produce highly polarizable ammonia. During beam and target commissioning

using NH3 produced using this method, polarization levels over 95% were observed

in material recieving a dose of 1011 protons per second.

3.6.3 Polarization Measurement

In a typical polarized target experiment, there is a single nuclear magnetic reso-

nance (NMR) coil in each cup. For SpinQuest, since the cup is unusually long,

it has been equipped with three NMR coils that are evenly distributed along its

length. This arrangement of NMR coils allows for a more comprehensive assess-

ment of the polarization of the entire target. By capturing data from multiple

points within the extended cup, researchers can obtain a more detailed and accu-

rate depiction of the polarization, enhancing the effectiveness of the NMR system

in this specialized environment.

Another challenge encountered in the SpinQuest NMR system arises from the

placement of the NMR Q-Meter in relation to the coils. Due to the high levels

of radiation present in the target cave, the NMR Q-Meter must be positioned



The SeaQuest and SpinQuest Experiments 56

at a greater distance from the target than would be ideal. Consequently, the

NMR cable extends over a distance of 14λ/2, in contrast to the typical maximum

length of 7λ/2. This extended cable length introduces additional noise into the

system, necessitating a more meticulous and inventive analysis approach to extract

meaningful signal data amid the heightened interference.

Because of these challenges, the target is required to use a unique design to ensure

the NMR system’s functionality and reliability. With the three NMR coils, we

can have a more comprehensive view of the target’s polarization. Furthermore, to

mitigate the impact of the extended NMR cable on signal quality, advanced signal

processing techniques and noise reduction methods are applied.

Nuclear Magnetic Resonance (NMR) is a technique used for a wide range of ap-

plications, including the measurement of polarization in polarized targets. NMR

relies on the magnetic moments of atomic nuclei to provide insight into their be-

havior. The principle of NMR revolves around the interaction of nuclear spins

with an external magnetic field.

Polarized nuclear spins precess or wobble at a characteristic frequency known as

the Larmor frequency, which depends on the strength of the external magnetic

field and the gyromagnetic ratio of the specific nucleus under investigation. This

precession forms the basis for measuring polarization.

To measure the polarization of polarized targets, we can use a variation known as

Continuous Wave NMR (CW NMR). CW NMR allows for the measurement of the

spin polarization of various nuclear species. Importantly, the NMR measurement

can achieve an accurate reading even with impurities and contaminants in the

target space. The method’s accuracy stems from its reliance on the relationship

between the integral of the NMR absorption signal and the static magnetization

generated by the target spin species of interest.

The accuracy of CW NMR is not significantly compromised by the presence of

higher-spin nuclei, even when quadrupole interactions are in play, provided that the

magnetic dipole interaction with the static field is dominant. This method defines

the vector polarization (P(I)) of a specific spin species I as the expectation value of

the spin component aligned along the static magnetic field, relative to its maximum

achievable value. These methods are selective in measuring magnetization and

polarization based on the well-resolved Larmor precession frequencies of various

nuclear spin species, ensuring precision in polarization measurements.[60]



The SeaQuest and SpinQuest Experiments 57

3.6.4 Microwave Source and Dynamic Nuclear Polariza-

tion

To enable a high polarization of the target NH3 and ND3, the SpinQuest experi-

ment will use a 140 GHz microwave generator to induce and maintain the polar-

ization of the protons or deuterons in the ammonia and d-ammonia, respectively.

This is done via a process known as Dynamic Nuclear Polarization.

As has been discussed, to achieve a good measurement of the Sivers function, a

high level of polarization of the target must be achieved. Naively, we can polarize

the target by applying a strong magnetic field and holding it at a low temperature.

For a spin-1/2 particle, the level of polarization is given by

P
1
2
TE = tanh

∆E

2kT
(3.9)

and for a spin-1 particle by

P
1
2
TE =

4 tanh ∆E
2kT

3 + tanh2 ∆E
2kT

(3.10)

Where k is the Boltzmann constant, T is the Temperature, and ∆E is the gap

between the energies of the magnetic levels from the Zeeman Hamiltonian

Hz = −ℏγB0Iz (3.11)

Which gives

E = −mℏγB0 (3.12)

The SpinQuest target employs a 5 Tesla magnet and is capable of reaching tem-

peratures as low as 1 K. If we plug this into the polarization level equation for an

electron, we get an electron polarization of 99.56%. Unfortunately, the larger en-

ergy gaps for protons mean that we can only achieve a 0.51% polarization. For the

deuteron, we get an even worse 0.10%, which corresponds to a -0.35% polarization

of the neutron.
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Thankfully, there is another polarization method available to us: dynamic nuclear

polarization (DNP). DNP is a technique that leverages the high polarizability of

electrons to our advantage. By introducing unpaired electrons, either by chemical

doping or irradiation (as discussed in Section 3.6.2), we are able to leverage the high

gyromagnetic ratio of the electron compared to that of the proton and deuterium

nuclei and transfer the polarization via the use of a strong microwave field. The

general setup for this process is shown in Figure 3.14.

The DNP process can be explained by using the solid state effect [61]. For sim-

plicity, this section will only discuss the spin-1/2 nuclear spin case. The spin-1

case is mostly analagous, but includes more possible energy levels. This is because

the magnetic field splits a system into 2J + 1 possible sublevels.

Let us consider a system at temperature T and magnetic field B of NI nuclear

spins and NS electron spins, with Larmor frequencies ωI and ωS (defined as γB,

where γ is the gyromagnetic ratio of the nucleus or electron).

There are four possible pure states for this system. In increasing energy, they

are |⇑↓⟩, |⇓↓⟩, |⇑↑⟩, and |⇓↑⟩, where the double arrow corresponds to the nuclear

spin and the single arrow corresponds to the electron spin. There are four allowed

single-spin transitions between these states, categorized into two ”NMR transi-

tions” and two ”EPR transitions”. NMR transitions are the transitions where

nuclear spin flips, while the EPR transitions flip the electron spin. Flipping both

spins is classically prohibited by dipole selection rules. These levels are shown in

Figure 3.15.

H = µ⃗ė⃗B + m⃗unB⃗ +HSS. (3.13)

The mixing term allows for there to be four mixed states replacing the four pure

states, defined as

|A⟩ = α1 |⇑↓⟩+ β1 |⇓↑⟩ (3.14)

|B⟩ = α2 |⇓↓⟩+ β2 |⇑↑⟩ (3.15)

|C⟩ = α3 |⇑↓⟩+ β3 |⇓↑⟩ (3.16)

|D⟩ = α4 |⇓↓⟩+ β4 |⇑↑⟩ (3.17)
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Figure 3.14: The basic setup for DNP polarization. A target is held in cy-
rofridge, where it is subjected to a high magnetic field. A microwave generator
produces microwaves tuned around the Larmor fequency, which, when incident
on the target material, allows for the transfer of electron polarization to the nu-
cleons. The polarization of the material is measured using the NMR system.[16]

These mixed states allow for the forbidden double-spin flip transitions to occur.

When placed in a magnetic field, the most common state will be |A⟩. Applying a

microwave field with frequency ωS − ωI , we can force transitions of the |B⟩ states
to |C⟩. Because the relaxion rate of electrons is very fast, these states will quickly

transition to |A⟩. Similarly, |D⟩ states will transition into |B⟩ states via electron

relaxation, which allows them to undergo the same path to |A⟩.

This means that we reach a state where the vast majority of electron-nuclear pairs

are in the |A⟩ state, allowing us to achieve high net polarization of the nucleon.

[60]

The system for a spin-1 case involves similar principles but with a more complex

energy level structure due to the additional sublevels. This increases the com-

plexity of achieving polarization and lowers the maximum achievable polarization,

but follows the same fundamental process of transferring electron polarization to

nuclear spins via microwave-induced transitions.

3.6.5 Target Magnet

To achieve high polarization using DNP, it is necessary to have a high-strength,

highly homogeneous magnetic field over the entire area of the target. To achieve

this, SpinQuest will utilize a 5T magnet made by Oxford Instruments. It is ho-

mogenous to one part in 104 over the target area.
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Figure 3.15: The energy levels of an electron-nucleon pair in a magnetic
field. Solid arrows represent allowed transitions, while dashed arrows represent

forbidden transitions.[16]

Due to the significant heat load on the target, simulations were necessary to de-

termine if the intensity would cause a magnet quench. Zulkaida Akbar, a post-

doctoral researcher formerly at the University of Virginia, used GEANT and COM-

SOL for these simulations. The results indicated that the system can withstand

approximately 1× 1013 protons per spill, which is twice the planned intensity.[62]

3.6.6 Evaporation Refrigerator

To maintain conditions for the magnet and target material, the experiment will

utilize an evaporation refrigerator. This refrigerator has a power output of 1.4 W

at 1 K and 3 W at 1.1 K, ensuring the temperature remains at a stable temperature

during data taking.

An evaporation refrigerator uses liquid helium to maintain low temperatures. The

process begins with the introduction of liquid helium into a low-pressure cham-

ber. The liquid helium then undergoes controlled evaporation, transitioning into

helium gas. This absorbs energy from the surroundings, resulting in a decrease in

temperature within the chamber. The evaporated helium is pumped out of the

chamber and replaced with more liquid helium, allowing for static temperatures.

The SpinQuest evaporation refrigerator uses a system of pumps, tasked with re-

moving the evaporated helium. With an evacuation capacity of 17,000 m3/hr,

these high-powered pumps allow for a large heat load to be absorbed. Monte
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Carlo modeling, performed by Zulkaida Akbar, shows that the target is able to

withstand approximately 1 × 1013 protons per spill, which is double the planned

intensity of protons[62].

3.6.7 Helium Liquifier

Given the quantities of liquid helium demanded by the experiment, it is vital

to manage costs. Calculations revealed that the most economical strategy in-

volved the in-house production of liquid helium. This is achieved by capturing

the evaporated helium and subjecting it to a re-liquefaction process. The liquefier

system is capable of producing approximately 200 liquid liters per day of liquid

helium. However, owing to transfer efficiency considerations, only around 70% of

this quantity is delivered to the target magnet.

Anticipating a daily consumption of approximately 110 liters of liquid helium, the

production capacity is within the requirements of the experiment. This approach

ensures that the experiment can sustain itself without relying on external helium

sources. In the event of an unexpected quench, a contingency plan is in place, with

500 liters of helium stored, ready to replenish the magnet and minimize downtime.

3.7 Trigger System

Both SpinQuest and SeaQuest use various trigger setups for the spectrometer,

optimized for different goals. Because there are many potenential sources of muons

other than Drell-Yan from the material of interest, the main trigger for both is

optimized to select dimuon pairs of invariant mass 4-10 originating in the region

of the target. This does not completely exclude other sources of dimuons, such as

charmonium-decay-induced dimuons and Drell-Yan from the beam dump.

SeaQuest and SpinQuest use two different types of triggers: Field-Programmable

Gate Array (FPGA) triggers, and Nuclear Instrumentation Module (NIM) trig-

gers. There are ten triggers, of which seven are regularly used in data taking,

those being FGPA-1 through FPGA-5, NIM-1, and NIM-3. They are each opti-

mized with different target particles in mind, as summarized in Table 3.7.
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Each trigger also has a prescaling factor, which is the number of times the trigger

condition must be met in order for an event to be recorded. For the first four types

of triggers (FPGA-1 through FPGA-4) can be prescaled by a maximum of 24 bits,

while the next four (FPGA-5, and NIM-1 through NIM-3) can be prescaled by up

to 16 bits. The final two triggers, NIM-4 and NIM-5, cannot be prescaled because

of equipment limitations.

3.7.1 FPGA-Based Trigger

The Field-Programmable Gate Array (FPGA) trigger system for SeaQuest and

SpinQuest are comprised of nine CAEN V1495 VME modules. They are arranged

into three levels, comprised of four, four, and one module, respectively.

The first level contains four modules, each linked to one of the hodoscope stations.

It has two modes of operation, a ”production” mode and a ”pulser” mode. The

production mode is a simple pass-through, and passes the hodoscope hits to the

next level of the trigger. In pulser mode, however, it randomly generates hits from

the hodoscopes, allowing the behavior of the subsequent layers to be verified.

The second level also contains one module per station, and acts as a rudimentary

track finder, combining the output signals from the previous level into four-hit

track candidates. The possible candidates are all pre-defined in a look-up table,

based on Monte Carlo simulations of possible combinations from Drell-Yan events

from the target. These combinations are referred to a ”Trigger Roads”, and allow

us to select for Drell-Yan dimuon pairs, which would normally be overwhelmed by

the much higher cross-section J/ψ-produced dimuon pairs. The trigger roads are

grouped into ”Road Sets”, and have been iteratively improved throughout the use

of the spectrometer and trigger system.

The third level is comprised of a single module, and is the ”track correlator”. It

takes the track candidates from the previous level and determines if they satisfy

requirements for each of the five trigger outputs, FPGA-1 through FPGA-5.

FPGA-1 and FPGA-2 are optimized to detect occurences of concurrent positive

and negative muons. Their trigger conditions require there is at least one posi-

tive trigger road and at least one negative trigger road present within the event

time window. For FPGA-1, there must be opposite-sign trigger roads present

in opposite-position hodoscopes (positive in Top and Negative in bottom or vice
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versa). FPGA-2 requires opposite-sign trigger roads to be in the same-position

hodoscopes. The FPGA-1 trigger is the trigger used to collect Drell-Yan dimuons,

and therefore has a prescaling factor or 1. FPGA-2, meanwhile, is unlikely to

include usable Drell-Yan data, and thereforehasa prescaling factor of 10,000.

FPGA-3 is optimized to detect same-sign muons passing through opposite sides of

the hodoscope array. Its conditions are met if two or more like-sign trigger roads

are met in opposite position hodoscopes. It was used for background estimation

in prior analyses. It has a prescaling factor of 123.

FPGA-4 and FPGA-5 are single-muon triggers. FPGA-4 has the most lax trigger

condition of the FPGA triggers, requiring one or more trigger road of either sign.

It is useful for investigating the behavior of the spectrometer as well as certain

schemes of background estimation, and has a prescaling factor of 25,461. FPGA-

5 adds the requirement of a high transverse momentum (over 3 GeV/c in the

x-direction). These single muons are very similar to the muons that make up

the Drell-Yan pairs that we are interested in, which makes FPGA-5 useful for

investigating the behavior of those muons. It has a prescaling factor of 2,427.

3.7.2 NIM-Based Trigger

NIM-1 and NIM-2 are vestigal triggers from the beginning of the SeaQuest experi-

ment, when FPGA-based triggers were not complete. They do not use trigger-road

information, and only require concurrent hodoscope hits in certain combinations.

The NIM-1 trigger requires coincident hits in all four hodoscope stations, all in

either the top half or bottom half of the arrays. NIM-2 requires this condition to

be met for both top and bottom hodoscopes. Becuase they are no longer required,

their prescaling factors are set to 31,991.

The NIM-3 trigger is unlike all of the other triggers, in that it does not have

any detector-based requirements. It is based on an RF-signal provided by the

accelerator and a 7.5 kHz pulse generator, and requires them to be concurrent. It

has a prescaling factor of 125.

While useless for detecting dimuon pairs, the NIM-3 is extremely useful for study,

especially for the purposes of training our neural networks, as discussed in Chap-

ter 5. This is because NIM-3 events are an unbiased, random snapshot of the

spectrometer output, allowing us to obtain real background data to combine with
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Monte Carlo events. When combined in the right way, this allows us to create

truly realistic Monte Carlo training data for our networks

As previously mentioned, NIM-4 and NIM-5 are not able to be prescaled. They

are not used for any physics purposes, but are used to detect the ”beginning of

spill” signal and ”end of spill” signals sent by the main injector beam.
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Chapter 4

Reconstruction and Tracking

Reconstruction and tracking algorithms are necessary to make sense of the detector

information from the SeaQuest and SpinQuest experiments. The key challenge lies

in accurately tracking the paths of these particles through the detector layers.

In order to access the physics information, we need to be able to accurately deter-

mine the path taken by particles as they pass through the detector array, as well

as calculate the particle qualities that those paths are associated with. To do this,

we can employ specialized tracking algorithms.

The SeaQuest and SpinQuest experiments have used a tracking algorithm known

as KTracker, a C++ program adapted from a Fortran code that was first used

in the 1980s. Although KTracker works relatively well, it has several drawbacks

that can be addressed by using new technologies, specifically neural networks and

parallelization.

In this chapter, we will first provide a brief overview of the existing KTracker

algorithm. We will then discuss the development, training, and performance of

our new reconstruction system, QTracker.

4.1 KTracker

Although it is not the focus of this dissertation, a brief overview of KTracker is

warranted to provide context and highlight the need for advancements.

66
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Figure 4.1: A flowchart representation of the KTracker algorithm.

KTracker is a C++ program adapted from a Fortran code originally employed in

the 1980s. Its primary function is to trace the paths of particles as they traverse

the layers of the detector array. This entails determining the trajectory of muons,

calculating their momenta, and pinpointing the locations of particle interactions

or decays.

The KTracker algorithm can be broken up into three sections: pre-tracking anal-

ysis, single-track reconstruction, and vertex reconstruction. Because we will be

utilizing certain aspects of the pre-tracking analysis, we will go into more detail

on those aspects, and provide more of an overview for reconstruction.

One of KTracker’s drawbacks lies in its computational efficiency. KTracker’s per-

formance is significantly slowed when faced with high particle or hit multiplicities.

This is because of its structure, where hits are compared in a combinatorical way,

leading to a reconstruction time proportional to the factorial of the number of

hits checked. These challenges necessitate an exploration of novel approaches to

tracking and reconstruction.

4.1.1 Pre-Tracking Analysis

Pre-tracking analysis has two parts: hit removal and occupancy cuts. Hits to be

removed are grouped into four categories: out-of-time hits, after-pulses, cluster

hits, and random noise.
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4.1.1.1 Hit Removal

Non-correlated hits, termed ”extra hits,” can significantly slow down the process-

ing time of track reconstruction. It is important to eliminate these extra hits to

enhance the accuracy and speed of track reconstruction. These extra hits can be

categorized into four distinct types: out-of-time hits, after-pulses, cluster hits, and

random noises.

Out-of-time hits refer to hits that fall outside the specified TDC time window

and are discarded, as they do not represent proper hits. Random hits can be

effectively filtered out by utilizing hodoscope hit positions. Since true hits, which

are correlated with the muon track, consistently fall within the range of hodoscope

paddles, the removal of random hits is achieved through chamber-hodoscope hit

matching.

After-pulses are hits that emerge on signal wires subsequent to the occurrence of

a genuine signal. In the analysis process, only the first hit on a wire is considered

to eliminate after-pulses effectively. Extra hits that occur in close proximity to

hit wires form what is referred to as a ”hit cluster.” Various types of hit clusters

are categorized based on their size. For instance, ”Edge hit” clusters arise when

a muon traverses the junction of two drift chamber cells, producing hits in both

cells. In this scenario, one of the hits within the ”Edge hit” cluster is removed,

as both are genuine hits, and only one is utilized for track reconstruction. The

criterion for removal is typically based on the larger drift distance hit.

When charged particles traverse the drift chamber, the electronic circuitry may

become unstable, increasing the likelihood of noise signals. “Electronic noise”

clusters are thus formed, consisting solely of hits that lack any correlation with

a muon track. All hits within such clusters are regarded as extra hits and are

consequently removed.

Furthermore, ”Delta ray” clusters manifest around genuine hits as a result of emit-

ted delta rays from charged particles. Within a ”Delta ray” cluster, one hit must

correspond to a true hit, while the others are deemed extra hits. Consequently,

all hits within the cluster, except those flanking the true hit, are removed as extra

hits.
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4.1.1.2 Occupancy Cuts

In some instances, events still have an excessive number of hits even after the

initial hit removal process. To address this issue and filter out such events, events

above a certain chamber occupancy are removed. In this context, ”occupancy”

refers to the count of hits remaining in each drift chamber following the initial

hit removal. Specific occupancy thresholds are detailed in Table 4.1. Events that

meet the criteria specified by the occupancy cut proceed to the reconstruction

phase.

Detector Occupancy Number of total sense wires
St. 1 320 1124
St. 2 160 736
St. 3+ 150 768
St. 3- 150 768

Table 4.1: The upper-limit occupancy cuts imposed by KTracker.

The occupancy cuts were chosen to correspond to the maximum occupancies for

which KTracker is able to find dimuons and minimize the number of true dimuons

thrown away. It is used in order to reduce total computational time by eliminating

high multiplicity events that are unlikely to have any valuable data in them.

4.1.2 Single Track Reconstruction

The single-track reconstruction phase involves several steps aimed at reconstruct-

ing single muon tracks:

The first step is building “tracklets” within each drift chamber. Tracklets are

small local tracks consisting of hit pairs in the drift chamber planes (X, X’, V, V’,

U, U’). The process begins with identifying hit pairs in the XX’ planes and then

extends to the UU’ planes based on the window determined by the hit pairs in the

XX’ planes. If that matching succeeds, the VV’ planes are searched in a window

corresponding to the geometry of the chambers. The layout of the different planes

in a single drift chamber station is shown in figure 4.2.

All possible tracklets in St. 2 and St. 3 are reconstructed. These tracklets are

then combined to form back partial tracks downstream of the second spectrometer

magnet (KMag). The use of hits on X planes in both St. 2 and St. 3 allows for
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Figure 4.2: A cartoon representation of the drift chamber structure in the
spectrometer.[14]

a quick calculation of the X-Z slope and intersection. Quality criteria, including

checks on slopes, intersections, and proportional tube hits for muon identification,

are applied. Tracks that meet these criteria are labeled as “back partial tracks.”

The next step is to connect tracks from downstream to upstream of KMag. Back

partial tracks are projected backward to the St. 1 drift chamber through the KMag

magnetic field. A search window for St. 1 is determined based on the sagitta ratio

between St. 1 and St. 2. Back partial tracks combined with St. 1 partial tracks

are known as ”global tracks.” Each global track candidate undergoes a chi-squared

fit to assess its quality.

These global tracks are described with several parameters: charge (s), px,y,z, tx,

ty, x0, and y0, representing charge, momentum, slopes, and intersections in the

X-Z and Y-Z planes. Iterative steps are employed to remove bad hits and enhance

track quality. Selection criteria, such as hit count and momentum range are used

to retain the final high-quality global tracks.

The ultimate goal of this single-track reconstruction process is to accurately iden-

tify and reconstruct single muon tracks while ensuring they meet specific quality

standards and parameters. This improves the precision and efficiency of the anal-

ysis.
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4.1.3 Vertex Reconstruction

The reconstruction of the reaction vertex involves two distinct steps: single-track

vertex reconstruction and dimuon vertex reconstruction. The dimuon vertices are

reconstructed based on the vertex information of the single tracks (corresponding

to their closest approach to the beamline).

In the single-track reconstruction step, tracks downstream of the St. 1 drift cham-

ber are reconstructed, focusing on the upstream part from FMag to the vertex

position. The FMag, composed of iron slabs, introduces energy loss and bending

due to the magnetic field. These two effects are calculated when projecting the

path of the muon through the magnet.

To address the energy loss accurately, FMag is divided into 100 slices for analysis.

Each FMag slice is subject to a pT kick performed at its center, which involves

calculating the track slopes at the downstream and upstream surfaces of the slice.

KTracker implements a single value for energy loss through FMag, which is one

of the main sources of uncertainty in this reconstruction, as real particles are

scattered randomly, creating a non-uniform energy loss.

Upon completing this process for the entire FMag, the track is projeted to the

beamline. Even in regions without a magnetic field or solid material, the extrapo-

lation occurs in 2.5 cm slices to assess the vertex position. The distance between

the beamline and the track at each slice is calculated to derive the z-position of

the slice that corresponds to the vertex position.

The vertex determination is performed by evaluating the ”distance of closest ap-

proach” (DOCA), which represents the smallest distance between the beamline

and the track among all the slices. This process assumes that any detected muon

originated along the beamline, which may not be accurate, as secondary scattering

effects are also known to produce muons.

The dimuon reconstruction step is, unsurprisingly, the stage where dimuons are

reconstructed. Initially, all the single tracks reconstructed within an event are clas-

sified as positive muons (µ+) or negative muons (µ−). All possible combinations

of µ+ andµ− are tested to determine whether they construct dimuons.

The dimuon vertex position is determined based on the positions of the two tracks

at each slice. The slice position, which represents the vertex position, is identified
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as the point where the distance between the beamline and the difference of the

track positions is minimized. This vertex position serves as the initial parameter

for the iterative analysis.

Using a Kalman-Filter method[63], the vertex position is progressively updated

until the chi-squared value reaches its minimum, indicating the optimal vertex

position. The momenta from the single-muon reconstructions are then combined

with this vertex information to describe the dimuon pair.

4.2 QTracker

The decision to develop QTracker as a complementary system to KTracker arose

from a recognition of the potential for improvement in certain aspects of the track-

ing process. KTracker offers accurate reconstructions of particle momenta and

vertex locations. However, KTracker has certain limitations, which we seek to

remedy with QTracker.

One of the key considerations was the computational speed of KTracker. While

KTracker’s precision and accuracy are good, its speed can be improved, especially

in scenarios with complex events involving a higher number of detector hits. This

has been attempted using both multithreaded CPU and GPU programming. Using

a completely new approach, however, QTracker can speed reconstruction even more

than parallelization.

For QTracker, we have a number of goals:

• Increase the reconstruction speed.

• Enhance the precision and accuracy of selecting dimuon events.

• Increase signal DY statistics by improved recognition of dimuon events and

reducing required cuts.

• Boost the precision and accuracy of kinematic reconstruction.

• Enhance the resolution for vertex location.

To achieve these goals, we will use a combination of Convolutional Neural Networks

(CNNs) Feed-Forward Neural Networks, and non-AI Python scripting. We will use
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Figure 4.3: A visualization of a simple Neural Network. There are five input
variables, and one output layer, with a single hidden layer containing five neu-

rons.

the existing Monte Carlo framework to generate data to train on, using E906 data

as a guide to generate realistic training data.

All of the necessary code for training data generation, network definitions, training,

and execution are collected in a GitHub repository.

4.2.1 Neural Networks

Neural networks, inspired by the brain’s neural structure, were first conceptualized

in the 1940s by Warren McCulloch and Walter Pitts [64]. These early artificial

neurons, or perceptrons, aimed to simulate information processing and decision-

making like the human brain but in a simplified form. A diagram of a simple

neural network is shown in Figure 4.3.

Enthusiasm for neural networks waned during the late 1950s and 1960s when

researchers, led by Marvin Minsky and Seymour Papert [65], demonstrated the

limitations of single-layer perceptrons in solving non-linear problems. The period

following this is often referred to as the “AI winter.”

Nevertheless, neural networks experienced a revival in the 1980s and 1990s. The

development of multi-layer perceptrons and the introduction of backpropagation

as a training algorithm [66] rekindled interest. Deep learning, characterized by

https://github.com/AConover/QTracker
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deep neural networks, emerged as a pivotal development in the hands of Geoffrey

Hinton, Yoshua Bengio, and Yann LeCun [67], leading to breakthroughs in various

domains.

Convolutional neural networks (CNNs) were a transformative milestone in arti-

ficial intelligence, particularly in computer vision. Originating in the late 1990s

[68], CNNs draw inspiration from the human visual system, excelling in tasks like

image classification and object detection. Their success extends beyond vision into

areas like natural language processing and reinforcement learning, making them

a cornerstone of modern deep learning, contributing to the resurgence of neural

networks across industries.

Today, neural networks find applications across fields such as healthcare, finance,

and autonomous vehicles. Specialized hardware, such as GPUs, has accelerated

deep neural network training. We are now in the midst of an “AI Boom” driven

by these improvements, with companies eager to jam AI into every imaginable

product.

Once the structure of a neural network has been defined, it must be trained. This

process is necessary, as it allows the network to learn from data and make predic-

tions or classifications. At the heart of neural network training lies backpropaga-

tion, an algorithm that adjusts the network’s parameters based on the disparity

between its predictions and the actual outcomes. By iteratively propagating these

errors backward through the network and updating the weights and biases ac-

cordingly, backpropagation enables the network to improve its performance over

time. Various optimizers are used in the training of Neural Networks, including

stochastic gradient descent (SGD), Adam, and RMSprop. These optimizers differ

in their approaches to adjusting learning rates and momentum, thereby impacting

the speed and effectiveness of the training. Choosing the right optimizer is crucial

for achieving the best performance, as it can significantly affect the convergence

rate and the network’s ability to generalize from training data to unseen data.

To allow the computer to evaluate the performance, we use “loss functions”. These

functions quantify the disparity between the network’s predictions and the actual

outcomes, providing a measure of how well the network is performing on a given

task. The two loss functions that we use are categorical cross-entropy and mean

square error. Categorical cross-entropy is employed in classification tasks where

the output is a probability distribution over multiple classes. It measures the
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dissimilarity between the predicted probabilities and the true class labels, encour-

aging the network to assign higher probabilities to the correct classes.

Mean square error is used for regression tasks (such as the kinematic and vertex

reconstructions) to measure the average squared difference between the predicted

values and the actual targets. By minimizing this discrepancy, the network learns

to accurately predict continuous values.

Learning rates are a critical parameter in the training of neural networks, in-

fluencing the speed and stability of the optimization process. The learning rate

determines the magnitude of adjustments made to the network’s parameters dur-

ing each iteration of training. Too high a learning rate can lead to overshooting the

optimal solution, causing instability and divergence in the optimization process.

On the other hand, a learning rate that is too low can result in slow convergence,

or find a local minimum in the loss function.

Epochs represent the number of times the entire training dataset is presented to

the network for learning. During each epoch, the network adjusts its parameters

based on the training data to minimize the loss function. Determining the number

of epochs involves striking a balance between underfitting and overfitting. Too

few epochs may lead to underfitting, where the network fails to capture complex

patterns in the data, akin to ending a race prematurely before reaching the finish

line. Conversely, too many epochs may result in overfitting, where the network

learns to memorize the training data rather than generalize to unseen examples.

In our training, we utilize callbacks, which are mechanisms to monitor and inter-

vene based on specific conditions or events. During training, after each epoch,

the model’s performance on the validation dataset is evaluated. If the validation

loss starts to increase over a certain number of epochs, it indicates that the model

may be overfitting. Once the network fails to improve for a certain number of

epochs, the training is terminated and reverts to the configuration it had when

the validation data was most accurately predicted by the network.

4.2.2 Monte Carlo Generation

In order to train the neural networks, we need a large amount of realistic, ac-

curately categorized data. This presents a problem: although there is copious

experimental data that we can draw from, the only tool we have to categorize and
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reconstruct the muons is KTracker. Since KTracker is relatively slow (less than an

event per second is analyzed) and inefficient (only approximately 10% of events

containing dimuons are reconstructable), we must create our own training data

from scratch.

To do this, we can utilize the pre-existing Monte Carlo-simulated physics processes

used by the SeaQuest and SpinQuest collaborations. The system uses two pro-

grams, Pythia, a general-purpose Monte Carlo Event Generator, and Geant4, a

toolkit for simulating particles passing through matter. This Monte Carlo gives

us the clean particle tracks of muons through the detector array. We are then able

to combine these tracks with a combination of partial muon tracks and random

hits to mimic the distribution of detector information from the real E906 data.

4.2.2.1 Pythia Monte Carlo

The simulation framework for Drell-Yan and charmonium decay dimuon events

combines the event generation capabilities of Pythia with the accurate tracking

and interaction modeling provided by GEANT4. The system, in the context of

the SeaQuest and SpinQuest collaborations, is known as Fun4Sim.

Pythia is employed to generate Drell-Yan events, simulating the annihilation of

a quark-antiquark pair that produces a virtual photon or Z boson. This vir-

tual particle then decays into a muon-antimuon pair. Pythia uses perturbative

QCD calculations for the hard scattering process, along with parton showering,

hadronization, and decay processes. For charmonium decay events, Pythia is used

to simulate the production of charmonium states such as J//Psi. The subsequent

decay of these states into dimuons is modeled, accounting for both direct decays

and radiative decays.

The generated events from Pythia are then processed by the GEANT4 simula-

tion, which emulates the passage of particles through a detailed detector array.

This simulation includes the definition of the detector geometry, materials, and

components. The detector geometry is defined within the GEANT4 framework,

incorporating details of the experimental setup such as the tracking detectors,

hadron dumps, and magnetic field configurations. The materials and dimensions

of each detector component are specified to replicate actual experimental condi-

tions.
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GEANT4 tracks the generated particles through the defined geometry, simulating

their interactions with detector materials. Electromagnetic and hadronic processes

are modeled, accounting for ionization, multiple scattering, energy deposition,

and decay processes. The toolkit ensures a realistic representation of particle

trajectories and their interactions within the detector.

The simulation output, which includes information on particle tracks, and other

relevant parameters including the results of a trigger emulation. The output of the

Monte Carlo can then be resampled to better represent the full range of possible

muon momenta, allowing for as unbiased training data as possible.

4.2.2.2 Event Monte Carlo

The inputs for QTracker are 54 × 201 matrices representing the detector ID and

element ID of each detector and element of said detectors, which are referred to as

”hit matrices”. For QTracker, three hit matrices are made for each event, one for

binary hits (hit represented by 1, non-hit represented by 0), one for drift (value

ranging from 0 to 1 depending on drift value for said element) and TDC time

(value equal to the TDC time). An example of a binary hit matrix for a real E906

event is shown in Figure 4.4. Because the TDC time matrix will only be used for

timing cuts and hit reductions, we do not train the neural networks on those.

The first step for generating training data is to generate large amounts of Drell-

Yan and J/ψ Monte Carlo data using Fun4All with appropriate modifications to

replicate E906 data (change of target position, shielding). To achieve maximal

generality, the data was generated without a trigger emulator and re-sampled to

have a uniform invariant mass distribution.

The challenge for generating training data for QTracker is reproducing realistic

hit matrices whose contents we can control. Most, if not all, dimuon events in the

E906 and E1039 experiments also contain background hits. These come from a

variety of sources, which makes them difficult to model.

Some background hits come from muons that would be of interest to us, but do

not fully pass through the detector array. These are referred to as ”partial tracks”.

They can be created by charmonium decay or the Drell-Yan process, but can also

be products of other particle decays that occur in the high-radiation environment

of the target and dump regions.
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Figure 4.4: A hit matrix representing a real E906 event from Run 6.

Other background hits are simply random noise, such as those described in 4.1.1.1.

Having accurate appoximations of these types of background hits are critical to

creating representative training data.

Through the random trigger, NIM-3, we have a large selection (over 10 million)

of examples of background hits and partial tracks that did not trigger the FPGA-

type triggers. Although they are real background hits, the events may contain

dimuons that are reconstructable by QTracker, which would result in incorrectly

labeled training data.

To remedy this, we can use data from only one station per NIM3 event, which

eliminates the possibility that a full muon track could be contained in the em-

bedded data while keeping hit patterns and correlation between different hits. In
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Figure 4.5: The process of generating training data for a single event.

order to mimic the occupancies of triggered events, we can include hits from mul-

tiple events in each station with probabilities tuned to mimic the occupancies of

E906 data.

Another consideration for generating the training data was in accounting for detec-

tor efficiencies. When generating the MC, we turned off all hit realization, because

for track finding we needed the detector that the particle would have hit, if the

detector was 100% efficient. When inserting the MC data into the hit matrices,

then, we needed to account for the real-world efficiencies of the detectors. These

efficiencies have been calculated by the collaboration, and an estimate of 94% was

used for training generation.

The steps we took to generate training data were as follows:

1. Create blank hit matrices for hits and drift time.

2. Place the full MC tracks on the hit matrices with probabilities based on

calculated detector efficiencies.

3. Embed random noise hits.

4. Embed partial particle tracks from NIM3 events to match experimental de-

tector occupancies.

This method is shown in Figure 4.5.

This process was slightly modified for different training configurations, which will

be discussed in the training sections for each individual network.
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4.2.3 QTracker Overview

The QTracker package is designed to process raw data files from the SeaQuest

experiment. The reconstruction process begins by loading relevant event data

from the raw files, including hit information from the spectrometer. This hit data

is then organized into hit matrices, which serve as input for the deep learning

models.

The core of the QTracker package consists of a series of neural networks trained

on simulated SeaQuest or SpinQuest data. These networks are specialized for

different tasks in the reconstruction process:

1. Event Filtering: The initial stage involves an event filter network that clas-

sifies events based on their likelihood of containing a dimuon pair. This fil-

tering step significantly reduces the computational load by discarding events

that are unlikely to be of interest.

2. Track Finding: For events that pass the filter, track finding networks are

employed to identify potential muon tracks within the detector. Separate

networks are used for positive and negative tracks, as well as for tracks

originating from different interaction vertices (e.g., the target, the beam

dump).

3. Track Reconstruction: Once tracks are identified, their kinematic properties

(e.g., momentum, direction) and vertex information are reconstructed using

additional neural networks. These networks are trained to predict the most

likely parameters of the tracks based on the hit patterns in the detector.

4. Target/Dump Filtering: In the final stage, another filtering step is applied to

distinguish between dimuon pairs originating from the target (signal events)

and those from the beam dump (background events). This is achieved using

a dedicated neural network that analyzes the reconstructed track and vertex

information.

The QTracker package produces reconstructed event data in the form of NumPy

files. These files contain a variety of information, including:

1. Reconstructed kinematic and vertex parameters for the identified muon tracks.
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2. Probabilities associated with the event filter, target/dump filter, and other

classification tasks.

3. Metadata such as run and event IDs, trigger information, and detector oc-

cupancies.

The reconstructed data can be further analyzed and processed to extract physics

observables relevant to the SeaQuest experiment.

The QTracker package is implemented in Python and utilizes the TensorFlow

deep learning framework. The neural networks are trained on simulated data,

which allows for optimization of their performance and accuracy. The package is

designed to be modular and extensible, making it easy to incorporate new models

or modify existing ones as needed. In neural network training, it’s often the case

that the number of training events should be greater than the number of trainable

parameters to avoid the neural network memorizing the training data, rather than

learning the patterns. We employ training strategies to avoid such an issue, but

future work could include training on larger amounts of data.

Testing and validation are steps in the development of any machine learning model,

and QTracker is no exception. These processes ensure that the neural networks

within QTracker can accurately and reliably reconstruct events from real experi-

mental data.

4.2.4 Event Filter

The event filter is the first step of the QTracker method and aims to identify the

detector trigger events that contain data that is worth analyzing. The FPGA-1

trigger requires a hit pattern in the hodoscope arrays that appear to be a dimuon

pair. Because the rate of random hits in the detector array is much higher than

that of true dimuon hits, it is very likely that the trigger condition being met is

not, in fact, from a pair of muons, but from other processes.

It is therefore necessary to train a network that identifies which triggered events do

indeed contain a dimuon pair. This is done by the use of a modified version of the

AlexNet, a convolutional neural network (CNN) that operates on the principles

of deep learning to interpret and classify images[69]. Its architecture comprises
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Figure 4.6: The infrastructure of the Event Filter. It is comprised of a series of
convolutional layers (yellow) pooling layers (red), a flattening layer (blue), dense
layers (black), and dropout layers (purple). Created using VisualKeras[17].

several layers designed to progressively extract and process features from input

images.

The event filter receives the hit matrices as inputs. The hit matrices are then

subjected to a series of convolutional layers which systematically analyze localized

patterns within the hit matrices. Through the convolutional process, it identifies

fundamental features, gradually discerning more complex structures and patterns

in subsequent layers.

Following each convolutional layer, an activation function is applied to introduce

non-linearity into the network. This activation function, a ReLU (Rectified Linear

Unit), determines whether a neuron should be activated based on the weighted

sum of its inputs, enhancing the network’s capacity to model intricate relationships

within the data.

Pooling layers are used throughout the network to downsample the feature maps

generated by the convolutional layers. These layers summarize the most salient

features while reducing spatial dimensions, allowing for superior computational

efficiency and avoiding overfitting.

After passing through these layers, the processed features are fed into fully con-

nected layers. These layers function as the network’s decision-making core, ag-

gregating and synthesizing the extracted features to classify the input hit matrix.

Neurons in these fully connected layers are interconnected, enabling comprehensive

analysis and interpretation of the feature representations.

Intermixed into the dense layers are dropout layers, which randomly set inputs to

zero to pass to the following layer during training. The use of dropout layers is a

commonly used strategy to prevent over-fitting a neural network.
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The event filter has 27,383,238 trainable parameters. A visual representation of

the event filter infrastructure is shown in figure 4.6.

The performance of the event filter is important for the overall effectiveness of

QTracker. Efficient event filtering ensures that only relevant events containing

valuable data are retained for further analysis. The significance of the event fil-

ter’s performance lies in its ability to streamline data analysis processes by auto-

matically categorizing events. This automation ensures that resources are focused

on analyzing pertinent data, thereby improving the efficiency and efficacy of the

QTracker method.

4.2.4.1 Training

Training the event filter involved creating MC events that met the trigger con-

dition of having positive and negative muon tracks through the hodoscopes. For

positively categorized events, the rest of the particle track through the drift cham-

bers and proportional tubes were added. For negatively categorized events, only

the random hits and partial tracks from NIM-3 events were added to the drift

chambers and proportional tubes.

The muons and dimuons used in the training were generated using Pythia and

GEANT4. They were generated as Drell-Yan dimuons with vertices within the

target region with mass greater than or equal to 2 GeV, and resampled to have a

flat mass spectrum from 2 GeV to 9 GeV.

Due to the size of the training data, it was not possible to perform the training in

one session. As such, the training used the following strategy:

1. Generate validation data (100,000 events).

2. Generate training data (1,000,000 events).

3. Train the network on the training data, using the validation data loss as a

callback.

4. Repeat steps 1, 2 and 3 until a total of 10,000,000 events have been used for

training.
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Figure 4.7: The accuracy of dimuon classification as a function of station 1
occupancy. Error bars are purely statistical.

This allowed us to train using a larger number of events with our limited computer

resources.

The categorical cross-entropy loss function was employed, using the Adam opti-

mizer with an initial learning rate of 1e-4. Each batch of training data had a

validation loss patience of 10 epochs, with a callback mechanism to track the best

epoch.

4.2.4.2 Testing

The simplest way to measure the quality of a classification is by examining the

accuracy. By plotting the accuracy of the dimuon identification as a function of

station 1 occupancy, we can get an idea of how well the classifier is doing. This

plot is shown in figure 4.7.

For more in-depth evaluation of the performance of the event filter, we need to

introduce new concepts common in classification neural networks: Precision, recall,

and receiver operating characteristic (ROC) curves.
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Figure 4.8: A visual representation of precision and recall.[18]

Precision measures the accuracy of positive predictions made by a classification

model. It quantifies the proportion of positive predictions that were actually cor-

rect. Mathematically, precision is defined as the ratio of true positive predictions

(correctly predicted positive instances) to the total number of positive predictions

(including true positives and false positives). A visual representation of these

values is shown in figure 4.8.

In words, precision can be expressed as:

Precision =
True Positives

True Positives + False Positives
(4.1)
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High precision indicates that when the model predicts a positive outcome, it is

more likely to be correct. High precision is important for our goals because it

prevents background from being included in the measured values.

Recall, also known as sensitivity or true positive rate, assesses a model’s ability to

correctly identify all positive instances in the dataset. It quantifies the proportion

of actual positive instances that were correctly predicted as positive by the model.

Mathematically, recall is defined as the ratio of true positive predictions to the

total number of actual positive instances, and can be represented as:

Recall =
True Positives

True Positives + False Negatives
(4.2)

High recall indicates that the model effectively captures most of the positive in-

stances present in the data. A high recall is important for our goals because it

allows for higher statistics in our measured values.

Precision and recall are both influenced by the probability thresholds used to

select positive events. As their values are dependent on the ratio of the positive

and negative values in the data set, it is necessary to select the threshold value

based on results from analyzing real data. If there is a high signal-to-noise ratio,

then the value can be set relatively low to allow more true positives through, while

if there is a low signal-to-noise ratio, that value must be set higher to avoid false

positives overwhelming the data.

Another useful tool for classifiers is the ROC curve, a graphical tool for assessing

a classifier’s ability to distinguish between two classes by varying the classification

threshold. In the context of multi-class classification, it can be adapted by treating

one class as positive and the others as negative. The curve tracks the true positive

rate as a function of the false positive rate.

The area under the curve is a good measure of the quality of the classifier. A

classifier with an area of 0.5 has no predictive power (it is no better than guessing),

while a classifier with an area of 1 is a perfect classifier. As shown in figure 4.10,

our classifier has a ROC curve area of 0.99, which is considered excellent.

The ROC curve provides insights into the trade-offs between true positive and false

positive rates, helping us select the optimal operating point or threshold for the
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Figure 4.9: The precision and recall values for dimuons as a function of clas-
sification probability threshold. As threshold increases, the precision increases

while the recall decreases.

classifier. This will be useful when analyzing real experimental data to determine

the ideal threshold.

4.2.5 Single-Muon Track Finder

Similarly to KTracker, because it is highly likely for two randomly coincident

muons to be the source of the trigger, we first want to find the tracks for the positive

and negative muons passing through the detector arrays, without assuming that

they were produced in the same place. This step is also done with a CNN.

Because of the geometry of the detector, each muon can pass through a maximum

of 34 detectors. There are a total of 48 detectors, of which 28 lie in the same

z-plane as another detector, meaning that they are mutally exclusive with one

other detector. This means that not only does the track finder need to determine

which hits correspond to a real track but also identify which detectors a specific

muon passed through. This problem was solved by combining detectors in the

output array. For hodoscopes, proportional tubes, and drift chambers in station

3, each detector has a paired detector in the same z plane. For these detectors,

the track finder only outputs a single value, with a positive value corresponding

to one detector, and a negative value corresponding to the other.
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Figure 4.10: The ROC curve for dimuon classification on MC data mimicking
FPGA-trigger events. The area under the curve is 0.99, which is considered an

excellent classification score.

For instance, station three drift chambers were divided into P and M sub-stations.

If a particle passed through 3P, elements 12-17 of the track were marked as positive,

while if it passed through 3M, the elements were marked as negative.

This means that our muon track finding CNNmust have an input shape of 54×201,

and an output size of 34. To accomplish this, we use an infrastructure that is a

repeating sequence of convolutions, max pooling, and relu activations. In total,

there are five convoluational layers and seven dense layers. The network has over

60 million trainable parameters. The network takes in the hit matrix image and

outputs two lists of the elements activated by each muon in a dimuon pair as they

pass through the detector array. Figure 4.11 shows a visualization of the Track

Finder network.

This neural network is designed to effectively identify and distinguish the tracks

of muons passing through the detector arrays, ensuring high accuracy in tracking

individual muon paths without the assumption of a common origin.
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Figure 4.11: The infrastructure of the Track Finder networks. It is comprised
of a series of convolutional layers (yellow), pooling layers (red), normalization
layers (blue), activation layers (black), a flattening layer (purple), dense layers

(pink), and dropout layers (orange). Created using VisualKeras[17].

4.2.5.1 Training

To train the single-muon track finders, events were generated with uncorrelated

positive and negative muons injected in each event, meaning that they did not have

to originate from the same vertex location. The injected muons were generated

along the beamline as part of a Drell-Yan dimuon pair, then each muon was

randomly selected independently.

For each event, a 2×34 array was saved, corresponding to the tracks of the positive

and negative muons as they passed through the detector array. Two networks were

then trained using this generated data, one of them attempting to find the positive

muon track, the other attempting to find the negative muon track.

While a classification loss could have been used for the track finder, the number

of possible categories (201 for station 1 U and V plane drift chambers) made it

impractical. Additionally, the goal was to reward the optimizer for approaching

the correct element ID, leading to the selection of a mean squared error (MSE)

loss. As the most complex network, the track finder’s training process took the

longest time. It followed the same general process as the training of the event

filter:

1. Generate validation data (100,000 events).
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2. Generate training data (1,000,000 events).

3. Evaluate the validation and training data using the event filter, allowing the

passing events to proceed to training of the track finder.

4. Train the network on the training data, using the validation data loss as a

callback.

5. Repeat steps 1, 2 and 3 until a total of 10,000,000 events have been used for

training.

10,000,000 events were used for training, using the Adam optimizer with an initial

learning rate of 1e-5. Each batch of training data had a validation loss patience

of 10 epochs, with a callback mechanism to select the best epoch.

4.2.5.2 Track Hit Matching

Up to this point in QTracker, the neural networks know nothing about the drift

times of the drift chamber and proportional tube hits. This information will be

important in momentum reconstruction and vertex finding, so it is necessary to

match those hits to their timing information. This presents a small problem:

although the track finder is able to identify the element ID over 95% of the time

correctly, it occasionally misses the real hit. Additionally, sometimes there is no

real hit, as the detector efficiency is not equal to unity.

These two truths about the system unfortunately work in opposition to each other.

We can set up a piece of code that looks for the closest hit to the predicted element

of the detector, but if there was not a real hit in that detector, it would identify

an incorrect hit. From the true hits in other nearby detectors, the track finder

is often able to determine where a hit should be in a detector, even if it did not

register. This presents a balancing act: we want to search for the correct hit while

knowing that it may not exist.

To balance these two desires, we can implement an algorithm that creates a search

window around the predicted track, based on how precise the track finder is for that

portion of the detector. This search window size was chosen based on the angular

resolution of the detector, as viewed from the target position. For instance, the

first x hodoscope in station zero has detector spacing of 7 cm and is 800 cm down-

stream of the target. This gives an angular resolution of sin−1(7 cm/800 cm) = 13
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Drift Chamber Proportional Tube Hodoscope

Elements 112-201 72 16-23
Spacing (cm) 0.6-2.0 7-23 5
Angular resolution (milliradian) 1.1-1.7 2.2-2.6 7.8-13
Search Window 5 3 1

Table 4.2: The track finder hit-matching algorithm uses different size search
windows, based on the angular resolution (in lab frame) of the detector. Drift
chambers have the smallest angular resolution of the three detector types, so
they have the largest search window, while horoscopes have the largest angular

resolution, so the search window is only the central predicted value.

milliradians. A summary of the spacing, angular resolution, and search window

size is shown in table 4.2

The hit-matching algorithm performs this search window for each detector to

match the predicted track with real hits and drift information. If there is, however,

no hit within the search window, the predicted element is passed on to the next

step of the reconstruction, without any drift information.

In addition to the detector and drift information, the detector outputs a third

value for each detector, which indicates whether the track position was a physical

hit or an interpolated hit. This allows us to use that information for quality cuts,

making sure that muon tracks are not hallucinated by the track finder.

With this matching, the output of the hit-matching is of shape 2× 34× 3.

4.2.5.3 Testing

Although we trained the track finders using a root-mean-square loss, accuracy is

also important for evaluating its performance. We will consider two performance

issues: how accurate the track finder is on a binary scale (correctly identified

element IDs) as a function of occupancy, and the average miss when the track

finder is incorrect. For this testing, we have assumed a detector efficiency of

100%.

To perform the tests, we generated events with occupancies that mimic FPGA-1

occupancies with two injected muons from along the beamline. The events were

generated with two independent muons of opposite signs. The reconstructed tracks

were then checked for their quality (number of interpolated hits), and evaluated

for accuracy and precision.
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Figure 4.12: Track finding accuracy for the single-muon track finder as a
function of occupancy for each of the three drift chamber stations. Finding is
classified as accurate if the hit is within 1 element of the true track. Errors

shown are statistical.

Although they are seperate networks, the positive and negative muon track finders

behave extremely similarly. Therefore, for simplicity, we will combine their results

for this testing.

First, we will look at the accuracy of the track finding as a binary classifier. Figure

4.12 shows the track finding accuracy for each of the three drift chamber tracking

stations as a function of that station’s occupancy.

Station 2 has a better accuracy than stations 1 or 3, with station 1 having the

lowest accuracy of the three. This may be partially because it is placed before

KMag, which affects positive and negative muons differently.

The other measure of track finding that we want to look at is the average miss

of the track finding. Those plots are shown in Figure 4.13. All three types of

detectors have misses of less than 1 element, on average.
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Figure 4.13: The average miss (in elements) for each detector type for the
single-muon track finder. The average miss for the drift chambers is 0.29 ele-
ments, for the hodoscopes it is 0.18 elements, and for the proportional tubes it

is 0.49 elements.

4.2.6 Single-Muon Vertex-Finder

Once we have found the tracks for each individual muon, the most important

aspect for categorizing them as coincident muons or dimuons is the position of

their intersection with the beamline. If the particle tracks cannot be traced back

to the same region along the beamline, then we can conclude that either were not

produced by the same process, or the quality of the tracks that they left are not

high-quality enough to be used in analysis.

The single-muon vertex finders are feed-forward dense neural networks. They take

the tracks that were found by the track finder and the hit-matching algorithm and

outputs the z-position that the particle track approaches closest to the beamline.

It does this by taking in the input and then passing the information through a

sequence of dense layers, starting with 4096 neurons, and reducing by a factor of

two down to 16, then a single-value output, corresponding to the z-position along

the beamline. This correponds to 210,433 trainable parameters.
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4.2.6.1 Training

The training data generation for the single-muon vertex finders networks followed

a similar process to that of the single-muon track finders. The three-momenta and

generation location were saved for each event, which was then used to calculate

the distance of closest approach (DOCA) to the beamline, as well as the z-position

at that point.

The events were then passed through the positive and negative muon track finders.

The predicted tracks were then matched to the actual hits in the hit matrices and

their associated drift times. A check for track quality was then performed, limiting

the number of missing hits from each track to one or fewer per station.

This process produces input arrays for each network of shape 34 × 2. These input

arrays, as well as the z-position of the muon origin, were saved into a file, and

this process is repeated with more generated events until 10 million have been

generated.

The vertex finding network was trained employing an MSE loss function and the

Adam optimizer with a starting learning rate of 1e-5. Similar to the other net-

works, each batch of training data had a validation loss patience of 5 epochs, with

a callback mechanism to select the best epoch.

4.2.6.2 Testing

The testing phase for the single-muon vertex-finder neural networks was conducted

to validate their performance in predicting the z-position where particle tracks

approach closest to the beamline. The accuracy of these predictions is critical for

determining whether muons originate from the same process and ensuring high-

quality data for further analysis.

The performance of the vertex-finders was assessed using the error distribution of

the z-vertex predictions. Figure 4.14 illustrates the error for the predictions of the

Z-vertex for single muons, where the central peak has a width of approximately

60 cm. This metric indicates the typical deviation of the predicted z-position

from the actual position, reflecting the precision of the neural network in vertex

reconstruction.
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Figure 4.14: Error for the predictions of the Z-vertex for single muons. The
central peak has width of approximately 60 cm.

The results from these tests demonstrate that the single-muon vertex-finder neural

networks achieve a high level of precision in predicting the z-vertex positions. The

error distribution’s central peaks, with widths of 60 cm and 75 cm for single muons

and dimuon separation respectively, coupled with the target-dump separation of

130 cm, indicate that they can differentiate between a dimuon pair and two muons

originating at different locations.

4.2.7 Dimuon Track Finder

Once we have established that the triggered event has a high likelihood of contain-

ing a true dimuon pair, it is useful to refine the track found by the neural network,

based on the assumption that the muons share a common vertex. For that pur-

pose, we employ various dimuon track finders. These networks also employ CNNs,

based on the LeNet infrastructure[70].

Similarly to the muon track finders, the dimuon track finder CNNs must have an

input shape of 54× 201, but since they are finding the track of two dimuons, they

have an output dimension of 2× 34. To accomplish this, we use an infrastructure

that is a repeating sequence of convolutions, max pooling, and relu activations.
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In total, the network has over 60 million trainable parameters and five convolu-

tional layers. The network takes in the hit matrix image and outputs two lists of

the elements activated by each muon in a dimuon pair as they pass through the

detector array.

There are three versions of the track finder, with decreasing scopes but increasing

accuracy. The first version makes no assumptions about the vertex position, the

second version assumes that the vertex is along the beamline, and the final version

assumes that the x, y, and z-positions are all in the target.

4.2.7.1 Training

To train the track finder, events were generated with a dimuon pair originating

from the relevant vertex area. For each event, a 2 × 34 array was saved, corre-

sponding to the tracks of the positive and negative muons as they passed through

the detector array. The generated events were required to pass the event filter with

a threshold of 75%, and the muon track finder and reconstruction was required to

Four versions of the track finder were trained on different vertex distributions:

1. All vertices along the beamline within 1 meter of the beam.

2. All z-vertices along the beamline.

3. Target vertices.

4. Dump vertices.

These versions allowed for recursive utilization of the track finder, increasing speci-

ficity and accuracy. During the initial pass, the track finder made no assumptions

about the vertex position. The kinematic reconstruction and vertex-finding net-

works were subsequently employed to provide an estimate of the vertex position.

If the vertex fell within an acceptable range, the event was forwarded to either

the z-vertex finder or the xy-vertex finder, and the process iterated. If the vertex

remained within an acceptable range, it was finally sent to the target vertex finder,

enabling high-precision reconstruction of the kinematic variables.
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Figure 4.15: Track finding accuracy for the target vertex dimuon track finder
as a function of occupancy for each of the three drift chamber stations. Finding

is classified as accurate if the hit is within 1 element of the true track.

4.2.7.2 Testing

We performed the same tests on the dimuon track finders as were performed on

the single-muon track finders. As may be expected, the decreased parameter space

of possible outputs, as well as the requirement to pass single-muon track finding

cuts improved the performance of the finders substantially.

To perform the tests, we generated dimuon events with occupancies that mimic

FPGA-1 occupancies. The events were generated with a dimuon pair from the

appropriate origin vertex. The reconstructed tracks were then checked for their

quality (number of interpolated hits), and evaluated for accuracy and precision.

Although seperate tests were done for each version of the track finder, we will only

show the tests for the target vertex finder to avoid repetition.

Figure 4.15 shows the track finding accuracy for each of the three drift chamber

tracking stations as a function of that station’s occupancy.
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Figure 4.16: The average miss (in elements) for each detector type for the
target vertex dimuon track finder. The average miss is for drift chambers is
0.24 elements, for hodoscopes it is 0.17 elements, and for proportional tubes it

is 0.47 elements.

As with the single-muon finders, station 2 has a better accuracy than stations 1

or 3, with station 1 having the lowest accuracy of the three.

Again, we also want to look at is the average miss of the track finding. Those

plots are shown in Figures 4.16. All three types of detectors have misses of less

than 1 element, on average.

4.2.8 Momentum Reconstruction

The majority of the work of QTracker has been finished up to this point, and the

remaining task is to translate the detector information into particle characteristics.

The momentum reconstruction is actually the simplest of the DNNs that we use

in QTracker.

The momentum reconstruction is a simple feed-forward dense neural network. It

takes in the tracks that were found by the track finder and the hit=-matching
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algorithm and outputs the three-momentum (px, py, and pz) for each of the muons

in the dimuon pair. It does this by taking in the 2 × 34 × 2 input and then

passing the information through a sequence of dense layers, starting with 4096

neurons, and reducing by a factor of two down to 16, then a six-value output,

corresponding to the three-momenta of the reconstructed muons. The dimuon

reconstruction networks have 245,334 trainable parameters.

There are three versions of the kinematic reconstruction, with decreasing scopes

but increasing accuracy. The first version makes no assumptions about the vertex

position, the second version assumes that the vertex z-position is in the target

region, the third version assumes that the vertex is along the beamline, and the

final version assumes that the x, y, and z-positions are all in the target.

4.2.8.1 Training

The training data generation for the momentum reconstruction networks followed

a similar process to that of the track finder. However, instead of saving track

information, the x, y, and z momenta of the positive and negative muons injected

were saved, resulting in a 6-element array: [p+x , p
+
y , p

+
z , p

−
x , p

−
y , p

−
z ].

The events were filtered through the event filter with the same 75% threshold

and the muon track finder cuts, before having their dimuon tracks found by the

pre-trained track finder appropriate for their vertex configuration. The predicted

tracks were then matched to the actual hits in the hit matrices and their asso-

ciated drift times. This process produced a 2 × 34 × 2 input for the momentum

reconstruction.

The momentum reconstruction network was again trained with 10 million training

events, employing an MSE loss function and the Adam optimizer with a starting

learning rate of 1e-5. Because the size of the inputs for these networks are much

smaller than those of the event filter and track finders, all training data was pre-

generated, rather than using a generator while training.

Again, four versions of this reconstruction were trained on different vertex distri-

butions:

1. All vertices along the beamline within 1 meter of the beam.
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Figure 4.17: The precision of momentum reconstruction for target region
dimuons in px, py, and pz.

2. All z-vertices along the beamline.

3. Target vertices.

4. Dump vertices.

4.2.8.2 Testing

We are interested in examining the precision of the reconstruction of the momen-

tum of dimuons. In order to do this, we generated MC events with embedded

dimuons from the target, using smeared drift distances and appropriate detector

efficiencies.

In addition, we evaluate the precision of key kinematic parameters, including x1,

x2, xF , M , pT , cos(θ), and ϕ, which are vital for characterizing the particles’

behavior and interactions within the event. The precision of these variables is

essential for drawing meaningful conclusions about the physics processes under

investigation.

First, we will look at the resolution for px, py, and pz with typical FPGA-1 trigger

events. Figure 4.17 shows these plots, along with a Gaussian fit to the central

peak of the error.

Next, we are interested in looking at the precision of the kinematic variables x1, x2,

M , pT , cos(θ), and ϕ. These variables are the most important for the analysis of

Drell-Yan scattering, as the SeaQuest ans SpinQuest experiments were designed to

measure the angular dependence of the differential cross-section in bins of the x,M ,
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Figure 4.18: Error for the derived values important to physics analysis in
E906 and E1039.

and pT kinematic variables. Figure 4.18 shows the precision of each reconstructed

value, along with a Gaussian fit to the central peak of the errors.

4.2.9 Vertex Finding

The vertex finding network, though similar in structure to the momentum recon-

struction network, processes tracks of muons and their reconstructed momenta to

predict the location that the dimuon originated. The network input has a shape

of 2×71. This information is then fed through a network nearly identical to the

one used for momentum reconstruction. The vertex finding networks have 248,355

trainable parameters.

There are two versions of the vertex finder. One version outputs the x-, y-, and

z-positions of the dimuon vertex, and one outputs the z-position, assuming that

the dimuon originated along the beamline.
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4.2.9.1 Training

The training data generation for the vertex finder was nearly identical to that

for the moomentum reconstruction, only replacing the output of six momentum

values with three position values, vx, vy, and vz.

The events were filtered through the event filter with the same 75% threshold

and the muon track finder cuts, before having their dimuon tracks found by the

pre-trained track finder appropriate for their vertex configuration. The predicted

tracks were then matched to the actual hits in the hit matrices and their associated

drift times. Their momentum was reconsructed using the appropriate momentum

reconstruction network, which was then combined with the track information for

the input of the vertex finder. This process produced a 2× 71 input.

The momentum reconstruction network was again trained with 10 million training

events, employing an MSE loss function and the Adam optimizer with a starting

learning rate of 1e-5. Because the size of the inputs for these networks are much

smaller than those of the event filter and track finders, all training data was

pre-generated, rather than using a generator while training. The vertex-finding

network was again trained with 10 million training events, employing an MSE loss

function and the Adam optimizer with a starting learning rate of 1e-5.

There were two versions of the vertex-finder trained, those being:

1. All vertices along the beamline within 1 meter of the beam.

2. All z-vertices along the beamline.

4.2.9.2 Testing

As discussed when testing the individual muon resolution, it is very important

to accurately reconstruct the vertices of the particle tracks in order to isolate the

target events from the dump events. As such, we want to use all of the information

that we have at our disposal, so we combine the predictions of the two vertex

finders, as well as those of the single-muon vertex finders to provide more precise

results.
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Figure 4.19: Vertex finding error for dimuons along the beamline for the vx,
vy, and vz values.

Although the z-vertex is the most important for isolating target dimuons from

dump dimuons, the x and y vertices also play an important role for event selec-

tion. The probability of a dimuon event being produced far from the beamline is

very small, which means that dimuons identified as such are very likely to be a

coincident pair of muons masquerading as a dimuon pair.

In order to determine the resolution of the vertex finding, we generated dimuon

pairs from along the entire beamline, and reconstructed the events. The results

for each version of vertex reconstruction were combined to produce results for vx,

vy, and vz, shown in Figure 4.19.

4.2.10 Target Dump Filter

Although the vertex reconstruction is quite precise, our testing shows that there

are some dimuons from the dump that could trick the vertex reconstruction to

be classified as target dimuons. As such, we need to use a last neural network to

classify events as being either from the target or the dump. Although this will

not have more information than the vertex reconstruction, the information being

output is slightly different. While the vertex reconstruction must output a single

precise value for the vertex position, a binary filter is able to output a probability,

allowing for a more nuanced classification.

The target-dump filter is a feed-forward dense neural network that takes the recon-

structed momenta and vertex positions from all of the momentum reconstruction

and vertex finding network, along with the tracks output by the track finders, and

outputs a probability that the event originated in the target.
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4.2.10.1 Training

In order to train the target-dump filter, a total of 5,000,000 events from both

the target-vertex and dump-vertex dimuons were reconstructed, saving the output

tracks, momenta, and vertex information. Both sets of dimuons were resampled to

have a flat mass distribution, and appropriate event filter and track quality cuts

were made.

Once the 10,000,000 reconstructed events were produced, the network was trained

using those events, with a categorical cross-entropy loss function and the Adam

optimizer starting with a learning rate of 1e-4. This was done for a maximum of

10,000 epochs, with a patience of 100 on the validation loss.

4.2.10.2 Testing

The performance of the target-dump filter neural network was evaluated on a

testing dataset comprising both target and dump data, generated similarly to

the training and validation data used in training. The overall accuracy is 89%,

indicating strong classification.

The Receiver Operating Characteristic (ROC) curve was plotted in Figure 4.20 to

visualize the trade-off between the true positive rate (TPR) and false positive rate

(FPR). The Area Under the Curve (AUC) was calculated to be 0.96.

The precision and recall as functions of the probability threshold were plotted to

further analyze the model’s performance:

The model demonstrates strong performance in distinguishing between target and

dump data, with an overall accuracy of 89%. The high precision and recall for

both classes indicate that the model is both precise and sensitive in its predictions.

The F1-scores for both classes are close to 0.90, suggesting a good balance between

precision and recall.

The ROC curve further supports the model’s robustness, with an AUC of 0.94

indicating excellent discriminative ability. The precision-recall curve shows how

precision and recall vary with different probability thresholds, providing insights

into the trade-offs between these metrics at various decision points.
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Figure 4.20: ROC Curve for Target-Dump Filter Neural Network

4.2.11 Processing Speed

Although less important for offline analysis than for online monitoring, the speed of

QTracker is an important consideration when comparing it to KTracker. QTracker

and KTracker were each tasked with reconstructing 10,000 dimuon pair events.

KTracker completed the reconstruction in 23.5 hours, while QTracker was able

to reconstruct the events in approximatley 30 seconds. This speed increase is so

drastic, it required repeat tests to ensure that the results were not in error. In

100 tests, KTracker reconstructed the set of events in between 20 and 28 hours 90

times, while QTracker never exceeded 1 minute.

To test QTracker’s ability to be integrated into an online monitoring system, a test

was performed to reconstruct a spill of data. 500 spills from E906 were randomly

selected for reconstruction, and the time to complete each was recorded. This

was done using two methods, one with all of the code’s libaries and functions

pre-loaded, and one where they needed to be loaded each time a new file was

evaluated.
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Figure 4.21: Precision and Recall as a Function of Probability Threshold

In both methods, the average time was comfortably under the 54-second threshold,

which is defined as the time between spills from the main injector beam. The

average time without function loading was 13.24 seconds, while the average time

with function loading was 38.42 seconds.

This analysis shows that QTracker adapted for E1039 will be able to serve superbly

as an online reconstruction algorithm, as it will be able to reconstruct the particle

tracks for an entire spill between spills. This will help to improve data quality

control and enable quicker turnaround for analysis of the observed physics.

4.3 Comparison to KTracker

In this section, we will compare the performance of QTracker to that of KTracker.

We will examine the precision and accuracy of the two methods for vertex, mo-

mentum, and derived variable reconstruction.
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Figure 4.22: The time for QTracker to evaluate a single spill of SeaQuest E906
data, both with functions pre-loaded and with loading functions.

In order to compare the two methods, we will examine the precision of the re-

construction of the momentum of dimuons produced at the target, as well as the

resolution of vertex reconstruction along the beamline. The precision of the re-

construction of the kinematic variables x1 , x2 , M , pT , cos(θ), and ϕ will also be

examined.

Variable KTracker σ QTracker σ
px 0.30 GeV/c 0.19GeV/c
py 0.28 GeV/c 0.20 GeV/c
pz 1.24 GeV/c 2.74 GeV/c
vx 2.05 cm 2.16 cm
vy 2.09 cm 1.41 cm
vz 30.7 cm 48.2 cm
M 0.47 GeV 0.31 GeV
pT 0.39 GeV/c 0.29 GeV/c
x1 0.02 0.04
x2 0.03 0.01
ϕ 0.33 0.28

cos(θ) 0.08 0.04

Table 4.3: Comparison of QTracker and KTracker variable resolution.
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To run this comparison, we generated half a million Monte Carlo-based events

embedded with background hits. These events contained dimuons originating

along the beamline. Of those, approximately 40,000 were generated within the

target region. All events were then reconstructed in both QTracker and KTracker,

and their results analyzed.

The results of this comparison are shown in Table 4.3, with plots in Figure 4.23

and Figure 4.24. QTracker is able to improve on KTracker’s performances for

most variables, with the exception of those involving the z momenta and z vertex

of particles (pz, vz, and x1). Both KTracker and QTracker appear to exhibit certain

biases in predictions, with KTracker having a bias in the Mass reconstruction and

QTracker having a bias in the pT reconstruction.

It is unclear why this should be the case, as QTracker is able to out-perform

KTracker in the other dimensions, allowing for nearly double the resolution in the

mass and cos(θ) reconstruction. Future work will address these discrepancies.

Interestingly, as can be seen in the pz and x1 plots, KTracker has a narrower

peak for the error, but much fatter tails, which are not taken into account in the

Gaussian fit. When purely calculating the standard deviation of pz error, we find

that the standard deviation for KTracker error is 5.9 GeV, while for QTracker it

is only 4.2 GeV. To use a baseball metaphor, KTracker is swinging for the fences,

while QTracker is hitting for average.
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Figure 4.23: Momentum and vertex reconstruction precision for KTracker vs.
QTracker.
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Figure 4.24: Precision of derived variables for KTracker vs. QTracker.



Chapter 5

Data Analysis

The QTracker neural network was trained on simulated SeaQuest data, which

provided a controlled environment for optimizing the model architecture and hy-

perparameters. However, simulated data can only approximate the complexities

of real experimental data. Therefore, extensive testing was conducted on real data

collected by the SeaQuest spectrometer. This testing included using E906 data to

reconstruct the angular dependence of the Drell-Yan dimuons originating from the

iron dump of the experiment. The choice to analyze dump dimuons rather than

target dimuons was motivated by two factors: a higher statistical level (the iron

dump produced many more interactions than the liquid helium and deuterium

targets), and simpler analysis due to reduced complexity of background selection.

This analysis should not be understood as complete, but as a demonstration of

the utility of QTracker.

5.1 Single-Event Reconstruction Path

To better understand the process of event reconstruction, we will follow the path

of a single event through the reconstruction sequence.

We will follow Event 630753 from Run 26530, Spill 1301983. It is a relatively low

occupancy even, allow us to better view the process on hit matrices. It starts with

549 hits across the entire spectrometer.

The saved detector information in SeaQuest data contain many hits that, for one

reason or another, are not worth analyzing to find dimuon tracks. In general, those

111
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Figure 5.1: An example of an E906 event with timing cuts enforced. The
timing cuts removed 34% of the detector hits.

irrelevant hits can be categorized into two groups: out-of-time hits and cluster hits.

On average, this removes around 20% of detector hits, but can remove many more,

depending on the event in question.

5.1.1 Timing Cuts

Out-of-time hits are hits that were within the TDC time window to be saved to

an event, but are unlikely to have been produced by the same particles that set off

the FPGA-1 trigger. Fortunately for the purposes of this analysis, the SRawEvent

files that we analyze contain pre-configured timing cuts that allow us to remove

out-of-time detector hits.

This removal has the effect of decreasing the complexity of the event, removing on

average around 100 out-of time hits. Timing cuts are shown in Figure 5.1 for our

example event.
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5.1.2 Declustering

Even after applying timing cuts, there are still often obviously irrelevant detector

hits present in the data. A ‘declusterize’ function focuses on refining the hit

matrices by removing spurious hits, which often result from electronic noise or

other artifacts. This function is important for enhancing the accuracy of track

finding and reconstruction by ensuring that only genuine hits are considered.

The function scans the hits matrix to identify clusters of adjacent hits. For clus-

ters consisting of two hits, the function performs an edge hit check, comparing

their drift times; if one hit has a significantly higher drift time, it is removed. Ad-

ditionally, the function conducts an electronic noise check for clusters where the

difference in TDC times between adjacent hits is below a threshold (8 nanosec-

onds), removing such hits as noise. For larger clusters, the function calculates the

mean difference in TDC times across the cluster and removes the entire cluster if

this mean difference is below a set threshold (10 nanoseconds). This comprehen-

sive hit removal process ensures that the hits, drift, and tdc matrices are cleansed

of spurious data.

The declusterize function effectively removes noise and spurious hits from the hits,

drift, and tdc matrices, resulting in refined data that is more reliable for track find-

ing and reconstruction. This refined hit data significantly improves the accuracy

of the subsequent reconstruction algorithms, ensuring that the final results are

based on genuine particle interactions.

To illustrate this, Figure 5.2 shows our example event with the declusterize func-

tion performed on it. Additionally, Figure 5.3 shows the combined effects of these

two processes on that event.

5.1.3 Dimuon Identification and Muon Finding

The hit-removed event is fed into the Event Filter neural network, which identi-

fies the probability that this event contains a dimuon pair. Because of the low

occupancy (and the fact that we have selected an event that will pass), the filter

predicts a 99.99% chance that this event contains a dimuon.
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Figure 5.2: An example of an E906 event that has been ‘declustered’. Declus-
terization removed an additional 2% of detector hits.

Figure 5.3: A comparison of an E906 event before and after hit removal. In
this example, 196 hits were removed, reducing the total spectrometer occupancy

by 36%.
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Figure 5.4: The tracks for positive and negative muons found in our example
event.

Next, the event passes through the muon track finders, which attempt to iden-

tify the path that the individual muons took through the detector array. These

reconstructed tracks are shown on the hit matrix in Figure 5.4.

These tracks are then used to determine the vertex seperation of these two events

– in the case of our example event, the two tracks are found to be seperated by

just 13 cm, well within the threshold to be considered a true dimuon.

We also check the quality of each track in terms of the number of drift chamber

mismatches (how many hits in primed and unprimed chambers are seperated by

more than 1 element) and how many interpolated hits there are (that is, track

elements that do not correspond with a physical hit). In the case of our example

event, there are no chamber mismatches or interpolated hits, indicating a strong

likelihood of a real track.

If those quality cuts are met, then the event is passed on to the dimuon portion

of QTracker.
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Figure 5.5: The tracks for positive and negative muons found in our example
event by the Dump Track Finder.

5.1.4 Dimuon Reconstruction

Once our event is identified as a potential dimuon event, it passes through the four

dimuon track finders, which each attempt to find the track contained in the event,

based on the vertex assumptions that the finder was trained on. These generally

produce very similar results, but can identify small but important differences. For

brevity, we will only display one such dimuon track (the others differ by at most

one hit). The dimuon-reconstructed track is shown in Figure 5.5

The four tracks are then fed into their corresponding momentum and vertex recon-

struction networks, which each provide their own predictions for the momentum

and location of origin for the dimuon pairs. The results from that are shown in

Table 5.1.

Lastly, the identified tracks and these reconstructed values are fed into the Target-

Dump classification network, which identifies which events likely originate in either

the target region or dump region. In the case of our example event, it is not a
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All-Vertex Beamline Target Dump
p+x 1.59 GeV 1.85 GeV 1.71 GeV 1.79 GeV
p+y -2.18 GeV -1.85 GeV -2.09 GeV 1.83 GeV
p+z 38.2 GeV 31.6 GeV 38.6 GeV 31.2 GeV
p−x -1.69 GeV -1.80 GeV -1.54 GeV -1.72 GeV
p−y 2.16 GeV 2.15 GeV 2.53 GeV 2.14 GeV
p−z 45.8 GeV 43.7 GeV 46.1 GeV 42.5 GeV
vx 0.23 cm
vy 0.74 cm
vz 25.4 cm 42.8 cm

Table 5.1: Predictions for the four different vertex distributions QTracker was
trained on. Blank spaces do not have predictions made. Based on the vertex
information, the dimuon pair appears to have originated in the dump region.

difficult classification for the network, as it assigns a 99.7% probability of the

dimuon originating in the dump.

The reconstructed particle characteristics, as well as information about the tracks

and important metadata such as the run, spill, and event IDs, occupancy, and

trigger configuration.

5.2 Cut Selection

In order to analyze the reconstructed data further, we first needed to adequately

select reconstructed events from the SeaQuest E906 data. In this section, we

outline the process of cut selection, a component of our data analysis method

aimed at isolating relevant events from background noise. The application of these

cuts significantly enhances the precision and reliability of experimental results.

The primary objective of cut selection is to refine the dataset to include only those

events that are most likely to be of interest (i.e., dimuon events from the target),

thereby effectively reducing the background noise.

There are generally four types of cuts that we can make to the data – quality cuts,

kinematic cuts, geometric cuts, and probabalistic cuts.

Quality cuts are based on the reconstructed tracks themselves, without information

coming from their predictions. These involved the number of hit mismatches, that

is, places where the hits in a track do not align with their neighboring hits (namely,
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hits in the primed and unprimed drift chamber planes being seperated by more

than one element).

Kinematic cuts are based on the kinematic properties of the muons, such as mo-

mentum and energy. They are instrumental in excluding events that do not con-

form to the expected kinematic signatures of the particles under study.

Geometric cuts are based on the spatial properties of the particle interactions,

including the vertex position and the angles between tracks. These cuts are vital

for ensuring that the events originate from the intended interaction region and not

from other regions of the detector.

Probabilistic cuts leverage the machine learning algorithms to assign probabilities

to each event, indicating the likelihood of it originating from the signal or back-

ground processes. By setting a threshold probability, we can effectively filter out

events with a low probability of being signal events.

The cut selection process for the E906 data analysis was iterative and involved

careful consideration of various factors. Initial cuts were chosen based on theoret-

ical expectations and previous experience. The data was then analyzed with these

initial cuts, and the results were carefully evaluated. Based on these results, the

cuts were refined, and the process was repeated until a satisfactory set of cuts was

achieved.

This selection process also involved identifying events with a high probability of

being correctly reconstructed, by randomly generating a large number of Monte

Carlo events, with dimuon events from the target, dimuons from other areas, and

combinations of single-muons that could combine to trick QTracker.

This involved generating over 200 million random combinations of events, which

were then analyzed by QTracker, which allowed us to identify which cuts produced

the greatest number of correctly identified dimuons from the target.

This iterative process of cut selection and Monte Carlo simulation refinement

was necessary for ensuring the reliability and accuracy of our data analysis. By

carefully selecting and optimizing our cuts, we were able to significantly reduce

the background noise and isolate the dimuon events originating from the target

with a high degree of confidence.
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To verify the effectiveness of the cut selection process, we conducted a series of

checks and comparisons. We compared the distributions of relevant variables (such

as invariant mass, momentum, etc.) before and after the application of cuts.

Significant differences in these distributions served as indicators of the successful

reduction of background events. Additionally, we cross-validated our results with

the output of the Monte Carlo simulations, ensuring that our selected cuts aligned

with the predictions from the simulations.

The cut selection process, informed by Monte Carlo simulations, had a profound

impact on the quality of our data analysis. It led to a substantial improvement in

the signal-to-noise ratio of our data, enabling us to extract meaningful information

about the dimuon events from the target with greater precision. This enhanced the

statistical significance of our results and ultimately contributed to the reliability

and accuracy of our experimental findings.

5.2.1 List of Cuts

In total, we used eleven cuts in our analysis. This included three quality hits,

three kinematic cuts, three geometric cuts, and two probabilistic cuts.

The quality cuts included:

• A hit cut based on hit mismatches between primed and unprimed chamber

hits.

• An spill-based cut based on the quality of beam during the spill.

• An event-based cut based on the trigger to select FPGA-1 events.

The kinematic cuts included:

• Muon momentum-based cuts to remove physically impossible particles.

• Dimuon momentum-based cuts to remove physically impossible dimuon pairs.

• Target and Beam x-based cuts to remove dimuon pairs known to be outside

of the acceptance range of the spectrometer.
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The geometric cuts included:

• Beamline cuts, ensuring that the dimuon pair was reconstructed along the

experimental beamline.

• Seperation cuts, ensuring that the two muons were reconstructed to the same

region of the beamline.

• Location cuts, ensuring that the reconstructed vertex of the dimuon pair is

consistent with the desired area.

And finally, the probabilistic cuts were:

• Dimuon probability cut, ensuring that the dimuon pair was not simply a

random coincidence of detector hits.

• Target-Dump probability cut, adding to the target-dump separation per-

formed using the geometric cuts.

These cuts were selected based on knowledge from previous analyses of E906 data,

as well as trial and error with QTracker-reconstructed data. The specifics of these

cuts can be tweaked based on what is required for the analysis which they are used

in.

5.2.2 Combinatoric Studies

In order to determine the effect of these cuts on data, we looked at the effects of

the cuts on the signal to noise ratio of the passing events, as well as the type of

non-dump events that triggered false-positives.

For this combinatoric study, we looked at the selection of target dimuons. Each

Monte Carlo event was generated with between 1 and 4 of each positive and neg-

ative dimuons, and needed to pass QTracker’s reconstruction algorithm. Because

of the single-muon track cuts in QTracker.

We then categorized each event into one of four categories:
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• Two Muons: Events whose muons do not come from the same region of the

beamline.

• Dimuon-Passing: Events with uncorrelated positive and negative muons that

originate in the same region of the beamline.

• Non-Dump Dimuon: Events with a dimuon pair, but no dimuon pair from

the dump.

• Dump Dimuon: Events that contain a dimuon pair originating in the dump

region.

We then applied the analytical cuts to these events and looked at the signal-to-

noise ratio after applying each cut, as well as the origins of the muons and dimuons

that tricked the filters.

The cuts are shown in Table

Filter Name Condition
Hit Cuts No interpolated hits and no hit mismatches.
Trigger Cuts N/A.
Spill Cuts N/A.
Muon Momentum Cuts |py| > 0.02)
Dimuon Momentum Cuts (|px| < 2) & |py| < 2 & 38 < pz < 116
X Cuts xF > −0.1 & xF < 0.9 & x2 > 0.05

Beamline Cuts
√
v2x + v2y < 5

Seperation Cuts |v+z − v−z | < 130
Dump Location Cuts vz > 0
Dump Probability Cut pDump > 0.95
Dimuon Probability Cut 1− pDimu < 1× 10−5

Table 5.2: Cuts used for the combinatoric study. Trigger cuts and spill cuts
are not applicable for Monte Carlo events.

Figure 5.6 shows the vertex-dependence of filtering for events that do not contain

target dimuons and yet pass the full set of cuts. Muons originating near the target

region are the most likely to pass the filter, suggesting that the cuts are performing

as expected, even on messy combinatoric data. Figure 5.7 shows the signal-to-noise

ratio before and after each category of cut. The prevalence of non-Dump Dimuon

events is reduced from 50% of the data to 10%, a five-fold reduction.

Using these cuts on reconstructed E906 data, we find 124553 dump dimuons. The

mass curve is shown in Figure 5.8.
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Figure 5.6: The filtering efficacy based on the vertices of muons in events not
including a dump dimuon. Muons originating close to the dump region are the

most likely to pass.

Figure 5.7: The effects of each type of cut on the signal-to-noise ratio in the
combinatoric data.
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Figure 5.8: The reconstructed Mass curve for filtered dump-origin dimuons
in Runs 5-6 of E906. The J/ψ and ψ′ masses have been added for reference, as
well as a Gaussian fit to the left side of the J/ψ peak in the data. The fit has
a mean of 3.097 GeV, and a width of 0.27 GeV. This is a very good agreement

with the known J/ψ mass.

5.3 Mass Curve Decomposition

Now that we have properly selected for dimuons originating from the target, we

can decompose the reconstructed experimental data into the four potential sources

of the dimuons. Those sources are

• J/ψ Dimuons,

• ψ′ Dimuons,

• Drell-Yan Dimuons, and

• Combinatoric Background.

For J/ψ, ψ′, and Drell-Yan dimuons, we are able to use Fun4Sim to generate Monte

Carlo events that pass the trigger configuration to achieve a good representation

of the data. This MC, while good, is not perfect, which will necessitate the use of

smearing to accurately represent experimental data.

The combinatoric background, on the other hand, is harder to generate. Because

we do not know the exact sources or distributions of single-muons that may com-

bine to mimic a dimuon pair, starting from pure Monte Carlo is a tall order.

Fortunately, this problem was known before data collection started. As shown
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in Table 3.7, the FPGA-4 trigger was speifically created to collect single-muon

events.

The upside of this is that we will be able to combine these single-muon events,

then reconstruct them to accurately represent coincident muons. We can then

proceed, knowing that these combined events are an accurate representation of

the combinatoric events created during data taking.

5.3.1 Monte Carlo Smearing and Covariance Analysis

Due to the inherent imperfections in real-world data, the resolution of recon-

structed MC data tends to be better than that of reconstructed experimental data.

Therefore, to achieve accurate comparisons, we must apply a smearing function to

the reconstructed MC data.

To determine the appropriate level of smearing, we analyze the width of the J/ψ

peak in both the reconstructed E906 data and the MC data, along with their

corresponding reconstructed energies. This allows us to apply an energy correction

to the MC data, aligning the energy distributions of positive and negative muons

with those observed in the real data. Additionally, we introduce smearing to the

MC kinematics using a Gaussian distribution, adjusting the J/ψ peak width to

match the implied width from the experimental data. This comprehensive process

is referred to as the covariance analysis.

The covariance analysis involves a detailed study of the covariance matrix of the

reconstructed variables to understand the differences in the residuals (kinemat-

ically dependent error distributions) between the experimental and MC data in

the most fundamental variables of the feature space. This includes the momentum

components px, py, pz, and energy E of the muons.

First, we calculate the residuals for px, py, and pz by determining the implied error

based on the mass residual of the J/ψ peak. This was done using an estimate

based on the partial derivative of the mass in terms of the individual parts of the

momenta. The invariant mass M of a dimuon pair is given by:

M2 = (E1 + E2)
2 − (p⃗1 + p⃗2)

2 (5.1)
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where E1 and E2 are the energies, and p⃗1 and p⃗2 are the momenta of the two

muons.

The energy of each muon is given by the relativistic energy-momentum relation:

Ei =
√
p2ix + p2iy + p2iz +m2

µ (5.2)

To find the partial derivative of M with respect to one of the spatial dimensions

of the momentum of one of the muons, let’s choose p1x .

We find that:

∂M

∂p1x
=

1

M
((E1 + E2)

p1x
E1

)− (p1x + p2x)) (5.3)

This estimate can then be used to give us an approximate error for p1x as follows:

∆p01x =
mreco −mJ/ψ

∂M
∂p1x

|p1x=p01x
. (5.4)

Next, we develop smearing functions based on these residual distributions. These

functions are modeled using Gaussian distributions where the widths are derived

from the residuals. The smearing functions are then applied to the MC data

to match the residual distributions of the experimental data, ensuring that the

MC data accurately represents the experimental uncertainties. The plots of the

residuals versus their corresponding variables are shown in Figure 5.9 for the ex-

perimental data, as well as for the Monte Carlo. The plots of the residuals versus

the other kinematically reconstructed variables were also studied, but are not in-

cluded for readability. There is a discrepancy in the width of the MC data versus

the experimental data that necessitates a 7% Gaussian smearing function to the

reconstructed MC data.

Finally, we verify the effectiveness of the smearing functions by comparing the

widths of the J/ψ peaks in the smeared MC data and the experimental data. The

goal is to achieve a close match between the two, indicating that the MC data has

been appropriately adjusted to reflect the experimental conditions.

As illustrated in Figure 5.10, the experimental mass curve exhibits a width of 0.27

GeV, whereas the reconstructed J/ψ Monte Carlo data from the dump shows a
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Figure 5.9: The covariance of the J/ψ peak for real and MC data both before
and after a 7% Gaussian smearing is applied. After smearing, the patterns,

especially of the width of the residual, have much closer agreement.
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Figure 5.10: The unsmeared and smeared J/ψ peak compared to the experi-
mental peak. This analysis demonstrates that a 7% Gaussian smearing function

matches the precision of the MC data to the experimental data.

width of 0.23 GeV. After smearing, the widths of the J/ψ peaks in both the MC

and experimental data align. This level of smearing is validated by the use of a

6% smearing value in previous SeaQuest analyses conducted using KTracker.

5.3.2 Combinatoric Estimate

Despite our best efforts with cuts, the rate of muon production in the beam dump

means that a non-trivial amount of combinatoric background will pass through.

This necessitates an accurate recreation of the combinatoric background based on

the experimental data.

To achieve this, we can select events from the triggered experimental data that

contain either a positive or a negative muon, but not both. This can be achieved by

selecting FPGA-4 events, and using the single-muon track finders on the triggered

events.
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Figure 5.11: The combinatoric background for E906, based on an event-
mixing method using positive and negative single-muon events.

If the track finders are able to identify either a positive or a negative muon, then

that event’s hit matrix is saved to an array – one array for positive muons, and

one for negative muons.

Those events can then be combined by overlaying the hits of one onto the other.

The combined events are then reconstructed using the full QTracker chain, which

allows us to use the same cuts for the combinatoric estimate as we do for the

Monte Carlo and real data.

Using the same cuts as those in Table 5.2, we can find the mass distribution of

the combinatoric background shown in Figure 5.11.

Although the peak is at a similar position to the reconstructed data, it is slightly

below the Jψ mass, and falls off faster in the higher mass region. This is promising,

as it means that the mass region most contaminated by the combinatoric back-

ground is the same as that contaminated by the charmonium-produced dimuons.

This estimate of the combinatoric background is especially important for extract-

ing the angular dependence for dimuons originating in the dump, as the dump is

a large source of combinatoric background.

The combinatoric background for QTracker will be fundamentally different from

that of KTracker for a few reasons. Because QTracker searches for events with

exactly one positive and one negative muon track, while KTracker accepts events

with more than one of each, QTracker does not have as much of a likelihood of

confusing independent muons in the same event as a dimuon. However, QTracker
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Figure 5.12: The mass curve fit for filtered dump-origin single-dimuon events
in Runs 5-6 of E906, fit with Monte Carlo J/ψ, ψ′, Drell-Yan, and combinatoric

dimuons.

is able to, in a high-occupancy situation, find a poor quality track to match with

a true track, which can also appear to be a dimuon under the right circumstances.

As such, track quality is an important value to monitor when performing analyis

using QTracker.

5.3.3 Fitting

To fit the experimental mass curve with the four components, we can use a curve

fit. The fit imposes a relation between the J/ψ and ψ′ prevalence in the data

based on the branching ratio and trigger condition. This ratio is approximately

16%, but varies based on the specific trigger condition and cuts used.

Figure 5.12 shows the dump dimuon data from E906, fit with the smeared Monte

Carlo and the estimated combinatoric data.
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Figure 5.13: Percentage of non-Drell-Yan dimuons remaining as a function of
mass cut. A mass cut of 4.8 GeV removes 99% of background events.

The fit finds that of the 124,000 dimuons, approximately 59,000 are J/ψ dimuons,

8,500 are ψ′ dimuons, 34,000 are Drell-Yan dimuons, and 24,000 are combinatoric

background.

5.4 Angular Dependence Extraction

Now that we have properly decomposed the experimental data into its components,

we can extract the angular dependence of the Drell-Yan dimuons.

5.4.1 Mass Cut

In order to isolate the Drell-Yan dimuons, we can utilize a simple mass cut. To

determine the level of that mass cut, we can use the mass curve fit to estimate the

percentage of non-Drell Yan events that are removed by a simple mass cut.

This curve is shown in Figure 5.13. Based on this analysis, we should choose a

mass cut of 4.8 GeV to remove 99% of the non-Drell Yan dimuons.

Once we have made this mass cut, we can examine the angular dependence of the

dimuons in the data. Figure 5.14 shows the angular distribution of these dimuons.
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Figure 5.14: The uncorrected distribution of ϕ and cos θ for dimuons from
the dump with masses over 4.8 GeV.

5.4.2 Acceptance Correction and Data Matching

To accurately extract the angular dependence of the Drell-Yan process from the

data, it is essential to correct for the combined acceptances of the spectrometer

and QTracker. Acceptance correction involves adjusting the observed data to

account for the detector’s efficiency and geometric coverage, ensuring that the

reconstructed distributions reflect the true physical distributions.

The process begins by generating a large sample of Drell-Yan MC data. These

simulated events are then reconstructed using the same procedures applied to real

data. To enhance the accuracy of the acceptance correction, we employ a data-

matching technique by reweighting MC events. This involves adjusting the weights

of individual MC events to better match the kinematic distributions observed

in the actual data. The reweighting procedure uses a comparison between the

distributions of key variables, such as the invariant mass and transverse momentum

(pT ), in both the real and simulated datasets. By applying these weights, the

MC sample more accurately reflects the conditions of the experimental data, thus

improving the fidelity of the acceptance correction.

To compute the weights, we first generate histograms of the selected variables from

the real data, background data, and MC data. The weights are then calculated as
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Figure 5.15: The ratio of real data to MC data for the invariant mass distri-
bution before and after reweighting.

the ratio of the real data histogram to the MC data histogram, adjusted for the

background. This ensures that the weighted MC data better matches the real data

distribution across the full range of the variable. The weights are subsequently

interpolated to each MC event to apply the correction.

To illustrate the reweighting procedure, consider the invariant mass distribution

of the dimuon pairs. Figure 5.15 shows the ratio of the real data to the MC data

before and after reweighting. Before reweighting, there are noticeable discrepancies

between the real and simulated data, particularly at higher invariant mass values.

After reweighting, the MC data more closely matches the real data across the entire

range of invariant mass, demonstrating the improved accuracy of the reweighted

MC sample.

After reweighting, the reconstructed MC data is further adjusted to have a flat

angular distribution, removing the 1 + cos2 θ dependence generated by Pythia.

The naive Drell-Yan cross-section, as implemented in the Pythia event generator,

is given by:
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Figure 5.16: The normalized acceptance for the spectrometer and QTracker
for Drell-Yan dimuons with mass greater than 4.8 GeV.

1

σ

dσ

dΩ
=

3

4π

1

λ+ 3
(1 + λ cos2(θ)) (5.5)

This expression serves as a basis for calculating the acceptance correction. By

comparing the reconstructed MC data to the known theoretical cross-section, we

can derive the acceptance function. Specifically, a two-dimensional histogram of

acceptance is created, where the acceptance is defined as the ratio of the recon-

structed MC data to the theoretical cross-section.

Figure 5.16 illustrates the normalized acceptance for the spectrometer and QTracker

for Drell-Yan dimuons with invariant mass greater than 4.8 GeV. The histogram

reveals that the acceptance is concentrated in a band around cos θ = 0, indicating

that the spectrometer’s efficiency is highest near perpendicular angles.

Given this acceptance pattern, we apply the acceptance correction to the recon-

structed data and restrict the range of cos(θ) to between −0.4 and 0.4 for the

Chi-Square fitting. This limitation ensures that we only use data where the ac-

ceptance is well understood and reliable.
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Figure 5.17: The angular distribution of background dimuons (before accep-
tance corrections).

5.4.3 Background Subtraction

To accurately fit the angular dependence of the Drell-Yan dimuons, we must ac-

count for the background contribution estimated from the mass fit. This is ac-

complished by creating histograms for the ϕ and cos θ distributions from both the

real data and the estimated background. The background histograms are then

subtracted from the data histograms on a bin-by-bin basis.

The procedure involves generating corresponding histograms for the estimated

background, using the same binning as the real data, then subtracting the back-

ground histograms from the data histograms for each bin.

By removing the estimated background events, this subtraction method refines the

ϕ and cos θ distributions, providing a clearer view of the true angular dependence

of the signal.

The corrected histograms can then be analyzed to study the physical properties of

the signal without the interference of background events. The angular dependence

of these estimated background hits are shown in Figure 5.17
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5.4.4 Fitting

Once the acceptance correction is applied and background subtraction is per-

formed, the next step is to determine the angular dependence of the Drell-Yan

process using a Chi-Square fit. The goal is to extract the parameters λ, µ, and ν

from the angular distribution of the dimuons.

The angular differential cross-section for Drell-Yan data, incorporating the full

angular dependence, is expressed as:

1

σ

dσ

dΩ
=

3

4π

1

λ+ 3
(1 + λcos2(θ) + µsin(2θ)cos(ϕ) +

ν

2
sin2(θ)cos(2ϕ)) (5.6)

To perform the Chi-Square fit, we construct a histogram of the acceptance-corrected

data in terms of cos(θ) and ϕ. This histogram is then used to fit the theoretical

angular distribution, extracting the values of λ, µ, and ν.

We need to carefully select the number of bins used for the fit. We can base our

choice on bin size on the precision found in 4.3. By choosing a bin width of 2σ,

95% of reconstructed events will fall within the correct bin. This corresponds to

cos θ bins having a width of 0.08, and ϕ bins having a width of approximately 0.6.

This corresponds to 10 bins in ϕ, and 10 bins in cos θ.

Figure 5.18 shows the acceptance-corrected cos(θ) vs ϕ histogram along with a

contour plot of the Chi-Square fit.

The fit yields the following angular parameters:

• λ = 0.82± 0.70

• µ = 0.11± 0.10

• ν = −0.02± 0.05

The uncertainties in these parameters quite large, especially for the λ value. In or-

der to reduce the statistical uncertainty, we can apply a bootstrapping method to

the dataset. Bootstrapping involves repeatedly resampling the data with replace-

ment and performing a regression fit on each resampled dataset. This technique
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Figure 5.18: The Chi-Square fit for filtered dump-origin Drell-Yan single-
dimuon events in Runs 5-6 of E906. The extracted values are λ = 0.82 ± 0.70,

µ = 0.11± 0.10, and ν = −0.02± 0.05 (statistical errors only).

provides a way to estimate the distribution of the fitted parameters and their

uncertainties more robustly.

The procedure for bootstrapping is as follows:

Resample the Dataset: Create resampled datasets by randomly selecting events

from the original dataset with replacement. Each resampled dataset is the same

size as the original dataset.

Perform Regression Fits: For each resampled dataset, construct the cos(θ) vs ϕ

histogram and perform a least-squares regression fit to extract the parameters λ,

µ, and ν.

Analyze the Distribution: Collect the fitted values of λ, µ, and ν from all resampled

datasets and analyze their distribution. Calculate the mean and standard devia-

tion of these distributions to obtain the bootstrapped estimates of the parameters

and their uncertainties.
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The data was resampled and fitted 1,000 times. The bootstrapped results yield

the following angular parameters:

• λ = 0.84± 0.39

• µ = 0.12± 0.06

• ν = −0.02± 0.02

Comparing these values with the initial fit results, we observe an agreement in

the values, but a reduction in statistical uncertainty. These bootstrapped results

demonstrate the robustness of the Chi-Square fit and provide more precise esti-

mates of the angular parameters. This enhanced precision is crucial for interpreting

the Drell-Yan process and understanding the underlying parton dynamics.

Table 5.3 summarizes the effect of varying the selection cuts on the extracted

angular parameters λ, µ, and ν. Understanding how these parameters shift with

different selection criteria is crucial for validating the fit that we chose.

By comparing results across different cuts, we can assess how sensitive the ex-

tracted angular parameters are to variations in the selection criteria. This helps

identify potential biases or systematic effects.

None of the different cuts that we modified created statistical disagreement with

our intitial extraction. This suggests that the chosen cuts are not articifically

creating the extracted values, but are actually a product of the underlying data.

However, there is some variability of the extracted λ values especially. This is a

known issue with SeaQuest data, and has led some previous analyses to fix the λ

value to unity and only fit the µ and ν values.[71] The variablility, especially of λ,

do indicate the presence of non-negligible systematic uncertainty.

The variability in the extracted angular distribution parameters can be explained

by several factors. Firstly, statistical uncertainty plays a role, especially when deal-

ing with limited data samples. Smaller datasets result in larger uncertainties in

the parameters, as evidenced by the initial fits showing large error margins. Boot-

strapping, by resampling the data, helps reduce statistical error, but the inherent

randomness in resampling can still introduce some variability in the parameter

estimates. Additionally, systematic errors such as those from detector calibra-

tion, particle identification, and event reconstruction can affect the accuracy of

the measured distributions.
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Another important factor is the process of acceptance corrections. Inaccuracies

in the acceptance model or inefficiencies in the detector can cause fluctuations in

the corrected distributions, and different methods or assumptions used in these

corrections can lead to variations in the final extracted parameters. The choice of

cuts influences the results, where looser cuts may include more background events,

and tighter cuts may exclude some signal events, both affecting the extracted

parameters.

Discrepancies between Monte Carlo simulations and actual data, along with in-

accuracies in background subtraction methods, can further introduce variability.

The stabilization of extracted parameters, especially µ and ν, with tighter cuts

suggests that stringent cuts help reduce background contamination, thus improv-

ing the reliability of the results. However, these tighter cuts also increase the

statistical uncertainty, requiring us to balance between the stability and precision

of our extracted values.

5.5 Target Analysis

This entire process was also done for target dimuons, albeit with less rigor. In the

data analyzed, there were approximately 39,000 dimuons found, with 20,000 J/ψ

dimuons, 4,000 ψ′ dimuons, 6,500 Drell-Yan dimuons, and 10,000 combinatoric

background events. The mass curve fit is shown in Figure 5.19.

The proportion of target dimuons identified as Drell-Yan are lower compared to

those found in the Dump. In the Dump, approximately 20% of the dimuons

were identified as Drell-Yan, as opposed to only 17% for the target. In KTracker-

reconstructed data, this number is approximately 18% in Liquid Hydrogen data.[71]

A mass curve using a portion of the SeaQuest target data using KTracker is shown

in Figure 5.20.

The data from runs where the target was liquid hydrogen was selected, and the

process of background subtraction and acceptance correction was repeated using

that data. The histogram was then fit using the Drell-Yan cross-section. The

results of this fit are shown in Figure 5.21.
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Figure 5.19: The mass curve fit for filtered target-origin Drell-Yan single-
dimuon events in Runs 5-6 of E906, fit with Monte Carlo J/ψ, ψ′, Drell-Yan,

and combinatoric dimuons.

Because there were only approximately 16,500 dimuons identified from the hydro-

gen target, compared to 124,000 from the dump, the statistical uncertainty for

this fit is much larger. The fit returned the following angular parameters:

• λ = 1.08± 1.24

• µ = −0.13± 0.18

• ν = 0.13± 0.08

The given uncertainties are statistical only.
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Figure 5.20: The KTracker-based mass curve fit for E906 target dimuons,
fit with Monte Carlo J/ψ, ψ′, Drell-Yan, and combinatoric dimuons. The
data shows a more pronouced ψ′ shoulder than is seen in the QTracker-based

curve.[14]
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Figure 5.21: The Chi-Square fit for filtered target-origin Drell-Yan single-
dimuon events in Runs 5-6 of E906 identified from the hydrogen target. The
extracted values are λ = 1.08 ± 1.24, µ = −0.13 ± 0.18, and ν = 0.13 ± 0.08

(statistical errors only).



Chapter 6

Discussion and Future Work

In the last chapter, we demonstrated that QTracker is able to perform analysis

on experimental data. There is, however, still work to be done in the future. In

this chapter we will discuss the results we found and the improvements still to be

made.

6.1 Discussion

6.1.1 Discussion of Results

The Drell-Yan angular dependence has strong implications for multiple transverse

momentum distributions, including the Boer-Mulders Function and the Sivers

Function. Specifically, the E906 data that was reconstructed in the previous chap-

ter has implicatons for the Boer-Mulders Function.

As was discussed in Chapter 2, a previous experiment at Fermilab, E866, mea-

sured the angular dependence of Drell-Yan scattering using an 800 GeV beam.

Additionally, a previous analysis of the target data of E906 was reported. Table

6.1 shows the results we found compared to previous measured results.

Both of our values for λ agrees with all the results. Our values for µ do not

agree with one another to one standard deviation, but both agree with one of the

previously reported values for p + p scattering. Our values for ν again disagree

with each other, but our p + p data agrees with both previously reported p + p

143
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results. It is, however, important to keep in mind that these results do not include

systematic uncertainties.

p+ p p+ d p+ p p+ d p+ Fe p+ p
E866 E866 E906 E906 QTracker E906 QTracker E906

800 GeV/c 800 GeV/c 120 GeV/c 120 GeV/c 120 GeV/c 120 GeV/c
λ 0.85± 0.10 1.07± 0.07 1 [fixed] 1 [fixed] 0.84± 0.39 1.08± 1.24
µ −0.03± 0.02 0.00± 0.01 0.01± 0.08 −0.11± 0.04 0.12± 0.06 −0.13± 0.18
ν 0.04± 0.015 0.03± 0.01 0.21± 0.05 0.16± 0.04 −0.02± 0.02 0.13± 0.08

Table 6.1: Comparison of various extractions of the Drell-Yan angular depen-
dence variables to our fit. All uncertainties shown are statistical. E866 angular
variables are from [10], and non-QTracker E906 angular variables are from [71].

The value of ν is critical for interpreting this data with respect to the Boer-Mulders

function. An existence of a non-zero Boer-Mulders function would predict a large

value for the ν value in the angular dependence of Drell-Yan scattering.

Our analyses found values consistent with past results in E866, which suggests

either that there are nuclear effects that cancel out the Boer-Mulders effect, or

that there is no need for a non-zero Boer-Mulders effect for the sea quarks.

From a physical perspective, what this means is that our analyses found no ev-

idence for preferential polarization of the sea quarks inside unpolarize nucleons,

either in hydrogen or in iron nuclei. This insight gives a more complete view of

the structure of the nucleon sea, which will be further explored in the SpinQuest

experiment.

The Lam-Tung relation, which states that 1− λ− 2ν = 0, is not violated by our

findings. We find a values of 0.12± 0.39 and −0.34± 1.24, respectively. However,

because of the large error bars on λ, these results are also consistent with findings

of Lam-Tung relation breaking, such as those by Motyka et. al. [72]

It is important to note that these results are not conclusive. The consistency with

zero for the ν value and the adherence to the Lam-Tung relation do not defini-

tively rule out the Boer-Mulders effect or other transverse momentum-dependent

distributions. The current analysis is limited by the statistical uncertainties and

the systematic uncertainties that have not been fully accounted for.

Future work should focus on acquiring more statistical data to improve the pre-

cision of the measurements and on conducting a more careful examination of the

systematic uncertainties involved. Reducing these uncertainties will be crucial for
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drawing more definitive conclusions about the role of the Boer-Mulders function

and other transverse momentum-dependent effects in Drell-Yan processes.

6.1.2 Systematic Uncertainty

Although the comparisons in the last section were limited to statistical error, the

question of systematic uncertainty is an important one. Several potential sources of

systematic uncertainty in our analysis need additional exploration. These sources

include:

• Detector Efficiency and Resolution: Variations in the efficiency and

resolution of the spectrometer and QTracker can introduce biases in the

reconstructed data. The spectrometer’s efficiency can vary due to changes

in hardware performance, environmental conditions, or operational settings.

QTracker’s resolution depends on the precise calibration of its parameters

and the quality of the input data. The effects of these variations need to be

quantified to explore their impact on reconstructed physical quantities.

• Background Subtraction: The methods used to subtract background

events may have inherent uncertainties that could affect the final results.

The algorithms for background subtraction rely on modeling the background

distribution and distinguishing it from the signal. Any inaccuracies in the

background model or assumptions can introduce systematic biases in the

measurement.

• Monte Carlo Simulations: The accuracy of the acceptance correction

relies on the quality of the MC simulations. Any discrepancies between

the simulated and real data can lead to systematic errors. Discrepancies

between the simulated events and actual data can arise from incomplete

physics models, incorrect detector descriptions, or statistical limitations of

the simulations. Regular comparisons between MC simulations and real data

are essential to identify and mitigate these systematic effects.

• The QTracker Algorithm: The QTracker algorithm might introduce bi-

ases if not perfectly calibrated. The performance of the algorithm depends

on the training dataset, the architecture of the neural network, and the hy-

perparameters used. Any major differences between the training data and
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the actual experimental conditions can introduce systematic biases in the

track reconstruction. Continuous calibration and validation of QTracker

with up-to-date experimental data and rigorous cross-validation techniques

are necessary to ensure unbiased performance.

These effects are not explored in detail in this dissertation, but will be an important

aspect of future work in the QTracker project.

6.2 Future Work

6.2.1 Quality Metric

Developing a robust quality metric for QTracker is essential for ensuring the reli-

ability of the reconstructed data. This metric should assess various aspects of the

tracking performance, such as:

• Track Quality: How precise the track reconstruction is, that is, how closely

the reconstructed track represents the physical particle track.

• Momentum Resolution: The precision with which the momentum of the

particles is measured.

• Vertex Resolution: The accuracy of the reconstructed vertex position.

• False Positive Probability: The probabilty that an event that has been

identified as a dimuon event was incorrectly identified.

The goal of this metric is to fold all of these values into one Chi-Square-like metric

to allow for a one-size-fits-all approach to quality cutting. The current method

using a series of stringent cuts can provide high data purity but discards a good

amount of useful data.

The process involves defining a set of benchmarks that QTracker must meet or

exceed in each of the categories mentioned above. For example, the track quality

can be quantified by comparing the reconstructed tracks to the true tracks obtained

from Monte Carlo simulations, calculating the deviation, and normalizing it. A

similar approach can be applied to the momentum and vertex resolutions.
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The false positive probability is particularly important in high-multiplicity envi-

ronments where the likelihood of hallucinated tracks increases.

The final quality metric will be a composite score derived from these individ-

ual assessments. By normalizing and weighting each component appropriately,

we achieve a comprehensive metric that encapsulates the overall performance of

QTracker on a specific event. This composite metric provides a discrete quality

value for each event, enabling straightforward quality cuts and ensuring that only

the highest quality tracks are used in subsequent analyses.

Ongoing work involves refining the metric, incorporating more complex event

topologies, and validating the results with real data from the SeaQuest and Spin-

Quest experiments.

6.2.2 Adaptation for E1039

The SpinQuest E1039 experiment at Fermilab began beam and target comissioning

in June of 2024. As discussed in Section 4.2.11, QTracker is ideal for adaptation

as an online reconstruction algorithm for E1039 due to its high processing speed

and accuracy.

To adapt QTracker for E1039, several steps need to be undertaken:

• Integration with E1039 Data Acquisition: Ensure that QTracker can

seamlessly process data from the E1039 detectors.

• Calibration and Validation: Perform calibration and validation using

E1039-specific MC simulations and early data to ensure that QTracker meets

the experiment’s requirements.

• Systematic Studies: Conduct detailed studies of systematic uncertainties

specific to E1039 and develop mitigation strategies.

Integration with the E1039 data acquisition process is ongoing by the University of

Virginia Spin Physics group. Fortunately, the data file formats are shared between

E906 and E1039, allowing for minimal friction in this process.
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Although extremely similar, there are several differences between the E906 and

E1039 experimental setups. The shielding around the target has been changed to

adequately protect researchers entering the experimental hall.

Additionally, as discussed extensively in Chapter 3, the target placement and de-

sign is radically different between the two experiments. This is especially impor-

tant as the E1039 target uses a 5T magnetic field to polarize the target material,

which has the added effect of bending the trajectories of muons that pass through

it. This is a small effect, but should nevertheless be accounted for in Monte Carlo

generation.

These changes necessitate fine-tuning of the model with updated Monte Carlo.

The position of the target reconstruction network needs to be changed, as the

E1039 target is three meters upstream of the beam dump, compared to only 130

cm for the E906 target.

6.2.3 DNN-Based Angular Dependence Extraction

Another potential use for neural networks in the analysis process of Drell-Yan

scattering is using models specifically trained to extract the angular dependence

variables, λ, µ, and ν. We have developed models to do this and performed a full

MC-based extraction, but work is still ongoing to perfect the training process.

This type of method has several advantages over a Chi-Square fit. Neural net-

works can handle large datasets and complex patterns more efficiently, reducing

the impact of noise and enhancing the precision of angular dependence measure-

ments. This subsection outlines the methodology we are developing and the future

directions for this approach.

To generate training data, we use the von Neumann rejection sampling method.

This technique allows us to create synthetic datasets that replicate real experi-

mental conditions, embedding known angular dependencies.

First, we reconstruct a large number of Drell-Yan, charmonium, and mixed events

using QTracker, saving the true kinematic values for the Monte Carlo events.

Following that, we randomly select λ, µ, and ν from expected ranges based on

previous experimental results. Using these selected angular dependencies, we select

approximately 10,000 Drell-Yan events via von Neumann rejection.
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Figure 6.1: Absolute error of extraction of angular dependence variables for
Chi-Square and Neural-Network based methods.

These Drell-Yan events, with the injected angular dependence, are then combined

with the background events from charmonia and random processes, which give

us representative samples of events from experimental data. We then perform

analysis cuts on all of these events and create ϕ vs. cos θ histograms.

These histograms are used to train the neural networks to extract the angular

dependencies that we have injected. We designed the neural network as relatively

simple Convolutional Neural Networks, but the design is still in progress.

Tests of the full MC Extraction have shown an improvement in reconstruction

precision when compared to a Chi-Square extraction. To perform the test, we

generated 10,000 angular dependences randomly, using ranges expected based on

experimental data. The angular dependences were used to select the Drell-Yan

dimuons included in the histograms to be reconstructed. Additionally, we add

Monte Carlo dimuons resulting from charmonia processes and experimental back-

ground events.

These histograms are then fed into the neural network, which predicts λ, µ, and

ν values based on the event prevalences. To test the performance compared to

the Chi-Square fit method, we also perform the full background subtraction and

acceptance correction discussed in Chapter 5 on each histogram and fit using the

Drell-Yan angular differential cross-section.

Figure 6.1 shows the absolute error for the full Monte Carlo extraction of 10,000

injected dependences via both a Chi-Square fit and a Neural Network-based ex-

traction.
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The absolute error for all three values are reduced, with an approximately 30%

reduction in uncertainty for λ, and over 50% reduction for µ and ν.

The challenging aspect for this method is the precise calibration of the training

data, which is highly dependent on covariance and differences between Monte Carlo

and experimental data. As such, more work is needed to precisely configure the

training data. Future work will focus on optimizing neural network architecture

and training procedures to enhance prediction accuracy further. We also plan

to conduct systematic studies to ensure the model’s robustness across different

experimental conditions and datasets.

6.2.4 Applications Beyond SeaQuest and SpinQuest

The successful development and implementation of QTracker has impacts beyond

the SeaQuest and SpinQuest experiments. As a neural network-based reconstruc-

tion algorithm, QTracker showcases the potential of deep learning techniques to

enhance data analysis and interpretation in physics.

The principles and architecture of QTracker can be adapted for use in other particle

tracking applications. Many experiments across physics disciplines require precise

tracking of charged particles through complex detector environments. Traditional

tracking algorithms can struggle with high track multiplicity and noise present in

these environments. By integrating deep learning models like QTracker, future

experiments can achieve more accurate and efficient particle track reconstruction,

leading to better resolution of particle interactions and decay processes.

The use of neural networks for event filtering and track finding also offers a pow-

erful tool for data preprocessing in large-scale experiments. With the increasing

volume of data generated by modern detectors, efficient filtering of irrelevant or

noisy events is crucial for optimizing data storage and analysis pipelines. Neural

networks trained on representative datasets can perform this task with high ac-

curacy, reducing the computational load and improving the overall quality of the

data used for physics analysis.

Finally, the experience and knowledge gained from developing QTracker can inform

the design of future experiments. As particle physics experiments become increas-

ingly complex, the need for advanced data analysis tools will continue to grow.

The successful integration of deep learning techniques can serve as a blueprint for
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developing new algorithms and analysis frameworks tailored to the specific needs

of upcoming experiments.

6.3 Conclusion

This dissertation has explored the implementation and impact of QTracker, a novel

deep neural network-based reconstruction algorithm, within the context of the

SeaQuest and SpinQuest experiments. Using QTracker, we analyzed the angular

dependence of Drell-Yan scattering incident on both the liquid hydrogen target

and the iron beam dump.

The angular distribution analyses revealed a relatively small cos 2θ dependence of

−0.02 ± 0.02 for p + Fe scattering, and 0.13 ± 0.08 for p + p scattering. These

values are significant as they relate directly to the Boer-Mulders function, which

describes the correlation between the transverse spin and transverse momentum of

quarks inside the nucleon. Our findings support prior observations that sea quarks

exhibit a smaller Boer-Mulders function compared to valence quarks. Specifically,

the small cos 2θ dependence observed for the p + Fe scattering suggests that the

sea quarks within the iron target are less polarized relative to the nucleon’s mo-

tion. In contrast, the larger dependence seen in p + p scattering aligns with the

understanding that valence quarks exhibit more pronounced polarization effects.

These results contribute to the global dataset on Boer-Mulders functions and Drell-

Yan angular distributions, enhancing our understanding of the intrinsic properties

of quarks. The low cos 2θ dependence implies a small associated Boer-Mulders

function, and by extension, that within an unpolarized nucleon, the sea quarks

are not preferentially aligned in relation to the nucleon’s movement. This con-

trasts with the behavior of valence quarks, which show significant preferential

polarization, reflecting the complex internal dynamics of the nucleon.

The development and application of QTracker have been pivotal in achieving these

insights. Traditional reconstruction methods often struggle with the complex data

produced in fixed-target experimental environments. By integrating advanced

deep learning techniques, QTracker has addressed these challenges, enhancing the

quality of track reconstruction and providing more precise measurements of key

variables. The AI-driven approach of QTracker allowed for rapid and accurate
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data analysis, maximizing the statistical power of our measurements and enabling

the detailed extraction of angular distributions in Drell-Yan scattering.

The successful integration of machine learning into the particle tracking process

not only impacts the SeaQuest and SpinQuest experiments but also sets a prece-

dent for future physics research. The methodologies and results presented in this

dissertation illustrate the potential of combining physics with cutting-edge compu-

tational techniques. As new experiments and detectors come online, the insights

gained from the implementation of QTracker in SeaQuest and SpinQuest will in-

form and enhance the design and analysis strategies of future studies.

Future work will focus on the continued refinement of QTracker for use in the Spin-

Quest experiment, which aims to probe the spin structure of the nucleon in greater

detail via a polarized target. By leveraging QTracker’s advanced reconstruction

capabilities, SpinQuest can achieve higher precision in measuring the transverse

spin effects and further elucidate the role of sea quarks. Additionally, there is

significant potential to adapt QTracker for use in other experiments with different

experimental setups. This adaptability opens the door to a wide array of possibil-

ities in experimental nuclear and particle physics. Continued development in this

area will be fruitful, as the implementation of machine learning along with tradi-

tional physics methodologies can drive future advancements in our understanding

of fundamental particles and their interactions.

In conclusion, this dissertation not only highlights the successful application of

a deep neural network-based reconstruction algorithm but also demonstrates the

impact that innovative computational techniques can have on advancing our un-

derstanding of the subatomic world.



Appendix A

Code

This appendix contains all of the code used to create, train, and use QTracker as

of July 2024. Code has been slightly edited to fit on the page – indents may need

to be fixed before the scripts are able to be executed.

A.1 Network Creation

import tensorflow as tf

#Event Filter

model = tf.keras.Sequential ([

tf.keras.layers.Input(shape =(54, 201, 1)),

tf.keras.layers.Conv2D (96, (11, 11), strides =(4, 4),

padding=’valid’, activation=’relu’),

tf.keras.layers.MaxPooling2D ((1, 6), strides =(2, 2),

padding=’valid’),

tf.keras.layers.Conv2D (256, (5, 5), strides =(1, 1),

padding=’same’, activation=’relu’),

tf.keras.layers.MaxPooling2D ((1, 6), strides =(2, 2),

padding=’valid’),

tf.keras.layers.Conv2D (384, (3, 3), strides =(1, 1),

padding=’same’, activation=’relu’),

tf.keras.layers.Conv2D (384, (3, 3), strides =(1, 1),

padding=’same’, activation=’relu’),

tf.keras.layers.Conv2D (384, (3, 3), strides =(1, 1),

padding=’same’, activation=’relu’),

tf.keras.layers.Conv2D (384, (3, 3), strides =(1, 1),

padding=’same’, activation=’relu’),

tf.keras.layers.Conv2D (256, (3, 3), strides =(1, 1),

padding=’same’, activation=’relu’),

tf.keras.layers.MaxPooling2D ((1, 6), strides =(2, 2),

padding=’valid’),

153
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tf.keras.layers.Flatten (),

tf.keras.layers.Dense (4096, activation=’relu’),

tf.keras.layers.Dropout (0.1),

tf.keras.layers.Dense (4096, activation=’relu’),

tf.keras.layers.Dropout (0.1),

tf.keras.layers.Dense (2)

])

# Save the model

model.save(’Networks/event_filter ’)

#Track Finder Networks

model = tf.keras.Sequential ([

tf.keras.layers.Conv2D (512, (3, 3), activation=’relu’,

input_shape =(54 ,201 ,1)),

tf.keras.layers.MaxPooling2D ((2, 2)),

tf.keras.layers.BatchNormalization (),

tf.keras.layers.Activation(’relu’),

tf.keras.layers.Conv2D (512, (3, 3), activation=’relu’),

tf.keras.layers.MaxPooling2D ((2, 2)),

tf.keras.layers.BatchNormalization (),

tf.keras.layers.Activation(’relu’),

tf.keras.layers.Conv2D (512, (3, 3), activation=’relu’),

tf.keras.layers.MaxPooling2D ((2, 2)),

tf.keras.layers.BatchNormalization (),

tf.keras.layers.Activation(’relu’),

tf.keras.layers.Conv2D (512, (3, 3), activation=’relu’),

tf.keras.layers.BatchNormalization (),

tf.keras.layers.Activation(’relu’),

tf.keras.layers.Conv2D (512, (3, 3), activation=’relu’),

tf.keras.layers.BatchNormalization (),

tf.keras.layers.Activation(’relu’),

tf.keras.layers.Flatten (),

tf.keras.layers.Dense (4096, activation=’relu’),

tf.keras.layers.Dropout (0.2),

tf.keras.layers.Dense (2048, activation=’relu’),

tf.keras.layers.Dropout (0.2),

tf.keras.layers.Dense (1024, activation=’relu’),

tf.keras.layers.Dense (512, activation=’relu’),

tf.keras.layers.Dense (256, activation=’relu’),

tf.keras.layers.Dense (128, activation=’relu’),

tf.keras.layers.Dense(34, activation=’linear ’)

])

#Save the individual muon track finders.

model.save(’Networks/Track_Finder_Pos ’)

model.save(’Networks/Track_Finder_Neg ’)

#Change the output layer to shape 68 to make it work for dimuon track finding.

model.pop() # Remove the final layer

model.add(tf.keras.layers.Dense(68, activation=’linear ’))

#Save the dimuon track finders.

model.save(’Networks/Track_Finder_All ’)

model.save(’Networks/Track_Finder_Z ’)
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model.save(’Networks/Track_Finder_Target ’)

model.save(’Networks/Track_Finder_Dump ’)

# Define Kinematic Reconstruction Networks

model = tf.keras.Sequential ([

tf.keras.layers.Input(shape =(68 ,2)),

tf.keras.layers.Flatten (),

tf.keras.layers.Dense (512, activation=’relu’),

tf.keras.layers.Dense (256, activation=’relu’),

tf.keras.layers.Dense (128, activation=’relu’),

tf.keras.layers.Dense(64, activation=’relu’),

tf.keras.layers.Dense(32, activation=’relu’),

tf.keras.layers.Dense(16, activation=’relu’),

tf.keras.layers.Dense (6)])

#Save a copy each for all vertices , z vertices , and for target vertices.

model.save(’Networks/Reconstruction_All ’)

model.save(’Networks/Reconstruction_Z ’)

model.save(’Networks/Reconstruction_Target ’)

model.save(’Networks/Reconstruction_Dump ’)

#Define the single muon vertex finding networks.

model = tf.keras.Sequential ([

tf.keras.layers.Input(shape =(34 ,2)),

tf.keras.layers.Flatten (),

tf.keras.layers.Dense (512, activation=’relu’),

tf.keras.layers.Dense (256, activation=’relu’),

tf.keras.layers.Dense (128, activation=’relu’),

tf.keras.layers.Dense(64, activation=’relu’),

tf.keras.layers.Dense(32, activation=’relu’),

tf.keras.layers.Dense(16, activation=’relu’),

tf.keras.layers.Dense (1)])

#Save the individual muon vertex finders.

model.save(’Networks/Vertexing_Pos ’)

model.save(’Networks/Vertexing_Neg ’)

#Define the dimuon vertex finding networks.

model = tf.keras.Sequential ([

tf.keras.layers.Input(shape =(71 ,2)),

tf.keras.layers.Flatten (),

tf.keras.layers.Dense (512, activation=’relu’),

tf.keras.layers.Dense (256, activation=’relu’),

tf.keras.layers.Dense (128, activation=’relu’),

tf.keras.layers.Dense(64, activation=’relu’),

tf.keras.layers.Dense(32, activation=’relu’),

tf.keras.layers.Dense(16, activation=’relu’),

tf.keras.layers.Dense (3)])

#Save a copy each for all vertices and for Z vertices.

model.save(’Networks/Vertexing_All ’)

model.save(’Networks/Vertexing_Z ’)

# Define the target -dump filter network.
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model = tf.keras.Sequential ([

tf.keras.layers.Input(shape =(757 ,)),

tf.keras.layers.Dense (2048, activation=’relu’),

tf.keras.layers.Dense (1024, activation=’relu’),

tf.keras.layers.Dense (512, activation=’relu’),

tf.keras.layers.Dense (256, activation=’relu’),

tf.keras.layers.Dense (128, activation=’relu’),

tf.keras.layers.Dense(64, activation=’relu’),

tf.keras.layers.Dense(32, activation=’relu’),

tf.keras.layers.Dense(16, activation=’relu’),

tf.keras.layers.Dense (2)

])

#Save the model for training.

model.save(’Networks/target_dump_filter ’)

Listing A.1: Network defining code

A.2 Training

A.2.1 Shared Functions

import numpy as np

import uproot

from numba import njit , prange

import random

#These are useful variables .

kin_means = np.array ([2,0,35,-2,0,35])

kin_stds = np.array ([0.6 ,1.2 ,10 ,0.6 ,1.2 ,10])

vertex_means=np.array ([0 ,0 ,-300])

vertex_stds=np.array ([10 ,10 ,300])

means = np.concatenate ((kin_means ,vertex_means))

stds = np.concatenate ((kin_stds ,vertex_stds))

max_ele = [200, 200, 168, 168, 200, 200, 128, 128, 112, 112, 128, 128, 134,

134,

112, 112, 134, 134, 20, 20, 16, 16, 16, 16, 16, 16,

72, 72, 72, 72, 72, 72, 72, 72, 200, 200, 168, 168, 200, 200,

128, 128, 112, 112, 128, 128, 134, 134, 112, 112, 134, 134,

20, 20, 16, 16, 16, 16, 16, 16, 72, 72, 72, 72, 72,

72, 72, 72]

#This Function takes the Track_QA_v2 format Root files and creates arrays

#for positive and negative element ids , drift , as well as kinematics .

def read_root_file(root_file):
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print("Reading ROOT file ...")

targettree = uproot.open(root_file+’:QA_ana ’)

targetevents=len(targettree[’n_tracks ’].array(library=’np’))

D0U_ele = targettree[’D0U_ele ’].array(library=’np’)

D0Up_ele = targettree[’D0Up_ele ’].array(library=’np’)

D0X_ele = targettree[’D0X_ele ’].array(library=’np’)

D0Xp_ele = targettree[’D0Xp_ele ’].array(library=’np’)

D0V_ele = targettree[’D0V_ele ’].array(library=’np’)

D0Vp_ele = targettree[’D0Vp_ele ’].array(library=’np’)

D2U_ele = targettree[’D2U_ele ’].array(library=’np’)

D2Up_ele = targettree[’D2Up_ele ’].array(library=’np’)

D2X_ele = targettree[’D2X_ele ’].array(library=’np’)

D2Xp_ele = targettree[’D2Xp_ele ’].array(library=’np’)

D2V_ele = targettree[’D2V_ele ’].array(library=’np’)

D2Vp_ele = targettree[’D2Vp_ele ’].array(library=’np’)

D3pU_ele = targettree[’D3pU_ele ’].array(library=’np’)

D3pUp_ele = targettree[’D3pUp_ele ’].array(library=’np’)

D3pX_ele = targettree[’D3pX_ele ’].array(library=’np’)

D3pXp_ele = targettree[’D3pXp_ele ’].array(library=’np’)

D3pV_ele = targettree[’D3pV_ele ’].array(library=’np’)

D3pVp_ele = targettree[’D3pVp_ele ’].array(library=’np’)

D3mU_ele = targettree[’D3mU_ele ’].array(library=’np’)

D3mUp_ele = targettree[’D3mUp_ele ’].array(library=’np’)

D3mX_ele = targettree[’D3mX_ele ’].array(library=’np’)

D3mXp_ele = targettree[’D3mXp_ele ’].array(library=’np’)

D3mV_ele = targettree[’D3mV_ele ’].array(library=’np’)

D3mVp_ele = targettree[’D3mVp_ele ’].array(library=’np’)

D0U_drift = targettree[’D0U_drift ’].array(library=’np’)

D0Up_drift = targettree[’D0Up_drift ’]. array(library=’np’)

D0X_drift = targettree[’D0X_drift ’].array(library=’np’)

D0Xp_drift = targettree[’D0Xp_drift ’]. array(library=’np’)

D0V_drift = targettree[’D0V_drift ’].array(library=’np’)

D0Vp_drift = targettree[’D0Vp_drift ’]. array(library=’np’)

D2U_drift = targettree[’D2U_drift ’].array(library=’np’)

D2Up_drift = targettree[’D2Up_drift ’]. array(library=’np’)

D2X_drift = targettree[’D2X_drift ’].array(library=’np’)

D2Xp_drift = targettree[’D2Xp_drift ’]. array(library=’np’)

D2V_drift = targettree[’D2V_drift ’].array(library=’np’)

D2Vp_drift = targettree[’D2Vp_drift ’]. array(library=’np’)

D3pU_drift = targettree[’D3pU_drift ’]. array(library=’np’)

D3pUp_drift = targettree[’D3pUp_drift ’].array(library=’np’)

D3pX_drift = targettree[’D3pX_drift ’]. array(library=’np’)

D3pXp_drift = targettree[’D3pXp_drift ’].array(library=’np’)

D3pV_drift = targettree[’D3pV_drift ’]. array(library=’np’)

D3pVp_drift = targettree[’D3pVp_drift ’].array(library=’np’)

D3mU_drift = targettree[’D3mU_drift ’]. array(library=’np’)

D3mUp_drift = targettree[’D3mUp_drift ’].array(library=’np’)

D3mX_drift = targettree[’D3mX_drift ’]. array(library=’np’)
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D3mXp_drift = targettree[’D3mXp_drift ’].array(library=’np’)

D3mV_drift = targettree[’D3mV_drift ’]. array(library=’np’)

D3mVp_drift = targettree[’D3mVp_drift ’].array(library=’np’)

H1B_ele = targettree[’H1B_ele ’].array(library=’np’)

H1T_ele = targettree[’H1T_ele ’].array(library=’np’)

H1L_ele = targettree[’H1L_ele ’].array(library=’np’)

H1R_ele = targettree[’H1R_ele ’].array(library=’np’)

H2L_ele = targettree[’H2L_ele ’].array(library=’np’)

H2R_ele = targettree[’H2R_ele ’].array(library=’np’)

H2B_ele = targettree[’H2B_ele ’].array(library=’np’)

H2T_ele = targettree[’H2T_ele ’].array(library=’np’)

H3B_ele = targettree[’H3B_ele ’].array(library=’np’)

H3T_ele = targettree[’H3T_ele ’].array(library=’np’)

H4Y1L_ele = targettree[’H4Y1L_ele ’].array(library=’np’)

H4Y1R_ele = targettree[’H4Y1R_ele ’].array(library=’np’)

H4Y2L_ele = targettree[’H4Y2L_ele ’].array(library=’np’)

H4Y2R_ele = targettree[’H4Y2R_ele ’].array(library=’np’)

H4B_ele = targettree[’H4B_ele ’].array(library=’np’)

H4T_ele = targettree[’H4T_ele ’].array(library=’np’)

P1Y1_ele = targettree[’P1Y1_ele ’].array(library=’np’)

P1Y2_ele = targettree[’P1Y2_ele ’].array(library=’np’)

P1X1_ele = targettree[’P1X1_ele ’].array(library=’np’)

P1X2_ele = targettree[’P1X2_ele ’].array(library=’np’)

P2X1_ele = targettree[’P2X1_ele ’].array(library=’np’)

P2X2_ele = targettree[’P2X2_ele ’].array(library=’np’)

P2Y1_ele = targettree[’P2Y1_ele ’].array(library=’np’)

P2Y2_ele = targettree[’P2Y2_ele ’].array(library=’np’)

gpx = targettree[’gpx’]. array(library=’np’)

gpy = targettree[’gpy’]. array(library=’np’)

gpz = targettree[’gpz’]. array(library=’np’)

gvx = targettree[’gvx’]. array(library=’np’)

gvy = targettree[’gvy’]. array(library=’np’)

gvz = targettree[’gvz’]. array(library=’np’)

pid = targettree[’pid’]. array(library=’np’)

print(’Done’)

#This reads the dimuon tracks into an array

pos_events=np.zeros(( targetevents ,54))

pos_drift = np.zeros(( targetevents ,30))

pos_kinematics = np.zeros (( targetevents ,6))

neg_events=np.zeros(( targetevents ,54))

neg_drift = np.zeros(( targetevents ,30))

neg_kinematics = np.zeros (( targetevents ,6))

print("Reading events ...")

for j in range(targetevents):

# Determine which hits correspond to positive or negative muons
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first=pid[j][0]

if(first >0):

pos=0

neg=1

else:

pos=1

neg=0

pos_kinematics[j][0] = gpx[j][pos]

pos_kinematics[j][1] = gpy[j][pos]

pos_kinematics[j][2] = gpz[j][pos]

pos_kinematics[j][3] = gvx[j][pos]

pos_kinematics[j][4] = gvy[j][pos]

pos_kinematics[j][5] = gvz[j][pos]

neg_kinematics[j][0] = gpx[j][neg]

neg_kinematics[j][1] = gpy[j][neg]

neg_kinematics[j][2] = gpz[j][neg]

neg_kinematics[j][3] = gvx[j][neg]

neg_kinematics[j][4] = gvy[j][neg]

neg_kinematics[j][5] = gvz[j][neg]

pos_events[j][0]= D0U_ele[j][pos]

neg_events[j][0]= D0U_ele[j][neg]

pos_events[j][1]= D0Up_ele[j][pos]

neg_events[j][1]= D0Up_ele[j][neg]

pos_events[j][2]= D0X_ele[j][pos]

neg_events[j][2]= D0X_ele[j][neg]

pos_events[j][3]= D0Xp_ele[j][pos]

neg_events[j][3]= D0Xp_ele[j][neg]

pos_events[j][4]= D0V_ele[j][pos]

neg_events[j][4]= D0V_ele[j][neg]

pos_events[j][5]= D0Vp_ele[j][pos]

neg_events[j][5]= D0Vp_ele[j][neg]

pos_events[j][16]= D2U_ele[j][pos]

neg_events[j][16]= D2U_ele[j][neg]

pos_events[j][17]= D2Up_ele[j][pos]

neg_events[j][17]= D2Up_ele[j][neg]

pos_events[j][15]= D2X_ele[j][pos]

neg_events[j][15]= D2X_ele[j][neg]

pos_events[j][14]= D2Xp_ele[j][pos]

neg_events[j][14]= D2Xp_ele[j][neg]

pos_events[j][12]= D2V_ele[j][pos]

neg_events[j][12]= D2V_ele[j][neg]

pos_events[j][13]= D2Vp_ele[j][pos]

neg_events[j][13]= D2Vp_ele[j][neg]

pos_events[j][23]= D3pU_ele[j][pos]

neg_events[j][23]= D3pU_ele[j][neg]

pos_events[j][22]= D3pUp_ele[j][pos]

neg_events[j][22]= D3pUp_ele[j][neg]

pos_events[j][21]= D3pX_ele[j][pos]

neg_events[j][21]= D3pX_ele[j][neg]

pos_events[j][20]= D3pXp_ele[j][pos]

neg_events[j][20]= D3pXp_ele[j][neg]

pos_events[j][19]= D3pV_ele[j][pos]

neg_events[j][19]= D3pV_ele[j][neg]

pos_events[j][18]= D3pVp_ele[j][pos]

neg_events[j][18]= D3pVp_ele[j][neg]
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pos_events[j][29]= D3mU_ele[j][pos]

neg_events[j][29]= D3mU_ele[j][neg]

pos_events[j][28]= D3mUp_ele[j][pos]

neg_events[j][28]= D3mUp_ele[j][neg]

pos_events[j][27]= D3mX_ele[j][pos]

neg_events[j][27]= D3mX_ele[j][neg]

pos_events[j][26]= D3mXp_ele[j][pos]

neg_events[j][26]= D3mXp_ele[j][neg]

pos_events[j][25]= D3mV_ele[j][pos]

neg_events[j][25]= D3mV_ele[j][neg]

pos_events[j][24]= D3mVp_ele[j][pos]

neg_events[j][24]= D3mVp_ele[j][neg]

pos_events[j][30]= H1B_ele[j][pos]

neg_events[j][30]= H1B_ele[j][neg]

pos_events[j][31]= H1T_ele[j][pos]

neg_events[j][31]= H1T_ele[j][neg]

pos_events[j][32]= H1L_ele[j][pos]

neg_events[j][32]= H1L_ele[j][neg]

pos_events[j][33]= H1R_ele[j][pos]

neg_events[j][33]= H1R_ele[j][neg]

pos_events[j][34]= H2L_ele[j][pos]

neg_events[j][34]= H2L_ele[j][neg]

pos_events[j][35]= H2R_ele[j][pos]

neg_events[j][35]= H2R_ele[j][neg]

pos_events[j][36]= H2T_ele[j][pos]

neg_events[j][36]= H2T_ele[j][neg]

pos_events[j][37]= H2B_ele[j][pos]

neg_events[j][37]= H2B_ele[j][neg]

pos_events[j][38]= H3B_ele[j][pos]

neg_events[j][38]= H3B_ele[j][neg]

pos_events[j][39]= H3T_ele[j][pos]

neg_events[j][39]= H3T_ele[j][neg]

pos_events[j][40]= H4Y1L_ele[j][pos]

neg_events[j][40]= H4Y1L_ele[j][neg]

pos_events[j][41]= H4Y1R_ele[j][pos]

neg_events[j][41]= H4Y1R_ele[j][neg]

pos_events[j][42]= H4Y2L_ele[j][pos]

neg_events[j][42]= H4Y2L_ele[j][neg]

pos_events[j][43]= H4Y2R_ele[j][pos]

neg_events[j][43]= H4Y2R_ele[j][neg]

pos_events[j][44]= H4B_ele[j][pos]

neg_events[j][44]= H4B_ele[j][neg]

pos_events[j][45]= H4T_ele[j][pos]

neg_events[j][45]= H4T_ele[j][neg]

pos_events[j][46]= P1Y1_ele[j][pos]

neg_events[j][46]= P1Y1_ele[j][neg]

pos_events[j][47]= P1Y2_ele[j][pos]

neg_events[j][47]= P1Y2_ele[j][neg]

pos_events[j][48]= P1X1_ele[j][pos]

neg_events[j][48]= P1X1_ele[j][neg]

pos_events[j][49]= P1X2_ele[j][pos]

neg_events[j][49]= P1X2_ele[j][neg]

pos_events[j][50]= P2X1_ele[j][pos]

neg_events[j][50]= P2X1_ele[j][neg]

pos_events[j][51]= P2X2_ele[j][pos]
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neg_events[j][51]= P2X2_ele[j][neg]

pos_events[j][52]= P2Y1_ele[j][pos]

neg_events[j][52]= P2Y1_ele[j][neg]

pos_events[j][53]= P2Y2_ele[j][pos]

neg_events[j][53]= P2Y2_ele[j][neg]

pos_drift[j][0]= D0U_drift[j][pos]

neg_drift[j][0]= D0U_drift[j][neg]

pos_drift[j][1]= D0Up_drift[j][pos]

neg_drift[j][1]= D0Up_drift[j][neg]

pos_drift[j][2]= D0X_drift[j][pos]

neg_drift[j][2]= D0X_drift[j][neg]

pos_drift[j][3]= D0Xp_drift[j][pos]

neg_drift[j][3]= D0Xp_drift[j][neg]

pos_drift[j][4]= D0V_drift[j][pos]

neg_drift[j][4]= D0V_drift[j][neg]

pos_drift[j][5]= D0Vp_drift[j][pos]

neg_drift[j][5]= D0Vp_drift[j][neg]

pos_drift[j][16]= D2U_drift[j][pos]

neg_drift[j][16]= D2U_drift[j][neg]

pos_drift[j][17]= D2Up_drift[j][pos]

neg_drift[j][17]= D2Up_drift[j][neg]

pos_drift[j][15]= D2X_drift[j][pos]

neg_drift[j][15]= D2X_drift[j][neg]

pos_drift[j][14]= D2Xp_drift[j][pos]

neg_drift[j][14]= D2Xp_drift[j][neg]

pos_drift[j][12]= D2V_drift[j][pos]

neg_drift[j][12]= D2V_drift[j][neg]

pos_drift[j][13]= D2Vp_drift[j][pos]

neg_drift[j][13]= D2Vp_drift[j][neg]

pos_drift[j][23]= D3pU_drift[j][pos]

neg_drift[j][23]= D3pU_drift[j][neg]

pos_drift[j][22]= D3pUp_drift[j][pos]

neg_drift[j][22]= D3pUp_drift[j][neg]

pos_drift[j][21]= D3pX_drift[j][pos]

neg_drift[j][21]= D3pX_drift[j][neg]

pos_drift[j][20]= D3pXp_drift[j][pos]

neg_drift[j][20]= D3pXp_drift[j][neg]

pos_drift[j][19]= D3pV_drift[j][pos]

neg_drift[j][19]= D3pV_drift[j][neg]

pos_drift[j][18]= D3pVp_drift[j][pos]

neg_drift[j][18]= D3pVp_drift[j][neg]

pos_drift[j][29]= D3mU_drift[j][pos]

neg_drift[j][29]= D3mU_drift[j][neg]

pos_drift[j][28]= D3mUp_drift[j][pos]

neg_drift[j][28]= D3mUp_drift[j][neg]

pos_drift[j][27]= D3mX_drift[j][pos]

neg_drift[j][27]= D3mX_drift[j][neg]

pos_drift[j][26]= D3mXp_drift[j][pos]

neg_drift[j][26]= D3mXp_drift[j][neg]

pos_drift[j][25]= D3mV_drift[j][pos]

neg_drift[j][25]= D3mV_drift[j][neg]

pos_drift[j][24]= D3mVp_drift[j][pos]

neg_drift[j][24]= D3mVp_drift[j][neg]

print("Done")
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return pos_events , pos_drift , pos_kinematics , neg_events , neg_drift ,

neg_kinematics

#Removes the high values that Track_QA_v2 uses to initialize arrays.

@njit(parallel=True)

def clean(events):

for j in prange(len(events)):

for i in prange (54):

if(events[j][i] >1000):

events[j][i]=0

return events

#This function is used to inject NIM3 partial tracks and random hits into the

hit matrix.

#Modify this path to point to collection of NIM3 data.

nim3_path = ’/project/ptgroup/QTracker_Training/NIM3/’

@njit()

def hit_matrix(detectorid ,elementid ,drifttime ,hits ,drift ,station):

for j in range (len(detectorid)):

rand = random.random ()

#St 1

if(station ==1) and (rand <0.85):

if (( detectorid[j]<7) or (detectorid[j]>30)) and (detectorid[j]<35):

hits[int(detectorid[j]) -1][int(elementid[j]-1)]=1

drift[int(detectorid[j]) -1][int(elementid[j]-1)]= drifttime[j]

#St 2

elif(station ==2):

if (detectorid[j]>12 and (detectorid[j]<19)) or

(( detectorid[j]>34) and (detectorid[j]<39)):

if(( detectorid[j]<15) and (rand <0.76)) or (( detectorid[j]>14)

and (rand <0.86)) or (detectorid[j]==17):

hits[int(detectorid[j]) -1][int(elementid[j]-1)]=1

drift[int(detectorid[j]) -1][int(elementid[j]-1)]= drifttime[j]

#St 3

elif(station ==3) and (rand <0.8):

if (detectorid[j]>18 and (detectorid[j]<31)) or

(( detectorid[j]==39) or (detectorid[j]==40)):

hits[int(detectorid[j]) -1][int(elementid[j]-1)]=1

drift[int(detectorid[j]) -1][int(elementid[j]-1)]= drifttime[j]

#St 4

elif(station ==4):

if (( detectorid[j]>39) and (detectorid[j]<55)):

hits[int(detectorid[j]) -1][int(elementid[j]-1)]=1

drift[int(detectorid[j]) -1][int(elementid[j]-1)]= drifttime[j]

return hits ,drift

#This function builds the realistic background of messy hit matrix events.

#This can be modified to create different background configurations

def build_background(n_events):

filelist =[’output_part1.root:tree_nim3 ’,’output_part2.root:tree_nim3 ’,

’output_part3.root:tree_nim3 ’,’output_part4.root:tree_nim3 ’,

’output_part5.root:tree_nim3 ’,’output_part6.root:tree_nim3 ’,

’output_part7.root:tree_nim3 ’,’output_part8.root:tree_nim3 ’,

’output_part9.root:tree_nim3 ’]
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targettree = uproot.open(nim3_path+random.choice(filelist))

detectorid_nim3=targettree["det_id"]. arrays(library="np")["det_id"]

elementid_nim3=targettree["ele_id"]. arrays(library="np")["ele_id"]

driftdistance_nim3=targettree["drift_dist"]. arrays(library="np")["drift_dist"]

hits = np.zeros ((n_events ,54 ,201))

drift = np.zeros((n_events ,54 ,201))

for n in range (n_events): #Create NIM3 events

g=random.choice ([1,2,3,4,5,6])#Creates realistic occupancies for FPGA -1

events.

for m in range(g):

i=random.randrange(len(detectorid_nim3))

hits[n],drift[n]= hit_matrix(detectorid_nim3[i],elementid_nim3[i]

,driftdistance_nim3[i],hits[n],drift[n],1)

i=random.randrange(len(detectorid_nim3))

hits[n],drift[n]= hit_matrix(detectorid_nim3[i],elementid_nim3[i],

driftdistance_nim3[i],hits[n],drift[n],2)

i=random.randrange(len(detectorid_nim3))

hits[n],drift[n]= hit_matrix(detectorid_nim3[i],elementid_nim3[i],

driftdistance_nim3[i],hits[n],drift[n],3)

i=random.randrange(len(detectorid_nim3))

hits[n],drift[n]= hit_matrix(detectorid_nim3[i],elementid_nim3[i],

driftdistance_nim3[i],hits[n],drift[n],4)

del detectorid_nim3 , elementid_nim3 ,driftdistance_nim3

return hits , drift

# Function to evaluate the Track Finder neural network and match to drift.

@njit(parallel=True)

def evaluate_finder(testin , testdrift , predictions):

reco_in = np.zeros((len(testin), 68, 3))

def process_entry(i, dummy , j_offset):

j = dummy if dummy <= 5 else dummy + 6

if dummy > 11:

if predictions[i][12+ j_offset] > 0:

j = dummy + 6

elif predictions[i][12+ j_offset] < 0:

j = dummy + 12

if dummy > 17:

if(predictions[i][2 * (dummy - 18) + 30 + j_offset] > 0):

j = 2 * (dummy - 18) + 30

else: 2 * (dummy - 18) + 31

if dummy > 25:

j = dummy + 20

k = abs(predictions[i][dummy + j_offset ])

sign = k / predictions[i][dummy + j_offset] if k > 0 else 1

if(dummy <6):window =15

elif(dummy <12):window =5

elif(dummy <18):window =5

elif(dummy <26):window =1

else:window =3

k_sum = np.sum(testin[i][j][k - window:k + window -1])
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if k_sum > 0 and ((dummy < 18) or (dummy > 25)):

k_temp = k

n = 1

while testin[i][j][k - 1] == 0:

k_temp += n

n = -n * (abs(n) + 1) / abs(n)

if 0 <= k_temp < 201:

k = int(k_temp)

reco_in[i][dummy + j_offset ][0] = sign * k

reco_in[i][dummy + j_offset ][1] = testdrift[i][j][k - 1]

if(testin[i][j][k - 1]==1):

reco_in[i][dummy + j_offset ][2]=1

for i in prange(predictions.shape [0]):

for dummy in prange (34):

process_entry(i, dummy , 0)

for dummy in prange (34):

process_entry(i, dummy , 34)

return reco_in

# Drift chamber mismatch calculation

def calc_mismatches(track):

results = []

for pos_slice , neg_slice in [( slice (0,6),slice (34 ,40)),(slice (6,12),

slice (40 ,46)), (slice(12, 18), slice(46, 52))]:

results.extend ([

np.sum(abs(track[:,pos_slice ,::2 ,0] - track[:,pos_slice ,1::2 ,0]) >

1,axis =1),

np.sum(abs(track[:,neg_slice ,::2 ,0] - track[:,neg_slice ,1::2 ,0]) >

1,axis =1),

np.sum(abs(track[:,pos_slice ,:,2])== 0,axis =1),

np.sum(abs(track[:,neg_slice ,:,2])== 0,axis =1)

])

return np.array(results)

Listing A.2: Common functions for training

A.2.2 Event Filter

import os

import numpy as np

import uproot

from numba import njit , prange

import random

import tensorflow as tf

import gc

from Common_Functions import *

@njit(parallel=True)
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def track_injection(hits ,pos_e ,neg_e):

# Inject tracks into the hit matrices

category=np.zeros((len(hits)))

for z in prange(len(hits)):

m = random.randrange (0,2)

j=random.randrange(len(pos_e))

for k in range (54):

if(pos_e[j][k]>0):

if(random.random ()<m*0.94) or ((k>29)&(k<45)):

hits[z][k][int(pos_e[j][k]-1)]=1

if(neg_e[j][k]>0):

if(random.random ()<m*0.94) or ((k>29)&(k<45)):

hits[z][k][int(neg_e[j][k]-1)]=1

category[z]=m

return hits ,category

def generate_hit_matrices(n_events , tvt):

#Create the realistic background for events

hits , _ = build_background(n_events)

#Inject the reconstructable tracks

if(tvt=="Train"):

hits ,category=track_injection(hits ,pos_events ,neg_events)

if(tvt=="Val"):

hits ,category=track_injection(hits ,pos_events_val ,neg_events_val)

return hits.astype(bool), category.astype(int)

# Read training and validation data from ROOT files

pos_events , pos_drift , pos_kinematics ,

neg_events , neg_drift , neg_kinematics =

read_root_file(’Root_Files/Target_Train_QA_v2.root’)

pos_events_val , pos_drift_val , pos_kinematics_val ,

neg_events_val , neg_drift_val , neg_kinematics_val =

read_root_file(’Root_Files/Target_Val_QA_v2.root’)

del pos_drift , neg_drift , pos_kinematics , neg_kinematics

del pos_drift_val , neg_drift_val , pos_kinematics_val , neg_kinematics_val

# Clean event data by setting values > 1000 to 0.

pos_events=clean(pos_events).astype(int)

neg_events=clean(neg_events).astype(int)

pos_events_val=clean(pos_events_val).astype(int)

neg_events_val=clean(neg_events_val).astype(int)

# Set learning rate and callback for early stopping

learning_rate_filter = 1e-6

callback = tf.keras.callbacks.EarlyStopping(monitor=’val_loss ’, patience=5,

restore_best_weights=True)

n_train = 0

# Detect the number of GPUs available

gpus = tf.config.experimental.list_physical_devices(’GPU’)

num_gpus = len(gpus)

print(f"Number of GPUs available: {num_gpus}")
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# Set up strategy for distributed training

if num_gpus > 1:

strategy = tf.distribute.MirroredStrategy ()

else:

strategy = tf.distribute.get_strategy ()

# Adjust batch size for the number of GPUs

batch_size_adjusted = 256 * num_gpus

print("Before while loop:", n_train)

while n_train < 1e7:

# Generate training and validation data

trainin , trainsignals = generate_hit_matrices (1000000 , "Train")

n_train += len(trainin)

print("Generated Training Data")

valin , valsignals = generate_hit_matrices (100000 , "Val")

print("Generated Validation Data")

# Clear session and reset TensorFlow graph

tf.keras.backend.clear_session ()

gc.collect ()

with strategy.scope():

# Load and compile the model

model = tf.keras.models.load_model(’Networks/event_filter ’)

optimizer = tf.keras.optimizers.Adam(learning_rate_filter)

model.compile(optimizer=optimizer ,

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),

metrics =[’accuracy ’])

# Evaluate the model before training

val_loss_before = model.evaluate(valin , valsignals ,

batch_size=batch_size_adjusted , verbose =2)[0]

# Train the model

history = model.fit(trainin , trainsignals ,

epochs =1000, batch_size=batch_size_adjusted , verbose=2,

validation_data =(valin , valsignals), callbacks =[ callback ])

# Check if the validation loss improved

if min(history.history[’val_loss ’]) < val_loss_before:

model.save(’Networks/event_filter ’)

learning_rate_filter *= 2

learning_rate_filter /= 2

del trainsignals , trainin , valin , valsignals , model

gc.collect ()

print(n_train)

Listing A.3: Event filter training.

A.2.3 Track Finder
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import numpy as np

import uproot

from numba import njit , prange

import random

import tensorflow as tf

import gc

import sys

from Common_Functions import *

if len(sys.argv) != 2:

print("Usage: python script.py <Charge or Vertex >")

print("Options are Pos , Neg , All , Z, Target , or Dump")

exit (1)

opt = sys.argv [1]

if(opt == ’Pos’) or (opt == ’Neg’):

single_muon=True

root_file_train = f"Root_Files /{opt}_Train_QA_v2.root"

root_file_val = f"Root_Files /{opt}_Val_QA_v2.root"

if single_muon:

root_file_train = f"Root_Files/Z_Train_QA_v2.root"

root_file_val = f"Root_Files/Z_Val_QA_v2.root"

model_name = f"Networks/Track_Finder_{opt}"

pos_events , pos_drift , pos_kinematics , neg_events , neg_drift , neg_kinematics =

read_root_file(root_file_train)

pos_events_val , pos_drift_val , pos_kinematics_val , neg_events_val ,

neg_drift_val , neg_kinematics_val = read_root_file(root_file_val)

del pos_drift , neg_drift , pos_kinematics , neg_kinematics

del pos_drift_val , neg_drift_val , pos_kinematics_val , neg_kinematics_val

pos_events=clean(pos_events).astype(int)

neg_events=clean(neg_events).astype(int)

pos_events_val=clean(pos_events_val).astype(int)

neg_events_val=clean(neg_events_val).astype(int)

@njit(parallel=True)

def track_injection(hits , pos_e , neg_e):

n_events = len(hits)

track_real = np.zeros((n_events , 68), dtype=np.float32)

for z in prange(n_events):

#Randomly choose one positive and one negative event

j = np.random.randint(len(pos_e))

if single_muon:j2 = np.random.randint(len(neg_e))

else: j2=j

for k in range (54):

pos_val = pos_e[j][k]

neg_val = neg_e[j2][k]

if pos_val > 0 and (np.random.random () < 0.94 or k > 29):

hits[z][k][int(pos_val - 1)] = 1
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if neg_val > 0 and (np.random.random () < 0.94 or k > 29):

hits[z][k][int(neg_val - 1)] = 1

# Convert the hits into tracks to be reconstructed .

track_real[z, :6] = pos_e[j, :6]

track_real[z, 6:12] = pos_e[j, 12:18]

track_real[z, 34:40] = neg_e[j2, :6]

track_real[z, 40:46] = neg_e[j2, 12:18]

# St. 3p gets positive values , St. 3m gets negative values.

track_real[z, 12:18] = np.where ((pos_e[j, 18]) > 0, pos_e[j, 18:24] ,

-pos_e[j, 24:30])

track_real[z, 46:52] = np.where(neg_e[j2, 18] > 0, neg_e[j2, 18:24] ,

-neg_e[j2, 24:30])

# Pairs of hodoscopes are mutually exclusive ,

#this gives positive or negative values depending on the array.

track_real[z, 18:26] = np.where(pos_e[j, 30:45:2] > 0, pos_e[j,

30:45:2] , -pos_e[j, 31:46:2])

track_real[z, 52:60] = np.where(neg_e[j2, 30:45:2] > 0 , neg_e[j2,

30:45:2] , -neg_e[j2 , 31:46:2])

track_real[z, 26:34] = pos_e[j, 46:54]

track_real[z, 60:68] = neg_e[j2, 46:54]

return hits , track_real

def generate_hit_matrices(n_events , tvt):

#Create the realistic background for events

hits , _ = build_background(n_events)

#Place the full tracks that are reconstructable

if(tvt=="Train"):

hits ,track=track_injection(hits ,pos_events ,neg_events)

if(tvt=="Val"):

hits ,track=track_injection(hits ,pos_events_val ,neg_events_val)

return hits.astype(bool), track.astype(int)

learning_rate_finder =1e-5

callback = tf.keras.callbacks.EarlyStopping(monitor=’val_loss ’, patience=5,

restore_best_weights=True)

n_train =0

# Detect the number of GPUs available

gpus = tf.config.experimental.list_physical_devices(’GPU’)

num_gpus = len(gpus)

print(f"Number of GPUs available: {num_gpus}")

# Set up strategy for distributed training

if num_gpus > 1:

strategy = tf.distribute.MirroredStrategy ()

else:

strategy = tf.distribute.get_strategy ()

# Adjust batch size for the number of GPUs

batch_size_ef = 256 * num_gpus

batch_size_tf = 64 * num_gpus

print("Before while loop:", n_train)

while(n_train <5e6):



Discussion and Future Work 169

trainin , traintrack = generate_hit_matrices (750000 , "Train")

print("Generated Training Data")

traintrack = traintrack/max_ele

valin , valtrack = generate_hit_matrices (75000 , "Val")

print("Generated Validation Data")

valtrack = valtrack/max_ele

if(opt==’Pos’):

traintrack = traintrack [: ,:34]

valtrack = valtrack [: ,:34]

if(opt==’Neg’):

traintrack = traintrack [: ,34:]

valtrack = valtrack [: ,34:]

# Clear previous session

tf.keras.backend.clear_session ()

with strategy.scope():

probability_model =

tf.keras.Sequential ([tf.keras.models.load_model(’Networks/event_filter ’),

tf.keras.layers.Softmax ()])

train_predictions = probability_model.predict(trainin ,

batch_size=batch_size_ef , verbose =0)

val_predictions = probability_model.predict(valin ,

batch_size=batch_size_ef , verbose =0)

train_mask = train_predictions [:, 1] > 0.75

val_mask = val_predictions [:, 1] > 0.75

if single_muon ==False: #If a dimuon finder , run generated events through

single -muon finders first.

tf.keras.backend.clear_session ()

with strategy.scope():

track_finder_pos =

tf.keras.models.load_model(’Networks/Track_Finder_Pos ’)

pos_predictions_val = (np.round(track_finder_pos.predict(valin ,

verbose=0, batch_size = batch_size_tf) * max_ele [:34])).astype(int)

pos_predictions_train = (np.round(track_finder_pos.predict(trainin ,

verbose=0, batch_size = batch_size_tf) * max_ele [:34])).astype(int)

tf.keras.backend.clear_session ()

with strategy.scope():

track_finder_neg =

tf.keras.models.load_model(’Networks/Track_Finder_Neg ’)

neg_predictions_val = (np.round(track_finder_neg.predict(valin ,

verbose=0, batch_size = batch_size_tf) * max_ele [:34])).astype(int)

neg_predictions_train = (np.round(track_finder_neg.predict(trainin ,

verbose=0, batch_size = batch_size_tf) * max_ele [:34])).astype(int)

track_val = evaluate_finder(valin , valdrift ,

np.column_stack (( pos_predictions_val , neg_predictions_val)))

results_val = calc_mismatches(track_val)
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val_mask &= (( results_val [0::4] < 2) & (results_val [1::4] < 2) &

(results_val [2::4] < 3) & (results_val [3::4] < 3)).all(axis =0)

track_train = evaluate_finder(trainin , traindrift ,

np.column_stack (( pos_predictions_train , neg_predictions_train)))

results_train = calc_mismatches(track_train)

train_mask &= (( results_train [0::4] < 2) & (results_train [1::4] < 2) &

(results_train [2::4] < 3) & (results_train [3::4] < 3)).all(axis =0)

# Apply masks

trainin = trainin[train_mask]

traintrack = traintrack[train_mask]

valin = valin[val_mask]

valtrack = valtrack[val_mask]

trainin = trainin[train_mask]

traintrack = traintrack[train_mask]

valin = valin[val_mask]

valtrack = valtrack[val_mask]

n_train += len(trainin)

# Model Training

tf.keras.backend.clear_session ()

with strategy.scope():

model = tf.keras.models.load_model(model_name)

optimizer = tf.keras.optimizers.Adam(learning_rate_finder)

model.compile(optimizer=optimizer , loss=’mse’,

metrics =[’RootMeanSquaredError ’])

val_loss_before = model.evaluate(valin , valtrack ,

batch_size=batch_size_tf , verbose =2)[0]

print(val_loss_before)

history = model.fit(trainin , traintrack , epochs =1000,

batch_size=batch_size_tf ,

verbose=2, validation_data =(valin , valtrack), callbacks =[ callback ])

if min(history.history[’val_loss ’]) < val_loss_before:

model.save(model_name) # Save only if improved

learning_rate_finder *= 2

learning_rate_finder /= 2

del model # Delete the model to free up memory

gc.collect () # Force garbage collection to release GPU memory

print(n_train)

Listing A.4: Track Finder Training Code

A.2.4 Reconstruction Training Data Generation

import numpy as np

import uproot

from numba import njit , prange

import random
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import tensorflow as tf

import gc

import sys

from Common_Functions import *

if len(sys.argv) != 2:

print("Usage: python script.py <Charge or Vertex >")

print("Options are Muon , All , Z, Target , or Dump")

exit (1)

opt = sys.argv [1]

if(opt == ’Muon’):

single_muon=True

else:single_muon=False

root_file_train = f"Root_Files /{opt}_Train_QA_v2.root"

root_file_val = f"Root_Files /{opt}_Val_QA_v2.root"

if single_muon:

root_file_train = f"Root_Files/Z_Train_QA_v2.root"

root_file_val = f"Root_Files/Z_Val_QA_v2.root"

model_name = f"Networks/Track_Finder_{opt}"

@njit(parallel=True)

def track_injection(hits , drift , pos_e , neg_e , pos_d , neg_d , pos_k , neg_k):

kin = np.zeros ((len(hits), 12))

for z in prange(len(hits)):

j = random.randrange(len(pos_e))

if single_muon:j2 = random.randrange(len(neg_e))

else:j2=j

kin[z, :6] = pos_k[j]

kin[z, 6:] = neg_k[j2]

for k in range (54):

if pos_e[j][k] > 0:

if (random.random () < 0.94) and (k < 30):

hits[z][k][int(pos_e[j][k] - 1)] = 1

drift[z][k][int(pos_e[j][k] - 1)] = pos_d[j][k]

if k > 29:

hits[z][k][int(pos_e[j][k] - 1)] = 1

if neg_e[j2][k] > 0:

if (random.random () < 0.94) and (k < 30):

hits[z][k][int(neg_e[j2][k] - 1)] = 1

drift[z][k][int(neg_e[j2][k] - 1)] = neg_d[j][k]

if k > 29:

hits[z][k][int(neg_e[j2][k] - 1)] = 1

return hits , drift , kin

def generate_hit_matrices(n_events , tvt):

hits , drift = build_background(n_events)

if tvt == "Train":

hits , drift , kinematics = track_injection(hits , drift , pos_events ,

neg_events , pos_drift , neg_drift , pos_kinematics , neg_kinematics)

if tvt == "Val":
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hits , drift , kinematics = track_injection(hits , drift , pos_events_val ,

neg_events_val , pos_drift_val , neg_drift_val , pos_kinematics_val ,

neg_kinematics_val)

return hits.astype(bool), drift , kinematics

pos_events , pos_drift , pos_kinematics , neg_events , neg_drift , neg_kinematics =

read_root_file(root_file_train)

pos_events_val , pos_drift_val , pos_kinematics_val , neg_events_val ,

neg_drift_val , neg_kinematics_val = read_root_file(root_file_val)

pos_events = clean(pos_events).astype(int)

neg_events = clean(neg_events).astype(int)

pos_events_val = clean(pos_events_val).astype(int)

neg_events_val = clean(neg_events_val).astype(int)

n_train = 0

train_input = []

val_input = []

train_kinematics = []

val_kinematics = []

# Detect the number of GPUs available

gpus = tf.config.experimental.list_physical_devices(’GPU’)

num_gpus = len(gpus)

print(f"Number of GPUs available: {num_gpus}")

# Set up strategy for distributed training

if num_gpus > 1:

strategy = tf.distribute.MirroredStrategy ()

else:

strategy = tf.distribute.get_strategy ()

# Adjust batch size for the number of GPUs

batch_size_ef = 256 * num_gpus

batch_size_tf = 64 * num_gpus

print(f"Number of devices: {strategy.num_replicas_in_sync}")

while n_train < 1e7:

valin , valdrift , valkinematics = generate_hit_matrices (50000 , "Val")

trainin , traindrift , trainkinematics = generate_hit_matrices (500000 , "Train")

# Clear session and load the probability model for event filtering

tf.keras.backend.clear_session ()

with strategy.scope():

probability_model =

tf.keras.Sequential ([tf.keras.models.load_model(’Networks/event_filter ’),

tf.keras.layers.Softmax ()])

train_predictions = probability_model.predict(trainin ,

batch_size=batch_size_ef , verbose =0)

val_predictions = probability_model.predict(valin ,

batch_size=batch_size_ef , verbose =0)

train_mask = train_predictions [:, 1] > 0.75

val_mask = val_predictions [:, 1] > 0.75
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# Clear session and load track finder models

tf.keras.backend.clear_session ()

with strategy.scope():

track_finder_pos =

tf.keras.models.load_model(’Networks/Track_Finder_Pos ’)

pos_predictions_val = (np.round(track_finder_pos.predict(valin ,

verbose=0, batch_size = batch_size_tf) * max_ele [:34])).astype(int)

pos_predictions_train = (np.round(track_finder_pos.predict(trainin ,

verbose=0, batch_size = batch_size_tf) * max_ele [:34])).astype(int)

tf.keras.backend.clear_session ()

with strategy.scope():

track_finder_neg =

tf.keras.models.load_model(’Networks/Track_Finder_Neg ’)

neg_predictions_val = (np.round(track_finder_neg.predict(valin ,

verbose=0, batch_size = batch_size_tf) * max_ele [:34])).astype(int)

neg_predictions_train = (np.round(track_finder_neg.predict(trainin ,

verbose=0, batch_size = batch_size_tf) * max_ele [:34])).astype(int)

# Update mask for validation data

track_val = evaluate_finder(valin , valdrift ,

np.column_stack (( pos_predictions_val , neg_predictions_val)))

results_val = calc_mismatches(track_val)

val_mask &= (( results_val [0::4] < 2) & (results_val [1::4] < 2) &

(results_val [2::4] < 3) & (results_val [3::4] < 3)).all(axis =0)

# Update mask for training data

track_train = evaluate_finder(trainin , traindrift ,

np.column_stack (( pos_predictions_train , neg_predictions_train)))

results_train = calc_mismatches(track_train)

train_mask &= (( results_train [0::4] < 2) & (results_train [1::4] < 2) &

(results_train [2::4] < 3) & (results_train [3::4] < 3)).all(axis =0)

if single_muon ==False:

# Apply masks

trainin = trainin[train_mask]

traindrift = traindrift[train_mask]

trainkinematics = trainkinematics[train_mask]

valin = valin[val_mask]

valdrift = valdrift[val_mask]

valkinematics = valkinematics[val_mask]

# Clear session and load the track finder model

tf.keras.backend.clear_session ()

with strategy.scope():

track_finder_model = tf.keras.models.load_model(model_name)

val_predictions = (np.round(track_finder_model.predict(valin ,

verbose=0, batch_size = batch_size_tf) * max_ele)).astype(int)

track_val = evaluate_finder(valin , valdrift , val_predictions)

results_val = calc_mismatches(track_val)

val_mask = (( results_val [0::4] < 2) & (results_val [1::4] < 2) &

(results_val [2::4] < 3) & (results_val [3::4] < 3)).all(axis =0)
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train_predictions = (np.round(track_finder_model.predict(trainin ,

verbose=0, batch_size = batch_size_tf) * max_ele)).astype(int)

track_train = evaluate_finder(trainin , traindrift , train_predictions)

results_train = calc_mismatches(track_train)

train_mask = (( results_train [0::4] < 2) & (results_train [1::4] < 2)

& (results_train [2::4] < 3) & (results_train [3::4] < 3)).all(axis =0)

val_kinematics.append(valkinematics[val_mask ])

val_input.append(track_val[val_mask ][:, :2])

train_kinematics.append(trainkinematics[train_mask ])

train_input.append(track_train[train_mask ][:, :2])

n_train = len(np.concatenate(train_kinematics))

# Save (use a consistent saving strategy to avoid repeated concatenation )

np.save(f’Training_Data /{opt}_Val_In.npy’, np.concatenate(val_input))

np.save(f’Training_Data /{opt}_Val_Out.npy’, np.concatenate(val_kinematics))

np.save(f’Training_Data /{opt}_Train_In.npy’, np.concatenate(train_input))

np.save(f’Training_Data /{opt}_Train_Out.npy’,

np.concatenate(train_kinematics))

gc.collect ()

print(n_train)

Listing A.5: Training data generation code for muon and dimuon

reconstruction and vertex finding.

A.2.5 Reconstruction

import numpy as np

import tensorflow as tf

import gc

import sys

if len(sys.argv) != 3:

print("Usage: python script.py <Option > <Version >")

print("Options are Vertex or Momentum")

print("Version are Pos , Neg , All , Z, Target , or Dump")

exit (1)

opt = sys.argv [1]

vers = sys.argv [2]

version = sys.argv [2]

if(vers == ’Pos’) or (vers == ’Neg’):

single_muon=True

else:single_muon=False

if opt == ’Vertex ’:

model_name = f’Networks/Vertexing_{version}’

mom_model_name = f’Networks/Reconstruction_{version}’

if opt == ’Momentum ’:
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model_name = f’Networks/Reconstruction_{version}’

if single_muon:

print(’Momentum reconstruction not implemented for single -muons.’)

if single_muon: version=’Muon’

# Detect the number of GPUs available

gpus = tf.config.experimental.list_physical_devices(’GPU’)

num_gpus = len(gpus)

print(f"Number of GPUs available: {num_gpus}")

# Set up strategy for distributed training

if num_gpus > 1:

strategy = tf.distribute.MirroredStrategy ()

else:

strategy = tf.distribute.get_strategy ()

# Adjust batch size for the number of GPUs

batch_size_training = 1024 * num_gpus

#Define the means and standard deviations for output normalization

kin_means = np.array ([2,0,35,-2,0,35])

kin_stds = np.array ([0.6 ,1.2 ,10 ,0.6 ,1.2 ,10])

vertex_means=np.array ([0 ,0 ,-300])

vertex_stds=np.array ([10 ,10 ,300])

#Define the learning rate and callback

learning_rate =1e-6

callback = tf.keras.callbacks.EarlyStopping(monitor=’val_loss ’,

patience =100,

restore_best_weights=True)

#Load the pre -generated training data

valin_reco = np.load(f"Training_Data /{ version}_Val_In.npy")

valkinematics = np.load(f"Training_Data /{ version}_Val_Out.npy")

filt = np.max(abs(valin_reco.reshape(len(valin_reco) ,(136))),axis =1) <1000

valin_reco = valin_reco[filt]

valkinematics = valkinematics[filt]

trainin_reco = np.load(f"Training_Data /{ version}_Train_In.npy")

trainkinematics = np.load(f"Training_Data /{ version}_Train_Out.npy")

filt = np.max(abs(trainin_reco.reshape(len(trainin_reco) ,(136))),axis =1) <1000

trainin_reco = trainin_reco[filt]

trainkinematics = trainkinematics[filt]

if opt == ’Vertex ’:

if(vers=="Pos"):

trainout = trainkinematics [:,0]

valout = valkinematics [:,0]

if(vers=="Neg"):

trainout = trainkinematics [:,1]

valout = valkinematics [:,1]

if ~single_muon:

trainout = trainkinematics [:,-3:]

valout = valkinematics [:,-3:]
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trainout = (trainout -vertex_means)/vertex_stds

valout = (valout -vertex_means)/vertex_stds

with strategy.scope():

model=tf.keras.models.load_model(mom_model_name)

train_reco = model.predict(trainin_reco , verbose=0, batch_size =

8192* num_gpus)

val_reco = model.predict(valin_reco , verbose=0, batch_size =

8192* num_gpus)

trainin_reco=np.concatenate (( train_reco.reshape ((len(train_reco) ,3,2)),

trainin_reco),axis =1)

valin_reco=np.concatenate (( val_reco.reshape ((len(val_reco) ,3,2)),

valin_reco),axis =1)

if opt == ’Momentum ’:

trainout = np.column_stack (( trainkinematics [:,:3], trainkinematics [:,-6:-3]))

valout = np.column_stack (( valkinematics [:,:3], valkinematics [:,-6:-3]))

trainout = (trainout -kin_means)/kin_stds

valout = (valout -kin_means)/kin_stds

tf.keras.backend.clear_session ()

with strategy.scope():

model=tf.keras.models.load_model(model_name)

optimizer = tf.keras.optimizers.Adam(learning_rate)

model.compile(optimizer=optimizer ,

loss=tf.keras.losses.mse ,

metrics=tf.keras.metrics.RootMeanSquaredError ())

history = model.fit(trainin_reco , trainout ,

epochs =10000 , batch_size=batch_size_training , verbose=2,

validation_data =( valin_reco ,valout),callbacks =[ callback ])

model.save(model_name)

Listing A.6: Code to load generated data from prior section and train either

the momentum or vertex reconstruction networks.

A.2.6 Reconstructed Event Generation

import os

import sys

import numpy as np

import uproot

from numba import njit , prange

import random

import tensorflow as tf

import gc

from Common_Functions import *

if len(sys.argv) != 2:

print("Usage: python script.py <Vertex Distribution >")

print("Currently supports All , Z, Target , and Dump")
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exit (1)

vertex = sys.argv [1]

root_file_train = f"Root_Files /{ vertex}_Train_QA_v2.root"

root_file_val = f"Root_Files /{ vertex}_Val_QA_v2.root"

pos_events , pos_drift , pos_kinematics , neg_events , neg_drift , neg_kinematics =

read_root_file(root_file_train)

pos_events_val , pos_drift_val , pos_kinematics_val , neg_events_val ,

neg_drift_val , neg_kinematics_val = read_root_file(root_file_val)

pos_events=clean(pos_events).astype(int)

neg_events=clean(neg_events).astype(int)

pos_events_val=clean(pos_events_val).astype(int)

neg_events_val=clean(neg_events_val).astype(int)

@njit(parallel=True)

def track_injection(hits ,drift ,pos_e ,neg_e ,pos_d ,neg_d ,pos_k ,neg_k):

#Start generating the events

kin=np.zeros ((len(hits) ,9))

for z in prange(len(hits)):

j=random.randrange(len(pos_e))

kin[z, :3] = pos_k[j, :3]

kin[z, 3:9] = neg_k[j]

for k in range (54):

if(pos_e[j][k]>0):

if(random.random () <0.94) and (k<30):

hits[z][k][int(pos_e[j][k]-1)]=1

drift[z][k][int(pos_e[j][k]-1)]=pos_d[j][k]

if(k>29):

hits[z][k][int(pos_e[j][k]-1)]=1

if(neg_e[j][k]>0):

if(random.random () <0.94) and (k<30):

hits[z][k][int(neg_e[j][k]-1)]=1

drift[z][k][int(neg_e[j][k]-1)]=neg_d[j][k]

if(k>29):

hits[z][k][int(neg_e[j][k]-1)]=1

return hits ,drift ,kin

def generate_hit_matrices(n_events , tvt):

#Create the realistic background for events

hits , drift = build_background(n_events)

#Place the full tracks that are reconstructable

if(tvt=="Train"):

hits ,drift ,kinematics=

track_injection(hits ,drift ,pos_events ,neg_events ,pos_drift ,neg_drift ,

pos_kinematics ,neg_kinematics)

if(tvt=="Val"):

hits ,drift ,kinematics=

track_injection(hits ,drift ,pos_events_val ,neg_events_val ,pos_drift_val ,

neg_drift_val ,pos_kinematics_val ,neg_kinematics_val)

return hits.astype(bool), drift , kinematics

# Detect the number of GPUs available
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gpus = tf.config.experimental.list_physical_devices(’GPU’)

num_gpus = len(gpus)

print(f"Number of GPUs available: {num_gpus}")

# Set up strategy for distributed training

if num_gpus > 1:

strategy = tf.distribute.MirroredStrategy ()

else:

strategy = tf.distribute.get_strategy ()

EF_batch = 256 * num_gpus

TF_batch = 64 * num_gpus

DN_batch = 8192 * num_gpus

def run_qtracker(hits , drift , kinematics):

tf.keras.backend.clear_session ()

tf.compat.v1.reset_default_graph ()

with strategy.scope():

model = tf.keras.models.load_model(’Networks/event_filter ’)

probability_model = tf.keras.Sequential ([model ,

tf.keras.layers.Softmax ()])

event_classification_probabilies =

probability_model.predict(hits ,batch_size=EF_batch , verbose =0)

mask = event_classification_probabilies [: ,1] >=0.75

hits = hits[mask]

drift = drift[mask]

kinematics=kinematics[mask]

event_classification_probabilies = event_classification_probabilies[mask]

tf.keras.backend.clear_session ()

with strategy.scope():

model = tf.keras.models.load_model(’Networks/Track_Finder_Pos ’)

pos_predictions = model.predict(hits , verbose=0, batch_size = TF_batch)

tf.keras.backend.clear_session ()

with strategy.scope():

model = tf.keras.models.load_model(’Networks/Track_Finder_Neg ’)

neg_predictions =model.predict(hits , verbose=0, batch_size = TF_batch)

predictions = (np.round(np.column_stack (( pos_predictions ,

neg_predictions))*max_ele)).astype(int)

muon_tracks=evaluate_finder(hits ,drift ,predictions)

tf.keras.backend.clear_session ()

with strategy.scope():

model = tf.keras.models.load_model(’Networks/Vertexing_Pos ’)

pos_pred = model.predict(muon_tracks [:,:34,:2], verbose=0, batch_size =

DN_batch)

tf.keras.backend.clear_session ()

with strategy.scope():

model = tf.keras.models.load_model(’Networks/Vertexing_Neg ’)

neg_pred = model.predict(muon_tracks [:,34:,:2], verbose=0, batch_size =

DN_batch)

muon_track_quality = calc_mismatches(muon_tracks)
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mask = (( muon_track_quality [0::4] < 2) & (muon_track_quality [1::4] < 2) &

(muon_track_quality [2::4] < 3) & (muon_track_quality [3::4] < 3)).all(axis =0)

# Apply the final filter to event_classification_probabilities

hits = hits[mask]

drift = drift[mask]

muon_tracks = muon_tracks[mask]

pos_pred = pos_pred[mask]

neg_pred = neg_pred[mask]

kinematics = kinematics[mask]

muon_track_quality = muon_track_quality.T[mask]

event_classification_probabilies = event_classification_probabilies[mask]

tf.keras.backend.clear_session ()

tf.compat.v1.reset_default_graph ()

with strategy.scope():

model = tf.keras.models.load_model(’Networks/Track_Finder_All ’)

predictions = (np.round(model.predict(hits ,verbose=0, batch_size =

TF_batch)*max_ele)).astype(int)

all_vtx_track = evaluate_finder(hits ,drift ,predictions)[:,:,:2]

tf.keras.backend.clear_session ()

tf.compat.v1.reset_default_graph ()

with strategy.scope():

model=tf.keras.models.load_model(’Networks/Reconstruction_All ’)

reco_kinematics =

model.predict(all_vtx_track ,batch_size=DN_batch ,verbose =0)

vertex_input=np.concatenate (( reco_kinematics.reshape ((len(reco_kinematics) ,3,2)),

all_vtx_track),axis =1)

tf.keras.backend.clear_session ()

tf.compat.v1.reset_default_graph ()

with strategy.scope():

model=tf.keras.models.load_model(’Networks/Vertexing_All ’)

reco_vertex = model.predict(vertex_input ,batch_size=DN_batch ,verbose =0)

all_vtx_reco=np.concatenate (( reco_kinematics ,reco_vertex),axis =1)

tf.keras.backend.clear_session ()

tf.compat.v1.reset_default_graph ()

with strategy.scope():

model = tf.keras.models.load_model(’Networks/Track_Finder_Z ’)

predictions = (np.round(model.predict(hits ,verbose=0, batch_size =

TF_batch)*max_ele)).astype(int)

z_vtx_track = evaluate_finder(hits ,drift ,predictions)[:,:,:2]

tf.keras.backend.clear_session ()

tf.compat.v1.reset_default_graph ()

with strategy.scope():

model=tf.keras.models.load_model(’Networks/Reconstruction_Z ’)

reco_kinematics =

model.predict(z_vtx_track ,batch_size=DN_batch ,verbose =0)
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vertex_input=np.concatenate (( reco_kinematics.reshape ((len(reco_kinematics) ,3,2))

,z_vtx_track),axis =1)

tf.keras.backend.clear_session ()

tf.compat.v1.reset_default_graph ()

with strategy.scope():

model=tf.keras.models.load_model(’Networks/Vertexing_Z ’)

reco_vertex = model.predict(vertex_input ,batch_size=DN_batch ,verbose =0)

z_vtx_reco=np.concatenate (( reco_kinematics ,reco_vertex),axis =1)

tf.keras.backend.clear_session ()

tf.compat.v1.reset_default_graph ()

with strategy.scope():

model = tf.keras.models.load_model(’Networks/Track_Finder_Target ’)

predictions = (np.round(model.predict(hits ,verbose=0, batch_size =

TF_batch)*max_ele)).astype(int)

target_track = evaluate_finder(hits ,drift ,predictions)

tf.keras.backend.clear_session ()

tf.compat.v1.reset_default_graph ()

with strategy.scope():

model=tf.keras.models.load_model(’Networks/Reconstruction_Target ’)

target_vtx_reco =

model.predict(target_track [:,:,:2], batch_size=DN_batch ,verbose =0)

tf.keras.backend.clear_session ()

tf.compat.v1.reset_default_graph ()

with strategy.scope():

model = tf.keras.models.load_model(’Networks/Track_Finder_Dump ’)

predictions = (np.round(model.predict(hits ,verbose=0, batch_size =

TF_batch)*max_ele)).astype(int)

dump_track = evaluate_finder(hits ,drift ,predictions)[:,:,:2]

tf.keras.backend.clear_session ()

tf.compat.v1.reset_default_graph ()

with strategy.scope():

model=tf.keras.models.load_model(’Networks/Reconstruction_Dump ’)

dump_vtx_reco = model.predict(dump_track ,batch_size=DN_batch ,verbose =0)

dimuon_track_quality = calc_mismatches(target_track)

mask = (( dimuon_track_quality [0::4] < 2) & (dimuon_track_quality [1::4] < 2)

& (dimuon_track_quality [2::4] < 3) & (dimuon_track_quality [3::4] <

3)).all(axis =0)

predictions = np.column_stack (( event_classification_probabilies [:,1],

pos_pred , neg_pred , all_vtx_reco , z_vtx_reco , target_vtx_reco ,

dump_vtx_reco , muon_track_quality , dimuon_track_quality.T))

tracks = np.column_stack (( muon_tracks [:,:,:2], all_vtx_track [:,:,:2],

z_vtx_track [:,:,:2], target_track [:,:,:2], dump_track [:,:,:2]))

predictions = predictions[mask]

tracks = tracks[mask]
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target_dump_input =

np.column_stack (( predictions ,tracks.reshape ((len(tracks) ,(68*2*5)))))

return predictions , tracks

# Initialize lists to store the data

dimuon_probability =[]

all_predictions = []

tracks = []

truth = []

total_entries = 0

#Generate training data

while(total_entries <10000000):

try:

hits , drift , kinematics = generate_hit_matrices (500000 ,"Train")

all_predictions , tracks = run_qtracker(hits , drift , kinematics)

np.save(f’Training_Data /{ vertex}_Tracks_Train.npy’,np.concatenate(tracks ,

axis =0))

np.save(f’Training_Data /{ vertex}_Reco_Train.npy’,np.concatenate(all_predictions ,

axis =0))

total_entries += len(hits)

print(total_entries)

del hits , drift , all_predictions , tracks

except Exception as e:

pass

# Initialize lists to store the data

dimuon_probability =[]

all_predictions = []

tracks = []

truth = []

total_entries = 0

#Generate validation data

while(total_entries <1000000):

try:

hits , drift , kinematics = generate_hit_matrices (500000 ,"Val")

all_predictions , tracks = run_qtracker(hits , drift , kinematics)

np.save(f’Training_Data /{ vertex}_Tracks_Val.npy’,np.concatenate(tracks ,

axis =0))

np.save(f’Training_Data /{ vertex}_Reco_Val.npy’,np.concatenate(all_predictions ,

axis =0))

total_entries += len(hits)

print(total_entries)
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del hits , drift , all_predictions , tracks

except Exception as e:

pass

Listing A.7: Code to generate reconstructed target and dump events for use

in the Target-Dump filter training.

A.2.7 Target-Dump Filter

import os

import sys

import numpy as np

import uproot

from numba import njit , prange

import random

import tensorflow as tf

import gc

from Common_Functions import *

if len(sys.argv) != 2:

print("Usage: python script.py <Vertex Distribution >")

print("Currently supports All , Z, Target , and Dump")

exit (1)

vertex = sys.argv [1]

root_file_train = f"Root_Files /{ vertex}_Train_QA_v2.root"

root_file_val = f"Root_Files /{ vertex}_Val_QA_v2.root"

pos_events , pos_drift , pos_kinematics , neg_events , neg_drift , neg_kinematics =

read_root_file(root_file_train)

pos_events_val , pos_drift_val , pos_kinematics_val , neg_events_val ,

neg_drift_val , neg_kinematics_val = read_root_file(root_file_val)

pos_events=clean(pos_events).astype(int)

neg_events=clean(neg_events).astype(int)

pos_events_val=clean(pos_events_val).astype(int)

neg_events_val=clean(neg_events_val).astype(int)

@njit(parallel=True)

def track_injection(hits ,drift ,pos_e ,neg_e ,pos_d ,neg_d ,pos_k ,neg_k):

#Start generating the events

kin=np.zeros ((len(hits) ,9))

for z in prange(len(hits)):

j=random.randrange(len(pos_e))

kin[z, :3] = pos_k[j, :3]

kin[z, 3:9] = neg_k[j]

for k in range (54):

if(pos_e[j][k]>0):

if(random.random () <0.94) and (k<30):

hits[z][k][int(pos_e[j][k]-1)]=1

drift[z][k][int(pos_e[j][k]-1)]=pos_d[j][k]

if(k>29):
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hits[z][k][int(pos_e[j][k]-1)]=1

if(neg_e[j][k]>0):

if(random.random () <0.94) and (k<30):

hits[z][k][int(neg_e[j][k]-1)]=1

drift[z][k][int(neg_e[j][k]-1)]=neg_d[j][k]

if(k>29):

hits[z][k][int(neg_e[j][k]-1)]=1

return hits ,drift ,kin

def generate_hit_matrices(n_events , tvt):

#Create the realistic background for events

hits , drift = build_background(n_events)

#Place the full tracks that are reconstructable

if(tvt=="Train"):

hits ,drift ,kinematics=

track_injection(hits ,drift ,pos_events ,neg_events ,pos_drift ,neg_drift ,

pos_kinematics ,neg_kinematics)

if(tvt=="Val"):

hits ,drift ,kinematics=

track_injection(hits ,drift ,pos_events_val ,neg_events_val ,pos_drift_val ,

neg_drift_val ,pos_kinematics_val ,neg_kinematics_val)

return hits.astype(bool), drift , kinematics

# Detect the number of GPUs available

gpus = tf.config.experimental.list_physical_devices(’GPU’)

num_gpus = len(gpus)

print(f"Number of GPUs available: {num_gpus}")

# Set up strategy for distributed training

if num_gpus > 1:

strategy = tf.distribute.MirroredStrategy ()

else:

strategy = tf.distribute.get_strategy ()

EF_batch = 256 * num_gpus

TF_batch = 64 * num_gpus

DN_batch = 8192 * num_gpus

def run_qtracker(hits , drift , kinematics):

tf.keras.backend.clear_session ()

tf.compat.v1.reset_default_graph ()

with strategy.scope():

model = tf.keras.models.load_model(’Networks/event_filter ’)

probability_model = tf.keras.Sequential ([model ,

tf.keras.layers.Softmax ()])

event_classification_probabilies =

probability_model.predict(hits ,batch_size=EF_batch , verbose =0)

mask = event_classification_probabilies [: ,1] >=0.75

hits = hits[mask]

drift = drift[mask]

kinematics=kinematics[mask]

event_classification_probabilies = event_classification_probabilies[mask]
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tf.keras.backend.clear_session ()

with strategy.scope():

model = tf.keras.models.load_model(’Networks/Track_Finder_Pos ’)

pos_predictions = model.predict(hits , verbose=0, batch_size = TF_batch)

tf.keras.backend.clear_session ()

with strategy.scope():

model = tf.keras.models.load_model(’Networks/Track_Finder_Neg ’)

neg_predictions =model.predict(hits , verbose=0, batch_size = TF_batch)

predictions =

(np.round(np.column_stack (( pos_predictions ,neg_predictions))*max_ele)).astype(int)

muon_tracks=evaluate_finder(hits ,drift ,predictions)

tf.keras.backend.clear_session ()

with strategy.scope():

model = tf.keras.models.load_model(’Networks/Vertexing_Pos ’)

pos_pred = model.predict(muon_tracks [:,:34,:2], verbose=0, batch_size =

DN_batch)

tf.keras.backend.clear_session ()

with strategy.scope():

model = tf.keras.models.load_model(’Networks/Vertexing_Neg ’)

neg_pred = model.predict(muon_tracks [:,34:,:2], verbose=0, batch_size =

DN_batch)

muon_track_quality = calc_mismatches(muon_tracks)

mask = (( muon_track_quality [0::4] < 2) & (muon_track_quality [1::4] < 2) &

(muon_track_quality [2::4] < 3) & (muon_track_quality [3::4] < 3)).all(axis =0)

# Apply the final filter to event_classification_probabilities

hits = hits[mask]

drift = drift[mask]

muon_tracks = muon_tracks[mask]

pos_pred = pos_pred[mask]

neg_pred = neg_pred[mask]

kinematics = kinematics[mask]

muon_track_quality = muon_track_quality.T[mask]

event_classification_probabilies = event_classification_probabilies[mask]

tf.keras.backend.clear_session ()

tf.compat.v1.reset_default_graph ()

with strategy.scope():

model = tf.keras.models.load_model(’Networks/Track_Finder_All ’)

predictions = (np.round(model.predict(hits ,verbose=0, batch_size =

TF_batch)*max_ele)).astype(int)

all_vtx_track = evaluate_finder(hits ,drift ,predictions)[:,:,:2]

tf.keras.backend.clear_session ()

tf.compat.v1.reset_default_graph ()

with strategy.scope():

model=tf.keras.models.load_model(’Networks/Reconstruction_All ’)

reco_kinematics =

model.predict(all_vtx_track ,batch_size=DN_batch ,verbose =0)

vertex_input=np.concatenate (( reco_kinematics.reshape ((len(reco_kinematics) ,3,2)),all_vtx_track),axis =1)
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tf.keras.backend.clear_session ()

tf.compat.v1.reset_default_graph ()

with strategy.scope():

model=tf.keras.models.load_model(’Networks/Vertexing_All ’)

reco_vertex = model.predict(vertex_input ,batch_size=DN_batch ,verbose =0)

all_vtx_reco=np.concatenate (( reco_kinematics ,reco_vertex),axis =1)

tf.keras.backend.clear_session ()

tf.compat.v1.reset_default_graph ()

with strategy.scope():

model = tf.keras.models.load_model(’Networks/Track_Finder_Z ’)

predictions = (np.round(model.predict(hits ,verbose=0, batch_size =

TF_batch)*max_ele)).astype(int)

z_vtx_track = evaluate_finder(hits ,drift ,predictions)[:,:,:2]

tf.keras.backend.clear_session ()

tf.compat.v1.reset_default_graph ()

with strategy.scope():

model=tf.keras.models.load_model(’Networks/Reconstruction_Z ’)

reco_kinematics =

model.predict(z_vtx_track ,batch_size=DN_batch ,verbose =0)

vertex_input=np.concatenate (( reco_kinematics.reshape ((len(reco_kinematics) ,3,2)),z_vtx_track),axis =1)

tf.keras.backend.clear_session ()

tf.compat.v1.reset_default_graph ()

with strategy.scope():

model=tf.keras.models.load_model(’Networks/Vertexing_Z ’)

reco_vertex = model.predict(vertex_input ,batch_size=DN_batch ,verbose =0)

z_vtx_reco=np.concatenate (( reco_kinematics ,reco_vertex),axis =1)

tf.keras.backend.clear_session ()

tf.compat.v1.reset_default_graph ()

with strategy.scope():

model = tf.keras.models.load_model(’Networks/Track_Finder_Target ’)

predictions = (np.round(model.predict(hits ,verbose=0, batch_size =

TF_batch)*max_ele)).astype(int)

target_track = evaluate_finder(hits ,drift ,predictions)

tf.keras.backend.clear_session ()

tf.compat.v1.reset_default_graph ()

with strategy.scope():

model=tf.keras.models.load_model(’Networks/Reconstruction_Target ’)

target_vtx_reco =

model.predict(target_track [:,:,:2], batch_size=DN_batch ,verbose =0)

tf.keras.backend.clear_session ()

tf.compat.v1.reset_default_graph ()

with strategy.scope():

model = tf.keras.models.load_model(’Networks/Track_Finder_Dump ’)
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predictions = (np.round(model.predict(hits ,verbose=0, batch_size =

TF_batch)*max_ele)).astype(int)

dump_track = evaluate_finder(hits ,drift ,predictions)[:,:,:2]

tf.keras.backend.clear_session ()

tf.compat.v1.reset_default_graph ()

with strategy.scope():

model=tf.keras.models.load_model(’Networks/Reconstruction_Dump ’)

dump_vtx_reco = model.predict(dump_track ,batch_size=DN_batch ,verbose =0)

dimuon_track_quality = calc_mismatches(target_track)

mask = (( dimuon_track_quality [0::4] < 2) & (dimuon_track_quality [1::4] < 2)

& (dimuon_track_quality [2::4] < 3) & (dimuon_track_quality [3::4] <

3)).all(axis =0)

predictions = np.column_stack (( event_classification_probabilies [:,1],

pos_pred , neg_pred , all_vtx_reco , z_vtx_reco , target_vtx_reco ,

dump_vtx_reco , muon_track_quality , dimuon_track_quality.T))

tracks = np.column_stack (( muon_tracks [:,:,:2], all_vtx_track [:,:,:2],

z_vtx_track [:,:,:2], target_track [:,:,:2], dump_track [:,:,:2]))

predictions = predictions[mask]

tracks = tracks[mask]

target_dump_input =

np.column_stack (( predictions ,tracks.reshape ((len(tracks) ,(68*2*5)))))

return predictions , tracks

# Initialize lists to store the data

dimuon_probability =[]

all_predictions = []

tracks = []

truth = []

total_entries = 0

#Generate training data

while(total_entries <10000000):

try:

hits , drift , kinematics = generate_hit_matrices (500000 ,"Train")

all_predictions , tracks = run_qtracker(hits , drift , kinematics)

np.save(f’Training_Data /{ vertex}_Tracks_Train.npy’,np.concatenate(tracks ,

axis =0))

np.save(f’Training_Data /{ vertex}_Reco_Train.npy’,np.concatenate(all_predictions ,

axis =0))

total_entries += len(hits)

print(total_entries)

del hits , drift , all_predictions , tracks

except Exception as e:

pass
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# Initialize lists to store the data

dimuon_probability =[]

all_predictions = []

tracks = []

truth = []

total_entries = 0

#Generate validation data

while(total_entries <1000000):

try:

hits , drift , kinematics = generate_hit_matrices (500000 ,"Val")

all_predictions , tracks = run_qtracker(hits , drift , kinematics)

np.save(f’Training_Data /{ vertex}_Tracks_Val.npy’,np.concatenate(tracks ,

axis =0))

np.save(f’Training_Data /{ vertex}_Reco_Val.npy’,np.concatenate(all_predictions ,

axis =0))

total_entries += len(hits)

print(total_entries)

del hits , drift , all_predictions , tracks

except Exception as e:

pass

Listing A.8: Code to train the Target-Dump Filter.

A.3 Execution

A.3.1 Functions Library

These are the functions used to execute QTracker.

import os

import numpy as np

import uproot

import numba

from numba import njit , prange

import tensorflow as tf

network_path = ’/scratch/acc5dn/QTracker_Run_Refactor/Networks/’

def save_explanation ():

explanation = []

n_columns = 0

if event_prob_output:
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explanation.append(f"Event Filter Probabilites: Columns

{n_columns }:{ n_columns +6}")

n_columns +=2

explanation.append(f"Muon Z-Vertex: Columns {n_columns }:{ n_columns +1}")

n_columns +=2

explanation.append(f"All Vertex Kinematic Predictions: Columns

{n_columns }:{ n_columns +6}")

n_columns +=6

explanation.append(f"All Vertex Vertex Predictions: Columns

{n_columns }:{ n_columns +3}")

n_columns +=3

explanation.append(f"Z Vertex Kinematic Predictions: Columns

{n_columns }:{ n_columns +6}")

n_columns +=6

explanation.append(f"Z Vertex Vertex Predictions: Columns

{n_columns }:{ n_columns +3}")

n_columns +=3

explanation.append(f"Target Vertex Kinematic Predictions: Columns

{n_columns }:{ n_columns +6}")

n_columns +=6

explanation.append(f"Dump Vertex Kinematic Predictions: Columns

{n_columns }:{ n_columns +6}")

n_columns +=6

if target_prob_output:

explanation.append(f"Target Probability: Column {n_columns}")

n_columns +=1

if track_quality_output:

explanation.append(f"Muon Track Quality: Colums

{n_columns }:{ n_columns +12}")

n_columns +=12

explanation.append(f"Dimuon Track Quality: Colums

{n_columns }:{ n_columns +12}")

n_columns +=12

if tracks_output:

explanation.append(f"Pos Muon Track: {n_columns }:{ n_columns +34}")

n_columns +=34

explanation.append(f"Neg Muon Track: {n_columns }:{ n_columns +34}")

n_columns +=34

explanation.append(f"All Vertex Track: {n_columns }:{ n_columns +68}")

n_columns +=68

explanation.append(f"Z Vertex Track: {n_columns }:{ n_columns +68}")

n_columns +=68

explanation.append(f"Target Vertex Track: {n_columns }:{ n_columns +68}")

n_columns +=68

explanation.append(f"Dump Vertex Track: {n_columns }:{ n_columns +68}")

n_columns +=68

if metadata_output:

if runid_output:

explanation.append(f"Run ID: Column {n_columns}")

n_columns +=1

if eventid_output:

explanation.append(f"Event ID: Column {n_columns}")

n_columns +=1

if spillid_output:

explanation.append(f"Spill ID: Column {n_columns}")



Discussion and Future Work 189

n_columns +=1

if triggerbit_output:

explanation.append(f"Trigger Bits: Column {n_columns}")

n_columns +=1

if target_pos_output:

explanation.append(f"Target Positions: Column {n_columns}")

n_columns +=1

if turnid_output:

explanation.append(f"Turn ID: Column {n_columns}")

n_columns +=1

if rfid_output:

explanation.append(f"RFID: Column {n_columns}")

n_columns +=1

if intensity_output:

explanation.append(f"Cherenkov Information: Columns

{n_columns }:{ n_columns +32}")

n_columns +=32

if trigg_rds_output:

explanation.append(f"Number of Trigger Roads: Column {n_columns}")

n_columns +=1

if occ_output:

if occ_before_cuts:explanation.append(f"Detector Occupancies before

cuts: Columns {n_columns }:{ n_columns +54}")

else:explanation.append(f"Detector Occupancies after cuts: Columns

{n_columns }:{ n_columns +54}")

n_columns +=54

filename= f’reconstructed_columns.txt’

with open(filename ,’w’) as file:

file.write(’Explanation of Columns :\n\n’)

for info in explanation:

file.write(f"{info}\n")

save_explanation ()

def save_output ():

# After processing through all models , the results are aggregated based on

options at top ,

# and the final dataset is prepared.

# The reconstructed kinematics and vertex information are normalized

# using predefined means and standard deviations before saving.

row_count = 0

definitions_string = []

if file_extension == ’.root’:

metadata = []

metadata_row_count = 0

metadata_string = []

if runid_output:metadata.append(runid)

if eventid_output:metadata.append(eventid)

if spillid_output:metadata.append(spill_id)

if triggerbit_output:metadata.append(trigger_bit)

if target_pos_output:metadata.append(target_position)

if turnid_output:metadata.append(turnid)

if rfid_output:metadata.append(rfid)
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if intensity_output:metadata.append(intensity)

if trigg_rds_output:metadata.append(n_roads)

if occ_output:

if occ_before_cuts:metadata.append(n_hits)

else:metadata.append(np.sum(hits ,axis =2))# Calculates the occupanceis

from the Hit Matrix

metadata = np.column_stack(metadata)

if file_extension == ’.npz’:

metadata = truth

output = []

if event_prob_output: output.append(event_classification_probabilies)

output.append(all_predictions)

if target_prob_output:

output.append(target_dump_prob [:,1])

if track_quality_output:

output.append(muon_track_quality)

output.append(dimuon_track_quality)

if tracks_output: output.append(tracks)

if metadata_output: output.append(metadata)

output_data = np.column_stack(output)

base_filename = ’Reconstructed/’ + os.path.basename(root_file).split(’.’)[0]

os.makedirs("Reconstructed", exist_ok=True) # Ensure the output directory

exists.

np.save(base_filename + ’_reconstructed.npy’, output_data) # Save the final

dataset.

print(f"File {base_filename}_reconstructed.npy has been saved successfully.")

kin_means = np.array([ 2.00, 0.00, 35.0, -2.00, -0.00, 35.0 ])

kin_stds = np.array([ 0.6, 1.2, 10.00 , 0.60, 1.20, 10.00 ])

vertex_means=np.array ([0 ,0 ,-300])

vertex_stds=np.array ([10 ,10 ,300])

means = np.concatenate ((kin_means ,vertex_means))

stds = np.concatenate ((kin_stds ,vertex_stds))

# Function to convert raw detector data into a structured hit matrix.

@njit()

def hit_matrix(detectorid ,elementid ,drifttime ,tdctime ,intime ,hits ,drift ,tdc):

#Convert into hit matrices

if(timing_cuts ==False):intime [:]=2

for j in prange (len(detectorid)):

if (( detectorid[j]<7) or (detectorid[j]>12)) and (intime[j]>0):

if (tdc[int(detectorid[j]) -1][int(elementid[j]-1) ]==0) or

(tdctime[j]<tdc[int(detectorid[j]) -1][int(elementid[j]-1)]):

hits[int(detectorid[j]) -1][int(elementid[j]-1)]=1

drift[int(detectorid[j]) -1][int(elementid[j]-1)]= drifttime[j]

tdc[int(detectorid[j]) -1][int(elementid[j]-1)]= tdctime[j]

return hits ,drift ,tdc

max_ele = [200, 200, 168, 168, 200, 200, 128, 128, 112, 112, 128, 128, 134,

134,

112, 112, 134, 134, 20, 20, 16, 16, 16, 16, 16, 16,
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72, 72, 72, 72, 72, 72, 72, 72, 200, 200, 168, 168, 200, 200,

128, 128, 112, 112, 128, 128, 134, 134, 112, 112, 134, 134,

20, 20, 16, 16, 16, 16, 16, 16, 72, 72, 72, 72, 72,

72, 72, 72]

# Function to evaluate the Track Finder neural network.

@njit(parallel=True)

def evaluate_finder(testin , testdrift , predictions):

# The function constructs inputs for the neural network model based on test

data

# and predictions , processing each event in parallel for efficiency .

reco_in = np.zeros((len(testin), 68, 3))

def process_entry(i, dummy , j_offset):

j = dummy if dummy <= 5 else dummy + 6

if dummy > 11:

if predictions[i][12+ j_offset] > 0:

j = dummy + 6

elif predictions[i][12+ j_offset] < 0:

j = dummy + 12

if dummy > 17:

j = 2 * (dummy - 18) + 30 if predictions[i][2 * (dummy - 18) + 30 +

j_offset] > 0 else 2 * (dummy - 18) + 31

if dummy > 25:

j = dummy + 20

k = abs(predictions[i][dummy + j_offset ])

sign = k / predictions[i][dummy + j_offset] if k > 0 else 1

if(dummy <6):window =15

elif(dummy <12):window =5

elif(dummy <18):window =5

elif(dummy <26):window =1

else:window =3

k_sum = np.sum(testin[i][j][k - window:k + window -1])

if k_sum > 0 and ((dummy < 18) or (dummy > 25)):

k_temp = k

n = 1

while testin[i][j][k - 1] == 0:

k_temp += n

n = -n * (abs(n) + 1) / abs(n)

if 0 <= k_temp < 201:

k = int(k_temp)

reco_in[i][dummy + j_offset ][0] = sign * k

reco_in[i][dummy + j_offset ][1] = testdrift[i][j][k - 1]

if(testin[i][j][k - 1]==1):

reco_in[i][dummy + j_offset ][2]=1

for i in prange(predictions.shape [0]):

for dummy in prange (34):

process_entry(i, dummy , 0)

for dummy in prange (34):
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process_entry(i, dummy , 34)

return reco_in

# Function to remove closely spaced hits that are likely not real particle

interactions (cluster hits).

@njit(parallel=True , forceobj=True)

def declusterize(hits , drift , tdc):

# This function iterates over hits and removes clusters of hits that are too

close

# together , likely caused by noise or multiple hits from a single particle

passing

# through the detector. It’s an important step in cleaning the data for

analysis.

for k in prange(len(hits)):

for i in range (54):

if(i<30 or i>45):

for j in range (100):#Work from both sides

if(hits[k][i][j]==1 and hits[k][i][j+1]==1):

if(hits[k][i][j+2]==0):#Two hits

if(drift[k][i][j]>0.4 and

drift[k][i][j+1] >0.9):#Edge hit check

hits[k][i][j+1]=0

drift[k][i][j+1]=0

tdc[k][i][j+1]=0

elif(drift[k][i][j+1] >0.4 and

drift[k][i][j]>0.9):#Edge hit check

hits[k][i][j]=0

drift[k][i][j]=0

tdc[k][i][j]=0

if(abs(tdc[k][i][j]-tdc[k][i][j+1]) <8):# Electronic

Noise Check

hits[k][i][j+1]=0

drift[k][i][j+1]=0

tdc[k][i][j+1]=0

hits[k][i][j]=0

drift[k][i][j]=0

tdc[k][i][j]=0

else:#Check larger clusters for Electronic Noise

n=2

while(hits[k][i][j+n]==1):n=n+1

dt_mean = 0

for m in range(n-1):

dt_mean += (tdc[k][i][j+m]-tdc[k][i][j+m+1])

dt_mean = dt_mean /(n-1)

if(dt_mean <10):

for m in range(n):

hits[k][i][j+m]=0

drift[k][i][j+m]=0

tdc[k][i][j+m]=0

if(hits[k][i][200-j]==1 and hits[k][i][199-j]):

if(hits[k][i][198-j]==0):

if(drift[k][i][200 -j]>0.4 and

drift[k][i][199-j]>0.9): # Edge hit check
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hits[k][i][199 -j]=0

drift[k][i][199-j]=0

elif(drift[k][i][199-j]>0.4 and

drift[k][i][200-j]>0.9): # Edge hit check

hits[k][i][200 -j]=0

drift[k][i][200-j]=0

if(abs(tdc[k][i][200-j]-tdc[k][i][199 -j]) <8): #

Electronic Noise Check

hits[k][i][199 -j]=0

drift[k][i][199-j]=0

tdc[k][i][199 -j]=0

hits[k][i][200 -j]=0

drift[k][i][200-j]=0

tdc[k][i][200 -j]=0

else: # Check larger clusters for Electronic Noise

n=2

while(hits[k][i][200-j-n]==1): n=n+1

dt_mean = 0

for m in range(n-1):

dt_mean +=

abs(tdc[k][i][200 -j-m]-tdc[k][i][200 -j-m-1])

dt_mean = dt_mean /(n-1)

if(dt_mean <10):

for m in range(n):

hits[k][i][200 -j-m]=0

drift[k][i][200-j-m]=0

tdc[k][i][200 -j-m]=0

# Specify the directory containing the root files

i = 0

# Drift chamber mismatch calculation

def calc_mismatches(track):

results = []

for pos_slice , neg_slice in [( slice(0, 6), slice(34, 40)), (slice(6, 12),

slice(40, 46)), (slice (12, 18), slice(46, 52))]:

# Compare even indices with odd indices for the 0th component of the

final dimension

even_pos_indices = track[:, pos_slice , 0]. reshape(track.shape[0], -1,

2)[:, :, 0]

odd_pos_indices = track[:, pos_slice , 0]. reshape(track.shape[0], -1,

2)[:, :, 1]

even_neg_indices = track[:, neg_slice , 0]. reshape(track.shape[0], -1,

2)[:, :, 0]

odd_neg_indices = track[:, neg_slice , 0]. reshape(track.shape[0], -1,

2)[:, :, 1]

results.extend ([

np.sum(abs(even_pos_indices - odd_pos_indices) > 1, axis =1),

np.sum(abs(even_neg_indices - odd_neg_indices) > 1, axis =1),

np.sum(track[:, pos_slice , 2] == 0, axis =1),

np.sum(track[:, neg_slice , 2] == 0, axis =1)

])
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return np.array(results)

def load_model(network):

tf.keras.backend.clear_session ()

tf.compat.v1.reset_default_graph ()

return tf.keras.models.load_model(network_path+network)

def process_file(file_path , file_extension , max_ele , dimuon_prob_threshold ,

means , stds , kin_means , kin_stds):

try:

if file_extension == ’.root’:

# Read in data from the ROOT file.

targettree = uproot.open(file_path + ":save")

detectorid =

targettree["fAllHits.detectorID"]. arrays(library="np")["fAllHits.detectorID"]

elementid =

targettree["fAllHits.elementID"]. arrays(library="np")["fAllHits.elementID"]

driftdistance =

targettree["fAllHits.driftDistance"]. arrays(library="np")["fAllHits.driftDistance"]

tdctime =

targettree["fAllHits.tdcTime"]. arrays(library="np")["fAllHits.tdcTime"]

intime =

targettree["fAllHits.flag"]. arrays(library="np")["fAllHits.flag"]

hits = np.zeros ((len(detectorid), 54, 201), dtype=bool)

drift = np.zeros((len(detectorid), 54, 201))

tdc = np.zeros ((len(detectorid), 54, 201), dtype=int)

for n in range(len(detectorid)):

hits[n], drift[n], tdc[n] = hit_matrix(detectorid[n],

elementid[n], driftdistance[n], tdctime[n], intime[n], hits[n], drift[n],

tdc[n])

declusterize(hits , drift , tdc)

elif file_extension == ’.npz’:

generated = np.load(file_path)

hits = generated["hits"]

drift = generated["drift"]

truth = generated["truth"]

print("Loaded events")

model = load_model(’Networks/event_filter ’)

probability_model = tf.keras.Sequential ([model ,

tf.keras.layers.Softmax ()])

event_classification_probabilities = probability_model.predict(hits ,

batch_size =256, verbose =0)

filt = event_classification_probabilities [:, 1] > dimuon_prob_threshold

hits , drift = hits[filt], drift[filt]

pos_model = load_model(’Track_Finder_Pos ’)

pos_predictions = pos_model.predict(hits , verbose =0)

neg_model = load_model(’Track_Finder_Neg ’)
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neg_predictions = neg_model.predict(hits , verbose =0)

predictions = (np.round(np.column_stack (( pos_predictions ,

neg_predictions)) * max_ele)).astype(int)

muon_track = evaluate_finder(hits , drift , predictions)

pos_recon_model = load_model(’Reconstruction_Pos ’)

pos_pred = pos_recon_model.predict(muon_track [:, :34, :2], verbose =0)

neg_recon_model = load_model(’Reconstruction_Neg ’)

neg_pred = neg_recon_model.predict(muon_track [:, 34:, :2], verbose =0)

muon_track_quality = calc_mismatches(muon_track).T

filt1 = (( muon_track_quality [0::4] < 2) & (muon_track_quality [1::4] < 2)

& (muon_track_quality [2::4] < 3) & (muon_track_quality [3::4] <

3)).all(axis =0)

hits , drift = hits[filt1], drift[filt1]

if file_extension == ’.root’:

runid =

targettree["fRunID"]. arrays(library="np")["fRunID"][filt][filt1]

eventid =

targettree["fEventID"]. arrays(library="np")["fEventID"][filt][filt1]

spill_id =

targettree["fSpillID"]. arrays(library="np")["fSpillID"][filt][filt1]

trigger_bit =

targettree["fTriggerBits"]. arrays(library="np")["fTriggerBits"][filt][filt1]

target_position =

targettree["fTargetPos"]. arrays(library="np")["fTargetPos"][filt][filt1]

turnid =

targettree["fTurnID"]. arrays(library="np")["fTurnID"][filt][filt1]

rfid = targettree["fRFID"]. arrays(library="np")["fRFID"][filt][ filt1]

intensity =

targettree["fIntensity [33]"]. arrays(library="np")["fIntensity [33]"][filt][filt1]

n_roads =

targettree["fNRoads [4]"]. arrays(library="np")["fNRoads [4]"][filt][filt1]

n_hits =

targettree["fNHits [55]"]. arrays(library="np")["fNHits [55]"][filt][filt1]

elif file_extension == ’.npz’:

truth = truth[filt][filt1]

print("Filtered Events")

if len(hits) > 0:

track_finder_all_model = load_model(’Track_Finder_All ’)

predictions = (np.round(track_finder_all_model.predict(hits ,

verbose =0) * max_ele)).astype(int)

all_vtx_track = evaluate_finder(hits , drift , predictions)[:, :, :2]

reco_all_model = load_model(’Reconstruction_All ’)

reco_kinematics = reco_all_model.predict(all_vtx_track ,

batch_size =8192, verbose =0)
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vertex_input =

np.concatenate (( reco_kinematics.reshape ((len(reco_kinematics), 3, 2)),

all_vtx_track), axis =1)

vertexing_all_model = load_model(’Vertexing_All ’)

reco_vertex = vertexing_all_model.predict(vertex_input ,

batch_size =8192, verbose =0)

all_vtx_reco = np.concatenate (( reco_kinematics , reco_vertex), axis =1)

track_finder_z_model = load_model(’Track_Finder_Z ’)

predictions = (np.round(track_finder_z_model.predict(hits ,

verbose =0) * max_ele)).astype(int)

z_vtx_track = evaluate_finder(hits , drift , predictions)[:, :, :2]

reco_z_model = load_model(’Reconstruction_Z ’)

reco_kinematics = reco_z_model.predict(z_vtx_track , batch_size =8192,

verbose =0)

vertex_input =

np.concatenate (( reco_kinematics.reshape ((len(reco_kinematics), 3, 2)),

z_vtx_track), axis =1)

vertexing_z_model = load_model(’Vertexing_Z ’)

reco_vertex = vertexing_z_model.predict(vertex_input ,

batch_size =8192, verbose =0)

z_vtx_reco = np.concatenate (( reco_kinematics , reco_vertex), axis =1)

track_finder_target_model = load_model(’Track_Finder_Target ’)

predictions = (np.round(track_finder_target_model.predict(hits ,

verbose =0) * max_ele)).astype(int)

target_track = evaluate_finder(hits , drift , predictions)

reco_target_model = load_model(’Reconstruction_Target ’)

target_vtx_reco = reco_target_model.predict(target_track [:, :, :2],

batch_size =8192, verbose =0)

track_finder_dump_model = load_model(’Track_Finder_Dump ’)

predictions = (np.round(track_finder_dump_model.predict(hits ,

verbose =0) * max_ele)).astype(int)

dump_track = evaluate_finder(hits , drift , predictions)[:, :, :2]

reco_dump_model = load_model(’Reconstruction_Dump ’)

dump_vtx_reco = reco_dump_model.predict(dump_track , batch_size =8192,

verbose =0)

dimuon_track_quality = calc_mismatches(target_track).T

reco_kinematics =

np.concatenate (( event_classification_probabilities [:, 1], pos_pred ,

neg_pred , all_vtx_reco , z_vtx_reco , target_vtx_reco , dump_vtx_reco ,

muon_track_quality , dimuon_track_quality), axis =1)



Discussion and Future Work 197

tracks = np.column_stack (( muon_track [:, :, :2], all_vtx_track ,

z_vtx_track , target_track [:, :, :2], dump_track))

target_dump_input = np.column_stack (( reco_kinematics ,

tracks.reshape ((len(tracks), (68 * 2 * 5)))))

target_dump_filter_model = load_model(’target_dump_filter ’)

target_dump_pred =

target_dump_filter_model.predict(target_dump_input , batch_size =512,

verbose =0)

target_dump_prob = np.exp(target_dump_pred) /

np.sum(np.exp(target_dump_pred), axis=1, keepdims=True)

all_predictions = np.column_stack ((pos_pred , neg_pred , all_vtx_reco

* stds + means , z_vtx_reco * stds + means , target_vtx_reco * kin_stds +

kin_means , dump_vtx_reco * kin_stds + kin_means))

print("Found", len(all_predictions), "Dimuons in file.")

save_output ()

else:

print("No events meeting dimuon criteria.")

except Exception as e:

print(f"Error processing file {file_path }: {e}")

Listing A.9: These functions are used in evaluating files using QTracker.

A.3.2 Looping QTracker

### QTracker Rivanna ###

# This script is used to reconstruct large amount of data on Rivanna via Slurm

job submission .

##### Parent path Directory #####

root_directory = ’/project/ptgroup/seaquest/data/digit /02/’

##### Import Functions to Run QTracker #####

from QTracker_Run_Library import *

##### Reconstruction Options #####

dimuon_prob_threshold = 0.75 #Minimum dimuon probability to reconstruct .

timing_cuts = True #Use SRawEvent intime flag for hit filtering

##### Output Options #####

event_prob_output = True #Output the event filter probabilites for reconstructed

events

track_quality_output = True #Output the number of drift chamber mismatches for

each chamber

target_prob_output = True #Output the probability that the dimuon pair is from

the target.

tracks_output = False #Output the element IDs for the identified tracks for all

three track finders
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metadata_output = True #Output metadata

#### Metadata Options #####

#Select which values from the SRawEvent file should be saved to the

reconstructed .npy file

runid_output = True #Output the run id

eventid_output = True #Output the event id

spillid_output = True #Output the spill id

triggerbit_output = True #Output the trigger bit for the event

target_pos_output = True #Output the target type (hydrogen , deuterium , etc .)

turnid_output = True #Output the turn id

rfid_output = True #Output the RF ID

intensity_output = True #Output Cherenkov information

trigg_rds_output = True #Output the number of trigger roads activated

occ_output = True #Output the occupancy information

occ_before_cuts = False #If set to true , counts number of hits before timing

cuts , if false , outputs occupancies after hit reduction .

import os

import numpy as np

import uproot

import numba

from numba import njit , prange

import tensorflow as tf

root_files = [file for file in os.listdir(root_directory) if

file.endswith(’.root’)]

for i, root_file in enumerate(root_files):

process_file(root_file , root_directory , i, max_ele , dimuon_prob_threshold ,

means , stds , kin_means , kin_stds)

Listing A.10: This code is used to evaluate all of the files in a specified

directory.

A.3.3 Single File QTracker

### QTracker Execution ###

#This script is used for reconstructing a single root or numpy file.

#Usage:

""" """ """ """ """

python QTracker_Run .py /path/to/file.root |. npz

""" """ """ """ """

##### Import Functions to Run QTracker #####

from QTracker_Run_Library import *

##### Reconstruction Options #####

dimuon_prob_threshold = 0.75 #Minimum dimuon probability to reconstruct .

timing_cuts = True #Use SRawEvent intime flag for hit filtering

##### Output Options #####
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event_prob_output = True #Output the event filter probabilites for reconstructed

events

track_quality_output = True #Output the number of drift chamber mismatches for

each chamber

target_prob_output = True #Output the probability that the dimuon pair is from

the target.

tracks_output = False #Output the element IDs for the identified tracks for all

three track finders

metadata_output = True #Output metadata

#### Metadata Options #####

#Select which values from the SRawEvent file should be saved to the

reconstructed .npy file

#Only affects output if using .root file.

runid_output = True #Output the run id

eventid_output = True #Output the event id

spillid_output = True #Output the spill id

triggerbit_output = True #Output the trigger bit for the event

target_pos_output = True #Output the target type (hydrogen , deuterium , etc .)

turnid_output = True #Output the turn id

rfid_output = True #Output the RF ID

intensity_output = True #Output Cherenkov information

trigg_rds_output = True #Output the number of trigger roads activated

occ_output = True #Output the occupancy information

occ_before_cuts = False #If set to true , counts number of hits before timing

cuts , if false , outputs occupancies after hit reduction .

import os

import numpy as np

import uproot # For reading ROOT files , a common data format in particle

physics.

import numba # Just -In -Time (JIT) compiler for speeding up Python code.

from numba import njit , prange # njit for compiling functions , prange for

parallel loops.

import tensorflow as tf # For using machine learning models.

import sys

# Check if the script is run without a ROOT file or with the script name as

input.

if len(sys.argv) != 2:

print("Usage: python script_name.py <input_file.root|.npz >")

quit()

root_file = sys.argv [1] # Takes the first command -line argument as the input

file path.

# Check if the input file has a valid extension

valid_extensions = (’.root’, ’.npz’)

file_extension = os.path.splitext(root_file)[1]

if file_extension not in valid_extensions:

print("Invalid input file format. Supported formats: .root , .npy")

quit()

process_file(root_file , ’’, i, max_ele , dimuon_prob_threshold , means , stds ,

kin_means , kin_stds)
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Listing A.11: This code is used to evaluate a single specified file.
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