
6

Autonomous Driving Simulator for Self-Driving Vehicle Development and Familiarization

A Technical Report Submitted to the

Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements of the Degree

Mechanical Engineering, Bachelor of Science, School of Engineering

John Grant

Spring 2022

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Signature__ Date_______________

 John Grant

Signature__ Date 5/11/2022

 Technical Advisor, Tomonari Furukawa, Department of Mechanical Engineering

11 Mar 2022

7

Part I - Introduction

There is no doubt that the integration of autonomy in modern technologies is a rampant

trend among almost every sector of the world’s industries today. Autonomous systems have been

implemented in manufacturing to ease the burden of menial and potentially dangerous tasks, in

the commercial world to disrupt human-to-human interactions in light of a global pandemic, and

most relevantly to this topic, in the automotive industry to free our ever-busy hands and minds

while commuting in cars. Surely autonomy is prevalent in a plethora of other fields, but it is in

these sectors where ethical dilemmas sprout from underneath every effort at its implementation

into technology. As human oversight is disconnected from the functions of these technologies,

there arises concern in how they will behave in situations which commonly require the

complicated nature of human intuition and decision-making. In general, the dilemma our society

faces as autonomy spreads throughout the world is how it will be safely integrated into

organizations and human daily life. There are many ways to navigate the process of fostering

public trust in autonomous systems, but the particular one of interest in this context is simulated

studies. Specifically, virtually simulating autonomous automobiles and how they interact with

their environment. Simulation software such as this can allow self-driving vehicle manufacturers

to gain insight on how the algorithms their autonomous systems utilize hold up in potential real-

world scenarios. While manufacturers can alternatively just test their technology in the real-

world, this often incurs undesirable risks and consequences, such as harm to vehicle operators,

pedestrians, and other third parties. An autonomous driving simulator would give these

companies a platform in which they can safely test and develop their systems. Additionally,

simulators can also serve to familiarize consumers with operating autonomous vehicles. As self-

driving vehicles become more prevalent throughout the world, it’s important that the common

8

user feels comfortable riding in an autonomous car. Experiencing it first in a simulated

environment would be an effective way to ease consumers into familiarity with this technology. I

am in a mechanical engineering capstone group where we are developing our own autonomous

driving simulator. With these concerns in mind, we aim to develop an autonomous driving

simulator as a valuable resource for self-driving vehicle production and familiarization.

Part II – Literature Review

Pre-existing research into the development of autonomous driving simulators shows that

similar approaches to our problem have been attempted, but none fully address the goals we seek

to accomplish. Nonetheless, these serve as valuable examples by which we can guide our own

research and development. Each of the referenced studies can be classified into one of two

approaches: a primary focus on the user experience and immersivity or a primary focus on

external factors and functions, such as simulated traffic or pedestrians. With respect to the first

kind of approach, a 2015 study conducted by Baltodano, et. al. documented the development of

the Real Roads Autonomous Driving Simulator (RRADS). Their research aimed to gather the

overall public attitudes and expectations of how an autonomous vehicle is intended to feel. The

data was then used to inform the ongoing development of their simulator, and specifically to

maximize the immersivity of their design. Other studies that have sought to address immersivity

and user experience include Koo et. al. (2014), which was concerned with user understanding of

safety features; Bellem et. al. (2016), which sought to assess whether or not moving-base driving

simulators induce a comfortable and realistic sense of motion; and Häuslschmid et. al. (2017),

where it was found that indicator displays showing the autonomous algorithm actively

processing external data fostered greater user trust. The findings of these studies serve to inform

9

our own development, as we can gauge what consumers seek in a simulated autonomous

experience.

Several other studies align more with the second approach we’ve established, where

there’s a greater focus on external functions in the simulated environment. In 2017, You et. al.

published a paper that detailed their research into generating realistic virtual environments for

autonomous driving simulators. They developed a system which took non-realistic virtual image

input and processed it into realistic scene structures. Similar studies include Chao et. al. (2020),

which documented research into reconstructing detailed traffic flows using real-time traffic data

with traffic simulation models; and Pérez-Gil et. al. (2022), where the use of deep learning

algorithms was proposed as a means to create more effective simulated autonomous algorithms.

Part III – Methodology & Design Process

Before delving into the specific breakdown of autonomous simulators, it is important to

establish an understanding of basic driving simulators. There are several components which

make up the technology of a driving simulator. The two main pieces are the simulation software

and the physical controls/chassis. These two elements are interfaced with one another through

electronic/mechatronic systems, which constitute sensors, actuators, etc. The software,

mechatronic systems, and physical user-controlled components all coalesce to create an

immersive, simulated driving experience.

In the software sector, there are several programs which work together to generate the

computations and visual and haptic feedback of the simulator experience. Certain software is

required to compute the physics which characterize the behavior of the virtual environment,

while other software is used to generate the graphics, although it is common for some programs

10

to integrate both of these functions. Additionally, there are programs required to relay the digital

data to the actuators and sensors in the physical driving simulator. For a software developer

working on a simulator like this, much of their job is concerned with efficiently interfacing all

the separate programs in order to reduce latency and computational energy. Therefore, there is a

critical balance to be achieved between the complexity and efficiency of simulator software. My

capstone group has identified this as a key factor in the development of our own simulator.

Based on the feedback of our potential customers, one of the primary goals of our software team

is to minimize latency between user input and the graphical response. This will involve utilizing

our core software, Robot Operating System (ROS), to interface our more specialized programs.

Among these are Gazebo, a virtual environment generator; and OpenDS, a physics simulation

program. ROS essentially receives the outputs of these two programs and merges them to render

the complete virtual environment. Additionally, it will output all the necessary data to the user

display and physical actuators. Our target specification regarding latency between user input and

graphical/haptic feedback is 10-15 milliseconds. Therefore, our goal is to create the most

realistic virtual environment while maintaining this specified constraint on latency. There are a

few methods by which this could be achieved. One involves removing OpenDS from the system

architecture and utilizing Gazebo for both the physics and virtual environment generation. In this

way, we would reduce some of the latency contributed from the cross-platform communication

between the two separate programs. However, this would require more system memory to be

allocated to Gazebo and could potentially increase its computational time. Our group decided to

go with a different option, which was to use a software called CARLA for all aspects of the

environment generation. CARLA computes the physics, generates the visualizations, and

11

includes autonomous sensor simulation options. This proved to be the most effective way to

mitigate latency, as all functions are consolidated into a single program.

The chassis of a driving simulator is made up of all the user controls and structural

components. The physical sector’s main purpose is to foster user immersion in the simulator

experience (Meywerk, 2016). Components include controls such as the driving wheel, pedals,

gear shift stick, etc. It is common for simulators to implement the actual hardware used in real

cars to maximize immersion. The chassis would also have things such as the seat, dashboard, and

visual display. All the user controls are interfaced with the simulation software using sensors,

encoders, potentiometers, and more to translate the mechanical motion of each component into

digital data to be processed in the virtual realm. Haptic and visual feedback are provided to the

user by means of actuators, vibrational emitters, and electronic displays. As the car virtually

encounters features such as bumps, hills, and turns, these elements would manipulate the driver’s

cabin to induce an appropriate sense of motion. Our team’s goal for this section of our project is

to prioritize user immersion. Likewise, we have installed the chassis of a Subaru Forester to

provide the most realistic user interface, which is shown in Figure 1 below. Additionally, we

have installed a surrounding projector display system as per Figure 2.

Figure 1: Simulator chassis Figure 2: Three-projector display system

12

An autonomous driving simulator includes all of the aforementioned components, though

the main differences exist in its software. Programs capable of simulating and integrating

autonomous algorithms are required to achieve simulation of self-driving cars. Some of these

include NVIDIA DriveSim, CARLA, SUMMIT, and more. As autonomous vehicle production

has increased, there’s been a substantially increasing trend in the development of software such

as these to simulate their functionality. For our particular project, we aim to use RTMaps, a

lower-level autonomous sensor simulation program. The previously mentioned software all

include physics computations and environment generation, while RTMaps is solely for

simulating self-driving vehicle sensors and testing autonomous algorithms. This will allow us

more freedom to modify our software architecture in order to achieve our target specifications.

From a technical perspective, one of the main goals a self-driving car simulator seeks to

accomplish is an accurate rendering of real-world scenarios. This is the core of the whole

purpose of the software: to virtually insert an autonomous vehicle and its algorithms into a

potential real-world scenario. The software manages this by generating realistic environments for

the virtual vehicle to navigate and simulating the characteristics of the autonomous algorithms to

a certain degree of precision. Different simulators achieve this in various ways. The CARLA

driving simulator seeks to assess the performance of three different approaches in autonomous

driving: a classic modular pipeline, an end-to-end model trained via imitation learning, and an

end-to-end model trained via reinforcement learning (Dosovitskiy et al., 2017). In this case, users

of this software must adapt their algorithms to one of those three methods of autonomous

development. On the other hand, a software such as Nvidia DriveSim supports a larger-scale,

more complex simulation of the self-driving car sensors (Mirocha, 2018). For our own simulator,

we have implemented CARLA as our virtual environment software. This software comes

13

packaged with all the physics processing, environment rendering, and autonomous sensor

simulation options that we require to synthesize our design.

