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Abstract

In this dissertation we have discussed the phenomenology of the non-sterile Electroweak-

scale Right-handed Neutrino (EWνR) model. In the EWνR model, a right-handed

neutrino can naturally acquire a mass around the electroweak scale ΛEW ≈ 246 GeV.

This model adds the mirror fermions and an interesting Higgs sector to the parti-

cle spectrum in the Standard Model. We demonstrate that a significant part of the

parameter space in the original EWνR model agrees with the precision constraints

from the “Oblique Parameter” measurements. We then discuss the development of a

minimal extension to the original EWνR model. This extended EWνR model includes

the 125-GeV scalar that possesses “a dual nature”: it can either be a SM-like Higgs

OR an impostor very different from the SM Higgs, both of which have the signal

strengths compatible with experiments.
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Foreword

Particle physics is a branch of science that explores the constituents of matter and

energy in the Universe. It probes the most fundamental building blocks in the Nature.

Research endeavors in particle physics - experimental and theoretical alike - inspire

and invigorate far beyond their specific fields [1]. They not only add to our under-

standing of the Universe we live in, but also lay the foundations for technological

advancements in the next-century and thereafter, we can only begin to imagine!

There are four fundamental forces in the Nature - gravitational, electromagnetic,

weak nuclear and strong nuclear forces, all of which are studied in particle physics.

The nature of these forces and the behavior of the fundamental constituents of mat-

ter and energy are explained with the help of various theoretical frameworks. The

development of these theories is generally directed by experimental discoveries. The-

oretical research enables us to make sense out of the experimental data and make

predictions of new phenomena, to be tested experimentally in the future. Testing

new theories often leads to new experimental observations, which can potentially di-

rect the development of new theories. It is such dynamics in the research enterprise

that drives the advancement of any scientific field, not only particle physics.

We believe that to further this advancement through theoretical research, the

following steps should be followed while developing and analyzing any theoretical

framework:
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1. Verifying the agreement of the framework with the results from experiments in

the past.

2. Verifying the agreement of the framework with results from the contemporary

experiments; interpreting the experimental data from the perspective of the

framework.

3. Analyzing implications of the framework for future experimentation; predicting

phenomena peculiar to the framework, which can be experimentally tested and

which could conclusively confirm or disprove the framework.

In this dissertation, we present the doctoral research that follows this approach of the-

oretical research, and attempts to address mainly two of the most profound questions

in particle physics.

Many decades and centuries of in-depth study of the fundamental forces has re-

vealed to us many exciting secrets of the Nature. Particle physicists often try to

explain many of these features by theoretically formulating different symmetries in

the Nature. The symmetry that the electromagnetic and weak nuclear forces obey

is referred to as the “electroweak” symmetry. This symmetry existed only for a very

short time at the beginning of the Universe, after which the symmetry was broken. It

has been a long-standing question in particle physics to experimentally confirm the

mechanism, through which the electroweak symmetry was broken.

Different elementary particles behave differently under the effects of the broken

and unbroken symmetries in the Nature. Among these particles are a type of particles

called “Neutrinos”. They are the second most abundant type of particles in the

Universe (the first one being photons - the constituents of light). More than 20 trillion

neutrinos coming from the Sun pass through our body every second. More than 100

billion billion neutrinos can come out of a nuclear reactor every second. Neutrinos are
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so abundant, but the origin of their masses has not been experimentally validated.

The nature of the electroweak symmetry breaking and the origin of neutrino

masses have been two of the most pressing problems in particle physics. In 2012,

a new particle called a “Higgs boson” was discovered at the Large Hadron Collider

- a particle physics experimental facility on French-Swiss border and also the largest

machine ever built! This could be a crucial ingredient in the process of breaking

the electroweak symmetry, which leads to masses of many elementary particles. The

discovery of a Higgs boson in 2012 will certainly go a long way in resolving the first of

the aforementioned mysteries. However, the mystery of the origin of neutrino masses

still remains an open question.

There have been several attempts to theoretically realize the origin of neutrino

masses, but none of these theoretical models have been experimentally confirmed. It

may not be possible to conclusively confirm or disprove many of them at the Large

Hadron collider or other experiments in the near future.

Is it possible to develop a theoretical framework, which explains the origin of

neutrino masses and can also be conclusively tested at the Large Hadron Collider

and other experiments in the near future?

And, is such theoretical framework possible without adding any more fundamental

forces to the four known forces in the Nature?

These questions are the primary motivations behind the doctoral research pre-

sented here. They were answered affirmatively by a theoretical model - the Electroweak-

scale Right-handed Neutrino Model - put forward a few years ago. Readers would

find a detailed analysis of different aspects of this model as well as development and

implications of an extension of this model, in the light of the Higgs discovery, covered

in this dissertation.

We hope the readers enjoy reading this dissertation.
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Chapter 1

The Standard Model

Different particles in the Nature influence with each other through one or more of

the Fundamental Forces in the Nature. There are four known fundamental forces:

Gravitational force, Electromagnetic force, Strong nuclear force, and Weak nuclear

force.

The latter 3 forces can be theoretically realized through a framework known as

the Standard Model (SM) of particle physics, while the nature of gravitational force is

studied with the help of the General Theory of Relativity. The Standard Model (SM)

of particle physics is one of the most successful theoretical models in physics. The

success of SM is a result of rigorous experimental scrutiny that it has been subjected

to over the years.

There exist experimental evidences, such as neutrino oscillations, existence of the

dark matter and dark energy, which cannot be accounted for strictly within the SM.

However, so far there is no doubt that SM also lays a strong foundation for the physics

Beyond the Standard Model (BSM). Hence, it is essential to discuss the SM, before

delving into the depths of any facets of particle physics.

In this chapter we will take a historical-cum-physical approach to review the devel-
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opment of SM [2]. We will see how the SU(2) symmetry structure of the weak nuclear

force in SM emerges as a result of Unitarity (requirement that the total probability

has to be . 1). We will then discuss how physical requirements dictate “gauging” of

SM, and how the electromagnetic and the weak nuclear forces are “unified” into the

electromagnetic force, governed by a gauge theory abiding SU(2)× U(1) symmetry.

The final section of the chapter discusses the Higgs mechanism and the Higgs

boson in SM.

1.1 How does the SU(2) symmetry emerge?

To develop the SM, we start in a premise that the quantum electrodynamics, which

explains the electromagnetic interaction between charged particles, was well under-

stood. Thus, it was known that quantum electrodynamics obeys a local U(1) gauge

symmetry (we will shortly discuss what “local symmetry” and “gauging” mean).

1.1.1 Fermi’s model of β-decay

In 1896 Henry Becquerel discovered radioactive emissions, which were classified into

α, β and γ emissions by Ernest Rutherford in 1899 [3]. In 1930, Wolfgang Pauli wrote

his famous letter [4], postulating the existence of the neutral particle in the β decay,

which Enrico Fermi named as neutrino in 1934 [5].

The β decay is a process in which a neutron (n0) decays into a proton (p+), an

electron (e−) and a neutral particle called the anti-neutrino (ν̄): n→ e− p+ ν̄.

Fermi put forward a model of 4-fermion interaction that explained the β decay

remarkably well. At that time, the β decay was thought to be a result of the interac-

tion between a neutron, a proton, an electron and a neutrino. The Lagrangian of the
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Fermi interaction was empirically written as

LFermi = −GF√
2

[p̄(x) γµ n(x)] [ē(x) γµ ν(x)] + h.c. (Hermitian Conjugate). (1.1)

GF is known as the Fermi’s constant, at that time thought to be given by [6]

GF ≈
10−5

m2
p

= 1.1663787(6)× 10−5 GeV−2 , (1.2)

with mp as the mass of proton and ~ = c = 1, and (..) denotes the uncertainty in the

last significant figure. This Fermi’s four-fermion interaction can be visualized as

n

p+

e−

ν̄

GF /
√
2

Figure 1.1: Fermi’s 4 fermion interaction.

As the β decay has a relatively long lifetime of ≈ 881 s, the Fermi’s interaction

was referred to as a weak interaction. Fermi’s constant can also account for the

muon decay µ− → e− ν̄e ν̄µ and the pion decay π− → µ−ν̄µ (lifetime of about

2.2 µs and 28 ns, respectively). Remember that the Lagrangian in Eq. (1.1) is purely

phenomenological. The weak currents like [p̄(x) γµ n(x)] and [ē(x) γµ ν(x)] conserve

parity, just like the electromagnetic current [ē(x) γµ e(x)] does.

Note that neutrinos were still considered massless.

Lee and Yang in 1956 [7] proposed a series of experiments to verify the exact parity
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structure of weak currents. Chien-Shuing Wu in 1957 demonstrated [8] that parity

is, indeed, not conserved in the weak interaction. After a number of experiments by

different groups, the exact parity structure of weak currents was proved to be:

J weak
µ = [ē(x) γµ(1− γ5) ν(x)] , [p̄(x) γµ(1− γ5) n(x)] , .... (1.3)

Under parity operation ψ̄(x) γµγ5 ψ(x) → P ψ̄(x) γµγ5 ψ(x) P−1 = −ψ̄(x′) γµγ5 ψ(x′).

Thus, J weak
µ has the ‘V − A’ structure, meaning that it is written as a vector (V )

current ‘minus’ an axial vector (A) current. With this correct parity structure, LFermi
was written as

LFermi = −GF√
2

(
J weak
µ J µ,weak

)
. (1.4)

Note: (1− γ5)/2 ψ(x) = ψL(x) - the component of ψ(x) having left-handed helicity.

1.1.2 Unitarity requires W±, W 0

1.1.2.1 Infinities, unitarity violation and bad high energy behavior

Lagrangian in Eq. (1.4) correctly describes the parity violating and charge changing

nature of the weak current [ē(x) γµγ5 ν̄(x)]. It agrees very well with experimentally

measured cross sections of tree level processes such as the β decay and muon decay

µ− → e− ν̄e ν̄µ. However, this theory breaks down for one-loop processes such as

νµ e
− → νµ e

−.
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νµ

e− νe

µ− νµ

e−

GF /
√
2 GF /

√
2

Figure 1.2: One loop process Fermi’s 4 fermion interactions.

The Fermi’s interaction predicts an infinite cross section for such a process! This

problem with the theory can be traced back to the violation of “unitarity” in this

theory.

Unitarity is the basic principle that probability cannot exceed 1. In scattering

theory, the S-matrix is given by S = I+ ıT , where I represents “no scattering”, while

ıT gives the amplitude of the scattering. Thus, |S|2 = S S† = S† S = 1 is the

measure of the total probability of the process (with or without scattering) [9].

The cross section of νµ e
− → νµ e

− can be given, using the Fermi’s interaction, as

σ ∼ GF s , (1.5)

where s = 2 meEν with Eν is the energy of νµ in the lab frame. Thus, s is a measure

of the energy, at which the theory is probed. According to the scattering theory, this

cross section can also be written as

σ ∼ |SJ=1|2
s

⇒ σ ≤ 1

s
, (1.6)
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because, for unitarity, |SJ=1|2 ≤ 1.

G2
F s ≤

1

s
⇒ √

s ≤ (GF )−
1/2 ⇒ √

s . 300 GeV. (1.7)

This means that the unitarity is violated and the Fermi’s theory of weak interaction

breaks down beyond about 300 GeV . To be accurate, the weak interaction unitarity

is violated at about 1000 GeV . What remedy could avoid such a bad high energy

behavior?

1.1.2.2 W± cures infinities

The Quantum Electrodynamics (QED), which has a similar current structure, does

not exhibit such a bad high energy behavior. All the infinities in QED can be cancelled

through “renormalization”. The renormalizability of QED is possible because of

the dimensionless coupling constant ‘e’. On the other hand, the coupling constant

GF ∼ 10−5/m2
p of the Fermi interaction has dimensions of (Energy)−2. We can thus

expect that a theory of weak interaction that has a dimensionless coupling constant

could remedy the problem of infinities and unitarity violation.

The QED Lagrangian is written as

LQED = e J EM
µ Aµ , (1.8)

where J EM
µ = ē(x) γµ e(x) is the electromagnetic current, Aµ is the photon field and

‘e’ - the charge of electron - is the dimensionless coupling constant of the electro-

magnetic interaction. Notice that because the electromagnetic force is carried by the

vector (spin-1) photon field, the EM coupling constant ‘e’ can be dimensionless.

Therefore, physicists tried to write a Lagrangian weak interaction by introducing
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a charged spin-1 field W± and a dimensionless coupling constant ‘g’:

Lweak = g J weak
µ W µ , (1.9)

where J weak
µ is the charge-changing weak current that was introduced in Eq. (1.3).

Thus, all the weak interactions, [ē(x) γµγ5 ν(x)] , [p̄(x) γµγ5 n(x)] , .... have the same

coupling constant ‘g’. Note that W± is a massive spin-1 field, as opposed to the

massless photon field Aµ.

e−

νµ

νe

W → 1
q2−M2

W

µ−

g

g

→

e−

νµ

µ−

νe

GF /
√
2

Figure 1.3: e−νµ → µ−νe process with W± reduces to Fermi’s 4 fermion interaction
at q2 << M2

W .

Since the weak force is carried by the W± bosons, the process e−νµ → µ−νe can

be represented by the Feynman diagram in Fig. 1.3. When the momentum-squared

q2 transferred in the process is much lower than the mass of W±, the e− νµ → µ− νe

effectively occurs through the Fermi’s four-fermion interaction. Thus, the coupling

constants in the Fermi’s four-fermion interaction and the Lagrangian Lweak are related

by:

GF =

√
2

8

g2

M2
W

, (1.10)

where MW is the mass of W±. Lweak does solve the problem of a coupling constant

with dimension. However, the problem of unitarity violation at the high energy still

remains.
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νe

ν̄e

W+
L

e−

W−
L

Figure 1.4: νeν̄e → WLWL by exchanging an electron.

Since, W± are massive, they posses 3 degrees of freedom of polarization: 2 trans-

verse and 1 longitudinal. Let us denote their longitudinally polarized component by

W±
L , which has a polarization given by

ε(L)
µ =

kµ
MW

+ O(
MW

kµ
) . (1.11)

Consider the diagram in Fig. 1.4, whose cross section increases with energy, because

the cross section contains

∑
polarization

εµ ε
∗
ν = −gµν +

kµkν
MW

, (1.12)

where the second term leads to the bad high energy behavior.

The cross section of this process can be given by

σ =
G2
F E2

CM

3 π
, (1.13)

where ECM is the energy of the process in the center-of-mass frame. In the S-matrix

formulation of scattering theory, this cross section can be given by

σ =
π

E2
CM

∑
J

(2 J + 1)
∣∣S0, 0; 1/2, −1/2

∣∣2 , (1.14)



11

where the first two suffixes of S0, 0; 1/2, −1/2 denote the helicities of the longitudinal

components W±
L , while the latter two suffixes denote those of the neutrino and the

anti-neutrino in Fig. 1.4.

Since only the J = 1 term contributes, from Eqs. (1.13) and (1.14) and unitarity,

we get

|S0, 0; 1/2, −1/2|2 =
G2
F E

4
CM

9 π2
≤ 1 . (1.15)

This implies violation of unitarity at ECM ∼ 900 GeV. Thus, if the charge-changing

weak interaction is transmitted through W± bosons, then it does yield a dimensionless

coupling constant ‘g’ for the interaction. But, to eliminate the bad high energy

behavior, we still need something that cancels the problematic diagram in Fig. 1.4.

1.1.2.3 W 0 cures bad high energy behavior

What if another diagram contributes to νν̄ → W+
LW

−
L , such that it cancels the bad

high energy behavior of Fig. 1.4? Considering the zero-charge on both sides of this

process, what if we introduce W 0 - a neutral spin-1 particle? Then, in addition to

Fig. 1.4, the diagram in Fig. 1.5 also contributes to νν̄ → W+
LW

−
L .

ν̄e

νe

W 0

W+
L

W−
L

? ?

Figure 1.5: νeν̄e → WLWL by exchanging the W 0 boson.

The bad high energy behavior of Fig. 1.4 is cancelled, if the couplings at the two

vertices in Fig. 1.5 obey the symmetry of a Lie group [10]. Vertex in Fig. 1.6(a) is
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ǫ(i)

f̄

f

(a)

pi, ǫ
(i)

pj, ǫ
(j)

pk, ǫ
(k)

(b)

Figure 1.6: EWνR model mirror fermion loop examples

given by

V(1) = ıg f̄α /ε
(i) (1− γ5)

2
T

(i)
αβ fβ , (1.16)

where ‘g’ is the weak coupling in Eq.(1.9). /ε = γµε
µ, where γµ are matrices given by

[11]

γ0 =

I 0

0 I

 , γ1 =

 0 σ1

−σ1 0

 ,

γ2 =

 0 σ2

−σ2 0

 , γ1 =

 0 σ3

−σ3 0

 , (1.17)

where σ’s are the Pauli matrices. T
(i)
αβ are matrices and f ’s are fermion fields. Since

there are three polarizations (thus, the superscript (i) takes three values), there are

three T (i) matrices. Vertex V(2) in Fig. 1.6(b) is given by

V(2) = ıg
{
f ij,k

[
ε(i) · ε(j)

] [
ε(k) · (pi − pj)

]
+ f jk,i

[
ε(j) · ε(k)

] [
ε(i) · (pj − pk)

]
+ fki,j

[
ε(k) · ε(i)

] [
ε(j) · (pk − pi)

] }
. (1.18)
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This assumes that V(2) contains the same coupling constant ‘g’ as V(1) so as to get

the desired cancellation. The structure of V(2) is a result of the fact that W±, W 0

are spin-1 bosons, and thus, V(2) must be symmetric under exchange of any two of

the i, j, k indices. So far, f ij,k, f jk,i and fki,j are some constants which only satisfy

f ij,k = −f ji,k, that is f ij,k are completely antisymmetric under exchange of two of its

indices.

f(pα)

f̄(pβ)

ǫ(i), ki

f ′

ǫ(j), kj

Figure 1.7: νeν̄e → WLWL by exchanging an electron.

f(pα)

f̄(pβ)

f ′

ǫ(i), , ki

ǫ(j), , kj

Figure 1.8: νeν̄e → WLWL by exchanging an electron.

f(pα)

f̄(pβ)

q

ǫ(j), kj

ǫ(i), ki

Figure 1.9: νeν̄e → WLWL by exchanging the W 0 boson.
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Using these vertices, we can write the amplitudes for the three diagrams that

contribute to ff̄ → W+
LW

−
L . These diagrams and their amplitudes are tabulated in

Table 1.1. While writing these amplitudes we have ignored all the fermion masses,

for simplicity.

Table 1.1: Vertices in the theory of weak interactions.

(a) M(a) = −ıg2 v̄α/ε
(i)

(/pβ + /k
(j)

)

(/pβ + /k
(j)

)2
/ε(j) × (1− γ5)

2

[
T

(i)
αρ T

(j)
ρβ

]
uβ

(b) M(b) = −ıg2 v̄α/ε
(j)

(/pα − /k
(j)

)

(/pα − /k
(j)

)2
/ε(i) × (1− γ5)

2

[
T

(j)
αβ T

(i)
ρβ

]
uβ

(c) M(c) = −g2 v̄αγ
λ (1− γ5)

2
T

(k)
αβ uβ ×

1

(q2 −M2
W 0)

{
f ij,k ε(i) · ε(j)(k(i) − k(j))λ

+ f jk,i ε(i) · (−k(j) + q)ε
(j)
λ + fki,j ε(j) · (−q − k(i))ε

(i)
λ

}

Adding up all three diagrams, the total amplitude of the process ff̄ → W+
LW

−
L

is given by

Mtot =Ma +Mb +Mc . (1.19)

Remember that k(ρ) · ε(ρ) = 0 and as k(j) → ∞, ε
(i,j)
λ = k

(i,j)
λ /MW + O(MW/k).

Therefore,

Mtot = − ı

MW

g2 v̄α /ε
(i) (1− γ5)

2

[
T (i)
αρ T

(j)
ρβ − T (j)

αρ T
(i)
ρβ − ıfki,j T

(k)
αβ

]
uβ

+ g2 ε(i) · k(j)

MW (k(i) · k(j))
v̄α /k

(j) (1− γ5)

2
T

(k)
αβ uβ

(
− f jk,i + f ij,k

)
(1.20)

Since also ε
(i)
λ → k

(i)
λ /MW as k

(i)
λ → ∞, the amplitude Mtot increases with k(j).

The first term increases as k(i), whereas the second one increases as k(j). To cancel
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this diagram i.e. for Mtot = 0, both the terms in the equation above should cancel

separately. A vanishing second term implies f jk,i = f ij,k. We already know that

f ij,k = −f ji,k, by interchange symmetry of bosons in Eq. (1.18). Therefore, (dropping

the comma in the superscript)

f ijk = f jki = fkij , (1.21)

and f ijk is completely antisymmetric under exchange of any two indices. For the first

term to vanish,

[T i, T j] = ıf ijk T k , (1.22)

i.e. the T i matrices satisfy the commutator of a Lie algebra, of which they are the

generators. f ijk are the structure constants of the Lie algebra. Since there are 3

T (i) matrices, the Lie algebra obeyed here must be that of the SU(2) group. Thus,

T (i) = τ i/2, where τ i’s are the Pauli matrices given by

τ1 =

0 1

1 0

 , τ2 =

0 −ı

ı 0

 , τ3 =

1 0

0 −1

 (1.23)

and f ijk = εijk - the Levi-Civita symbol in three dimensions.

1.1.3 Conclusion of the section

We saw that the good high energy behavior of the weak interactions necessitates

existence of W± as well as W 0. Their couplings obey the symmetry of the SU(2)

group. Also note that the three point interactions in Figs. 1.6(a) and 1.6(b) have a

common coupling constant ‘g’.

In other words, the SU(2) symmetry of the weak interactions emerges out
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of a physical requirement of the good high energy behavior of the theory.

It is denoted by SU(2)L symmetry, since the current J weak
µ has a ‘V − A’ structure.

Thus, only the left-handed components of fermions couple to the spin-1 bosons

W±, W 0. It is important to note that coupling only to the left-handed fermions is not

an inherent property of W±, W 0 bosons, but it emerges from the observed ‘V − A’

structure of the weak currents. Theoretically, they can couple to the right-handed

components of some other fermions, but more on this in Chapter 3 onwards.

In the next section we will discuss the concept of gauging a theory in the context

of the weak interactions obeying SU(2) symmetry.

1.2 ‘Gauging’ the SU(2) symmetry

This section illustrates the necessity for and implications of gauging the theory of

weak interactions that obeys the symmetry of SU(2) group. Note that in Quantum

Electrodynamics (QED), the U(1) symmetry is also gauged. It is simpler to discuss

the concept of gauging a U(1) theory, but we will skip this step and directly explore

the concept of gauging the theory of weak interactions.

Recall from the previous section that unitarity necessitates existence of spin-1

bosons W±, W 0, which can be thought of as the force carriers of the weak interaction.

Under the SU(2) symmetry they can be grouped into a vector ~Wµ = (W 1, W 2, W 0),

where the charged W± are given by

W± =
W 1 ∓ ıW 2

√
2

(1.24)

Fermion pairs - neutrino-electron or up-down quarks - also form doublets under the
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SU(2)L symmetry:

ψL =

 ψ1L

ψ2L

 . (1.25)

1.2.1 Global vs. local SU(2) symmetry

Ignoring the masses of the fermions for simplicity, let us check if the kinetic Lagrangian

of the fermions ψ̄L γ
µ ∂µ ψL is invariant under a global SU(2)L phase transformation:

ψL → e−ı
~T ·~α ψL , (1.26)

where ~T = (T1, T2, T3) is a vector formed by three 2 × 2 generators of the SU(2)

group. ~α = (α1, α2, α3) is a vector that parametrizes the phase transformation.

Therefore, under this global transformation,

ψ̄L γ
µ ∂µ ψL → (ψ̄L e

+ı ~T ·~α)γµ ∂µ (e−ı
~T ·~α ψL)

= ψ̄L e+ı ~T ·~αe−ı
~T ·~αγµ ∂µ ψL . (1.27)

By global transformation we mean that the same phase transformation is applied

to all the points in space-time. In other words, if an electron at a point in the

space-time undergoes a phase transformation ~α, then all the electrons at all the other

space-time points also undergo the same transformation!

In contrast, if the transformation is local, then the phase transformation ~α(x) at

a point (in space-time) x is independent of all other points:

ψL(x) → e−ı
~T ·~α(x) ψL(x)

= U
(
α(x)

)
ψL(x) . (1.28)
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Then, the kinetic term transforms as follows:

ψ̄L(x) γµ ∂µ ψL(x) → ψ̄L(x) U−1
(
α(x)

)
γµ ∂µ U

(
α(x)

)
ψL(x)

= ψ̄L(x) γµ ∂µ ψL(x) + ψ̄L(x) γµ
[
U−1

(
α(x)

)
∂µU

(
α(x)

)]
ψL(x) , (1.29)

where, in general,
[
U−1

(
α(x)

)
∂µU

(
α(x)

)]
6= 1. Therefore, the kinetic term of

fermions is not invariant under a local SU(2) symmetry, like it is under a global

SU(2) symmetry.

If we demand that we should be able to freely perform an independent SU(2) phase

transformation at each space-time point, then we need another term in the Lagrangian

to cancel the non-invariant part ψ̄L(x) γµ
[
U−1

(
α(x)

)
∂µU

(
α(x)

)]
ψL(x).

1.2.2 The covariant derivative and non-invariant mass terms

Looking at the form of the ~T · ~Wµ-term, if it transforms as

~T · ~Wµ → ~T · ~W ′
µ

= U−1
(
α(x)

)
~T · ~Wµ U

(
α(x)

)
− ı

g

(
∂µU

(
α(x)

))
U−1

(
α(x)

)
, (1.30)

then the term −ıg ψ̄L(x) γµ ~T · ~Wµ ψL(x) in the Lagrangian transforms as follows:

− ıgψ̄L(x) γµ ~T · ~Wµ ψL(x)

→ −ıg ψ̄L(x) γµ ~T · ~Wµ ψL(x) − ψ̄L(x) γµ
[
U−1

(
α(x)

)
∂µU

(
α(x)

)]
ψL(x) .

(1.31)
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Since the two terms above are invariant, when considered together, we can define the

kinetic term of the fermions as

ψ̄L(x) γµ
(
∂µ − ıg ~T · ~Wµ

)
ψL(x) (1.32)

with the “covariant derivative” Dµ = ∂µ − ıg ~T · ~Wµ.

We need to check if the entire Lagrangian in the theory is also invariant with

this prescription of how ~Wµ transforms under a local SU(2) transformation. The full

Lagrangian is written as

L = ψ̄L(x) γµ DµψL(x) − 1

4
Gi
µνG

iµν − 1

2
M2

W
~Wµ · ~W µ (1.33)

= L1 + L2 + L3 .

Here L1 is the covariant kinetic term of the fermions, L2 is the kinetic term of ~Wµ

and L3 is the mass term of ~Wµ. In L2, Gi
µν ≡ ∂µW

i
ν − ∂νW i

µ + g εijk W j
µW

k
ν .

Consider

Tr
[
~T · ~Gµν

~T · ~Gµν
]

= Tr

(
T i T j

)
Gi
µν G

iµν

=
1

2
Gi
µνG

iµν , (1.34)

where Tr[....] denotes trace of a matrix. Hence, it can be easily checked that the

prescription of transformation of ~Wµ in Eq.(1.30) implies that under the local trans-

formation

~T · ~Gµν → ~T · ~G′µν = U(x) ~T · ~Gµν U
−1(x) . (1.35)
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This gives

Tr
[
~T · ~Gµν

~T · ~Gµν
]
→ Tr

[
U(x) ~T · ~Gµν U

−1(x) U(x) ~T · ~Gµν U−1(x)
]

= Tr
[
~T · ~Gµν

~T · ~Gµν
]
, (1.36)

as Tr[ABC] = Tr[CAB]. Thus, L2 is invariant under a local SU(2) transformation.

Now consider how the L3 term transforms:

− 1

2
M2

W
~Wµ · ~W µ . (1.37)

Let us first see how ~Wµ transforms under an infinitesimal local transformation i.e.

~α(x) is small, implying U(α(x)) = I− ı ~T · ~α(x) and U−1(x) = I + ı ~T · ~α(x). Then,

from Eq. (1.30),

~T · ~W ′
µ = ~T · ~Wµ − ı

(
~T · ~α(x)

) (
~T · ~Wµ

)
+ ı

(
~T · ~Wµ

) (
~T · ~α(x)

)
− 1

g

(
~T · ∂µ~α(x)

)
= ~T · ~Wµ − ı αj W k

µ

[
T j, T k

]
− i

g

(
~T · ∂µ~α(x)

)
. (1.38)

Since
[
T j, T k

]
= ı εjkl T l,

W i
µ → W i′

µ = W i
µ + εijk αj W k

µ −
1

g
∂µα

i(x) . (1.39)

This procedure of fixing how the spin-1 force carriers transform under a local symme-

try transformation, so as to make the Lagrangian (with massless bosons and fermions)

invariant under the transformation, is called “gauging”. The force carriers are called

the “gauge bosons”. The global symmetry of the Lagrangian becomes a local sym-

metry through the process of gauging. Note that a global symmetry is a special case

of a local symmetry, in which α(x) = α is a constant.
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From Eq. (1.39), we see that W i′
µ ·W iµ′ 6= W i

µ ·W iµ and therefore the mass term

of ~Wµ is not invariant under a local SU(2) transformation. We cannot eliminate this

term by making W±, W 0 massless, since we need them to be massive so that at low

energies the weak interaction reduces to Fermi’s four-fermion interaction.

W±, W 0 therefore acquire their masses through some other mechanism that we

will discuss shortly.

But before that, let us consider the consequences of massive fermions in the context

of a local SU(2) symmetry. Because we have so far considered massless fermions, the

Lagrangian in Eq. (1.33) does not include a mass term of fermions. A generic mass

term of a fermion ψ is given as

mψ̄(x) ψ(x) = mψ̄R ψL + mψ̄L ψR , (1.40)

where ψL and ψR are the left- and right-handed (helicity) components of the fermion

ψ. Since the ‘(V + A)’ current is not observed in the weak interactions i.e. since

ψR does not interact with W±, W 0, under a SU(2) transformation (global or local),

ψR → ψR. Thus, Eq. (1.40) transforms as follows:

m
(
ψ̄R ψL + ψ̄L ψR

)
→ m

(
ψ̄R U(α(x))ψL + ψ̄L U

−1(α(x))ψR
)
. (1.41)

Thus, the fermion mass term is not invariant under a local SU(2) transformation.

1.2.2.1 Conclusions of the section

We can draw the following conclusions from the discussion in this section:

• If we insist that we should have a freedom of performing a phase transformation

independently at all space-time points, then we need to ‘gauge’ the theory.
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While gauging we add a spin-1 boson(s) to the theory and fix how they transform

under the phase transformation so as to make the Lagrangian (except the mass

terms of the bosons and fermions) invariant under a local phase transformation.

• We can conclude that so long as the local gauge symmetry is preserved,

the gauge bosons and the fermions in the theory are massless.

• In this process one also defines the “covariant derivative” in the kinetic terms

of various fields (not only the fermions - we will see this shortly in the next

section).

• For the theory of weak interactions, we gauge the SU(2) symmetry. W±, W 0

are the gauge bosons of this theory.

• After gauging, all the terms in the Lagrangian are invariant under local SU(2)

transformations, except the mass terms of the gauge bosons and the fermions.

As long as the SU(2) gauge symmetry is preserved, the gauge bosons W±, W 0

and the fermions - leptons and quarks - are massless.

• We need a different mechanism to generate masses for all the particles.

We will discuss this mechanism - the Higgs mechanism - in the next section.

1.3 The Higgs mechanism and generating the masses

of gauge bosons and fermions

Based on the previous section, the Lagrangian of the SU(2) gauge theory of weak

interactions is given by

L = ψ̄L(x) γµ DµψL(x) − 1

4
Gi
µνG

iµν . (1.42)
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Thus, in this theory the gauge bosons W±, W 0, as well as the fermions ψ are massless.

We know for sure that in reality all these particles have masses. However, these are

not two contradictory statements, the present state of the Universe is not described

directly by the Lagrangian, but by “a ground state” of the Lagrangian (one of the

ground states, if there are many).

So all we need is to make the gauge bosons as well as the fermions massive in

the ground state of the Lagrangian, which describes the Universe we live in. This

is achieved through the Higgs mechanism, which breaks the gauge symmetry spon-

taneously. Remember that the local symmetry of the Lagrangian is still preserved,

but the ground state solution of the ‘Lagrange’s equation of motion’ is not symmetric

under the local symmetry.

The Higgs mechanism was proposed in 1964 independently by Peter Higgs [12, 13];

by Robert Brout and Franois Englert [14] and by Gerald Guralnik, C. R. Hagen, and

Tom Kibble [15]. The non-relativistic version of this mechanism for superconducting

material was put forward by Philip Anderson in 1963 [16].

Peter Higgs proposed the mechanism for an O(2) gauge theory. It is simpler to

understand the mechanism using an O(2) gauge theory, but we will directly discuss

the mechanism for the SU(2) gauge theory of weak interactions. For the electroweak

theory in SM, the Higgs mechanism follows the same steps for a SU(2)×U(1) gauge

theory.

In the first subsection we will list the steps to be followed in the Higgs mechanism

for a generic gauge theory. The discussion of the mechanism for the SU(2) gauge

theory of weak interactions is given in the second subsection.
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1.3.1 Steps in the Higgs mechanism

The steps followed in the Higgs mechanism are as follows:

• Introduce a scalar field that possesses the appropriate transformation properties

under the gauge symmetry.

• Write the potential for the scalar field and find its ground state by minimizing

the potential. If this ground state inherently does not obey the symmetry of

the Lagrangian, then the evolution of the system to the ground state is said to

“spontaneously” break the symmetry.

• Choose the proper vacuum alignment in the ground state so that one of the

degrees of freedom of the scalar field acquires a mass, while the other d.o.f.’s

are massless.

• The massive d.o.f. appears as a physical particle, called the “Higgs boson”. The

massless d.o.f.’s are called the “Nambu-Goldstone bosons” (N-G bosons).

• The N-G bosons appear as massless physical particles if the spontaneously bro-

ken symmetry is a global symmetry. If a local symmetry is spontaneously broken

then the N-G bosons are absorbed by the longitudinally polarized components of

the gauge bosons. This process of the spontaneous breaking of a local symmetry

is called the Higgs mechanism.
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1.3.2 The Higgs mechanism for the SU(2) gauge theory

To break the SU(2)L gauge symmetry of weak interactions, we add 4 scalar degrees

of freedom, which form a doublet under SU(2)L:

Φ =

 φ1

φ2

 . (1.43)

Here φ1 and φ2 are complex numbers, thus, both having 2 degrees of freedom each.

The scalar Lagrangian is given by

LS = (DµΦ)†(DµΦ) − V (Φ) , (1.44)

where V (Φ) is the scalar potential, given by

V (Φ) = −µ2 (Φ†Φ) + λ(Φ†Φ)2 . (1.45)

After minimizing this potential we see that the ground state, which is asymmetrical

under a local SU(2)L transformation can be obtained only if µ2 > 0 and λ is real. In

this case the the ground state is given by

〈
Φ†Φ

〉
=
v2

2
where v2 =

µ2

λ
(1.46)

This defines a 3D circle formed by all the ground states in the 4D space formed by the

scalar d.o.f.’s Re[φ1], Re[φ2], Im[φ1], Im[φ2]. One of these ground states represents

the state, in which we obtain 1 massive and 3 massless particles (not all physical

particles).
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We choose such a vacuum alignment:

〈Φ〉 =
1√
2

 0

v

 (1.47)

Here v is called the vacuum expectation value (VEV) of the Re[φ2].

Since only those fields can appear as physical particles which have 0 VEV, to

clearly see the appearance of the physical particles, we choose a particular vacuum

and a particular gauge - “unitary gauge”:

Φ(x) = Exp

(
ı~τ ·

~ξ(x)

v

) 0

v + η(x)√
2

 , (1.48)

with 〈η(x)〉 = 0.

Particular vacuum:

〈ξ(x)〉 = 0 . (1.49)

Exp
(
ı~τ · ~ξ(x)

v

)
parametrizes rotations along the 3D circle formed by all the ground

states, defined by Eq. (1.47). Exp
(
ı~τ · ~ξ(x)

v

)
is like the U(~α(x)) in the previous

section. We are free to choose x-dependent ~ξ(x) because of the local nature of the

symmetry of the Lagrangian. Consequently, we can do such rotations while still being

in a ground state.

Eventually ~ξ(x) gives rise to 3 N-G bosons and η(x) appears as the Higgs boson.

Denoting Exp
(
ı~τ · ~ξ(x)

v

)
by U(~ξ(x)), Eq. (1.30) gives

~τ

2
· ~W ′

µ = U−1
(
~ξ(x)

) ~τ
2
· ~Wµ U

(
~ξ(x)

)
− ı

g

(
∂µU

(
~ξ(x)

))
U−1

(
~ξ(x)

)
. (1.50)

The second term here absorbs the N-G bosons into the gauge bosons. Note that if
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the symmetry is global then this term vanishes and hence, the N-G bosons cannot

be absorbed in the gauge bosons. With a local symmetry, the covariant derivative

becomes D′µ =
(
∂µ − ıg ~τ2 · ~W ′

µ

)
, and in the kinetic term of the gauge bosons,

Gi
µν → Gi′

µν = ∂µW
i′
ν − ∂νW i′

µ + g εijk W j′
µW

k′
ν . (1.51)

Hence, in the chosen ground state, the Lagrangian of the scalars and the gauge bosons

becomes (we will talk about fermions shortly).

Lground =
(
D′µΦ′

)†
(Dµ′Φ′) +

(
µ2

2
(v + η(x))2 − λ

4
(v + η(x))4

)
− 1

4
Gi′
µνG

i′,µν

(1.52)

When we expand the first term, we see a mass term for the gauge bosons ~W ′
µ:

g2

8

(
0 v

) (
~τ

2
· ~W ′

µ

~τ

2
· ~W µ′

)  0

v

 =
1

2

(gv
2

)2
~W ′
µ · ~W µ′ . (1.53)

Thus, the gauge bosons W±, W 0 acquire a mass of MW = g v / 2. Notice that this

term is invariant under a global SU(2) transformation.

In the second term of Eq. (1.52), using v2 = (µ2/λ), we find a term

1

2
(2 µ2) η2(x) , (1.54)

which is the mass term of a physical massive scalar η having mass mη =
√

2 µ 1.

This process, through which the gauge symmetry is spontaneously broken, the

gauge bosons acquire mass and a massive physical scalar appears, is called the Higgs

1The second term in Eq. (1.52) also contains a constant term ∼ 1/4µ2/λ. This term is said to
contribute to the “Cosmological constant”. Unless one is trying to explore the gravitational force or
cosmological evolution of the Universe, this term can be ignored as can be any constant shift in the
Lagrangian
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mechanism. Note that the process of generating fermion masses is not counted in

this mechanism. This process involves the Yukawa couplings of the fermions with the

scalar, as we will see shortly.

1.3.3 Generating masses of the fermions

The SU(2)L gauge theory of weak interactions also contains fermions. Their left-

handed helicity components form doublets ψT = (ψ1L, ψ2L) under SU(2)L, while the

right-handed parts of the charged fermions are singlets ψ1R, ψ2R. The right-handed

parts of neutral fermions - neutrinos - are absent in this theory (more on this later).

Even after the Higgs mechanism these fermions are massless. They can acquire masses

if they have SU(2)L gauge invariant interactions with the scalar fields.

Yukawa interaction, which is a tree-level interaction, is SU(2)L gauge invariant.

To give masses to both ψ1 and ψ2, it can be written as:

LY = gY 1 ψ̄L Φ ψ2R + gY 2 ψ̄L Φ̃ ψ1R + h.c. . (1.55)

where Φ̃ = ıτ2Φ∗. When the SU(2)L gauge symmetry is spontaneously broken through

the Higgs mechanism, the LY is written in the chosen ground state as:

LY,ground = gY 1

(
ψ̄1L ψ̄2L

)  0

v√
2

 ψ2R

+ gY 2

(
ψ̄1L ψ̄2L

)  v√
2

0

 ψ1R + h.c.

= gY 1
v√
2
ψ̄2Lψ2R + gY 2

v√
2
ψ̄1Lψ1R + h.c. (1.56)

Thus, ψ1 acquires a mass of (gY 1 v/
√

2) and ψ2 acquires a mass of (gY 2 v/
√

2).
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1.3.4 Summary of this section

• In this section we have discussed the Higgs mechanism and its salient features

by considering the SU(2)L gauge theory of weak interactions as an example.

• By adding a scalar to a gauge theory the masses of gauge bosons can be gener-

ated by breaking the gauge symmetry spontaneously through the Higgs mech-

anism.

• A massive physical scalar particle, popularly known as the Higgs boson, is a

byproduct of the Higgs mechanism.

• After such spontaneous symmetry breaking a residual global symmetry remains.

• The masses of fermions in the theory are generated through their Yukawa in-

teractions with the scalar field, when the gauge symmetry is spontaneously

broken.

After all this discussion we are ready to talk about the Standard Model, which is

the focus of the next section.

1.4 The Standard Model of particle physics

As discussed earlier, the Standard Model is a SU(3)C × SU(2)L × U(1)Y gauge the-

ory. The SU(3)C part of the theory explains the strong-nuclear interactions through

the Quantum Chromodynamics (QCD), while the SU(2)L × U(1)Y gauge theory ac-

counts for the weak-nuclear and the electromagnetic interactions with the help of the

Electroweak (EW) theory.

Since the strong interactions are not within the scope of this dissertation, we will

only discuss the EW part of the SM, which is a SU(2)L × U(1)Y gauge theory.
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In the first part of this section we will argue in favor of a U(1)Y gauge symmetry,

under which the leptons transform in a particular way. In the second part, we will

gauge the theory with only the leptons and the gauge bosons under consideration.

In the third part we will break the EW gauge symmetry spontaneously and derive

the mass eigenstates of the gauge bosons as well as the Higgs bosons and we will

also briefly depict the necessity for the existence of quarks, and how the leptons and

quarks acquire their masses. The final part of this section will list the features and

limitations of the SM.

1.4.1 Existence of a U(1)Y gauge theory

Consider the electron e and the neutrino νL, left-handed components of which form

a lepton doublet under the SU(2)L gauge symmetry:

lL =

 νL

eL

 . (1.57)

eR is a singlet under SU(2)L. The νL and eL are eigenstates of the T3L = τ3/2

generator of SU(2)L, with eigenvalues +1/2 and −1/2 respectively, and T3L(eR) = 0.

In reality there are 3 “generations” of leptons, each having a doublet of the left-

handed components and a charged singlet:

leL =

 νeL

eL

 , eR ; lµL =

 νµL

µL

 , µR ; lτL =

 ντL

τL

 , τR . (1.58)

Here e, µ, τ are electron, muon, and tau-lepton (or tau-on), respectively. νe, νµ, ντ

are the neutrinos associated with them, respectively. While writing the Lagrangian

and equations we will consider only one representative generation, formed by electron
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and neutrino νeL. Remember that a sum over the 3 lepton generations is implicit.

If the electric charges Q(νL) and Q(eL) are considered to be the eigenvalues of

a generator of the gauge symmetry of the theory, then SU(2)L will be a part of

the gauge symmetry group. T3L will also then be a part of the generator Q of the

symmetry. Thus, we can define

Q = T3L +
Y

2
. (1.59)

Here Y/2 is the generator of remaining part of the gauge group, such that Y/2 = −1/2

for both νL and eL. Also, Y/2(eR) = −1 so that Q(eR) = −1. Y/2 is called the

“Hypercharge”2.

Such a generator can be associated with a U(1)Y symmetry group, under which

the lepton components transform as

lL → Exp

(
−ıY

2
αY (x)

)
lL = Exp

(
+ı

1

2
αY (x)

)
lL , (1.60)

and

eR → Exp

(
−ıY

2
αY (x)

)
eR = Exp (+ıαY (x)) eR . (1.61)

Thus, eR is a singlet under the SU(2)L gauge symmetry but not under the U(1)Y

symmetry. If the right-handed component of the neutrino νR exists, then in the

minimal extension to SM

T3L(νR) = 0 and
Y

2
(νR) = 0 . (1.62)

Thus, νR is a singlet under the entire SU(2)L×U(1)Y symmetry. In a minimal model

2Sometimes the Y instead of Y/2 is referred to as the hypercharge. This is just a matter of
convention. In this dissertation we will stick to the convention of calling Y/2 as the hypercharge.
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the existence of νR is not necessary!

1.4.2 Gauging the SU(2)L × U(1)Y symmetry

If we are to gauge the entire SU(2)L × U(1)Y symmetry, then we have to add a

gauge boson Bµ that is associated the U(1)Y part of the gauge symmetry. Then the

covariant derivative is defined as

Dµ = ∂µ − ıg ~T · ~Wµ − ıg′
Y

2
Bµ , (1.63)

implying

DµlL =

(
∂µ − ıg

~τ

2
· ~Wµ + ıg′

1

2
Bµ

)
lL (1.64)

and

DµeR = (∂µ + ıg′Bµ) eR . (1.65)

Here g′ is the gauge coupling associated with Bµ.

The Lagrangian for massless leptons can therefore be written as:

Llepton = ı l̄L γ
µDµlL + ı ēR γ

µDµeR . (1.66)

The kinetic terms of the gauge bosons are given by

Lgauge = −1

4
Gi
µν G

iµν − 1

4
Bµν B

µν , (1.67)

where

Gi
µν ≡ ∂µW

i
ν − ∂νW i

µ + g εijk W j
µW

k
ν , (1.68)
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and

Bi
µν = ∂µB

i
ν − ∂νBi

µ . (1.69)

1.4.3 Breaking the SU(2)L × U(1)Y gauge symmetry sponta-

neously

In this subsection we will discuss the spontaneous breaking of the SU(2)L × U(1)Y

gauge symmetry. First, we will generate the masses of the gauge bosons through the

Higgs mechanism. In the second part we will talk about how the masses of leptons

and quarks are generated.

1.4.3.1 The Higgs mechanism in the SU(2)L × U(1)Y gauge theory

Remember that the formulation of the SU(2)L × U(1)Y gauge theory is an attempt

to unify the weak force and the electromagnetic force. Thus, in the ground state of

this theory we must have a massless gauge boson - photon Aµ. In addition we must

also have 2 massive charged gauge bosons W±
µ and a neutral massive gauge boson,

which we will call Zµ for now.

We know from our discussion in the previous section that the SU(2)L gauge theory

alone needs 4 scalar degrees of freedom, to generate masses for its 3 gauge bosons.

Since also for the SU(2)L × U(1)Y gauge theory we require only 3 massive gauge

bosons, it appears that 4 scalar d.o.f.’s could be just sufficient. Let us check this.

We define a scalar doublet:

Φ =

 φ+

φ0

 , (1.70)

having the hypercharge Y/2 = 1/2. φ+ is a positively charged scalar field, having 2
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real d.o.f.’s.

Hence,

(DµΦ) =

(
∂µ − ıg ~T · ~Wµ − ıg′

Y

2
Bµ

)
Φ . (1.71)

The scalar potential is given by

V (Φ) = −µ2
(
Φ†Φ

)
+ λ

(
Φ†Φ

)2
. (1.72)

The VEV of Φ is given by

〈Φ〉 =

 0

v

2

 , where v =
µ2

λ
. (1.73)

To see the mass spectrum of the gauge bosons, we choose the “unitary gauge” as

before:

Φ(x) = Exp

(
ı~τ ·

~ξ(x)

v

) 0

v + η(x)√
2

 , (1.74)

with 〈η(x)〉 = 0 with the vacuum alignment 〈ξ(x)〉 = 0.

In this gauge i.e. under this SU(2)L transformation (as in the last section):

~τ

2
· ~W ′

µ = U−1
(
~ξ(x)

) ~τ
2
· ~Wµ U

(
~ξ(x)

)
− ı

g

(
∂µU

(
~ξ(x)

))
U−1

(
~ξ(x)

)
. (1.75)

This time we also have

B′µ = Bµ (1.76)
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Then
(
D′µΦ′

)†
(Dµ′Φ′) contains

g′2

8

(
0 v

) (
B′µ B

µ′)
 0

v

 =
1

2

(
g′v

2

)2

B′µ B
µ′ , (1.77)

in addition to

(
1

2

(gv
2

)2
~W ′
µ · ~W µ′

)
in Eq. (1.53).

Additionally,
(
D′µΦ′

)†
(Dµ′Φ′) also contains cross terms between W 3

µ and Bµ:

g g′

2

(
0 v

) (
~τ

2
· ~W ′

µ

)
B′µ

 0

v

 =
g g′

2

(
−1

2
v2

)
W 3′
µ B′µ

=
1

2

(
−gg

′v2

2

)
W 3′
µ B′µ (1.78)

Thus, mass terms involving W 3′
µ and B′µ can be put together into

v2

4

(
W 3
µ Bµ

)  g2 −g g′

−g g′ g′2


 W 3

µ

Bµ

 . (1.79)

Notice that determinant of the 2× 2 matrix above is 0, which implies that one of its

eigenvalue is 0, as required for the massless photon.

Diagonalizing this matrix we get the mass eigenstates Zµ and Aµ of the neutral

gauge bosons W 3
µ and Bµ, such that

 Zµ

Aµ

 =

 cos θW − sin θW

sin θW cos θW


 W 3

µ

Bµ

 , (1.80)

where

cos θW =
g√

g2 + g′2
, and sin θW =

g′√
g2 + g′2

, (1.81)
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and θW is called the “weak mixing angle”.

Thus, now we have 4 gauge bosons of the SU(2)L×U(1)Y gauge theory: 2 charged

gauge bosons

W± =
W 1 ∓ ıW 2

√
2

(1.82)

having a mass MW = g v / 2 and 2 neutral gauge bosons given by Eq. (1.80) with Zµ

having a mass MZ =
√
g2 + g′2 v / 2 and massless photon Aµ. As a result,

MW

MZ

=
g√

g2 + g′2
= cos θW , (1.83)

which is a prediction of the Standard Model.

The covariant derivative can be written as

Dµ =

(
∂µ − ıg ~T · ~Wµ − ıg′

Y

2
Bµ

)
(1.84)

Consider the part of the covariant derivative that involves neutral gauge bosons. By

inverting Eq. (1.80), we get

− ıg ~T · ~Wµ − ıg′
Y

2
Bµ = − ı

[
g cos θW T3L − g′ sin θW

Y

2

]
Zµ

− ı

[
g sin θW T3L + g′ cos θW

Y

2

]
Aµ , (1.85)

Therefore, the fermion coupling to photon are given by

− ı g sin θW Q ψ̄iL γ
µAµ ψL , (1.86)

which is known from QED to be −ı g e Q ψ̄iL γµAµ ψL. This gives the second
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prediction of the SM:

e = g sin θW . (1.87)

Similarly the interaction with W± is given by

g√
2

(
J+
µ W+µ + J−µ W−µ) , (1.88)

where J+
µ = 1/2 ν̄ γµ (1 − γ5) e and J−µ = 1/2 ē γµ (1 − γ5) ν. As a result, the

amplitude of the process e−νµ → µ−νe is

∼ g2/2 J+
µ

1

q2 −M2
W

J−µ (1.89)

which reduces to Fermi’s four-fermion interaction in the limit q2 << M2
W (refer to

section 1.1.1). We thus recover Eq. (1.10):

GF =

√
2

8

g2

M2
W

, (1.90)

which is also a prediction of the SM.

From Eqs. (1.87) and (1.90) the mass of W± was also predicted to be

MW = 2−1/4 (παEM)1/2

sin θW
G
−1/2
F . (1.91)

The charge of electron e, the electromagnetic coupling constant αEM = e2/4π

and the Fermi’s constant GF were measured to high accuracy by the time SM was

put forward. The value of sin θW was extracted using various low-energy experiments

(refer to section 10.3 of [6]). Hence, the masses MW and MZ are also predicted by

SM.



38

1.4.3.2 Generating masses of leptons and quarks

As seen in the previous section the masses of fermions are generated through Yukawa

interactions of fermions and the scalar, when the gauge symmetry is spontaneously

broken. In SM, the scalar Φ, lL and eR can form SU(2)L × U(1)Y gauge invariant

term, similar to section 1.3.3:

LLepton−Y uk = ge l̄L Φ eR + h.c. , (1.92)

which after the spontaneous breaking of the symmetry becomes ge
v√
2
ēL eR + h.c..

Thus, the mass of electron is given by me = gev /
√

2, where v can be measured, but

ge cannot be. Hence, the mass of electron cannot be predicted by SM. Similarly, the

mass of muon mµ and of tau mτ are also not predicted by SM.

Gauge invariance also allows terms of the form l̄eL Φ µR, etc. We will discuss their

implications in the next chapter.

In addition to 3 generations of leptons, it is also necessary for 3 generations of

quarks to exist, to cancel the gauge anomalies [10] in the SM. Each quark must also

occur in three colors. We thus have six quarks: up (u), down (d), charm (c), strange

(s), top (t), bottom (b). Their components form doublets and singlets as follows:

q1L =

 uL

dL

 , uR, dR ; q2L =

 cL

sL

 , cR, sR ; q3L =

 tL

bL

 , tR, bR ;

(1.93)

with Y/2(qL) = 1/6, Y/2(uR) = 2/3, Y/2(dR) = −1/3. The electric charge of u, c, t

is 2
3
e and that of d, s, b is −1

3
e.
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Their mass terms arise from the Lagrangian

Lquark−Y uk = gd q̄1L Φ dR + gu q̄1L Φ̃ uR + h.c. . (1.94)

Thus, after the spontaneous symmetry breaking the up-quark and down-quark attain

masses of (gu v /
√

2) and (gd v /
√

2), respectively. Masses of the other 2 quark

generations arise similarly through the Yukawa interactions with Φ. Note that the

numerical values of none of these masses can be predicted by SM, since the Yukawa

couplings gu, gd, .... are free parameters.

The SU(2)L × U(1)Y gauge invariance also allows terms such as gds q1L Φ sR,

guc q1L Φ̃ cR, etc. Thus, the mass terms of quarks can be grouped as:

ψ
uMU ψ

u =
v√
2
× ψ

u


guu guc gut

gcu gcc gct

gtu gtc gtt

 ψu , (1.95)

and

ψ
dMD ψ

u =
v√
2
× ψ

d


gdd gds gdb

gsd gss gsb

gbd gbs gbb

 ψd , (1.96)

where ψu =

(
u c t

)T
and ψd =

(
d s b

)T
. The mass matrices MU and MD

are, in general, complex and non-hermitian. These matrices can be diagonalized by

two unitary matrices each, as follows:

U †L,uMU UR,u = MU, diag (1.97)

U †L,dMD UR,d = MD, diag . (1.98)
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Using this notation, we can write the charged current of quarks that couples to the

W+ boson as

ψ
u′
LU
†
L,uγ

µUL,dψ
d,′
L = ψ

u′
LVCKMγ

µψd,′L , (1.99)

where ψuL =

(
uL, cL, tL

)T
, ψdL =

(
dL, sL, bL

)T
, ψu′L = UL,u, ψ

d′
L = UL,d.

VCKM = U †L,u · UL,d is called the Cabibbo-Kobayashi-Masakawa (CKM) matrix [6],

which is a unitary matrix. Its components are measure of different flavor-changing

interactions in the quark sector.

We will not go into details of the CKM-matrix. In the next chapter we will discuss

the details of an analogous matrix defined for the lepton sector.

1.5 Features and Limitations of the Standard Model

Before discussing any physics beyond the Standard Model, we will briefly review the

features and the limitations of the SM in this section. First let us summarize the

particle content of SM.
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Figure 1.10: The Standard Model particle content. Image source: Wikipedia

Notice that we show an image in which there is still a question mark for the mass

of the SM Higgs boson. It is because, as we will discuss in detail in Chapter 5, only a

scalar having a mass of 125 GeV has been discovered at the Large Hadron Collider,

but it is too early to conclude that it is the SM Higgs boson!

Features of the Standard Model:

• SM can theoretically account for 3 of the 4 fundamental forces in the Nature -

electromagnetic, weak nuclear and strong nuclear forces.

• SM describes the 3 forces with the help of a gauge theory obeying SU(3)C ×

SU(2)L × U(1)Y local symmetry. Accounting for the 3 forces with these small
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groups is a remarkable theoretical success.

• SM is a “renormalizable” theory, meaning that all the infinities in this model

can be cancelled to all orders in the perturbation theory [10].

• The model has been extremely successful in explaining various precision phe-

nomena, predicting existence of the W± and Z0 bosons along with their masses,

predicting existence of a CP-even Higgs boson. SM has been rigorously tested

at various experiments for more than 3 decades and it has been extremely suc-

cessful. It is not an exaggeration to say that SM is one of the most successful

theories in not just particle physics or in physics, but in all sciences!

Limitations of the Standard Model:

Although SM is an extremely successful model, it cannot account for all the phe-

nomena associated with the electroweak and strong forces. However, we believe that

it certainly is a strong foundation on which our understanding of physics beyond SM

can be built. Main limitations of SM are as follows:

• Originally, neutrinos are massless within the SM. However, it has been exper-

imentally verified that at least two of the three species of neutrinos have tiny,

but non-zero masses. This is a strong piece of evidence for the physics beyond

the SM. Various theoretical models have been proposed to explain the origin of

the neutrino masses, but none has been experimentally validated.

• SM cannot account for the dark matter, which makes about 86% of all the

matter in the Universe and 23% of all the energy content. It also does not

account for the dark energy, which makes up about 73% of the total energy

content in the Universe.
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• SM does predict existence of one Higgs boson, it does not predict its mass.

Similarly, masses of all the fermions, their Yukawa couplings, masses of the

gauge bosons, etc. cannot be extracted theoretically. Their prediction requires

experimental results as inputs.

• If there is no new physics at energies higher than the electroweak scale (ΛEW ∼

246 GeV) until the Planck scale, then the SM vacuum is considered to be

metastable [17].

• There are other questions such as the so-called hierarchy problem, naturalness

problem, absence of Grand Unification in SM. However, there is no experimental

evidence to indicate that any of these questions are serious problems. They

might very well be real problems, but as of now there is no evidence that

suggests so.

At this juncture we are ready to venture into physics Beyond the Standard Model!

In the next chapter we will discuss in detail the evidences for neutrino “oscillations”,

masses and mixings. We will also review a few popular theoretical mechanisms that

have been proposed to account for the origin of the neutrino masses.
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Chapter 2

Neutrino Oscillations and Models

of Neutrino Masses

In the previous chapter we discussed in detail the development of SU(2)L gauge

theory of weak interactions. That story started from Pauli’s postulate of existence

of neutrinos, which were considered ‘ghost particles’ as they were very illusive for

detectors. In fact, Wolgang Pauli bet a case of champaign that neutrinos would never

be detected - a bet that he lost not until 26 years later, in 1956, when Cowen and

Reines detected antineutrinos from a nuclear reactor [18].

As discussed in the previous chapter, in Standard Model, neutrinos were thought

to be massless. However, experiments since 1998 have confirmed that at least two of

the 3 light neutrinos have tiny, but non-zero masses. To the date the mechanism that

is responsible for neutrino masses has not been experimentally validated, although

numerous theoretical mechanisms have been proposed to theoretically realize this

phenomenon. It remains an open question and the strongest pieces of evidence (within

the regime of SM, since neutrino is a part of SM) for physics beyond the SM.

In this chapter, we will first review the experimental evidences that point to non-
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zero neutrino masses and mixings. In the following section we will review a few

mechanisms that explain the origin of neutrino masses. We will also discuss the

limitations of these models and motivate the necessity for a new model, which will

be discussed in detail in the next chapter onwards.

2.1 The PMNS matrix and various mixing angles

Recall our discussion of Eq. (1.92) in the previous chapter. In SM the charged leptons

acquire masses through the following terms in the Lagrangian:

LLepton−Y uk = ge l̄L Φ eR + h.c. , (2.1)

which, after the spontaneous breaking of SU(2)L × U(1)Y gauge symmetry, becomes

ge
v√
2
ēL eR + h.c.. Gauge invariance also allows “flavor-changing” terms of the

form l̄eL Φ µR, l̄eL Φ τR, l̄µL Φ τR, etc.

Therefore, just like mixings in the quark sector, the mass matrix for charged

leptons can in general be written as

ψlMl ψl =
v√
2
× ψl


gee geµ geτ

gµe gµµ gµτ

gτe gτµ gττ

 ψl , (2.2)

where ψl =

(
e µ τ

)T
. In general, this matrix is not symmetric. It can be diago-

nalized by two unitary matrices as follows:

U+
L,eMl UR,e = Ml, diag . (2.3)
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For the moment let us assume that somehow neutrinos also acquire masses through

terms of the form mνe νeLνeR, etc. Then the neutrino mass matrix can also be written

as

ψνLMν ψνR + h.c. = ψνL UνL U
†
νL
Ml UνR U

†
νR
ψνR + h.c.

= ψ
′
νL
Mν, diag ψ

′
νR
. (2.4)

where ψν =

(
νe νµ ντ

)T
and ψ′νL,R = U †νL,R ψνL,R . In the same way as we did for

the CKM matrix for the quark sector in Eq. (1.99), the charged current of leptons

that couples to the W+ boson can be written as

ψ
′
eL
U−1
eL
γµUνLψ

′
νL

= ψ
′
eL
V l
CKMγ

µψ′νL , (2.5)

where

V l
CKM = U−1

eL
UνL . (2.6)

This is like VCKM , but for leptons. Hence the superscript ‘l’. Note that V l
CKM is a

unitary matrix.

Note that if the neutrinos are massless, then UνL can be arbitrarily chosen so that

UeL = UνL and V l
CKM = 1.

Such conversion of one flavor of lepton into another is analogous to coupled oscil-

lators. The coupling strength is defined in terms of the ‘lepton mixing matrix’ V l
CKM

[19]. However, Charged Lepton Flavor Violation (CLFV) has not been observed, even

if it is not forbidden in SM. Thus, usually it is assumed that UeL = I, in which case

V l
CKM = UνL .
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2.1.1 PMNS matrix

Pontecorvo first proposed the idea that the electron neutrino is really a linear com-

bination of mass eigenstate neutrinos and that this could lead to νe → νµ oscillations

([19] and references therein). This idea was also independently put forward by Maki,

Nakagawa and Sakata. Later Mikheyev, Smirnov and Wolfenstein proposed that these

oscillations would be resonantly enhanced in the Sun.

Hence, V l
CKM is named as PMNS (Pontecorvo, Maki, Nakagawa, Sakata) matrix

and is denoted by UPMNS. Hereafter we will use this notation. Since UPMNS is a

unitary matrix, it can be fully specified in terms of 3 angles and 6 complex phases.

If UeL = I, then 3 of these phases can be removed and


νe

νµ

ντ

 = UPMNS


ν1

ν2

ν3

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



ν1

ν2

ν3

 ,

where ν1, ν2, ν3 are mass eigenstate neutrinos, having massesm1, m2, m3 respectively.

If one assumes that the remaining 3 phases are zero, then UPMNS can be parametrized

in terms of three O(3) rotation matrices (three Euler rotations) as

UPMNS = R23 R13 R12 , (2.7)

where

R23 =


1 0 0

0 c23 s23

0 −s23 c23

 , R13 =


c13 0 s13

0 1 0

−s13 0 c13

 , R12 =


c12 s12 0

−s12 c12 0

0 0 1

 ,

(2.8)
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with cij = cos θij, sij = sin θij and 0 ≤ θij ≤ π/2. Thus,

UPMNS =


c12 c13 s12 c13 s13

−s12 c23 − c12 s13 s23 c12 c23 − s12 s13 s23 c13 s23

s12 s23 − c12 s13 c23 −c12 s23 − s12 s13 c23 c13 c23

 (2.9)

If we consider the 3 phases - 1 “Dirac phase” δ and 2 “Majorana phases” β1, β2,

then the PMNS matrix is expressed as:

UPMNS = R23 U13 R12 P12 , (2.10)

where

U13 =


c13 0 s13 e

−ıδ

0 1 0

−s13 e
ıδ 0 c13

 , P12 =


eıβ1 0 0

0 eıβ2 0

0 0 1

 . (2.11)

The most general PMNS matrix is then written as

UPMNS =


c12 c13 s12 c13 s13 e

−ıδ

−s12 c23 − c12 s13 s23 e
ıδ c12 c23 − s12 s13 s23 e

ıδ c13 s23

s12 s23 − c12 s13 c23 e
ıδ −c12 s23 − s12 s13 c23 e

ıδ c13 c23

 · P12 .

(2.12)

The three θij are measured/probed mainly with three types of experiments.

The probability that a α-flavor neutrino να converts to a β-flavor neutrino is given

by [20]

Pνα→νβ = δαβ − 4
∑
i>j

Re
(
U∗αiUβiUαjU

∗
βi

)
sin2 (Xij)

+ 2
∑
i>j

Im
(
U∗αiUβiUαjU

∗
βi

)
sin (2Xij) , (2.13)
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where

Xij =
∆m2

ij

4

L

E
= 1.27

∆m2
ij

eV2

L

kms

GeV

E
. (2.14)

Here, Uab are elements of UPMNS in Eq. (2.12), E is the energy of the neutrino beam,

L is the baseline from the neutrino source to the detector and ∆m2
ij = m2

i − m2
j .

2.1.2 Global fit values

In a particular experiment that probes the oscillations να → νβ, a fit of the relevant

∆m2
ij vs. sin2 θij is obtained. Different types of experiments probe different ∆m2

ij

and sin2 θij.

E.g. from the oscillations νµ → ντ in the atmospheric neutrino flux (flux of

neutrinos originated in the cascade of cosmic ray air-showers), |∆m2
32| and sin2 θ23

can be measured. Note that it has not yet been possible to probe the sign of ∆m2
32

or ∆m2
31. This results in two different scenarios for the “hierarchy” of the neutrino

masses:

1. “Normal Hierarchy”: m1 < m2 < m3

2. “Inverted Hierarchy”: m3 < m1 < m2

Since experiments have only been able to probe the difference between mass-

squares of neutrinos, the absolute values of neutrino masses are not known. However,

there is an upper limit on the sum of neutrino masses mν . 1 eV, set by the cos-

mological experiments, which measure the limits on the total energy density of the

Universe contributed by the light neutrino species ([19] and references therein).

The recent global fit values of neutrino oscillation parameters are given in Table 2.1
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Table 2.1: Global fit values of neutrino oscillation measurements, given in [21] for
“free fluxes”. “NH” → Normal Hierarchy; “IH” → Inverted Hierarchy.

Parameter Global fit value (±1σ)

sin2 θ12 0.302+0.013
−0.012

θ12 (deg.) 33.36+0.81
−0.78

sin2 θ23 (NH) 0.413+0.037
−0.025

sin2 θ23 (IH) 0.594+0.021
−0.022

θ23 (deg.) (NH) 40.0+2.1
−1.5

θ23 (deg.) (IH) 50.4+1.3
−1.3

sin2 θ13 0.0227+0.0023
−0.0024

θ12 (deg.) 8.66+0.44
−0.46

δCP (deg.) 300+66
−138

∆m2
21 (10−5 eV2) 7.50+0.18

−0.19

∆m2
31 (10−3 eV2) (NH) +2.473+0.070

−0.067

∆m2
32 (10−3 eV2) (IH) −2.427+0.042

−0.065

We will not go into the details of these measurements, as the neutrino oscillations

are not the focus of this dissertation. However, neutrino oscillation data demonstrates

that neutrinos do have tiny, albeit non-zero masses, indicating existence of physics

beyond the SM.

The phenomenology of a particular model that explains the origin of neutrino

masses is the focus of this dissertation. We therefore move on to review a few popular

theoretical models, which attempt to do the similar.

2.2 Seesaw mechanism of neutrino masses

In this section we will review some of the popular theoretical mechanisms, with which

the origin of neutrino masses can be theoretically realized. As we saw at the beginning



51

of the previous section, if the right-handed neutrinos exist, then mν can be explained.

All the neutrinos which have been detected so far have tiny masses and left-handed

neutrinos helicity. This has put an upper limit on the right-handed component in the

light neutrinos.

This means that, if the right-handed neutrinos exist, then the mass eigenstates

which have νR’s as the dominant component must be much heavier than the light

neutrinos. That would explain why we have not seen them so far and why they

are not among the relativistic species (light neutrinos and photons) in the Universe.

Thus, a theoretical mechanism that would give tiny masses to light neutrinos needs to

also make the νR’s heavy. An attractive way of achieving this is through the “Seesaw

mechanism” (light-heavy balance → seesaw).

In this section, we will review the so-called type-I, type-II, type-III seesaw mech-

anisms. We will also briefly discuss the type-I seesaw mechanism in the Left-Right

symmetric models, since in this mechanism νR transforms non-trivially under the

SU(2)L × U(1)Y gauge symmetry. Note that the seesaw mechanism in the EWνR

model is different from all of these types. The discussion here mainly follows [19, 22].

2.2.1 Different types of ν-mass terms

We can write an ad-hoc mass term for the light neutrino as ∼ H lT κ H l, where H

is a Higgs field, l is the lepton doublet containing νL and κ is a (effective) coupling

having dimensions (mass)−1. When H acquires a VEV, we get a mass term for νL. In

the seesaw mechanisms this term is generated effectively by the exchange of a right-

handed neutrino having appropriate transformation property under SU(2)L×U(1)Y ,

for an appropriate Higgs field.

In general, different types of mass terms for ν can be written as follows:
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• νL Majorana mass term:

If νL is a Majorana fermion i.e. if it is anantiparticle of itself, then in the vacuum

state of the Lagrangian its Majorana mass term can be written as mν
LL νL ν

c
L,

where νcL is the CP conjugate of νL, which is the right-handed antineutrino field.

These terms violate the lepton number. They are strictly forbidden for charged

particles, due to the electric charge conservation.

If we want this term to be generated through spontaneous breaking of the elec-

troweak symmetry, due to the VEV of scalar doublets (and no higher multiplets

such as a scalar triplet), then the Majorana mass terms are forbidden at the

renormalizable level by gauge invariance. In seesaw mechanisms such terms are

generated effectively in the presence of right-handed neutrinos.

• νR Majorana mass term:

If one introduces a right-handed neutrino then a Majorana mass term for νR

can be written as MRνcR νR, where νcR is the left-handed antineutrino field.

• Dirac mass term:

In presence of νR, one can also write a Dirac mass term of the form mLR νL νR.

Hence, the neutrino mass matrix can be written as

(
νL νcR

)  0 mLR

mT
LR MR


νcL
νR

 . (2.15)

If we are writing the matrix for multiple light neutrino mass eigenstates, then each

of the elements is a matrix. If MR >> mLR, then eigenvalues of this matrix are

≈ MR and a small Majorana mass mν
LL = −mLR M

−1
R mT

LR. Thus, mν
LL is naturally

suppressed by the heavy MR. If mLR ∼ MW and MR ∼ ΛGUT ∼ O(1016 GeV), then
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mν
LL ∼ 10−3 eV, which seems to have the appropriate order of magnitude, looking at

Table 2.1.

Notice the huge mass of νR that is necessary to obtain the light-neutrino masses

that agree with the data.

2.2.2 Type-I Seesaw mechanism

In the type-I mechanism, the right-handed neutrinos νR’s are added to the SM. These

νR’s are singlets under the SU(2)L × U(1)Y gauge symmetry. Thus, they do not

interact with W± and Z, and are called “sterile” νR’s. The mass matrix of neutrinos

arises from the Lagrangian [22]

L = yD lL Φ̃νR −
1

2
νTRMR νR + h.c. , (2.16)

where Φ is a SU(2)L Higgs doublet having VEV 〈Φ〉 = (0, v/
√

2)T . After the breaking

of the electroweak symmetry, when Φ acquires its VEV, one obtains the neutrino mass

matrix of the form in Eq. (2.15). Here, mT
LR = −yD v/

√
2.

In this mechanism, for each νR, only one νL gets a mass. Thus, the number of

νR’s required is the same as the number of massive νL’s, i.e. at least two νR’s are

necessary. Generally, one νR per lepton generation is added.

This is a minimal type-I seesaw mechanism with only one Higgs doublet. In 2-

Higgs doublet models, the type-I seesaw mechanism is implemented with two scalar

doublets - one giving masses to (T3 = 1/2) fermions and the other to (T3 = −1/2)

fermions.

Once again notice that a huge mass of MR ∼ O(1016 GeV) is necessary with

yD ∼ O(1) so that mν . 1 eV is satisfied. Such νR’s are too heavy to be produced

at the Large Hadron Collider or near-future experiments. If the νR’s, instead, would
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couple to W±, Z, then their masses would also be around the electroweak scale

ΛEW ≈ 246 GeV. Thus, they would be non-sterile, but type-I seesaw mechanism

cannot generate light enough masses for νL’s with non-sterile νR’s. In the subsequent

chapters of this dissertation, we will discuss in detail a model which achieves this.

2.2.3 Type-II Seesaw mechanism

In the type-II seesaw mechanism, we have a scalar triplet in addition to the SM scalar

doublet. The role of νR of generating an effective dimension-5 operator is played by

a Y/2 = 1 complex scalar triplet given by

∆L ≡
1√
2
~τ · ~∆L =

∆+/
√

2 ∆++

∆0∗ −∆+/
√

2

 . (2.17)

Thus, there is no νR in the minimal type-II seesaw mechanism. The mass of the light

neutrino is directly generated from the Yukawa interaction

L = y∆ lTL C σ2 ∆L lL + h.c. . (2.18)

When ∆L acquires a VEV of 〈∆L〉, the νL gets a mass of mν = y∆ 〈∆〉. This VEV is

generated through the cubic scalar terms in the scalar potential:

µ ΦT σ2 ∆∗L Φ + M2
∆ Tr(∆†L ∆L) . (2.19)

In the vacuum state of this potential, 〈∆L〉 ≈ µ v2/(2 M2
∆), where v/

√
2 is the VEV

of the real part of Φ.

Thus, for not-so-fine-tuned y∆, we get appropriate light neutrino masses when

µ v2 << M2
∆. So the VEV of the triplet must be really small, while its mass needs to
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be really large, just like MR in the type-I seesaw. Hence, still the name “seesaw” for

this mechanism. Notice that, in this mechanism too, the effective mass term for the

light neutrinos comes from a dimension-5 operator with κ ∼ µ/M2
∆.

There have been attempts to make the VEV 〈∆L〉 large, but it requires fine tuning

of the Yukawa couplings y∆ and the µ.

2.2.4 Type-III Seesaw mechanism

So far we have seen that for a seesaw mechanism we basically need two mass scales

- one heavier than the other. In the type-I seesaw mechanism the heavier one arises

from the mass of νR; in the type-II seesaw mechanism, it is the scale of large M∆.

Notice that in Eq. (2.16) for the type-I seesaw mechanism, a gauge invariant term

can be formed by coupling ∼ (lLΦ) with a SU(2)L triplet, such that the neutral com-

ponent of the triplet couples to νL. In the type-III seesaw mechanism this is achieved

by adding to the SM one real (Y/2 = 0) fermion triplet ~TF =

(
TF1 TF2 TF3

)T
, for

each of the lepton generations. Just like the type-I seesaw, at least 2 fermion triplets

are required to give masses to two νL.

The mass of νL is generated through the Lagrangian

L = yT l
T C σ2 ~τ · ~TF Φ + MT

~T TF · C ~TF . (2.20)

As usual, we are showing the equation for only one of the 3 lepton generations only

for illustration. In this case the mass matrix for neutrino can be written as 0 yTv/
√

2

yTT v/
√

2 MT

 (2.21)

Hence, just like in the type-I seesaw mechanism, after the breaking of the SU(2)L ×
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U(1)Y gauge symmetry, the light neutrino masse for νL are obtained as

mν
LL = −yTT M−1

T yT v
2 . (2.22)

Thus, once again the mass of νL is generated through an effective dimension-5

operator after integrating out TF . Here as well, if the Yukawa couplings yT are not

extremely small, MT must be huge to obtain appropriate masses for νL’s.

In the three types of seesaw mechanisms we can notice that:

• To give small enough masses to νL’s some physics beyond SM (νR, ∆L or TF )

is added at a very large scale >> ΛEW .

• In the type-I seesaw mechanism, which adds νR’s to SM particle content, the

masses MR of the right-handed neutrinos need to be huge - of the order of the

so-called GUT scale.

• In the type-II seesaw mechanism, which adds a complex scalar triplet ∆L to the

SM, the VEV of ∆L needs to be very small and its mass very large to generate

appropriate masses of νL.

If we want νR’s in the seesaw mechanism to be lighter so that they can be produced

and detected at the LHC or experiments in the future, then it probably is a good

idea not to make νR a singlet under all the gauge symmetries! If νR transforms

non-trivially under a gauge symmetry, then if the corresponding gauge bosons are

produced experimentally, νR would also be around the same energy scale and can be

produced.

In the next section we will briefly review a class of models, in which νR is a singlet

under SU(2)L, but a doublet under a BSM gauge group SU(2)R.
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2.3 Left-Right symmetric models

Left-Right symmetric (L-R) models are extensions of the SM, which obey a SU(2)L×

SU(2)R × U(1)B−L gauge symmetry ([23, 24] and references therein). Here right-

handed fermions in SM are doublets under SU(2)R, while still being singlets under

SU(2)L. Parity is an exact symmetry in L-R models. At some energy scale vR

above the electroweak scale, the SU(2)L × SU(2)R × U(1)B−L gauge symmetry is

spontaneously broken to SU(2)L × U(1)Y gauge symmetry.

This is worth mentioning in this dissertation as νR’s are part of a SU(2)R doublet in

these models, unlike the minimal type-I seesaw mechanisms. In the EWνR model too,

νR’s are members of SU(2)L doublet. Hence, it is of interest to note some implications

of the L-R models before building the EWνR model.

In the L-R model with parity as the L-R symmetry, the charge assignments for

the quark and lepton multiplets, under SU(2)L × SU(2)R × U(1)B−L are given by

qL(2, 0, 1/3), qR(0, 2, 1/3), lL(2, 0,−1), lR(0, 2,−1). Here lL and qL are the SM lepton

and quark doublets, and

lR =

 νR

eR

 , qR =

 uR

dR

 . (2.23)

are doublets under SU(2)R.

In this model the neutrino masses can be generated through either type-I or type-II

seesaw mechanism. In a most general scalar structure a hybrid type-I+type-II seesaw

mechanism is implemented, with the help of two scalar doublets Φ1, Φ2 (both can be

combined in a (2, 2) representation of SU(2)L × SU(2)R), and two scalar triplets ∆L
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and ∆R [22, 23]:

Φ =

φ0
1 φ+

1

φ−2 φ0
2

 , ∆L,R =

∆+
L,R/
√

2 ∆++
L,R

∆0
L,R −∆+

L,R/
√

2

 (2.24)

This model also contains gauge bosonsW±
R and ZR of the SU(2)R gauge symmetry.

The scale of breaking of this symmetry is not bounded from above. Theoretically its

bounded from below only by the electroweak scale ≈ 246 GeV.

Signals for the production of the νR in this model, primarily ū+d→ W−
R → νR+ l

[24], have been searched for at the LHC. The scale of WR mass has been bounded

from below at ∼ 3 TeV by these searches [25].

2.4 Summary of the chapter

• There is a confirmed evidence that at least two of the three flavors of light

neutrinos have tiny, but non-zero masses. This is the strongest piece of evidence

(within the regime of SM), for physics beyond the SM.

• Many theoretical mechanisms have been proposed to theoretically realize neu-

trino masses, but none has been experimentally validated.

• The popular seesaw mechanisms extend SM by new physics at very large scales.

Unless fine-tuned, the new particles are too heavy to be produced at the LHC

or the near-future experiments.

• The Left-Right symmetric models add the right-handed neutrinos, which is a

member of the SU(2)R lepton doublet, to the SM fermion content. These models

extend the gauge group of the Standard Model, thus, adding more gauge bosons

and a higher symmetry breaking scale.
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• Although signals for the L-R models are searched for at the LHC, the scale

of new physics in these models is only bounded from below by experiments,

currently at about 3 TeV .

This chapter provides only a brief review of the spectrum of theoretical models for

the origin of neutrino masses. It can be seen from this discussion that the validation

of the origin of neutrino masses remains an open question.

A model of neutrino masses that can be conclusively tested at the LHC and/or

near-future experiments could go a long way in resolving the mystery of neutrino

masses!
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Chapter 3

Hung’s Minimal EWνR Model

From the previous two chapters we realize that, without a doubt, the nature of the

electroweak symmetry breaking and the neutrino masses and mixings are two of the

most pressing problems in particle physics. Neutrino mixings are the strongest piece

of evidence (within the regime of SM) for physics beyond the Standard Model. The

discovery of a Higgs boson having a mass of 125 GeV is definitely a significant step

in resolving the first of these mysteries. However, absence of a signal for any BSM

phenomenon at the Large Hadron Collider has severely constrained many popular

BSM models. In this situation, exploring the BSM physics through the portal of

neutrinos seems to be a promising direction to pursue.

In the last chapter we reviewed many theoretical mechanisms which are proposed

to explain the origin of neutrino masses and mixings. Popularly, neutrino masses are

theoretically realized through the so-called seesaw-type mechanisms. But in a general

seesaw mechanism, since νR is a singlet under the SU(2)L × U(1)Y gauge symmetry

(“sterile νR”), its Majorana mass is naturally near the so-called Grand Unification

scale (O(1015−16 GeV)). Such νR cannot be produced at the LHC or a near future

collider, and hence such seesaw mechanisms cannot be directly tested.
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On the other hand, there are the Left-Right symmetric models (L-R models), in

which νR is a member of a doublet under SU(2)R (still a singlet under SU(2)L) gauge

symmetry. However, the scale of breaking of the SU(2)R and its gauge boson WR

is only bounded from below by experimental constraints, which are currently set at

about 3 TeV [25].

With a motivation of exploring the possibility of testing the seesaw mechanism at

the LHC (and near-future experiments) [26] attempts to answer:

1. Is it possible to have MR ∼ ΛEW ?

2. And, is it possible within the gauge group of the Standard Model: SU(3)C ×

SU(2)L × U(1)Y ?

[26] answers both these question affirmatively, through the EWνR model, which

is the focus of this dissertation. In the EWνR model, the right-handed neutrinos

naturally acquire a mass of O(ΛEW ) and they are also non-sterile under SU(2)L ×

U(1)Y .

In this chapter we will first review the step-by-step process of building this model.

Secondly we will write a general scalar potential in this model that breaks the

SU(2)L×U(1)Y spontaneously to U(1)EM and obtain the spectrum of physical parti-

cles (gauge bosons, scalars, fermions) in this model. In the third section we will sum-

marize main features of the model, before moving on to analyzing its phenomenology

in the subsequent chapters.

3.1 Building the model

In this chapter we will follow the steps in [26] to build the minimal EWνR model. As

a starter, we quote Lee and Yang [7]:
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“If such asymmetry is indeed found, the question could still be raised

whether there could not exist corresponding elementary particles exhibit-

ing opposite asymmetry such that in the broader sense there will still be

over-all right-left symmetry.”

3.1.1 The fermion sector

Let us consider the lepton sector and the scalar doublet Φ in SM. For the purpose

of illustration we will consider only one generation in the lepton sector. A lepton

generation in SM is given by

lL =

νL
eL

 , eR , (3.1)

where the left-handed components are part of a SU(2)L doublet, and the right-handed

eR is a singlet under SU(2)L. In a general seesaw mechanism, that we reviewed in

the previous chapter, the right-handed neutrino νR is also a singlet under SU(2)L.

It therefore acquires a Dirac mass by coupling to lLΦ or lLΦ̃, which are also SU(2)L

singlet terms. Since this leads to a huge Majorana mass of νR, we should avoid that,

if we want the νR to acquire an EW-scale mass. We therefore make νR a member of

a SU(2)L right-handed lepton doublet:

lMR =

νR
eMR

 , eML , (3.2)

where the superscript ‘M ’ stands for “Mirror Fermions”. eMR and eML are right-

handed and left-handed components of the “mirror electron” eM . Note that eM is

an entirely new particle, different from the SM electron. The word ‘electron’ in its

name only suggests that it has the same SU(2)×U(1)Y quantum numbers. The word
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‘mirror’ signifies that its chirality components are swapped as compared to the SM

electron components, meaning that the right-handed component eMR is a part of a

SU(2) doublet and left-handed eML is a SU(2) singlet. Similarly, there are two more

generations of mirror leptons and two more νR’s.

Note that in the last paragraph, we dropped the subscript ‘L’ from SU(2)L. This

is because the ‘L’ signifies that the left-handed components of the fermions couple to

the gauge bosons W± and Z. Now that we have added mirror leptons whose right-

handed components are in the doublets, these components would couple to the same

gauge bosons. Hence, it is better to drop the subscript ‘L’.

To give the Dirac mass to the neutrinos, let us assume existence of a SU(2) scalar

singlet φS. Hence, we can have

LSl = gSl lL φS l
M
R + h.c.

= gSl
(
νL νR + eL e

M
R

)
φS + h.c. (3.3)

In addition, analogous to Eq. (1.92) for SM, we also have

LLY 1 = gl lL Φ eR + h.c. , (3.4)

LLY 2 = gMl l
M

R Φ eML + h.c. , (3.5)

with the VEV 〈φS〉 = vS and just like in SM, 〈Φ〉 =

(
0, v2/

√
2

)T
. Note that VEV

of Φ is denoted in terms of v2, and not the total v ≈ 246 GeV. Then from Eqs. (3.3),

(3.4), (3.11) we obtain

mD
ν = gSl vS , Ml =

ml mD
ν

mD
ν mlM

 , (3.6)
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for Dirac neutrino and charged SM lepton, charged mirror lepton, respectively. Here

ml = gl v2/
√

2 for the SM lepton, and mlM = gMl v2/
√

2 for the mirror lepton. Their

Dirac masses are obtained by diagonalizing Ml in Eq. (3.6):

m̃l = ml −
(mD

ν )2

mlM −ml

, m̃lM = mlM +
(mD

ν )2

mlM −ml

. (3.7)

We will assume that mlM >> ml and, as we will see shortly, to satisfy the constraints

on neutrino mass mν , we need mD
ν << mlM ,ml. This implies that m̃l ≈ ml and

m̃lM ≈ mlM .

Now that we have added new mirror leptons to the SM fermion spectrum, we

must also add “mirror quarks” to ensure anomaly cancellation [10]. Thus, there will

be 3 mirror quark generations analogous to:

qMR =

uMR
dMR

 , uML , d
M
L . (3.8)

Here too, uM (mirror up-quark) and dM (mirror down-quark) are new particles dif-

ferent from the up-quark and down-quark in SM. Just like mirror leptons, the right-

handed components of the mirror quarks are members of SU(2) doublets, while the

left-handed components are singlets.

They acquire masses through Lagrangian terms similar to Eqs. (3.3), (3.4), (3.11):

LSq = gSq qL φS q
M
R + h.c.

= gSq
(
uL u

M
R + dL d

M
R

)
φS + h.c. (3.9)

LQY 1 = gd qL Φ dR + gu qL Φ̃ uR + h.c. , (3.10)

LQY 2 = gdM qMR Φ dML + guM qMR Φ̃ uML + h.c. , (3.11)
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Their masses can be obtained from these equations as:

m̃q = mq −
(mD

ν )2 (gSq/gSl)
2

mqM −mq

, m̃qM = mqM +
(mD

ν )2 (gSq/gSl)
2

mqM −mq

, (3.12)

where q = u, d, mq = gq v2/
√

2 and mqM = gqM v2/
√

2. We assume that mqM > mq,

and similar to leptons, we have m̃q ≈ mq, m̃qM ≈ mqM .

This completes the fermion sector in the EWνR model.

3.1.2 The scalar sector

In the scalar sector, so far we have only added the ΦS in addition to the SM-like

scalar doublet Φ. If we only have these fields in the EWνR model, then neutrinos

have “Dirac nature” i.e. they have Dirac masses. Since νR are part of a SU(2) doublet,

they would couple to the Z boson and contribute to its width, unless mD
ν > MZ/2.

But this contradicts with the experimental constraints (from particle physics as well

as cosmology) on the masses of neutrino, namely mν . 1eV. Hence, neutrinos in the

EWνR model cannot only have the Dirac mass.

νR in this model must also have Majorana masses. We need to obtain neutrino

masses through a seesaw mechanism. A Majorana mass of νR can be obtained by

coupling a fermion bilinear lM,T
R σ2 l

M
R , which transforms as (1 + 3, Y/2 = −1) under

SU(2) × U(1)Y , with an appropriate scalar field to construct gauge invariant term

in the Lagrangian. A charged scalar with a VEV would be the simplest, but its

VEV would break the charge conservation. The next simplest field is a scalar triplet

χ̃ (3, Y/2 = +1):

χ̃ =
1√
2
~τ · ~χ =

 1√
2
χ+ χ++

χ0 − 1√
2
χ+

 . (3.13)
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Then the Majorana mass of νR is generated through:

LM = gM lM,T
R σ2 τ2 χ̃ l

M
R , (3.14)

where, although σ2 and τ2 have same matrix form, their matrix indices are different.

σ2’s matrix indices run over Lorentz indices, whereas τ2’s indices are those of a SU(2)

doublet (more on this can be found in any quantum field theory textbook; review in

[11] is also a useful reference). Basically, (lM,T
R σ2) = lM,c

R , where lM,c
R is the charge

conjugate of lMR .

When χ0 acquires a VEV: 〈χ〉 = vM , a Majorana mass term is obtained:

MR = gM vM , (3.15)

where MR is the Majorana mass of νR. Note that Eq. (3.14) also contains a term of the

form eMR χ
++eMR , which would result in a like-sign dilepton event - a particle physics

counterpart of “neutrino-less doublet β-decay” [27]. This is also a lepton-number

violating term.

If MR is lighter than MZ/2, then νR would contribute to the width of the Z boson,

which has been measured to a high precision [6]. Since it would contradict the data,

this scenario is already ruled out. Thus, νR must have a mass MR ≥MZ/2.

Since we do not want the νL to acquire a Majorana mass similarly, a global U(1)M

symmetry is imposed. Different fields transform as follows under this symmetry:

(qMR , l
M
R ) → eıαM (qMR , l

M
R ) ,

χ̃→ e−2ıαM χ̃ , φS → e−ıαMφS , (3.16)
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and all the other fields are singlets under U(1)M . This symmetry also prevents quarks

from acquiring a Majorana mass. Despite the symmetry νL does acquire a Majorana

mass ML at the one-loop level:

ML = λS
1

16 π2

mD 2
ν

MR

log

(
MR

MφS

)
, (3.17)

where λS and MφS are the quartic coupling and the mass of φS respectively. Thus,

when λS < 1, ML is smaller than mD2
ν /MR by at least two orders of magnitude.

The Majorana mass matrix can be written as

M =

ML mD
ν

mD
ν MR

 , (3.18)

where mD
ν , MR and ML are given by Eqs. (3.6), (3.15) and (3.15), respectively. If

vM >> vS and gSl ∼ O(gM), then the eigenvalues of M can be given by

mν = ML −
(mD

ν )2

MR

= −
(
g2
Sl

gM

)
vS
vM

vS(1− ε) and MR , (3.19)

where ε < 10−2 and mν is the mass of a light neutrino.

For MR ∼ ΛEW , if we consider vM ∼ ΛEW , then to satisfy mν . 1 eV,

vS ≈
√
vM × 1 eV ≈ O(105) eV . (3.20)

Thus, vS is about 5-6 orders of magnitude smaller than the electroweak scale ΛEW ≈

246 GeV. If gSl ∼ O(10−6), then vS ∼ ΛEW . The hierarchy between ΛEW and vS is

not as severe as that between the so-called “Grand Unification” scale (O(1016 GeV)

and ΛEW in typical Grand Unified Theories. This aspect is discussed in detail in [26].
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The story does not end here, since we have to ensure that the ρ parameter equals

1 at the tree level. At the tree level it is defined as

ρ ≡ M2
W

M2
Z cos2 θW

= 1 . (3.21)

A global SU(2) symmetry, called the “custodial symmetry” and denoted by SU(2)D,

ensures that ρ = 1 at the tree level. At the loop-level it deviates from 1 due to

radiative corrections and the custodial symmetry is broken. At the tree level, a

scalar multiplet that transforms as (T, Y ) under SU(2)L × U(1)Y and has VEV vi,

contributes to ρ as follows [28]:

ρ =

∑
i [4 T (T + 1)− Y 2]i v

2
i cT,Y

2
∑

i Y
2 v2

i

, (3.22)

where cT,Y = 1 if (T, Y ) is a complex representation and cT,Y = 1/2 if (T, Y ) is a real

representation. The summations run over all the scalar multiplet in the model.

If one just has the triplet χ̃ and nothing else, one would obtain ρ = 1/2 in

contradiction with the fact that experimentally ρ ≈ 1. Higgs doublets alone would

give naturally ρ = 1. A mixture with one triplet and one doublet would give ρ ≈ 1 if

the VEV of the triplet, vM , is much less than that of the doublet, v2, i.e. vM � v2. But

this is not what we want since we would like to have vM and v2 ofO(ΛEW ). To preserve

the custodial symmetry with a Higgs triplet, another scalar triplet ξ = (3, Y/2 = 0)

is needed in addition to the aforementioned χ̃(3, Y/2 = 1) and the usual doublet

φ = (2, Y/2 = −1/2). Under a global SU(2)L × SU(2)R symmetry, the two triplets
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can be grouped into a (3, 3) representation as [27, 29, 30, 31, 32]:

χ =


χ0 ξ+ χ++

χ− ξ0 χ+

χ−− ξ− ξ0∗

 . (3.23)

Under this symmetry the SM-like scalar doublet Φ (2, Y/2 = −1/2) and Φ̃ = ıτ2Φ∗

can also be grouped in a (2, 2) representation as

Φ2 =

φ0∗ φ+

φ− φ0

 (3.24)

This completes the field content of the EWνR model. The scalar sector in this minimal

EWνR model is identical to that in the model by Georgi and Machacek [30].

3.2 Breaking of the electroweak symmetry

With this representation the kinetic part of the scalar Lagrangian can be written as

[30, 32, 27]:

(LSEWνR )kin =
1

2
Tr
[
(DµΦ2)†(DµΦ2)

]
+

1

2
Tr
[
(Dµχ)†(Dµχ)

]
+ |∂µφS|2 (3.25)

The notation (LSEWνR )kin is used to denote the kinetic part (denoted by subscript

‘kin’) of the Higgs Lagrangian (denoted by subscript ‘S’ for Scalar) in EWνR model

(denoted by ‘EWνR’ in the subscript).

DµΦ ≡ ∂µΦ +
1

2
ıg(Wµ · τ)Φ− 1

2
ıg′ΦBµτ3 ; (3.26)
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Dµχ ≡ ∂µχ+ ıg(Wµ · t)χ− ıg′χBµt3 (3.27)

The τi and ti are the 2× 2 and 3× 3 representation matrices of the SU(2) generators

respectively, following reference [32]. τi’s are explicitly given in Eq. (1.23) and ti’s are

given by

t1 =
1√
2


0 1 0

1 0 1

0 1 0

 , t2 =
1√
2


0 −ı 0

ı 0 −ı

0 ı 0

 , t3 =


1 0 0

0 0 0

0 0 1

 .

(3.28)

We work under the premise that the hierarchy in neutrino masses in EWνR model

comes from the VEV of φS [27]. Thus, vS ∼ 105 eV and as a result the mixing

between φS and other scalars is negligible. Hence, hereafter in the related calculations

we neglect this mixing.

After the spontaneous breaking of SU(2)L × U(1)Y to U(1)EM , expanding the

Lagrangian in equation (3.25), one can find the Feynman rules for the three point

and four point interactions between physical scalars, Nambu-Goldstone bosons and

electroweak gauge bosons W , Z and γ. For the corresponding SM Feynman rules it

is useful to recall the kinetic part of the SM-Higgs Lagrangian:

(LSSM )kin =
1

2
Tr
[
(DµΦ)†(DµΦ)

]
(3.29)

The interactions of the SM leptons with the SU(2)L × U(1)Y gauge bosons arise

similar to the SM, from the terms:

l̄L /DlL ; ēR /DeR , (3.30)
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where

/DlL ≡ γµ(∂µ −
1

2
ıg(Wµ · τ) +

1

2
ıg′Bµ)lL ,

/DeR ≡ γµ(∂µ + ıg′Bµ)eR . (3.31)

The interactions of mirror leptons with the gauge bosons arise from the terms

l̄MR /DlMR ; ēML /DeML , (3.32)

where

/DlMR ≡ γµ(∂µ −
1

2
ıg(Wµ · τ) +

1

2
ıg′Bµ)lMR ,

/DeML ≡ γµ(∂µ + ıg′Bµ)eML . (3.33)

The gauge interactions of the SM quarks and the mirror quarks can similarly be

found from

q̄L /DqL ; d̄R /DdR ; ūR /DuR ; q̄MR /DqMR ; d̄ML /DdML ; ūML /DuML . (3.34)

To generate masses of the gauge bosons and the fermions the SU(2)L × U(1)Y

gauge symmetry must be spontaneously broken to U(1)EM . To get the physical

scalar spectrum, we need to write a general scalar potential that obeys a global
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SU(2)L × SU(2)R. It can be written as

V (Φ2, χ) = λ1

(
TrΦ†2Φ2 − v2

2

)2

+ λ2

(
Trχ†χ− 3v2

M

)2

+ λ3

(
TrΦ†2Φ2 − v2

2 + Trχ†χ− 3v2
M

)2

+ λ4

(
(TrΦ†2Φ2) (Trχ†χ)− 2 (TrΦ†2

τa

2
Φ2
τ b

2
) (Trχ†T aχT b)

)
+ λ5

(
3 Trχ†χχ†χ− (Trχ†χ)2

)
, (3.35)

where repeated indices a, b are summed over. Note that this potential is invariant

under χ → −χ so that the cubic terms in the potential are eliminated. In order for

this potential to be positive semidefinite the following conditions must be imposed:

λ1 + λ2 + 2λ3 > 0, λ1λ2 + λ1λ3 + λ2λ3 > 0, λ4 > 0, λ5 > 0 [27].

When the SU(2)L×U(1)Y → U(1)EM in the vacuum state of the scalar potential,

the global SU(2)L × SU(2)R symmetry of the potential breaks down to SU(2)D

custodial symmetry if the vacuum alignment of Φ2 and χ is as follows:

〈χ〉 =


vM 0 0

0 vM 0

0 0 vM

 , (3.36)

and

〈Φ〉 =

v2/
√

2 0

0 v2/
√

2

 . (3.37)

After the spontaneous symmetry breaking one obtains the W±, Z bosons and the

photon A, in the same way as in SM (explained in Chapter 1). Also, MW = g v/2

and MZ = MW/ cos θW , with v =
√
v2

2 + 8 v2
M ≈ 246GeV and, at tree level, ρ =

M2
W/(M

2
Z cos2 θW ) = 1 as desired.



73

3.2.1 The physical scalars

To express the physical states we define a few subsidiary fields [27]:

φ0 ≡ 1√
2

(
v2 + φ0r + ıφ0ı

)
, χ0 ≡ vM +

1√
2

(
χ0r + ıχ0ı

)
;

ψ± ≡ 1√
2

(
χ± + ξ±

)
, ζ± ≡ 1√

2

(
χ± − ξ±

)
(3.38)

for the complex neutral and charged fields respectively. Here the quantities with

superscripts ‘r’ and ‘i’ denote the ‘real’ and the ‘imaginary’ components, respectively.

Note that the real components, φ0r and χ0r, have zero vacuum expectation values.

We will also define

sH = sin θH =
2
√

2 vM
v

, cH = cos θH =
v2

v
(3.39)

With this notation, the Nambu-Goldstone bosons are given by

G±3 = cHφ
± + sHψ

±, G0
3 = ı

(
− cHφ0ı + sHχ

0ı
)
. (3.40)

Just like in SM, these N-G bosons are absorbed by the longitudinal polarization of

the massive W± and Z bosons.

After the symmetry breaking, the scalar potential in Eq. (5.16) preserves the

custodial SU(2)D. Therefore, the ten massive physical scalars can be grouped into 5
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+ 3 + 1 (2 singlets) of the custodial SU(2)D, as follows:

five-plet (quintet) → H±±5 , H±5 , H
0
5 ;

triplet → H±3 , H
0
3 ;

two singlets → H0
1 , H

0′
1 , (3.41)

where

H++
5 = χ++, H+

5 = ζ+, H+
3 = cHψ

+ − sHφ+,

H0
5 =

1√
6

(
2ξ0 −

√
2χ0r

)
, H0

3 = ı
(
cHχ

0ı + sHφ
0ı
)
,

H0
1 = φ0r, H0′

1 =
1√
3

(√
2χ0r + ξ0

)
, (3.42)

with H−−5 = (H++
5 )∗, H−5 = −(H+

5 )∗, H−3 = −(H+
3 )∗, and H0

3 = −(H0
3 )∗. The the

Feynman rules, the loop diagrams and the oblique parameters (in Chapter 4), will

be expressed in terms of these physical scalar five-plet, triplet, two singlets and their

masses, mH±±,±,05
, mH±,03

, mH1 , mH′1
respectively.

While the custodial symmetry is preserved, the scalar multiplets are degenerate.

Their masses are given as:

m2
H±±,±,05

= m2
5 = 3 (λ4c

2
H + λ5s

2
H), m2

H±,03
= m2

3 = λ4 v
2 . (3.43)

The two singlets H0
1 and H0′

1 can mix according to the mass-squared matrix given as:

M2
H0

1 , H
0′
1

= v2

8c2
H (λ1 + λ3) 2

√
6sHcHλ3

2
√

6sHcHλ3 3s2
H (λ2 + λ3)

 (3.44)
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The oblique parameters, the Feynman rules and the loop diagrams are expressed in

terms of the VEVs of the doublet and triplets, and the masses of the physical scalars-

mH±±,±,05
, mH±,03

, m1, mH′1
.

The custodial symmetry is broken at the loop level, splitting the masses of the

scalar multiplet members. However, the symmetry could also be broken explicitly by

some terms, which split the masses within the multiplets. We do not list any such

terms in this dissertation, but we do keep this at the back of our mind and denote

the masses of the multiplet members separately in all the formulas.

The Feynman rules for the gauge interactions of fermions (SM fermions and mirror

fermions) in the EWνR model can be evaluated from

(LFEWνR )int = (LFSM )int + (LFM )int , (3.45)

where (LFSM )int comes from the fermion sector in the SM and is given by

(LFSM )int =
g√
2

[(
ujL γ

µdL j + νjL γ
µeL j

)
W+
µ +

(
d
j

L γ
µuL j + ejL γ

µνL j

)
W−
µ

]

+
g

cW

 ∑
f= uj ,dj ,νj ,ej

(
T f3 − s2

WQf

)
f
j

L γ
µfL j −

∑
f= uj ,dj ,ej

s2
WQf f

j

R γ
µfR j

Zµ
+ e

∑
f= uj ,dj ,ej

Qf

(
f
j

L γ
µfL j + f

j

R γ
µfR j

)
Aµ (3.46)

and (LFM )int includes interaction terms arising due to the mirror fermion-sector in

the EWνR model.

To write the mirror fermions part (LFM )int remember that the W bosons couple

only to SU(2) doublets of fermions. Thus, only the right-handed mirror fermions

couple to the W±, as opposed to (LFSM )int, where only left-handed SM fermions
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interact with the W± bosons. Similarly the three-point couplings of the right-handed

mirror fermions with Z and γ bosons at the tree-level are same as those for the

left-handed SM fermions. Hence, (LFM )int, is given by

(LFM )int =
g√
2

[(
uMi
R γµdMRi + νiR γ

µeMRi
)
W+
µ +

(
d
M i

R γµuMR i + eM i
R γµνMR i

)
W−
µ

]

+
g

cW

 ∑
fM= uM ,dM ,νM ,eM

(
T f

M

3 − s2
WQfM

)
f
M i

R γµfMR i

−
∑

fM= uM ,dM ,eM

s2
WQfM f

M i

L γµfML i

Zµ
+ e

∑
fM= uM ,dM ,eM

QfM

(
f
M i

R γµfMR i + f
M i

L γµfML i

)
Aµ . (3.47)

In equation (3.47) i, j = 1, 2, 3, where i denotes fermions in the ith mirror-quark or

mirror-lepton generation. uMi and dMi denote the up- and the down- members of

a mirror-quark generation respectively. Following a similar notation (νRi and eMi )

denote (the neutrino and the ‘electron’) members of a mirror-lepton generation re-

spectively.

In Appendix B we have listed various Feynman rules in the minimal EWνR model,

which will be used in the calculation of the “oblique parameters”, discussed in the

next chapter.

3.3 Summary of the minimal EWνR model

In this section we summarize main features of the minimal EWνR model. First, in

Fig. 3.1 we show the physical particle spectrum in the model.
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Figure 3.1: Physical particle spectrum in the minimal EWνR model

3.3.1 What’s the advantage of the mirror fermions?

The EWνR model predicts the existence of the mirror fermions which have opposite

chirality to their SM counterparts having the same SU(2)L quantum numbers. Since

their masses are also expected to be near the electroweak scale, it is possible to probe

their phenomenology at the Large Hadron Collider.
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3.3.2 Why don’t we see mirror fermions today?

As seen in Eqs. (3.3) and (3.9), the mirror fermions couple to the SM fermions through

interactions of the form gSd dL d
M
R , gSl eL e

M
R . In particular, since φS is expected to

have a mass of O(105 eV), the decay modes the following decay modes are possible

for the mirror fermions: eMR → eL + φS, qMR → qL + φS.

Thus, all the mirror fermions and νR’s, created after the big bang, have already de-

cayed to the SM fermions. The mirror quarks could not form mirror-hadrons through

their SU(3)C couplings, since they had already decayed before the baryons were

formed.

The same decay modes could be the signals of the mirror fermions at the LHC. If

a mirror lepton or mirror quark is created in a process at the LHC, it would decay to

the corresponding SM fermion by emitting a φS. If the couplings gSl and gSq are large,

then these decays would occur within the beam pipe of the detector, in which case

the mirror fermions would not be detected. If these couplings are small enough, then

the vertex of the decay would be “displaced”. Such decay would have a final state of

lepton + missing energy or jet + missing energy. This is an interesting aspect of the

phenomenology of the mirror fermions, and could be a subject for future analysis.

3.3.3 Doesn’t νR contribute to the total energy density?

From Eq. (3.3) we can see that the decay modes such as νR → νL + φS and eMR →

eL + νL + νR → eL + νL + νL + φS are also possible. Thus, all the νR’s also decayed

to νL’s and φS. Those νR’s created today in astrophysical processes also decay soon,

and therefore do not contribute to the total energy density of the Universe.
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3.3.4 Does this model have a ‘dark matter’ candidate?

The only particle in the EWνR model that seems to be as sterile as the dark matter is

φS. Since it is as light as O(105 eV), it would not be a “cold dark matter” candidate.

On the other hand, the mirror fermions in the EWνR model also occur in a model

of dark matter asymmetry - the “Luminogenesis” model [33]. The dark matter can-

didates in this model are not part of the particle spectrum in the minimal EWνR

model.

3.3.5 Main features of the model

• In the EWνR model the non-sterile right-handed neutrinos νR naturally acquire

a Majorana mass near the electroweak scale. A lower limit of MZ/2 is set on

this mass MR, based on data for the Z width. The νR in this model can be

produced at the LHC and hence, the seesaw mechanism can be directly tested.

• In many other models, when νR obtains a Majorana mass from VEV of a singlet

or a triplet scalar field, a massless N-G boson, called “Majoron”, arises due to

the violation of the lepton number or the B − L number (refer to [26] and

references therein). No such N-G bosons arise here.

• The EWνR model achieves this without adding any more gauge bosons to the

SM.

• Although the EWνR model stands on its own, it is also possible to embed this

model in the E(6) Grand Unification group [26, 34].

• The EWνR model predicts the existence of the mirror fermions which have

opposite chirality to their SM counterparts having the same SU(2)L quantum
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numbers. Since their masses are also expected to be near the electroweak scale,

it is possible to probe their phenomenology at the Large Hadron Collider.

• This model contains a very interesting scalar sector that includes a doubly

charged Higgs and multiple singly charged Higgs’. These can have interesting

phenomenology at the Large Hadron Collider [27]. Although there have been

searches for charged Higgs at the LHC, the searches did not include the kind of

processes that would probe the charged scalar sector in this model.

• In SM the gauge anomalies [10] in the lepton sector can be cancelled only due

to the quark sector. In the EWνR model, the anomaly cancellation happens

in an interesting way, meaning that the anomalies within the SM lepton sector

cancel those in the mirror lepton sector. Similarly the anomalies in the quark

sector also cancel among themselves.

• This model also proposes the existence of a SU(2) singlet scalar φS. An inter-

esting scenario is possible in which the VEV of φS evolves with time. Thus, φS

can play a role of a slow-rolling field considered in [35, 26].

In the following chapters in this dissertation, we will analyze the phenomenology in

the minimal EWνR model, first in the context of the electroweak precision parameters

and later in the light of the 125-GeV Higgs at the LHC.
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Chapter 4

Contributions to Oblique

Parameters in the EWνR Model

As mentioned in the Foreword of this dissertation, for any theoretical model to be

viable, it must not contradict with experimental constraints from experiments in the

past. In this chapter we discuss relevant constraints on the minimal EWνR model

[26] - those coming from the so-called “Oblique Parameters” S and T .

In the first section we explain what oblique parameters are and why are they

relevant for the EWνR model. In the two following sections we derive the contributions

to the relevant oblique parameters from this model and discuss their agreement with

the experimental constraints, respectively.

4.1 Defining Oblique Parameters

4.1.1 What are Oblique Parameters?

Effects of the vacuum polarization diagrams (oblique corrections) on the electroweak-

interaction observables can be parametrized by three finite parameters denoted by
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S, T and U , known as the Oblique Parameters [36, 6, 37]. Their formalism was

first put forward by Peskin and T. Takeuchi [36]. These are finite, measurable

and renormalization-scheme independent quantities. Since polarization diagrams are

higher order processes (one-loop or higher), oblique parameters can be helpful in

probing higher-order effects BSM (Beyond the Standard Model) physics.

We will discuss their formulas and derivations shortly, but let us first consider how

measurements of the oblique parameters can be used as constraints on new physics.

Based on the Lagrangian of any model vacuum polarization diagrams and oblique

parameters can be calculated. Hence, for a set of numerical values of relevant pa-

rameters in the model, numerical values of the oblique parameters can be predicted.

The Standard Model also predicts certain values for the oblique parameters. On the

other hand, the oblique parameters have also been measured experimentally [6]. The

SM values lie within the error bars of the experimental values.

Although this is another of many success stories of SM, the error bars also leave a

room for new physics. At the same time these error bars also constrain new physics!

Let us consider the S parameter, for instance. We can naively write

S = SSM + S̃ , (4.1)

where S on the left-hand side is the measured/real value of the parameter, SSM is

the SM-prediction for it and S̃ is the “new physics” contribution to S (following the

notation from [38]). Thus, SM-predicted value of S̃ is 0. Similarly, T̃ , and Ũ are also

new-physics contributions to T and U parameters respectively, both of them having

SM-predicted value 0. We will refer to all S, T , U , as well as S̃, T̃ , Ũ as “Oblique

Parameters”. There is a small caveat in implementing this procedure to calculate

theoretical predictions. We would discuss it after digging a little deeper into the



83

definitions and derivations of the oblique parameters.

Using these parameters one could probe the effects of new physics on the elec-

troweak interactions at the one-loop level, if the new physics scale is much larger as

compared to MZ .

In a regime where the scale of new physics that is being probed is much larger

than MZ , these parameters were defined using a perturbative expansion as [36]:

αS ≡ 4e2[Π′33(0)− Π′3Q(0)],

αT ≡ e2

s2
W c

2
WM

2
Z

[Π11(0)− Π33(0)],

αU ≡ 4e2[Π′11(0)− Π′33(0)] , (4.2)

where sW = sin θW , cW = cos θW are the functions of the weak-mixing angle θW .

Π11 and Π33 are vacuum polarizations of the isospin currents and Π3Q the vacuum

polarization of one isospin and one electromagnetic current. The Π′ functions are

defined as Π′(0) = (Π(q2)− Π(0)) /q2 in general. We will be using q2 = M2
Z .

After the electroweak symmetry breaking the weak gauge boson triplet (W1, W2, W
0
3 )

and the hypercharge gauge boson B mix to yield W±, Z0 and γ. Therefore, Π11, Π33

and Π3Q and hence, the oblique parameters can also be expressed in terms of the self

energies of W , Z, γ and the Z − γ mixing [36].
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S, T and U can be expressed as:

α̂

4ŝ2
W ĉ

2
W

S =
1

M2
Z

[
ΠZZ(M2

Z)−
(
ĉ2
W − ŝ2

W

ĉ2
W ŝ

2
W

)
ΠZγ(M

2
Z)− Πγγ(M

2
Z)

]EWνR

(4.3)

α̂T =
1

M2
W

[
Π11(0)− Π33(0)

]EWνR

(4.4)

α̂

4ŝ2
W

U =

[
ΠWW (M2

W )

M2
W

− ĉ2
W

ΠZZ(M2
Z)

M2
Z

− 2ŝW ĉW
ΠZγ(M

2
Z)

M2
Z

− ŝ2
W

Πγγ(M
2
Z)

M2
Z

]EWνR

(4.5)

The superscript ‘EWνR’ denotes the contribution in the EWνR model. They can be

defined for any other model in a similar way. Hence, the new physics contributions

to the oblique parameters in the EWνR model should be calculated using

α̂

4ŝ2
W ĉ

2
W

S̃ =
1

M2
Z

[
ΠZZ(M2

Z)−
(
ĉ2
W − ŝ2

W

ĉ2
W ŝ

2
W

)
ΠZγ(M

2
Z)− Πγγ(M

2
Z)

]EWνR

− 1

M2
Z

[
ΠZZ(M2

Z)−
(
ĉ2
W − ŝ2

W

ĉ2
W ŝ

2
W

)
ΠZγ(M

2
Z)− Πγγ(M

2
Z)

]SM
(4.6)

α̂T̃ =
1

M2
W

[
Π11(0)− Π33(0)

]EWνR

− 1

M2
W

[
Π11(0)− Π33(0)

]SM
(4.7)

α̂

4ŝ2
W

Ũ =

[
ΠWW (M2

W )

M2
W

− ĉ2
W

ΠZZ(M2
Z)

M2
Z

− 2ŝW ĉW
ΠZγ(M

2
Z)

M2
Z

− ŝ2
W

Πγγ(M
2
Z)

M2
Z

]EWνR

−
[

ΠWW (M2
W )

M2
W

− ĉ2
W

ΠZZ(M2
Z)

M2
Z

− 2ŝW ĉW
ΠZγ(M

2
Z)

M2
Z

− ŝ2
W

Πγγ(M
2
Z)

M2
Z

]SM
,(4.8)

where all quantities with a hat on top ( ̂ ) i.e. ŝW , ĉW , α̂ ≡ ĝ2ŝ2
W/(4π) are defined

in the MS renormalization scheme evaluated at MZ [6]. Π(q2) = Π(q2) − Π(0) [36].
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Hereafter, in this chapter and in the context of oblique parameters elsewhere in this

dissertation the hats on top of these and other quantities are omitted, but implied,

unless otherwise is stated.

We can see that

• S is associated with the difference between the Z self-energy at q2 = M2
Z and

q2 = 0

• T is proportional to the difference between the isospin currents Π11 and Π33 at

q2 = 0.

• U is proportional to the difference between the charged and the neutral currents

The new physics contribution to U in the EWνR model is small as compared to that

to S and T . Also, this contribution is constrained only by MW , and the width, ΓW ,

of the W boson. Thus, we can project the STU parameter space on the 2-D S − T

parameter space in the U = 0 plane [39]. Hence, we focus on the constraints on S

and T parameters only.

Another way to define T is in terms of the ‘ρ parameter’:

T = ρ =
M2

W

M2
Z cos θ2

W

or T̃ = 1− ρ = 1− M2
W

M2
Z cos θ2

W

(4.9)

The SM prediction for T at the tree-level is 1. T or ρ are measures of the breaking

of custodial symmetry i.e. of the splitting between the masses of different members

within a multiplet in fermion and scalar sectors.

Experimentally measured values of the oblique parameters S̃ and T̃ should be

used to constrain the new physics contribution in any model. When we performed
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this analysis, we used the latest values then, with 2σ constraints [40]:

S̃ = −0.02± 0.14 and T̃ = 0.06± 0.14 (4.10)

with a statistical correlation 0.88 between the two [6].

4.1.2 Why are Oblique Parameters relevant?

Any model that adds extra chiral fermion doublets (doublets of fermions which have

definite ‘handedness’ or ‘chirality’ or definite eigenvalues corresponding to the γ5

operator) to SM raises a question of potential large contributions from these extra

doublets to the oblique parameters. It is known that such extra chiral doublets yield

a large positive contribution to the S parameter. Even if the T̃ parameter is set to

0 by making members of the chiral fermion doublets degenerate, the S̃ contribution

still remains large in magnitude with a positive sign. This is, in fact, a major problem

that ‘Technicolor’ models run into [41].

The EWνR model also introduces one right-handed mirror fermion doublet for

every SM left-handed doublet, and similarly one left-handed singlet for every right-

handed SM singlet. Thus, this model contains twice as many chiral fermion doublets

as SM. Therefore, constraints from the oblique parameters are the most relevant ones

to test the agreement of the EWνR model with the experimental results (Step 1 in

the analysis of a theoretical model).

The EWνR model can agree with these constraints if the large negative contribu-

tion from the fermion sector in the model are somehow canceled by the contribution

from the scalar sector in the model. We will present numerical results in section 4.4

to show that this, indeed, happens and the EWνR model does not contradict with

the electroweak precision constraints coming from the oblique parameters.



87

4.2 Calculating new physics contributions to Oblique

Parameters

The self energies relevant for calculating the oblique parameters can be obtained

from the loop-level contributions to corresponding gauge boson propagators. We are

interested in oblique corrections calculated up to one-loop level i.e. considering only

one-loop radiative contributions to the oblique parameters.

In the EWνR model (refer to Chapter 3), quantum numbers of fermions and

scalars under SU(2)×U(1)Y gauge symmetry are such that a fermion and a scalar do

not simultaneously enter in a one-loop interaction that contributes to an electroweak

gauge boson propagator. The scalar and fermion sectors in the EWνR model, thus

contribute to the radiative corrections through separate one-loop interactions. Same

is also true for the Standard Model (recall that to calculate S̃ and T̃ we need to

consider contributions from the EWνR model and SM). We can therefore calculate

contributions to S̃ and T̃ from the scalar sector and the fermion sector separately and

add them up to obtain the total contributions.

Similarly, due to opposite chirality of mirror fermion and SM fermion doublets

(and singlets), mirror fermions and SM fermions contribute to S̃ and T̃ independently.

Thus, from Eqs. (4.6,4.7), only mirror fermions contribute to S̃ and T̃ . Also note

that the scalar sector contributions and mirror fermion sector contributions in EWνR

model are separately finite. We denote the scalar contributions to S̃ and T̃ by S̃scalar,

T̃scalar respectively. Contributions from the mirror fermion sector in EWνR model are

denoted by S̃fermion, T̃fermion respectively. Thus,

S̃ = S̃scalar + S̃fermion (4.11)

T̃ = T̃scalar + T̃fermion . (4.12)
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New physics contributions to S and T due to the scalar sector of the EWνR model

are given in Eq. (4.15) and Eq. (4.17) respectively. The corresponding new physics

contributions to S and T due to the lepton sector in the EWνR model are given in

Eq. (4.18) and Eq.(4.20) respectively. Similarly, the new physics contributions to S

and T due to the quarks in the EWνR model are given in Eq. (4.21) and Eq. (4.22)

respectively. It should be noted that in this dissertation we assume that the mixings

between different mirror-quark and mirror-lepton generations are negligible. Thus,

the mass matrices for these fermion sectors are already diagonal. To compare the new

physics contributions from the EWνR model with the experimental constraints (refer

to the plots in section 4.4) we have considered wide ranges of the mirror fermions

masses. Hence, even if small non-zero mixings between different mirror fermion gen-

erations are included, it will only move individual points in the available parameter

space, but will not significantly affect the total available parameter space and will not

influence the conclusions of this chapter. We will discuss step-by-step derivations of

new physics contributions to S and T in Section 4.3.

4.3 Calculation of One Loop Contributions to the

Oblique Parameters in the EWνR model

One loop contributions to the oblique parameters in the EWνR model can be calcu-

lated from the cubic and quartic couplings listed in Appendix B and using the loop

integral functions illustrated in Appendix A and C. The SM loop diagrams contribut-

ing to S, T can be similarly obtained from the SM cubic and quartic couplings in

equations (3.29), (LFSM )int and using loop integrals from Appendix A and C. The

new physics contributions to S from the scalar sector and mirror fermion sector in
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EWνR model will be calculated separately and then added to find the total contri-

bution S̃ (Eq. (4.6)). Similary procedure will be followed to calculate T̃ (Eq. (4.7)).

Thus, as in eqns. (4.11), (4.12),

S̃ = S̃scalar + S̃fermion, T̃ = T̃scalar + T̃fermion. (4.13)

Recall (Eq. (4.6)) that the contributions to S̃ come from Z and γ self-energies, Zγ

mixing, each calculated up to one-loop level. To evaluate T̃ using equation (4.7)

the isospin current Π11 and electromagnetic current Π33 are used. The W and Z

self-energies are related to these isospin currents by [36],

ΠWW =
e2

s2
W

Π11;

ΠZZ =
e2

s2
W c

2
W

(Π33 − 2s2
WΠ3Q + s4

WΠQQ) (4.14)

Using these relations Π11 can be obtained from the loop contributions to ΠWW listed

in tables C.1, C.3, C.4. From equation (4.14) the one-loop contributions to Π33 can

be obtained using lim
g′→0

(ΠZZ). These contributions are listed below, separately from

ΠZZ for scalar as well as fermion sectors in the EWνR model.

4.3.1 Contributions to Oblique Parameters from the scalar

sector in the EWνR model

Using tables C.1, C.2, C.3, C.4, C.5, C.6 and Eq. (4.6) the new physics contribution,

S̃scalar is given by (as in Eq. (4.15))
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S̃scalar = SEWνR
scalar − SSMscalar

=
1

M2
Zπ

{
4

3
s2
H

[
B22(M2

Z ;M2
Z ,m

2
H0

5
)−M2

Z B0(M2
Z ;M2

Z ,m
2
H0

5
)
]

+ 2 s2
H

[
B22(M2

Z ;M2
Z ,m

2
H+

5
)− M2

W B0(M2
Z ;M2

Z ,m
2
H+

5
)
]

+ c2
H

[
B22(M2

Z ;M2
Z ,m

2
H1

)−M2
Z B0(M2

Z ;M2
Z ,m

2
H1

)
]

+
8

3
s2
H

[
B22(M2

Z ;M2
Z ,m

2
H′1

)−M2
Z B0(M2

Z ;M2
Z ,m

2
H′1

)
]

+
4

3
c2
H B22(M2

Z ;m2
H0

5
,m2

H0
3
) + 2 c2

H B22(M2
Z ;m2

H+
5
,m2

H+
3

)

+ s2
H B22(M2

Z ;m2
H0

3
,m2

H1
) +

8

3
c2
H B22(M2

Z ;m2
H0

3
,m2

H′1
)

− 4 B22(M2
Z ;m2

H++
5
,m2

H++
5

)− B22(M2
Z ;m2

H+
5
,m2

H+
5

)− B22(M2
Z ;m2

H+
3
,m2

H+
3

)

−
[
B22(M2

Z ;M2
Z ,m

2
H)−M2

Z B0(M2
Z ;M2

Z ,m
2
H)
]}

, (4.15)

Although it is not apparent from Eq. (4.15), S̃scalar decreases with increasing mass-

splitting within a SU(2)D scalar multiplet and between two SU(2)D scalar singlets of

the EWνR model. For large enough splitting(s) it becomes negative, which is desired

to compensate for the large positive contribution from mirror fermions (refer to section

4.4). To obtain T̃scalar the contributions to Π11 in Eq. (4.7) are obtained from the

ΠWW contributions in tables C.1, C.2, C.3, C.4, C.5, C.6 and using Eq. (4.14). The

corresponding ΠZZ contributions are obtained using Eq. (4.14) and tables C.7, C.8,

C.9. Thus, we get
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T̃scalar = TEWνR
scalar − T SMscalar

=
1

4πs2
WM

2
W

{
2 B22(0;m2

H++
5

;m2
H+

5
) + 3 B22(0;m2

H+
5

;m2
H0

5
) +B22(0;m2

H+
3

;m2
H0

3
)

+ c2
H

[
2 B22(0;m2

H++
5

;m2
H+

3
) +B22(0;m2

H+
5

;m2
H0

3
) +

1

3
B22(0;m2

H+
3

;m2
H0

5
)

+
8

3
B22(0;m2

H+
3

;m2
H′1

)− 8

3
B22(0;m2

H0
3
;m2

H′1
)
]

+ s2
H

[
2 B22(0;M2

W ;m2
H++

5
)−B22(0;M2

W ;m2
H+

5
)−B22(0;M2

W ;m2
H0

5
)

+B22(0;m2
H+

3
;m2

H1
)−B22(0;m2

H0
3
;m2

H1
) +M2

W

(
B0(0;M2

W ,m
2
H0

5
)

+B0(0;M2
W ,m

2
H+

5
)− 2 B0(0;M2

W ,m
2
H++

5
)
) ]

+ A0(m2
H++

5
)− 1

2
A0(m2

H+
5

)

− 1

2
A0(m2

H0
5
)−

(1

2
− s2

H

)
A0(m2

H+
3

) +
1

2
A0(m2

H0
3
)−

(1

2
+ s2

H

)
A0(M2

W )

}
(4.16)
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Hence, using Eq. (A.11),

T̃scalar =
1

4πs2
WM

2
W

{
1

2
F(m2

H++
5
,m2

H0
5
) +

3

4
F(m2

H+
5
,m2

H0
5
) +

1

4
F(m2

H+
3
,m2

H0
3
)

+
c2
H

2
F(m2

H++
5
,m2

H+
3

) +
c2
H

4
F(m2

H+
5
,m2

H0
3
) +

c2
H

12
F(m2

H0
5
,m2

H+
3

)

− c2
H

2
F(m2

H+
5
,m2

H+
3

)− c2
H

3
F(m2

H0
5
,m2

H0
3
)

+
s2
H

4

[
F(m2

H+
3
,m2

H1
)−F(m2

H0
3
,m2

H1
)
]

+
2

3
c2
H

[
F(m2

H+
3
,m2

H′1
)−F(m2

H0
3
,m2

H′1
)
]

+
s2
H

2
F(M2

W ,m
2
H++

5
)

− s2
H

4
F(M2

W ,m
2
H+

5
)− s2

H

4
F(M2

W ,m
2
H0

5
) + M2

W s
2
HB0(0;M2

W ,m
2
H0

5
)

+M2
W s

2
HB0(0;M2

W ,m
2
H+

5
)−M2

W s
2
HB0(0;M2

W ,m
2
H++

5
)

}
. (4.17)

It should be noted that the individual loop integral functions on the RHS of

Eqs. (4.15), (4.17) do contain divergences by definition, but these divergences cancel

as expected resulting in finite S̃scalar and T̃scalar respectively. Similar cancellations

ensure that S̃lepton, T̃lepton and S̃quark, T̃quark are all separately finite.

4.3.2 Contributions to the Oblique Parameters from the

fermion sector in the EWνR model

Using these loop diagrams and the definitions of S, T in eqns. (4.6), (4.7), we

obtain the new physics contributions, S̃lepton, T̃lepton and S̃quark, T̃quark. We also use
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Qf = T f3 +
Yf
2

. Thus, for S̃lepton we get (as given in Eq. (4.18)):

S̃lepton =SEWνR
lepton − SSMlepton

=
(NC)lepton

6π

3∑
i=1

{
− 2 Ylepton xνi + 2

(
−4

Ylepton
2

+ 3

)
xei − Ylepton ln

(
xνi
xei

)

+ (1− xνi)
Ylepton

2
G(xνi) +

[(
3

2
− Ylepton

2

)
xei −

Ylepton
2

]
G(xei)

}
(4.18)

For T̃lepton we obtain,

T̃lepton = TEWνR
lepton − T SMlepton

=
(NC)lepton
4πs2

WM
2
W

×
3∑
i=1

[
m2
νi

(
B1(0;m2

νi,m
2
νi)

−B1(0;m2
νi,m

2
ei)
)

+m2
ei

(
B1(0;m2

ei,m
2
ei)−B1(0;m2

ei,m
2
νi)
)]

(4.19)

Hence,

T̃lepton =
(NC)lepton
8πs2

WM
2
W

3∑
i=1

F(m2
νi,m

2
ei) . (4.20)

Here, because we have subtracted the contribution from three generations of SM

leptons, the summation is over three generations of mirror leptons only. Subscripts

νi and ei represent the mass eigenstates, right-handed neutrino (νRi) and mirror

electron (eMi ) member, of the ith mirror lepton generation respectively. (NC)lepton = 1

is the lepton color factor and Ylepton = −1 is the hypercharge of the mirror leptons.

xνi, ei = (mνi, ei/MZ)2, where mνi, ei are masses of νRi and eMi respectively. And G(x)

is given by Eq. (A.19). The new physics contributions to S and T from the quark
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sector in EWνR model are given by

S̃quark =SEWνR
quark − SSMquark

=
(NC)quark

6π

3∑
i=1

{
2

(
4
Yquark

2
+ 3

)
xui + 2

(
−4

Yquark
2

+ 3

)
xdi

− Yquark ln
(
xui
xdi

)
+

[(
3

2
+ Yquark

)
xui +

Yquark
2

]
G(xui)

+

[(
3

2
− Yquark

)
xdi −

Yquark
2

]
G(xdi)

}
(4.21)

and

T̃quark = TEWνR
quark − T SMquark

=
(NC)quark
4πs2

WM
2
W

×
3∑
i=1

[
m2
ui

(
B1(0;m2

ui,m
2
ui)−B1(0;m2

ui,m
2
di)
)

+m2
di

(
B1(0;m2

di,m
2
di)−B1(0;m2

di,m
2
ui)
)]

=
(NC)quark
8πs2

WM
2
W

3∑
i=1

F(m2
ui,m

2
di), (4.22)

respectively. Once again, because we have subtracted the contribution from three

generations of SM quarks, the summation is over three generations of mirror quarks

only. Subscripts ui and di represent the mass eigenstates of the mirror up- (uMi ) and

the mirror down- (dMi ) member of the ith mirror-quark generation respectively (refer

to the arguments about negligible mirror fermion mixings given after Eq. (4.12)).

(NC)quark = 3 is the quark color factor and Yquark = −1/3 is hypercharge for mirror

quarks. xui, di = (mui, di/MZ)2, where mui, di are masses of uMi and dMi respectively.

Refer to Appendix C.2 for the mirror fermion loop diagrams contributing to S and



95

T . As in section 4.4.2, both S̃lepton and S̃quark favor positive values more than the

negative values, although this trend is not apparent in eqns. (4.18), (4.21). It can be

seen in eqns. (4.20) and (4.22) that both T̃lepton and T̃quark are always positive. Also

contributions to these quantities from a mirror lepton and a mirror quark generation

increase with the mass splittings within the doublet of the mirror generation. These

behaviors are expected in the EWνR model so that the total S̃ and T̃ satisfy the

experimental constraints given in section 4.4.2.

4.4 Comparison with the experimental constraints

In this section we present the results of numerical analysis of oblique parameters,

discussed in Section 3 ([42], [43]). In the first subsection we present the ranges for

all the relevant parameters. In the second subsection, we show the scatter plots

of the S and T parameters coming from the mirror sector and the scalar sector,

without imposing the experimental constraints. Contributions from these two sectors,

separately plotted in T̃ − S̃ plane are also discussed. In the next subsection, we

combine the contributions from both the sectors and show the scatter plot of the

predictions of T̃ − S̃ in the EWνR model overlapping the 1σ and 2σ experimental

constraints, in the T̃ − S̃ plane.

4.4.1 Ranges of relevant parameters

As seen in Section 4.3, the S and T parameters depend on many parameters, including

the masses of the scalars, the masses of the mirror fermions and the right-handed

neutrino and the ratio of VEV’s θH (recall the definition from Eq. (3.39) in Chapter

3).

Among these parameters, the upper limits on the masses MR of the right-handed
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neutrinos and those on the masses of mirror fermions are correlated. A few remarks

about this correlation are in order here. Last but not the least in this mini review is

the question of charged fermion masses, in particular the top quark and mirror fermion

masses and the perturbative Yukawa couplings they arise from. This is a topic for a

detailed discussion on its own, but such an endeavor is beyond the scope of this dis-

sertation. A few words are in order here for sure. Since v =
√
v2

2 + 8 v2
M ≈ 246GeV ,

it is evident that v2 < 246 GeV and vM < 87 GeV. This has implications regard-

ing fermion masses, since charged fermion masses are proportional to v2 while the νR

masses are proportional to vM . The requirement that the Yukawa couplings giving rise

to these masses, namely gf ’s and gM , are perturbative (i.e. αf,M ≡ g2
f,M/(4 π) ≤ 1)

imposes constraints on the allowed ranges of v2 and vM respectively, and also on the

allowed ranges of masses of the mirror fermions. Since MR = gM vM and since the

Yukawa mass of a charged fermion is given by (ignoring mixings in the mass matrix

for now) mf = gf v2/
√

2, for a given mass of a charged mirror fermion (mfM ) the

upper limit on masses of νR’s can be given by

MR ≤
√

2 gM,max vM,max

gfM ,min v2,min

mfM (4.23)

Let us estimate each quantity in the fraction on the right hand side of this equation.

As mentioned before, gM,max =
√

4π. Because the top quark mass is known, (naively

expressing it as mtop = gtop v2/
√

2 ≈ 170 GeV), the perturbative limit on gtop gives

v2 ≥ 68 GeV. This constrains vM further such that vM ≤ 84 GeV. Since MR ≥MZ/2,

it follows that vM ≥ 13 GeV to ensure that gM ≤
√

4 π. This limit on vM implies

that v2 ≤ 243 GeV. Hence, considering the charged mirror fermion masses to be

heavier than 150 GeV it is straight forward to see that gf ≥ 0.87 for v2 ∼ 243 GeV.

Thus, Eq. (4.23) becomes MR ≤ 7.1mfM . On the other hand gM ≤
√

4π and
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vM ≤ 84 GeV also imply that MR ≤ 300 GeV. Both these constraints are plotted

in FIG. 4.1. In addition to any other constraints, the aforementioned constraints are

also to be incorporated while studying the phenomenology of the EWνR model.

MR
=

2
gM,m

ax
vM,m

ax

g f ,m
in

v2,m
in

m f
M

» 7.1
m f

M

MZ � 2 £ MR £ 7.1 mf
M

MZ � 2 £ MR d 300 GeV

200 300 400 500 600
m f M HGeVL

1000

2000

3000

4000

MR HGeVL

Figure 4.1: Mass of νR versus mass of charged mirror fermion fM with constraints due

to perturbativity of the Yukawa couplings. Thus, the final constraints are MZ/2 ≤ MR ≤
300 GeV and mfM ≤ 610 GeV (small purple area).

Considering mf = gf v2/
√

2 ≤ gf 148 GeV, one expects a Yukawa coupling gtop ∼

1.2 for the top quark. This coupling can actually be even smaller if the SM quark

mass matrix is of the “democratic type” i.e. having all matrix elements being equal

to 1 [44]. (A more “realistic” version differs slightly from this one.) The largest

mass eigenvalue in such a model is ∼ 3 gf 148GeV giving gt ∼ 0.4. For very heavy

mirror quarks, the Yukawa couplings might be larger, but, because the requirement

for a perturbative αf ≡ g2
f/4π ≤ 1, a value of gf ∼ 2 or 3 might not be problematic.

There is also an interesting twist in the situation when the Yukawa couplings become

large: A possibility that the electroweak symmetry can be broken dynamically by

condensates of heavy fermions through the exchange of a fundamental scalar as it has
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been done for a heavy fourth generation [45, 46].

In our numerical calculations we fixed the ranges of the relevant parameters as

follows:

• Scalar masses: from MZ to 650 GeV . The upper limit was chosen since the

results of Higgs searches at CMS and ATLAS were available up to about 650

GeV .

• MR: from MZ/2 to 300 GeV .

• Masses of the mirror fermions: from MZ to 600 GeV .

• sin θH = 2
√

2 vM/v: from 0.1 to 0.89, as discussed in [27]. We Stretched the

lower limit to 0.1 for numerical purposes.

4.4.2 Unconstrained S̃ and T̃ parameters for the scalar and

the mirror fermion sectors

We generated 10,000 random combinations of the parameters in the ranges given

above and calculated the S̃ and T̃ parameters using their expressions given in the

previous section. For these combinations the ranges of the contributions from the

scalar and the mirror fermion sectors were as follows:

• S̃scalar or S̃S: −0.5 ≤ S̃S ≤ 0.5

• T̃scalar or T̃S: −5 ≤ T̃S ≤ 22

• S̃fermion or S̃MF : −0.1 ≤ S̃MF ≤ 1

• T̃fermion or T̃MF : 0 ≤ T̃MF ≤ 32
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We show 500 of these points in Figs. 4.2 and 4.3. Scatter plot of T̃ versus S̃ for

the scalar sector with the 1 and 2 σ experimental contours from [40]:

SS
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1
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Figure 4.2: T̃ versus S̃ for the scalar sector with the 1 and 2 σ experimental contours

(about 500 points). Plotted by Vinh V. Hoang.

Scatter plot of T̃ versus S̃ for the mirror fermion sector with the 1 and 2 σ exper-

imental contours from [40]
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Figure 4.3: T̃ versus S̃ for the mirror fermion sector with the 1 and 2 σ experimental

contours (about 500 points). Plotted by Vinh V. Hoang.

Notice in Fig. 4.3 that S̃fermion is almost always positive, as expected. On the

other hand, S̃scalar in Fig. 4.2 can have positive as well as negative value. Thus,

negative S̃scalar can almost cancel S̃fermion to yield the total S̃ that agrees with the

experimental constraints. We will verify this when we discuss constrained EWνR

predictions in the next subsection.
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4.4.3 Constrained S̃ and T̃ parameters for the scalar and the

mirror fermion sectors

To verify whether the expected cancellation of S̃scalar and S̃fermion really occurs, we

generated random combinations of the parameters in the ranges given in section 4.4.1

and calculated the S̃ and T̃ parameters using their expressions given in the previous

section. In this way we generated about 3,500 combinations of the parameters, for

which the calculated values of these parameters are within the 1σ or 2σ experimental

results given in Eq. (4.10):

S̃ = −0.02± 0.14 and T̃ = 0.06± 0.14 (4.24)

with a statistical correlation 0.88 between the two. About 100 among these 3,500

combinations satisfy the 1σ constraints.

Fig. 4.4 shows the these calculated values, along with the imposed experimental

constraints. We can see that a significant part of the parameter space in the EWνR

model is consistent with the electroweak precision constraints from S̃ and T̃ .

We also noticed that for these constrained combinations of the parameters, the

S̃scalar and T̃scalar really almost cancel S̃fermion and T̃fermion, respectively [42].



102

S
~

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

T~

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 4.4: Total T̃ versus S̃ with the 1 and 2 σ experimental contours. Plotted by Vinh

V. Hoang.

4.4.3.1 A few remarks

A remark about the allowed range of θH parameter is in order here. As can be seen

in Appendix C, this parameter enters in calculation of various loop diagrams that

contribute to the oblique parameters. One might think that the constraints on these

parameters restrict the allowed range of θH to cos θH ∼ 1 (i.e. where VEV v2 of

SM-like scalar doublet Φ2 is dominant in v). However, we noticed that all the values

of sin θH were equally allowed by oblique constraints [42]. This is interesting, since in

many other models which add extra scalar multiplets to the particle content in SM,

the VEV’s of the extra scalars are restricted by the constraints on the ρ parameter
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(and hence, on the T̃ ), so as to make v2 dominant in v.

In the plots above, the value of mH0
3

was fixed at 126 GeV . Recall that this is

a pure-CP-odd pseudoscalar. The reason behind this choice and the implications of

the spin-parity of the 125-GeV spin-0 state at the LHC for the EWνR model will be

discussed in the next chapter. We will also discuss what extension is needed in the

scalar sector of the EWνR model, as a result.

In these figures, the masses of H0
1 and H0′

1 were arbitrarily chosen to be mH0
1

=

600 GeV and mH0′
1

= 100, 500, 650 GeV. These values, although arbitrary, were

chosen for illustrative purposes. A number of features of how different contributions

to S̃ and T̃ vary with θH , the scalar masses and mass splittings are discussed in detail

in [42].

4.5 Conclusions of the chapter

• For any model that adds extra chiral fermions to the SM fermion sector, it is

crucial to verify its agreement with the experimental constraints on the elec-

troweak precision parameters - the oblique parameters S̃ and T̃ .

• Since the EWνR model contains the mirror fermions, it is important to first

check whether it satisfies the experimental constraints on S̃ and T̃ , before ana-

lyzing its phenomenology further.

• We demonstrated that a significant part of the parameter space of the EWνR

model is consistent with these constraints.

• We observed that these constraints do not restrict the ratio of VEV’s of the

triplet χ and doublet Φ2, through the θH parameter. It is only restricted by the
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perturbative limit on various Yukawa couplings and the lower limit of MZ/2 on

MR.

• The particular choices of scalar masses in our calculations were only for illus-

trative purposes. Changing these choices should only move the region of the

parameter space that agrees with the experimental constraints. We believe that

it will not change the conclusion of our analysis.

As the minimal EWνR model does not violate the electroweak precision con-

straints, we can now discuss the phenomenology of the model further. When this

analysis was coming to its conclusion, the 125-GeV Higgs was discovered at the Large

Hadron Collider. In the next chapter we will discuss the implications of this discovery

from the perspective of the EWνR model.
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Chapter 5

An Extended EWνR Model and the

Dual Nature of the 125-GeV Scalar

The agreement between the minimal EWνR model in Chapter 3 with the experimental

constraints from the oblique parameters demonstrates the validity of the model from

the perspective of Step 1 illustrated in the Foreword of the dissertation. In the present

chapter we will investigate the implications and a generalization of the EWνR model

in the context of Steps 2 and 3 - relevance of a theoretical model to contemporary

experiments and its predictions which can be tested at the experiments.

When the analysis in the previous chapter of this dissertation was in progress,

only one of all the particles in the Standard Model remained to be experimentally

discovered - the Higgs boson. The ATLAS and CMS experiments at the Large Hadron

Collider (LHC) were excluding different mass ranges between ∼ 115 GeV (LEP bound

[6]) and ∼ 600 GeV. After excluding a broad low-mass region, the search for the SM-

like Higgs boson was narrowed down to the mass regions around certain values where

the data was not conclusive enough [47, 48]. These regions for both CMS and ATLAS

included the masses around 125 GeV .
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On July 4, 2012 the CMS and ATLAS experiments announced the “discovery” of

a spin-0 state with a mass of 125 GeV , which was then hoped to be a Higgs-boson-

like particle [49, 50]. Further data revealed that the signal strengths of this particle,

indeed, looked similar to those of the SM Higgs boson [51, 52, 53, 54]. Hence, for

every model of physics beyond the Standard Model (BSM) it became imperative to

1. have at least one Higgs particle with a mass of about 125 GeV , having SM-like

signal strengths, and

2. study the implications of these properties in the ‘allowed’ parameter space of

the model (e.g. allowed masses of any BSM particles in the model, etc.).

To test the viability of a model or to search for the model experimentally at the

LHC, the signal strengths of the 125-GeV Higgs boson candidate in the model must

be studied.

In phenomenology of the EWνR model can be studied also by focusing on the

signals for the mirror fermions. However, in the light of the Higgs discovery, agreement

with the signal strengths of the 125-GeV particle is the veto criteria for any region

in the parameter space. We therefore decided to analyze the implications of this

discovery for the EWνR model, which truly revealed many interesting features of the

scalar sector in the model.

The organization of this chapter is as follows: In Section 5.1, we will explore the

viability of the neutral scalars in the minimal EWνR model as 125-GeV candidates.

Section 5.2 shows step-by-step development of an extended EWνR model. Sections

5.4, 5.4.1, 5.3 discuss “the dual nature” of the 125-GeV Higgs, and the implications

of the heavier CP-even neutral scalars in this model.
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5.1 Can the minimal EWνR model accommodate

a 125-GeV Higgs?

By “the minimal model” we refer to the Hung’s model explained in Chapter 3. The

scalar sector in this model contains one doublet Φ2 and two triplets χ, ξ. The SM

fermions as well as the mirror fermions in the model couple to the same SU(2) scalar

doublet Φ2.

After the electroweak symmetry is spontaneously broken, 4 neutral physical spin-0

states are obtained - H0
1 , H0′

1 , H0
3 , and H0

5 . For now we focus our attention only on

H0
1 and H0

3 , as the other 2 states do not couple to SM or mirror fermions (remember

that the right-handed neutrinos are not counted among the mirror fermions). Thus,

we can say that either H0
1 or H0

3 could be the 125-GeV candidates in this model.

Recall that H0
1 is a CP-even (scalar) eigenstate, while H0

3 is a CP-odd (pseudoscalar)

eigenstate. The Feynman rules of the Yukawa couplings of SM fermions to H0
1 , H0

3

and H±3 can be obtained from the Lagrangian

LSMY = −hijΨLiΦ2ΨRj + h.c.

The corresponding Feynman Rules for SM quarks [27] are given by

gH0
1qq

= −ı̇ mq g

2 MW cH
....(q = t, b)

gH0
3 tt

= ı̇
mt g sH

2 MW cH
γ5 , gH0

3 bb
= −ı̇ mb g sH

2 MW cH
γ5 ,

gH−3 tb = ı̇
g sH

2
√

2 MW cH

[
mt(1 + γ5)−mb(1− γ5)

]
. (5.1)
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For the mirror quarks the Yukawa interactions are obtained from

LMF
Y = −hijΨRiΦ2MΨLj + h.c. . (5.2)

Thus, the Feynman Rules for mirror quarks are

gH0
1q
M qM = −ı̇ mqM g

2 MW cH
,

gH0
3u
M
i u

M
i

= −ı̇
muMi

g sH

2 MW cH
γ5 , g

H0
3d
M
i d

M
i

= ı̇
mdMi

g sH

2 MW cH
γ5

g
H−3 u

M
i d

M
i

= ı̇
gsH

2
√

2 MW cH

[
muMi

(1− γ5)−mdMi
(1 + γ5)

]
(5.3)

A spin-0 state can be a viable candidate for the 125-GeV scalar at the LHC,

if and only if the decay properties of the latter agree with those predicted for the

candidate particle. At a hadron collider such as the LHC, only the relative signal

strengths µ, and not the partial decay widths Γ can be experimentally measured for

any decay channel. Since the production cross section appears in calculations of µ

for all the decay channels, it is reasonable to believe that, in the minimal EWνR

model, if the production cross section of a candidate particle deviates a lot from that

of the SM Higgs boson, then it is difficult to compensate for this deviation for all

the decay channels. For example, consider the production cross section of H0
1 in the

gluon-gluon (gg) fusion channel, σ(gg → H0
1 ). In this model, the top-quark as well

as the mirror quark loops must be considered while calculating σ(gg → H0
1 ). For a

back-of-the-envelope calculation, assuming that mirror quarks are as massive as the
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top quark,

σ(gg → H0
1 ) =

∣∣A(gg → top loop→ H0
1 ) +A(gg → 6 mirror quark loops→ H0

1 )
∣∣2

∼ 49

c2
H

× σ(gg → H0
SM) ,

where ‘A’ denotes amplitude of the production process. Therefore,

σ(gg → H0
1 ) & 49× σ(gg → H0

SM) . (5.4)

At the LHC, gg-fusion is the most dominant production channel for a SM-like

Higgs. From the structure of the EWνR model, it is also the most dominant pro-

duction channel for H0
1,3. Consequently, µ’s of all the decay channels of H0

1 agree

with the data at LHC, if all the corresponding partial decay widths are suppressed at

least by a factor of about 49 as compared to the SM-Higgs-decay widths. However,

it can be seen from Eq. (5.1) and Table D.4 that A(H0
1ff̄) & A(H0

SMff̄), while

A(H0
1V V

†) . A(H0
SMV V

†). Therefore, it is not possible to suppress all the partial

decay widths by a factor of 49, to compensate for the factor of ∼ 49 in the production

cross section. This implies that H0
1 cannot be a viable candidate for the 125-GeV

scalar at the LHC1.

The other possible 125-GeV candidate could be H0
3 . The Yukawa couplings of

H0
3 with fermions are proportional to tan θH , and it couples to the up and down

members of SU(2) fermion doublets with opposite signs (refer to Eq. (5.1). For a

back-of-the-envelope calculation assuming that the up- and down-type mirror quarks

1Maybe it is possible that H0
1 still satisfies all the constraints from decay properties of the 125-

GeV Higgs boson, but only in a highly constrained parameter space
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Figure 5.1: Courtesy: CMS collaboration, CMS-PAS-HIG-13-002, March 2013

have degenerate masses,

σ(gg → H0
1 ) ∼ tan2 θH × σ(gg → H0

SM) . (5.5)

In general, tan2 θH can be ∼ 1 and therefore, σ(gg → H0
1 ) ∼ σ(gg → H0

SM). Thus,

in the light of recent results from the LHC, only H0
3 (CP-odd) can potentially have

relative signal strengths µ’s close to that of the SM-Higgs boson.

On the other hand, the preliminary likelihood analysis with different spin-parity

hypotheses for the 125-GeV particle disfavors 0− (CP-odd pseudoscalar) hypothesis

by more than 3σ as compared to the 0+ (CP-even scalar) [55]. Refer to FIG. 5.1.

Consequently, H0
3 is not a viable candidate for the 125-GeV scalar at the LHC.

The question under investigation now becomes how the 125-GeV particle can be

accommodated in the EWνR model as a scalar (CP-even) mass eigenstate2.

2The possibility that the 125-GeV Higgs boson is a linear combination of CP-even and CP-
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The minimal EWνR model cannot answer this question affirmatively. Hence an

extension of the model is required, particularly in the scalar sector of the minimal

model. We will discuss a simple extension of the model in the next section.

5.2 An extended EWνR model

5.2.1 Field content of the model

As the minimal EWνR model in [26] cannot accommodate the 125-GeV particle as

a scalar, an extension to the model is needed. Adding a scalar SU(2) doublet to

the field content of the model is the simplest extension, and it is expected to work,

because:

• We need at least one additional scalar degree of freedom (d.o.f.), which can

appear as a physical state with a mass of ∼ 125 GeV. But a SU(2) singlet

scalar would not do the job, as it cannot interact with electroweak gauge bosons.

Hence, the next simplest option is adding a SU(2) scalar doublet.

• With this addition the EWνR model will have two SU(2) scalar doublets, in

which case we can expect to obtain one ‘light’ and one ‘heavy’ physical scalar,

under the premise of having SM-like signal strengths - just like what happens

in case of 2HDM model [56].

odd state has not been thoroughly tested experimentally yet. Here we will stick to CP-eigenstate
hypothesis based on the likelihood analysis
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When a Y = 1 complex scalar doublet is added to the minimal EWνR model,

under the global SU(2)L × SU(2)R we have

Φ2 =

 φ0,∗
2 φ+

2

φ−2 φ0
2

 , Φ2M =

 φ0,∗
2M φ+

2M

φ−2M φ0
2M

 , χ =


χ0 ξ+ χ++

χ− ξ0 χ+

χ−− ξ− χ0∗

 .

(5.6)

However, if both Re[φ0
2] and Re[φ0

2M ] interact with SM as well as mirror fermions,

then it might severely restrict their vacuum expectation values (VEV). If both of

them contribute to the masses of charged SM-fermions (most of which are significantly

light) and much heavier (& 100 GeV; more on this later) charged mirror fermions,

that could create difficulties in agreement between the allowed parameter space in

the model and experimental constraints. To prevent such cross couplings, a global

symmetry will be imposed such that only one doublet couples to the charged SM-

fermions and the other one only to the mirror fermions. We introduce the following

global symmetries and scalar doublets:

U(1)SM : Φ2 → eıαSM Φ2

(qSML , lSML ) → eıαSM (qSML , lSML ) , (5.7)

U(1)MF : Φ2M → eıαMF Φ2M

(qMR , l
M
R ) → eıαMF (qMR , l

M
R ) , (5.8)

φS → e−ı(αMF−αSM ) φS , (5.9)

χ̃, ξ → e−2ıαMF χ̃, ξ . (5.10)
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All the other fields (SU(2)-singlet right-handed SM fermions, left-handed mirror

fermions) are singlets under the global U(1)SM × U(1)MF .

These symmetries will forbid Yukawa couplings of the form gY f̄LΦ2MfR and

gY f̄
M
R Φ2f

M
L , at tree level. Only Yukawa interactions of the type gY f̄LΦ2fR and

gY f̄
M
R Φ2Mf

M
L are allowed. The Yukawa couplings of the physical spin-0 states to

SM and mirror fermions will involve mixing angles between different SU(2) scalar

multiplets.

5.2.2 Symmetry breaking

Proper vacuum alignment that results in SU(2)L × U(1)Y → U(1)em follows the

pattern below:

〈Φ2〉 =

 v2/
√

2 0

0 v2/
√

2

 , 〈Φ2M〉 =

 v2M/
√

2 0

0 v2M/
√

2

 , (5.11)

and

〈χ〉 =


vM 0 0

0 vM 0

0 0 vM

 , (5.12)

Thus, the VEVs of real parts of Φ2, Φ2M and χ are (v2/
√

2), (v2M/
√

2) and vM

respectively such that

v2
2 + v2

2M + 8 v2
M = v2 , (5.13)

where v ≈ 246 GeV. We define

s2 =
v2

v
; s2M =

v2M

v
; sM =

2
√

2 vM
v

. (5.14)
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A generic SU(2)L × SU(2)R preserving potential for these scalars can now be

written as

V (Φ2,Φ2M , χ) = λ1

[
TrΦ†2Φ2 − v2

2

]2

+ λ2

[
TrΦ†2MΦ2M − v2

2M

]2

+ λ3

[
Trχ†χ− 3v2

M

]2

+ λ4

[
TrΦ†2Φ2 − v2

2 + TrΦ†2MΦ2M − v2
2M + Trχ†χ− 3v2

M

]2

+ λ5

[
(TrΦ†2Φ2) (Trχ†χ)− 2 (TrΦ†2

τa

2
Φ2
τ b

2
) (Trχ†T aχT b)

]
+ λ6

[
(TrΦ†2MΦ2M) (Trχ†χ)− 2 (TrΦ†2M

τa

2
Φ2M

τ b

2
) (Trχ†T aχT b)

]
+ λ7

[
(TrΦ†2Φ2) (TrΦ†2MΦ2M) − (TrΦ†2Φ2M) (TrΦ†2MΦ2)

]
+ λ8

[
3 Trχ†χχ†χ− (Trχ†χ)2

]
, (5.15)

where MW = g v/2. Note that this potential, like the one in the minimal EWνR

model is also invariant under χ → −χ. The vacuum alignment given above breaks

the global SU(2)L × SU(2)R down to the custodial SU(2)D.

It is found that three ‘massless’ Nambu-Goldstone bosons can be obtained after

spontaneous breaking of SU(2)L × U(1)Y to U(1)em, when a condition λ5 = λ6 = λ7

is imposed on the potential above. Thus, the final form of the scalar potential, which
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is to be used to find the physical Higgs states, is

V (Φ2,Φ2M , χ) = λ1

[
TrΦ†2Φ2 − v2

2

]2

+ λ2

[
TrΦ†2MΦ2M − v2

2M

]2

+ λ3

[
Trχ†χ− 3v2

M

]2

+ λ4

[
TrΦ†2Φ2 − v2

2 + TrΦ†2MΦ2M − v2
2M + Trχ†χ− 3v2

M

]2

+ λ5

[
(TrΦ†2Φ2) (Trχ†χ)− 2 (TrΦ†2

τa

2
Φ2
τ b

2
) (Trχ†T aχT b) + (TrΦ†2MΦ2M) (Trχ†χ)

− 2 (TrΦ†2M
τa

2
Φ2M

τ b

2
) (Trχ†T aχT b) + (TrΦ†2Φ2) (TrΦ†2MΦ2M)

− (TrΦ†2Φ2M) (TrΦ†2MΦ2)
]

+ λ8

[
3 Trχ†χχ†χ− (Trχ†χ)2

]
(5.16)

After SU(2)L × U(1)Y → U(1)em, besides the three Nambu-Goldstone bosons, there

are twelve physical scalars grouped into 5 + 3 + 3 + 1 of the custodial SU(2)D.

This includes 3 custodial scalar singlets.

To express the Nambu-Goldstone bosons and the physical scalars in terms of

SU(2) scalar d.o.f.’s, let us adopt the following convenient notation:

s2 =
v2

v
, s2M =

v2M

v
, sM =

2
√

2 vM
v

,

c2 =

√
v2

2M + 8v2
M

v
, c2M =

√
v2

2 + 8v2
M

v
, cM =

√
v2

2 + v2
2M

v
. (5.17)

Thus, s2
2 +c2

2 = s2
2M +c2

2M = s2
M +c2

M = 1. Notice that in the limit s2M → 0, sM → sH

and cM → cH . Like we did for the minimal EWνR model, let us also define:

φ0
2 ≡

1√
2

(
v2 + φ0r

2 + ıφ0ı
2

)
, φ0

2M ≡
1√
2

(
v2M + φ0r

2M + ıφ0ı
2M

)
,

χ0 ≡ vM +
1√
2

(
χ0r + ıχ0ı

)
, ψ± ≡ 1√

2

(
χ± + ξ±

)
, ζ± ≡ 1√

2

(
χ± − ξ±

)
,(5.18)
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With these fields the Nambu-Goldstone bosons are given by

G±3 = s2φ
±
2 + s2Mφ

±
2M + sMψ

± and G0
3 = ı

(
− s2φ

0ı
2 − s2Mφ

0ı
2M + sMχ

0ı
)
. (5.19)

The physical scalars can be grouped, based on their transformation properties under

SU(2)D as follows:

five-plet (quintet) → H±±5 , H±5 , H
0
5 ;

triplet → H±3 , H
0
3 ;

triplet → H±3M , H
0
3M ;

three singlets → H0
1 , H

0
1M , H

0′
1 (5.20)

where

H++
5 = χ++, H+

5 = ζ+, H0
5 =

1√
6

(
2ξ0 −

√
2χ0r

)
,

H+
3 = −s2sM

cM
φ+

2 −
s2MsM
cM

φ+
2M + cMψ

+,

H0
3 = ı

(
s2sM
cM

φ0i
2 +

s2MsM
cM

φ0i
2M + cMχ

0i

)
,

H+
3M = −s2M

cM
φ+

2 +
s2

cM
φ+

2M , H0
3M = ı

(
−s2M

cM
φ0i

2 +
s2

cM
φ0i

2M

)
,

H0
1 = φ0r

2 , H
0
1M = φ0r

2M , H0′
1 =

1√
3

(√
2χ0r + ξ0

)
. (5.21)

with phase conventions H−−5 = (H++
5 )∗, H−5 = −(H+

5 )∗, H−3 = −(H+
3 )∗, H−3M =

−(H+
3M)∗, H0

3 = −(H0
3 )∗ and H0

3 = −(H0
3 )∗. The masses of these physical scalars can

easily be obtained from eq. (5.16).
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As long as the SU(2)D custodial symmetry is preserved, members of the physical

scalar multiplets have degenerate masses. These masses are

m2
5 = 3(λ5c

2
M + λ8s

2
M)v2 ,

m2
3 = λ5v

2 , m2
3M = λ5(1 + c2

M)v2 . (5.22)

In general, H0
1 , H0

1M and H0′
1 can mix according to the mass-squared matrix

M2
singlets = v2 ×


8s2

2(λ1 + λ4) 8s2s2Mλ4 2
√

6s2sMλ4

8s2s2Mλ4 8s2
2M(λ2 + λ4) 2

√
6s2MsMλ4

2
√

6s2sMλ4 2
√

6s2MsMλ4 3s2
M(λ3 + λ4)

 . (5.23)

It should be noted that in the limit λ4 → 0 the off-diagonal elements in the matrix

above vanish. Also note that, in general, we have six parameters in the physical scalar

potential and we can have six independent physical scalar masses. Thus, given the

masses of the physical scalar states the parameters (these include quadratic coupling

parameters, λ4, λ5, λ8) in the potential can be uniquely determined and vice versa.

Hence, the generic mass eigenstates are given by


H̃

H̃ ′

H̃ ′′

 =


a1,1 a1,1M a1,1′

a1M,1 a1M,1M a1M,1′

a1′,1 a1′,1M a1′,1′




H0
1

H0
1M

H0′
1

 , (5.24)

the lightest of which is H̃, while H̃ ′′ is the heaviest.

Tables D.2 - D.6 list couplings of the physical Higgs states with fermions and

gauge bosons.
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5.2.3 Physical particle spectrum in the extended EWνR model

The total particle content in this model is shown in Fig. 5.2 below.

Figure 5.2: Physical particle spectrum in the extended EWνR model.

Note the difference between the figure above and Fig. 3.1 in Chapter 3. Since we

have added 4 scalar degrees of freedom to the original model, we obtain 4 additional

physical scalars.
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5.2.4 A comment on oblique contributions in the extended

EWνR model

We know from the analysis in Chapter 4 that those combinations of parameters of the

EWνR model would agree with the experimental constraints on S̃ and T̃ , for which

the positive fermion contributions to S̃ are compensated by the negative contributions

from the scalar sector of the model. We saw that the scalar contributions S̃S can take

negative as well as positive values. Therefore, even after adding an additional scalar

doublet to the minimal model, it is reasonable to expect existence of a significant

region in the parameter space to result in negative S̃scalar that can compensate for

the positive S̃fermion. We therefore believe that the contribution due to these extra

d.o.f.’s will not change the conclusion about the agreement between the contributions

to S̃ and T̃ in the extended EWνR model and the electroweak precision constraints

from experiments.

Hence, we argue that S̃ and T̃ in the extended EWνR model would also satisfy

the experimental constraints, just like the minimal EWνR model.

5.2.5 A comment on the pseudo Nambu-Goldstone bosons

in the EWνR model

Before proceeding to analyze the decay properties of the scalars in the EWνR model,

an important clarification is in order here, regarding whether or not the Nambu-

Goldstone (N-G) bosons arise due to breaking of the U(1)SM × U(1)MF symmetry.

When any symmetry is broken spontaneously there arise massless N-G bosons.

If a local symmetry is spontaneously broken in the vacuum state of the Lagrangian,

then the N-G bosons are absorbed by the longitudinal-polarization components of the

corresponding gauge bosons [57] (refer to Chapter 1). On the other hand, if a global
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symmetry is broken, then the N-G bosons appear as physical massless particles. In

a different scenario the global symmetry is not exact i.e. it is broken “explicitly”

by symmetry breaking term(s) in the Lagrangian. In such a case, the would-be N-G

bosons acquire masses proportional to the symmetry-breaking term(s). Such massive

would-be N-G bosons are referred to as “pseudo Nambu-Goldstone bosons” [10].

Keeping this in mind let us look at what happens to the N-G bosons associated

with breaking of the U(1)SM × U(1)MF symmetry.

In the context of the minimal EWνR model this question arises for the U(1)MF

symmetry (referred to as U(1)M in [26]). How different fields transform under this

symmetry is given in Eq. (3.16). This question of N-G bosons has been addressed in

detail in [29] and, specifically in the EWνR model, in [26]. Recall the scalar potential

in the minimal EWνR model, in Eq. (3.35). The term proportional to λ4 is necessary

for the proper vacuum alignment of Φ2 and χ, so that SU(2)×U(1)Y → U(1)EM . This

term includes interactions such as (ξ0χ0ξ+χ−). It can be seen from Eq. (3.16) that

these terms explicitly break the U(1)MF symmetry. As a result, after the spontaneous

breaking of SU(2)×U(1)Y to U(1)EM , the pseudo N-G bosons of the global U(1)MF ,

which are the triplet H0,±
3 , acquire mass proportional to λ4, as given in Eq. (3.43).

Similarly, in the extended EWνR model we have the global U(1)SM×U(1)MF sym-

metry. Notice the terms proportional to λ5 in the potential in Eq. (5.15). These

terms are necessary to ensure the proper vacuum alignment of Φ2, Φ2M and χ. How-

ever, as can be seen from Eqs. (5.7), (5.8) and (5.10), these terms explicitly break the

U(1)SM × U(1)MF symmetry. Hence, when SU(2) × U(1)Y → U(1)EM , the pseudo-

N-G-bosons pick up masses proportional to λ5 and become H0,±
3 and H0,±

3M (refer to

Eq. (5.22)).

Thus, in both, the minimal and the extended, EWνR models the U(1)MF and

U(1)SM × U(1)MF symmetries (respectively) are broken explicitly to ensure proper
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vacuum alignment for the spontaneous breaking of the electroweak symmetry. Hence,

there arise no massless N-G bosons associated with these symmetries!

In the next section we will discuss how the different partial widths of a CP-even

scalar can be calculated in the EWνR model. The signal strengths of a scalar in

this model depend on these partial widths. It is therefore important to review their

calculation before proceeding to numerical analysis of the 125-GeV candidate in this

model.

5.3 Partial decay widths of neutral Higgs

In this section we will discuss various production and decay channels that are relevant

for studying properties of the 125-GeV Higgs from the perspective of the EWνR

model. We will focus on tree- and one-loop decays of CP-even physical states in this

model. These include tree-level decays: H0 → WW, ZZ, ff̄ , and one-loop processes:

H0 → γγ, gg - type decays (and also the Higgs boson production through gg → H).

We show calculation of the decay width Γ(H → γγ) up to LO in QCD.

We also show how partial widths of all other than the γγ decay channel can

be calculated easily from the corresponding SM values modified by a multiplicative

factor. We calculate these widths in EWνR model from the SM values given in [58].

5.3.1 H→ gg

The decay of a custodial singlet Higgs boson to two gluons proceeds through one-

loops at LO. Unlike H0 → γγ channel, this channel does not give a ‘clean’ signal at

a hadron collider like the LHC due to large QCD background. However, the gluon-

gluon fusion channel (gg → H) is the most dominant production channel for a neutral

Higgs and hence, Hgg coupling becomes important while studying µ(H0-decay) for
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various decay channels.

The production cross section of gg → H0 is related to the width of H0 → gg by

σ(gg → H0) ∝ Γ(H0 → gg) , (5.25)

where the constant of proportionality includes phase space integrals and the mass of

H0 (refer Eq. (2.30) in [28]). Therefore, for a given mass of Higgs

σEWνR (gg → H0)

σSM(gg → H0)
=

ΓEWνR (H0 → gg)

ΓSM(H0 → gg)
. (5.26)

Hence, to calculate signal strengths µ(H-decay), we use Γ(H0 → gg) instead of

Γ(H0 → gg), since we are only interested in the ratios of production cross-sections.

Consider a general scalar mass-eigenstate H that is also a CP-even state in some

model of BSM Physics. The relevant part of the interaction Lagrangian is [28]

Lint =
−mf

vH0

ψ̄ψH0 + g MW λW W+
µ W

µ−H0 +
g λS
MW

S+S−H0 , (5.27)

where vH0 is the vacuum expectation value of H0, v = 2MW/g ∼
√∑

all H0’s v
2
H0 , ψ

is a fermion of mass mf , S
± is a charged BSM scalar. For SM λW = 1/

√
2, λS = 0.

For a general (CP-even) Higgs boson H0 that couples to the SM quarks with Yukawa

coupling in the equation above, the decay width of H0 → gg is given by

Γ(H0 → gg) =
α2
S g

2m3
H0

128π3M2
W

∣∣∣∣∣∑
i

1

2 vH0/v
F1/2(τi)

∣∣∣∣∣
2

, (5.28)

where, for a loop of quark having mass mi, τi = 4m2
i / mH0 [28], and F1/2(τ) is given

by

F1/2(τ) = −2 τ [1 + (1− τ)f(τ)] . (5.29)



123

and

f(τ) =
[
sin−1

(
1/
√
τ
)]2

, if τ ≥ 1,

=
1

4
[Log (η+/η−) − ıπ]2 , if τ < 1; (5.30)

where

η± ≡ (1±
√

1− τ) . (5.31)

In [58] the width for H0 → gg in SM is calculated up to the NLO QCD calculations.

We calculate Γ(H̃ → gg) in the EWνR model using these SM values. Using Eq.

(5.24), Tables D.2 and D.1 this decay width can be given by

ΓEWνR(H̃ → gg) = ΓSM(H0
SM → gg) ×

∣∣∣∣a1,1

s2

F1/2(τtop) +
a1,1M

s2M

∑
i F1/2(τMFi)

∣∣∣∣2∣∣F1/2(τtop)
∣∣2

(5.32)

where H̃ denotes H̃, H̃ ′ and H̃ ′′;
∑

i is over all the mirror quarks; τMFi = 4 m2
MFi/m

2
H0 .

a1,1 and a1,1M are elements of the square matrix in Eq (5.24) - they are coefficients

of H0
1 and H0

1M in H̃ respectively.

5.3.2 H0 → γγ

For a custodial singlet Higgs boson decay to two photons also proceeds through one-

loops at LO. It is a ‘clean’ channel due to the absence of large QCD background.

Therefore, in the study of 125-GeV Higgs boson, decay to diphoton is an important

channel at CMS and ATLAS [59, 60].

For a general Higgs mass eigenstate H0 having couplings as given in Eq (5.27) the
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decay width of H0 → γγ is given by [28]:

Γ (H0 → γγ) =
α2 g2

1024 π3

m3
H0

M2
W

∣∣∣∣∣∑
i

Nci Q
2
i Fs(τi)

∣∣∣∣∣
2

. (5.33)

Here
∑

i is performed over all the particles of spin-s which contribute to H0 → γγ,

s = spin-0, spin-1/2, and spin-1 is the spin of ith particle, Qi is the electric charge in

units of e, and

F1(τ) = λW τ [3 + (4− 3 τ)f(τ)] ,

F1/2(τ) = −2 τ [1 + (1− τ)f(τ)] ,

F0(τ) = 2 λS [1− τf(τ)] , (5.34)

with τ = 4 m2
i /m

2
H0 and f(τ) is given by Eq (5.30).

Considering the contribution from W± loop, the charged fermion loops in SM (all

except the top quark loop are negligible) and setting vH0 = v gives the H0
SM → γγ

decay width. Note that F1(τ) includes contributions from only the transverse polar-

ization of W-boson; the contribution from Goldstone boson must be added separately

using F0(τW ). 3.

Based on Eq (5.33) we define partial amplitude of H0 → γγ as

A(H0 → γγ) =

√
α2 g2

1024 π3

m3
H0

M2
W

(∑
i

Nci Q
2
i Fs(τi)

)
. (5.35)

3The formulas given above in Eq (5.27), Eq (5.34) are a bit different from Eqs.(2.15), (2.17) in
[28]. We try to give formulas for a general BSM model (e.g. using a general vH0 , λW and λS)
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Then, in the EWνR model, we see from Eq (5.24) that

ΓEWνR(H̃ → γγ) =
∣∣∣a1,1 AEWνR(H0

1 → γγ) + a1,1M AEWνR(H0
1M → γγ)

+ a1,1′ AEWνR(H0′
1 → γγ)

∣∣∣2 , (5.36)

where a1,i with (i = 1, 1M, 1′) are the coefficients of H0
1 , H0

1M and H0′
1 in H̃ mass

eigenstate, respectively; these are the elements in the H̃-row of the mixing matrix

in Eq (5.24). To calculate AEWνR(H0
1 → γγ), in addition to the W±, G±3 and

top-loop contributions we have to also consider one loop contributions involving H±3 ,

H±3M , H±5 and H±±5 , whereas for AEWνR(H0
1M → γγ) we need to consider the W±,

G±3 loops, the loops with the charged mirror fermion and the loops with H±3 , H±3M ,

H±5 and H±±5 . Various Feynman rules necessary for these calculations can be read

from Tables D.2-D.6 and the three point scalar Feynman rules can be obtained from

Eq. (5.16).

In Eq. (5.22) all the members of a scalar custodial multiplet are degenerate, e.g.

H0
3 and H+

3 have same masses and so on. But once custodial symmetry is broken at

the loop level, different custodial multiplet members can have different masses. This

mass splitting can also be due to some custodial symmetry-breaking terms in the

Lagrangian (not given explicitly in this dissertation). In that case, the partial width

of H̃ → γγ depends on the following variable parameters in EWνR models are:

• Masses of H±3 , H±3M , H±5 and H±±5 ;

• s2, s2M , sM ;

• Masses of charged mirror leptons and mirror quarks;

• Scalar self-couplings: λ1, λ2, λ3, λ4, λ5, λ8;
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• Elements of 3× 3 mixing matrix in Eq (5.24).

Note that all of these parameters are not completely independent, e.g. once we fix s2,

s2M , then sM is automatically fixed; scalar self-couplings and mixing matrix elements

must vary so as to give at least one scalar mass eigenstate at the mass of about 125

GeV .

5.3.3 Tree level decays of H̃

Tree level decay channels of a neutral (CP-even) Higgs include decays to two fermions

and to WW, ZZ. In this subsection first we show how the decay widths of these de-

cays in the EWνR model are related to the widths in SM. Although at the LO these

decays have only the tree level contributions, NLO QCD+EW corrections become

significant at about 5% accuracy for [58]. Because the decay widths of these channels

at tree level in the EWνR model and in SM are related by a multiplicative factor as

described below, by using SM decay widths to calculate the decay widths in EWνR

model these NLO contributions will be automatically included in our results. For

vertices involving mirror fermions the QCD+EW corrections are different from the

corrections for SM quarks (in SM non-negligible QCD corrections only come from

top quark). Because mirror quark masses are of the same order as the top quark, for

∼ 5% accuracy the NLO corrections due to mirror quarks can be assumed to have

the same magnitude as those due to the top quark. The different tree level couplings

in EWνR model can be found in Tables D.2, D.1, D.4, and Eq.[eqn. with relevant

Lagrangian terms]). Note that the predictions for µ of various decay channels in the

EWνR model are stated up to 5% accuracy, because Yukawa couplings of H0
1M with

the mirror fermions can be large and at these large values extra QCD corrections can

be dominant and reduce the accuracy to ∼ 5%.
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5.3.3.1 H̃ → WW, ZZ

The H0
1V V , H0

1MV V and H0′
1 V V couplings (V = W±, Z) in EWνR model are sup-

pressed by s2 = v2/v, s2M = v2M/v and sM = 2
√

2vM/v respectively, as compared

to H0
SMV V couplings in SM. Hence, using Eq (5.24) the decay widths for custodial

singlet Higgs mass eigenstates H̃ are given by

ΓEWνR(H̃ → WW, ZZ) = ΓSM(H0
SM → WW, ZZ)

×
∣∣∣∣∣a1,1 s2 + a1,1M s2M + a1,1′

2
√

2√
3
sM

∣∣∣∣∣
2

. (5.37)

5.3.3.2 H̃ → f f̄

The decays of H̃, H̃ ′, H̃ ′′ to two fermions take place through the tree level Yukawa

couplings at LO, when mass of the decaying scalar is at least twice as much as mass

of the fermions. It can be seen from Tables D.2 and D.1 that the Yukawa couplings

of charged SM fermions with H0
1 and H0

1M are enhanced by factors 1/s2 and 1/s2M

respectively as compared to the corresponding couplings with H0
SM in SM. Also, H0′

1

does not couple to particle-antiparticle pairs of charged fermions. Hence, the decay

widths to SM fermions can be calculated from corresponding SM decay widths given

in [58] and using Eq (5.24). Decay widths calculated in this way also include NLO

QCD corrections that are taken into account in [58]. The partial widths of decays to

SM fermions are given in terms of corresponding widths in SM by

ΓEWνR(H̃ → f f̄) = ΓSM(H0 → f f̄)×
∣∣∣∣a1,1

s2

∣∣∣∣2 , (5.38)



128

On the other hand, the partial widths of decays to two charged mirror fermions need

to be calculated explicitly. We calculate these up to LO, i.e. up to ∼ 5% accuracy,

since for further accuracy NLO QCD corrections become important. These partial

widths are given by

ΓEWνR(H̃ → fM f̄M) =
g2

32π

m2
fM

M2
W

a2
1,1M

s2
2M

mH̃ ×
(

1−
4 m2

fM

m2
H̃

)3/2

. (5.39)

We are now equipped well enough to explore the signal strengths of the 125-GeV

H̃, which will be the focus of the next section. We will now see what features and

implications of the 125-GeV Higgs at the LHC are revealed through the analysis of

the parameter space in the EWνR model.

5.4 The Dual Nature of the 125-GeV Scalar

Measured properties of the 125-GeV scalar particle that was discovered at the LHC

so far tend to be close to the properties of SM Higgs boson. Hence, in every model

of BSM Physics it is imperative to (i) have at least one Higgs particle with a mass of

about 125 GeV having SM-like decay signal strengths, and (ii) study the implications

of these properties in the ‘allowed’ parameter space of the model (e.g. allowed masses

of any BSM particles in the model, etc.). To check the viability of a model or to

search for the model experimentally, decay properties of the 125-GeV Higgs boson

candidate in the model must be studied.

We denote the 125-GeV candidate in the EWνR model by H̃. From Eq. (5.24) we

see that it is a mixture of H0
1 , H0

1M and H0′
1 . Recall that H0

1 comes from the SM-like

scalar doublet Φ2, H0
1M comes from doublet Φ2M and H0′

1 from triplet χ.

Because the measured decay signal strengths of the 125-GeV Higgs boson are
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close to SM predictions, intuitively one might expect that H0
1 has to be the dominant

component of H̃. But our investigation shows that the 125-GeV H̃ can have SM-like

decay signal strengths, even if H0
1 is a sub-dominant component in it. Hence the

dual-like nature of 125-GeV Higgs boson from perspective of the EWνR model. In

this section we will discuss this dual-like nature and its implications.

In the first subsection we will explain the methodology used in the analysis; the

next subsection presents the analysis and results for H̃ ∼ H0
1 case. In the third

subsection, we present a more interesting case, where, although H0
1 is a subdominant

component of 125-GeV H̃, it still satisfies the experimental constraints on the signal

strengths.

A note on CP of the 125-GeV Higgs in the EWνR model:

As seen in Sec. 5.2, the EWνR model has 6 neutral physical scalars, of which 3 are CP-

even states (H0
1 , H0

1M , H ′1) and 3 are CP-odd states (H0
3 , H0

3M , H0
5 ). Their couplings

to fermions and gauge bosons are listed in Tables D.2 - D.6 in Appendix D. Among

these H0
5 does not couple to charged fermions.

It can be seen from Tables D.2 and D.1 that decay widths of H0
3/H

0
3M → f f̄

can be close to the SM predictions for some combinations of the BSM parameters in

the couplings. But as mentioned in Section 5.1, H0
3 , H

0
3M are disfavored as 125-GeV

candidates as compared to the CP-even hypothesis [55].

Hence, in this chapter while considering 125-GeV candidate in the EWνR model,

we proceed with the hypothesis that this candidate is a CP-even eigenstate 4.

Out of the 3 CP-even Higgs bosons, only H0
1 can have decay widths to SM fermions

similar to the SM predictions. Therefore, one might expect that in the EWνR model

4The possibility that the 125-GeV Higgs boson is a linear combination of CP-even and CP-odd
state has not been thoroughly checked experimentally yet. The spin and parity of the 125-GeV scalar
are yet to be measured at CMS and ATLAS. Thus, we will stick to the CP-eigenstate hypothesis
based on the likelihood analysis
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H0
1 is the candidate for 125-GeV Higgs boson. However, in the absence of explicit de-

cay widths and based on current available signal strengths for various decay channels,

we will show that the 125-GeV Higgs boson can be very different from the standard

expectation. It is in the spirit of our analysis that we may coin the term “Dr. Jekyll”

to the Standard Model expectation (a mild impostor) and the term “Mr. Hyde” to the

definite “impostor” (which mainly comes from the scalar triplet) scenario presented

in this chapter.

5.4.1 Methodology for comparing the EWνR model predic-

tions with data

For any given decay channel of a Higgs, CMS and ATLAS experiments at the LHC

measure the total cross section of the decay process. The cross section of any decay

channel of the Higgs boson that is measured at the LHC is given by

σ(H-decay) = σ(H-production)×BR(H-decay) , (5.40)

where σ(H-production) is the production cross section of H and BR(H-decay) is the

Branching Ratio of the decay channel of H that is under consideration.

BR(H-decay) =
Γ(H-decay)

ΓH
, (5.41)

where Γ(H-decay) is the partial width of the H-decay channel, and ΓH is the total

width of H. To compare the data with the Standard Model predictions, the ratio of

the measured signal strength to its SM-predicted value is presented, denoted by µ.

µ(H-decay) =
σ(H-decay)

σSM(H-decay)
, (5.42)
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σ(H-decay) being measured experimentally or predicted by a model.

Therefore, to compare the EWνR-predicted decay signal strengths with the data,

we investigate the agreement between the ratio of EWνR prediction with the SM

prediction µEWνR = σEWνR (H-decay)/σSM(H-decay), to the ratio of measured decay

cross section with the SM-prediction µdata = σdata(H-decay)/σSM(H-decay). σH-decay

in the EWνR model with the predictions SM for that decay channel.

Hence, we need to calculate

• partial decay widths for these channels,

• the total width of H̃ and

• the production cross-section of gg → H̃.

The analysis is done in the following steps:

1. Identify all the decay channels that contribute significantly to the total width

of the 125-GeV H̃ Identify the variables on which the aforementioned three

quantities depend.

2. Identify the limits on the variables.

3. Select a set of values for the variables within their respective limits.

4. Calculate the signal strengths µ in various channels for the 125-GeV H̃, and

compare them with the measured values from CMS.

5.4.1.1 Decay channels under consideration

For this analysis we calculate signal strengths µ for decay channels H̃ → ZZ, W+W−,

γγ, bb̄, τ τ̄ . We calculate the production cross-section and partial widths of various
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decay channels as explained in Section 5.3. The total width of the 125-GeV H̃ is

calculated by adding individual partial decay widths:

ΓH̃ = ΓH̃→bb̄ + ΓH̃→τ τ̄ + ΓH̃→cc̄ + ΓH̃→W+W−+ ΓH̃→ZZ + ΓH̃→gg + ΓH̃→γγ . (5.43)

Among all the partial widths considered above, ΓH̃→bb̄ and ΓH̃→W+W− are the most

dominant for the SM-Higgs. Because of the constraint mfM > 100 GeV, the decay

channel H̃ → fM f̄M does not occur at the leading order, when fM is on-shell.

In what follows we identify the relevant variables in the analysis and estimate

their allowed ranges.

5.4.1.2 Lower limit on the masses of charged mirror fermions

The lower limit of 102 GeV on the masses of charged mirror leptons and mirror quarks

is imposed based on the results of search for sequential heavy charged leptons and

quarks at LEP3 (refer ‘Heavy Charged Leptons’ and ‘Heavy Quarks’ sections in [6]

and references therein). Strictly speaking these constraints apply only to sequential

heavy fermions, such as L′ → τZ → τ ll̄, τqq̄ or Q′ → bZ → b ll̄, b qq̄ or Q′ → bW+ →

b lν̄, b qq̄′ etc.

However, charged mirror fermions in the EWνR model couple to the SM fermions

in an altogether different way, through the scalar singlet φS [26, 61]: qM → qφS,

lM → lφS. This φS would appear as missing energy in the detector. Thus, the

signature of final states in charged mirror fermion decay would involve a lepton +

missing ET or a jet + missing ET . Moreover, at CMS or ATLAS these decays could

occur outside the beam-pipe and inside the silicon vertex detector [26, 61]. Therefore,

the constraints from the aforementioned searches do not directly apply to charged

mirror fermions. We still impose these constraints on charged mirror fermions, arguing
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that if these mirror fermions were lighter than ∼ 100 GeV, they would have been

discovered at 200 GeV LEP3 [6].

5.4.1.3 Limits on VEVs, scalar and Yukawa couplings

We consider only the cases where the scalar couplings and Yukawa couplings of mir-

ror fermions are perturbative. The perturbative constraint on scalar and Yukawa

couplings are λi/4π . O(1) and αfM = g2
MF/4π . O(1) respectively. For numerical

analysis we limit ourselves to cases, where λi/4π ≤ 1.3 and αfM ≤ 1.5.

As discussed towards the end of Sec. 5.2, the SU(2)D singlet mass eigenstates

depend on s2, s2M and sM . Therefore, they also depend on the vacuum expectation

values (VEVs) of the real parts of Φ2, Φ2M and χ. While investigating different

numerical forms of {aij}, one needs to vary the VEV’s. Hence, it is necessary to

estimate the limits on these VEVs before analyzing the 125-GeV candidate in detail.

Recall that the charged SM fermions, the charged mirror fermions and the right

handed neutrinos get their masses due to v2, v2M , and vM respectively. Various

constraints on these masses constrain the ranges of the VEVs.

If the pole mass of top quark (173.5 GeV), the heaviest SM fermion, is perturbative

and comes from v2, then v2 & 69 GeV (because g2
top ≤ 4π). We set the lower bound on

the masses of all the charged mirror fermions at 102 GeV, which is the LEP3 [6] bound

on the heavy BSM quarks and BSM charged leptons. Hence, considering a constraint

of g2
MF/4π ≤ 1.5 on the Yukawa couplings of all the charged mirror fermions, v2M &

27 GeV, implying vM . 80 GeV. Thus, for perturbative determination of MR requires

MR . 283 GeV. We also know that MR ≥ MZ/2 ≈ 45.5 GeV [26], and, hence,

vM & 13 GeV. This implies that v2 . 241 GeV and v2M . 233 GeV. This limit on

v2M along with the perturbative limit on gMF sets an upper limit on the masses of the

mirror fermions: mMF . 715 GeV. The allowed ranges for VEVs and for parameters
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defined in Eq (5.14) are summarized in the table below.

Table 5.1: Allowed ranges of VEVs and parameters defined in Eq. (5.14). All values
are given in GeV .

69 . v2 . 241 0.28 . s2 . 0.98

33 . v2M . 233 0.13 . s2M . 0.95

13 . vM . 83 0.15 . sM . 0.95

5.4.1.4 Common predictions for multiple decay channels

In the EWνR model, predictions for the signal strengths of H̃ → W+W− and H̃ → ZZ

are equal. Similarly, predictions for the signal strengths of H̃ → bb̄ are equal to those

for H̃ → τ τ̄ . This is expected, since as seen in Section 5.3,

ΓEWνR(H̃ → W+W−)

ΓSM(H0
SM → W+W−)

=
ΓEWνR(H̃ → ZZ)

ΓSM(H0
SM → ZZ)

,

ΓEWνR(H̃ → bb̄)

ΓSM(H0
SM → bb̄)

=
ΓEWνR(H̃ → τ τ̄)

ΓSM(H0
SM → τ τ̄)

. (5.44)

Keeping all this in mind, in the next two subsections we analyze in detail the

decay properties of the 125-GeV candidate in the EWνR model.

5.4.1.5 Numerical Analysis

For this analysis a C++ code was written, also using some functionality of ROOT

[62]. We investigated this case in following steps:

• We generated random combinations of s2, s2M , sM , λ1, λ2, λ3 and λ4, using

TRandom3 random number generator in ROOT. These parameters were varied
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over the following ranges:

− 4π ≤ λ1, λ2, λ3 , λ4 ≤ 4π ,

0.28 ≤ s2 ≤ 0.98 ,

0.13 ≤ s2M ≤ 0.95 ,

0.15 ≤ sM ≤ 0.95 . (5.45)

The limits |λ|/4π . 1 are set so that λ’s are perturbative. Limits on s2, s2M ,

sM are based on Table 5.1.

• We numerically diagonalized the singlet mass matrix in Eq. (5.23) formed by

every combination of the parameters to find the mass eigenvalues and corre-

sponding eigenvector matrix (mixing matrix) in Eq. (5.24). Only those combi-

nations of parameters, which yielded the lightest mass eigenvalue in the range

125.7±1.0 GeV, were saved. 4 million such parameter combinations were found.

• For all the saved combinations we calculated various signal strengths for each of

these combinations. The gluon-gluon fusion channel was considered to calculate

the predicted production cross section of the H̃. The partial decay widths were

calculated according to Section 5.3, and the total width was calculated using

Eq. (5.43).

• In addition to the parameters in Eq (5.45), following parameters are required

to calculate the partial widths of H̃ → γγ and H̃ → gg, and the cross section
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of gg → H̃:

0 ≤ λ5 ≤ 15 , varied with ∆λ5 ∼ 1.07 ,

λ8 = −1 , mH+
3

= mH+
3M

= 500 GeV ,

mH+
5

= 200 GeV , mH++
5

= 320 GeV , mqM3
= 120 GeV ,

mqM1
= mqM2

= mlM = 102 GeV . (5.46)

• We checked if the signal strengths µ’s of the 125-GeV H̃ in various decay chan-

nels are within the 1σ constraints on the signal strengths, as measured by CMS

experiment. We did not impose constraints from both the CMS and ATLAS,

because for some of the decay channels considered here, the signal strength

measurements from CMS and ATLAS do not agree with each other within the

1σ constraints. Also, CMS and ATLAS have not published their combined

measurements from the recent analyses. We therefore chose to check agreement

with the CMS measurements.

Depending on their 1σ constraints, certain combinations out of the 4 million

would agree with either only with CMS or with ATLAS results. Thus, imposing

the constraints from ATLAS would discard some of the combinations that the

CMS constraints would allow and vice versa. However, this would not change

any of the conclusions of this chapter.

• We found 1501 out of 4 million combinations of the parameters that satisfy 1σ

constraints from CMS on the 125-GeV Higgs signal strengths in WW , ZZ, bb̄,

τ τ̄ and γγ decay channels. Table 5.4 lists 16 examples out of 1501 cases, with

the masses of H̃, H̃ ′, H̃ ′′, their mixing-matrix elements, and the signal strengths
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of the 125-GeV H̃ for various decay channels.

• In the code, there was no constraint imposed as to what is to be the dominant

component in H̃. Interestingly, hardly any combinations among the 4 million

had H0
1 as a dominant component in the 125-GeV H̃. This means that either

1. at the mass of about 125-GeV , 4 million combinations do not yield enough

resolution in the parameter space so as to find the H̃ ∼ H0
1 case, OR

2. the H̃ ∼ H0
1 case cannot be found with the imposed limits on the pa-

rameters, and it requires at least some of these parameters to have values

outside of these limits.

• Thus, this scan of the parameter space only yielded Mr. Hyde cases, where the

SM-like H0
1 is a subdominant component in the 125-GeV H̃. Implications of

these cases will be further discussed in section 5.4.3.

• On the other hand, to find the combinations of the parameters for which the

125-GeV H̃ has a dominant SM-like H0
1 component, and which also satisfy the

CMS constraints on the signal strengths, we had to choose some of the scalar

couplings to have values outside [−4π, 4π]. These Dr. Jekyll cases thus require

some interactions within the scalar sector to be in the strong-coupling regime.

In the next subsection we discuss this scenario in detail.

5.4.2 H̃ as 125-GeV Higgs candidate with a dominant SM-

like component

We illustrate the step-by-step process which we followed to analyze this case.
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• A Mathematica code was written to numerically diagonalize the custodial-

singlet mass matrix in Eq. (5.23) and obtain its mass eigenvalues and eigenvector

matrix i.e. the mixing matrix in Eq. (5.24).

• In this code, the values of s2 = 0.92, s2M = 0.16 (and thus, sM ≈ 0.36) were

fixed. The analysis was performed for different s2 values, but, for H̃ ∼ H0
1 , only

the cases with s2 & 0.9 were found to satisfy the experimental constraints on

the signal strengths of the 125-GeV Higgs at LHC.

• After fixing s2 and s2M , the scalar couplings λ1, λ2, λ3 and λ4 were manually

varied so that |λ|/4π ≤ 1.3, in order to find the combinations of λ’s that yield the

lowest eigenvalue of the mass matrix to be 125.7±1.0 GeV and the corresponding

eigenstate to have dominant H0
1 component.

• Recall (refer to Eq.(5.16)) that λ1, λ2 and λ3 are the self-couplings of Φ2, Φ2M

and χ respectively. λ5 is the measure of cross couplings of Φ2, Φ2M and χ.

• As stated in section 5.4.1.5, we found combinations of the parameters which sat-

isfy the CMS constraints on the signal strengths, when λ2, λ5 > 4π. |λ1|, |λ4|, |λ8|

are still ≤ 4π, while λ3 ≈ 15. For illustrative purpose, we show below two of

many cases which satisfy the CMS constraints.

• The calculation of the partial width of the H̃ → γγ channel necessitates fixing

the values or ranges for the remaining parameters. In the example cases shown

below we fix other parameters as follows:

– mH+
3

= 600 GeV, mH+
3M

= 700 GeV,

– masses of all three charged mirror leptons mlM = 102 GeV,

– mass of lightest two generations of mirror quarks mqM1
= mqM2

= 102 GeV,
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– for the purpose of partial widths of H̃-decays in scenarios above, we also

fix mass of the third mirror quark generation at mqM = 120 GeV. This

mass will be varied to analyze constraints on H̃ ∼ H0
1M .

• The values of mH+
3

and mH+
3M

are chosen so as to have largest allowed ranges for

mH+
5

and mH++
5

. We vary the latter two over the range ∼ 400 − 730 GeV for

Example 1 and 2. This variation does not affect much the predictions for the

signal strengths of the H̃ decays to W+W−, ZZ and ff̄ , but only changes that

for H̃ → γγ. mH+
5

and mH++
5

vary in correlation when the CMS constraints

on the signal strength of the diphoton decay channel are imposed. For the

numerical calculation of other signal strengths in the following two examples

we chose on of these correlated pairs of the two masses.

• Example 1: λ1 = −0.077, λ2 = 14.06, λ3 = 15.4, λ4 = 0.1175, λ5 = 15, λ8 =

−1 and mH+
5

= 500 GeV, mH++
5

= 540 GeV. Fixing these along with s2 =

0.92, s2M = 0.16, sM ≈ 0.36, fully determines the singlet mass matrix, and

hence the mixing matrix, given by:


H̃

H̃ ′

H̃ ′′

 =


0.998 −0.0518 −0.0329

0.0514 0.999 −0.0140

0.0336 0.0123 0.999




H0
1

H0
1M

H0′
1

 , (5.47)

with H̃ ∼ H0
1 , H̃ ′ ∼ H0

1M , H̃ ′′ ∼ H0′
1 and mH̃ = 125.7 GeV, mH̃′ = 420 GeV,

mH̃′′ = 601 GeV. a1,1M - the (1,2) element of the 3×3 matrix can actually vary

between (-0.0515, -0.05295) and still satisfy CMS constraints.

Another example is Example 2: λ1 = 0.0329, λ2 = 14.2, λ3 = 15.4, λ4 =
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0.0056, λ5 = 15, λ8 = −1, and mH+
5

= 590 GeV, mH++
5

= 600 GeV,


H̃

H̃ ′

H̃ ′′

 =


0.99999... −2.49× 10−3 −1.60× 10−3

2.49× 10−3 0.99999... −5.30× 10−4

1.60× 10−3 5.26× 10−4 0.99999..




H0
1

H0
1M

H0′
1

 ,

(5.48)

with H̃ ∼ H0
1 , H̃ ′ ∼ H0

1M , H̃ ′′ ∼ H0′
1 and mH̃ = 125.7 GeV, mH̃′ = 420 GeV,

mH̃′′ = 599 GeV. The allowed range for a1,1M - the (1,2) element of the 3 × 3

matrix is (−1.20,−3.40)× 10−3.

Table 5.2: Partial width of H → gg as the measure of the production cross sec-
tion, partial widths and branching ratios for various channels in SM (for mHSM =
125.7 GeV with total width = 4.17E-3 GeV , and the EWνR model for Dr. Jekyll
example 2 scenario: a1,1M = −0.0025, where mH̃ = 125.7 GeV, total width = 4.45E-3

GeV and H̃ ∼ H0
1 . All the partial widths are given in GeV .

SM EWνR
µ

ΓH→gg Partial BR Γ
H̃→gg Partial BR

∝ σgg→H width ∝ σgg→H width

H̃ →W+W− 3.55E-04 9.42E-04 2.26E-01 3.46E-04 7.63E-04 1.72E-01 0.74

H̃ → ZZ 3.55E-04 1.17E-04 2.81E-02 3.46E-04 9.49E-05 2.13E-02 0.74

H̃ → bb̄ 3.55E-04 2.36E-03 5.66E-01 3.46E-04 2.79E-03 6.26E-01 1.07

H̃ → τ τ̄ 3.55E-04 2.59E-04 6.21E-02 3.46E-04 3.06E-04 6.87E-02 1.07

H̃ → γγ 3.55E-04 9.51E-06 2.28E-03 3.46E-04 1.26E-05 2.82E-03 1.21

• Notice that, although Examples 1 and 2 have very different values for the off-

diagonal elements in {aij}, they yield comparable numerical signal strength

predictions, the reason being principally that in both the cases H̃ ∼ H0
1 . We

can also find other cases having intermediate values for the off-diagonal elements

yielding comparable signal strengths.
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• Table 5.2 shows cross section of 125-GeV H → gg (as a measure of production

cross section), partial widths and branching ratios in the SM and the EWνR

model, for example 2. We see that these partial widths are not very different

from those in SM. This is expected as, in this case, the couplings of H0
1 with

the SM gauge bosons and fermions are also close to those of the SM Higgs.

• The partial widths and the signal strengths for W+W− and ZZ decay channels

are smaller, whereas those for bb̄, τ τ̄ and γγ decay channels are larger, than the

corresponding values in SM.

It is because, for the example in Table 5.2, s2 < |a1,1| < 1, and as per Eq. (5.37)

the partial width ΓEWνR(H̃ → W+W−, ZZ) ∼ |s2 a1,1|2 × ΓSM(H0
SM →

W+W−, ZZ). On the other hand, as seen in Eq. (5.38), ΓEWνR(H̃ → ff̄) ∼

|a1,1/s2|2 ΓSM(H0 → f f̄) > ΓSM(H0 → f f̄).

ΓEWνR(H̃ → γγ) is larger than the corresponding SM value, because in the

EWνR model, charged scalars and mirror fermions also contribute to this decay

through triangle loops (refer to Section 5.3.2). Recall that in SM this decay is

dominated only by the W loop.

• Fig. 5.3 shows the comparison between the CMS data for signal strengths

µ(H-decay) of the 125-GeV Higgs boson, and the corresponding predictions

for the 125-GeV H̃ in the EWνR model, for examples 1 and 2 in Dr. Jekyll

scenario and examples 1, 2 and 3 in Mr. Hyde scenario, discussed in the next

subsection.

For calculating the EWνR predictions, we have considered the gluon-gluon

fusion production channel (gg → H̃), which is the most dominant Higgs-

production channel at the LHC. Calculations of the predictions in the EWνR
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model are explained in Section 5.3.

• Notice that the predicted ranges for µ(H̃ → W+W−, ZZ) and µ(H̃ → bb̄, τ τ̄)

are much narrower than the allowed ranges by the CMS constraints.

A wider range of a1,1M than shown in Eqs. (5.47), (5.48) is allowed if we impose

the constraints on only, say, H̃ → W+W− decay. However, for a part of the

a1,1M range that satisfies the constraints on µ(H̃ → W+W−), the constraints

on one or more of the other decay channels are not satisfied, and vice versa.

So is true for all the other decay channels. Hence, when we seek the range of

a1,1M that satisfies the constraints on all 4 of the H̃ → W+W−, ZZ, bb̄, τ τ̄)

decay channels, the predicted ranges for the signal strengths of these different

channels are correlated. This shortens the range of a1,1M and of the signal

strength predictions. These correlated predictions are shown in Fig. 5.3.

• The predicted range for µ(H̃ → γγ) spans over the range 0− 2.5, because over

the ranges of mH+
5

and mH++
5

, µ(H̃ → γγ) can easily vary without significantly

affecting the predictions for the signal strengths of other decay channels.

• Conclusions from Fig. 5.3: We see that in the H̃ ∼ H0
1 scenario predictions

of the EWνR model for various signal strengths agree with those of the 125-GeV

Higgs boson, as measured by CMS. A slightly, but not very, different mixing

matrices can also agree with the ATLAS measurements. Future measurements

of partial widths would therefore be required to disentangle this scenario from

that the SM.

We now come to the most interesting part of our analysis, the one in which the

125-GeV Higgs boson is very unlike the SM Higgs.
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SMσ / σBest fit 
0 0.5 1 1.5 2 2.5

 = 125.7 GeVHm
CMS preliminary

 = 125.7 GeV
H
~m

 "Dr. Jekyll" Ex. 1RνEW
 = 125.8 GeV

H
~m

 "Mr. Hyde" Ex. 1RνEW

 = 125.7 GeV
H
~m

 "Dr. Jekyll" Ex. 2RνEW
 = 125.2 GeV

H
~m

 "Mr. Hyde" Ex. 2RνEW

 = 125.6 GeV
H
~m

 "Mr. Hyde" Ex. 3RνEW

 0.29± = 1.00 µCMS: 
 ZZ               →H 

 0.21± = 0.83 µCMS: 
            -W+ W→H 

 0.24± = 1.13 µCMS: 

   γγ →H 

 0.27± = 0.91 µCMS: 
   ττ →H 

 0.49± = 0.93 µCMS: 
               b b→H 

 / ZZ-W+ W→ H
~

f f → H
~

γγ → H
~

Figure 5.3: Figure shows the predictions of µ(H̃ → bb̄, τ τ̄ , γγ, W+W−, ZZ) in the
EWνR model for examples 1 and 2 in Dr. Jekyll and example 1, 2 and 3 in Mr. Hyde
scenarios, in comparison with corresponding best fit values by CMS [51, 52, 53, 54].
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5.4.3 H̃ as the 125-GeV Higgs candidate with a sub-dominant

SM-like component

Can the 125-GeV H̃ in the EWνR model have H0
1 as a subdominant component and

still satisfy the experimental constraints on its signal strengths? There are only two

CP-even, neutral scalar states other than H0
1 , and they are H0

1M and H0′
1 . The analysis

explained in section 5.4.1.5 revealed 1501 out of 4 million parameter combinations,

for which H0
1 can, indeed, be a subdominant component in 125-GeV H̃ while agreeing

with the measured signal strengths of the 125-GeV Higgs at the LHC - the scenario

we earlier referred to as Mr. Hyde scenario.

5.4.3.1 Results of the analysis

• Table 5.4 shows 16 out of the 1501 combinations of the parameters.

• It can be seen from Table 5.4 that in Mr. Hyde scenario, the CMS constraints

on the signal strength can be satisfied, even when the scalar couplings satisfy

|λ/4π| < 1. This means that the scalar particles heavier than the 125-GeV

Higgs, need not be strongly coupled, and could be potentially detected as narrow

resonances at the LHC.

• Similarly, s2M can be larger than in Dr. Jekyll scenario. The mirror fermion

masses are given in terms of s2M by

mfM =
gMF s2Mv√

2
. (5.49)

Consequently, larger (than in Dr. Jekyll scenario) masses of the mirror fermions

are allowed by the perturbative limit on their Yukawa couplings. In other words,
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for a given mass of the mirror fermions, their Yukawa couplings in Mr. Hyde

scenario can be smaller than those in Dr. Jekyll scenario.

• To highlight interesting features of this scenario, we consider three examples

listed in Table 5.4.

• Example 1 (row 1 of Table 5.4): s2 = 0.900, s2M = 0.270, sM = 0.341, λ1 =

−0.481, λ2 = 6.00, λ3 = 1.46, λ4 = 2.99, λ5 = 2, λ8 = −1,


H̃

H̃ ′

H̃ ′′

 =


0.300 −0.094 −0.949

0.334 −0.921 −0.197

0.893 0.376 0.246




H0
1

H0
1M

H0′
1

 , (5.50)

with H̃ ∼ H0′
1 , H̃ ′ ∼ H0

1M , H̃ ′′ ∼ H0
1 ; mH̃ = 125.8 GeV, mH̃′ = 416 GeV,

mH̃′′ = 1100 GeV, MR . 105 GeV, and µ(H̃ → W+W−/ZZ) = 0.72, µ(H̃ →

γγ) = 0.91, µ(H̃ → bb̄/τ τ̄) = 1.00.

• Example 2 (row 2 of Table 5.4): s2 = 0.514, s2M = 0.841, sM = 0.168, λ1 =

6.15, λ2 = 7.68, λ3 = 8.84, λ4 = −2.131502, λ5 = 5, λ8 = −1,


H̃

H̃ ′

H̃ ′′

 =


0.188 0.091 0.978

−0.941 −0.268 0.207

−0.281 0.959 −0.035




H0
1

H0
1M

H0′
1

 , (5.51)

with H̃ ∼ H0′
1 , H̃ ′ ∼ H0

1 , H̃ ′′ ∼ H0
1M ; mH̃ = 125.2 GeV, mH̃′ = 633 GeV,

mH̃′′ = 1427 GeV, MR . 52.0 GeV, and µ(H̃ → W+W−/ZZ) = 0.94,

µ(H̃ → γγ) = 0.89, µ(H̃ → bb̄/τ τ̄) = 0.65.
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• Example 3 (row 3 of Table 5.4): s2 = 0.401, s2M = 0.900, sM = 0.151, λ1 =

4.76, λ2 = 3.41, λ3 = 7.71, λ4 = −1.29, λ5 = 4, λ8 = −1,


H̃

H̃ ′

H̃ ′′

 =


0.187 0.115 0.976

0.922 0.321 −0.215

0.338 −0.940 0.046




H0
1

H0
1M

H0′
1

 , (5.52)

with H̃ ∼ H0′
1 , H̃ ′ ∼ H0

1 , H̃ ′′ ∼ H0
1M ; mH̃ = 125.6 GeV, mH̃′ = 454 GeV,

mH̃′′ = 959 GeV, MR . 46.4 GeV, and µ(H̃ → W+W−/ZZ) = 0.89, µ(H̃ →

γγ) = 1.09, µ(H̃ → bb̄/τ τ̄) = 1.06.

• In example 1, H0
1M is the dominant component in H̃ ′, whereas H0

1 is the dom-

inant in H̃ ′ in examples 2 and 3. Although the mixing matrices in examples 2

and 3 are not very different, the ratio of VEV’s s2, s2M are different enough to

result in the signal strengths that are not very similar (especially for H̃ → ff̄).

As the partial width of H̃ → ff̄ is proportional to |a1,1/s2|2, it changes rapidly

with s2. Also, because we have 6 mirror quarks which contribute to the cross

section of gluon-gluon fusion, the production cross section dominantly changes

as ∼ |a1,1/s2 + 6 a1,1M/s2M |2. Thus, any change in a1,1M/s2M is amplified while

calculating the signal strengths.

• Comparison of the signal strengths for the three examples with the CMS con-

straints on them can be seen in Fig. 5.3. Notice the agreement between the

predictions for the signal strengths with the CMS constraints in the figure. This

agreement demonstrates that the SM-like signal strengths of 125-GeV Higgs at

the LHC are not sufficient to conclude that it is a SM-like Higgs, or even if it



147

has a dominant SM-like component.

• Table 5.3 shows the partial widths, branching ratios and the signal strengths

for Mr. Hyde scenario in the EWνR model and SM. It can be seen that the

partial widths in this scenario are very different from the SM (smaller by a

factor of ∼ 5 for the example in the table), but it results in similar signal

strengths. Measurements of the partial widths are therefore necessary to be

able to experimentally distinguish between Mr. Hyde scenario and SM.

Table 5.3: Partial width of H → gg as the measure of the production cross sec-
tion, partial widths and branching ratios for various channels in SM (for mHSM =
125.6 GeV and total width 4.15E-03 GeV ), and the EWνR model for row 3 in Ta-

ble 5.4, also in Eq. (5.52) where H̃ ∼ H0′
1 (with mH̃ = 125.6 GeV and total width

1.34E-03 GeV ). All the partial widths are given in GeV .

SM EWνR
µ

ΓH→gg Partial BR Γ
H̃→gg Partial BR

∝ σgg→H width ∝ σgg→H width

H̃ →W+W− 3.54E-04 9.30E-04 2.24E-01 5.75E-04 1.64E-04 1.23E-01 0.89

H̃ → ZZ 3.54E-04 1.16E-04 2.79E-02 5.75E-04 2.04E-05 1.53E-02 0.89

H̃ → bb̄ 3.54E-04 2.35E-03 5.67E-01 5.75E-04 5.07E-04 3.79E-01 1.06

H̃ → τ τ̄ 3.54E-04 2.58E-04 6.22E-02 5.75E-04 5.42E-05 4.06E-02 1.06

H̃ → γγ 3.54E-04 9.46E-06 2.28E-03 5.75E-04 2.04E-06 1.53E-03 1.09

5.4.3.2 Remarks on the H0
1M component in H̃

A few remarks are in order here:

• Notice that for all the cases listed in Table 5.4 H0′
1 is the dominant component

in the 125-GeV H̃. In all 1501 cases we found, the modulus of the coefficient of

H0
1M in the 125-GeV H̃ was ≤ 0.32.
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• In the gluon-gluon fusion channel H0
1M is produced through triangle loops of 6

mirror quarks. Therefore, if H0
1M is the dominant component in H̃, then the

production cross section of H̃ could become too high to be compensated by

small branching ratios. Thus, it makes sense that H0
1M is disfavored to be the

dominant component in H̃, by the constraints on the signal strengths.

• Even if H0
1M is a sub-dominant component in H̃, one should not think that it

has decoupled from the other two singlets. In other words, the scalar doublet

Φ2M does not really decouple from Φ2 and χ. This is because:

– Even if H0
1M has a small coefficient in H̃, its production amplitude through

6 mirror quarks has a significant contribution to the production cross sec-

tion of H̃.

– The real degree of freedom of Φ2M leads to H0
1M . But its other degrees

of freedom also contribute to other physical particles such as H0,±
3 , H0,±

3M .

These particles contribute to H̃ → γγ and the total width. Hence, they

play a role in ensuring that the branching ratios are in the appropriate

range to achieve an agreement with the signal strength constraints.

• Thus, althoughH0
1M is a sub-dominant component in H̃, the scalar doublet Φ2M ,

newly added to the minimal EWνR model, plays a crucial role in accommodating

the 125-GeV Higgs boson in the EWνR model, in Mr. Hyde as well as Dr. Jekyll

scenario.

Before concluding this section, we will briefly discuss some indirect constraints on

the next heavier scalar H̃ ′, in both these scenarios.
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5.4.4 The next heavier neutral scalar H̃ ′

In Dr. Jekyll scenario, examples 1 and 2 that we considered have H0
1M as the dominant

component in H̃ ′, which is the next heavier physical scalar after the 125-GeV H̃. Here

the total width of H̃ ′ is also greater than its mass, with the scalar coupling λ2 > 4π.

Thus, it is a strongly coupled scalar, which is difficult to detect as a narrow resonance.

In example 1 of Mr. Hyde scenario, H0
1M is the dominant component in H̃ ′, while

in examples 2 and 3 H0
1 is the dominant component in H̃ ′. In all 3 examples, H̃ ′ has

a total width < 10% of its mass.

This subsection compares the signal strength of H̃ ′ → W+W− and the σ ×

BR(H̃ ′ → γγ) with the CMS constraints on SM-like heavy Higgs, for examples having

mH̃′ . 600 GeV. These CMS constraints [63, 64, 59, 65] assume the Standard model

background, whereas, in the EWνR model, extra processes involving mirror fermions

and extra scalars also contribute to the background in addition to the SM processes.

The background in this model is therefore expected to be larger than that in the SM.

A detailed study of this background is out of the scope of this dissertation.

Although the SM background does not strictly apply to H̃ ′ in the EWνR model,

we show how the EWνR predictions compare with the experimental constraints.

For our calculations we computed the total width of H̃ ′ using

ΓH̃′ =
3∑
i=1

ΓH̃′→qMi q̄Mi
+

3∑
j=1

× ΓH̃′→lMj l̄Mj
+ ΓH̃′→tt̄ + ΓH̃′→bb̄ + ΓH̃→τ τ̄

+ ΓH̃→cc̄ + ΓH̃′→W+W− + ΓH̃′→ZZ + ΓH̃′→gg + ΓH̃′→γγ . (5.53)

The partial decay widths were calculated using the method illustrated in Section 5.3.
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5.4.4.1 Constraints on the signal strength of H̃ ′ → W+W−
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Figure 5.4: Predicted signal strength of H̃ ′ → W+W− in 4 example scenarios (blue
and purple squares). The results of the search for SM-like Higgs boson up to 600 GeV
with the 1σ (green band) and 2σ (yellow band) limits on the SM background (dotted
curve) and CMS data (solid black curve) are also displayed.

• Fig. 5.4 shows the signal strength of H̃ ′ → W+W− for examples 1 and 2 in

Dr. Jekyll scenario (blue squares) and exmaples 1 and 3 in Mr. Hyde scenario

(purple squares). The 1− and 2− σ SM background bands and the CMS data

[63, 64] are also displayed. The signal strength for example 2 in Mr. Hyde

scenario is not displayed as mH̃′ = 633 GeV for this example, but the CMS

data for this decay channel are only available up to 600 GeV .

• In the figure, notice that the predicted signal strengths for examples 1 and

2 in Dr. Jekyll case and example 1 in Mr. Hyde case are within the ±1σ
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SM-background bands. Therefore, the CMS data are surely not conclusive for

confirming or ruling out these examples.

• Example 1 in Mr. Hyde scenario predicts a signal strength µ(H̃ ′ → W+W−) ≈

1.3, which is certainly larger the SM-background band and the data. H0
1 - the

SM-like Higgs is the dominant component in H̃ ′ in this example. However, the

SM-background still does not strictly apply here, since additional background

processes can contribute to it. For example, production of W+W− from two

gluons through a box loop of mirror quarks.

5.4.4.2 Constraints on H̃ ′ ∼ H0
1M from γγ-decay channel

The constraints on σ(gg → H̃ ′) × BR(H̃ ′ → γγ) from CMS [65] and ATLAS [59]

are accompanied by assumptions that the total width of the SM-like heavy Higgs is

0.1 GeV or 10% of its mass. The total width of H̃ ′ in our scenarios does not follow

either of these patterns. We observed that σ(gg → H̃ ′)× BR(H̃ ′ → γγ) predictions

for all the examples in both the scenarios is consistently lower than the CMS and

ATLAS constraints.

5.4.4.3 A comment on H̃ ′′

In the examples of Dr. Jekyll scenario considered in this section, H̃ ′′ ∼ H0′
1 , and in

the examples of Mr. Hyde scenario that we have considered, H̃ ′′ ∼ H0
1 or H0

1M . For

all these examples, mH̃′′ & 600 GeV. So far, the CMS data in Fig 5.4 are not sensitive

to the signal strengths of the order of SM predictions in this mass range. A detailed

analysis of its signal strengths will be of interest, when more data for this higher mass

range are available and are analyzed with full EWνR background.
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5.4.5 Conclusions about the 125-GeV Higgs candidate in the

EWνR model

• In this section we investigated two very different scenarios of the 125-GeV Higgs

boson at the LHC from the perspective of the EWνR model:

1. Dr. Jekyll: H0
1 , which is the real part of the SM-like scalar doublet Φ2, is

the dominant component in the 125-GeV H̃, and

2. Mr. Hyde: H0
1 is a sub-dominant component in the 125-GeV H̃ - a more

interesting scenario.

• We demonstrated that in both these scenarios the signal strengths of the 125-

GeV H̃ in W+W−, ZZ, γγ, bb̄ and τ τ̄ decay channels agree with the constraints

from CMS (and also ATLAS) data. Thus, from the perspective of the EWνR

model, the present data at the LHC are inconclusive about whether SM-like H0
1

is the dominant or a sub-dominant component in the 125-GeV particle. Hence

“the dual nature” of the 125-GeV Higgs in the EWνR model.

More data, measurements of the individual partial widths and study of the

heavier physical scalars in the EWνR model are necessary to distinguish between

either of these scenarios and the SM-Higgs.

• As expected, the individual partial widths of the 125-GeV H̃ in Dr. Jekyll

scenarios are not very different from those in SM. Here, the scalar couplings

|λ2|, |λ3|, |λ5| need to be greater than 4π to satisfy the constraints on the

signal strengths. This means that the heavier scalars in this scenario tend to

be strongly coupled and have large widths.

Dominant SM-like component in the 125-GeV Higgs also leads to v2 (the VEV

of Φ2) being the dominant part in v, and smaller v2M , which gives masses to
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the mirror fermions. Consequently, the masses of the mirror fermions, allowed

by the perturbative limit on their Yukawa couplings, cannot be much greater

than ∼ 120 GeV. We adopt a lower limit of 102 GeV set by the constraints

from LEP3 [6].

• Hence, if future measurements of the individual decay widths of the 125-GeV

Higgs result in SM-like widths, then it is more likely to be consistent with Dr.

Jekyll scenario. In this case, the heavier scalars would appear not as narrow

resonances, but as broad resonances or enhancement in the background in this

model.

Since the SM-like H0
1 is the dominant component in the 125-GeV H̃, the effec-

tive theory around this energy looks like SM, in which the heavier scalars are

integrated out.

• In contrast, the individual partial widths of the 125-GeV H̃ are very different

from those in SM, in Mr. Hyde scenario. In all 1501 combinations of the

parameters that we found to agree with the experimental 1σ constraints on the

signal strengths contain H0′
1 as the dominant component in the 125-GeV H̃. The

predicted signal strengths of this H̃ agree with the experimental 1σ constraints

on the signal strengths even when the scalar couplings |λ|’s are smaller than 4π.

The heavier scalars in this case are not strongly coupled, as a result.

The H0
1M as a dominant component in H̃ is disfavored to agree with the con-

straints on the signal strengths, due to its large contribution to the cross section

of gg → H̃.

Because v2M is not constrained to be small in this case, the perturbative upper

limit on the masses of the mirror fermions is about 700 GeV .
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• Therefore, if the partial widths of the 125-GeV H̃ are measured to be very dif-

ferent from those in SM, it would point towards Mr. Hyde scenario. The heavier

scalars in this case have narrow widths and can be detected as resonances.

The SM-like H0
1 is the dominant component in one of the heavier scalars, H̃ ′

or H̃ ′′. Thus, the effective theory around 125 GeV is very different from SM,

while the SM-like H0
1 is integrated out with the heavier scalars.

• As can be seen from Eq (5.46) we scanned only a part of the entire parameter

space in the EWνR model, by fixing the values or the ranges of a few parameters.

A more thorough scan of the parameter space could be of interest, especially if

more data from the LHC Run II show any signs of physics Beyond the Standard

Model.



156

Chapter 6

Conclusions

In this dissertation we have presented a detailed analysis of the phenomenology of

the non-sterile Electroweak-scale Right-handed Neutrino (EWνR) model. We started

by reviewing the development of the Standard Model of particle physics (Chapter 1)

and then extensions to SM that accommodate massive neutrinos (Chapter 2). Our

discussion provided the motivation for the development of a model, in which the

right-handed neutrino νR is accessible to the Large Hadron Collider (LHC) and other

experiments in the near-future.

In Chapter 3 we then reviewed Hung’s minimal EWνR model [26], in which the

νR’s naturally acquire a Majorana mass near the electroweak scale ΛEW ≈ 246 GeV.

These νR’s are non-sterile, meaning that they are members of SU(2)L right-handed

fermion doublets. Their mass MR is bounded from below at MZ/2 so that νR’s do not

contribute to the total width of the Z bosons. To achieve the EW-scale MR, without

extending the gauge group of SM, the EWνR model also adds the mirror leptons,

mirror quarks and two scalar triplets χ̃ and ξ to the SM.

For any model that adds extra chiral fermions to the SM fermion sector, it is

crucial to verify its agreement with the experimental constraints on the electroweak
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precision parameters - the oblique parameters S̃ and T̃ . These parameters are measure

of the radiative corrections to the self-energies of the electroweak gauge bosons W±,

Z and γ. They are finite observables, independent of any renormalization scheme.

Their experimentally measured values are close to zero, explicitly given in Eq (4.10).

Since the EWνR model adds the mirror fermions to the SM fermion sector, it is

important to first check whether it satisfies the experimental constraints on S̃ and T̃ ,

before analyzing its phenomenology further. Generally, new chiral fermions lead to a

large positive contribution to the S̃ parameter.

We have presented our extensive analysis of the parameter space in the minimal

EWνR model in Chapter 4. We calculated the predicted S̃ and T̃ parameters. We

demonstrated that a non-negligible region in the parameter space of the EWνR model

agrees with the experimental constraints from the measurements of the oblique pa-

rameters. This result is shown in Fig. 4.4. This agreement is achieved because the

large positive contributions to S̃ from the mirror fermion sector are almost cancelled

by the negative contributions from the scalar sector in this model.

It is worth noting that these electroweak precision constraints do not restrict the

VEV of the triplet χ to be very small. It is only restricted by the perturbative limit

on various Yukawa couplings and the lower limit: MR > MZ/2.

As the minimal EWνR model does not violate the electroweak precision con-

straints, we further discussed how the EWνR model can accommodate the 125-GeV

Higgs boson. We argued that in the light of the spin-parity likelihood analysis for

the 125-GeV scalar, an extension to the minimal EWνR model is needed to accom-

modate the new scalar easily. The simplest possible extension is to add a complex

scalar doublet Φ2M to the minimal model. In Chapter 5, we first discussed this ex-

tended EWνR model and derived the physical particle spectrum in it by breaking the

SU(2)L × U(1)Y gauge symmetry to the global SU(2)D custodial symmetry.
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Our detailed analysis of the extended EWνR model revealed a very interesting

feature of the Higgs sector of this model. This Higgs sector includes a 125-GeV

candidate H̃, which yields the signal strengths for its decays to W+W−, ZZ, γγ, bb̄

and τ τ̄ that are compatible with measurements at CMS and ATLAS. This agreement

is achieved, when H̃ is dominantly like the SM Higgs - “Dr. Jekyll” scenario, and

also when it is very different from the SM Higgs - “Mr. Hyde” scenario. This result

for a few examples of parameter combinations is displayed in Fig. 5.3.

Thus, from the perspective of the EWνR model, the present data at the LHC are

inconclusive about whether SM-like H0
1 is the dominant or a sub-dominant component

in the 125-GeV particle. Hence “the dual nature” of the 125-GeV Higgs in the EWνR

model. More data, measurements of the individual partial widths and study of the

heavier physical scalars in the EWνR model are necessary to distinguish between

either of these scenarios and the SM-Higgs.

As expected, the individual partial widths of the 125-GeV H̃ in Dr. Jekyll scenar-

ios are not very different from those in SM. The heavier scalars in this scenario tend

to be strongly coupled and have large widths. Also, the masses of the mirror fermions,

allowed by the perturbative limit on their Yukawa couplings, cannot be much greater

than ∼ 120 GeV. Hence, if future measurements of the individual decay widths of

the 125-GeV Higgs result in SM-like widths, then it is more likely to be consistent

with Dr. Jekyll scenario. In this case, the heavier scalars would appear not as narrow

resonances, but as broad resonances or enhancement in the background in this model.

In contrast, the individual partial widths of the 125-GeV H̃ are very different

from those in SM, in Mr. Hyde scenario. In this scenario, all the combinations of

the parameters that we found to agree with the experimental 1σ constraints on the

signal strengths contain H0′
1 as the dominant component in the 125-GeV H̃. The

perturbative upper limit on the masses of the mirror fermions is about 700 GeV .
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Therefore, if the partial widths of the 125-GeV H̃ are measured to be very different

from those in SM, it would point towards Mr. Hyde scenario. The heavier scalars in

this case have narrow widths and can be detected as resonances. The SM-like H0
1 is

the dominant component in one of the heavier scalars, H̃ ′ or H̃ ′′. Thus, the effective

theory around 125 GeV is very different from SM, while the SM-like H0
1 is integrated

out with the heavier scalars.

We scanned only a part of the entire parameter space in the EWνR model, by fixing

the values or ranges of a few parameters. A more thorough scan of the parameter

space could be of interest, especially if more data from the LHC Run II show any

signs of physics Beyond the Standard Model.
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Appendix A

Loop Integrals and Functions

Different contributions to the oblique parameters are expressed using loop integrals

like A0, B0, B22, B1, B2. and functions like F , G, etc. Therefore, we define all the

loop integrals and functions that we have used in the calculations of different loop

diagrams before listing contributions from loop diagrams.

For the calculation of oblique parameters we need the loop diagrams with two

external vector bosons. These diagrams have a general form

Πµν = ΠA gµν + ΠB qµqν (A.1)

For the purpose of oblique parameters we only need the ‘gµν ’ term in this equation.

Hence, hereafter in this paper Πµν denotes only the first term on RHS above.

The loop diagrams involving one or two internal scalars or one or two internal

fermions appear in the calculation of one-loop vector boson self-energy diagrams and

Zγ- diagrams. Following loop integrals appear in the calculation of loops with scalar

particles [66]:
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One-point integral:

∫
d4k

(2π)4

1

(k2 −m2)
≡ ı̇

16π2
A0(m2) (A.2)

Two-point integrals:

∫
d4k

(2π)4

1

(k2 −m2
1)((k + q)2 −m2

2)

≡ ı̇

16π2
B0(q2;m2

1,m
2
2), (A.3)

∫
d4k

(2π)4

kµkν
(k2 −m2

1)((k + q)2 −m2
2)

≡ ı̇

16π2
gµνB22(q2;m2

1,m
2
2) (A.4)

The expansion of LHS in the latter equation also has term with qµqν [66], but this

term is omitted as it does not contribute to the oblique parameters [36].

Following [66], in the dimensional regularization these integrals can be simplified

to

A0(m2) = m2
(

∆ + 1− ln(m2)
)

(A.5)

B0(q2;m2
1,m

2
2) = ∆−

∫ 1

0

dx ln(X − ı̇ε) (A.6)

B22(q2;m2
1,m

2
2) =

1

4
(∆ + 1)

(
m2

1 +m2
2 −

q2

3

)
− 1

2

∫ 1

0

dx X ln(X − ı̇ε) (A.7)
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where

X ≡ m2
1x +m2

2(1− x)− q2x(1− x), (A.8)

∆ ≡ 2

4− d + ln(4π)− γ. (A.9)

in d space-time dimensions with γ = 0.577216..., the Euler’s constant [10]. The

integrals in eqns. (A.6), (A.7) can be calculated numerically up to desired accuracy.

Note that these equations involve the logarithm of a dimensionful quantity, X and

the scale of this logarithm is hidden in the 2/(4 − d) term in ∆ (refer to section 7.5

of [10]). It is useful, especially in deriving T̃scalar in Eq. (4.17), to note that [56]

B0(0;m2
1,m

2
2) =

A0(m2
1)− A0(m2

2)

m2
1 −m2

2

, (A.10)

4B22(0;m2
1,m

2
2) = F(m2

1,m
2
2) + A0(m2

1) + A0(m2
2), (A.11)

where

F(m2
1,m

2
2) =

m12 +m2
2

2
− m2

1m
2
2

m2
1 −m2

2

ln

(
m2

1

m2
2

)
,

if m1 6= m2,

= 0 if m1 = m2. (A.12)

Note that

F(m2
1,m

2
2) = F(m2

2,m
2
1) . (A.13)
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Also notice that

B22(q2;m2
1,m

2
2) = B22(q2;m2

2,m
2
1)

B0(q2;m2
1,m

2
2) = B0(q2;m2

2,m
2
1). (A.14)

While evaluating the fermion loops which contribute to the oblique parameters

following two-point loop integrals are useful (refer section 21.3 of [10]):

B1(q2;m2
1,m

2
2) =

∫ 1

0

dx (1− x) ln
(X − ı̇ε

M2

)
, (A.15)

B2(q2;m2
1,m

2
2) =

∫ 1

0

dx x(1− x) ln
(X − ı̇ε

M2

)
, (A.16)

where X is as defined in Eq. (A.8). The logarithms in these integrals involve a mass

scale M . All the terms, which depend on this scale cancel while evaluating the final

expressions for oblique parameters. For m1 = m2 = m and q2 = M2
Z ,

B1(M2
Z ;m2,m2) = −1− G(x)

4
+ ln

(m2

M2

)
, (A.17)

B2(M2
Z ;m2,m2) =

1

18

[
− 3

2
G(x)

(
2 x+ 1

)
+

(
− 12 x− 5 + 3 ln

(m2

M2

))]
, (A.18)

where

G(x) = −4
√

4x− 1 Arctan
( 1√

4x− 1

)
. (A.19)

While deriving T̃fermion in Eq.(4.12) we need to evaluate integrals in Eq. (A.15) for
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q = 0 and m1 6= m2. One of the integrals, which appear in this calculation is

∫ 1

0

dx
(
m2

1x+m2
2(1− x)

)
ln
(m2

1x+m2
2(1− x)

M2

)

=

(
m4

2 −m4
1

)
+ 2 m4

1 ln
(
m2

1

M2

)
− 2 m4

2 ln
(
m2

1

M2

)
4
(
m2

1 −m2
2

) . (A.20)

Using the loop integrals and functions defined and enlisted in this appendix we can

derive the expressions for the oblique parameters, which are suitable for the numerical

analysis.
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Appendix B

Feynman rules in the minimal

EWνR Model

Various Feynman rules in the minimal EWνR model and SM are listed in this ap-

pendix. We work in the ’t Hooft Feynman gauge (gauge parameter, ξgauge = 1)

throughout the calculations in this appendix and all the appendices, which follow.

To calculate the new Physics contributions due to EWνR model to the oblique pa-

rameters we also need the corresponding contributions from SM (refer to equations

(4.6, 4.7, 4.8)). Therefore, in this section we also list the related SM couplings.

Table B.1: SV1V2 type couplings(V1 and V ′2 are vector gauge bosons and S is a Higgs
boson), which contribute to Oblique Corrections. Common factor: ı̇gMWg

µν

gH0
5W

+W−
sH√

3
gH0

5ZZ
− 2√

3

sH
c2W

gH++
5 W−W−

√
2sH gH+

5 W
−Z − sH

cW

gH0
1W

+W− cH gH0
1ZZ

cH
c2W

gH0′
1 W

+W−
2
√

2√
3
sH gH0′

1 ZZ
2
√

2√
3

sH
c2W
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Table B.2: S1S2V type couplings(V is a vector gauge boson and S1, S2 are Higgs/
Goldstone bosons), which contribute to Oblique Corrections. Common factor: ı̇g(p−
p′)µ, where p(p′) is the incoming momentum of the S1(S2).

gH0
5H
−
5 W

+ −
√

3
2

gH++
5 H−−5 Z − (1−2s2W )

2cW

gH+
5 H
−−
5 W+ − 1√

2
gH+

3 H
−
3 Z

(1−2s2W )

2cW

gH0
3H
−
3 W

+ −1
2

gH+
3 H
−
5 Z

− 1
2cW

gH+
3 H
−−
5 W+ − 1√

2
cH gH0

3H
0
5Z

1√
3

cH
cW

gH0
3H
−
5 W

+ −1
2
cH gG+

3 G
−
3 Z

(1−2s2W )

2cW

gH0
5H
−
3 W

+ − 1
2
√

3
cH gG0

3H
0
5Z

1√
3

sH
cW

gG0
3G
−
3 W

+ −1
2

gG+
3 H
−
5 Z

− 1
2cW

sH

gG+
3 H
−−
5 W+ − 1√

2
sH gH0

1G
0
3Z

cH
cW

gG0
3H
−
5 W

+ −1
2
sH gH0′

1 G
0
3Z

√
2
3
sH
cW

gH0
5G
−
3 W

+
1

2
√

3
sH gH0

1H
0
3Z

− sH
2cW

gH0
1G
−
3 W

+
1
2
cH gH0′

1 H
0
3Z

√
2
3
cH
cW

gH0′
1 G
−
3 W

+

√
2
3
sH gH+

5 H
−
5 γ

−sW

gH0
1H
−
3 W

+ −1
2
sH gH++

5 H−−5 γ −2sW

gH0′
1 H
−
3 W

+

√
2
3
cH gH+

3 H
−
3 γ

sW

gH+
5 H
−
5 Z

(1−2s2W )

2cW
gG+

3 G
−
3 γ

sW
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Table B.3: H1H2V1V2 type couplings, which contribute to Oblique Corrections. Com-
mon factor: ı̇g2gµν

gH0
5H

0
5W

+W−
5
3

gH0
5H

0
5ZZ

2
3

1
c2W

gH+
5 H
−
5 W

+W− −3
2

gH+
5 H
−
5 ZZ

− (c4W+s4W )

c2W

gH++
5 H−−5 W+W− 1 gH++

5 H−−5 ZZ 2
(1−2s2W )2

c2W

gH0
3H

0
3W

+W− −(c2
H +

s2H
2

) gH0
3H

0
3ZZ

− (1+c2H)

2c2W

gH+
3 H
−
3 W

+W− −(1
2

+ c2
H) gH+

3 H
−
3 ZZ

−
[
s2H
2

(1−s2W )2

c2W
+ c2

H
(c4W+s4W )

c2W

]
gG0

3G
0
3W

+W− − (1+s2H)

2
gG0

3G
0
3ZZ

− 1
2c2W

(1 + 3s2
H)

gG+
3 G
−
3 W

+W− −(1
2

+ s2
H) gG+

3 G
−
3 ZZ

−
[

1
2
c2
H(1− 2s2

W )2 + s2
H(c4

W + s4
W )
]

gH0
1H

0
1W

+W−
1
2

gH0
1H

0
1ZZ

1
2c2W

gH0′
1 H

0′
1 W

+W−
4
3

gH0′
1 H

0′
1 ZZ

4
3c2W

gH+
5 H
−
5 γγ

−2s2
W gH+

5 H
−
5 Zγ

− sW
cW

(1− 2s2
W )

gH++
5 H−−5 γγ 8s2

W gH++
5 H−−5 Zγ 4 sW

cW
(1− 2s2

W )

gH+
3 H
−
3 γγ

−2s2
W gH+

3 H
−
3 Zγ

− sW
cW

(1− 2s2
W )

gG+
3 G
−
3 γγ

−2s2
W gG+

3 G
−
3 Zγ

− sW
cW

(1− 2s2
W )
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Table B.4: H1H2V1V2 type couplings, which do not contribute to Oblique Corrections.
Common factor: ı̇g2gµν

gH0′
1 H

0
5W

+W−

√
2

3
gH0′

1 H
0
5ZZ

− 2
√

2
3c2W

gH+
3 H
−
5 W

+W− − cH
2

gH+
3 H
−
5 ZZ

cH
(1−2s2W )

c2W

gH0
3G

0
3W

+W− − cHsH
2

gH0
3G

0
3ZZ

−3
2
cHsH
c2W

gH+
3 G
−
3 W

+W− −cHsH gH+
3 G
−
3 ZZ

− cHsH
2c2W

gH+
5 G
−
3 W

+W− − sH
2

gH+
5 G
−
3 ZZ

sH
(1−2s2W )

c2W

gH+
3 H
−
5 Zγ

cH
sW
cW

Table B.5: fM1 fM2 V type couplings, which contribute to the Oblique Corrections. For
each Feynman rule the charge conservation is implicit. fM1R and fM2R are members of

the same mirror fermion doublet with isospins
1

2
and −1

2
respectively (ref. [26], [10]

& [11]). Common factor for all couplings: ı̇gγµ

g
f
M
1Rf

M
2RW

+
1√
2

g
f
M
R f

M
R Z

1
cW

(T f3 − s2
WQf )

g
f
M
R f

M
R γ

sWQf

g
f
M
L f

M
L Z

− s2W
cW
Qf

g
f
M
L f

M
L γ

sWQf
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Appendix C

Loop Contributions to Oblique

Parameters in the EWνR model

C.1 One Loop Contributions to S̃scalar and T̃scalar

In this section the one-loop contributions to S̃scalar and T̃scalar are listed. In every

table the loop contributions in EWνR model are listed first and then the corresponding

contributions in SM are also listed. The one-loop diagrams, which contribute to S̃scalar

can be found in tables C.1, C.3, C.4, C.6, C.2, C.5 below. To calculate T̃scalar, Π11

contributions from scalar sector in EWνR model can be obtained from contributions

to ΠWW listed in tables C.1, C.3, C.4. The scalar-loop diagrams contributing to Π33

are listed in tables C.7, C.9, C.8.
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Table C.1: One-loop diagrams with two internal scalar (S) (Higgs or Goldstone boson)
lines, which contribute to W+ and Z self-energies. Common factor: g2/16π2

Contributions to ΠWW (q2) Contributions to ΠZZ(q2)

W+

Si

Sj W+ Z

Si

Sj Z

Si Sj Si Sj

H+
5 H0

5 3B22(q2; m2
H+

5

, m2
H0

5
) H+

5 H+
5

c2
2W

c2
W

B22(q2; m2
H+

5

, m2
H+

5

)

H++
5 H+

5 2B22(q2; m2
H++

5

, m2
H+

5

) H++
5 H++

5 4
c2

2W

c2
W

B22(q2; m2
H++

5

, m2
H++

5

)

H+
3 H0

3 B22(q2; m2
H+

3

, m2
H0

3
) H+

3 H+
3

c2
2W

c2
W

B22(q2; m2
H+

3

, m2
H+

3

)

H++
5 H+

3 2c2
HB22(q2; m2

H++
5

, m2
H+

3

) H+
5 H+

3

c2
H

c2
W

B22(q2; m2
H+

5

, m2
H+

3

)

H+
5 H0

3 c2
HB22(q2; m2

H+
5

, m2
H0

3
) H−5 H−3

c2
H

c2
W

B22(q2; m2
H+

5

, m2
H+

3

)

H0
5 H+

3

c2
H

3
B22(q2; m2

H0
5
, m2

H+
3

) H0
5 H0

3

4

3

c2
H

c2
W

B22(q2; m2
H0

5
, m2

H0
3
)

H+
3 H0

1 s2
HB22(q2; m2

H+
3

, m2
H1

) H0
3 H0

1

s2
H

c2
W

B22(q2; m2
H0

3
, m2

H1
)

H+
3 H0′

1

8

3
c2
HB22(q2; m2

H+
3

, m2
H′1

) H0
3 H0′

1

8

3

c2
H

c2
W

B22(q2; m2
H0

3
, m2

H′1
)

G+
3 H++

5 2s2
HB22(q2; M2

W , m
2
H++

5

) G+
3 H+

5

s2
H

c2
W

B22(q2; M2
W , m

2
H+

5

)

Continued on next page...
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Table C.1 – continued from previous page

Si Sj Si Sj

G0
3 H+

5 s2
HB22(q2; M2

Z , m
2
H+

5

) G−3 H−5
s2
H

c2
W

B22(q2; M2
W , m

2
H+

5

)

G+
3 H0

5

s2
H

3
B22(q2; M2

W , m
2
H0

5
) G0

3 H0
5

4

3

s2
H

c2
W

B22(q2; M2
Z , m

2
H0

5
)

G+
3 H0

1 c2
HB22(q2; M2

W , m
2
H1

) G0
3 H0

1

c2
H

c2
W

B22(q2; M2
Z , m

2
H1

)

G+
3 H0′

1

8

3
s2
HB22(q2; M2

W , m
2
H′1

) G0
3 H0′

1

8

3

s2
H

c2
W

B22(q2; M2
Z , m

2
H′1

)

G+
3 G0

3 B22(q2; M2
W , M

2
Z) G+

3 G+
3

c2
2W

c2
W

B22(q2; M2
W , M

2
W )

Standard Model contributions

H G+
SM B22(q2; M2

W , m
2
H) H G0

SM

1

c2
W

B22(q2; M2
Z , m

2
H)

G+
SM G0

SM B22(q2; M2
W , M

2
Z) G+

SM G+
SM

c2
2W

c2
W

B22(q2; M2
W , M

2
W )
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Table C.2: Tadpole diagrams with one internal scalar (S) (Higgs or Goldstone boson)
line, which contribute to W+ and Z self-energies. Common factor: g2/16π2

Contributions to ΠWW (q2) Contributions to ΠZZ(q2)

W+

Si

W+ Z

Si

Z

Si Si

H0
5 −5

6
A0(m2

H0
5
) H0

5 − 2

6c2
W

A0(m2
H0

5
)

H+
5 −3

2
A0(m2

H+
5

) H+
5 −c

4
W + s4

W

c2
W

A0(m2
H+

5

)

H++
5 −A0(m2

H++
5

) H++
5 −2

c2
2W

c2
W

A0(m2
H++

5

)

H0
3 −1

4
(1 + c2

H)A0(m2
H0

3
) H0

3 − 1

4c2
W

(1 + 3c2
H)A0(m2

H0
3
)

H+
3 −1

2
(1 + 2c2

H)A0(m2
H+

3

) H+
3 − c

2
2W

2c2
W

(1 + c2
H)A0(m2

H+
3

)

H0
1 −1

4
A0(m2

H1
) H0

1 − 1

4c2
W

A0(m2
H1

)

H0′
1 −2

3
A0(m2

H′1
) H0′

1 − 2

3c2
W

A0(m2
H′1

)

G0
3 −1

4
(1 + s2

H)A0(M2
Z) G0

3 − 1

4c2
W

(1 + 3s2
H)A0(M2

Z)

G+
3 −1

2
(1 + 2s2

H)A0(M2
W ) G+

3 − c
2
2W

2c2
W

(1 + s2
H)A0(M2

W )

Continued on next page...
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Table C.2 – continued from previous page

Si Si

Standard Model contributions

H −1

4
A0(m2

H) H − 1

4c2
W

A0(m2
H)

G0
SM −1

4
A0(M2

Z) G0
SM − 1

4c2
W

A0(M2
Z)

G+
SM −1

2
A0(M2

W ) G+
SM − c

2
2W

2c2
W

A0(M2
W )
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Table C.3: One-loop diagrams with one internal scalar (S) (Higgs or Goldstone boson)
line and one internal vector boson line, which contribute to W+ and Z self-energies.
Common factor: g2/16π2

Contributions to ΠWW (q2) Contributions to ΠZZ(q2)

W+

Si

Vj W+ Z

Si

Vj Z

Si Vj Si Vj

H0
5 W+ −s

2
H

3
M2

WB0(q2; M2
W , m

2
H0

5
) H0

5 Z −4

3

s2
H

c2
W

M2
ZB0(q2; M2

Z , m
2
H0

5
)

H0
1 W+ −c2

HM
2
WB0(q2; M2

W , m
2
H1

) H0
1 Z − c

2
H

c2
W

M2
ZB0(q2; M2

Z , m
2
H1

)

H0′
1 W+ −8

3
s2
HM

2
WB0(q2; M2

W , m
2
H′1

) H0′
1 Z −8

3

s2
H

c2
W

M2
ZB0(q2; M2

Z , m
2
H′1

)

H+
5 Z − s

2
H

c2
W

M2
WB0(q2; M2

Z , m
2
H+

5

) H+
5 W− − s

2
H

c2
W

M2
WB0(q2; M2

W , m
2
H+

5

)

H++
5 W− −2s2

HM
2
WB0(q2; M2

W , m
2
H++

5

) H−5 W+ − s
2
H

c2
W

M2
WB0(q2; M2

W , m
2
H+

5

)

Standard Model contributions

H W+ −M2
WB0(q2; M2

W , m
2
H) H Z −M

2
Z

c2
W

B0(q2; M2
Z , m

2
H)

G+
SM Z −s

4
W

c2
W

M2
WB0(q2; M2

Z , M
2
W ) G+

SM W− −2
s4
W

c2
W

M2
WB0(q2; M2

W , M
2
W )

G+
SM γ −s2

WM
2
WB0(q2; 0, M2

W ) G−SM W+ −2
s4
W

c2
W

M2
WB0(q2; M2

W , M
2
W )
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Table C.4: One-loop diagrams with two internal scalar (S) (Higgs or Goldstone bo-
son) lines, which contribute to photon (γ) self-energy and Z-γ transition amplitude.
Common factor: g2/16π2

Contributions to Πγγ(q
2) Contributions to ΠZγ(q

2)

γ

Si

Sj γ Z

Si

Sj γ

Si Sj Si Sj

H+
5 H+

5 4s2
WB22(q2; m2

H+
5

, m2
H+

5

) H+
5 H+

5 2
sW
cW

c2WB22(q2; m2
H+

5

, m2
H+

5

)

H++
5 H++

5 16s2
WB22(q2; m2

H++
5

, m2
H++

5

) H++
5 H++

5 8
sW
cW

c2WB22(q2; m2
H++

5

, m2
H++

5

)

H+
3 H+

3 4s2
WB22(q2; m2

H+
3

, m2
H+

3

) H+
3 H+

3 2
sW
cW

c2WB22(q2; m2
H+

3

, m2
H+

3

)

G+
3 G+

3 4s2
WB22(q2; M2

W , M
2
W ) G+

3 G+
3 2

sW
cW

c2WB22(q2; M2
W , M

2
W )

Standard Model contributions

G+
SM G+

SM 4s2
WB22(q2; M2

W , M
2
W ) G+

SM G+
SM 2

sW
cW

c2WB22(q2; M2
W , M

2
W )
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Table C.5: Tadpole diagrams with one internal scalar (S) (Higgs or Goldstone bo-
son) line, which contribute to photon (γ) self-energy and Z-γ transition amplitude.
Common factor: g2/16π2

Contributions to Πγγ(q
2) Contributions to ΠZγ(q

2)

γ

Si

γ Z

Si

γ

Si Si

H+
5 −2s2

WA0(m2
H+

5

) H+
5 −sW

cW
c2WA0(m2

H+
5

)

H++
5 −8s2

WA0(m2
H++

5

) H++
5 −4

sW
cW

c2WA0(m2
H++

5

)

H+
3 −2s2

WA0(m2
H+

3

) H+
3 −sW

cW
c2WA0(m2

H+
3

)

G+
3 −2s2

WA0(M2
W ) G+

3 −sW
cW

c2WA0(M2
W )

Standard Model contributions

G+
SM −2s2

WA0(M2
W ) G+

SM −sW
cW

c2WA0(M2
W )
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Table C.6: One-loop diagrams with one internal scalar (S) (Higgs or Goldstone boson)
line and one internal vector boson line, which contribute to photon (γ) self-energy
and Z-γ transition amplitude. Common factor: g2/16π2

Contributions to Πγγ(q
2) Contributions to ΠZγ(q

2)

γ

Si

Vj
γ Z

Si

Vj
γ

Si Vj Si Vj

G+
3 W− −s2

WM
2
WB0(M2

Z ; M2
W , M

2
W ) G+

3 W− s3
W

cW
M2

WB0(M2
Z ; M2

W , M
2
W )

G−3 W+ −s2
WM

2
WB0(M2

Z ; M2
W , M

2
W ) G−3 W+ s3

W

cW
M2

WB0(M2
Z ; M2

W , M
2
W )

Standard Model contributions

G+
SMW

− −s2
WM

2
WB0(M2

Z ; M2
W , M

2
W ) G+

SMW
− s3

W

cW
M2

WB0(M2
Z ; M2

W , M
2
W )

G−SMW
+ −s2

WM
2
WB0(M2

Z ; M2
W , M

2
W ) G−SMW

+ s3
W

cW
M2

WB0(M2
Z ; M2

W , M
2
W )
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Table C.7: One-loop diagrams with two internal scalar (S) (Higgs or Goldstone boson)
lines, which contribute to Π33(q2) in T . Common factor: g2/16π2

Contributions to Π33(q2)

limg′→0

Z

Si

Sj Z

Si Sj Si Sj

H+
5 H+

5 B22(q2; m2
H+

5

, m2
H+

5

) H++
5 H++

5 4B22(q2; m2
H++

5

, m2
H++

5

)

H+
3 H+

3 B22(q2; m2
H+

3

, m2
H+

3

) H+
5 H+

3 c2
HB22(q2; m2

H+
5

, m2
H+

3

)

H−5 H−3 c2
HB22(q2; m2

H+
5

, m2
H+

3

) H0
5 H0

3

4

3
c2
HB22(q2; m2

H0
5
, m2

H0
3
)

H0
3 H0

1 s2
HB22(q2; m2

H0
3
, m2

H1
) H0

3 H0′
1

8

3
c2
HB22(q2; m2

H0
3
, m2

H′1
)

G+
3 H+

5 s2
HB22(q2; M2

W , m
2
H+

5

) G−3 H−5 s2
HB22(q2; M2

W , m
2
H+

5

)

G0
3 H0

5

4

3
s2
HB22(q2; M2

W , m
2
H0

5
) G0

3 H0
1 c2

HB22(q2; M2
W , m

2
H1

)

G0
3 H0′

1

8

3
s2
HB22(q2; M2

W , m
2
H′1

) G+
3 G+

3 B22(q2; M2
W , M

2
W )

Standard Model contributions

H G0
SM B22(q2; M2

W , m
2
H) G+

SM G+
SM B22(q2; M2

W , M
2
W )
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Table C.8: Tadpole diagrams with one internal scalar (S) (Higgs or Goldstone boson)
line, which contribute to Π33(q2) in T . Common factor: g2/16π2

Contributions to Π33(q2)

limg′→0

Z

Si

Z

Si Si

H0
5 −2

6
A0(m2

H0
5
) H+

5 −A0(m2
H+

5

)

H++
5 −2A0(m2

H++
5

) H0
3 −1

4
(1+3c2

H)A0(m2
H0

3
)

H+
3 −1

2
(1 + c2

H)A0(m2
H+

3

) H0
1 −1

4
A0(m2

H1
)

H0′
1 −2

3
A0(m2

H′1
) G0

3 −1

4
(1 + 3s2

H)A0(M2
W )

G+
3 −1

2
(1 + s2

H)A0(M2
W )

Standard Model contributions

H −1

4
A0(m2

H) G0
SM −1

4
A0(M2

W )

G+
SM −1

2
A0(M2

W )
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Table C.9: One-loop diagrams with one internal scalar (S) (Higgs or Goldstone boson)
line and one internal vector boson line, which contribute to Π33(q2) in T . Common
factor: g2/16π2

Contributions to Π33(q2)

limg′→0

Z

Si

Vj Z

Si Vj Si Vj

H0
5 Z −4

3
s2
HM

2
WB0(q2; M2

W , m
2
H0

5
) H0

1 Z −c2
HM

2
WB0(q2; M2

W , m
2
H1

)

H0′
1 Z −8

3
s2
HM

2
WB0(q2; M2

W , m
2
H′1

) H+
5 W− −s2

HM
2
WB0(q2; M2

W , m
2
H+

5

)

H−5 W+ −s2
HM

2
WB0(q2; M2

W , m
2
H+

5

)

Standard Model contributions

H Z −M2
WB0(q2; M2

W , m
2
H)

C.2 One Loop Contributions to S̃fermion and T̃fermion

The new Physics contributions, S̃fermion and T̃fermion, due to fermion sector in EWνR

model can be calculated by adding the respective contributions due to the lepton-
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and quark-sectors in EWνR model that is,

S̃fermion = S̃lepton + S̃quark (C.1)

T̃fermion = T̃lepton + T̃quark (C.2)

In this section the one-loop contributions to S̃fermion and T̃fermion are listed in tables

C.10, C.11, C.12, C.14. In each of these tables only the loop contributions due to

the mirror fermions in EWνR model are listed. The same expressions for the loop

contributions can be used to calculate the lepton loop diagrams and the quark loop

diagrams. The fermion loop contributions in SM can be obtained from the mirror

fermion loop having fermions with the opposite chirality going in the loop. Consider,

for example, the mirror-up-quark-loop diagrams in FIG. C.1 and SM-up-quark-loop

diagrams in FIG. C.2.

Z

uM
R

uM
R

Z

= − 4

c2
W

(T u
M

3 − s2
WQuM )2

[
(
q2

6
− m2

uM

2
)∆

− q2B2(q2; m2
uM , m

2
uM ) +m2

uMB1(q2; m2
uM , m

2
uM )
]

(a)

Z

uM
R uM

L

uM
R uM

L

Z

= − 2

c2
W

m2
uM (T u

M

3 − s2
WQuM )s2

WQuM
[
∆− 2B1(q2; m2

uM , m
2
uM )
]

(b)

Figure C.1: EWνR model mirror fermion loop examples
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Z

uL

uL

Z

= − 4

c2
W

(T u3 − s2
WQu)

2

[
(
q2

6
− m2

u

2
)∆

− q2B2(q2; m2
u, m

2
u) +m2

uB1(q2; m2
u, m

2
u)]

(a)

Z

uL uR

uL uR

Z

= − 2

c2
W

m2
u(T

u
3 − s2

WQu)s
2
WQu [∆− 2B1(q2; m2

u, m
2
u)]

(b)

Figure C.2: Standard Model fermion loop examples

Table C.10: Fermion loop diagrams with two internal mirror fermion lines, which
contribute to ΠWW (q2). Here fM1R’s and fM2R’s are members of a mirror fermion doublet
with isospins (T f3 ) equal to 1

2
and −1

2
respectively. Common factor: g2Nc/16π2

Contributions to ΠWW (q2)

W+

fM
1R

fM
2R

W+
−2

[(
q2

6
− 1

4
(m2

1f +m2
2f )

)
∆− q2B2(q2; m2

1f , m
2
2f )

+
1

2
(m2

1fB1(q2; m2
1f , m

2
2f ) +m2

2fB1(q2; m2
2f , m

2
1f ))

]
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Table C.11: Fermion loop diagrams with two internal mirror fermion lines, which
contribute to ΠZZ(q2). Common factor: g2Nc/16π2

Contributions to ΠZZ(q2)

Z

fM
R

fM
R

Z
− 4

c2
W

(T f3 − s2
WQf )

2

[(
q2

6
−
m2
f

2

)
∆

−q2B2(q2; m2
f , m

2
f ) +m2

fB1(q2; m2
f , m

2
f )

]

Z

fM
L

fM
L

Z
− 4

c2
W

s4
WQ

2
f

[(
q2

6
−
m2
f

2

)
∆

−q2B2(q2; m2
f , m

2
f ) +m2

fB1(q2; m2
f , m

2
f )

]

Z

fM
R fM

L

fM
R fM

L

Z
− 2

c2
W

m2
f (T

f
3 − s2

WQf )s
2
WQf

[
∆− 2B1(q2; m2

f , m
2
f )
]

Z

fM
L fM

R

fM
L fM

R

Z
− 2

c2
W

m2
f (T

f
3 − s2

WQf )s
2
WQf

[
∆− 2B1(q2; m2

f , m
2
f )
]
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Table C.12: Fermion loop diagrams with two internal mirror fermion lines, which
contribute to ΠZγ(q

2). Common factor: g2Nc/16π2

Contributions to ΠZγ(q
2)

Z

fM
R

fM
R

γ
− 4

cW
(T f3 − s2

WQf )sWQf

[(
q2

6
−
m2
f

2

)
∆

−q2B2(q2; m2
f , m

2
f ) +m2

fB1(q2; m2
f , m

2
f )

]

Z

fM
L

fM
L

γ

4

cW
s3
WQ

2
f

[(
q2

6
−
m2
f

2

)
∆

−q2B2(q2; m2
f , m

2
f ) +m2

fB1(q2; m2
f , m

2
f )

]

Z

fM
R fM

L

fM
R fM

L

γ

2

cW
m2
f (T

f
3 − s2

WQf )sWQf

[
∆− 2B1(q2; m2

f , m
2
f )
]

Z

fM
L fM

R

fM
L fM

R

γ
− 2

cW
m2
fs

3
WQ

2
f

[
∆− 2B1(q2; m2

f , m
2
f )
]
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Table C.13: Fermion loop diagrams with two internal mirror fermion lines, which
contribute to Πγγ(q

2). Common factor: g2Nc/16π2

Contributions to Πγγ(q
2)

γ

fM
R

fM
R

γ
−4s2

WQ
2
f

[(
q2

6
−
m2
f

2

)
∆

−q2B2(q2; m2
f , m

2
f ) +m2

fB1(q2; m2
f , m

2
f )

]

γ

fM
L

fM
L

γ
−4s2

WQ
2
f

[(
q2

6
−
m2
f

2

)
∆

−q2B2(q2; m2
f , m

2
f ) +m2

fB1(q2; m2
f , m

2
f )

]

γ

fM
R fM

L

fM
R fM

L

γ
2m2

fs
2
WQ

2
f

[
∆− 2B1(q2; m2

f , m
2
f )
]

γ

fM
L fM

R

fM
L fM

R

γ
2m2

fs
2
WQ

2
f

[
∆− 2B1(q2; m2

f , m
2
f )
]
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Table C.14: Fermion loop diagrams with two internal mirror fermion lines, which
contribute to Π33(q2). Common factor: g2Nc/16π2

Contributions to Π33(q2)

lim
g′→0

Z

fM
R

fM
R

Z
−4

(
T f3

)2
[(

q2

6
−
m2
f

2

)
∆

−q2B2(q2; m2
f , m

2
f ) +m2

fB1(q2; m2
f , m

2
f )

]

The contribution due to the loop diagram in FIG. C.2(a) (with two left-handed

SM up quarks in the loop) has similar form of expression as the loop diagram in FIG.

C.1(a) with two right-handed mirror-up-quarks in the loop. Also, if the SM up quark

loop diagram has mass-insertion propagators as in FIG. C.2(b), then it has similar

form of expression as the loop diagram with mass-insertion propagators of mirror up

quarks, FIG. C.1(b), when the left-handed-up-quarks-side of the loop is replaced by

the right-handed-mirror-up-quark side of the loop and vice versa. The same corre-

spondence exists between other one loop diagrams involving mirror fermions listed in

tables C.10, C.11, C.12, C.14 and the diagrams involving SM fermions. Therefore,

we have not listed separately the SM fermion loop diagrams in this paper.

Definitions of the loop functions used in these tables are given in Appendix A.
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Appendix D

Feynman rules in the extended

EWνR model

Table D.1: Yukawa couplings with SM quarks and mirror-quarks in the extended
EWνR model. The Yukawa couplings involving charged SM (and mirror) leptons can
be obtained by replacing up-type SM (and mirror) quarks by left-handed (and right-
handed) neutrinos and down-type SM (and mirror) quarks by the charged SM (and
mirror) leptons in this table.

SM Leptons Mirror Leptons

gH0
1 ll

−ı ml g

2 MW s2

....(l = τ, µ, e) g
H0

1M l
M l

M −ı mM
l g

2 MW s2M

gH0
3 ll

−ı ml g sM
2 MW cM

γ5 g
H0

3 l
M
i l

M
i

ı
mlMi

g sM

2 MW cM
γ5

gH−3 νLl −ı g ml sM

2
√

2 MW cM
(1− γ5) g

H−3 νRil
M
i

−ı
g mlMi

sM

2
√

2 MW cM
(1 + γ5)

gH0
3M ll

ı
ml g s2M

2 MW s2

γ5 g
H0

3M l
M
i l

M
i

ı
mlMi

g s2

2 MW s2M

γ5

gH−3MνLl
−ı g ml s2M

2
√

2 MW s2 cM
(1− γ5) g

H−3MνRil
M
i
−ı

g mlMi
s2

2
√

2 MW s2M cM
(1 + γ5)
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Table D.2: Yukawa couplings with SM quarks and mirror-quarks in the EWνR model.
The Yukawa couplings involving charged SM (and mirror) leptons can be obtained by
replacing up-type SM (and mirror) quarks by left-handed (and right-handed) neutri-
nos and down-type SM (and mirror) quarks by the charged SM (and mirror) leptons
in this table.

SM Quarks Mirror Quarks

gH0
1qq

−ı mq g

2 MW s2

....(q = t, b) gH0
1M q

M qM −ı mM
q g

2 MW s2M

gH0
3 tt

ı
mt g sM

2 MW cM
γ5 gH0

3u
M
i u

M
i

−ı
muMi

g sM

2 MW cM
γ5

gH0
3 bb

−ı mb g sM
2 MW cM

γ5 g
H0

3d
M
i d

M
i

ı
mdMi

g sM

2 MW cM
γ5

gH−3 tb ı
g sM

2
√

2 MW cM
g
H−3 u

M
i b

M
i

ı
g sM

2
√

2 MW cM

×
[
mt(1 + γ5)−mb(1− γ5)

]
×
[
muMi

(1−γ5)−mdMi
(1+γ5)

]
gH0

3M tt
−ımt g s2M

2 MW s2

γ5 gH0
3Mu

M
i u

M
i

−ı
muMi

g s2

2 MW s2M

γ5

gH0
3M bb

ı
mb g s2M

2 MW s2

γ5 g
H0

3Md
M
i d

M
i

ı
mdMi

g s2

2 MW s2M

γ5

gH−3M tb
ı

g s2M

2
√

2 MW s2 cM

[
mt(1 +

γ5)−mb(1− γ5)
] g

H−3Mu
M
i d

M
i

ı
g s2

2
√

2 MW s2M cM

[
muMi

(1−

γ5)−mdMi
(1 + γ5)

]
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Table D.3: S1S2V type couplings(V is a vector gauge boson and S1, S2 are Higgs/
Goldstone bosons), which contribute to Oblique Corrections. Common factor: ıg(p−
p′)µ, where p(p′) is the incoming momentum of the S1(S2).

gH0
5H
−
5 W

+ −
√

3

2
gH++

5 H−−5 Z −(1− 2s2
W )

cW

gH+
5 H
−−
5 W+ − 1√

2
gH+

5 H
−
5 Z

(1− 2s2
W )

2cW

gH0
3H
−
3 W

+ −1

2
s2
M gH+

3 H
−
3 Z

(1− 2s2
W )

2cW

gH0
3MH

−
3MW

+

1

2
gH+

3MH
−
3MZ

(1− 2s2
W )

2cW

gH+
3 H
−−
5 W+ − 1√

2
cM gH+

3 H
−
5 Z

− 1

2cW
cM

gH0
3H
−
5 W

+ −1

2
cM gH0

3H
0
5Z

1√
3

cM
cW

gH0
5H
−
3 W

+ − 1

2
√

3
cM gG+

3 G
−
3 Z

(1− 2s2
W )

2cW

gG0
3G
−
3 W

+ −1

2
gG0

3H
0
5Z

1√
3

sM
cW

gG+
3 H
−−
5 W+ − 1√

2
sM gG+

3 H
−
5 Z

− 1

2cW
sM

gG+
3 H
−−
5 W+ − 1√

2
sM gH0

1G
0
3Z

s2

cW

gG0
3H
−
5 W

+ −1

2
sM gH0

1MG
0
3Z

s2M

cW

gH0
5G
−
3 W

+

1

2
√

3
sM gH0′

1 G
0
3Z

√
2

3

sM
cW

Continued on the next page.
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gH0
5G
−
3 W

+

1

2
√

3
sM gH0

1H
0
3Z

− s2sM
2cMcW

gH0
1G
−
3 W

+

1

2
s2 gH0

1MH
0
3Z

−s2MsM
2cMcW

gH0
1MG

−
3 W

+

1

2
s2M gH0′

1 H
0
3Z

√
2

3

cM
cW

gH0′
1 G
−
3 W

+

√
2

3
sM gH+

5 H
−
5 γ

sW

gH0
1H
−
3 W

+ −s2sM
2cM

gH++
5 H−−5 γ −2sW

gH0
1MH

−
3 W

+ −s2MsM
2cM

gH+
3 H
−
3 γ

sW

gH0′
1 H
−
3 W

+

√
2

3
cM gH+

3MH
−
3Mγ

sW

gH0
1H
−
3MW

+ − s2M

2cM
gG+

3 G
−
3 γ

sW

gH0
1MH

−
3MW

+

s2

2cM
gH0

1H
0
3MZ

s2M

2cM

gH0
1MH

0
3MZ

− s2

2cM
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Table D.4: SV1V2 type couplings(V1 and V ′2 are vector gauge bosons and S is a Higgs
boson), which contribute to Oblique Corrections. Common factor: ıgMWg

µν

gH0
5W

+W−
sM√

3
gH0

5ZZ
− 2√

3

sM
c2
W

gH++
5 W−W−

√
2sM gH+

5 W
−Z −sM

cW

gH0
1W

+W− s2 gH0
1ZZ

s2

c2
W

gH0
1MW

+W− s2M gH0
1MZZ

s2M

c2
W

gH0′
1 W

+W−
2
√

2√
3
sM gH0′

1 ZZ

2
√

2√
3

sM
c2
W

Table D.5: H1H2V1V2 type couplings, which contribute to Oblique Corrections. Com-
mon factor: ıg2gµν

gH0
5H

0
5W

+W−
5

3
gH0

5H
0
5ZZ

2

3c2
W

gH+
5 H
−
5 W

+W− −3

2
gH+

5 H
−
5 ZZ

−(c4
W + s4

W )

c2
W

gH++
5 H−−5 W+W− 1 gH++

5 H−−5 ZZ 2
(1− 2s2

W )2

c2
W

gH0
3H

0
3W

+W− −(1 + c2
M)

2
gH0

3H
0
3ZZ

− 1

2c2
W

(1 + 3c2
M)

gH+
3 H
−
3 W

+W− −(
1

2
+ c2

M) gH+
3 H
−
3 ZZ

−
[s2

M

2

(1− s2
W )2

c2
W

+c2
M

(c4
W + s4

W )

c2
W

]
Continued on the next page.
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gH0
3MH

0
3MW

+W− −1

2
gH0

3MH
0
3MZZ

1

2c2
W

gH+
3MH

−
3MW

+W− −1

2
gH+

3MH
−
3MZZ

−(1− 2s2
W )2

2c2
W

gG0
3G

0
3W

+W− −(1 + s2
M)

2
gG0

3G
0
3ZZ

− 1

2c2
W

(1 + 3s2
M)

gH0
1H

0
1W

+W−
1

2
gH0

1H
0
1ZZ

1

2c2
W

gG+
3 G
−
3 W

+W− −(
1

2
+ s2

M) gG+
3 G
−
3 ZZ

−
[c2

M

2

(1− s2
W )2

c2
W

+s2
M

(c4
W + s4

W )

c2
W

]
gH0

1MH
0
1MW

+W−
1

2
gH0

1MH
0
1MZZ

1

2c2
W

gH0′
1 H

0′
1 W

+W−
4

3
gH0′

1 H
0′
1 ZZ

4

3c2
W

gH+
5 H
−
5 γγ

−2s2
W gH+

5 H
−
5 Zγ

−sW
cW

(1− 2s2
W )

gH++
5 H−−5 γγ 8s2

W gH++
5 H−−5 Zγ 4

sW
cW

(1− 2s2
W )

gH+
3 H
−
3 γγ

−2s2
W gH+

3 H
−
3 Zγ

−sW
cW

(1− 2s2
W )

gH+
3MH

−
3Mγγ

−2s2
W gH+

3MH
−
3MZγ

−sW
cW

(1− 2s2
W )

gG+
3 G
−
3 γγ

−2s2
W gG+

3 G
−
3 Zγ

−sW
cW

(1− 2s2
W )
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Table D.6: H1H2V1V2 type couplings, which do not contribute to Oblique Corrections.
Common factor: ıg2gµν

gH0′
1 H

0
5W

+W−

√
2

3
gH0′

1 H
0
5ZZ

−2
√

2

3c2
W

gH+
3 H
−
5 W

+W− −cM
2

gH+
3 H
−
5 ZZ

cM
(1− 2s2

W )

c2
W

gH0
3G

0
3W

+W− −cMsM
2

gH0
3G

0
3ZZ

−3

2

cMsM
c2
W

gH+
3 G
−
3 W

+W− −cMsM gH+
3 G
−
3 ZZ

−cMsM
2c2
W

gH+
5 G
−
3 W

+W− −sM
2

gH+
5 G
−
3 ZZ

sM
(1− 2s2

W )

c2
W

gH+
3 H
−
5 Zγ

cM
sW
cW
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