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Symmetries of 2+1D non-Hermitian Chiral Majorana Surface
States in Topological Superconductor

Niko Giorgadze

(ABSTRACT)

This thesis investigates the emergent symmetries and classifications of non-Hermitian

chiral Majorana surface states in topological superconductors, with a focus on 2+1-

dimensional (2+1D) boundary modes. Using tools from conformal field theory (CFT),

the research explores how 1+1D chiral Majorana edge theories can be used to analyse

2+1D surfaces with complex energy spectra, where steady-state configurations replace

traditional ground states. The study develops a framework for deriving equations of

motion, operator product expansions, and correlation functions on 2+1D boundaries.
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Chapter 1

Introduction

In recent years, the study of topological phases of matter has provided a unifying

framework for understanding complex quantum systems. These phases, instead of

the local order parameters, are characterised by global topological invariants. Topo-

logical superconductors and insulators, due to their robustness to the disorder have

been found to realise unique symmetry-protected topological surface states. This the-

sis investigates the symmetries and classifications of non-Hermitian chiral Majorana

surface states in topological superconductors, to investigate emergent 2+1D symme-

tries. Building on the tenfold Altland-Zirnbauer symmetry classes, which classify

materials based on time-reversal, particle-hole, and chiral symmetries, recent studies

have also incorporated spatial symmetries such as reflection and inversion. The afore-

mentioned classifications, discussed in Classification of Topological Quantum Matter

with Symmetries [2], provide a rigorous framework for understanding the connections

between symmetry and topology in both, gapped and gapless systems. This frame-

work is essential for identifying protected surface states, such as Majorana fermions,

and understanding their stability under perturbations.

A complementary perspective is studied in Topology of Crystalline Insulators and

Superconductors [8], which extends the classification of topological phases to systems

with crystalline symmetries. This extension emphasises the role of spatial symmetry

in quasiparticle excitations, such as surface Majorana modes, which in recent years
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have been shown to be an integral part of realising topological quantum bits [6].

In this thesis, conformal field theory (CFT) is employed as a mathematical tool to

analyse the emergent symmetries of 2D systems, with the goal of extending descrip-

tion to 2+1D boundaries. CFT provides a natural framework for describing chiral

edge modes in topological systems, as it captures the behavior of fields under confor-

mal transformations. This is particularly relevant for understanding the behavior of

Majorana fermions, which obey conformal symmetry at low energies.

The central aim of this thesis is to investigate the symmetries of non-Hermitian sys-

tems, particularly in 2+1 dimensions, with the help of the 1+1D theory discussed in

earlier chapters. Taking the insights gained from 1+1D chiral Majorana systems into

consideration, the study extends these ideas to explore the dynamics and emergent

properties of 2+1D surface states in non-Hermitian topological systems.

Outline of the Thesis

The thesis will be constructed in the following way: we will first review the conformal

field theory and discuss how this mathematical tool can be used to investigate emer-

gent symmetries in 2 dimensions. Then, to set up a problem for a three-dimensional

topological superconductor with vertical hopping, we will dive into the discussion of

a 2D ”p+ip” superconductor with a 1D surface and the emergent Majorana phases

there. Once we have established the 1+1D theory, we will discuss the properties of

the 3-dimensional superconductor that leads to Surface Majorana states. Then, for

2+1D surface states we will derive the equation of motion and discuss the expectation

value for the product of operators and the challenges in obtaining them.
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Chapter 2

Review of Literature

Symmetries have been studied from the very beginnings of civilisation and for very

good reasons. For one, it is one of ”the chief forms of beauty”, according to the

philosopher Aristotle. Whether it is the symmetry or the one that is broken, the

form of beauty is a matter of aesthetics; however, there is no denying his implica-

tions that the study of reality around us often requires the inquiry in symmetries

that manifest themselves in nature. Today, with natural philosophies spoken with

the language of mathematics, we have gained a much deeper understanding of how

symmetries truly reveal nature. One of the most useful approaches is what we know

as Noether’s theorem. Considering infinitesimal symmetry transformations Noether’s

theorem allows us to find conserved currents, charges, or Stress-Energy tensors, which

allows us to study different systems and their symmetries in detail. However, in or-

der to make use of Noether’s theorem, we first need to know what are the symmetry

transformations of the fields and coordinates, which may not always be the case.

The Conformal Field Theory (CFT) is another mathematical theory that offers us a

delicate way of studying symmetries. The CFT proves to be extremely useful, espe-

cially in two dimensions, where the transformation parameters obey Cauchy-Riemann

equations, bringing complex analysis tools to our aid. Since the main skeleton of the

theoretical framework required throughout the investigation of Majorana surface state

symmetries are different aspects of CFT, in this chapter some detailed discussion will
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be provided.

The sources on which I will be heavily relying throughout this chapter are the

classics of Conformal Field Theory.

[3]: Di Francesco, Philippe, Pierre Mathieu, and David Sénéchal. Conformal

Field Theory. New York: Springer, 1997.

[4]: Ginsparg, Paul. Applied Conformal Field Theory. 1988. arXiv:hep-

th/9108028.

2.1 Brief Review of Conformal Field Theory

2.1.1 Conformal Group

Conformal Group by definition is a group of coordinate transformations that leaves

the metric invariant up to a scale change. That is, under coordinate transformation

x→ x′, the new metric is proportional to one before the transformation

gµν(x) → g′µν(x
′) = Ω(x)gµν(x) (2.1.1)

Where we have gµν from the definition of the line element: ds2 = gµνdx
µdxν . To

find the infinitesimal generators of the conformal group we perform transformation

x→ x′ = x+ ε(x). Under this transformation, the line element becomes:

ds2 → ds2 + (∂µεν + ∂νεν)dx
µdxν (2.1.2)

If we consider the general transformation of the metric tensor for the given infinites-
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imal coordinate transformation, in first order we have:

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ

= gµν − (∂µεν + ∂νεµ)

(2.1.3)

Comparing Eqn2.1.3 to Eqn2.1.1 we can see that ∂µεν+∂νεµ should be proportional to

gµν . Considering a case where the transformation is a transformation of the cartesian

metrics, gµν = ηµν , with ηµν = diag(1, ..., 1), then the condition 2.1.1 requires:

∂µεν + ∂νεµ =
2

d
(∂ · ε)ηµν (2.1.4)

2.1.2 Conformal Algebra in 2D

Now we discuss the special case of the conformal transformations and choose d = 2

to be the dimensions of the space. Then the Eqn2.1.4 in 2 dimensions with flat

space-time yields:

∂1ε1 = ∂2ε2, ∂1ε2 = −∂2ε1, (2.1.5)

Which we can immediately recognise to be Cauchy-Riemann equations. This tempts

us to define complex coordinates z, z̄ = x1 ± ix2, and generators ε(z), ε̄(z̄) = ε1 ± iε2.

The conformal coordinate transformation for complex coordinates is now given by

analytic complex functions

z → f(z), z̄ → f̄(z̄) (2.1.6)



6

The infinitesimal form of the complex coordinate transformations takes the form:

z → z + εn(z), z̄ → z̄ + ε̄n(z̄) (2.1.7)

With n ∈ Z. Choosing the basis to be ε̄n(z̄) = −zn+1, and ε̄n(z̄) = −z̄n+1, the

infinitesimal generators become

ln = −zn+1∂z, l̄n = −z̄n+1∂z̄ (2.1.8)

These generators satisfy the algebra:

[ln, lm] = (n−m)ln+m, [l̄n, l̄m] = (n−m)]l̄n+m, [ln, l̄m] = 0 (2.1.9)

Later we will find that there is a correction piece for the quantum mechanical case.

2.1.3 Conformal Fields in 2 Dimensions, Radial Quantisation

Following up on transformations given by Eqn2.1.6, the line element transforms as:

ds2 = dzdz̄ →
(
∂f

∂z

)(
∂f̄

∂z̄

)
dzdz̄ (2.1.10)

We can generalise this transformation for primary fields defined on a complex plane:

Φ(z, z̄) →
(
∂f

∂z

)h(
∂f̄

∂z̄

)h̄

Φ(f(z), f̄(z̄)) (2.1.11)

Where h-is the conformal wheight of the field (h = 1
2

for fermions in 2 dimensions).
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The transformations of secondary fields do not obey this expression, but we still can

investigate their properties by considering their product expansions, as we will discuss

it later in this chapter.

We now delve deeper into conformal theories for quantum fields. In flat space-time,

light cone coordinates are constructed as: ζ, ζ̄ = x0 ± ix1. We then compactify the

spatial coordinate by parameterising it on the cylinder, x1 = x1 + 2π. As we will see

later, conformal mapping ζ → z = exp(ζ) = exp(x0 + ix1) will be of our uttermost

interest. Given conformal transformation maps cylinder onto the complex plane. The

radial coordinate on the complex plane then corresponds to the time, with infinite

past x0 = −∞ mapped to the origin, radial coordinate increasing with time. In other

words, equal time surfaces x0 = const are mapped to circles on a complex plane.

The time translation x0 → x0 + a on the complex plane becomes dilation z → zea,

so the dilation generator is analogous to Hamiltonian. Note that holomorphic and

anti-holomorphic fields correspond to i.e. left, or right-moving fields. For the rest of

the thesis, we will drop anti-holomorphic parts for brevity and simplicity since the

discussion will mainly involve holomorphic fields.

Generally, symmetry generators are given by Noether’s theorem. Infinitesimal sym-

metry variation in any field A can be calculated by a commutator of that field to

the conserved charge: δεA = ε[Q,A], where Q =
∫
ddxj0(x). Where jµ = Tµνε

ν is

the conserved current associated with the symmetries of the theory and Tµν is the

Energy-Momentum (EM) tensor. Integration over the equal-time surface gives us the

conserved charge: Q =
∫
dxj0(x) →

∫
dθjr(θ). Then the conserved charge expressed

in complex variables becomes

Q =
1

2πi

∮
dzT (z)ε(z) (2.1.12)
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(ingoring the anti-holomorphic part here ”... + T̄ (z̄)ε̄(z̄)”). The handiness of this

approach is the following. The symmetry generators require us to calculate ”equal-

time” commutators between the fields and conserved charges, given to us by contour

integrals over the Energy-Momentum Tensor and the fields themselves

δεψ(w) =
1

2πi

∮
[dzT (z)ε(z), ψ(w)] (2.1.13)

In order to evaluate such infinitesimal symmetry transformation of any field, let us

provide some further insight into the techniques of dealing with commutators on the

conformal plane.

2.1.4 Commutators and Operator Product Expansion

In order to evaluate expressions involving commutators, we first need to define them.

We note, that product of operators A(z)B(w) is only defined if they are radially

ordered (following from the requirement that in Euclidian space-time they need to

be time ordered in order for the Green’s function to converge), i.e. |z| > |w|. Radial

ordering, conformal plane analogue to the time ordering in Euclidian space is defined

as follows:

R(A(z)B(w)) =


A(z)B(w) |z| > |w|

B(w)A(z) |z| < |w|
(2.1.14)

Where if A and B are fermionic fields the latter case will pick up a minus sign. We now

apply radial ordering to expressions of the sort given by Eqn2.1.13. Then the contour

integral, when w is inside of the contour is evaluated first, and then the integral -
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when it lies outside, effectively reducing the commutator to a single integral drawn

tightly around w.

Then the ”equal-time” commutator of the field operator with the contour integral of

the EM tensor can be calculated by evaluating the contour integral of the radially

ordered product of the field operator to the spatial integral of the EM Tensor. Using

this definition, the infinitesimal symmetry variation in the field becomes:

δεψ(w) =
1

2πi

(∮
|z|>|w|

−
∮
|z|<|w|

)
dzε(z)R (T (z)ψ(w)) (2.1.15)

In order for the charge 2.1.12 to induce correct infinitesimal conformal transforma-

tions, we deduce what short-distance singularities of the product T (z)ψ(z) should be.

From the properties of short-distance operator product expansion, we can also define

the quantum EM tensor. The expansion leading to correct infinitesimal transforma-

tions takes the form:

T (z)ψ(w) =
h

(z − w)2
ψ(w) +

1

z − w
∂wψ(w) + . . . (2.1.16)

Here we drop the radial ordering symbol. This operator product expansion (OPE)

defines the primary fields and encodes their conformal transformation properties.

However, there are fields that do not transform according to Eqn2.1.11 under con-

formal transformations. For example, derivatives of fields obey more complicated

transformation properties. An example of such a field is the EM tensor, which as we

will see later has a derivative of a field in it. An expansion for EM Tensor, similar to
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OPE gien by Eqn2.1.16 is given by

T (z)T (w) =
c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w
∂T (w) (2.1.17)

Where coefficient c is known as central charge and is equal to 1/2 for fermionic fields.

To compute Virasoro algebra, we now define Laurent’s expansion of EM Tensor

T (z) =
∑
n∈Z

z−n−2Ln with Ln =
1

2πi

∮
dzT (z)zn+1 (2.1.18)

Using the OPE of the EM tensor given above, we can compute the commutators

between the modes Ln and Lm

[Lm, Ln] =

(∮
dz

2πi

∮
dw

2πi
−
∮

dw

2πi

∮
dz

2πi

)
zn+1wn+1T (z)T (w) (2.1.19)

After computation, we get the algebra for the transformation generators:

[Lm, Ln] = (n−m)Ln+m +
c

12
(n3 − n)δn,−m (2.1.20)

we have the similar results for L̄n and L̄m, with central charge and Ln+m conjugated

to c̄ and L̄n+m.

2.2 Majoranas in a Nutshell

Majorana particles have been long hypothesised to exist as fermions that are their

own antiparticles [7]. As a consequence, Majorana particles can be described by single

real-valued wavefunctions. Mathematically Majorana particles can be expressed as a
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superposition of fermionic creation and annihilation operators (or vice versa, we can

define fermionic operators as a superposition of two Majorana particles):

ψMajorana ∝ c† + c (2.2.1)

It is evident from the definition that ψ = ψ†. We choose a normalisation where the

continuous fields satisfy the anti-commutation relation given by

{ψ(x), ψ(x′)} = δ(x− x′) (2.2.2)

This, combined with the condition that Majoranas are their own anti-particles has

an implication, that their Fourier transforms relate to each other by the following

expression

ψ†(k) = ψ(−k). (2.2.3)
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Chapter 3

Hermitian Case

Having discussed the literature needed to investigate the emergent symmetries, we

now move on to some specific examples. Here we will start by discussing the most

general theory for superconductivity and then specify the parameters according to

the materials of our interest. Namely, ones that support emergent Majorana modes

on their surface. As an introduction to the 2+1D surface, we will first discuss the

1+1D surface case.

The discussion and formulae in the following chapter are from the sources:

[1]: Altland, Alexander, and Benjamin Simons. Condensed Matter Field The-

ory. 2nd ed. Cambridge: Cambridge University Press, 2010.

[2]: Chiu, Ching-Kai, Jeffrey C. Y. Teo, Andreas P. Schnyder, and Shinsei Ryu.

”Classification of Topological Quantum Matter with Symmetries.” Reviews of

Modern Physics 88, no. 3 (2016): 035005.

3.1 2D BdG Hamiltonian and Surface States of 1D

Chiral Fermions

The Bogaliubov-de Gennes Hamiltonian arises from the ”mean-field” consideration of

BCS theory. The BCS formalism is one of the most basic ways to capture the most
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essential physics of a thin shell around the Fermi surface, where the superconducting

phenomenon occurs.

Ĥ =
∑
kσ

εkn̂k −
g

Ld

∑
k,k′,q

c†k+q↓c
†
−k↓ck′−q↑ck′↑ (3.1.1)

Where g is a positive constant, L is the length dimension of the system and d is the

dimensions of the space. Assuming that the ground state |Ωs〉 is characterised by the

presence of a macroscopic number of Cooper pairs. That is, c−k↓ck↑ has non-vanishing

GS expectation value for below the critical temperature Tc:

∆(k) = g

Ld
〈Ωs |c−k↓ck↑|Ωs〉 , ∆̄(k) = g

Ld

〈
Ωs

∣∣∣c†k↑c†−k↓

∣∣∣Ωs

〉
, (3.1.2)

Those expectation values ∆(k) are called order parameters of the superconducting

transition. For that, we note, that two fermion states |k ↑,−k ↓〉 has bosonic nature,

thus c†k↑c
†
−k↓ is to be treated as an operator that creates bosonic state. The BdG

Hamiltonian, after switching to a mean-field picture takes the form:

Ĥ − µN̂ '
∑

k

[
ξkc

†
kσckσ −

(
∆̄c−k↓ck↑ +∆c†k↑c

†
−k↓

)]
(3.1.3)

Where ξk = εk − µ. We now define two-component Nambu-spinors using fermionic

operators, which then allows us to write Hamiltonian in matrix form in k-space

Ψ†
k =

(
c†k↑, c−k↓

)
, Ψk =

(
ck↑

c†−k↓

)
, (3.1.4)

Using ”Nambu” operators, we can finally express Hamiltonian in k-space. For 2-

dimensional problem we have ~k ∈ R2, k = (kx, kz), and k2 = k2x+ k2z . So the mean-
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field Hamiltonian for chiral ”p+ip” SC [9] can be written in terms of 2D ”p+ip” BdG

Hamiltonian

Ĥ0 − µN̂ =
∑

k

Ψ†
kH

p+ip
BdG (k)Ψk (3.1.5)

For ”p+ip” type o SC we have ∆(k) = ∆(kx+ikz), where now ∆ is just some complex

parameter. Then the BdG Hamiltonian in k-space can be written:

Hp+ip
BdG (k) =

(
k2

2m
− µ

)
τz +∆kxτx + ∆̄kzτy (3.1.6)

and τx, τy, τz are pauli matrices. The positive energy for Eqn3.1.6 is

E(k) =

√(
k2

2m
− µ

)2

+∆2 (k2x + k2z) (3.1.7)

The parameter |∆| can be identified as the gap between two energy branches.

q

Figure 3.1: In this figure the Energy branches are plotted. The green lines represent
Majorana particles with linear dispersion at low k values.
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The Hamiltonian that describes the edge modes represented by the green line in Fig.

3.1 is given by the τx component of k-space BdG:

Hedges(kx) = ∆kxτx (3.1.8)

This edge Hamiltonian includes both left and right-moving excitations. In the next

section, we will focus on only one of the chiralities.

3.2 Chiral Majorana Fermions on 1+1D Boundary

Figure 3.2: The left and right moving Majorana modes represented by left and right
arrows on the edges of SC respectively.

For 2 dimensional SC we have boundaries (or edges) specified by x-coordinate. Now

we assume that those modes are not interacting. We also drop the spin indices

since from now on we will be assuming the spinless/spin-polarised fermions. Then

the analogue of Eqn2.2.1 for the edge-Majorna excitations expressed in terms of the

fermionic operators in k-space become:

ψ(kx) ∝
∫
dz{φ†(z)c†kx(z) + φ(z)c−kx(z)} (3.2.1)
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Where φ(z) is a rapidly decaying function with respect to increasing z from the

surface. This allows us to arrive at the low-energy effective Hamiltonian operator on

the edges for the Majorana excitations

Ĥedge =
∑
kx

∆kxψ
†
kx
ψkx (3.2.2)

Observing the linear dispersion relation on the boundaries, we write the boundary

Hamiltonian density in coordinate representation:

H = −ih̄v
2
ψ∂xψ (3.2.3)

We seek to find the equations of motion. For that, we first introduce the Fourier trans-

form for the Majorana operators. Generally, Majoranas obey anti-periodic boundary

conditions: ψ(x+L) = −ψ(x). With anti-periodicity discretising the momentum and

for x → x + L giving an overall minus sign, we carry out discrete summation over

half-integers, i.e. m ∈ Z + 1/2

ψ(x) =
1√
L

∑
m∈Z+1/2

e
2πi
L

mxψm,

ψm =
1√
L

∫ L

0

dxe−
2πi
L

mxψ(x)

(3.2.4)

Following these definitions, anti-commutation relations in the momentum space be-

come

{ψm, ψm′} = δm,−m′ (3.2.5)
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Using the Fourier transform given above, momentum-space anti-commutation rela-

tions, and discrete version of condition 2.2.3: ψ†
m = ψ−m we can check that the

Hamiltonian density in Eqn3.2.3 gives the correct k-space BdG edge hamiltonian:

H =
∑
m,n

πh̄v

L
mψ†

mψm (3.2.6)

Note that the Hamiltonian provided here is very same as the Hamiltonian given in

Eqn3.2.2, with specified momentum and gap parameter. Now, proceeding with our

task of finding the equations of motion for Majorana fermions, we write the Heisenberg

equation of motion to find time evolution for fermionic operators ψm:

dψm

dt
=

1

ih̄
[ψm, H]

= −2πivm

L
ψm

(3.2.7)

The solution to the above differential equation is trivial, thus for the momentum-space

operators ψm we have the following time dependence:

ψmn(t) = e−
2πim

L
vtψm (3.2.8)

Plugging the above result in Fourier transformation we get Majorana fields as a

function of coordinate and time

ψ(x, t) = ψ(x− vt) =
1√
L

∑
e

2πim
L

(x−vt)ψm (3.2.9)
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For simplicity let’s choose v = 1. The equation of motion for such a field is

(∂x + ∂t)ψ(x, t) = 0 (3.2.10)

To investigate the symmetries of 1+1D Fermions described by the equation above,

we perform a Wick rotation: τ = it. Under which the above expression becomes:

ψ(x, t) =
1√
L

∑
e

2πim
L

(x+iτ)ψm (3.2.11)

We can now recognise the patterns that lead to the conformal transformation of

the fields. Namely, transformation that will parameterise coordinates x, τ onto the

cylinder and then map them to the complex plane.

First, from flat Euclidian space and time, we map our fields to the cylinder ζ, ζ̄ =

τ ∓ ix. Then we consider conforomal mapping ζ → z = exp(2πi
L
ζ). Under such

mapping conformal field transformation is given by:

ψcyl(ζ) =

(
dz

dζ

)h

φpl(z(ζ)) (3.2.12)

With conformal weight h = 1
2

for fermions, dropping the subscript ”pl” from now on,

we can now express the field on the complex plane as:

ψ(z) =
1√
L

∑
m∈Z+1/2

zm− 1
2ψm (3.2.13)

Now we calculate the ground state correlation function between two time-ordered
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fields. Time ordering here would mean. For that, we define the ground state as:

ψm |GS〉 = 0, for m < 0 (3.2.14)

Time-ordered product for two conformal fields ψ(z) and ψ(w) is the same as radial

ordering on complex plane for the variables z and w, i.e. |z| > |w|

〈ψ(z)ψ(w)〉 ≡ 〈GS|ψ(x, t), ψ(x′, t′)|GS〉

=
∑

m,m′∈Z+1/2

〈GS|zm+ 1
2wm′− 1

2ψmψm′ |GS〉

=
∑

m,m′∈Z+1/2

zm+ 1
2wm′− 1

2 〈ψmψm′〉

=
∑

m∈Z+1/2

z−m− 1
2wm− 1

2

=
1

z − w

(3.2.15)

Where in the last line we have used the fact that variables are radially ordered,

implying convergence of geometric series everywhere. Note that the summation will

be carried out over positive m due to the choice of GS.

3.3 EM Tensor

The EM tensor, generally, can be calculated from Noether’s theorem by assuming

the invariance of the action with respect to space-time translations. To set up the

discussion, we will briefly write out the result of Noether’s theorem and then show

what the EM tensor looks like in complex coordinates.
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Introducing symmetry transformations for the coordinates and the fields:

x′µ = xµ + ωa
δxµ

δωa

Φ′ (x′) = Φ(x) + ωa
δF
δωa

(x)

(3.3.1)

Where ωa are the infinitesimal symmetry generators, we can write out the conserved

current for a given Lagrangian:

jµa =

{
∂L

∂ (∂µΦ)
∂νΦ− δµνL

}
δxν

δωa

− ∂L
∂ (∂µΦ)

δF
δωa

(3.3.2)

If we assume simple space-time translations, that is: x → xµ + εµ, or for Eqn3.3.1,

that would be: δxµ

δωa
= δµν , we gat what is known as EM tensor.

We now write down the action with both chiralities:

S =
1

8π

∫
(ψ∂̄ψ + ψ̄∂ψ̄) (3.3.3)

We can calculate EM tensor by taking µ = 0, 1 for z and z̄ in Noethers theorem to

compute

T (z) = −1

2
ψ∂zψ (3.3.4)

Or it’s anti-holomorphic counterpart.
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Chapter 4

2+1D non-Hermitian Case

We now move on to the discussion of 3D superconductors with 2+1D surfaces. This

type of superconductor exhibits different types of symmetries, however, as we will

see later they still support Majorana edge modes. The topological classification for

non-Hermitian band Hamiltonians had been previously studied by Gong et al. [5].

4.1 Combined Symmetries in non-Hermitian Sys-

tems

The BdG Hamiltonian in its most general form written in terms of fermionic operators

is given by

Ĥ =

∫
ddk

(2π)d

(
c†k c−k

)
H(k)

(
ck

c†−k

)
(4.1.1)

with,

H(k) =

h11(k) ∆12(k)

∆21(k) h22(k)

 (4.1.2)

For non-hermitian systems, we have the ”Nambu” particle-hole symmetry so that the



22

BdG Hamiltonian obeys

H(k) = −UcH(−k)TU−1
c , with UC = τx =

 0 I

I 0

 . (4.1.3)

This identity is equivalent to the anti-commutation relations satisfied by the fermion

operators.

4.2 2+1D Boundary non-Hermitian BdG Hamil-

tonian

For this section, we now consider three-dimensional topological superconductor. In

Fig.4.1 we can see what the geometry of 3D ”p+ip” SC looks like. We have stacks of

2D ”p+ip” SC-s, presented by layers in x− z plane (k = (kx, kz)). We have a driven

system, that supports hopping along the y axis but not in the opposite direction.

Figure 4.1: Depiction of 3-dimensional ”p+ip” SC. Each layer represents 2-
dimensional ”p+ip” SC. We allow electrons to hop from one layer to another, however,
we restrict the motion alongside the y-axis, i.e. electrons can only move upwards.

We now include the hopping term in the Hamiltonian and follow the similar procedure
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of first expressing it in k-space and then writing it in terms of Nambu spinors:

Ĥ − µN̂ =
∑
y

(
Ĥ0 − µN̂ + t

∑
k

c†k,y+1ck,y

)

=
∑

k

Ψ†
k,ky

[
Hp+ip

BdG (k) + t cos(ky)τz + it sin(ky)I
]
Ψk,ky

(4.2.1)

Finally, we can write the new BdG Hamiltonian with the hopping:

HNH(k, ky) = Hp+ip
BdG (k) + t cos(ky)τz + it sin(ky)I, (4.2.2)

where Hp+ip
BdG is the BdG Hamiltonian for the 2D hermitian p + ip superconductor

presented in Eqn3.1.6, and Ψ†
k,ky = (c†k,ky , c−k,−ky) is the Nambu fermion vector.

We know that the first term gives us the linear disperssion 3.2.2 and the corresponding

boundary Hamitonian discussed in section 3.2. We now consider the hopping term in

better detail

t
∑
k,y

c†k,y+1ck,y =
1

2
t
∑
k,y

c†k,y+1ck,y − ck,yc
†
k,y+1 (4.2.3)

Introducing a very similar cutoff as in Eqn3.2.1, however, we now do it for each stack

ψy(kx) ∝
∫
dz{φ†(z)cy†kx(z) + φ(z)cy−kx

(z)} (4.2.4)

So the hopping part of the Hamiltonian becomes proportional to

t̃
∑
kx,y

ψy+1
kx

†
ψy
kx

(4.2.5)

resulting in the non-hermitian chiral Majorana fermion on the surface boundary de-
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scribed the non-hermitian Hamiltonian density near ky = 0

H = −ih̄v
2
ψ(∂x + i∂y)ψ (4.2.6)

There is another chiral Majorana fermion with the opposite handedness (∂x − i∂y)

near ky = π.

4.3 Calculations for 2+1D Product of Operators

Now for the 2+1D boundary, the Majorana particles are parameterised on a torus:

ψ = ψ(x, y), (x, y) ∈ [0, L]2 and ψ(x+ L, y) = −ψ(x, y) = ψ(x, y + L)

(4.3.1)

They satisfy the anti-commutation relations:

{ψ(x, y), ψ(x′, y′)} = δ(2)(x− x′, y − y′) (4.3.2)

And their Fourier transform could be of the form:

ψ(x, y) =
1

L

∑
m,n∈Z+1/2

e
2πi
L

(mx+ny)ψmn,

ψmn =

∫ L

0

dxdye−
2πi
L

(mx+ny)ψ(x, y)

(4.3.3)
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Anti-commutation relation becomes:

{ψmn, ψm′n′} = δm,−m′δn,−n′ (4.3.4)

Followin the very same procedure as in sec3.2, we find the Hamiltonian in k-space:

H =
∑
m,n

−πh̄v
L

(m+ in)γ†mnγmn (4.3.5)

However, note that the Energy here takes complex values. For our discussion, it is of

peculiar interest since the complex energy values no longer allow us to explicitly define

the GS. In fact, the GS no longer exists since we can no longer have the minimum

energy of the system. What we have now are families of steady states.

Following up on a procedure, we determine the time evolution of the fermionic oper-

ators ψmn:

dψmn

dt
=

1

i
[ψmn, H]

= −2πiv(m+ in)

L
ψmn

(4.3.6)

Again, we set v = 1, and after solving the differential equation given above, we arrive

at the fields as a function of time:

ψ(x, y, t) =
1

L

∑
e

2πi
L

(m(x−t)+n(y−it))ψmn (4.3.7)

The equation of motion that Field in Eqn4.3.5 satisfies is:

(∂x + i∂y + ∂t)ψ(x, y, t) = 0 (4.3.8)
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Here we see that conformal symmetry naturally arises for the y and t. However, for

a pair of variables of x and t Wick’s rotation is still necessary to map the fields onto

the cylinder. If we were to complexify time, we see that it would mess up the y and

t pair. So now we choose to complexify x direction and introduce: X = ix. That

would allow us to define a pair of variables:

η = iy + t and ζ = X − it (4.3.9)

The field expansion on the complex plane is then proportional to:

∑
m,n∈Z+1/2

zm− 1
2wn− 1

2 (4.3.10)

with z ≡ exp(2π
L
ζ) and w ≡ exp(2π

L
η)

Now for |z| > |z′| and |w| > |w′|, we calculate expectation value for the product of

operators for the steady state (〈SS|...|SS〉):

〈ψ(z, w)ψ(z′, w′)〉 ≡ 〈SS|ψ(x, y, t), ψ(x′, y′, t′)|SS〉

=
∑

m,m′,n,n′∈Z+1/2

〈SS|zm+ 1
2wn− 1

2 z̃m
′+ 1

2 w̃n′− 1
2ψmnψm′n′|SS〉

=
∑

m,m′,n,n′∈Z+1/2

zm+ 1
2wm′− 1

2 z̃m
′+ 1

2 w̃n′− 1
2 〈ψmψm′〉

=
∑

m,n∈Z+1/2

z−m− 1
2wm− 1

2 z̃m+ 1
2 w̃n− 1

2

=
∑

m,n∈Z+1/2

1√
zz̃

1√
ww̃

(
z̃

z

)m(
w̃

w

)n

(4.3.11)
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Again, we note that the |SS〉 does not correspond to the lowest energy state, but to

the family of steady states. If we examine the sum in Eqn4.3.11, we will see that

for any choice of states that are annihilated by ψmn, the sum will diverge. That is

because the family of such states should be exactly the half of the states, so no matter

how we choose the half of the k-space, either, sum over n, or sum over m will give us

terms that diverge.

However, formally we can recognise the same pattern and not yet specify the range

of values m and n take, the product of operators should yield:

ψ(z, w)ψ(z′, w′) =
1

z − z̃

1

w − w̃
(4.3.12)

This can also be verified by dimension analysis. The field has a scaling dimension of

1/length in 2+1D. From dimension analysis we can predict that a more general form

of the expectation value could be of the form:

ψ(z, w)ψ(z′, w′) =
(w − w̃)(n−1)

(z − z̃)(n+1)
+

(z − z̃)(n−1)

(w − w̃)(n+1)
(4.3.13)

We note that the expression is symmetric under the exchange of variables z, z̃ and

w, w̃.
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Chapter 5

Conclusions

In this thesis we first discussed some insights from the conformal field theory in 2-

dimensions, to establish a mathematical basis for investigating the symmetries of

emergent Majorana particles on the 1+1D edges of 2-dimensional ”p+ip” supercon-

ductor. Later, after discussing the theory of superconductivity in its most general

form, we showed how those edge modes can be manifested in certain types of SC-s.

Then, having 1+1D edge modes investigated, using similar procedures and techniques

we have proposed calculations for 2+1D steady state expectation value.
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