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U-Net Machine Learning Model to Analyze Ice
Formations on Pluto’s Sputnik Planitia

Abstract
This thesis details the process of building a machine learning model that

classifies and labels the ice sublimation pits across Pluto’s Sputnik Planitia.
Using primarily generated data, I worked to build and train a U-Net model to
run image analysis on these ice pits to be able to identify the pit shape and the
center of the pit automatically. The U-Net, a variation on the Convolutional
Neural Network, is a powerful architecture for working with low-dimensional
data and with smaller data sets. [RFB15] U-Nets are both time-efficient and
power-efficient models, even when trained on largely computer-generated or
augmented datasets, making it the ideal architecture for building a model to
analyze Pluto. By building on the data augmentation code from my advisor,
Dr. Alan Howard, I generated sufficient ice pit images to train and tune the

U-Net to be able to identify and label ice pits in new images.

2



1 Introduction

1.1 Geomorphology of Sputnik Planitia

Sputnik Planitia is a large, ice-covered basin with a high albedo, mostly located
in Pluto’s northern hemisphere but extending at least a little bit south of the
equator. The planitia stretches approximately 1050 kilometers by 800 kilome-
ters, making it the largest known glacier in the solar system. The geomorphology
of Sputnik Planitia is absolutely fascinating and much more varied and active
than could have been expected before the New Horizons Pluto flyby in 2015
[Laknd]. The basin is primarily composed of nitrogen ice, with smaller amounts
of methane ice and carbon monoxide ice. [Moo+17] There is a distinct lack of
impact craters visible, indicating the surface is young by planetary standards.
Given the resolution limits of approximately 400 meters per pixel and the cal-
culated probability of smaller Kuiper Belt Objects impacting Pluto, estimates
put the surface of Sputnik Planitia at 10 million years or younger. [Tri16] De-
spite the lack of impact cratering, there are still a number of impressive features
across the basin that make it so interesting to observe and analyze.

There are “cells” across Sputnik Planitia indicative of convection within
the nitrogen ice that makes up the surface [BI18]. These convection cells are
polygonal in shape, range in size from 10 to 40 kilometers across, and are likely
several kilometers thick at their centers [McK+16]. They are formed as the
under layers of ice are warmed by Pluto’s interior heat, the warmed ice wells up
in the center of the cells and pushes the previous top layer out towards the edges
of the cells, and then at the edge of the cells the ice sinks into the margins to be
recycled back into the convective process. The flow rate is estimated to be 7 cm
per year, which is a similar scale to tectonic plate movement on Earth. There is
also strong evidence for faster ice flows into Sputnik Planitia, including apparent
glaciers flowing into the planitia from the adjacent highlands. [Umu+17] Along
the eastern edge of the basin, dark features and patterns in the ice indicate that
the N2 glacial features in the region are moving from the pitted highlands of
the Tombaugh Regio into Sputnik Planitia. The basin is bordered by a series of
mountain ranges along the western rim. These regions are chaotic and blocky,
and are significantly elevated above the rest of the planitia, reaching up to
5 kilometers above the surrounding terrain. The al-Idrisi Montes marks the
northernmost mountain range, the Zheng-He Montes and Bare Montes are the
central ranges, and the Hillary Montes and Norgay Montes to the southwest of
the basin mark the southernmost of this type of feature.

The feature that this thesis is investigating is the network of ice pits present
across Sputnik Planitia [How21]. These pits are most frequent in the margins
between the convection cells, and are currently believed to result from fracturing
and sublimation of the nitrogen ice making up the majority of the basin. Some
models of the evolution of the sublimation pits put the estimated surface age
of Sputnik Planitia at approximately 180,000 years. The sublimation pits are
relatively straightforward to identify with the naked eye as they cluster between
convection cells and have a consistent shadow pattern due to their smaller open-
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ing relative to their depth. Although identifying and classifying these pits with
a computer model takes far more time to develop than simply using the naked
eye, once the model is trained and ready to be deployed, it can easily be used
on any new data we may acquire from Pluto from future missions and will be
significantly faster than identifying the pits by hand.

1.2 Machine Learning Models for Image Analysis

There are a number of machine learning algorithms in use today that could be
effective at analyzing planetary surface features. Support Vector Machines, or
SVMs, have proven to be powerful models for doing object-based image analysis
(OBIA) and classification tasks [TA08]. SVMs work by finding the hyperplane
that best separates different classes in the feature space. In data with more
dimensions, SVMs use designated kernel functions to transform the data into
a higher-dimensional space where it can be more easily separated by a single
hyperplane. SVMs do not require much computational power and are effective
in high-dimensional space. Additionally, due to the range of kernel functions
that work with SVMs, they are rather robust and versatile. That said, they
are limited in that SVMs struggle with noisy data and require careful choosing
and tuning of the kernel function and regularization parameters. SVMs also
inherently do a binary classification, effectively sorting data to one side of the
hyperplane or the other. This makes them a weaker model on complex, multi-
class data. The images available of the ice pits on Pluto are relatively simple
data and the total dataset is not that large, meaning SVMs could work well.
However, because SVMs only do binary classification, they are likely not flexible
enough for this type of project in the long run.

Another model that shows promise for planetary image analysis is a Convo-
lutional Neural Network, or CNN. CNNs are deep learning algorithms used for
data processing in a grid-like pattern, making them especially well suited for im-
age analysis[LSD15]. A Convolutional Neural Network consists of convolutional
layers, often accompanied by pooling layers, fully connected layers, and normal-
ization layers. The convolutional layers apply a series of learnable filters to the
input, helping the network identify various features such as edges, textures, or
objects. CNNs are relatively easy to start building due to their widespread use
in all computer-based fields resulting in a large number of Python libraries and
packages. They are incredibly useful in doing image analysis for their ability
to automatically learn spatial hierarchies of features from images and for their
efficiency in dealing with high computational complexity due to shared weights
in convolutional layers and downsampling in pooling layers. However, CNNs
require a large amount of labeled training data and have a tendency to overfit
on smaller datasets, making it difficult to finish building a working CNN model
in a field without much data. Due to the lack of high-resolution images of
Sputnik Planitia, a CNN model would be difficult to train without serious data
augmentation. CNNs are also prone to requiring serious computational power,
often outside the scale of a single laptop or PC, which can make them costly
and inefficient for smaller projects like this.
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A potential variation on the Neural Network architecture is the transformer,
a model originally developed for dealing with sequential data like natural lan-
guage data but recently adapted for image analysis [Vas+17]. The core of the
transformer model is the attention mechanism, which allows the model to weight
the input data with different levels of importance and then focus on the data
most relevant to the task at hand. In a Vision Transformer, or ViT, an image
is divided into patches; the patches are then flattened and linearly embedded,
with position embeddings added to maintain positional information [Dos+21].
Transformers are really good at capturing global contexts and long-range de-
pendencies, which would be beneficial for analyzing the ice of Sputnik Planitia.
However, like many more powerful models, transformers are incredibly com-
putationally expensive and often require huge amounts of training data, which
unfortunately does not yet exist for Pluto. Despite these limitations, it is impor-
tant to note that transformers are growing in popularity in image analysis due
to being so effective at analyzing intricate patterns and relationships in data.

Another variation on a Convolutional Neural Network is the U-Net archi-
tecture [RFB15]. U-Nets were designed for medical image segmentation but
extrapolate well to other types of data. The U-Net architecture is often rep-
resented as a symmetric “U” made up of an encoder on the left that captures
context and a decoder on the right that enables precise localization. The en-
coder extracts features at a series of contracting scales, and then the decoder
constructs the output images from the extracted features through a series of
expanding layers. U-Nets also take advantage of skip connections during the de-
coding phase, combining low-level feature maps with higher-level feature maps
to help with precise localization. U-Nets are powerful in that they are efficient
relative to the low number of required input parameters and they work very well
on smaller datasets like those of Pluto. With that in mind, U-Nets struggle with
large images and are very tuned in to the quality of the training data. Even the
barest hint of bad data in the training set is enough to mess up a U-Net.This
causes issues with larger models, but given the artificial nature of the dataset
I am training my model on, this is a low risk relative to the pros of the U-Net
architecture.

2 Methodology

2.1 Data Generation and Pre-Processing

The first step in building any machine learning model is to acquire and prepare
the data. Due to the scope of this project and the lack of available data from
Sputnik Planitia, much of this first step involved data augmentation. I accom-
plished this by building from base code provided by my advisor to write the
make hole function. This function creates a TIFF file and a PGM file to simu-
late a simplified singular ice pit like those found on Sputnik Planitia by creating
a digital elevation model of a hole, calculating slope and aspect, then using these
to calculate the shading of each pixel. This function only creates one pit per
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file, but is very flexible and allows for many different shapes and sizes of these
ice pits. The variables mx and my help determine where the pit is centered
on each image relative to the bottom left corner, max slope deg determines the
slope of the pit walls, and radius x and radius y determine the x- and y-radius
of the pit such that differing values for these radii can make the pits very circu-
lar or very oblong. The most important variables for simulating the real-world
conditions of Pluto’s surface are sun elevation deg and sun azimuth deg ; these
set the elevation and azimuth, respectively, of the light source illuminating the
pit image just as the sun does on Pluto. These are helpful for humans to better
visualize how these pits would look in real life, and they are helpful for the
model to better understand how the patterns of light and shadows within the
pits interact to create the shape of the whole pit.

Once the pit image has been generated, the program then labels the image
with the relevant information. With these pits I was only looking for two struc-
tures per image, as with the more simple data there is not much need to look
deeper for the model to train correctly. The first structure of note is the pit
itself and the second is the center of the pit. Relative to the surrounding flat
area in the generated images, the pit can be considered the region of the image
with a gradient magnitude higher than the threshold hyperparameter. To find
the gradient magnitude for each pixel in the image, I calculated the forward
differences of both x and y to find the gradients along x and along y, and then
used these to calculate the total gradient of each pixel.

∇⃗imagei,j = (gradientx, gradienty)

where

gradientx =

{
imagei,j − imagei,j−1 for j = 1, 2, . . . , cols− 1

imagei,0 − imagei,cols−1 for j = 0

and

gradienty =

{
imagei,j − imagei−1,j for i = 1, 2, . . . , rows− 1

image0,j − imagerows−1,j for i = 0

To find the gradient magnitude for each pixel, I found the square root of the
sum of the squares of both the x and y gradients.

magnitudei,j =
√
(gradientx)

2 + (gradienty)
2

Once I had the gradient and magnitude, I then tuned the threshold hyperpa-
rameter until the find crater function found the whole crater and nothing more
or less.

To find the center of the crater, I wrote the find center function to find the
point in the image with the minimum divergence. The center of the pit would
be the lowest elevation in the image and thus the divergence at that point would
be near zero and significantly lower than elsewhere on the image. I calculated
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the divergence using the forward difference of the gradient rather than of the
image as I had previously done when finding the gradient.

divergencei,j = − (forward difference in x of gradientx)−
(
forward difference in y of gradienty

)
which simplifies to:

divergencei,j = divx + divy

Once I had found the divergence for each pixel, I used the unravel index
function in NumPy to convert the array of divergence values into a tuple of x/y
coordinate arrays and then sort by value to return only the lowest divergence
value.

With the pit images generated and the pit center and pit itself identified, I
used Matplotlib to visualize three graphics: the elevation, the shading based on
slope and light source position, and the crater and center labeling. The image
plots act as confirmation that the pits are being generated and labeled correctly;
the shaded image, Figure 1, and the label image, Figure 2, are then saved as
both TIFF and PGM files to two separate directories, one for the image and
one for the labels. Both files have the same name as that makes it significantly
easier to pair them to each other when actually training the model. To generate
enough images for a training dataset, I then ran make hole an arbitrary number
of times with each of the variables set to randomize within a certain range. This
created almost 400 unique pit images with corresponding labels to work with.
For the sake of consistency and convenience, I worked almost exclusively with
the TIFF versions of the generated data.

The next step was to normalize and standardize all the TIFF files. Normal-
izing the data involves scaling all the pixel values down in each image to fall
between 0 and 1 inclusive, and standardizing the data involves making all the
images the same dimensions by augmenting the smaller images with the same
neutral values already present at the edges of their axes.

normalizedi,j =
img grayi,j −min(img gray)

max(img gray)−min(img gray)

The normalized image data were then saved to a new directory of normalized
images to pull from when implementing the model.

From there, the final step before training and tuning the model is to split the
data into the training, validation, and testing datasets. It’s relatively standard
practice to assign 80% of the data to training and 10% to validation, and the
10% is to be used for further testing once the model is appropriately tuned.
To ensure further randomization, I used the NumPy random number generator
in the split tiff dataset function to randomly shuffle the image into a list and
assign the first 80% of the image data to be used for training. I then split the
remaining data by assigning the next 10% to the validation dataset and the final
10% to the testing dataset. With the data processed and split, I then moved
into the model itself.
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Figure 1: Generated ice pit with 20◦ slope, sun elevation at 25◦, sun azimuth
at 45◦, and x- and y-radius equal at 1250 pixels. Left shows the elevation and
right shows shading relative to the sun.

Figure 2: Ice pit label. Blue shows the extent of the pit, orange is the center of
the pit.
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2.2 U-Net Architecture

The U-Net as an architecture builds upon the Fully Conventional Network work
of Long, Shelhamer, and Darrell who adapted classification networks available
at the time such as AlexNet and GoogLeNet into fully convolutional networks
and then transferred their learned representations by fine-tuning to the seg-
mentation task. Ultimately, they were able to produce accurate and detailed
segmentations by combining semantic information from deep layers with ap-
pearance information from shallow layers [LSD15]. The U-Net was then created
by Ronneberger, Fischer, and Brox who were able to present a network and
training strategy that relied on the strong use of data augmentation to use the
available annotated samples more efficiently. The architecture consists of a con-
tracting path to capture context and a symmetric expanding path that enables
precise localization all done in successive layers [RFB15]. This architecture has
been used in many medical segmentation contexts since it’s inception but as
shown in this thesis, its potential uses are widespread and varied.

3 Results and Reflection

The most time-consuming part of this sort of modeling is normally pre-processing
the data, and my U-Net model was no exception. Due to the lack of Pluto data
in general and, more specifically, the lack of well-sorted and well-labeled data
for Sputnik Planitia’s ice pits, I spent most of my programming time trying to
generate and label clean, noise-free data that wouldn’t skew my model during
training and didn’t spend as much time as I would have liked on coding the
actual model itself. The U-Net model runs and trains successfully, but I have
yet to achieve the level of accuracy and success I was aiming for. Some of this
may be in how I set up the convolutional layers and I strongly suspect some
of it is in not having tuned the hyperparameters to their optimal states yet. I
would have liked to have had more time to focus on this project this year and
I expect I will continue to work on my U-Net model for a little while longer, at
least until I have reached a level of accuracy I find more satisfactory.
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