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ABSTRACT 
 

 Neuromorphic computing, referred to as brain-inspired computing for big-data processing 

and accelerating artificial intelligence (AI) computation, has received a significant boost from the 

emergence of memristors and associated computing algorithms over the past decade. Recent 

advancements in memristive systems have enabled the integration of sensing and computing on a 

chip, known as in-sensor computing, leveraging the memory and dynamic processing capabilities 

associated with synaptic long-term and short-term plasticity. Among the senses, vision plays a 

pivotal role in information processing, enabling remote sensing for navigation, learning, and 

communication. While current neuromorphic systems utilizing advanced memristors have 

primarily focused on two-dimensional (2D) vision applications, akin to human visual perception, 

three-dimensional (3D) vision is also vital for machines to tackle more complex tasks by obtaining 

additional depth information. In this dissertation, we present a comprehensive approach to 

neuromorphic vision computing that encompasses both 2D and 3D information processing in 

conjunction with artificial vision dynamics. We demonstrate one III-V photodiode and one 

nonvolatile memristor (1P1R) array capable of visual sensing, memory, and computing functions. 

This enables in-sensor computing protocols such as in-situ visual classification and encoding, 

referred to as 2D neuromorphic vision computing. We also introduce a bio-inspired 3D sensing 

technique utilizing nonvolatile memristors, known as the resistive time-of-flight (RToF) principle, 

enabling unprecedented 3D neuromorphic vision computing. we lastly achieve dynamic bio-

inspired vision by integrating conventional high-electron-mobility transistors (HEMTs) with 

emerging 2D ferroelectric materials that emulate synaptic plasticity, potentially enabling mixed 

2D/3D neuromorphic vision. This multidimensional approach to neuromorphic vision computing 

paves the way for empowering advanced computer vision and augmented reality applications.
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Chapter 1 

 
Neuromorphic Computing 

 
1.1 Introduction 

The current front-end frameworks used in devices such as PCs, smartphones, and laptops 

are based on the Von Neumann architecture. This architecture is characterized by separate 

memory and computing units, which allows for efficient data processing. Recent advancements 

in artificial intelligence (AI), particularly the development of artificial neural networks (ANNs), 

have led to breakthroughs in various areas of information processing, including image recognition, 

language processing, and time-series analysis1. In order to effectively simulate human brain 

functions, AI algorithms now require more complex ANN architectures known as deep neural 

networks (DNNs)1,2. As a result, the dimensionality and volume of data have significantly 

increased, necessitating faster and more reliable information processing capabilities. To address 

these challenges, there is a need for more efficient physical chips that can handle the demands of 

AI algorithms3,4. This requires further scaling down of solid-state layouts and fabrication 

processes, which has been limited by emerging issues related to degradation and yield in the 

nanometer-scale processes5. 

Neuromorphic computing offers an alternative computing paradigm inspired by the 

biological brain6,7. It specifically focuses on handling complex data structures and processing big 

data. Unlike the current mainstream Von Neumann architecture, neuromorphic computing utilizes 

multi-functional and analog devices that can function both as memory and computing units6–8. 

These devices can have multiple states beyond the traditional binary states of '0' and '1' in digital 
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computing, enabling a new in-memory computing architecture. By integrating both memory and 

computing functions within the same physical layer, the need for data transfer and processing is 

significantly reduced in terms of footprint and time/energy requirements. 

 

 

Figure 1.1 Comparison of conventional Von Neumann architecture and emerging neuromorphic 

architecture7. 

 

Figure. 1.1 depicts the comparison of conventional Von Neumann architecture and 

emerging neuromorphic architecture7. Neuromorphic computing directly realizes the computing 

protocols in ANNs/DNNs, suited to massively parallel processing, memorization, and 

asynchronous (event-driven) computing similar to neuronal spiking dynamics in human9–11. The 

market of the neuromorphic regime is expected to skyrocket, toward industrial, mobile, and 

automotive applications (Fig. 1.2)6. In 2034, neuromorphic computing for the automotive, 

industry, and mobile markets is anticipated to reach $10B, $5.0B, and $2.5B, respectively6.  
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Figure 1.2 Neuromorphic devices forecast by market segment6. 

 

While several neuromorphic computing protocols have been demonstrated, primarily 

utilizing silicon (Si) or resistive-switching materials (memristors), there is still ongoing research 

to establish a standard procedure for neuromorphic computing that can compete with the current 

Von Neumann computing chips12–15. The field of neuromorphic computing is still in its early 

stages but holds promise for further advancements and standardization through the integration of 

additional bio-inspired computing paradigms and protocols. Achieving this goal requires 

interdisciplinary research involving various fields such as material engineering, computer 

engineering, mechanical engineering, electrical engineering, neurology, and biomedical 

engineering. By combining expertise from these diverse disciplines, the development of 

neuromorphic computing can be advanced and standardized for practical applications. 
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1.2 Biological Synaptic Plasticity 

One prominent approach in the development of neuromorphic computing protocols 

involves the emulation of biological neuronal plasticity16–18. Specifically, this entails replicating 

the in-memory functionality found in biological neurons, which is achieved through synapses—

gaps between neurons responsible for signal transmission and memorization. There are three key 

types of plasticity in synapses that regulate the "weights" of synapses, acting as metrics to 

determine whether incoming spikes should be transmitted or not. 

 

 

Figure 1.3 Emulating biological synaptic plasticity18. 

 

Figure 1.3 illustrates the emulation of biological synaptic plasticity, which includes short-

term plasticity (STP), long-term plasticity (LTP), and spike-timing-dependent plasticity (STDP). 

STP exhibits non-linear temporal dynamics without long-term persistence of input stimuli (spikes). 

It is commonly utilized in dynamic neuromorphic computing systems for processing temporal 

data, reservoir computing, and bio-plausible computing19–21. On the other hand, LTP preserves 

the input stimulus for extended periods, making it a memory-building component in neuromorphic 
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computing architectures22. As shown in Fig. 1.3, the conductance of a synapse increases with the 

number of input pulses (spikes), enabling multiple states for analog computing18. STDP, another 

form of LTP, utilizes two subsequent spikes and relies on the timing difference between them. 

One type of STDP involves exponentially increasing the weights of synapses as the timing 

difference decreases. This STDP variant is particularly well-suited for processing the timing 

between two input signals compared to LTP. 

 In the case of neurons, the soma collects spikes from multiple synapses and generates a 

single spike at its terminal (dendrite) when the accumulated spike reaches or exceeds a threshold 

level23. This process is referred to as the "integrate" process24,25. Conversely, if the accumulated 

spike is below the threshold level, the dendrite does not generate a spike but instead relaxes, 

known as the "leaky" process. These processes are combined into a single plasticity mechanism 

called "leaky-integrate-and-fire," which emulates the activation functions in artificial neural 

networks (ANNs) and deep neural networks (DNNs)24–28. 

The fascinating non-linear and temporal dynamics of STP find extensive application in 

temporal data processing, including prediction, classification, motion detection, and noise 

reduction. LTP, on the other hand, is often employed as in-memory computing units, especially 

in hardware AI accelerators based on memristor crossbars, due to its ability to retain information 

for longer periods, typically exceeding 1 hour. STDP has also been utilized as memory-building 

blocks in in-memory computing chips, with various input spike geometries being employed to 

compute timing differences among them, including square, triangle, and sinusoidal pulses. 

 

1.3 Memristors 
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Recently, memristors, which are bio-inspired resistive-switching memories, have emerged 

as promising intelligent materials for interacting with the environment and enabling in-memory 

computing29. These memristors have been utilized to mimic the synaptic responses of 

neurons12,24,30. Through the manipulation of atomic placement in the active medium using external 

electric fields, memristors can be programmed to adjust their conductance29. 

Memristors can be categorized based on various metrics, including volatility, geometry, 

and materials18. Volatility is associated with memory capability and is divided into non-volatile 

and volatile memories31–33. Non-volatile memristors emulate the characteristics of biological 

LTP/STDP, while volatile memristors replicate the behavior of STP18. The geometry of 

memristors can be classified as diode-/tunnel junction-type (two-terminal) or transistor-type 

(three-terminal)8,18. Two-terminal memristors offer simpler fabrication processes and provide 

more compact platforms. However, three-terminal memristors, which incorporate an additional 

gate electrode, generally exhibit more reliable LTP, STP, and STDP plasticity control16,34–37. 

 

 

Figure 1.4 Various non-volatile resistive switching mechanisms and corresponding materials of 
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memristors13. 

 

Figure. 1.4 shows the four representative non-volatile resistive switching mechanisms in 

currently invented memristors13. Redox memristors are the type of memristor first found in 2008, 

generally incorporating the transition of atomic vacancies, defects, or ions in the memristor 

medium induced by electric fields29. Oxygen vacancies and atomic defects typically feature non-

volatility, while ionic transitions such as mobile metal cations (copper and silver) and organic 

compounds mainly exhibit volatility with partial nonvolatility38. The materials for the oxygen 

vacancies-based transitions include various oxide thin films such as HfO2, Ta2O3, SiO2, ZrO2, 

and some complex oxides, while the defects-based transitions generally occur at two-

dimensional (2D) materials such as graphene, hexagonal BN (hBN), and transition metal 

dichalcogenides (TMDs)39–43. 

 

Figure 1.5 Fabricated HfO2 two-terminal and non-volatile redox memristor. a Photograph of 

HfO2 memristor. b Current-voltage (I-V) characteristics HfO2 memristor. The round-trip voltage 

swing switches the memristor conductance44. 
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Figure. 1.5a shows a photograph of a fabricated HfO2 memristor. Current-voltage (I-V) 

characteristics of the fabricated HfO2 memristor are shown in Figure 1.5b44. The set and reset 

voltages are approximately 2 V and -1.5 V, respectively. The maximum and minimum resistance 

at the -0.1 V read voltage is approximately 90 MΩ and 1 kΩ, respectively.44 

Ferroelectric memristors utilize the polarization switching of dipoles in the ferroelectric 

memristor medium, which can be induced by electric fields45. The retention time of the 

polarization switching depends on the applied voltages, materials, and device geometry, which 

can serve as either STP, LTP, or hybrid STP/LTP (short-time relaxation with preserved baseline 

shift). Other mechanisms include phase-change and spintronic memristors induced by Joule 

heating and magnetic fields, respectively, also capable of non-volatile memories for neuromorphic 

computing46–48.  

 

 

Figure 1.6 Comparison of non-volatile resistive switching mechanisms in terms of dimension, 
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stochasticity, number of distinguishable states, switching energy, switching speed, endurance, and 

retention time13. 

 

Figure 1.6 compares the performance of memristors based on various mechanisms, 

considering factors such as dimension, stochasticity, number of distinguishable states, switching 

energy, switching speed, endurance, and retention time13. These mechanisms operate at the 

nanometer scale, with ferroelectric switching being achievable in ultrathin ferroelectric oxides. 

On the other hand, redox memristors exhibit the most reliable LTP compared to other mechanisms. 

Recently, they have achieved wafer-scale production (as shown in Fig. 1.7a) and can support more 

than a thousand states (as depicted in Fig. 1.7b)49. To ensure stability and concentration of the 

oxygen vacancy distribution, a "denoising" process involving multiple programming and 

verification steps is employed (illustrated in Figure 1.7c)49. Redox and ferroelectric memristors 

also demonstrate comparable switching speed and endurance when compared to other 

mechanisms. It is important to note that this thesis primarily focuses on fabricated redox and 

ferroelectric memristors, including both two-terminal and three-terminal structures, as well as 

STP/LTP characteristics. 
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Figure 1.7 Realization of thousand states of single redox memristor. a Photograph of wafer-scale 

production of thousand state redox memristors. b I-V characteristics of 256 × 256 redox 

memristors, achieving thousand states. c Random telegraph noise (RTN) before and after 

‘denoising’ process49. 

 

1.4 Memristor-Based Hardware Accelerators 

Using an array of non-volatile memristors allows for the implementation of multiply-

accumulate (MAC) operations by utilizing current inputs through Ohm's law11,50,51. This approach 

finds wide applicability in numerous ANNs and DNNs applications, including classification, 

forecasting, and reinforcement learning19,22,52. Among the various neuromorphic architectures 

based on memristors, synaptic spiking models such as Hodgkin-Huxley, Hebbian, and non-

Hebbian learning algorithms offer high bio-fidelity, low-power consumption, and sparse learning 

capabilities27. These models can be effectively utilized for processing various types of visual 
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information, including texts, diagrams, and images. 

 

 

Figure 1.8 Implementation of fully hardware non-volatile and two-terminal memristor crossbar 

array. a Embedding of software artificial neural network (ANN) architecture into physical ANN 

building blocks. b Photograph of single crossbar tile. c Cross-sectional transmission electron 

microscopy image of the one-transistor one-resistor (1T1R) cell d Block diagram of in-memory 

computing architecture Detailed structure of e in-memory unit f 1T1R structure53. 

 

However, the main drawback of memristor-only crossbar is the leakage current driven by 

high-resistance-state memristor cells (OFF state), which degrades the computing accuracy and 

scalability of the crossbar54. To alleviate this issue, selecting device is integrated into each 

memristor cell, referred to as one-transistor one-resistor (1T1R) cell55. By integrating such 

switching transistors into each memristor cell, the transistor minimizes the leakage current of each 
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cell associated with the ultra-low OFF current of the transistors. Figure. 1.8a shows the recent 

implementation of a full hardware memristor 1T1R system for AI acceleration53. The software 

ANN architecture is embedded into the physical tile of the chip. Each tile incorporates the 1T1R 

crossbar, SL/WL/BL drivers, and registers (Fig. 1.8b). The 1T1R is the integration of memristor 

and complementary metal-oxide-semiconductor (CMOS), achieving reliable and scalable 

production in CMOS foundry (Fig. 1.8c). The detailed circuit interconnection and 1T1R 

configuration (Fig. 1.8d) is shown in Fig. 1.8e, f 53.  

 

 

Figure 1.9 Classification accuracies of hardware-implemented artificial intelligence (AI) 

accelerator for MNIST and CIFAR-10 datasets and other long short-term memory (LSTM) and 

restricted Boltzmann machine (RBM) machine learning architectures53
. 

 

Based on the system, the memristor-based AI accelerator achieved compatible 

classification accuracies for standard classification datasets such as MNIST and CIFAR-10 and 

other machine learning architectures, long short-term memory (LSTM), and restricted Boltzmann 

machine (RBM), as shown in Fig. 1.9 53. Unlike the classification via the pure software domain, 

these hardware-implemented architectures feature ideally one-shot computation time for the 
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inference process compared to the multiple computation steps required for conventional Von 

Neumann architecture 53.  

 

1.5 Conclusion 

Neuromorphic computing is an emerging alternative paradigm that aims to overcome the 

current limitations of the Von Neumann architecture, particularly in handling big data processing 

and high-dimensional data. The introduction of memristors in 2008 has significantly advanced the 

field of neuromorphic computing by enabling the practical implementation of large-scale 1T1R 

structures for AI accelerators29,55. Memristors can be classified as non-volatile or volatile, as well 

as two-terminal or three-terminal, based on their material properties and geometries, 

respectively18. Extensive research has been conducted on different resistive switching 

mechanisms for non-volatile memristors, with a particular focus on redox and ferroelectric 

memristors, which offer reliable analog state generation. 

In this thesis, I conducted a benchmark study on memristor crossbars, similar to the 1T1R 

structure, and fabricated redox and ferroelectric memristors for both two-dimensional (2D) and 

three-dimensional (3D) visual information processing. This novel approach is referred to as 

"neuromorphic vision computing," combining the principles of neuromorphic computing with 

visual data processing. By leveraging these advanced memristor technologies, the goal is to 

achieve efficient and effective processing of visual information in a neuromorphic computing 

framework.  
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Chapter 2 

 
Three-dimensional (3D) Neuromorphic 

Vision  

 
2.1 Time-of-Flight (ToF) Principle 

Vision is the essential sense to obtain information from surroundings in navigation, object 

recognition, and complex environment exploration9,44. In mammalian visual systems, the stimulus 

and responses in vision are driven by the STDP process through 1011 neurons linked with 1014-

1015 synapses with extremely low energy consumption (1-10 fJ per synapse)56. The STDP rule is 

an asymmetrical and temporal form of Hebbian learning57 among neurons and allows sparse 

asynchronous spiking dynamics of synapses with low-power neurotransmission. 

 

 

Figure 2.1 Schematic of time-of-flight (ToF) principle-based three-dimensional (3D) depth 

acquisition. a Schematic of ToF procedure, calculating the time difference between the emitter 

and receiver. b Detailed implementation of each ToF building block58. 

 

Time-of-flight (ToF) principle determines the 3D depth by calculating the time difference 
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between the transmitted and reflected flux as 𝑑 =
1

2
𝑐 · 𝜏𝑇𝑜𝐹, where 𝑑 is the distance between a 

ToF sensor and target objects, 𝑐 is the speed of light, and 𝜏𝑇𝑜𝐹 is the time difference between 

the emitter (Tx) and receiver (Rx) (Fig. 2.1)58,59. In particular, the light-based ToF system is 

referred to as light-detection and ranging (LiDAR), which has widely been investigated to 

achieve high spatiotemporal resolution of 3D imaging (Fig. 2.1b)58,59.  

Nature includes abundant examples based on the ToF principle60–64. Echolocation in 

mammals and birds calculates the time or phase difference between transmitting and receiving 

particles or waves in order to detect objects remotely65. The ToF principle is generally 

engineered via optical flux in the sensor to achieve high accuracy and frame rate. 66 Therefore, 

ToF-based sensors have been widely employed for ranging and mapping technology, leveraging 

many advanced 3D applications in machine vision and the biomedical industry, etc.67–74 

However, current ToF building blocks, such as emitters, receivers, and drivers, are still 

necessary to simplify their structural complexity, cost-ineffectiveness, and large form-factors, 

and to enhance their insufficient optical power, speed, and sensitivity74,75. 

 

2.2 GaN high-electron-mobility transistor (HEMT) 

To alleviate these issues, hetero-integration of GaN-based high electron mobility 

transistors (HEMTs) and GaAs-based vertical cavity surface emitting lasers (VCSELs) on a 

single platform via a cold-welding process that provides the potential for high-resolution 3D 

real-world imaging was demonstrated59. GaN-based HEMTs have been promising candidates 

for high power and high frequency applications due to the advantageous intrinsic material 

properties of GaN for device applications, including low parasitic capacitance, large breakdown 

endurance, and low on-resistance76–79. AlGaN/GaN heterostructures in GaN HEMTs allow the 
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formation of two-dimensional electron gas (2DEG) on the channel with a high density of the 

electron gas (> 1 × 1013 cm-2) by piezoelectric polarization effects, resulting in high-speed 

operation and low node-to-node junction capacitance77,80. Recently, GaN-based HEMTs have 

been employed to drive high-peak and narrow-pulse optoelectrical device applications, 

including ToF ranging, 3D imaging, and LiDAR75,77. These applications require sub-nanosecond 

acquisitions; therefore, the switching performance of devices is critical. Switching performance 

is affected by gate resistance, capacitance, mobility, and inductance of driving transistors. GaN 

HEMTs show outstanding performance, with faster switching performance than that of silicon-

based metal-oxide semiconductor field effect transistors (MOSFETs).  

In addition, high-power emitters are the essential device component for efficient pulse-

based optical communication. VCSELs are one of the most reliable and high-performing 

emitters. This is due to their surface-normal structure, large current densities, directive emission, 

narrow bandwidth, low divergence angle, and low power consumption. 81,82 Although VCSEL 

chips are available with microscale dimensions, additional fabrication or packaging processes 

are required to be combined with other electronic/optoelectronic components. Monolithic 

fabrication of modules is advantageous for preventing device degradation related to material 

incompatibility and process reliability83. Despite this, straightforward and inexpensive processes 

are still challenging. 

 

2.3 GaN HEMT-based Laser Driver 

Heterogeneous integration provides the potential for system-level applications without the 

issues of incompatibilities stemming from intrinsic material properties, complex spatial layouts, 

and geometric limitations. 84–88 Here, I fabricated a heterogeneously integrated ToF sensor by 
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combining depletion-mode AlGaN/GaN HEMTs and VCSELs via the cold-welding process. 59 

The simple cold-welding process enabled quick and low-temperature bonding for microscopic 

structures89. The electrical performance of the heterogeneously integrated devices was 

characterized by a KEYSIGHT B1500A Semiconductor Device Analyzer equipped with a 

waveform generator/fast measurement unit, a pulse generator (KEYSIGHT 33600A Series), and 

Digilent Analog Discovery 2. To measure pulse repetition rate (PRF) and photodiode current, an 

oscilloscope (KEYSIGHT DSO-X 3024T), and a current amplifier (Edmund 59-179) were 

employed to minimize external noise. A continuous measurement mode was adopted for the I-V 

characteristics. An additional power supplier (GS-1325-ND) was used for ToF ranging and 

imaging. 

 

 

Figure 2.2. Structures of the heterogeneously integrated devices. Schematic of ToF principle-

based 3D depth acquisition. a Optical microscopy (OM) image of the devices. The vertical-cavity 

surface-emitting laser (VCSEL) is integrated into the drain region of the high-electron-mobility 

transistor (HEMT). Scale bar: 100 µm. b 3D structure of the device (not scaled). c Circuit diagram 

of the heterogeneously integrated device. d Light-current-voltage (L-I-V) characteristics of the 

VCSELs at four different temperatures (0 C°, 25 C°, 40 C°, and 80 C° respectively, starting from 

the darkest curve). The green lines are voltage (left y-axis), and the red lines are optical power 
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(right y-axis). The optical power is measured at 8 mA, and the turn-on voltage ranges from 1.5 V 

to 1.9 V59. 

 

Figure 2.2a shows a optical microscopy (OM) image of the heterogeneously integrated 

device. a VCSEL chip was integrated on a HEMT using a thermally assisted cold-welding 

method90. 200 MPa force was applied to the pre-cleaned surface between the two gold films at 

270 ℃. To apply uniform force over the interfaced area, a Teflon film was inserted between the 

sample and the pressing head. Figure. 2.2b depicts the detailed device structure. The 

heterostructure of the AlGaN/GaN HEMT was grown on a sapphire substrate by metal-organic 

chemical vapor deposition (MOCVD). The low-temperature (LT) and high resistance (HR) layers 

were grown as a buffer layer for the high-quality growth of the epitaxial GaN HEMT structure. 

For device fabrication, after the mesa etching, ohmic contacts were metalized and improved by 

annealing using rapid thermal annealing (RTA). Finally, gold pads for the source, drain, and gate 

were deposited using e-beam evaporation. The VCSEL structure was grown by MOCVD on a 

GaAs substrate. The epilayer structure is composed of three InGaAs–AlGaAs multiple-quantum-

wells (MQWs) sandwiched between a 38-pair n-type and 21-pair p-type Al0.90Ga0.10As–

Al0.05Ga0.95As distributed-Bragg-reflector (DBR) layers with a p-type Al0.98Ga0.02As layer (30 nm 

thickness) above the MQWs for oxidation. An oxidation technique was used to define a circular 

current-confined area of 10 µm in diameter. The 10-µm aperture size has been employed to 

maintain the consistency of the fabrication and to achieve the optimum number of cavity modes 

and gain for our applications. On the backside of the GaAs substrate, the gold film was deposited 

by e-beam evaporation, which serves as a bottom electrode. 

The VCSEL chip was integrated on the drain side of the GaN HEMT to prevent 



32  

fluctuations related to turn-on stages from affecting the source voltage of the GaN HEMT, as 

shown in Fig. 2.2c. The light-current-voltage (L-I-V) characteristics of the VCSELs are shown in 

Fig. 2.2d. The threshold currents were nearly constant at various temperatures. Thermal effects 

slightly diminished optical power as the operating temperature increases. The fabricated phase-

based ToF module can operate reliably up to 85 C°, which is similar to the operating temperature 

of commercialized ToF modules91. The current level was determined by device endurance and 

power conversion efficiency; thus, less than 8 mA current was applied to the heterogeneously 

integrated device. 

 

Figure 2.3 ToF characterization of GaN HEMT laser driver and VCSEL emitter. a Rise and fall 

time response of the AlGaN/GaN HEMT and Si metal-oxide-semiconductor field-effect transistor 

(MOSFET, LND 150). The navy line is gate voltage (left y-axis), and the red and blue lines are 

drain current (right y-axis). Inset: close-up of the black-dotted area to compare rising responses at 

the rising interval (3.6 µs~4.0 µs). The two rise times are measured from 90% of pulse-on voltage 

and 10% of pulse-off voltage. b Linear results of ToF ranging. The minimum distance is 50 mm, 

and the maximum distance is 210 mm. 300 measurements are shown as orange dots, and the ideal 

ranging line is shown as a black-dotted line (Actual distance = Measured distance). The R-square 

linear fitting parameter is 0.97. c 3D ToF imaging of ‘UVA’ letters. The z-axis (depth) is an 



33  

arbitrary unit; the yellow points signify the highest depth, and blue points signify the lowest depth. 

32×32 grids per each letter are adopted59. 

 

Phase shift based ToF was employed for this study. To record the exact phase difference 

from both transmitter and receiver signal, OPT3101 (Texas Instruments) analog front-end (AFE) 

was used. The transmitter square-shaped waves are based on continuous-wave modulation, which 

was then used to calculate the phase difference between transmitted and received signal. The 

calibration is performed to eliminate the crosstalk caused by the background signal for precise 

measurement. To calibrate the module, the software development kit (SDK) code was run at 

various temperatures to measure both crosstalk and phase. Then, the phase at various ambient 

light brightness was measured; the values gained and extracted from the calibration were used to 

the correct SDK method which relates these values to register writes. 

Figure 2.3a confirms advantageous fast switching of the fabricated GaN HEMTs. The rise 

time of the HEMTs was 50 ns, which was over twice as fast as that of the commercialized Si-

MOSFETs (Microchip Technology, LND 150). Furthermore, the fall time of HEMTs was 

remarkably faster than that of MOSFETs as well. The superior rise and fall times of the fabricated 

GaN-based HEMT were comparable to those of commercial GaN-based HEMTs92. The difference 

in turn-on delay times of both HEMTs and Si-MOSFETs originated from the difference in 

threshold voltages; GaN HEMTs with -7 V and Si-MOSFETs with -1.5 V. The short rise and fall 

times supported the performance of GaN HEMTs as fast switching devices to drive the current 

for a ToF sensor. 

 The characterization of ToF measurement is shown in Fig. 2.3b. The device exhibited 

consistent trends with the transition of the distance between the object and the VCSEL. The 
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distribution of the 300 measurements was interpreted as a linear regression model with a reliable 

R-square value (0.97). Furthermore, the heterogeneously integrated device enabled ToF-based 3D 

imaging, as shown in Fig. 2.3c. ‘UVA’ letters were used for this 3D depth imaging. The edges of 

each letter were recognizable, which supports the possibility of using a demonstrated ToF sensor 

for object and material recognition applications93–96. 

 Direct ToF ranging is calculated as 𝑑 =
1

2
𝑐 · 𝜏𝑇𝑜𝐹 , where 𝑑  is the distance between a 

sensor and object, 𝑐 is the speed of light, and 𝜏𝑇𝑜𝐹 is the time difference between transmitter and 

receiver signals. The 𝜏𝑇𝑜𝐹 can be derived from time-to-digital converters (TDCs), but can also be 

calculated by the phase difference between the transmitter and receiver signals as 𝜑 = 2π𝑓𝜏𝑇𝑜𝐹 

and 𝑑 =
𝑐

4π𝑓
𝜑 , where 𝑓  is modulation frequency, and 𝜑  is a phase difference between 

illumination and reflection. The phase difference is calculated from the intensity of received signal 

at four different points such that 𝜑 = 𝑎𝑟𝑐𝑡𝑎𝑛(
𝐴1−𝐴3

𝐴2−𝐴4
) , where A1, A2, A3 and A4 are the 

measurement at four different phases (0 deg, 90 deg, 180 deg and 270 deg each). The phase shift 

based ToF model was employed in this study due to its high accuracy in the range of millimeters 

with high surface reflectivity. The noise at the edge of the square waves was mitigated by damping 

the parasitic circuits to relax the resonance behavior. The mismatch between the linear fit and the 

ideal line was possibly caused by an inertial fluctuation of the setup and a lack of further precise 

calibration without consideration of humidity and ambient light conditions. These factors are 

mostly related to the SNR and elicit measurement deviation as  σdistance =
𝑑

SNR
. Normally, one 

millimeter accuracy corresponds to 6.6 picoseconds pulses, which is challenging for a 

conventional silicon-based photodiode66. In this experiment, the range was 50 mm to 210 mm in 

order to maintain the minimum distance between the microprobes and object, and the maximum 
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distance was limited by the optical power of the emitter and detectivity of the photodetector. 

Therefore, further ranging is possible by maximizing the SNR using a high optical power emitter 

with a high sensitivity receiver. Sub-watt optical power of the VCSELs can be easily achieved by 

employing multiple VCSEL-based emitters97–99. Moreover, the VCSEL beamwidth is small and 

directional. Thus, combination with additional beam controllers, such as rotary motors75, 

micromirrors100,101, optical phased array (OPA)102–104, and liquid crystal (LC) based beam 

steerers105, is expected to pave the way for future angle-dependent ranging and high-resolution 

3D imaging59.  

 

2.4 Resistive ToF (RToF) Principle 

In the biological visual system, the rod cell receives optical signals and converts them to 

electrical spikes towards the synapse that lies between the rod cell (presynaptic neuron) and the 

bipolar neuron (postsynaptic neuron)44,106. If the timing is small enough, the synapse releases an 

acetylcholine neurotransmitter that transmits signals to the post neuron. Here, I have mimicked 

the biological synaptic responses in visual systems by implementing STDP in the memristors. The 

basic principle of STDP in the biological system is the transition of synaptic weights hinging on 

the time difference between presynaptic and postsynaptic spikes.  
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Figure 2.4 Demonstration of resistive ToF (RToF) principle. a Schematic illustration of biological 

STDP behavior and RToF. The rod cell and the avalanche photodiode (APD) receive the optical 

signals and transmit to the synapse and the memristor, respectively. Inset: scanning electron 

microscopy (SEM) image of memristor. Scalebar: 20 µm . b Schematic illustration of RToF 

system including classification. c Principle of RToF system. The ToF is calculated by subtracting 

the receiving time (𝑡𝑟) from the transmitting time (𝑡𝑡). The ToF (∆𝑡1 < ∆𝑡2 < ∆𝑡3) corresponds 

to the target distances (𝑑1 < 𝑑2 < 𝑑3). The shorter distance enables larger transitions of the 

conductance of the memristor, and the conductance is measured to range the distance44.  
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Figure 2.4a shows the structural and functional analogy between the biological and 

artificial synaptic systems. The STDP learning rule applies to memristors since a conductive 

bridge by oxygen vacancies in the active medium is formed depending on the overlapped period 

between the presynaptic (to the top electrode of the memristor) and postsynaptic spikes (to the 

bottom electrode of the memristor). Therefore, the temporal difference between spikes can be 

obtained by reading the programmed conductance of the memristors107. The inset shows the 

scanning electron microscope (SEM) image of the fabricated memristors. I demonstrated a new 

principle of RToF that converts memristor conductance to depth information. Figure 2.4b shows 

a schematic illustration of the RToF principle and classification. Combined with Fig. 2.4c, the 

signals from the transmitter and receiver exhibit time-difference-based responses similarly to the 

biological time-variant sandwiching spikes. Therefore, the polarities of the presynaptic and 

postsynaptic spikes are opposite. Following the ToF principle, the presynaptic spike in the RToF 

sensor is generated by an electrically transmitted signal, which also operates a picosecond laser. 

The postsynaptic spike in the system is transmitted by the current pulse of a received signal via 

APDs. The APDs adopted in the ToF sensing systems108,109 as an optical receiver provide high 

internal multiplication gain, low dark current, and low excess noise110. The larger spike time 

differences between the transmitted and received signals (∆𝑡1 < ∆𝑡2 < ∆𝑡3)  lead to longer 

programming times and higher peak amplitudes in the memristor by the superposition of the semi-

synchronous positive presynaptic peak and the negative postsynaptic peak. The longer and higher 

peak signals impart larger transitions of conductance (∆𝐺1 > ∆𝐺2 > ∆𝐺3) to the memristor. As a 

result, the conductance transitions of the memristor are converted to time-difference information 

following the pre-calibrated exponential-fitted relationship between the conductance and the 

programming time, which leads to the final depth information (𝑑1 < 𝑑2 < 𝑑3).  
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2.5 3D RToF Imaging 

Figure 2.5 Schematic illustration of RToF experimental setup44. 

 

The schematic RToF experimental setup is shown in Fig. 2.5. The HfO2 memristors were 

fabricated on a 25-µm polyimide substrate. To prevent the expansion of the polyimide during the 

post process, a pre-annealing of the polyimide substrate was performed at 200 ℃ for 30 min on a 

hot plate, followed by deposition of a 100-nm Al2O3 buffer layer via atomic layer deposition (ALD) 

at 200 ℃. A 3/25 nm thick Ti/Pt bottom contact was deposited and patterned by using e-beam 

evaporation and a photolithography process, respectively. A 5-nm HfO2 switching layer was 

deposited using ALD at 200 ℃. A 50-nm Ta top metal contact was deposited via DC magnetron 

sputtering, followed by photolithography patterning. The surface area of the fabricated HfO2 

memristor was 5×5 µm2. The Al0.7InAsSb APDs were grown on a n-type GaSb substrate (1-9×1017 

cm-3) with the following epitaxial structure: a 300-nm n-type (2×1018 cm-3) GaSb buffer layer, a 

300-nm n-type (2×1018 cm-3) Al0.7InAsSb contact layer, a 1500-nm Al0.7InAsSb unintentionally 

doped (UID) layer, and a 100-nm p-type (2×1018 cm-3) Al0.7InAsSb contact layer. The epitaxial 

growth was capped with a 50-nm p-type (1×1019 cm-3) GaSb layer. Be and Te were used as the p-
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type and n-type dopants, respectively. The top-illuminated PIN APDs were defined using standard 

photolithography techniques. The mesas were etched into the n-contact layer with a 

citric/phosphoric acid solution prior to a 12-nm Ti and 85-nm Au contact deposition via electron 

beam evaporation. 

Electrical performance of the memristors was characterized using a KEYSIGHT B1500A 

Semiconductor Device Analyzer equipped with a waveform generator/fast measurement unit and 

a pulse generator (KEYSIGHT 33600A Series). To measure resistive STDP and APD current, an 

oscilloscope (KEYSIGHT DSO-X 3024T), and two current amplifiers (Edmund 59-179 and EOC 

DLPCA-200) were employed. A Hamamatsu S9073 APD and a picosecond laser (Alphalas 

PLDD-50M) were employed for RToF ranging measurement with 100 V reverse bias applied to 

the APD and low-noise 103 gain of the TIA. The physical channel lengths of the presynaptic and 

postsynaptic spikes were matched to minimize the parasitic time delay. The peak programming 

voltage was limited to 2 V to protect the device from exceeding the transition ranging of the 

resistance. The remainder time delay generated by parasitic capacitance and inductance of the 

external cables and wire connections was compensated empirically by modulating the pulse 

timing via MATLAB. For the one-dimensional (1D) RToF measurement, a commercially retro-

reflective (metal coated, 0.9 reflectivity) object was adopted. In the dark room condition, 150 V 

reverse bias was applied to the APD to maximize the multiplicatively reflected optical signals. 

For the 1D RToF measurement, the picosecond laser was set to 203 mW and 750 mW peak power 

for short and long range, respectively. 0.5 V amplitude and 20-ns pulse width are employed for 

the presynaptic spikes. Each position was measured 5 times. 
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Figure 2.6 Experimental demonstration of RToF depth ranging. a Schematic illustration of RToF 

system. The optical signal received by the APD is converted to the electrical Rx signal that couples 

with the Tx signal to program the memristor. b Spike-timing-dependent plasticity (STDP) 

waveforms from the RToF ranging (40 cm, 25 cm and 10 cm object distances from left to right)44.  

 

Figure 2.6a shows schematic illustration of the RToF device. The postsynaptic spike is 

originated from the photogenerated current of the APD usually in the range of 1 µA to 0.1 mA 

and is converted to the amplified voltage signal via a transimpedance amplifier (TIA) 

approximately 1 V to 2 V to program the memristors. The RToF waveforms depending on the 

object locations are shown in Fig. 2.6b. The peak of the superposed programming signal was low 

(high) when the time difference between the presynaptic spike and the postsynaptic spike was 

large (small), which leads to weak (strong) coupling. The analog transitions of the memristor 

conductance follow the analog programming via the pulse train response generated by overlapped 

pre- and post-synaptic spikes, which verifies the depth memory functionality of the RToF system.  
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Figure 2.7 Target scene and experimental RToF 3D depth imaging (16×8 pixels)44. 

 

Using the RToF system, I demonstrated a RToF 3D LiDAR scan. As shown in Fig. 2.7, I 

emulated a street scene that include a car, building, and wall miniature. I measured distances of a 

miniaturized truck at 15 cm, a scaled building (EatingBiting DIY 1:160 Outland Models) at 25 

cm, and a wall at 45 cm. The target scene is shifted for the imaging to enable a point-by-point 

LiDAR scanning method (16×8 pixels), and a scattering film are attached to the ranging spot. Due 

to the scattering effect that represents the realistic 3D ranging environment, different bias voltages 

are applied to the APD (15 cm for -140 V, 25cm for -150 V, and 45 cm for -155 V). By employing 

series of single-point ranging, I observed the RToF-based imaging capability. 

The analog-domain depth ranging and storing capabilities of the RToF exhibit comparable 

power consumption and small footprint compared to the conventional TDC architectures and 

enable two high degrees of freedom for further designing a 3D sensing system. First, the system 

can be electrically and optically modulated by tuning the spike schemes and gains from the APD 

and the TIA. Both memristive STDP and RToF behaviors are dependent on amplitude, decay, and 

rise times of presynaptic and postsynaptic spikes. Additionally, the gain modulation relaxes a 

target object’s reflectivity-dependent amplitude transition. In a practical LiDAR application, the 
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intensity of the received optical signals depends on the distance from the objects as well as the 

reflectivity of the objects. The detection of low reflectivity objects can be improved through an 

optimized voltage window via the gain and spike modulation. Furthermore, multiple echoes from 

multiple objects within a single ranging shot are separable when the distance between the 

individual objects are far enough. In this case, only one postsynaptic spike (from the closer object) 

is coupled to the presynaptic spike. Second, a high geometrical degree of freedom can be achieved 

including small footprint and CMOS compatibility. Previous memristor studies have 

demonstrated CMOS-compatible architectures, small-footprint fabrication, and low power 

consumption, since the memristor medium is also widely used for high-k dielectric layers in 

standard silicon CMOS process111,112. Furthermore, sub-nanoseconds switching speed of 

memristors has been reported113,114, indicating further improvement in the resolution of the RToF 

sensor (15 cm in this work) towards a millimeter ranging system. Ferroelectric materials such as 

Ag/BaTiO3/Nb:SrTiO3
115 and LiTaO116, and scalable magnetoelectric spin-orbit devices48 are 

promising candidates due to their faster switching speed (more than one order) compared to the 

resistive HfO2 layer44. 

 

2.6 Non-Line-of-Sight (NLOS) Detection Based on RToF 

Principle 
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Figure 2.8 RToF non-line-of-sight (NLOS) detection. a Schematic of neuromorphic NLOS 

detection system. The HfO2 memristor stores the NLOS information as conductance via STDP. 

b Illustration of experimental neuromorphic NLOS detection setup. The presynaptic spike is 

generated via pulse generator, branched to both memristor and laser. The postsynaptic spike is 

converted from the reflected optical signal via the avalanche photodiode and the following 

transimpedance amplifier (TIA). The two spikes sandwich the memristor and program the 

memristor only if a target object is scanned. c Schematic waveforms of presynaptic and 

postsynaptic spikes, reset/read and super-positioned pulse signals to memristor from top to 

bottom for neuromorphic NLOS detection. The postsynaptic spike 2 is generated from the light 

scattered by the target object and is coupled with the presynaptic spike. The superposed 

waveform programs the memristor with a superposition peak higher than 𝑽𝐭𝐡. Two read pulses 

are applied to the memristor to achieve Gfinal and Ginit. The memristor conductance is initialized 
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by the negative reset pulse117. 

 

 Non-line-of-sight (NLOS) ranging is a promising 3D imaging application based on the 

ToF principle, which detects indirect optical signals for visualizing hidden objects67,117. To 

demonstrate a RToF system for NLOS sensing, I integrated the HfO2 memristors with an APD 

and a laser light source as shown in Fig. 2.8a. Figure 2.8b illustrates the NLOS detection process 

using the RToF system. An electrical signal from a pulse generator was applied to both the 

memristor and a picosecond laser, which served as the presynaptic spike for the system 

(Alphalas PLDD-50M, 750 mW peak power). The emitted laser pulse was reflected off the target 

object and received by an APD, which converted the signal into an electric current (Hamamatsu 

S9073). To detect NLOS objects, the emitted laser pulse first hits a reflective wall and partially 

scatters. The partially scattered rays then reach the hidden object. Subsequently, both the rays 

reflected from the wall and hidden object reach the APD sequentially with respect to the 

distances of the ray propagations. The resulting signals are usually weak because of multiple 

reflections. Thus, the observed current signal is amplified and converted into a voltage signal 

(postsynaptic spike) using a tunable transimpedance amplifier (Edmund 59-179). In the RToF 

system, the input signal generated by the superposition of the presynaptic and postsynaptic 

spikes is used to program the depth information as the resistance of the memristor connected to 

the avalanche photodiode.  

Figure. 2.8c shows the waveform details of each spike and pulse in the RToF system. The 

observed information is converted into a postsynaptic spike that generates a superposed spike 

(Vprogram) capable of programming the connected memristor upon exceeding a threshold voltage 

(Vth). Presynaptic and postsynaptic spikes were applied to the top and bottom electrodes of the 

memristor, respectively. Therefore, the programming signal applied to the memristor is the 
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potential difference between the positive presynaptic and negative postsynaptic spikes. The first 

postsynaptic spike originated from the rays that were directly reflected from the wall. Thus, the 

first postsynaptic spike did not contain information from the target object and was not coupled to 

the presynaptic spike. The first read pulse (Vread = 0.1 V and tread = 10 µs), after the neuromorphic 

ToF learning process, provides a programmed conductance (Gfinal). The programmed conductance 

is initialized by applying a reset pulse (Vreset = -1.5 V and treset = 10 µs) and then confirmed by the 

second read pulse (Ginitial). The conductance transition is calculated as ∆𝐺 =
(𝐺final−𝐺init)

𝐺init
×

100(%) . All the pulses were applied to the top electrode of the memristor, except for the 

postsynaptic spike. 

 

Figure 2.9 Schematic illustration of NLOS situation. The laser beam with one angular position 

(10°, 20°, or 30°) reaches the wall, partially reflected to the laser (Reflection 1). The propagating 

beam is also reflected from the hidden object (𝑝1, 𝑝2, or 𝑝3) and then from the wall (Reflection 2). 

Both reflection signals are detected by the ToF sensor, and the laser steers the angle to another 

angular position for the next scanning117. 

 

The RToF system is used for NLOS detection using a time gated STDP learning rule. This was 

achieved by overlapping the reference electrical signal and spike signal received after multiple 
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reflections from the hidden target object and scattering wall, as shown in Fig. 2.9. The APD 

received two optical signals (Reflection 1 and Reflection 2), originates from the wall and the target 

object, respectively. The time gated RToF system allowed only the signal reflected from the object 

to be coupled with the presynaptic spike to program the memristor. This was achieved by applying 

a presynaptic spike after the first strong reflection signal was received without forming highly 

superposed peaks. Thus, the presynaptic spike was coupled only with the signal reflected from 

the object when the hidden object was in the scanning region. As expected, no second postsynaptic 

spike was generated unless the object existed in the scanning region. 

 

Figure 2.10 Experimental demonstration of RToF-based NLOS detection. a Experimental results 

of the NLOS detection. The second peak is coupled to the electrical presynaptic spike to generate 

the STDP programming (top). Results without coupling for objects located at each 𝑝1, 𝑝2, and 𝑝3 

(bottom). b Experimental comparison of superposed spiking energy between the scanning 

positions. As the object is located at the non-scanning points, less coupling leads to less 
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conductance switching of the memristor. The error bars indicate the standard deviation117. 

 

I conducted an experimental demonstration of the RToF-based NLOS detection, as 

illustrated in Fig. 2.10a. The target object was positioned 48 cm from the center of the wall and 

rotated at an angular position of 10° to 30°. The laser source and receiver were co-rotated 

horizontally to detect the target objects located at different positions (10°, 20°, and 30° from the 

wall). Electrical input with an amplitude of 0.7 V and a pulse width of 30 ns was utilized as 

presynaptic spikes. The RToF system rotates to select one positions (10°, 20°, or 30°), and the 

target object is detected when the scanning direction matches that of the object. The second peak 

in Fig. 2.10a represents the signal reflected from the NLOS object, which was coupled to the 

memristor via the STDP learning rule in the neuromorphic ToF system. The first postsynaptic 

spike was time gated with an asynchronous postsynaptic spike to prevent programming through 

direct reflection from the wall. Therefore, only the NLOS signal (second peak) is coupled with 

the presynaptic spike. When the NLOS optical scan is applied to an object located at the target 

angle, a superimposed spiking signal is applied to the memristor for programming, which 

represents the NLOS detection, as shown in Fig. 2.10b. The superposed spiking power was 

calculated by squared voltage signals, multiplied by the average value of high resistance state 

(HRS) memristor of 7.287 kΩ, and integrated by time.  

Combined with this technique, the localization in the two angular bases in the polar 

coordinate can be carried out by a 2-axis steering system such as double axis MEMS mirrors67,118. 

Further practical implementation is also viable by using APD array that can scan multiple spots 

in a single laser shot so that the entire scanning time can significantly be reduced119. Integration 

with multiple focusing lenses and an intensity-thresholding components including comparator, 
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amplifier, and filter circuits120 can alleviate the target reflectivity and accurate detection timing 

issues, respectively. Moreover, digital and analog co-designed integrated circuits can offer 

practical solutions for addressing distance-related attenuation by using automatic gain modulation 

through digital logics for different distances and employing the signal regulation of the 

postsynaptic spike through an analog regulation circuit121. 

The distance-dependent attenuation issue in the proposed system, similarly in LiDAR 

systems, is influenced by the ambient environment, target reflectivity, and distance. One effective 

way to address the ambient light effect is to use a near-infrared (NIR) light source, which can 

propagate robustly through the air44. Neuromorphic ToF ranging and NLOS detection can be 

further improved by minimizing the parasitic parameters through system-on-chip structures and 

by using faster switching artificial synapses, such as ferroelectric115,122,123, spin-torque48,124, and 

phase-change devices125–127.  

 

2.7 Conclusion 

In conclusion, I have invented a neuron-like RToF method for 3D sensing and NLOS 

detection. A memristor has been employed to store the ranging information programmed by 

superposed pre- and post-synaptic spikes. The RToF system attained up to 55 cm ranging in a 

single mode, and further ranging was achieved by controlling the spiking scheme combined with 

the gain modulation of an APD and a TIA. To prove the feasibility of RToF sensing, I have 

demonstrated the proof-of concept 3D imaging. In the case of RToF-based NLOSE detection, the 

coupling between presynaptic and postsynaptic spikes, electrical turn-on signals, and multiple-

reflected optical signals enabled the NLOS detection via RToF. The presynaptic and second 

postsynaptic spikes were coupled when the target object was in the same direction as the scanning 
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direction, resulting in high programming power for the memristors. The proposed neuromorphic 

NLOS detection features the processing of detection information in the memristor medium, 

thereby minimizing the need for additional signal processing algorithms and circuitry required for 

3D ranging. I believe that the proposed RToF principle can provide a simplified and miniaturized 

3D vision computing platform with potential application in various engineering fields, such as 

automotive navigation128–130, machine learning131–134, and biomedical engineering135–137. 
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Chapter 3 

 
Two-dimensional (2D) Neuromorphic Vision 

 
3.1 Visible and Infrared Dual-Band Imaging 

The combination of visible (VIS) and infrared (IR) photodetectors is a promising 

technique for use in various applications such as computer vision 138,139, biomedical engineering 

140, and tactical vision 141,142. Such multi-spectral image fusion can provide a more accurate 

understanding of the surrounding information compared to data acquisition by a single spectral 

band 143. Along with the VIS spectrum detection, the imaging of IR spectrum near 1550 nm is 

advantageous due to the high atmospheric transmission 144 and eye safety concerns. Furthermore, 

IR spectrum imaging, attracts considerable interest for night vision 145 and 3D ranging 109 etc. 

However, the integration of individual VIS and IR photodetectors for multi-spectral detection is 

limited by structural complexity. The conventional side-by-side configuration of independent VIS 

and IR photodetectors leads to large pixel size and optical crosstalk between photodetectors. 

Furthermore, related external circuits require large footprint and cost for switching capabilities. 

To address such challenges, vertical-stacked and multi-spectral photodetectors have been 

proposed 146–152. The multi-spectral functionality has been realized via broadband and selective 

photodetectors. Broadband photodetectors exhibit photonic responsivity to both VIS and NIR 

spectra simultaneously and can hardly resolve the VIS and NIR information 146–148. Photodetectors 

based on organic heterojunctions 150, quantum dot nanomaterials 149, and semiconductor multiple 

junctions 152 obtain selective band information from broadband signal. However, the structures 

are based on a multi-junction structure including back-to-back-connected diodes with three 
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terminals that requires dual bias polarity operations for selective detection capabilities, resulting 

in complex fabrication processes and non-conventional back plane and readout circuit designs.  

Figure 3.1 Visible (VIS) and infrared (IR) dual-band Ge/MoS2 multi-spectral photodetector. a 

Schematic of the device application. The selective dual-band detection enables vision for a harsh 

environment (e.g., fog, top) using VIS and infrared IR visions simultaneously and separately 

(bottom). b Schematic of the device structure. c X-ray photoelectron spectroscopy (XPS) 

measurement of the Ge/MoS2 heterojunction structure142. 

 

The selective detection capability can be applied to vision under adverse weather 

conditions such as night, fog, and dust (Fig. 3.1a). The vision information obtained by the different 

wavelength spectra achieves advanced ambient information systems. I fabricated a p-Ge/n-MoS2 

photodetector with bias-dependent wavelength selection capability (Fig. 3.1b). A 20 nm oxide 

(Al2O3) layer was deposited on a p-Ge substrate (5 × 1017 cm-3) at 200 °C by atomic layer 

deposition, to isolate the metal contact of MoS2. To control the junction area, a circular shape with 

a diameter of 6 µm was etched in 1% diluted hydrofluoric acid (HF) in the Al2O3 layer until the 

Ge surface was completely exposed, resulting in a sloped sidewall at the Ge/Al2O3 boundary 153. 
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To ensure air stability, the Ge substrate was passivated by a solution of HCl:H2O in a ratio of 1:1 

for 1 min. Multi-layer MoS2 flakes were mechanically exfoliated from bulk MoS2 crystals 

(Graphene Supermarket, USA) and then transferred onto the exposed Ge surface. Ti/Au (5/60 nm) 

was deposited as an Ohmic metal of MoS2 by electron-beam evaporation using a standard lift-off 

technique. A 5/60-nm Ni/Pt p-contact was deposited on the back side of the p-Ge substrate by 

electron-beam evaporation. The device was annealed for 1 h at 150 °C in vacuum using a rapid 

thermal processor to form a reliable junction at the Ge–MoS2 interface.  

Figure 3.1c shows X-ray photoelectron spectroscopy (XPS) results of the heterostructure 

device. The high-resolution spectra of the C 1s, Mo 3d3/2, Mo 3d5/2, and Ge 3d peaks were 

collected in steps of 0.1 eV. The measurement of the band levels before and after the 

heterojunction reveals the band shift indicating the energy barriers of conduction (ΔEGe) and 

valence (ΔEMoS2) bands of approximately 0.03 and 0.34 eV, respectively 154. The apparent valance 

band maximum (VBM) locations are 0.14 eV for Ge and 0.89 eV for MoS2 via ultraviolet 

photoelectron spectroscopy (UPS), and additional electron energy loss spectroscopy (EELS) 

results also verify the bandgaps. The heterojunction was also verified by cross-sectional 

transmission electron microscopy (TEM) images, as shown in Fig. 3.2a. The heterojunction is 

shown as a white region between the bulk Ge and MoS2 regions. Based on the apparent VBM and 

energy shift, the equilibrium band diagram of the p-Ge/n-MoS2 heterostructure device was 

calculated (Fig. 3.2b).  
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Figure 3.2 Design and operation principle of the Ge/MoS2 multi-spectral photodetector. a Cross-

sectional transmission electron microscopy (TEM) image. b Energy band diagram in 

equilibrium142. 

 

Figures 3.3a, b show energy band diagrams of the p-Ge/n-MoS2 heterostructure under 

different biases. A heterojunction with asymmetric transport is designed to enable selective 

spectrum detection. As shown in Fig. 2A, the transport of the generated holes in the n-MoS2 region 

due to the VIS absorption is blocked by the downward band bending, which are eventually 

recombined with the electrons. Thus, the overall transport of photo-generated carriers under VIS 

illumination is limited. By contrast, both generated electrons and holes under IR illumination in 

the p-Ge region easily pass through the heterojunction. Furthermore, the band configuration under 

a strong bias is harnessed to achieve a completely selective detection functionality. The 

mechanism of the VIS spectrum detection is illustrated in Fig. 2B. Under IR illumination, the 

transport from the generated electrons and holes in the p-Ge region is weak and diluted by the 

increased dark current. However, under VIS illumination, the strong bias alters the band structure 

bending downward toward the interface of n-MoS2 and Ti/Au, which elicits a higher photocurrent 
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compared with the IR illumination. Moreover, the photo-generated holes in the n-MoS2 region 

were trapped in the heterojunction interface, resulting in the downward band bending of the n-

MoS2 region 155. As a result, these trapped holes increase the tunneling current included in the 

total output current.  

 

 
Figure 3.3 Energy band diagrams under a near-equilibrium (near-photovoltaic mode) and b strong 

reverse bias (photoconductive mode)142. 

 

Figure 3.4a shows the I–V characteristics of the p-Ge/n-MoS2 photodetectors with 

different wavelengths of illumination. The wavelength is in the range of 406 to 1550 nm. The 

power density of the incident light is fixed. The longer wavelength exhibits higher responses at -

0.5 V (near-photovoltaic mode), whereas the shorter wavelength exhibits higher responses at -3.5 

V (photoconductive mode). I calculated the ideality factor (n=1.31) based on the experimental 

dark I-V characteristics. Under a small positive bias (less than 0.5 V), Figure. 3.4b shows the 

exponential relationship between the current and the voltage.  

The selective multi-spectral detection performance of the p-Ge/n-MoS2 photodetectors is 

shown in Fig. 3.4b, c. The I–V characteristics of the p-Ge/n-MoS2 photodetectors exhibit selective 
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detection at wavelengths of 406 and 1550 nm under various incident power densities. The basic 

rectifying behavior of the p-Ge/n-MoS2 heterojunction is also observed in the dark-I–V 

characteristics. Under the 406 nm illumination, a large photocurrent is generated in the 

photoconductive mode (VIS vision). By contrast, under the 1550 nm illumination, most of the 

photocurrent is generated at the near-photovoltaic mode (IR vision). The bias-dependent selective 

phenomena are attributed to the interplay of band energy configurations, such as band offset, 

trapping, and tunneling electron, and hole currents at different biases. Although the illumination 

spot is larger than the Ge/MoS2 junction region, most regions out of the junction are blocked by 

the metal. Therefore, negligible amount of light generates an undesirable Schottky junction effect 

by reaching the MoS2 out of the junction. 

 

Figure 3.4 I-V characteristics of Ge/MoS2 multi-spectral photodetector with respect to a 

wavelengths and incident power densities at b 406 nm and c 1550 nm142. 
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Figure 3.5 Synaptic STP behavior of Ge/MoS2 multi-spectral photodetector. Temporal response 

of the device at various illumination wavelengths in the a near-photovoltaic and b 

photoconductive modes. The temporal responses for different wavelengths are offset for clarity. 

c Calculated rising and falling times under the near-photovoltaic and photoconductive modes at 

various wavelengths142. 

 

Figures 3.5a, b show the transient characteristics of the p-Ge/n-MoS2 photodetectors, 

similar to biological STP behavior. The power density is fixed to 30 mW/cm2 with bias voltages 

of -0.5 and -3.5 V. The photo responses at the near-photovoltaic mode show a higher photocurrent 

when the wavelength becomes longer. Figure 3.5c shows the wavelength-dependent rise and fall 

times of the device. The two metrics are similar, 16 ms, in the near-photovoltaic mode. In contrast, 

the fall time is approximately five times larger than the rise time in the photoconductive mode. 

These bias-dependent variations are attributed to the different absorption aspects of Ge (~0.67 eV) 

and MoS2 (~1.23 eV). The bulk Ge layer is covered by the exfoliated 66-nm MoS2, and the 

corresponding penetration depths for various VIS wavelengths are comparatively lower than the 

MoS2 thickness (66 nm), implying that most of the illuminated VIS are absorbed in the MoS2 

region before reaching the Ge region. Notably, the higher bandgap of MoS2 with the 
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heterojunction allows VIS absorption and transport of the generated carriers at a higher bias (-3.5 

V). Under weak reverse bias and illumination, the electrons in Ge and holes in the MoS2 region 

move toward the barrier. Owing to the modulated heterojunction barrier, the electrons easily move 

over the barrier, while the transport of the holes is hindered by the downward bending of the MoS2 

valence band. By contrast, under a strong bias, holes in the n-MoS2 region pass through the 

heterojunction interface via trap-assisted tunneling. The trapped hole carriers require an additional 

time to be fully released from the trap states when the light is off. This trap-assisted tunneling 

mechanism increases the photocurrent decay time, resulting in the slow switching time. Note that 

the built-in potential of the heterojunction is smaller than the reverse bias of the photoconductive 

mode and that the response time is dominated by the carrier diffusion in the bulk region at the 

near photovoltaic mode. Therefore, the temporal effect of the built-in potential is negligible. 

Figure 3.6a shows a schematic of the experimental setup of the dual imaging. I prepared a 

double-sided target object that can transmit and reflect NIR and VIS sources, respectively. The 

smile and angry images were fabricated on a Si substrate with a 230 nm SiO2 antireflective coating. 

At the backside, a 100/300 nm thick Ti/Au array image was deposited and patterned. On the front 

side, a 300 nm Al layer was deposited. Both metal layers were deposited and patterned by 

electron-beam evaporation and a standard lift-off technique, respectively. The VIS and NIR 

spectra were sequentially illuminated on the sample. The NIR light penetrates the backside of the 

sample, except in the region where the metal is not present (transmission imaging). Similarly, the 

VIS light toward the front side of the sample is reflected, where the metal is present (reflection 

imaging). As a result, the transmission imaging exhibits an angry face in the near-photovoltaic 

mode (Fig. 3.6b), while no visual information is achieved in the photoconductive mode (Fig. 3.6c). 

However, the reflection mode offers hidden visual information (smile) via the photoconductive 
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mode (Fig. 3.6d) without achieving an angry image in the near-photovoltaic mode (Fig. 3.6e). 

This selective imaging capability is attributed to the specific responsivities of the different spectra 

via switching between the near-photovoltaic and photoconductive modes.  

 

Figure 3.6 VIS/IR dual-band selective imaging. a Schematic of the dual-band selective imaging 

experiment. The double-side-patterned silicon target object exhibits angry and smile face images. 

Results of the dual-band imaging for transmission imaging (IR illumination) operating at the b 

near-photovoltaic and c photoconductive modes. Results of the dual-band imaging for reflection 

imaging (VIS illumination) operating at the d photoconductive and e near-photovoltaic modes142. 

 

Conventional broad-band photodetectors provide inseparable VIS and NIR detection 

capabilities, whereas the van der Waals heterojunction photodetector offers selective VIS and NIR 
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vision. The separation of each spectrum is important to extract more synergistic information. For 

instance, VIS and NIR lights generally propagate simultaneously due to multiple driving forces 

such as black body radiations (temperature distribution), spectral reflections, and direct 

illuminations from light sources. Each spectrum is thus originated from the different mechanisms, 

and by applying a temporal voltage pulse train to our device, separable visual information can be 

achieved. The separated VIS and NIR vision could be thus harnessed in various applications such 

as image fusion 143, red–green–blue-depth imaging 156, and classification via image segmentation 

157. As a future direction, the use of two-dimensional materials would provide strong light–matter 

interactions and ease of integration with conventional silicon readout electronics as well as array-

scale implementation 158–160. Furthermore, various heterogeneous integration methods would 

allow the device to be formed in arbitrary 3D geometries, which offers a wide-field-of-view vision 

along with compact bio-inspired functionalities142.  

 

3.2 In-Sensor Computing 

Analogous to the neural circuit and photoreceptor cells in the retina, photodetectors in 

image sensors can be directly integrated with artificial synapses (e.g., oxide memristors, phase 

change memories), constructing an artificial neural circuit161–163. Integrated analog computing 

units can store image information as resistance states, while also performing computational tasks 

to implement an ANN for a cognitive algorithm. In this way, so-called “in-sensor computing,” the 

image information can be processed within the sensors, significantly reducing data movement by 

processing it at the edge of the system in a similar way to mammalian vision164,165. There have 

been efforts to demonstrate in-sensor computing systems for analog machine vision using 

optoelectronic memory devices. However, previously demonstrated in-sensor machine vision 

systems mostly conducted image memorization and pre-processing (e.g., image enhancement) 
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within the sensors166–176. Thus, all the image data still needs to be transferred to a back-end post-

processor for high-level image processing, such as feature extraction, image encoding, and image 

classification. However, minimizing unnecessary data transportation between the sensor, memory, 

and computation unit is the key feature and goal of in-sensor computing to achieve an energy-

efficient and latency-free sensor/processor system. As such, advancements in-sensor computing 

systems require the capability to memorize images and directly perform high-level image 

processing within the sensor. 

 

 

Figure 3.7 Sensory-based computing. a Conventional computing architecture. b near-sensor and 

c in-sensor computing architectures134. 

 

Figure. 3.7a shows the conventional computing architecture for sensory module134. The 
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conventional sensors receive raw analog signals and transmit them to the ADC module for digital 

processing compatible to high-level CMOS processors, which requires inefficient energy and time 

to transfer and process the data signals. Unlike the conventional architecture, however, the near-

sensor computing architecture encompasses the front-end processing units (ADCs) into the 

sensory array or module, improving the energy efficiency and reducing the latency issue (Fig. 

3.7b). Recent synaptic sensors are even capable of the front-end processing themselves, further 

enhancing the sensory computing capabilities and minimizing the footprint of the sensory tile (Fig. 

3.7c)134. In this chapter, I aim to realize the proof-of-concept in-sensor computing protocol 

associated with the 2D neuromorphic vision computing based on the redox non-volatile 

memristors and conventional III-V-based photodiodes. 

 

3.3 One-Photodiode One-Resistor (1P1R) Crossbar Array 

In this thesis, I developed an advanced in-sensor computing system with neuromorphic 

image memorization and encoding capabilities within the pixel for visual cognitive processing, 

emulating the biological visual processing system of the mammalian retina and biological long-

term plasticity133. This in-pixel computing system efficiently computes and conveys visual 

information to minimize data transportation bottlenecks. In a single sensor, a photodiode is 

directly integrated with a non-volatile redox memristor to construct 1-photodiode 1-resistor (1P1R) 

pixels, where HfO2-based memristors are fabricated on InGaAs-based p-i-n photodiodes. First, I 

fabricated a 1P1R single pixel with an InGaAs photodetector and HfO2-based memristor and 

characterized the electrical and optoelectrical properties for the image memorization and data 

processing of visual information within the sensor. Subsequently, a 16×16 1P1R crossbar array 

with an InGaAs photodiode and a HfO2-based memristor was fabricated and characterized. 
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Subsequently, the imaging of the MNIST handwritten digits was performed, where the visual 

stimuli of the images were effectively stored in pixels. Subsequently, using the fabricated 1P1R 

array, the biomimicking image encoding process was performed by in-memory vector-matrix-

multiplication without data transfer. In contrast to typical in-memory computing methods, input 

image data were stored in memristors, and weights were applied to the crossbar array as input 

voltages, in which 2D-1D vectorization was no longer needed and the size of the crossbar array 

was significantly reduced. The encoded images were then conveyed to a central processor for 

image classification. In the in-sensor computing process, the saved images in the pixels were 

directly computed via in-memory computing without any data transportation between an external 

memory and/or processor. My process dramatically reduces redundant data movement between 

the sensor, memory, and processor by performing in-pixel encoding, possibly alleviating data 

transportation bottlenecks and energy overconsumption. 

 

 

Figure 3.8 In-sensor computing system with an in-pixel direct computing functionality emulating 

human vision system. a Schematic illustration of human vision system from the retina to the brain, 
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and its visual cognitive processing with in-retina image encoding process. b Schematic illustration 

of a process flow of the one-photodiode one-resistor (1P1R) in-sensor computing system, which 

emulates the human vision system133. 

 

Figure 3.8a shows a schematic illustration of the image encoding and classification 

processes in the mammalian retinal and brain system. The outputs of the rod and cone 

photoreceptors are decomposed into approximately 12 parallel information streams, which are 

then connected to the retinal ganglion cells. Bipolar and amacrine cell activity are combined in a 

ganglion cell to create diverse encodings of features extracted from the visual world, such as edges, 

direction, and color; the retina then transmits these pre-processed data to the brain177–179. By 

reducing redundant information, the retina can effectively convey image data to the central 

processor with a minimal transport delay. In the visual cortex, higher-level visual cognitive 

processes are conducted using encoded images from the retina177–179, 

 In this thesis, I designed and demonstrated an in-sensor neuromorphic machine vision 

system with functionalities of image memorization and processing, by mimicking the above-

mentioned neural circuit and visual classification system in the human eye, as shown in Fig. 3.8b. 

The image sensor consists of a crossbar array of photodetectors and resistive memory cells, which 

correspond to photoreceptors and ganglion cells in the retina, respectively. In the retina, the 

ganglion cells operate as a pre-computing processor unit, whereas the memristor in our system 

serves both as a memory and computation unit, depending on the polarity and magnitude of the 

applied bias to each pixel. When a reverse bias with respect to the photodiode is applied to the 

1P1R pixels, the sensor operates in a memorization mode, in which incident light stimuli are 

converted to electrical signals in the photodetectors, and the photocurrents are subsequently stored 

in the memory cells by changing the conductance of the memory. Under a forward-biased voltage 
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with respect to the photodiode (lower than the threshold voltage for the erase operation), the sensor 

operates in the computing mode to process the stored image at the pixels via analog in-memory 

computing for vector-matrix multiplication. Because vector-matrix multiplication is a key 

operation in the ANN algorithm, I utilized the 1P1R crossbar array to execute in-sensor image 

encoding, which extracts critical features from the original image to alleviate the data transfer 

burden at the sensor and processor interface, paralleling biological processes in the human retina. 

Finally, image classification was conducted in the post-processing unit with the encoded images 

delivered through an ANN. While the encoded images possess compressed information compared 

to the original images, the ANN successfully classifies the object with less computational load. 

 

Figure 3.9 Design of single InGaAs 1P1R integrated device. a Schematic illustration of the 

fabricated InGaAs 1P1R device. b Optical image of the fabricated 1P1R focal plane array. Scale 

bar: 7 mm. c A optical microscope image of the fabricated 1P1R array. Dashed red (blue) box in 

shows a 1P1R pixel in the array. Scale bar: 400 µm. d Enlarged optical microscope image of the 

dashed blue box area in c. Scale bar: 50 µm133. 

 

Figure 3.9a shows a schematic illustration of a single 1P1R pixel. InGaAs p-i-n layers 

were grown on a InP substrate by general molecular beam epitaxy (MBE)180. The 1P1R crossbar 

array fabrication starts with a mesa etching of p-InGaAs/Uid-InGaAs layers. The mesa areas were 
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protected with a bilayer photoresist (PR; LOR3A/AZ5214) by photolithography, and the 

unprotected InGaAs area was etched using inductively coupled plasma-reactive ion etching (ICP-

RIE; BCl3 20 sccm, 600 W ICP power, 150 W forward power, 7 mTorr, 20 °C stage temperature 

for 6 min), followed by wet etching for 1 min in a solution of H3PO4:H2O2:H2O = 3:1:25, which 

stopped at the n-InP layer. The PR mask was then removed in the Remover PG (Kayaku Advanced 

Materials) at 60 °C. With a single PR (AZ5214) patterning, n-InP mesa for the bottom metal 

electrodes was defined, followed by a wet etch process for the n-InP/InP buffer layer using a 

solution of HCl:H3PO4 = 3:1 (30 s). Next, a dielectric insulator layer of 150 nm Al2O3 was 

deposited by plasma-enhanced atomic layer deposition (PE-ALD). The via holes were etched with 

a bilayer PR mask using ICP-RIE (BCl3 20 sccm, 50 W ICP power, 200 W forward power, 5 

mTorr, 20 °C stage temperature for 6 min). The top and bottom electrodes of the photodiodes 

were simultaneously deposited by photolithography with bilayer PR and e-beam evaporation of 

Ti/Pt/Au (5/10/50 nm), which was lifted off in the Remover PG at 60 °C. Another dielectric 

insulator of 150 nm Al2O3 was deposited by PE-ALD, and through holes were opened on the 

bottom electrodes of the photodiodes. Subsequently, the bottom electrodes of the memristors, 

which are connected to the bottom electrodes of the photodiodes, were deposited using bilayer 

photolithography, e-beam evaporation of Ti/Pt (5/25 nm), and a lift-off process with the Remover 

PG. 5.5 nm of a HfO2 layer was deposited by PE-ALD, followed by metal deposition of Ta/Pt 

(50/25 nm) on the top electrodes of the memristors using DC magnetron sputtering of Ta (25 W 

RF power, 5 mTorr, Ar 20 sccm, room temperature for 18 min) and e-beam evaporation of Pt. 

Finally, the HfO2 mesa areas were defined by dry etching with ICP-RIE with a bilayer PR mask. 

The optical images of the fabricated chip and optical microscope images of the 1P1R crossbar 

array are shown in Fig. 1b and Figs 1c, d, respectively. Each pixel consisted of an InGaAs 

photodiode and memristor. The row lines share the top electrodes of the memristors (Ta/Pt 
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electrodes) and the column lines share the top electrode of the InGaAs photodiodes (p+ electrodes). 

Prior to operating the 1P1R array, I studied the optical and electrical characteristics of a single 

1P1R pixel.  

 

Figure 3.10 Working principle of single InGaAs 1P1R integrated device. a Equivalent circuit 

diagram of the 1P1R structure, and three key operations in the 1P1R device depending on applied 

bias voltage: i) memorization, ii) computation, and iii) erasing operations. b I-V characteristics of 

the single 1P1R integrated device under light illumination with an incident power density of 67 

mW/cm2 and wavelength of 532 nm133. 

 

Figure 3.10a depicts its equivalent circuit diagram, demonstrating a working principle of 

a single 1P1R pixel, where VP and VR are the applied voltages of the photodiode and memristor, 

respectively, and Vtotal=VP + VR. The 1P1R pixel is composed of an InGaAs p-i-n photodiode and 

HfO2-based memristor, which converts incoming optical signals to electrical signals and 

memorizes the optical information as its resistance. Additionally, the memristor is utilized as an 

in-memory computation unit when it operates in the computation mode. The three primary 
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operations of the 1P1R device, depending on the applied bias voltage (VTotal), are depicted in Fig. 

3.10a: i) memorization, ii) computation, and iii) erasing operations. When VTotal>2.5 V under light 

illumination, the photodiode is reverse-biased such that an incident optical signal generates a 

photocurrent to modulate the resistance of the memristor by forming a conductive filament 

(memorization operation). Thus, the optical signal can be stored in the form of resistance in a 

synaptic device. The stored image data in the memristor can then be directly used for high-level 

in-sensor processing (computation operation). When -1.3 V<VTotal<-0.5 V, the photodiode 

operates under the ohmic regime with relatively low resistance (<50 Ω) compared to a resistance 

range of the memristor (> 1·103 Ω); in this way, the 1P1R circuit can be approximated to a single 

memristor circuit. Thus, the 1P1R crossbar array can be used for synaptic in-memory computing 

based on Ohm’s and Kirchhoff’s laws. 164,181,182 Therefore, memristor serves as a cross-functional 

device for both the memory unit and processing unit for high-level in-sensory image processing. 

When a high negative bias voltage over the RESET threshold voltage (VTotal<-1.3 V) is applied 

across the 1P1R device, the memorized data in the memristor are erased (Erase operation). These 

three operations are key functions for realizing neuromorphic in-pixel image processing with a 

1P1R crossbar array. 

All electrical measurements were performed using a semiconductor analyzer (B1500A, 

Keysight). The devices were illuminated using a diode laser (DJ532, Thorlabs) with a wavelength 

of 532 nm, where the incident power was controlled by a neutral density filter. The conductive 

filament was formed by the first positive voltage sweep under light illumination, corresponding 

to the forming loop shown in Fig. 3.10b. After the forming process, the memristor is switched to 

the OFF state by applying a negative voltage sweep, where the light illumination has no effect on 

the erase operation (Fig. S1). Subsequently, a positive voltage sweep was conducted on the 1P1R 

device under light illumination, switching the memristor to the ON state and memorizing the light 
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information (Fig. 3.10b). Under dark conditions, the memristor in the 1P1R device cannot be 

switched ON via a positive voltage sweep owing to the lack of sufficient driving current to build 

the conductive filament, because the current flow is limited by the reverse-biased dark current of 

the photodiode. This result clearly demonstrates the capability of the 1P1R device as binary 

optoelectronic memory.  

 

Figure 3.11 Characterization and image memorization process of the fabricated 1P1R crossbar 

array. a Circuit diagram for a pixel in the 16 × 16 1P1R crossbar array. The pixels are colored in 

yellow (blue) when the memristors are in a SET (RESET) state in (b-d). b-d Schematic illustration 

of image memorization b, readout c, and erasing d processes in the 1P1R crossbar array133. 

 

Figures 3.11 shows the schematic illustrations of the image memorization, read, and 

erasing processes, respectively, with the 16×16 1P1R focal plane array. MNIST handwritten digit 

images of ‘4’ and ‘8’ are printed out on photomasks using a direct write lithography tool 

(MicroWriter ML3, Durham Magneto Optics Ltd), and the diode laser light with a wavelength of 

532 nm (P =50 mJ/cm2) is illuminated on the 1P1R device by passing through the printed digit 

images. The projected image (‘4’ or ‘8’) on the sensor is memorized by applying a +5 V voltage 

pulse to each pixel using a semiconductor analyzer. After the memorization process, -1 V pulse 
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is applied to each pixel to readout the saved image. Then, the stored image is erased by applying 

-5 V pulse to each pixel. A circuit diagram of the pixels is depicted in Fig. 3a, where a memristor 

in a yellow (dark blue)-colored pixel is in the LRS (HRS) state. To control the 1P1R array, 

memorization, read, and erase operations were utilized. For the image memorization process, 

voltage pulses of +5 V (100 µm pulse width) were applied across the individual 1P1R pixels, 

where the photodiodes were reverse-biased, to store incident image information in the memristors, 

as shown in Fig. 3.11b. The stored image is then read by applying voltage pulses of -1 V to each 

1P1R pixel, where the photodiode is forward-biased, to read the resistance states of the memristors 

(Fig. 3.11c). To erase the saved image in the sensor, voltage pulses of -5 V (100 µm pulse width) 

were applied to each 1P1R pixel to switch all pixels to the HRS state, enabling the sensor to be 

ready to capture the next images (Fig. 3.11d). 

 

Figure 3.12 Schematic illustration of multiply–accumulate operation for an image encoding 

process in a conventional memristor crossbar array and b 1P1R crossbar array. Corresponding 

matrix-vector multiplication is depicted with parameters of the input voltage (Vj), conductance of 

memristor (Gij), and output current (Ij)133. 

 

3.3 1P1R-Based In-Sensor Computing 
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The fabricated 1P1R crossbar focal plane array fuses sensing, learning, and computing 

capabilities similar to those of biological retinas. To realize a neuromorphic vision system, I stored 

the vision information in each 1P1R cell as a matrix geometry and simultaneously harnessed the 

data using emulated vision encoding. Previously demonstrated conventional crossbar geometries 

of neuromorphic in-memory computing systems for image processing are associated with pre-

trained weight values in the ANN matrices, and input image data are applied to the crossbar 

column as a vectorized electrical signal (Fig. 3.12a)161,164,181. Because the format of image data is 

usually a 2D N × N array, 2D-to-1D conversion (vectorization) must be applied as a vector input, 

which is an N2 × 1 vector, to the column of the memristor crossbar array. In this case, extra 

complex circuit components (e.g., ADCs, DACs, and multiplexers) must be added to a peripheral 

circuit to control a large number of input signals, increasing energy consumption and operational 

complexity164,165,181. However, our in-pixel image processing system transposes image data to the 

weights of the ANN, in which the input image is applied and stored in the crossbar array in a 

weight vector matrix form, as shown in Fig. 3.12b. Therefore, the 2D-to-1D conversion of the 

image data is no longer necessary for this configuration, significantly reducing the circuit 

complexity and improving the operational efficiency. Moreover, data transportation from image 

memorization to the image encoding process is significantly diminished because the image 

information is directly processed in the pixels without any data transfer. 
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Figure 3.13 Image memorization, encoding and classification via an in-pixel neuromorphic 

computing. a Schematic illustration of an example of in-pixel image memorization, encoding, and 

classification process with a 5 × 5 1P1R array. At the initial state, conductance of memristors is 

G0. After image memorization, conductance of each memristor is indicated as Gij. Once an image 

is memorized in the sensor, pre-trained weight voltages (-1.3 V<Vi<-0.5 V) are applied to the rows 

of the crossbar to perform a multiply–accumulate operation in the sensor for the encoding process. 

The encoded data are transferred to a post-ANN to classify the image. b Classification results 

from the memorized ‘4’ and ‘8’ digit images before and after training the ANN133. 

 

Figure 3.13a shows the in-pixel computing process using the fabricated 1P1R array. The 

12×12 image of ‘8’ is optically mapped onto the 1P1R array (sensing) and preserved as the 

conductance of the memristors (learning). Meanwhile, the front-ANN and post-ANN is pre-

trained with 10,000 datasets of the MNIST handwritten numbers in the post-processor to extract 

the optimum weight vector.183 The pre-trained 1D weight vector is then converted to electrical 

signals and applied to the 1P1R array, enabling the physical matrix multiplication for the in-pixel 

ANN computation via Ohm’s and Kirchhoff ’s law (computing). The output current signals from 

the voltage-conductance multiplication thus represent the encoded vector of the image ‘8,’ 

achieved without data transportation by emulating the biological encoding capability.  
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The encoder and classifier models were implemented using Python. I combined a matrix-

to-vector encoder (12×12-12) and a fully connected layer classifier with two hidden layers (12-

20-16-10) on the Modified National Institute of Standards and Technology (MNIST) dataset. Each 

original MNIST image was resized to 12×12 pixels, and I trained and tested 10,000 images (with 

64 batch sizes for 100 epochs) and 100 MNIST images. For the backpropagation learning process, 

I employed an RMSprop optimizer, rectifier (softmax for the last output) nonlinearity activations, 

and an initial time-decaying learning rate (0.001). Figures 3.13b shows the classification results 

from the measured and memorized ‘4’ and ‘8’ digit images. Before training, the activation level 

of each digit is randomly distributed. However, the activation level of the ANN output neurons of 

the ANN is concentrated on a single digit after training. A digit with the highest activation level 

was adopted as the classified ‘answer’.  

Compared to the general 28×28 MNIST handwritten digit dataset, the size of the MNIST 

dataset in this work is much smaller (12×12), increasing the difficulty of the image classification 

task. Thus, if I design and fabricate a 1P1R array with a larger number of pixels, I can possibly 

improve the accuracy of the image classification based on the proposed in-sensor encoding 

concept. Further accuracy improvement could be achieved by employing a dual encoding neural 

layer in the ANN, conserving both row- and column-wise features of images, which can be 

realized by employing bi-directional peripheral circuitry. I believe that more practical in-sensor 

image processing can be realized by increasing the number of pixels in the 1P1R array and 

modifying the peripheral circuitry of the system.  
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Figure 3.14 Application of in-sensor computing and memorization. a Schematic illustration of in-

sensor computing mode. The pre-trained weight matrix is mapped to the memristor array, and 

Vbias,low is sequentially applied to each row. The output currents of each column are accumulated 

(Iout). b Results of simulated classification accuracy. The device scheme with sequential biasing 

exhibits classification performance (up to 82%), while the accuracy of the device scheme with 

conventional simultaneous is up to 43%. Inference results for noised c ‘0’ and d ‘3’ images. Both 

software and device scheme identified the noised images correctly184. 

 

I also conducted simulation with the fabricated 1P1R artificial retina which features two 

in-sensor modes: the computing mode and the memorization mode184. Figure. 3.14a shows the 

schematic illustration of the in-sensor computing mode. I have employed the MNIST digit dataset 

for the image classification task185. The total number of labels is 10, from ‘0’ to ‘9’ digits. I first 

simulated the ANN that includes the in-sensor computing layer implemented via 1P1R pixel 

configuration and the following fully connected layer (FCL). The pre-trained weight matrix of the 

in-sensor computing layer is mapped as the resistance of the memristors. To activate the 

photodiodes, 3 V is applied to the column of the 1P1R artificial retina. Note that 3 V is a low 

enough voltage level so that the memristors are not programmed. 

Unlike a conventional approach that uses the simultaneous biasing of 3 V, I improved the 

classification performance by employing the sequential biasing of 3 V to each row, which 
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increases the dimensionality of the output (Fig. 3.14b) by implementing elementwise 

multiplication. The sequential biasing scheme exhibits up to 82% classification accuracy, while 

the simultaneous biasing approach shows the accuracy only up to 43% during 200 epochs. The 

pre-trained 1P1R artificial retina is also robust enough to perform the classification tasks using 

noised images, as shown in Fig. 3.14c and 3.14d. Both the software-based and device-based 

simulation results identified the noised images correctly. I simulated the MNIST classification 

task based on the NeuroSim simulator with experimentally extracted memristor parameters.186 

The number of training and test images is 10,000 and 2,500, respectively. To match the pixel 

dimensions with our fabricated 1P1R artificial retina, the original 28×28 MNIST images were 

resized to 16×16. The ANN architecture includes the in-sensor computing layer and 256-64-32-

10 fully connected layers. The initial learning rate was 0.12, and the momentum was 0.7. All the 

weight values in each ANN layer were initialized with a Gaussian distribution, and the 

feedforwarding batch size was 32 with 200 epochs. 

The energy consumption of in-sensor operation (1 cycle of write-read-erase-read) is 

calculated to be 187.5 μW, when the pulse 500 μs with a 50% duty cycle is applied. With respect 

to computing time, the required time to read the result of in-sensor computing is: Tread = (500 μs) 

/ 0.5 × 16  = 16 ms. As it can be seen from the calculation, the consumed energy and the processing 

time are dependent on the employed pulse width, thus it can further be minimized by employing 

the short pulse for the set/read/erase operations. 

 

3.4 Conclusion 

I demonstrated a spectrally selective photodetector based on the heterojunction of the 
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fabricated p-Ge/n-MoS2 photodetectors. The two-terminal heterojunction device exhibited both 

VIS and IR responsivities, depending on the reverse bias level. The selective detection capability 

is attributed to the heterojunction band modulation and reverse bias level, which promotes or 

hinders the carrier transport. The vertical heterostructure and single polarity of the bias voltage 

offer miniaturization of the system and dual-vision imaging capability. I believe that the multi-

spectral devices will be useful in the realization of neuromorphic vision systems for various 

advanced applications including light detection and ranging, healthcare, computer vision, and in 

vivo biomedical imaging133. 

I also demonstrated a neuromorphic machine vision system with an in-sensor encoding 

process inspired by mammalian vision. The focal plane array is based on an InGaAs photodiode 

directly integrated with HfO2 memristor, constructing the 1P1R optoelectronic memory and 

computing pixels. The optoelectronic and memory functionality of the fabricated 1P1R pixel 

under light illumination showed reliable digital and multibit memory operation and endurance 

performance. Furthermore, a 16×16 1P1R crossbar array with an InGaAs photodiode and HfO2-

based memristor was used to perform edge computing of the handwritten numbers. Finally, we 

demonstrated biological image encoding with the developed 1P1R crossbar array, utilizing direct 

image memorization and in-memory vector matrix multiplication. The encoded images were 

conveyed to the ANN for image classification, which revealed an accuracy of 82% with 100 

training epochs. This slightly low classification accuracy is attributed to the structure of the 

encoding neural network, which consists of twelve 12×1 fully connected layer. The architecture 

of the neural network is inevitably determined by the hardware circuit structure of the 1P1R 

crossbar array. The classification accuracy of our sensor system can be further improved using a 

dual-encoding neural layer in the ANN. The in-sensor computing concept introduced in this study 

is a novel method for storing and processing image information directly within pixels without any 
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data transportation between external computing components and is seamlessly scalable with 

conventional semiconductor fabrication technology184.   
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Chapter 4 

 
Dynamic Bio-Inspired Vision 

 
4.1 GaN/α-In2Se3 Ferroelectric HEMTs 

HEMTs are attractive for high-frequency applications owing to their high electron 

mobility (>2000 cm2/Vs)20,187–189. Recently, ferroelectric-based GaN-MOS HEMTs using HZO, 

PZT, and HfO2 dielectrics have been proposed to reduce the device dimensions and achieve lower 

power consumption via a negative capacitance effect190–198. However, it has been still challenging 

for ferroelectric-GaN MOS-HEMTs to achieve ideal performance of a large hysteresis (∆V) and 

low subthreshold slope (SS) owing to the depolarization effect caused by the interface charge 

trapping and polarization of AlGaN barrier layer. To maximize the ∆V and steep SS, the 

integration of a ferroelectric material with strong ferroelectric polarization and without dangling 

bonds is ideal for ferroelectric-GaN MOS-HEMTs199. 

In this thesis, I employed a highly crystalline two-dimensional (2D) ferroelectric material, 

α-In2Se3, as a ferroelectric gate heterostructure in GaN MOS-HEMTs because it is free from the 

charge trapping effect in dangling bonds and has a high carrier concentration. The AlGaN/GaN 

heterojunction was grown by metal-organic chemical vapor deposition on a 2-inch silicon 

substrate. It consists of a 3 nm-GaN cap layer, 25 nm-Al0.26Ga0.74N barriers, 1 nm-AlN interlayer, 

2 μm-GaN channel layer, and 1 μm-GaN buffer layer. The measured room-temperature Hall 

mobility and extracted sheet carrier concentrations were > 1300 cm2/Vs and ~1013 cm-2, 

respectively. Device fabrication was initiated by mesa isolation using a BCl3/Cl2-based 
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inductively coupled plasma reactive ion etching system. A Ti/Au/Al/Ni/Au metal stack was 

deposited through e-beam evaporation, followed by rapid thermal annealing at 830 °C for 30 s in 

N2 environment for ohmic contact formation. Subsequently, 8-nm thick Al2O3 for the gate 

dielectric was deposited using an atomic layer deposition (ALD) system with trimethylaluminum 

and ozone precursors at a temperature of 450 °C. The α-In2Se3 flakes exfoliated from the α-In2Se3 

bulk (HQ graphene) were then transferred as ferroelectric layer. Subsequently, a Ni/Au (20 nm/50 

nm) metal stack was deposited as gate electrode through e-beam evaporation. Finally, the metal-

gate aligned α-In2Se3 wet etching process was carried out for 60 s in an HCl: H2O2 = 1:5 mixture 

solution. 

The α-In2Se3 exhibits both ferroelectric and semiconducting characteristics200,201. Thus, it 

provides a fast speed barrier height modulation along with a relatively robust again depolarization 

field202. Moreover, the enhancement of the vertical polarization in the ferroelectric layer was 

achieved by developing a self-aligned structure between the gate electrode and α-In2Se3, which 

suppresses the polarization in the lateral directions. The effectiveness of the aligned structure was 

also verified using physics-based technology computer aided design (TCAD) simulations. To 

prove the ferroelectric polarization effect in the GaN/α-In2Se3 MOS-HEMT structure, I 

demonstrated modulation of the effective schottky barrier height (∆Φeff) in the GaN/α-In2Se3 

metal-semiconductor-HEMT (MES-HEMT) structure. Hence, superior SS characteristics of ~10 

mV/dec and a ∆V of ~2 V were achieved using the GaN/α-In2Se3 MOS HEMT compared to 

conventional oxide-based ferroelectric GaN MOS-HEMTs122. 
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Figure 4.1 GaN/α-In2Se3 HEMTs (FeHEMTs). a Scanned piezoelectric force measurement (PFM) 

phase image after applying a bias of + 8 V and - 8 V, sequentially. b Amplitude and phase graph 

versus external tip bias measured on α-In2Se3/Si substrate. The atomic structure of α-In2Se3 and 

pulse scheme for c program and d erase states. Band diagrams of fabricated device under e 

program and f erase states, respectively20. 

 

Figure 4.1a shows the piezo-response force microscopy (PFM) mapping for out-of-plane 

(OOP, vertical) polarizations of α-In2Se3 by applying a sequential bidirectional DC bias of +8 V 

and –8V. The OOP and in-plane (IP, lateral) ferroelectric polarizations of α-In2Se3 are switched 

simultaneously via an external electric field, resulting in a dipole-locking effect132,203. However, 

the OOP ferroelectric polarization of α-In2Se3 dominantly affects the channel conductance of the 

GaN/α-In2Se3 MOS-HEMT as a gate structure. Figure 4.1b shows the amplitude and phase 

responses to the application of external voltages, confirming the clear transition of the polarization 
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above the coercive field. The ferroelectricity of layered α-In2Se3 originates from the shift of the 

Se atom by an external electric field, as shown in Fig. 4.1c, d. Using the ferroelectric property of 

α-In2Se3, I have demonstrated a GaN/α-In2Se3 MOS-HEMT that exhibits output current states. 

The application of positive (for program, VP) and negative (for erase, VN) pulses to the gate 

electrode tunes the ferroelectric polarization of the α-In2Se3 layer coupled with the VP channel in 

the GaN MOS-HEMT. 

The multilayer ferroelectric polarization switching characteristic of α-In2Se3 allows the 

emulation of biological STP. Specifically, STP behavior can be achieved by the local polarization 

of the α-In2Se3 membrane, offering reservoir computing (RC) capability. In conjunction with 

high-frequency operation, the heterogeneously integrated GaN/α-In2Se3 MOS-HEMT serves as a 

single synapse. Figure 4.1e shows the band diagram of the GaN/α-In2Se3 MOS-HEMT 

heterostructure with the application of a programming pulse, where Φ`eff indicates the effective 

barrier height through the α-In2Se3 layer. The VP leads to the alignment of the ferroelectric 

polarization to in the same direction as the polarization in the AlGaN barrier (PPE). Therefore, 

carriers in the AlGaN/GaN 2DEG channel accumulate when the conduction band is lowered 

below the Fermi level. With the application of VN, the ferroelectric polarization is aligned in the 

opposite direction of the PPE, which counters the polarization in the AlGaN barrier. Thus, the 

conduction band in the heterostructure rises above the Fermi level and the carriers in the 2DEG 

channel are fully depleted, as shown in Figure 4.1f. Furthermore, the accumulation and depletion 

of carriers within semiconducting α-In2Se3 layer depending on applied gate bias modulate the 

Φ`eff, inducing the depletion capacitance (Cdep) at the interface of α-In2Se3/Al2O3. 
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Figure 4.2 Design of GaN/α-In2Se3 FeHEMTs. a Cross-section schematic of GaN/α-In2Se3 MOS-

HEMT before and after the etching process. Optical microscopy image of the region where Raman 

spectroscopy analysis was conducted on α-In2Se3 b before and c after the etching process (white 

dashed circle)20. 

 

To maximize the ferroelectric effect on the coupled 2DEG channel, I confined the α-In2Se3 

area by selectively removing the film outside the gate metal region through a wet-etching process. 

For the GaN/α-In2Se3 MOS-HEMT structure without a confined α-In2Se3 layer, the area of α-

In2Se3 adjacent to the drain electrode was unintentionally polarized owing to the drain bias. Thus, 

when an VN and VP are applied to the gate electrode to align the polarization, the induced parasitic 

polarization from the drain bias offsets the polarization derived via the gate pulse. Therefore, this 

limits the ferroelectric polarization of the GaN/α-In2Se3 MOS-HEMT in the OOP direction. 

Herein, I constrained the unwanted parasitic IP polarization by self-defining the area of α-In2Se3 

matching with the gate electrode. Figure 4.2a shows a schematic of the GaN/α-In2Se3 MOS-
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HEMT before and after confining the α-In2Se3 layer, where the grey dashed box represents the 

etched area. The red and blue arrows indicate IP and OOP polarizations in the α-In2Se3 layer, 

respectively. The L’D,Ferro (4.5 μm) is the length between the α-In2Se3 and drain metal after the 

self-defined wet etching process. Optical microscopy images of the device before and after the 

self-defined etching process are shown in Fig. 4.2b, c. 

 

Figure 4.3 Electrical characterization of GaN/α-In2Se3 FeHEMTs. a Normalized bidirectional IDS 

vs gate voltage (VGS) transfer curve of GaN/α-In2Se3 MOS-HEMT at drain voltage (VDS) = 0.1, 0.5, 1 

V, respectively. An inset shows the linear scale of bidirectional curve of Figure 4.3a. b Normalized IDS 

vs VDS output curve of GaN/α-In2Se3 MOS-HEMT at VGS range of 0 V ~ -10 V. c and d Minimum 

subthreshold swing (SSmin) and ∆V versus different VGS sweep ranges. Parameters were extracted from 

the bidirectional IDS vs VGS transfer curve of GaN/α-In2Se3 MOS-HEMT20. 

 

Figure 4.3a shows the bi-directional transfer curves at drain voltages (VDS) of 0.1, 0.5, and 

1 V. Counterclockwise ∆V is referred to as switching of the ferroelectric polarization of α-In2Se3 

in the GaN/α-In2Se3 MOS-HEMT structure. To confirm the output characteristics of the GaN/α-

In2Se3 MOS-HEMT, I measured the IDS vs. VDS output curve for the VGS range from 0 V to -10 V 

with a 1 V step, as shown in Fig. 4.3b. Furthermore, the SSmin and ∆V under various VGS sweep 
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ranges (Vend indicate the end point of VGS sweep range), -10 V ~ 0 V and -10 V ~ 2V, were 

extracted from the bi-directional transfer curve at VDS = 1 V. Steep SS in ferroelectric-FET (FeFET) 

is advantageous for neuromorphic computing applications because it minimizes the power 

consumption by preventing unwanted switching behavior until it reaches the threshold voltage. 

Specifically, the low subthreshold current suppresses the leakage current generated by a sequential 

input pulse train204. Figure 4.3c shows SSmin vs. Vend for the forward and reverse sweeps. The SSmin 

is maintained below 20 mV/dec at Vend range from 0 V to 2 V, and it is decreased further to 10 

mV/dec when Vend = 2 V. Owing to the coercive field (for both negative and positive amplitude) 

in α-In2Se3, as confirmed in PFM data, the direction of ferroelectric polarization can be flipped 

by an external electric field. Figure 4.3d exhibits the ∆V graph extracted from the transfer curve 

for Vend from 0 V to 2 V, indicating a gate sweep range (from -10 V to 2 V) sufficiently induces 

ferroelectricity of α-In2Se3. 

The low SSmin achieved in the GaN/α-In2Se3 MOS-HEMT structure can be explained by 

the emergence of the additional Cdep induced by α-In2Se3 layer owing to its ferroelectric and 

semiconductor properties. Introduction of semiconducting α-In2Se3 layer causes the depletion at 

the interface of α-In2Se3/Al2O3, and thus induces additional Cdep. The equivalent circuit of a 

classical ferroelectric MOS-HEMT is a series combination of Cpol – Cins – CAlGaN – CGaN without 

Cdep, where Cpol and Cins are the capacitances of the ferroelectric polarization and dielectric layer, 

respectively192. The SS extracted from the ferroelectric MOS-HEMT can be expressed as below: 

      𝑆𝑆 = 60 ∙ (1 +
𝐶𝐻𝐸𝑀𝑇

𝐶𝑖𝑛𝑠
) ∙ (1 −

𝐶𝑀𝑂𝑆

|𝐶𝑝𝑜𝑙|
) , 𝐶𝑀𝑂𝑆 =

𝐶𝐻𝐸𝑀𝑇∙𝐶𝑖𝑛𝑠

𝐶𝐻𝐸𝑀𝑇+𝐶𝑖𝑛𝑠
   (1) 

             
1

𝐴𝑣
= (1 −

𝐶𝑀𝑂𝑆

|𝐶𝑝𝑜𝑙|
)       (2) 
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The term (1 −
𝐶𝑀𝑂𝑆

|𝐶𝑝𝑜𝑙|
) in Eq. (1) indicates that ferroelectric polarization can further decrease SS 

below 60 mV/dec. Specifically, the term (1 −
𝐶𝑀𝑂𝑆

|𝐶𝑝𝑜𝑙|
) is associated with voltage amplification (AV), 

and the term 1/AV can be described as shown in Eq. (2). Under the specific conditions (Cins > 

|𝐶𝑝𝑜𝑙|), 1/AV has a value of less than 1 (1/AV < 1), and it is mainly attributed to the polarization 

switching in α-In2Se3
192. Cins of 1.593 x 10-6 F/cm2 and Cpol of ~0.2 x 10-6 F/cm2 are extracted 

from C-V measurement using the fabricated MOSCAP and through the TCAD simulation, 

respectively. By comparing Cins and Cpol, I confirmed that the condition of Cins > |𝐶𝑝𝑜𝑙| for proving 

1/AV < 1 is satisfied, and the SS below 60 mV/dec at room temperature can be explained using 

Eq. (1), (2)192. In addition to the ferroelectric polarization effect, the reduction in Cpol by adding a 

series capacitance results in a further decrease in the SS. Hence, Cdep can even further enhance the 

subthreshold performance of the device. Thus, the semiconducting property of α-In2Se3 uniquely 

contributed to the superior performance of the GaN/α-In2Se3 MOS-HEMT.  

 

Figure 4.4 Subthreshold swing (SS) and hysteresis characterizations of GaN/α-In2Se3 FeHEMTs. 

a Bi-directional IDS vs VGS transfer curve of GaN/α-In2Se3 MOS-HEMT at VDS = 1 V, measured under 

a slow, normal, and fast sweep speed mode. b SSmin and c ∆V extracted from Fig. 4.3a at Vend = 0, 2 V 

under a slow, normal, and fast sweep speed20. 
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Figure 4.4a shows the bi-directional transfer curves for the slow (0.3 V/s), normal (0.9 

V/s), and fast (2.9 V/s) sweep speed modes. It coherently exhibits counterclockwise ∆V, and 

threshold voltage shifts to the negative direction as the sweep speed decreases because the gate 

bias polling time is reduced. The SSmin depending on the sweep speed for Vend = 0 and 2 V 

extracted from the bi-directional curve is shown in Fig. 4.4b. The SSmin for each case was lower 

than 20 mV/dec; in particular, the SSmin decreased to 8 mV/dec at Vend = 2 V under a fast sweep 

speed mode. In addition, ∆V is dependent on the sweep speed that supports the polarization 

matching effect. The ∆V has been weakened in the fast sweep speed mode, as shown in Fig. 4.4c20. 

 

4.2 GaN/CuInP2S6 Ferroelectric HEMTs 

I employed a CIPS/GaN ferroelectric HEMT (FeHEMT) to achieve high-power driving 

capability. GaN-based HEMTs are widely employed in radio frequency (RF) and power 

electronics applications because of their high output current and fast switching capability by 

employing an AlGaN/GaN heterostructure, which forms a two-dimensional electron gas (2DEG) 

transport channel205. Thus, it offers a high electron saturation velocity, a high breakdown electrical 

field, and a high electron mobility suitable for high-power and high-frequency applications188,206. 

Epilayers for HEMT structure were grown by metal-organic chemical vapor deposition 

(MOCVD) on a 2 inch silicon substrate (MSE supplies, USA). The heterostructure was etched to 

isolate the mesa structure via a BCl3/Cl2-based inductively coupled plasma reactive ion etching 

(ICP-RIE) system. A Ti/Al (25/140 nm) metal stack was deposited via sputtering, followed by the 

deposition of Ni/Au (40/50 nm) via an electron-beam (e-beam) evaporator. The sample was 

annealed using a rapid thermal annealing (RTA) system at 830 °C for 30 s in an N2 atmosphere 
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to form ohmic contacts. A 5 nm Al2O3 gate dielectric was deposited using an atomic layer 

deposition (ALD) system with trimethylaluminum and ozone precursors at 450 °C. A CIPS flake 

(60 nm) was then exfoliated from the CIPS bulk (HQ graphene) and transferred to the HEMT 

channel interface. The final Ni/Au (40/80 nm) gate electrode was deposited by e-beam 

evaporation. 

 

Figure 4.5 Material analysis of GaN/CuInP2S6 (CIPS) FeHEMT. a Polarization-voltage (P-V) 

characterization of Ti/Au/CIPS/Ti/Au metal-ferroelectric-metal (MFM) capacitor under 50-kHz 

triangular pulse. Inset: positive-up negative-down (PUND) waveform. b Polarization switching 

endurance of CIPS membrane. Red and blue lines: endurance under downward and upward 

polarization, respectively. c PFM characterization of CIPS membrane. The hysteresis loops of 

both the amplitude and phase PFM verify the ferroelectricity of the CIPS membrane. d PFM 

imaging of CIPS membrane on metal (15 μm × 10 μm horizontal scan). The bright region indicates 

the piezoelectric response of the CIPS membrane. e Cross-sectional transmission electron 

microscopy (TEM) image of GaN/CIPS FeHEMT. f Raman spectroscopy of GaN/CIPS FeHEMT, 
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including GaN (left) and CIPS (right) peaks. The GaN peak is at 568 cm-1, and the CIPS peaks 

include the multiple vibration peaks (150-400 cm-1) and ionic peaks (100 cm-1 and 315 cm-1). G 

Energy dispersive X-ray spectroscopy (EDS) characterization of cross-sectional GaN/CIPS 

FeHEMT. White dash line: CIPS region. Cu, In, S, and P are uniformly distributed in the CIPS 

region. 

 

To analyze the ferroelectric properties of the CIPS membrane, including the polarization 

window, endurance, and spatial ferroelectricity, I first fabricated a two-terminal metal-

ferroelectric-metal (MFM) capacitor. Figure 4.5a shows the bipolar polarization–voltage (P–V) 

curve of the CIPS without a preset loop. The P–V curve exhibited a hysteresis loop, a remanent 

polarization of approximately 10 µC/cm2, and a coercive voltage of ±3 V driven by a 50 kHz 

triangular pulse. I also characterized the endurance performance using the repeated positive-up 

and negative-down (PUND) measurement technique (Fig. 4.5b). The polarization switching 

between saturation (Ps) and remanent polarization charge (Pr) persisted over 107 cycles, 

confirming the stability and programmability of the CIPS membrane. The results of piezoelectric 

force microscopy (PFM) measurements are shown in Fig. 4.5c, d. The hysteresis loops in both the 

amplitude and phase of the PFM measurements indicated ferroelectricity in the CIPS membrane 

(Fig. 4.5c). The spatially resolved amplitude and phase of the piezoelectric potential were mapped 

in the PFM images (Fig. 4.5d), confirming the piezoelectric response of the CIPS membrane. 

Figure 4.5e displays a cross-sectional transmission electron microscopy (TEM) image of the CIPS 

membrane, which was mechanically exfoliated from the bulk crystal. The freestanding membrane 

was heterogeneously integrated onto an AlGaN/GaN HEMT epilayer passivated with Al2O3 as a 

gate dielectric through van der Waals forces. The thicknesses of the CIPS and Al2O3 layers were 

60 nm and 5 nm, respectively. Figure 4.5f shows the Raman spectra of the GaN/CIPS FeHEMT. 
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The peak at 568 cm-1 indicates the GaN layer (Fig. 2F), and the peaks at 160, 263, and 375 cm-1 

correspond to the S-P-P, S-P-S, and P-P vibrations of the CIPS membrane, respectively. The ionic 

responses of the CIPS membrane were also characterized, with P2S6
4- anion and Cu+ cation peaks 

observed at approximately 100 and 315 cm-1, respectively207. Figure 4.5g shows the cross-

sectional energy-dispersive X-ray spectroscopy (EDS) mapping results of the GaN/CIPS 

FeHEMT. The EDS mapping clearly confirms that the CIPS layer is composed of uniformly 

distributed Cu, In, P, and S.  A cross-sectional GaN/CIPS FeHEMT structure was analyzed using 

a focused ion beam (FIB) system and HR-TEM (JEM-2100F(HR), JEOL Ltd.) with EDS 

elemental mapping. The PFM amplitude and phase were characterized using a PFM tip with a 

writing bias range of ± 10 V in the electrostatic force microscopy (EFM) mode (NX-10/Park 

Systems). Micro-Raman spectroscopy was performed at room temperature using a Raman 

imaging microscope (DXR 2xi) with a laser excitation wavelength of 532 nm. 

 

Figure 4.6 Working principle of GaN/CIPS FeHEMT. a Cross-sectional device structure of 

CIPS/GaN HEMT. b Band diagrams of program and erase states of GaN/CIPS FeHEMT. The IL 

in the figure indicates an oxygen-abundant GaN interlayer between Al2O3 and AlGaN. The 

positive bias generates downward polarization, lowering the barrier height and increasing the 

transconductance of the GaN/CIPS FeHEMT. In contrast, the negative bias generates the upward 
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polarization that increases the barrier height and decreases the transconductance of the GaN/CIPS 

FeHEMT. 

 

Figure 4.6a provides a detailed device structure of the fabricated GaN/CIPS FeHEMT, 

which includes a Ti/Al/Ni/Au (25/140/40/50 nm) source/drain electrode, a Ni/Au (40/50 nm) gate 

electrode, a CIPS/Al2O3 (60/5 nm) gate dielectric, a GaN capping layer (3 nm), Al0.26Ga0.74N (25 

nm) layer, AlN (1 nm), and a GaN channel layer (~2 μm). Figure 4.6b illustrates the band diagrams 

for the GaN/CIPS FeHEMT under programmed and erased states, estimated by physics-based 

technology computer-aided design (TCAD) simulations. An external electric field alters the 

polarization state of the CIPS gate dielectric. A positive bias generates a downward polarization 

state that reinforces the spontaneous polarization of AlGaN and increases the electron carrier 

concentration in the 2DEG of the HEMT structure. In contrast, a negative bias switches the 

polarization state upwards, decreasing the electron carrier density in the HEMT channel by 

counterbalancing the spontaneous polarization of AlGaN122. This ferroelectric switching 

capability, coupled with the carrier concentration in the 2DEG through external stimuli, enables 

a programmable output current.  

 

Figure 4.7 Electrical characterization of GaN/CIPS FeHEMT. a I-V transfer curve of the 
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fabricated CIPS/GaN HEMT. The double sweep switches the ferroelectric polarization of the 

CIPS, thus the hysteresis loop forms. b I-V output curve of the GaN/CIPS FeHEMT with an output 

current of approximately 2 mA. c Comparison of subthreshold swing (SS) between GaN/CIPS 

FeHEMT and GaN HEMT. With the CIPS membrane, the SS overcomes Boltzmann limitation 

(60 mV/dec). 

 

Figure 4.7a presents the transfer I-V characteristics of the fabricated GaN/CIPS FeHEMT 

during forward and backward bias sweeps. All electrical measurements were performed using a 

semiconductor parameter analyzer with a pre-amp (Keithley-4200A-SCS). The piezoelectric 

properties of α-In2Se3 were characterized using piezoelectric force measurements (PFM; NX-

10/Park Systems), and the thickness of the α-In2Se3 flake was verified using atomic force 

microscopy (XE-150/Park Systems). The Raman shift was measured using a Raman spectrometer 

(DXR2xi/Thermo). 

The forward sweep led to the switching of out-of-plane polarization of the GaN/CIPS 

FeHEMT, decreasing a threshold voltage up to 0.5 V with an ~1.5 × 108 ON/OFF ratio during the 

backward sweep. The gate leakage current (IGS) of the GaN/CIPS FeHEMT was substantially 

smaller (~5 pA) than the on-current (IDS, 0.95 mA). During a backward sweep, the CIPS 

polarization changed to downward and enhance the polarization in the AlGaN barrier layer. The 

CIPS down-polarization induced the accumulation of 2DEG, allowing the transport channel to be 

more conductive. This results in an increase in IDS at a fixed gate bias, and thus negatively shifts 

the threshold voltage (Vth). During a forward sweep, the depletion of the 2DEG resulted in a 

positive shift in Vth owing to the reduced current at a fixed gate.  

Figure 4.7b shows the output I-V characteristics of the GaN/CIPS FeHEMT. The 

saturation current of the GaN/CIPS FeHEMT after polarized switching was 2 mA at gate voltage 
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(VGS = 0 V) and drain voltage (VDS = 10 V), which corresponds to a current density of 200 mA/mm. 

As shown in Fig. 4.7c, the subthreshold swing (SS) was improved by using the CIPS/GaN van 

der Waals heterostructure due to the negative capacitance effect of the CIPS gate dielectric. The 

lower SS drives a sufficient current at low drain bias and suppresses a leakage current, reducing 

the energy consumption for neuronal circuitry such as spiking neural networks and reservoir 

computing 208. After polarization switching, the SS at the backward sweep overcomes the 60 

mV/dec Boltzmann limitation (46 mV/dec) at room temperature, whereas the conventional 

AlGaN/GaN HEMT without the CIPS membrane only shows a SS of near 60 mV/dec. With a 

programming gate pulse of 2 ms, the retention time of the out-of-plane polarization persisted for 

more than 5 hours, which is sufficient for time-varying high-order neuromorphic computing 

applications. 

 

4.3 Synaptic GaN HEMT-Based Reservoir Computing 

RC is well known for being suitable for processing temporal data and data with high 

dimensionality14,19. RC process, which mimic the biological STP, allows for a non-linear encoding 

framework in a time domain, reducing the data dimensionality without the need for additional 

training processes209.  
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Figure 4.8 Short-term plasticity (STP) characterizations of GaN/α-In2Se3 FeHEMTs. a Excitatory 

postsynaptic current (EPSC) responses for different gate input widths from 1 ms to 500 

ms. Each output current of the EPSC is collected from the drain electrode of GaN/α-

In2Se3 MOS-HEMT while the input pulses are applied to the gate electrode. Cumulative 

EPSC responses for sequential pulses with a time interval of b 10 ms and c 100 μs, and 

d with incremental amplitudes. e For various time intervals between two sequential 

pulses, ranging from 10 ms to 500 ms, the pair-pulse-facilitation (PPF) was calculated 

from 1st and 2nd peaks of each EPSC. f Endurance cycle for the program and erase 

operations. Responses current was measured after applying a program and erase pulses 

at VDS = 1 V20. 

 

The unique properties of heterointerface between α-In2Se3 and AlGaN/GaN based 2DEG 

enable the neuromorphic function GaN/α-In2Se3 MOS-HEMT in STP. Figure 4.8a shows the 
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excitatory postsynaptic (EPSC) responses for pulse widths of 1–500 ms, mimicking the biological 

STP. To compensate for the initial polarization caused by the AlGaN barrier layer, an initial set-

up pulse has been applied for 2 s. The EPSC showed a dependency on the pulse width, and the 

postsynaptic signal intensity has been increased as the wider pulse width has been applied. Figs. 

4.8b, c show the sequential EPSC for two pulses at a time interval of 10 ms and 100 μs, 

respectively. Unlike the 10-ms interval, the shorter time interval (100 μs) allows the 

accumulation of input spikes. The input spikes can be accumulated by increasing the pulse 

amplitude (Fig. 4.8d). Figure. 4.8e shows the corresponding pair-pulse-facilitation (PPF) index 

plot. The time interval for extracting the parameters of the PPF index increased gradually from 10 

to 500 ms. The maximum PPF index value was 114% at a time interval of 10 ms, whereas the 

minimum value was 100% at a time interval of 500 ms. Figure 4.8f shows the endurance times 

for the erase and program operations. Both operations were maintained for 5000 cycles without 

significant variations in the channel conductance (GDS). 

Owing to the high electron mobility of AlGaN/GaN HEMT, the extracted cut-off 

frequency (fT) of the fabricated device is estimated to be 3.3 GHz based on the transconductance 

of 156 μS and the total gate capacitance of 7.32 x 10-15 F extracted from IDS vs VGS and C-V 

measurement, respectively.  

 

Figure 4.9 Schematic of reservoir computing (RC) based on GaN/α-In2Se3 FeHEMTs for vowel 
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image classification (example of ‘A’). 3×5 ‘A’,’E’,’I’,’O’, and ‘U’ datasets are prepared, and 

the pixel intensities are converted to voltages (‘0’ → -2 V and ‘1’ → +2 V). The accumulated 

pulses generate corresponding EPSCs at VD=2 V and VG=-6 V. The readout EPSCs are 

normalized and fed into the pre-trained fully connected layer (3-5-8-5 nodes) for 

classification. All pulses are 50-ms pulses with 50% duty cycle20. 

 

RC operation is feasible via multistate dipole polarization of the GaN/α-In2Se3 MOS-

HEMT that corresponds to the randomly distributed nodes in the reservoir layer. Furthermore, the 

coupled 2DEG channel allows for processing high-frequency input signals in RC system. Here, 

based on the described electrical and neuromorphic characteristics above, I demonstrated the RC 

capability of the GaN/α-In2Se3 MOS-HEMT. Figure 4.9 shows a schematic of the RC system. I 

prepared 3 × 5 ‘A’, ‘E’, ‘I’, ‘O’, and ‘U’ datasets for classification, and the pixel intensities of the 

datasets were converted to voltage amplitudes. Then, three 1 × 5 voltage pulses (corresponding to 

each letter) have been applied to the gate electrode of the GaN/α-In2Se3 MOS-HEMT. The pixel 

intensities of the letter images were encoded to voltage amplitudes (0 for -2 V and 1 for 2 V). The 

erase, read, and program voltages were -20, 1, and 2 V, respectively. All pulse widths were 50 ms. 

One hundred encoded data were collected (20 per letter) and divided into 80 training and 20 test 

images. A 3-5-8-5 FCNN was employed with ReLU activation layers (softmax for the last output). 

An RMSprop optimizer was employed with an initial time-decaying learning rate of 0.001. 
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Figure 4.10 Experimental EPSC responses of letter a ‘A’, b ‘E’, and c ‘I’. The EPSC peaks 

correspond to the ‘1’ pixel intensity in each letter20. 

 

The input pulses in the letter images generated accumulated EPSC in a time domain 

(Figure 4.10), which is then applied as an input to the FCNN. For example, the ‘1’ pixel intensity 

generates the EPSC spike, whereas the ‘0’ pixel intensity relaxes the EPSC intensity. As a result, 

the 3 × 5 input matrix is nonlinearly embedded into the distinguishable 3 × 1 vector (at the read 

pulse) as an input to the FCNN, offering the miniaturization of the FCNN model for the faster 

classification. 
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Figure 4.11 RC-based vowel classification. a EPSC responses with respect to each pulse 

number. The current values corresponding to each pulse pattern are averaged. b Results of 

RC-based classification. For each train and test procedure, up to 97% and 95% accuracies are 

achieved, respectively. c Confusion matrix of vowel image classification. Inference results 

for noised (modifying one pixel) inputs, d ‘E’, e ‘I’, and f ‘O’20. 

 

The corresponding readout currents for certain patterns are shown in Figure 4.11a. The 

continuous ‘1’ input signals accumulated as increased EPSC intensity, whereas ‘0’ signals relaxed 

the EPSC from GaN/α-In2Se3 MOS-HEMT due to its STP. I have collected the encoded data and 

pretrained the FCNN. Figure 4.11b shows the training and test accuracies of the RC-based neural 

network. The accuracy converged to approximately 96% after the 50th epoch via the continuous 

optimization of the learning parameters, with a slight fluctuation during the first 50 epochs. 

Consequently, the training and test processes achieved accuracies of up to 97% and 95%, 
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respectively. Figure 4.11c presents the confusion matrix for the classification. Although the 

classification accuracy of the ‘O’ is slightly degraded, the FCNN is robustly trained to infer noised 

images. For instance, noised ‘E’, ‘I’, and ‘O’ images are also classifiable via the FCNN, exhibiting 

the highest probability for the corresponding predictions, as shown in Figure 4.11d-f. The 

spontaneous STP behavior of the GaN/α-In2Se3 MOS-HEMT can perform RC, encoding the input 

matrix as a vector for an effective classification task. 

 

4.4 Artificial Oculomotor Dynamics 

The somatosensory system in biological organisms is responsible for detecting and 

responding to various external stimuli, including vision, sound, odor, pressure, and 

temperature210–212. To achieve such reactions, external stimuli detected by the afferent nerve 

(sensory neurons) are first transferred to the central nervous system (CNS)213. The CNS then 

generates an action potential for the efferent nerve (motor nerve) that actuates the target muscle 

through the neuromuscular junction (NMJ). The NMJ is a unique and essential synaptic 

connection between the efferent nerve and muscle fibers that triggers motion via the transmission 

of action potentials through it214. Consequently, the stimulated muscle fibers contract and relax, 

becoming capable of triggering macro-motions. Macro-motions generally require substantially 

higher energy than that required for computation. Therefore, it has been challenging to emulate 

NMJs to fulfill both synaptic plasticity and the capability to drive large amounts of energy215–218.  

To address these challenges, here I demonstrate synaptic transistors by heterogeneously 

integrating a CIPS ferroelectric membrane as a gate dielectric material with an AlGaN/GaN 

HEMT. The programmable transconductance of ferroelectric transistors allows for artificial 

synaptic plasticity, which is attributed to the polarization of the ferroelectric gate dielectric layer. 
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Among many ferroelectric materials, including Zr-doped Hf1-xZrxO
123, PbZr0.52Ti0.48O3

219, 

BaTiO3
220, and BiFeO3

221, CIPS is a unique two-dimensional (2D) van der Waals (vdW) material 

with out-of-plane ferroelectricity that offers high integrability, flexibility, and responsivity to 

electrical signals45,222–226. The out-of-plane ferroelectricity in the CIPS is attributed to the ionic 

dynamics of the Cu and In cations, which are vertically displaced in the sulfur framework227.  

 

Figure 4.12 Schematic illustration of mimicking neuromuscular junction (NMJ). a Schematic 

illustration of oculomotor system. The stimulus transmitted through the optic nerve propagates 

towards the target muscle via the central nervous system (CNS), oculomotor nucleus/nerve, and 

NMJ. b Biological NMJ. The NMJ connects the terminal of the oculomotor nerve with muscle 

fibers. c Emulation of the NMJ for fast stimulus enhancement. The fast response is emulated by 

the programmable GaN/CIPS FeHEMT and integrate-fire unit (IFU). d Emulation of NMJ 

dynamics. The CNS generates an action potential on the efferent nerve that actuates the target 

muscle through the NMJ. The trained GaN/CIPS FeHEMT with an IFU allows for enhanced 

reflexes. e Schematic of GaN/CIPS FeHEMT structure. The polarization of the GaN/CIPS 
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FeHEMT mimics synaptic plasticity and generates a programmable two-dimensional electron gas 

(2DEG) current that serves as an artificial EPSC. 

 

Figure 4.12a shows a schematic of the biological oculomotor system. When visual stimuli 

via the optic nerve—categorized as an afferent nerve—trigger the CNS 213, the CNS generates an 

action potential via the oculomotor nucleus in the midbrain. The potential is then transmitted to 

the NMJ via the oculomotor nerve—categorized as an efferent nerve—and finally actuates the 

target muscle228. Figure 4.12b illustrates the neuromuscular dynamics driven by stimuli from the 

CNS. The NMJ connects the oculomotor nerve to the muscle fibers, generating an excitatory 

postsynaptic current (EPSC) that triggers contraction and relaxation of the muscle fibers229. 

Repeated stimuli reinforce synaptic connectivity for signal transmission between NMJs and 

muscle fibers in the somatosensory system, resulting in enhanced reflexes215. Trained athletes’ 

quick reactions, such as sprint starts, swim starts, and dribbling, are good examples of enhanced 

conscious responses. This study demonstrated the enhancement using artificial synaptic plasticity 

of the ferroelectric field-effect transistor (FeFET) through a training process (Fig. 4.12c). 

I used a ferroelectric CIPS membrane integrated into a GaN HEMT as a gate dielectric 

layer (Fig. 4.12d) to emulate neuromuscular synaptic plasticity and motion driving capability. The 

ferroelectric polarization of CIPS enables the GaN HEMT to be programmable, which is a critical 

function of biological STP and LTP. I also emulated the enhanced response by integrating 

artificial synapses based on the GaN/CIPS FeHEMT as an NMJ with an IFU that accumulated the 

incoming pulse train and generated a single firing spike. 
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Figure 4.13 Emulation of biological enhanced reflexes based on GaN/CIPS FeHEMT. a 

Schematic illustration of integrated GaN/CIPS FeHEMT with an IFU. Output spiking responses 

b before programming and c after programming (trained). After the training process, a 14% faster 

response (output spike) was achieved (24 ms) compared to the response without repeated training 

(28 ms). 

 

The combination of artificial LTP and STP enables spatiotemporal processing, which 

provides a pathway for emulating the enhanced reflexes. Figure 4.13a shows the GaN/CIPS 

FeHEMT connected to the IFU that accumulates incoming spikes and generates different spike 

timings with respect to the programmed states of the GaN/CIPS FeHEMT. The IFU includes 

integrating and firing building blocks. The integrating building block includes an amplifier, 

resistor, and capacitor that accumulate the input voltage signals. The following comparator serves 

as the firing building block, generating an output spike when the accumulated input signal exceeds 

the predefined threshold voltage (Vcomp, 1 V). I applied repeated external stimulation (50 gate 

pulses), referred to as the training process, to strengthen the synaptic connections toward the target 

muscle. Each pulse features a 50% duty cycle, a baseline of -5 V, an amplitude of 8 V, and a pulse 

width of 4 ms. The transconductance of the trained GaN/CIPS FeHEMT increased, generating 

larger spikes and triggering a faster corresponding spike from the comparator. After repeated 

training procedures, a smaller number of external stimulations (10 gate pulses) generated a higher 
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EPSC that mimicked the increased connectivity between the biological muscle and the NMJ. The 

EPSC generated by the GaN/CIPS FeHEMT is accumulated by the IFU; then, by firing a final 

output spike upon exceeding the threshold Vcomp (1 V), as shown in Fig. 4.13b and c, a 14% faster 

response (output spike) was achieved (24 ms) compared to the response without repeated training 

(28 ms). The redundant floating effect at node A after the discharging process could also increase 

the baseline of the voltage at point A to the positive voltage, but most of the upshift was attributed 

to the training process. 

 

Figure 4.14 Integration of microelectromechanical system (MEMS) mirror and GaN/CIPS 

FeHEMT. a Direct amplifier-less operation of actuator via GaN/CIPS FeHEMT. The beam 

steering emulates the adduction and abduction motions. The two-terminal 

microelectromechanical system (MEMS) mirror is connected to the drain of the GaN/CIPS 

FeHEMT. b Experimental results of beam steering. The displacement of the laser beam is 

dependent on the steering angle of the MEMS mirror, which actuation is driven by the IDS of the 

GaN/CIPS FeHEMT. c Voltage-dependent steering angles. The steering angle is proportional to 

IDS, modulated by VGS. 
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Based on the biological plausibility of LTP and STP, the GaN/CIPS FeHEMT exhibits 

programmable temporal dynamics with a high enough output current to drive external actuators. 

To demonstrate the feasibility of this direct actuation, I performed experiments of oculomotor 

dynamics using the GaN/CIPS FeHEMT-based artificial NMJ for in-situ mechanical object 

tracking. The oculomotor dynamics are mediated by multiple extraocular muscles, including the 

obliques and recti. The lateral and medial recti govern the lateral rotation of the eyeballs via 

adduction and abduction230. I integrated a MEMS mirror (S12237-03P, Hamamatsu) directly with 

the GaN/CIPS FeHEMT to emulate these extraocular movements (Fig. 4.14a). The movements 

were visualized by exhibiting displacements of the reflected laser beam on the MEMS mirror 

towards the target location, depending on the applied VGS to the GaN/CIPS FeHEMT (Fig. 4.14b). 

I confirmed that the high driving output current of the GaN/CIPS FeHEMT was sufficient to 

operate the MEMS mirror without additional amplifying circuitry (Fig. 4.14c). 

  

 

Figure 4.15 Schematic of in-situ mechanical object tracking. The tracking system additionally 

incorporates an ultrasound distance sensor integrated to the gate of the GaN/CIPS FeHEMT. The 
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position of the car is captured by the ultrasound distance sensor and converted to the analog 

voltage that drives IDS to steer the mirror. 

 

By directly integrating a sensor into the system, the synaptic plasticity of the GaN/CIPS 

FeHEMT can be utilized to improve the in-situ object-tracking functionality (Fig. 4.15). I 

employed the programmable robot car (Zumo Robot v1.2, Pololu) as a tracked object that moves 

back and forth based on the chaotic time series input. The gate of the GaN/CIPS FeHEMT was 

connected externally with the ultrasound sensor (URM09, DFRobot) that detects the distance 

between the sensor and object (x(t)). x(t) ranges from 0 to 30 cm corresponding to the chaotic 

oscillation range of the robot car. The distance-dependent analog voltage from the ultrasound 

sensor was applied as VGS to the GaN/CIPS FeHEMT. The output drain current (IDS) of the 

GaN/CIPS FeHEMT was dependent on the movement of the target object and modulated the 

steering angle (θ(IDS)) of the MEMS mirror for in-situ object tracking.  

I employed the chaotic Mackey-Glass time-series data for a moving signal, x(t), generated 

by the discrete equation as shown in Eq. (3)231–234: 

𝑥(𝑡 + 1) = 𝑐 ∙ 𝑥(𝑡) + (
𝑎∙𝑥(𝑡−𝑑)

𝑏∙𝑥(𝑡−𝑑)𝑒)   (3) 

where a (0.05), b (0.2), c (0.9), d (17), and e (10) are constants. The first 100 data points 

were removed to achieve a stable oscillating chaotic signal. The remaining 400 data points were 

then normalized between 0 and 1. In this experiment, the output of the ultrasound distance sensor 

was between 0 V and 0.8 V, but further distance ranging is possible when the larger space is 

available, reaching the operating voltage of the ultrasound distance sensor (5.5 V). Thus, within 
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the maximum possible voltage range of the sensor (5.5 V), I additionally amplified the output 

signal (59-179, Edmund) that reaches up to 4 V only for the visualization purpose. The IDS output 

signals were interpolated from 200 to 400 data points and normalized, to match the dimensions 

with that of x(t). The tracking spot was illuminated by a 532-nm diode laser (DJ532, Thorlabs).  

 

Figure 4.16 Emulation of biological oculomotor dynamics. a Motion input and tracking output 

time-series data. The trained GaN/CIPS FeHEMT shows a higher IDS (red line) that is more closely 

matched with the motion input signal for effective object tracking through beam steering. b 

Symmetric absolute percentage error (sAPE) plots of tracking output (IDS) with respect to motion 

input. The trained GaN/CIPS FeHEMT drives larger initial IDS, improving the cumulative sAPE 

of tracking. Inset: Zoom-in plot of cumulative sAPE. c Phase plots of motion input and tracking 

output. The trained system shows closer phase tracking of the motion input. 

 

Figure 4.16a confirms the in-situ object tracking capability using the assembled system 

consisting of the ultrasound sensor, GaN/CIPS FeHEMT, and MEMS mirror. Here, I showed that 

the motion of the robot car stimulated the dynamics of adduction and abduction using an artificial 

NMJ, depending on its moving directions. The time-dependent information of the object position 
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(x(t), black line) was converted into an electrical input signal of the GaN/CIPS FeHEMT by the 

ultrasound sensor. The mechanical steering (θ(IDS)) of the MEMS mirror was triggered by the 

ultrasound sensor and the assembled GaN/CIPS FeHEMT, corresponding to the oculomotor 

controls by the lateral and medial recti. I examined the GaN/CIPS FeHEMT before and after the 

training to achieve the enhanced reflexes (blue and red line, respectively), emulating the 

enhancement of the synaptic connections in biological neural systems. The trained GaN/CIPS 

FeHEMT exhibited increased transconductance, resulting in enhanced IDS for an efficient object 

tracking process. Figure. 4.16b shows the error plots of IDS with and without the training process. 

I employed a symmetric absolute error (sAPE)235 to avoid undefined output for zero values as 

shown in Eq. (4). 

sAPE =
|𝑥(𝑡)−𝐼DS

∗ (𝑡)|

(𝑥(𝑡)+𝐼DS
∗ (𝑡))/2

   (4) 

where 𝐼DS
∗  is normalized IDS between 0 and 1. As time progresses, the cumulative sAPE 

decreases in the enhanced state (red line), which is attributed to the programmed transconductance 

of the GaN/CIPS FeHEMT. Figure 4.16c shows the phase plots of each signal (represented as f(t)) 

after the baseline correction for IDS. IDS with the training process shows closer phase tracking with 

the motion input. 

Analogous to conventional GaN HEMTs, the proposed GaN/CIPS FeHEMT also 

potentially attains nanosecond operation by etching the AlGaN barrier layer to minimize the 

surface potential and by using the thinner CIPS membrane to alleviate the voltage drops at 

CIPS205,236. The direct actuation of the mechanical platform using the artificial NMJ provides a 

wide range of neuromorphic sensing-to-action applications, including time-of-flight ranging44,59, 

in-situ object tracking128, in-sensor computing132,133, and human-computer interaction (HCI)237. 
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In this study, I achieved a normalized output current of 200 mA/mm with the GaN/CIPS FeHEMT, 

which is notably greater than that of recently reported synaptic transistors16,34,36,51,238–243. 

Therefore, the GaN/CIPS FeHEMT is potentially deployable as an artificial NMJ in robotic 

systems to operate mechanical actuators that require a milliampere-scale driving current for 

macro-motion. Moreover, the 2DEG transport channel of HEMT offers a GHz-range frequency 

response that can be coupled with integrated ferroelectricity for reconfigurable RF 

applications20,122.  

 

4.5 Conclusion 

I have demonstrated ferroelectric GaN/α-In2Se3 MOS-HEMTs with superior electrical 

performance by implementing a semiconducting α-In2Se3 layer to induce Cdep, which maximizes 

the effect of its ferroelectricity. The lowest SS (8 mV/dec) and large ∆V (2 V) were obtained 

owing to the polarization matching effect. The ferroelectric polarization and ∆Φeff was confirmed 

in the GaN/α-In2Se3 MES-HEMT structure, which sufficiently controlled the 2DEG conductivity. 

In addition, the self-aligned etching process for the α-In2Se3 layer confines polarization in the 

vertical direction, which can further enhance ferroelectricity confirmed both by experiment and 

simulation using physics-based TCAD. Finally, I demonstrated the GaN/α-In2Se3 MOS-HEMT 

for neuromorphic computing applications by using its STP. RC was conducted using the measured 

and extracted characteristics of GaN/α-In2Se3 MOS-HEMT. The recognition accuracy for RC 

reached 95% during the test process. My study suggests that the GaN/α-In2Se3 MOS-HEMT is 

beneficial for demonstrating fast switching neuromorphic applications owing to the combination 

of semiconducting property of α-In2Se3 and the high carrier mobility of GaN HEMT20.  
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I also applied a CIPS ferroelectric membrane integrated with a GaN FeHEMT for artificial 

oculomotor dynamics. The high output current achieved by the AlGaN/GaN 2DEG enabled 

amplifier-less actuation for the adduction and abduction motions. The polarization of the CIPS 

tuned the output current of the GaN/CIPS FeHEMT using the training pulse at its gate node. This 

non-volatile artificial synaptic device was connected to the CMOS-based efferent system that 

integrates and fires the spike to actuate the mechanical platform, such as a mechanical object 

tracker. The temporal dynamics of the GaN/CIPS FeHEMT were enhanced by the training process, 

analogous to the biological stimulus response. I believe that the GaN/α-In2Se3 and GaN/CIPS 

FeHEMTs have immense potential to process high-frequency input signals and to realize 

functional bio-inspired elements for artificial muscles and smart robotic applications.  
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Chapter 5 

 
Future Works  

 
5.1 Second-Order Spiking Neuromorphic Vision 

In this thesis, the focus has primarily been on non-volatile memristors to achieve 2D/3D 

neuromorphic vision, inspired by the biological vision system. However, volatile memristors, 

such as ionic memristors utilizing copper, silver, and other organic compounds, as well as Mott 

memristors, have also been extensively used for temporal dynamic processing33,35,209,244. Mott 

memristors utilize a Mott insulator, characterized by strong electron-electron interactions and 

Joule heating. It is interesting to note that ionic volatile memristors exhibit STP due to their 

capacitive behavior, while Mott memristors demonstrate an abrupt transition from insulator to 

metal without temporal relaxation, making them suitable for ultrafast computing paradigms and 

activation functions in ANNs8. 

Figure 5.1 illustrates the first-, second-, and third-order information processing capabilities 

of various memristors, including Mott memristors8. Non-volatile memristors such as redox and 

ferroelectric memristors enable the realization of simple first-order synaptic devices. Second-

order synaptic devices incorporate both LTP and STP, allowing for non-volatile but dynamic 

processing capabilities. In the case of neuronal devices, a single Mott memristor exhibits an abrupt 

transition from HRS to LRS, mimicking the firing behavior of neurons and the activation function 

in ANNs. When combined with internal capacitance and a load resistor, the neuronal Mott 

insulator exhibits higher-order behavior, including self-oscillations. Unlike the Mott memristor's 
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first-order behavior, the internal capacitance and the Mott transition introduce two state variables: 

charge distribution and temperature (Joule heating), respectively. Further advancements in 

nanoscale fabrication processes allow for additional state variables, leveraging the ultrafast Mott 

transition in nanocircuit components for neuromorphic computing purposes8. 

Figure 5.1 Artificial a synaptic and b neuronal devices for first-, second-, and third-order 

information processing. In this thesis, nonvolatile memristors have mainly been discussed to 

realize 2D/3D neuromorphic vision8. 

 

5.2 Ultrasound RToF 

I have successfully demonstrated an unprecedented memristor-based 3D sensing approach, 

known as the RToF principle, which is associated with the biological STDP behavior. While light-

based RToF systems using ToF with light as the source flux provide high-resolution 3D imaging 

platforms like LiDAR, the challenge lies in minimizing the parasitic capacitance and inductance 

induced by metal wires and interconnections in the fabricated RToF chips for compact circuit 
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design205. In my proof-of-concept implementation of the light-based RToF, the depth resolution 

was compromised (> 15 cm) due to neglecting these parasitic issues44. 

In contrast, ultrasound can also serve as a source flux for RToF, especially in sonar 

navigation and distance sensors for automotive applications245–247. This is because sound 

propagates at a much lower speed compared to light. Therefore, an RToF system based on 

ultrasound as the source flux can be employed as an alternative, avoiding the need for compact 

circuit design, and alleviating the parasitic issues encountered in light-based RToF systems. 

Another challenge is the integration of signal pre-processing modules that effectively 

handle noisy and oscillating raw ultrasound sensory signals248. This integration includes 

components such as amplifiers, low-pass filters, ADCs, and comparators249. In future work, the 

goal is to integrate these circuit components with fabricated nonvolatile memristors and thin-film 

ultrasound transducers/receivers. By utilizing the ultrasound-based RToF approach, in contrast to 

the current light-based RToF, stable and reliable depth ranging can be achieved, even when 

implemented on flexible substrates, enabling in-sensor 3D depth ranging and imaging based on 

the neuromorphic domain.  
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