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Abstract 
 
Concrete 3D printing (3DCP) is an additive fabrication technique poised to revolutionize the 
construction industry. In order to realize the full potential of 3DCP, several unique challenges must be 
overcome, most notably, that of structural instability during the printing process. As an extrusion 
process, the cementitious building material used for 3DCP must display fluid characteristics when 
pumped through a nozzle, but must immediately behave as a solid upon deposition in order to support 
its self-weight. Therefore, the yield shear stress of the material, which defines the boundary between 
solid and fluid behavior, plays a significant role in the design of 3D printable structures, both in terms 
of material selection and viable design. The work presented here seeks to better understand these 
relationships between material, structure, and fabrication process through the use of a computational 
design tool known as topology optimization, which determines mathematically the optimal material 
distribution within a design space under given conditions and constraints. By simulating the self-weight 
only loading and fixed-based boundary conditions of the 3DCP fabrication process, and by considering 
material yield shear stress as a constraint on design, an optimization problem can be posed for which 
the solution is a structure that can be successfully fabricated without collapse. To that end, a novel 
shear stress-constrained topology optimization algorithm was developed and used to generate optimal 
structural designs for 3DCP fabrication. The resulting structures demonstrate the effect of material 
yield shear stress on optimal design and indicate an available range of material properties suitable for 
3DCP fabrication. This development of material property ranges and design sensitivities can be used 
for material design, for determination of available or necessary structural design conditions, or for 
tailoring the fabrication process to achieve printable structures. 
 
Keywords: Concrete 3D printing; topology optimization; yield shear stress; self-weight loading; shear 
stress constraint 
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Chapter 1: Introduction 
 

The conventional structural design process is typically linear and sequential. As part of this process, the 
structure is constrained by the properties of the chosen material, or the available materials are limited 
by the structure and function, with the fabrication method generally chosen as a result of material and 
structure combined. With the growing complexity of engineering components, the increased focus on 
efficiency of design and function, and the vast number of available engineering materials, this linear 
design process may no longer be sufficient to take full advantage of recent technological advances in 
materials and design. In many complex problems, the design material is not a static quantity, and can 
be considered as either an independent or dependent design variable. For example, compliant 
mechanisms and piezoelectric actuators can be designed and optimized using multiple materials and 
varying material placements (Gaynor and Guest, 2014; Luo, 2010). Additionally, the fabrication method 
can limit or expand the available design space for both structure and material. Additive manufacturing 
techniques have greatly expanded the range of complex geometries and tailored materials that could 
be incorporated into the fabrication process, while traditional methods such as casting and molding 
remain limited in scope. Structural design, then, becomes one part of a larger optimization problem, 
constrained by and optimized for fabrication method, geometry, and material selection. 
 
The need for a new, nonlinear structural design process in the realm of civil engineering has emerged 
with the advent of additive construction. Additive manufacturing of concrete, or concrete 3D printing 
(3DCP) as it is commonly known, is a novel construction technique involving the layer-by-layer 
deposition of concrete or cement mortar. Many private companies and research institutions have 
invested heavily in this technology, as it is poised to revolutionize the construction industry. 
 
The revolutionary nature of 3DCP can be seen from the potential economic benefits and from the 
design perspective. Economically speaking, 3DCP can provide significant cost savings for the owner of 
the structure. The two major costs incurred during the construction process, labor and materials, can 
both be dramatically reduced. Labor costs would be reduced due to the automation of the concrete 
pouring process, which is currently labor intensive. Reductions in material costs are a result of the 
potential for new designs offered by 3DCP. At its full potential, 3DCP could remove the need for 
formwork, significantly reduce the amount of rebar necessary, and allow for more complex 
geometries, including voids. The lack of formwork reduces the amount of wood necessary for 
construction, and complex geometries can reduce the amount of concrete required. The biggest cost 
savings, however, will come from the elimination of formwork, as steel and formwork currently 
accounts for the majority of material costs for concrete construction (Holt, 2019). 
 
Though 3DCP has the potential to offer these benefits, major difficulties remain to be overcome before 
they can be realized. These challenges can be grouped into three main categories: 1. Materials; 2. The 
printing process; 3. Available design space. 
 

1. Materials 
 

The main issues with regards to materials used for 3DCP derive from the fact that any material 
used must be able to be pumped through a nozzle and must harden quickly upon being extruded. 
The cementitious mortar must display rheological properties allowing it to flow through the 
extruder, but must also maintain enough stiffness and strength in order to not deform under its
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self-weight after extrusion. The time-dependent nature of the material properties of fresh state 
cement must also be considered, as stiffness, strength, and rheology can change over the 
duration of the printing process. With these potentially changing material properties, layer 
adhesion can become an issue, depending on how long each layer takes to print. The material 
properties will affect how each layer is bonded to an adjacent layer, either vertically or 
horizontally. Additionally, the effect of other chemical processes such as heat of hydration and 
shrinkage during the printing process is not well understood. Once the printing has completed, 
fresh state properties must then be related to the mechanical properties of the material in its 
hardened state in order to understand how the design function under applied loading. 

 
2. The Printing Process 

 
Many aspects of the printing process can be controlled by the user, and can either be selected 
based on a desired outcome, or can be tailored to the functioning of specific material. These 
parameters include layer geometry (height, width, thickness), layer cycle time, print speed, and 
print direction. The effects of setting or adjusting these parameters must be understood and 
generalized. Additionally, the size of the printer must be considered. Currently, most printers 
operate on a small scale, with only a few commercial operations capable of fabricating structures 
on the scale of small houses or bridges. In order to fabricate larger structures, larger printers 
must be designed.  

 
3. Available Design Space 

 
The design space that is currently available to be fabricated by the 3DCP process is limited to 
vertical walls or geometries assembled therefrom. This limitation is partly due to the necessity of 
the design to maintain its shape during the printing process. It is also partly due to fact that the 
structure must be able to carry applied loading when it is complete. In order to expand this 
design space, designs must be created that will not deform or buckle under their own self-weight 
during the printing process, and that do not require reinforcement even in the final structure. 
Another option that is being explored is to incorporate reinforcement and/or formwork into the 
3DCP process. 
 
The issues listed above represent the three components of the nonlinear structural design 
optimization problem stated in the opening paragraph. However, it is not any one individual 
component that represents the barrier to design, but the link between them. As will be discussed 
later, there are cementitious materials that have been shown to print successfully, there exist 
systems that have produced printed structures, and there is a growing library of designs that 
have been constructed using these materials and systems. But the link between these 
components is not yet understood. It is this link that will allow for the prediction of printable 
designs, the development and selection of proper materials, and the necessary adjustment of 
printing parameters to meet structural and material requirements, therefore opening the door 
for future material design, structural design, and codification for construction. 
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One design method capable of integrating structure, material, and fabrication is Topology Optimization 
(TO). Topology optimization is a computational method for determining optimal material placement in 
a specified design domain subject to given loading/boundary conditions and geometric or material 
constraints. The process involves minimizing an objective function subject to given constraints, and is 
expressed mathematically by the following set of statements and inequalities: 
 

{

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆:     𝒇(𝒙) 

𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐:  𝒈(𝒙) ≤ 𝒈𝒎𝒂𝒙

                       𝟎 ≤ 𝒙𝒊 ≤ 𝟏   

 

 
where 𝒇(𝒙) is the objective function, 𝒈(𝒙) is the constraint function that must be less than or equal to 
a maximum value 𝒈𝒎𝒂𝒙, and 𝒙𝒊 represents the element density, taking a value of one when material is 
present and zero when material is absent. 
 
The objective function 𝒇(𝒙) can vary, from minimizing the compliance of a component, minimizing 
weight or volume, or even optimizing heat transfer. Similarly, optimization can be performed under 
various constraint functions 𝒈(𝒙), such as geometry, volume fraction, or strength. The method is 
flexible and is capable of solving many different engineering design problems. Due to this flexibility, 
and to its design capabilities, topology optimization is now broadly utilized to refine complex designs, 
such as aircraft wing box ribs (Tucker, 2004), a Volvo rear lower control arm (Larsson, 2016), and 
turbomachinery impellers (Meli, 2019). As such, the process been incorporated into many 
commercially available finite element analysis software packages, such as Abaqus, ANSYS, and Altair 
Optistruct. 
 
With proper selection of geometric conditions and design constraints, topology optimization can also 
be used to predict the relationship between material properties, the fabrication process, and optimal 
geometry. It is the goal of this work to use topology optimization to develop this relationship for 3DCP 
applications, in order to design structures that can be successfully fabricated. This goal will be 
accomplished by identifying material properties that represent limitations imposed both by the 
fabrication process and on the final design. An optimization algorithm will then be created that 
incorporates those properties as constraints. The optimization process will then produce designs that 
can be successfully fabricated using 3DCP techniques without collapsing under its own weight. 
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Chapter 2: Literature Review 
 
In order to accomplish to goal of this study, it is important first to lay the foundations of knowledge in 
the fields of 3DCP and TO. From this basis of knowledge, an understanding of fabrication processes, 
material properties, and the design method will emerge, allowing for identification of requirements 
and limitation inherent in the physical processes. These requirements and limitations can then be used 
to formulate, both conceptually and mathematically, a design problem, the solution to which will 
attempt to achieve the goal of this work. 
 

2.1 3D Concrete Printing 
 

2.1.1 Background 
 

Traditional concrete construction is a complex, multi-step process that occurs both on and off the 
construction site. Off site, the concrete mix is designed for strength, weight, and workability using a 
variety of constituent materials. A mixture of cement, water, and fine aggregate comprises the 
concrete mortar, which is then mixed with coarse aggregate and other chemical additives to form the 
concrete for construction. This mixture is then produced in a concrete manufacturing facility and 
transported to the construction site in mixing trucks. Before the trucks arrive, on-site preparations 
have completed the installation of formwork and steel reinforcement to control concrete placement 
and to add tensile strength to the structure. The concrete is then pumped into place using a hose 
guided either manually or by crane, and finished manually. Individual concrete elements such as beams 
and columns can also be pre-fabricated offsite using similar methods, then transported to the 
construction site for placement. However, the recent development of Additive Manufacturing (AM) 
techniques, and their applications to the construction industry, offers the potential to dramatically 
change the concrete construction process.  

 
The concept of AM began in 1986 with a patent for “rapid prototyping” developed by Chuck Hull (Hull, 
1986). Extrusion-based techniques, involving the layer-by-layer deposition of material over time, 
emerged shortly thereafter, beginning with a patent by Scott Crump for filament deposition (Crump, 
1992). Initially developed for polymer fabrication, AM techniques have quickly expanded into 
production of metals, ceramics, and aggregate-based materials. The seminal study on AM using 
cementitious materials, now known as 3D concrete printing (3DCP), was published by Joseph Pegna 
(1997). The experiment involved the deposition of alternating layers of sand and Portland cement, 
which was the cured by steaming. This early method of concrete fabrication lead to the development 
of the three processes in use today: D-Shape, Contour Crafting, and Concrete Printing.  
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2.1.2 Current Printing Processes 
 
There are three major printing processes that have come to define the concrete 3D printing landscape, 
both in the commercial and academic realms. These processes are: 1. D-Shape; 2. Contour Crafting; 
and 3: Concrete Printing. 
 

1. D-Shape 
 

The D-shape process is a “dry” powder-based process that relies on a powder and binder 
deposition method to create successive layers of build material (Figure 1). Each layer of powder is 
deposited as a sheet and compacted, after which binder material is deposited through nozzles 
maneuvered by gantry cranes along the path of the solid component geometry. When the 
structure is complete, the excess powder is removed and the solid component remains.  

 

 
Figure 1: Powder-based printing process: a. before printing; b. during printing; c. after printing. (Feng, 2015) 

 
D-Shape can produce very intricate geometries, more so than other methods (Figure 2), and it 
allows for the creation of overhangs and freeform features by using the excess power as a 
support during the building process. Additionally, D-Shape can incorporate concrete of the 
highest strength due to the dry process, which does not employ concrete in fluid form. However, 
D-shape results in an overuse of build material, and suffers from an excess of clean up time. 
Other problems include penetration of the binder through multiple layers, inaccuracies in layer 
geometry due to unintended spread of binder material during deposition, and slower printing 
times. These problems aside, D-Shape has been used to design intricate architectural pieces, 
small houses, and artificial coral reefs. 

 

   
a. b. c. 

Figure 2: D-Shape printed structures. a. Radiolaria Pavilion (Lim, 2012) b. House (d-shape.com); c. Artificial reef  
(d-shape.com) 
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2. Contour Crafting 
 

Contour Crafting (CC) was originally developed as a fabrication process for polymers or ceramic 
materials such as clay, but has been adapted for use with cement mortars (Khoshnevis, 2001, 
2004, and 2006). The process involves the extrusion of slurry through a feeding tube. The surface 
of the extruded layer is then smoothed using top and side trowels attached to the extruder end 
(Figure 3).  

 
 

   
a. b. c. 

Figure 3: Contour Crafting process. a. CC schematic; b. CC printer head; c. CC printing. (Khoshnevis, 2001 and 2006) 

 
 
The process allows for faster fabrication speeds, larger nozzle openings, and greater layer depths 
than other methods (up to 13mm), as the trowels are able control the spread of the extruded 
material. These advantages make the CC method well suited for high-speed automated 
construction. However, complex geometries cannot yet be fabricated with CC due to the poor 
spatial resolution and significant weight of the layers, and the designs are limited to vertical 
elements in compression only. If a door or window is to be placed in a structure, a lintel must be 
used to support the concrete surface to be constructed. 
 
Several commercial enterprises have employed CC for digital concrete construction (Figure 4). 
WinSun is a Chinese company that has produced several 3DCP structures of note. They 
constructed an office building for the Dubai Future Foundation using pre-fabricated 3DCP 
components (Camacho, 2018), and similar methods were used to construct multiple houses and a 
five-story apartment building (Paul, 2018). Recently, WinSun fabricated isolation houses in a 
response to the COVID-19 outbreak in Wuhan using 3DCP technology (WinSun, 2020). CyBe 
Additive Industries is a Dutch company that has devised a six-axis robot-arm printer capable of 
extruding an in-house mortar with a hardening time of 5 minutes. This printer fabricated the 
R&Drone Laboratory in Dubai in 46 hours over 3 weeks (CyBe, 2020). San-Francisco-based Apis 
Cor has developed a crane printer capable of fabrication within a 58m2 design base, with no 
height limitations (Paul, 2018), and has fabricated a 38m2 house in Russia.  
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a. b. 

  
c. d. 

Figure 4: Contour Crafting printed structures. a. WinSun COVID-19 isolation house (winsun3d.com); b. Cybe R&Drone 
Laboratory (cybe.eu); c. CC printed wall (Khoshnevis and Hwang 2004); d. 3D-printed home (Apis-cor.com) 

 
 

3. Concrete Printing 
 

Concrete Printing (3DCP) is a similar process to CC, but does not involve trowels to shape the 
extruded material. As with CC, the cement mortar is extruded through a feeding tube, which 
follows the geometric path set by the design. Due to the lack of geometric constraints at the 
extruding end, the nozzle size is restricted to much smaller sizes, allowing for greater control of 
the design geometry. 3DCP is the most common printing process used in research settings, and 
therefore, throughout this work, 3DCP will refer to this printing process. Though it is the most 
common process, 3DCP does have its drawbacks. Due to the small nozzle, 3DCP requires the 
longest printing time for each layer, relative to D-Shape and CC. Additionally, the smaller nozzle 
limits mix design due to constituent particle size, as well as on rheological properties due to the 
restricted flow outlet. 
 
Researchers at Loughborough University were able to fabricate a bench using the 3DCP technique 
(Lim, 2009). Also using 3DCP, Salet (2018) at the Eindhoven University of Technology, produced a 
6.5x3.5m span bicycle bridge with a depth of 0.92m, by fabricating horizontal components on 
their side, building them vertically. Researchers at MIT developed a Digital Construction Platform 
comprised of a track-operated vehicle and several robotic arms, capable of fabricating entire 
structures, including a dome of 50 feet in diameter and 12 feet in height (Chandler, 2017).  
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a. b. 

 
 

c. d. 
Figure 5: Concrete Printing systems and structures in the academic setting. a. Robotic printing system developed at 

MIT; b. Wall artifact (S. Lim, 2009); c. and d. Bicycle bridge (Salet, 2018). 

 
 

World’s Advanced Savings Project developed a series of DeltaWASP printers, with the largest 
capable of fabrication within a 12mx7mx7m design space. These printers are designed to use 
local materials to print clay, but they have also been used to fabricate cement-based structural 
beams (Holt, 2019). XTreeE used a 6-axis robotic arm to fabricate a complex wall-element 
optimized for thermal insulation (Paolini, 2019). 

 
 

   
Figure 6: Concrete Printing systems and structures in the commercial setting. Left: XTreeE (Buswell, 2018); Middle: 

DeltaWASP Printer (3dwasp.com); Right: WASP 3D-printed house (3dwasp.com). 
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2.1.4 Digital Methods 
 

Common to all three printing methods are the physical and digital methods for depositing material in 
the desired geometry. Every 3D print begins with a digital design created using Computer Aided Design 
(CAD) software. The design then proceeds through a series of steps known as “Process Planning” (PP), 
which prepares the design for fabrication (Livesu, 2017). PP is generally performed by standalone 
Computer Aided Manufacturing (CAM) software such as Materialize Magics, but certain steps can also 
be performed by CAD software or by CAM software embedded in some printers. PP begins by checking 
the design for problem areas, such as those with geometries below the printing resolution. Once the 
design has been checked and/or fixed, it becomes tessellated divided it into a triangular mesh. The 
resulting design is then divided into horizontal slices of a thickness designated by the design engineer 
to correspond with the thickness of the printed material. The resulting contours will be fabricated by 
material deposition during the printing process. The final step of PP involves designating the machine 
tool path. This process generates a stereolithography (STL) file, which can be interpreted by embedded 
software in the 3D printer. Though this is the most common method, there are “direct slicing” methods 
that skip the tessellation step, and generate slice data in the form of Gcodes, which describe the 
machine tool path, and can be interpreted by filament (extruder) printers. The digital design process is 
displayed in Figure 7. 

 

 

 
a. b. c. d. 

Figure 7: Digital design process (top) and preparation (bottom). a. Original design; b. Tessellated design; c. Sliced 
design; d. Machine instructions. (Livesu, 2017) 

 
 

2.1.5 Physical Methods 
 

The printer, or the physical machine that deposits the cementitious material, is composed of the 
following parts: 1. Intake, 2. Material chamber, 3. Pump, 4. Feeding tube, 5. Extruder, 6. Nozzle, and 7. 
Multi-axis guidance controller. The cement mortar enters the system through the intake and is stored 
in the material chamber until it is pumped through the feeding tube, into the extruder, and deposited 
through the nozzle, which is positioned at the desired location by the multi-axis guidance controller. 
Currently, there are three categories of guidance controller in use: crane systems, gantry systems, or 
robots (Figure 8). Crane systems, such as those used by Apis Cor, have the advantage of being vertically 
adjustable and can encompass very large design spaces. Gantry systems, though they are scalable, can 
only construct up to a fixed height. WinSun currently has a 40 x 10 x 6.6m gantry system, while TU 
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Eindhoven employs a system of 11 x 6 x 4m. Robots, such as those designed by Zhang (2018) at 
Nanyang Technological University, are the most restricted in terms of horizontal and vertical range, but 
with a potential six axes of movement, they can produce much more detailed designs much quicker 
than crane or gantry systems.  

 
 

   
Figure 8: Concrete Printing systems. Left: Apis Cor crane printer diagram (apis-cor.com); Middle: Eindhoven University of 

Technology gantry printer (www.tue.nl); Right: Concrete printing robots (Zhang, 2019) 

 
 
Each system allows the manufacturing engineer to control many print parameters that can affect the 
resulting structure. These parameters include print head speed, print direction, filament geometry, 
layer thickness, pump speed, and pump pressure. 
 
Determination of these parameters depends heavily on the geometry of the structure and on the 
material properties of the fresh concrete mortar. Additionally, these parameters can dramatically 
affect the resulting mechanical properties of the structure in its hardened state. Therefore, the 
relationship between material and structure must be well understood in order to successfully construct 
concrete structures using additive manufacturing techniques.  

 
 

2.1.6 Material Properties 
 

During the printing process, the cement mortar must have the properties of a fluid in order to be 
extrudable, but immediately after printing, the material must solidify in order to support its self-weight 
and the weight of subsequent layers above. Without sufficient solidification or inherent strength, 
ground layers may compress with layer build-up, and overhangs may sag or collapse due to lack of 
support, leading to undesirable deformation and overall printing failure. Since the 3DCP technology is 
still in an early stage of development, the interaction among design variables, printing parameters, and 
material properties is still unknown. Research into these relationships is ongoing, and addresses three 
main issues: 1. Mix Design, 2. Fresh State Properties, and 3. Hardened State Properties. It is common 
for researchers to either investigate the properties of several different mix designs, to study in depth 
the properties and behavior of a single mix throughout the printing process. 

 
 

2.1.7 Mix Design of 3DCP Cement Mortar 
 

Concrete, and the cement mortar from which it is derived, comes in many different forms. The 
traditional ingredients of concrete are water, cement, a fine aggregate usually consisting of sand, and a 
coarse aggregate typically of rock. The materials engineer has complete control over these input 
ingredients and their respective volume ratios, and can tailor a specific mixture for a specific project. 
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For common construction projects, high compressive strength is the goal, with workability, coarse 
aggregate particle size, weight, and material availability operating as constraints on the design. Shear 
strength and tensile strength are not considered due to the presence of formwork and reinforcement, 
and the time-dependent nature of the material properties is not considered, as the concrete can 
remain restrained by formwork indefinitely. Additionally, rheological properties of fresh concrete are 
not considered again due to the restraint of formwork. 
 
Mix design for 3DCP is a different problem altogether. Without formwork, rheological properties must 
be considered, and without steel reinforcement, tensile and shear strength become important. Coarse 
aggregates are generally not used, as they are often too large for effective extrusion through smaller 
nozzles and can cause inconsistencies in deposition, but other additives such as superplasticizers (SP), 
fiber reinforcement (FR), alternative binders, and chemical retarders or accelerators can be introduced 
in order to achieve the desired material behavior during and after printing.  
 
Superplasticizers are chemical additives used to increase the fluidity of concrete. They function by 
separating cement particles that can become clumped together, and they are able to do so without 
increasing the water content. In fact, superplasticizers are often used to decrease water content, 
allowing for increased early-age strength of the material while maintaining or increasing workability. 
The increase in fluidity can be attributed to the reduction of yield stress the material, allowing it to 
flow more readily under the loading imposed by the weight of the material itself. Lignosulfonates, 
sulfonated naphthalene formaldehyde condensates, and polymelamine sulfonates are some of the 
more commonly used superplasticizers (Aitcin and Flatt, 2015). 
 
Fiber reinforcement involves the introduction of thin fibers into the concrete mix in small volume 
fractions. Fibers can range in diameter from 0.0001 to 0.01 in. with an aspect ratio from 40:1 to 300:1. 
The fibers can be classified into one of four material categories: steel fibers (SFRC), glass fibers (GFRC), 
synthetic fibers (SNFRC), and natural fibers (NFRC). Many steel, glass, and synthetic fibers have tensile 
strengths significantly higher than that of hardened cement, and most have greater elastic moduli as 
well. The fibers are introduced into the mix to mitigate the very low tensile strength offered by 
unreinforced concrete (Zollo, 1997). 
 
Alternative binders replace the functioning of the commonly used Portland Cement in the formation of 
the paste that serves as the glue holding together the various aggregates present in the concrete 
mixture. Alternate binders have the potential to affect strength, durability, and rheology and may be 
considered depending on the material properties of the binders and of the resulting mix. Four common 
types of alternative binders are 1. Calcium aluminate cements (CACs); 2. Calcium sulfoaluminate 
cements (CSAs), 3. Alkali-activated binders such as fly ash; and 4. Supersulfated cements (Juenger, 
2011). 
  
Chemical accelerators increase the speed at which the concrete hardens over time by increasing the 
hydration rate and by reducing the average distance between cement paste particles. This process 
increases early compressive strength, but may result in the loss of long-term strength. Common 
chemical accelerators include inorganic salts, soluble organic compounds, setting accelerators such as 
sodium silicate or aluminum chloride, or solid accelerators such as calcium aluminate or silicate (Aitcin 
and Flatt, 2015). 
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Chemical retarders are the opposite of accelerators. They are introduced in order to decrease the 
speed of hardening, allowing the mixture to remain workable for a longer period of time, resulting in a 
delayed increase in strength. Use of chemical retarders can delay concrete setting up to 24 hours or 
more without affecting strength or durability. Common retarders include lignosulfates, salts of 
carboxylic acid, or sugars (Aitcin and Flatt, 2015). 
 
The effects of various additives on material properties and the printing process are discussed in detail 
below. 

 
 

2.1.8 Hardened State Properties of Cement Mortar for Concrete 3D Printing 
 

Hardened state research typically involves the fabrication and curing of 3DCP components and 
subjecting them to mechanical testing, typically in the form of compression and flexural tests. Most of 
this characterization is secondary to the development of printable materials, and is therefore 
presented as data for specific mix designs. A few studies have demonstrated the anisotropic nature of 
structures fabricated with powder-based techniques, by subjecting hardened samples different mixes 
to axial and transverse loading relative to print direction, and studying compressive and flexural 
strengths (Zhang, 2019, Feng, 2018). Feng, (2015) developed a novel stress-strain relationship 
described by a quadratic formula, and failure criterion were proposed considering the orthotropy 
resulting from the directional orientation of layers relative to geometric design and loading conditions. 
Research into the hardened mechanical properties of structures fabricated using CC techniques is not 
prevalent in the literature, and is an area that requires understanding. Additionally, links between 
fresh state properties and hardened state properties have yet to be established. 

 
 

2.1.9 Fresh State Properties of 3DCP Cement Mortar 
 

Fresh state research involves investigations into the behavior of the cement mortar in its fluid state, 
before it has been cured. It is in the fresh state that the material is pumped, fed, and extruded through 
the printer. Additionally, the material may continue to display fluid-like behavior for a time after 
extrusion. As such, both rheological properties and early-age mechanical properties of the cement 
mortar must be understood and linked to the success and/or failure of printing. Currently, the state of 
understanding the material properties of fresh state cement mortar is based on the novel concepts of 
flowability, extrudability, buildability, and printability (Rahul 2019, Paul 2018, Lim 2012). As will be 
shown below, these concepts have not been standardized as quantitative measures, either in terms of 
testing or in terms of verifiable quantities. Instead, they serve as qualitative descriptors of materials 
and their behavior during the printing process. 

 
Buildability refers to how well the material can be layered on top of itself and maintain the desired 
geometry without collapse. Buildability is a function of thixotropy and cement hydration (Roussel, 
2018; Rahul, 2019). Thixotropy refers to how the viscosity of a material decreases when stress is 
applied over a time interval, and how that viscosity recovers or increases back to the original value 
when the stress is removed. This increase and decrease in viscosity does not happen instantaneously, 
resulting in materials with high or low thixotropy, corresponding with how quickly or slowly viscosity 
recovers. Thixotropy can be characterized by the evolution of yield stress over time, which can be 
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modeled by equation 1, and visualized in Figure 9, which shows a reduction in shear strain over time as 
applied shear stress is increased, indicating rebuilding of yield stress. 

 

𝜏𝑦(𝑡) = 𝐴𝑡ℎ𝑖𝑥𝑡𝑐 (𝑒
𝑡
𝑡𝑐 − 1) + 𝜏𝑦(𝑡 = 0) (1) 

where  
𝜏𝑦(𝑡) = yield stress at time 𝑡  

𝐴𝑡ℎ𝑖𝑥 = flocculation rate  
𝑡𝑐 = characteristic time  

 
 

 
Figure 9: Structural rebuilding rate shown as yield shear stress over time: 𝜏𝑐0  𝜏𝑐(𝑡). (Roussel, 2018) 

 
Materials promoting more rapid hydration allow for the faster development of both yield and green 
strength, or the early-age strength of the mixture. During the extrusion process, the stress applied by 
the pump must exceed the material yield shear stress to cause flow. Once deposited, the material must 
rapidly regain strength, such that the yield shear stress is no longer exceeded, and flow ceases. Highly 
thixotropic cementitious materials are therefore desirable for 3DCP applications because the due to 
their ability to regain structural stability and develop green strength quickly after extrusion. Calcined 
clay or other nanoclays have been found to increase thixotropy, but tend to reduce the rate of 
hydration over time due to their adsorption of water (Kawashima 2013, Heikal and Ibrahim 2016). 
Trigger (2013) demonstrated the relationship between green strength and increased thixotropy 
resulting from calcined clay, while also demonstrating a reduction in green strength with the presence 
of additives that reduce hydration rates, such as high-range water-reducing admixtures or fly ash. The 
addition of nanoclays was also found to increase stiffness of early-age concrete, which helped to 
decrease deformation during the printing process (Panda, 2019). 
 
Flowability, also known as pumpability, describes how well the material moves through the printing 
system. A material with high flowability moves seamlessly through the system, while a material with 
low flowability is likely to clog, causing interruptions in the print or voids in the extruded layer. Voigt 
(2010) measured flowability using a drop table test, and found that the addition of fly ash improved 
flowability, while calcined clay reduced flowability. Yield stress and viscosity were also measured for all 
tested materials, and it was found that mixtures with low yield stress and low viscosity exhibited 
greatest flowability. However, these low yield stresses and viscosities also resulted in significant edge 
slump, indicating that highly flowable materials may not be suitable for fabrication, and that a balance 
must be struck between flowability and buildability of the mixture. In contrast, high yield stress and 
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high viscosity mixtures resulted in poor surface quality and honeycombing (clumping). Zhang (2019) 
identified a sand-cement ratio of 1.0-1.2 as optimal for flowability, and developed a high-thixotropy 
cement mixture that demonstrated high flowability and shape retention. Rheological properties of 
static yield stress, viscosity, and thixotropy were also measured and linked to flowability, with optimal 
material property ranges defined based on flowability and printability results. In both Voight and Zhang 
studies, yield stress and viscosity were obtained by considering the cement mixture as a Bingham fluid 
(Figure 10). Bingham fluids are a class of materials defined by exhibiting a defined yield point before 
flow begins, and a linear relationship between shear stress and shear strain rate thereafter, allowing 
yield strength to be calculated from equation 2. This model is commonly used to describe the fluid 
properties of cement mortar. 
 

𝜏 =  𝜏0 + 𝜇𝐷 (2) 
where  

𝜏 = shear stress  
𝜏0 = Shear yield stress  
𝜇 = plastic viscosity  
𝐷 = Shear rate   

 

 
Figure 10: Bingham Model for non-Newtonian fluids. 

 
 

In another study on flowability, Ma (2018) employed the slump test, the jump table test, and the V-
funnel test to determine flowability for a mixture containing copper tailings. It was found that 
flowability increased by replacing natural sand with copper tailings up to 50%.  
 
Extrudability refers to how well the material can maintain its shape after being formed and deposited 
through the printing nozzle. This characteristic can be evaluated by measuring the continuity and 
stability of a layer extruded through a nozzle of a designated size without resulting in a blockage, and is 
a pass or fail measure (Lee, 2012; Malabe, 2015). Blockages tend to be caused by the separation of 
liquid granular materials (Ma, 2018). Pumping pressures, then, cause the liquid to flow through the 
granular phase, leading to blockages as the grains build up behind the nozzle. Another method for 
evaluation involves extrusion rheology tests, which measure yield shear stress and viscosity, and are 
performed by using a ram extruder and load cell for force material through a die, and plotting pressure 
vs. distance moved by the piston. It was found that the presence of rheological modifiers with high 
fiber content, such as methyl cellulose or calcined clay, were necessary for successful extrusion. 
Malabe found that increasing the cement to sand ratio helps prevent these blockages and provides 
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better extrudability. Similar to pumpability and buildability, many of these studies measured 
rheological properties of the tested mixtures, and investigated the relationship between shear strength 
and extrudability, thereby determining optimal ranges for material properties of the mixtures for 
extrusion. 
 
Printability is a combination of buildability and extrudability, i.e. how well the material prints and 
maintains the desired structure (Ma, 2018). Kazemian (2017) developed several test methods to 
measure print quality, shape stability, and the printability window for a given mix design. In this study, 
print quality was defined by layer dimension conformity and consistency, as well as by the presence of 
surface defects; shape stability was defined by measuring layer settlement; and printability window 
was defined as the timespan during which material could be extruded with acceptable quality. Roussel 
(2018) developed a set of rheological requirements for printable materials in terms of material 
properties, including minimum yield stress values to prevent flow, minimum elastic moduli to ensure 
buckling stability, and critical strain values to prevent surface cracking.  

 
One of the major requirements posed for printability is that the yield stress of the material in each 
layer must remain greater than the stress applied on that layer by its self-weight and the weight of the 
layers above it. The yield stress is a function of time due to the continuous curing of concrete mortar, 
and the applied stress is a function of both time and height evolving throughout the printing process 
(Figure 11). 

 

 
Figure 11: Yield stress evolution in terms of material density (𝝆), layer thickness (𝒉𝒐), final object height (H), 

contour length (S), nozzle velocity (V) and time (t). (Roussel, 2018) 

 
 
Extrudability, buildability, flowability and printability are all affected by the time dependent nature of 
the material properties of cement mortar. In order to quantify this time dependence, the concept of 
open time was developed, and is used to describe the time span during which a material is extrudable, 
buildable, and therefore printable (Buswell, 2018). If printing is attempted too soon after mixing, the 
material may have excessive flowability and limited buildability. However, if too much time passes 
before printing is initiated, the material may no longer flow or be extrudable. Time-dependent 
behavior such as this may be attributable to thixotropy, hydration, or yield stress. The relationship 
between open time and material properties is not well understood at this time. However, Kruger 
(2019) developed an analytical model for buildability based on the time-dependence of yield stress and 
thixotropy, and used this model to define building rates and failure modes, leading to the creation of 
printable geometries (Kruger, 2020).  
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2.1.10 Yield Shear Stress 
 

As shown in this section, one key material property emerges from many studies involving rheological 
properties of fresh cement mortar: yield shear stress, or simply yield stress (Kawashima, 2013; Paul, 
2018; Kazemian, 2017; Buswell, 2018; Kruger 2019; Panda, 2018 and 2019; Roussel, 2010 and 2018). 
Yield stress is defined by the small region of applied shear stress values over which a viscoelastic 
material displays a rapid reduction in viscosity over several of magnitudes, as can be seen in Figure 12. 
From this small range, a single shear stress value is defined as the boundary between a material 
displaying solid properties and that same material displaying fluid properties when subjected to an 
increasing shear stress. This single value for concrete can be determined using the Shear Vane test 
(Omran, 2011; Rahul, 2019) and calculating yield shear using equation 3 relating applied torque to 
shear stress. 

 

𝑇 =  
𝜋

2
𝐷3𝜏𝑦 (

𝐻

𝐷
+
1

3
) (3) 

where  
𝑇 = measured maximum torque  
𝜏𝑦 = yield stress  
𝐻 = vane height  
𝐷 = vane diameter  

 
Time-dependence is an important aspect of yield shear stress in concrete as well as other viscoelastic 
materials. As concrete hardens over time, the yield shear stress of the material increases. In this way, 
yield shear stress is a dynamic property that will have a unique value depending on the time between 
mixing and measurement. In order to account for this time-dependence, Large Amplitude Oscillatory 
Shear tests can be performed to determine yield shear stress values at specified time intervals 
(Buswell, 2018). 

  
 

 
Figure 12: Yield shear stress graphical definition for viscoelastic materials. Yield shear stress is shown as the 
transition region between solid and fluid behavior corresponding to a range of applied shear stress values. 
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Buswell (2018) studied several problems related to printability, including geometry, open time, and 
self-weight, and was able to demonstrate the importance of yield stress in solving these problems. As 
yield stress of cement mortar changes with time, it governs the open time during which the mortar can 
be successfully extruded (lower yield stress) and support its own weight (higher yield stress). The study 
also demonstrated how minor changes in yield stress affect the printed layer thickness, as successive 
layers cause increased vertical displacement under self-weight. This deformation results in a gap 
between the previous printed layer and the layer currently being extruded, requiring continuous 
adjustment of the change in nozzle height between layers. As a result, the increment with which the 
printer head is raised for each layer must reduce throughout the printing process in order to maintain 
contact between successive layers. Rahul (2019) demonstrated that yield stress can be quantifiably 
linked to successful fabrication using 3D printing. Success in this case was defined in terms of 
extrudability, where measurements of printed layers conformed to those of the printer nozzle, and 
buildability, for which the vertical displacement of bottom layers were considered. The study identified 
an optimal range of values for yield stress, as values too low lead to failure of the printed element, and 
values too high impede extrusion. 

 
 

2.1.11 Current Research Directions 
 

The research and accomplishments presented here demonstrate the viability of 3DCP as a construction 
method, but also paint the picture of an industry in its infancy. Though many important structures have 
been fabricated, no standards have been set or proposed, either for measurement, testing, or design. 
The methods used to predict fabrication, structural performance, and material specification remain 
qualitative, and must be quantified in order to develop standards and make valid design predictions. 
These developments must take place before the 3DCP industry can fully develop. As 3DCP is still an 
emerging technology, there are many aspects that require further research and understanding.  

 
Buswell (2018) addresses many of these challenges, and cites specific needs for further development 
within the field. Within the realm of fresh-state material development, Buswell discusses the need to 
relate pumpability, extrudability, and buildability to material properties through investigating open 
time, setting and layer cycle time, deformation during material build-up, and rheological 
measurements. Hardened state properties must also be investigated, including layer adhesion, 
shrinkage and durability, and the relationship between mechanical properties and printing parameters 
such as nozzle size, layer height, and print speed. Structural design for 3DCP is another area that needs 
further development. As the design is limited by materials and by the fabrication process, both areas 
must be well understood and linked to design through investigations of minimum feature sizes and 
tolerances, vertical printing angles, and modeling of both materials and the fabrication process. Much 
of the work presented in this section is geared toward development in these areas. However, further 
research is necessary and ongoing.  

 
Incorporation of reinforcement into the 3DCP process or into design for 3DCP structures is also vital to 
the success of the industry, as methods compensating for the tensile weakness of concrete must be 
developed. Current methods under investigation involve fiber reinforcement, internal reinforcement, 
and external reinforcement. Additionally, for 3DCP to become an industry practice, design codes, 
standards, and testing methods must be developed to ensure quality and safety (Paul, 2018).  
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It is the author’s view that the most pressing need, and the largest area of potential research, involves 
relating material properties to printable designs. Therefore, the main thrust of this work is to help 
develop this link between materials, structure, and fabrication process.  
 

 

2.2 Topology Optimization 
 
The process of Topology Optimization (TO) attempts to mathematically determine the ideal placement 
of material within a given geometric volume. In order for an ideal material arrangement to exist, the 
geometry must be exposed to various loading states, boundary conditions, as well as constraints that 
define the limit of material functionality within that space. For example, consider Figure 13, which 
shows a cantilever beam subjected to a distributed load applied along the midline of the top face. In 
this design, the beam is solid. However, depending on the applied load and on various material 
properties such as strength and stiffness, it is possible that material could be removed and the 
remaining structure could still support the applied load. Now, imagine the beam is made of steel. Steel 
is a heavy and expensive material, so it may be desirable to minimize the amount of material used in 
this beam, as long as the beam continues to support the load. By removing a small amount of material 
from the mid-left and mid-right sections of the beam cross section, as in Figure 14a, an I beam with a 
very thick web is created. Removing the same amount again reveals a thinner I beam. Continuing this 
process over several iterations results in an I beam of standard dimensions used in construction – one 
that can still resist the applied distributed load (Figure 14d). This iterative process of material removal 
while maintaining functionality forms the basis of TO. To maximum the effect, material removal is 
generalized to material placement, allowing addition or subtraction of material at locations 
determined to be necessary under given loading, boundary, and material conditions.  

 
 

 
Figure 13: Cantilever beam subject to a uniform distributed load on the top surface. 
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Figure 14: Cantilever beam cross sections showing progressive material removal. 

 
TO was first developed by Bendsoe and Kikuchi (1988) as an extension of shape optimization. This 
initial method attempted to reduce the volume of a specimen by introducing infinitesimal, periodic 
holes into an otherwise continuous, homogeneous, and isotropic material medium, provided the 
resulting structure could still carry the applied loads and meet design constraints. Therefore, the 
design problem became a question of presence or absence of material at individual points within the 
geometry, and how the resulting porosity affected the material properties of the new “composite” 
material. The porosity of the composite material can then be considered as an artificial material 
density of a single, finite volume element, and the stiffness of that element becomes a function of that 
artificial density. The optimal artificial density can then be determined at each material point, allowing 
for the determination of the optimal distribution of material within the design space. This initial work 
then solved a compliance minimization problem subject to a minimum volume constraint, which has 
since become a standard textbook TO problem considered by many algorithms. However, this method 
was subject to the problem of intermediate material properties. It was common that, at a given point, 
the composite material was present, but held properties that differed greatly from those of the 
homogeneous material. Since material can either exist (1) or not exist (0), these intermediate regions 
were not physically viable. 
 
Since this initial homogenization formulation, several other methods have been developed that have 
replaced homogenization as TO methods in use by researchers, commercial software, and design 
engineers. A few of the most widely used and tested methods are introduced here. 

 
 

2.2.1 Simplified Isotropic Material with Penalization (SIMP) 
 

The SIMP method was first developed by Bendsoe (1989) as an extension of the homogenization 
method, in an attempt to solve the problem of intermediate materials. Here, the material was no 
longer considered as a composite. Instead, the presence or absence of material at each element 
became the design variable, with each element assigned an artificial density ranging from 0 to 1, with 1 
corresponding to the existence of material and zero corresponding to a void. This artificial density 
would scale the stiffness of the material, penalizing any intermediate density with a very low stiffness, 
and therefore driving the solution at that point to a value of 0 or 1. Penalization is performed using a 
power-law approach where 𝐸 is Young’s Modulus, 𝑥𝑖  is the artificial density, and 𝑝 is the penalization 
factor (eqn 4). 

 

𝐸(𝑥𝑖) =  𝑔(𝑥𝑖)𝐸0      where     𝑔(𝑥𝑖) =  𝜌𝑖
𝑝 (4) 
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Bendsoe and Sigmund (1999) defined the penalization factor numerically and physically by 
conceptualizing the intermediate material densities as composite materials, and using the Voigt and 
Hashin-Shtrikman upper bounds to define engineering parameters. These bounds define an upper limit 
on stiffness of the imaginary composite material, consisting of a given volume fraction of solid material 
and a corresponding volume fraction of voids within a given representative volume element. The Voigt 
upper bound is estimated using the rule of mixtures for composite materials (eqn 5), and by assuming 
strain continuity between materials. In other words, both the void area and solid area will deform 
equally. This assumption results in an upper bound on stiffness due to the fact that strains are not 
continuous in reality, and that allowing the void areas to absorb some of the strain energy makes the 
composite material stiffer than the homogeneous material. The Hashin-Shtrikman upper bound is 
developed similarly from the limitations placed on composite bulk and shear moduli by considering the 
rule of mixtures and the theory of minimum potential energy (eqn 6). Lower bounds are not 
considered when defining the penalization factor, as the minimum stiffness is known to be zero (or 
approaching zero) for the void material. 

 
𝐸𝑒𝑓𝑓 = 𝑣𝑓𝐸𝑓 + 𝑣𝑚𝐸𝑚 (5) 

 where  
𝐸𝑒𝑓𝑓 = Effective composite Young’s Modulus  
𝑣𝑓 = Fiber volume fraction  
𝐸𝑓 = Fiber Young’s Modulus  

𝑣𝑚 = Matrix volume fraction  
𝐸𝑚 = Matrix Young’s Modulus  

 
Π = 𝑈 −𝑊 (6) 

 where  
Π = Total potential energy  
𝑈 = Elastic strain energy  
𝑊 = Work  

 

𝑈𝑒 =
1

2
∫{휀}𝑇{𝜎}𝑑𝑉 (7) 

where  
휀 = Strain  
𝜎 = Stress  

 
Thus, the penalization method was related to physical phenomenon, and was no longer purely a 
mathematical construct. However, the choice of 𝑝 depends on the physical problem and can have an 
effect on the final solution. Often 𝑝 is relaxed, or varied from larger to smaller values, throughout the 
optimization process, proceeding from 𝑝 = 1, until convergence is found. 

 
Since its introduction in 1989, SIMP has become the most common method for TO. It has been used to 
solve compliance minimization problems (Sigmund, 2001; Talischi, 2012; Liu, 2014), stress-constrained 
problems (Bruggi and Duysinx, 2012; Holmberg, 2013; Gebremedhen, 2019), and problems considering 
multiple materials (Gaynor, 2014; Li and Kim, 2018; Zuo and Saitou, 2017), among others. Sigmund 
(1999) released a 99-line Matlab code for 2D SIMP-based TO that has become a standard algorithm for 
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researchers. This 99-line code was modified for efficiency by Andreassen (2011) and was expanded to 
solve 3D problems as well (Liu 2005, 2014). Programs were also developed in the Python language 
(Hunter 2009 from Liu) and for Mathematica (Sokol 2011 from Liu). 

 
 
2.2.2 Evolutionary Structural Optimization 

 
The original Evolutionary Structural Optimization (ESO) method functioned by incrementally removing 
material at locations with the lowest stresses or strain energy (Huang and Xie, 2010). As a 
unidirectional method, a high initial volume fraction was set and optimization would proceed only by 
removing material. In this way, the structure “evolves” with each iteration, as each material placement 
is based on the previous arrangement. Due to the unidirectional limitation, the method was later 
expanded to Bi-directional Evolutionary Structural Optimization (BESO), which allowed material to be 
added as well as removed (Chu, 1996). The original versions of ESO/BESO could only be used to solve 
compliance minimization problems subject to a volume constraint, and could not be easily adapted to 
other types of problems. Huang and Xie (2010) were able to pose and solve a displacement-
constrained problem using BESO, but the method has not been adapted to solve more general 
problems as of yet. 

 
A significant limitation of the directional nature of ESO/BESO is the problem of local vs. global 
solutions. Solutions result in a locally optimized solution due to the fact that the method proceeds 
directionally and with relation to previous iterations, instead of searching for optimal solutions with 
each iteration. However, ESO/BESO methods are widely used, both in both research and industry.  
(Huang and Xie. 2008) 
 
 
2.2.3 Level-Set 

 
The Level-Set method is another continuous TO method, which functions by tracking the boundaries 
that define the surface of the solid volume under consideration. Tracking is performed using algorithms 
developed by Osher and Sethian (1988, 1999) using the Hamilton-Jacobi equation: 

 

𝜕𝜙

𝜕𝑡
= −𝑉𝒏 ⋅ ∇𝜙 (8) 

 
where 𝑡 is a time-like parameter representing the evolution of the surface, and 𝑉 is a speed function 
that moves the level-set function 𝜙 relative to a “merit” or constraint function. Similar to SIMP, 
magnitude and direction of changes to the level-set function are driven by sensitivities, both of the 
level-set function itself, and of the constraint functions. 

 
The initial work using level-set methods for TO was performed by Sethian and Wiegman (2000). They 
were able to present the optimized structure of a cantilever beam subject to a point load minimizing 
both weight and compliance separately. The initial design geometry in this case was a porous 
structure. This was due to the fact that the original level-set method could only optimize a single, solid 
geometry, as the geometry evolved from the initial surface boundary. Introducing pores into the initial 
design allowed optimization to proceed along several surface lines. Later methods were developed to 
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introduce holes into the interior of an initially solid geometry, allowing interior voids to be produced 
where necessary during optimization (Wang 2007, Yamada, 2010). 

 
Further optimization work has been performed using the level-set method, including compliance 
minimization (de Gournay, 2008), stiffness maximization of multifunctional materials (Challis, 2008), 
and stress minimization of multi-material topology (Chu, 2017). Additionally, Challis (2010) and 
Vogaitzis (2017) have developed open-source Matlab codes for level-set optimization, the former 
based on Sigmund’s 99-line Matlab code referenced above. 
 
 
Each of these TO methods shares a set of basic requirements that form the scaffolding of the 
optimization process. The requirements are discussed in the following section, and are presented in 
terms of a standard TO problem. The example problem involves minimizing the compliance of a 
cantilever beam under a unit point load and subject to a volume fraction constraint. This example 
problem follows that set up and solved by Liu (2014), demonstrating the functionality of the open-
source TO software, Top3D. The problem is formulated as follows: 

 

{
 

 
𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆:     𝑐(𝒙𝒊) = 𝑭

𝑇𝒖(𝒙𝒊)

𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐:        
∑ 𝒙𝒊𝑽𝒊
𝒏
𝒊=𝟏

∑ 𝑽𝒊
𝒏
𝒊=𝟏

≤ 𝑽𝒇

                              𝟎 ≤ 𝒙𝒊 ≤ 𝟏   

 (9) 

where  
𝑐(𝒙𝒊) = Elemental compliance  
𝑭 = Applied force at nodes of element 𝒊  
𝒖(𝒙𝒊) = Nodal displacement  
𝑽𝒊 = Volume of element 𝒊  
𝑽𝒇 = Designated maximum volume fraction  

 
It is important to note that, in the following sections, specific attention will be paid to the formulation 
of requirements for the SIMP method, as the SIMP method will be used in this research. Additionally, 
TO will be discussed in the context of structural analysis and design, though it is not limited to that 
domain. 

 
 

2.2.4 Requirements 
 

2.2.4.1 Geometry 
 

The first stage of any TO problem involves defining the initial geometry that is to be optimized. This 
process involves setting boundaries on the space that can potentially contain material. This space can 
be directly related to a real-world engineering problem with defined architectural and/or structural 
dimensions, or it can be a theoretical design space created by the design engineer. The boundaries are 
determined in terms of dimensionality (2D or 3D) as well as lengths of sides and selection of shapes. 
The space is then discretized into finite elements for analysis. Conceptually, the space can be thought 
of as initially empty or initially full of material, but the initial state of artificial material density can be 
defined on a range from 0-1 depending on the directionality of the optimization process. As such, each 
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element in this initial space is given an initial condition of material presence or absence from which 
optimization is to proceed.  

 
Common geometries used throughout research to test the effectiveness and accuracy of new TO 
methods include the rectangular beam, L-shape, and T-shape. In design, however, the initial geometry 
can be as complicated as the available space for a Real Lower Control Arm of a Volvo automobile 
(Larsson, 2016) or the design space for a turbomachinery impeller (Meli, 2019). 

 
The geometry given for the example problem is a beam, represented by a rectangular space (Figure 
15). 

 

 
Figure 15: Example problem rectangular prism geometry.  

 
 
2.2.4.2 Boundary Conditions 

 
Once the geometry has been set in space, boundary conditions (BC’s) must be defined. BC’s set 
limitations on the movement of the component, and are derived from the physical problem. They are 
defined in terms of limitations on displacements and rotations at fixed points in the geometry. For 
example, the cantilever beam considered above will have fixed displacements in all directions, as well 
as fixed rotations at each node on the connected surface, while a simply-supported beam will have 
fixed displacements in one direction only at the bottom corner nodes. BC’s must be defined in order to 
prevent full rigid body motion, which leads to an infinite number of possible displacements relative to 
a given loading condition. 

 

 
 

Figure 16: Example problem cantilever boundary conditions (blue area represents fixed edge).  
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2.2.4.3 Loading 

 
The purpose of any TO process is to find the optimal solution to an engineering design problem. In the 
case of structural design, the problem involves the application of some design load. The load may be a 
point load, a distributed load, a design-dependent load, or a dynamic load. Design-dependent loads 
refer to loading that changes based on the design, a common example of which would be pressure 
loading acting on a surface contour – as the contour changes, so does the pressure (Lee, 2012). 
Additionally, multiple loads or multiple load cases may be considered. Loads are applied to the initial 
design space at the nodes of the discretized geometry corresponding to locations of applied force on 
the final design. Loading locations and values must therefore be known beforehand, the exception 
being the case of design-dependent load cases where loading and location are adjusted as the material 
placement changes. 

 
The location of the point load in the example problem will be the bottom right corner, as seen in Figure 
17. 

 

 
Figure 17: Example problem loading at the bottom right edge of the design space. 

 

 
2.2.4.4 Define Material Properties 

 
TO is a problem of material placement. As such, the specific material or materials under consideration 
must be defined in terms of their physical properties. Young’s Modulus and Poisson’s ratio must be 
defined in order to perform Finite Element Analysis, as discussed in section 2.2.4.6. Additionally, if the 
weight of the component is to be considered, the physical density of the material must be defined. 

 
The example problem is unit-less. Therefore, material properties defined for the example problem are 
as follows: 

 
Young’s Modulus = 1 
Poisson’s Ratio = 0.1 
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2.2.4.5 Iterations 
 

The subsequent sections, including Finite Element Analysis (FEA), objective and constraint function 
calculations, sensitivity analysis, optimization, and termination criteria checks are performed in order, 
and if the result of these steps does not end the optimization process, a new iteration will begin with 
FEA. Loading may also be included in the iterative process if the loads are design-dependent (Lee, 
2012) or if self-weight is considered (Bruyneel and Duysinx, 2005), as is the case in this work. Figure 39 
(section 5.14) shows the iterative processes involved in TO. 

 

 
2.2.4.6 Finite Element Analysis (FEA) 

 
With set boundary conditions and applied loads, FEA can be performed on the potential structure. FEA 
determines the displacements of each element, allowing for calculations of stress and strain as well. 
These calculations provide the information necessary to determine the relative importance of material 
presence at the location of each element. For example, if an element experiences very low stress, 
material placement at that location may not be necessary for structural functionality, and therefore, 
the material may be removed from the structure. The mathematical basis of FEA will be discussed later 
when presenting the development of the novel TO algorithm. 

 
The method of FEA is dependent upon the dimensionality of the geometry, the physical problem being 
solved, and the required accuracy of the solution. Additionally, the computational cost of FEA is often 
considered in determining the method. In his 99-line code, Sigmund (2001) uses a square bi-linear 4-
node element to perform 2D FEA, while Liu (2014) uses an 8-node hexahedral element in an expanded 
3D version of the 99-line code. By using a single element type defined beforehand, both Sigmund and 
Liu are able to pre-populate the stiffness matrix in order to save computational time and resources. 
PolyTop is a TO algorithm developed for the purpose of expanding available mesh options by using 
isoparametric polygonal elements (Talischi, 2012).  
 
An alternative method for performing FEA, avoiding the necessity of writing new code, is to link the TO 
program to a commercial FEA solver. Zuo and Xie (2015) developed a TO algorithm in Python that 
accesses the FEA solver in Abaqus, while Papazafeiropoulos (2017) developed a program for enabling 
quick and easy data transfer between Matlab and Abaqus specifically for problems involving 
optimization. 
 
The example problem requires use of FEA equations to calculate displacements, and therefore, 
compliance. The FEA displacement equation is presented below (eqn 10) will be discussed in detail in 
section 5.6. Additionally, the FEA code developed for Top3D is used for FEA development and 
calculations. 

 

𝑲𝒖 = 𝑭 (10) 
     where  

𝑭 = applied force vector  
𝒖 = displacement vector  
𝑲 = stiffness matrix  

 
For this example problem, the element side length, and therefore volume, are set to unity. 
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2.2.4.7 Objective Function 
 

The objective function defines the goal of the optimization problem. That goal is given in terms of 
maximizing or minimizing a specific quantity that can be calculated based on geometry, boundary 
conditions, applied loading, and/or FEA results. The goal must also be a differentiable function of the 
design variable (artificial density) such that as the material placement changes, so does the objective 
function. As such, the objective function is calculated for each iteration. If the objective function 
satisfies certain termination criteria, as discussed later in section 2.2.4.12, the optimization can be 
considered complete, and the process will end. 
 
Defining the objective function depends on the physical problem being solved. The most common form 
of TO is the compliance minimization problem, where the goal is to minimize the displacement of the 
structure under loading. In this case, and in the case of the example problem, the objective function is 
a calculation of either A. the maximum compliance of the structure, or B. the sum of the compliance of 
each structural node. Case B is used in the example problem, and is expressed as: 

 
min  𝑐(𝒙𝒊) = 𝑭

𝑇𝒖(𝒙𝒊) (11) 
     and calculated as:  

𝑐 =  ∑𝒖(𝒙𝒊)

𝑖

𝑛=1

 (12) 

 
Second to the compliance problem in terms of commonality is the volume minimization problem, 
which searches for the arrangement of material that results in the lowest volume. The objective 
function in this case can be calculated in terms of mass or volume. 

 
Other objective functions include minimizing stress, strain energy, torque (Choi, 2011), vibrations (Du 
and Olhoff, 2007), or maximizing energy absorption (Soto, 2001). 

 
2.2.4.8 Constraint Functions 

 
A constraint function defines a limitation on the optimization process that reflects a physical restriction 
imposed as a result of the design problem. This function is expressed as a differentiable inequality in 
terms of the design variable, where the calculated value of the constraint in the current iteration is 
compared to a limiting value set by the design engineer. For example, a simply-supported beam may 
be optimized to minimize weight, but restricted to a maximum deflection of 2 cm due to serviceability 
considerations. 
 
With each iteration of the TO process, deflection at each node is calculated during the FEA step, and 
compared with the maximum allowable displacement. If the constraint is not satisfied, such that 
deflection exceeds the maximum, the following iteration will attempt to place material in order to 
reduce deflection. If the constraint is satisfied, the process will consider improving the objective 
function by further minimizing or maximizing the target quantity. Without this constraint, the 
optimization process would continue to reduce the volume of the structure endlessly, resulting in 
physically unacceptable or unrealistic deflections. In this case, it is likely that the volume would reduce 
to a physical minimum or even zero volume, as the reduction process is unrestricted. 
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The constraint function is not limited to deflection, however. Depending on the physical problem, the 
optimization process can be constrained by stress, volume (Liu, 2014), connectivity (Li, 2016), 
geometry (Dapogny, 2017), or many other criteria. It is most common for the constraints above to be 
considered on a global level, where a single maximum/minimum value from the entire structure is 
considered as the only constraint imposed on the design. Considering the global max/min assures that 
all other elements will satisfy the constraint as well. However, global consideration may not result in a 
fully optimized structure, as local conditions may or may not significantly affect the overall structure. 
Therefore, researchers have developed algorithms to impose multiple constraint function, allowing for 
consideration of values at a local level, where each individual element is separately constrained 
(Duysinx and Bendsoe, 1998), or at a regional level, where values are averaged across several 
designated areas in the structure (Holmberg, 2013). Additionally, multiple constraints allow 
optimization problems to account for multiple criteria simultaneously, such as compliance and 
connectivity (Li, 2016). 
 
In the example problem, the optimization process is constrained by a maximum volume fraction, 
expressed mathematically as: 
 

∑ 𝒙𝒊𝑽𝒊
𝒏
𝒊=𝟏

∑ 𝑽𝒊
𝒏
𝒊=𝟏

≤ 𝑽𝒇 (13) 

 
For this problem, the volume fraction constraint is set to: 𝑽𝒇 = 0.3. 

 
 

2.2.4.9 Sensitivity Analysis 
 

With each iteration, the objective function and constraint functions are calculated using current values 
of the design variable. If these functions do not satisfy termination criteria, the optimization process 
will continue, and the material placement for the subsequent iteration will be determined. In order to 
determine the new material placement, sensitivity analysis must be performed. 
 
Sensitivity analysis enables generation of a new material placement by calculating the effect of 
changing the design variable on the values of the objective and constraint functions. For example, 
considering a compliance minimization problem subject to a volume fraction constraint. If the volume 
fraction of the structure is less than the constraint, material may be added to the structure in order to 
decrease compliance. Sensitivity analysis calculates how adding or removing material at a given 
location will affect the displacement. If the result is reduced compliance, material will be added. If the 
result increased compliance, material may not be added. 
 
Sensitivity analysis is performed by calculating the gradients of the objective and constraint functions 
with respect to the design variable at each element in the structure. These gradients can be calculated 
by either discrete methods or variational methods (Papadrakakis, 1996). Variational methods tend to 
be complex and expensive, and are much less common than discrete methods. Therefore, only discrete 
methods will be discussed here. Discrete methods involve calculating the derivatives of the target 
function, either analytically or numerically. The finite difference method offers a numerical solution 
through perturbation of the design variable by small increments and re-calculation of the target 
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function. The forward, backward, or central difference method may be employed.  Mathematically, the 
finite (forward) difference method is represented as such: 
 

𝜕𝑓(𝑥𝑖)

𝜕𝑥𝑖
= 
𝑓(𝑥𝑖 + ℎ) − 𝑓(𝑥𝑖)

ℎ
 (14) 

 
where 𝑓(𝑥𝑖) is a continuous, differentiable function of the design variable 𝑥𝑖, and ℎ is a perturbation of 
the design variable. This formula can be used to calculate sensitivities of any objective or constraint 
function of 𝑥𝑖  simply by changing the function 𝑓(𝑥𝑖), making the method simple to implement. 
However, since the derivative must be calculated for each element and for each function, the finite 
difference method quickly becomes computationally expensive.  
 
The alternatives to numerical methods are analytical methods, which involve chain rule differentiation 
of finite element equations. In contrast to the finite difference method, derivatives for unique 
functions are unique themselves, so sensitivity equations must be formulated for target functions on 
an individual basis. 
 
Analytical methods for determining derivatives is computationally more efficient, but can be 
challenging to implement due to the complex nature of many objective and constraint functions. 
Additionally, it is possible to encounter solutions that require inversion of the stiffness matrix, which 
may have multiple solutions at the local level. In this case, adjoint variables or pseudo-loads must be 
calculated globally, which can blur the distinction between local and global sensitivities. A potential 
solution here is to combine numerical and analytical methods into “semi-analytical” methods involving 
finite difference equations and derivatives of finite element equations (Papadrakakis, 1996). 
 
For the example problem, the analytical sensitivities are presented here for both the minimum 
compliance objective function (eqn 15) and the volume fraction constraint function (eqn 16). 
 

𝜕𝑐(𝑥𝑖)

𝜕𝑥𝑖
= −𝒖𝒊(𝒙𝒊)

𝑻[𝑝𝑥𝑖
𝑝−1(𝐸0 − 𝐸𝑚𝑖𝑛)𝒌𝑖

0]𝒖𝒊(𝒙𝒊) (15) 

 
𝜕𝑉(𝑥𝑖)

𝜕𝑥𝑖
= 𝑉𝒊 (16) 

 
2.2.4.10 Optimization 

 
The optimization algorithm is responsible for determining material placement for the subsequent 
iteration. There have been several proposed methods for optimization, each requiring different inputs, 
and each proceeding towards a solution in a different manner. Two of the most common methods for 
optimization are discussed here. 
 

1. Method of Moving Asymptotes 
 
The Method of Moving Asymptotes (MMA) was developed by Svanberg (1987), and while it can 
be generalized to many optimization problems, it was designed specifically for structural 
optimization. MMA belongs to a special class of algorithms known as conservative convex 
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separable approximations (CCSA) designed to solve non-linear inequality optimization problems. 
CCSA methods are applicable to minimization problems with less-than or equal-to constraints 
(Svanberg, 2002). These methods consist of two iterative loops, one inner and outer. The outer 
loop is represented by the iterative TO process, discussed further in section 5.5. The inner loop 
takes in the values of the objective and constraint functions and their derivatives, and then 
creates and solves a sub-problem of the same form as the original TO formulation that 
approximates the original functions. If the solution is considered optimal, it is accepted and the 
inner loop terminates. If the solution is rejected, a new sub-problem is created and solved, until 
an optimal solution is reached. MMA further develops this idea by employing the idea of “moving 
asymptotes” which form bounds on the sub-problem and the resulting function approximations. 
The bounds move with each iteration, allowing a more optimal solution to be reached. 
 
MMA has quickly become a widely used method for optimization due to its ability to efficiently 
consider a large number of design variables. However, the method is not globally convergent, 
meaning it does not always result in a globally optimal solution. As a result, Svanberg (2002) 
developed a globally convergent MMA (GCMMA), which in practice is quite computationally 
expensive and time consuming due to the number if iterative parameters involved. 
 
2. Optimality Criteria 
 
Optimality Criteria (OC) is an older and simpler optimization method based on the conditions 
proposed by Karush, Kuhn, and Tucker (KKT) (eqn 16). These conditions define whether a given 
point represents an optimal value. In the context of TO, OC is similar in form to MMA, in that it 
requires values of the objective and compliance functions and their sensitivities in order to 
calculate the next material iteration. Optimization proceeds as a nested loop that either adds or 
subtracts material based on calculations of the optimality condition. The direction and magnitude 
of optimization (whether material is added or subtracted, and the amount thereof) is driven by 
the relationship of the optimality condition to the objective function of the current iteration. 
Consider the compliance minimization problem presented in the example, and in Bendsoe (1995) 
and Liu (2014). The OC is calculated as 𝐵𝑖 (eqn 17) and the previous objective function value 𝑥𝑖  is 
scaled by this value (eqn 18). If the new objective function value is greater than the previous 
value, material is added in proportion to 𝐵𝑖, whereas if the new value is less than the previous 
value, material is removed. A move limit is set to define the maximum value of change between 
iterations. 
 

𝜕𝑐(𝑥𝑖)

𝜕𝑥𝑖
+ 𝜆

𝜕𝑉(𝑥𝑖)

𝜕𝑥𝑖
= 0 (16) 

 

𝐵𝑖 =
𝜕𝑐(𝑥𝑖)

𝜕𝑥𝑖
(𝜆
𝜕𝑉(𝑥𝑖)

𝜕𝑥𝑖
)
−1

 (17) 

 

𝑥𝑖
𝑛𝑒𝑤 = {

max(0,  𝑥𝑖 −𝑚) , 𝑖𝑓 𝑥𝑖𝐵𝑖 ≤ max (0,  𝑥𝑖 −𝑚)

min(1,  𝑥𝑖 +𝑚) , 𝑖𝑓 𝑥𝑖𝐵𝑖 ≥ min (1,  𝑥𝑖 −𝑚)
𝑥𝑖𝐵𝑖,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (18) 
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This relationship between OC and optimization direction depends on the problem being solved. 
In the case of compliance minimization with no self-weight, adding material will always reduce 
compliance and subtracting material will always increase compliance. This relationship does not 
exist under self-weight loading, or when considering material properties such as shear stress, as 
will be shown later in this work. In order to use OC, this directional relationship must be known 
and clearly defined, such that optimization direction can be known a priori. 
 
3. Other Methods 
 
Other optimization methods include Sequential Quadratic Programming such as CONLIN (Fleury, 
1989), the Active Set algorithm (Nocedal and Wright, 2006), and Line Search methods (Duysinx, 
2020). 
 
OC is the optimization method selected for the example problem due to the singular nature of 
the constraint, and the prescribed optimization direction presented by the compliance 
minimization problem. Additionally, OC is employed by Top3D to solve the compliance 
minimization problem, so modification is not required. 

 
 

2.2.4.11 Filtering 
 

Many calculations in TO occur at the elemental level or result in values defined for each element. All 
FEA calculations are based on and/or produce nodal or elemental quantities. In the case of FEA, these 
quantities are based partly on continuity relationships between elements. This is an important 
concept, as no material element exists in a vacuum. However, when assigning material to an individual 
element, these relationships are not considered. This disconnected relationship can result in 
checkerboard patterns, or areas of alternating material and void placements, representing a physically 
impossible arrangement of material (Diaz and Sigmund, 1995). It is for this reason that filtering plays an 
important role in the TO process. Filtering involves weighting the design variable of an element based 
on values of the design variables of surrounding elements.  
 
Several filtering methods have been devised to solve this issue. Sigmund initially proposed the density 
filtering method (1994, 1997 from Duysinx course lectures). This method was then simplified by Bruns 
and Tortorelli (2001). The simplified method is employed in current TO algorithms (Liu, 2014) and 
defines the “neighborhood” of each element based on a filter radius 𝑅, prescribing a weighting factor 
as a function of that distance. The weighted artificial densities are then calculated as follows, and later 
replace the initial density values: 

 

𝑥𝑖 =
∑ 𝐻𝑖𝑗𝑣𝑗𝑥𝑗
𝑛
𝑗=1

∑ 𝐻𝑖𝑗𝑣𝑗
𝑛
𝑗=1

 (19) 

 

𝐻𝑖𝑗 = 𝑅 − 𝑑𝑖𝑠𝑡(𝑖, 𝑗) (20) 

where   
𝑛 = Total number of elements  
𝐻 = Weight factor  
𝑅 = Filter radius  
𝑑𝑖𝑠𝑡(𝑖, 𝑗) = distance between elements 𝑖 and 𝑗  
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Another common filtering technique is the Heaviside Filter (Guest, 2014), which modifies the density 
filter with a Heaviside function, driving the artificial density directly to 0 or 1. This method eliminates 
“grey” elements of intermediate artificial density. 
 
The filtering technique employed by Liu (2014) is used in the example problem. 

 
 

2.2.4.12 Termination Criteria Checks 
 

In order for the optimization process to end, termination criteria must be defined. These criteria can 
define a successful optimization or an incomplete optimization, or they can manually end the process 
when specific criteria are met. In the case of successful or manually completed optimization, the 
geometry produced by the most recent iteration becomes the optimized structure 
 
A successful optimization results in a structure that satisfies all constraints and completes the goal 
stated in the objective function. In this case, successive iterations will converge on a solution, and a 
convergence tolerance is set to define when optimization is complete. For example, Liu (2014) defines 
a change variable, which is determined by calculating the artificial density change of each element 
from one iteration to the next, considering only the maximum absolute value of the change. If this 
change is less than a specified tolerance value, and the constraints are satisfied, the process is thought 
to have converged on a solution, and the program will end. Other convergence checks include a set 
KKT tolerance (Svanberg, 2002) or a resolution tolerance (Biyikli and To, 2015). 
 
It is standard practice to define a maximum number of iterations to prevent the process from running 
indefinitely. This is commonly performed by embedding the iterative processes within a while loop, 
which records the number of iterations, and runs until the maximum number of is reached. If the 
maximum number of iterations is reached without convergence on a solution, the optimization can be 
considered incomplete. 
 
It is also possible to define specific criteria that will manually end the process, such as a minimum or 
maximum volume being reached, as will be discussed later in the context of this work. These criteria 
can have a physical meaning, identifying if either the constraints cannot be met, or if the objective 
function cannot be satisfied. 
 
The example problem solved by Top3D considers only two termination criteria: 1. Convergence based 
on incremental changes in artificial density between iterations, and 2. A set maximum number of 
iterations. 

 
 

2.2.4.13 Results 
 

The final optimized geometry is displayed graphically when the process is finished, and the final values 
of the objective and constraint functions are recorded. The geometry is presented in terms of 
individual elements, with the artificial density of the elements portrayed in gray scale. Common 
practice is to represent solid elements in black and void elements in white. Depending on the program, 
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an element of intermediate artificial density may be forced to black or white, or presented on a gray 
scale to indicate density value. 
 
The results of the example problem are presented in Figure 18. Top3D employs a gray scale display 
function, allowing intermediate elements to be displayed in terms of their calculated artificial density 
values. 

 

 
Figure 18: Example problem optimized structure. 

 
 
2.2.5 Applications 

 
TO is a flexible design method, capable of solving many different engineering design problems through 
the choice and implementation of objective and constraint functions, and their relationship to physical 
applications. As a result, TO is now broadly utilized to refine complex designs, such as aircraft wing box 
ribs (Tucker, 2004), a Volvo rear lower control arm (Larsson, 2016), and turbomachinery impellers 
(Meli, 2019). As such, the process has been incorporated into many commercially available finite 
element analysis software packages, such as Abaqus, ANSYS, and Altair Optistruct. 
 
Despite the power of the TO process, its practical impact was initially limited, as many of the complex 
designs generated by the process could not be manufactured using traditional fabrication techniques. 
However, with the rapid advancement of additive manufacturing, TO has become an increasingly 
popular design method since previously “un-machinable” designs can now be fabricated (Wang 2013, 
Robbins 2016).  
 
Much of the current research involving TO in additive manufacturing is focused on metals or polymers 
due to the ability to fabricate a component in its final form. There are limitations to these designs, 
however. Many designs contain overhanging regions of material that must be supported. Vanek (2014) 
and Dumas (2014) used TO to design removable structural supports necessary for the additive process. 
Leary (2014) and Gaynor and Guest (2016) link the additive fabrication method with structural design 
by using TO to design support-free components, allowing for fabrication without support removal post-
printing.  
 
With proper selection of geometric conditions and design constraints, TO can also be used to predict 
the relationship between material properties and optimal geometry. For example, Nomura (2015) 
developed an optimization method for anisotropic materials, and Zhang (2016) investigated the effects 
of mechanical anisotropy on structures optimized for additive manufacturing. Zuo and Saitou (2017) 
and Li and Kim (2018), among others, developed TO methods for multi-material designs, while Du 
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(2016 and 2018) developed a computational framework for TO of bi-modular materials.  These works 
are important since many real engineering materials are not linear elastic, as required by the 
conventional TO codes, and designs often utilize multiple materials in tandem.  
 
In the context of this work, it is important to understand the advances made in stress-constrained TO 
methods. Stress-constrained TO problems consider stress equations as constraint functions, and 
designate a maximum stress value for a particular design. Several methods for stress-constrained 
optimization have been developed, nearly all considering Von Mises stress (VMS) or failure criterion 
such as that proposed by Drucker-Prager (Luo and Kang, 2012). A vast majority of stress-constrained 
TO algorithms employ the SIMP method, and nearly all consider either mass or compliance 
minimization. Duysinx and Bendsoe (1998) provided the theoretical basis for inclusion of local stress 
constraints, but considering the large number of constraint functions, other less costly methods are 
more widely used. Global stress constraints have been employed (Gebremedhen, 2019), however, the 
presence of stress concentrations may skew the results in these cases. As a compromise, in an attempt 
to mitigate both stress concentrations and computational expense, techniques have been developed 
to cluster or regionalize the stress constraints (Holmberg, 2013; Lee, 2012; Le, 2009). Advances such as 
these have resulted in the incorporation of VMS stress constraints into commercially available FEA 
software (ANSYS). 
 
Additionally, for the purposes of this work, the use of TO in concrete design must be understood. To 
date, only a few studies have investigated the application of TO in concrete design. Much of this work 
is geared towards finding the optimal placement of reinforcement within concrete components, (Amir, 
2012; Bogomolny and Amir, 2011 and 2012; Amir and Sigmund, 2013) or external to concrete 
structures (Cunha and Chaves, 2014). These works apply principles of multi-material TO as the basis for 
design of reinforced concrete members. Both linear and non-linear material models have been used to 
define concrete behavior in these cases. Linear models were used when considering displacements 
only, while non-linear models were used when considering damage failure modes, such as cracking. 
Outside the realm of rebar placement, TO has also been used in one case to design pre-stressed 
concrete members (Amir and Shakour, 2017), and in another case to design a concrete slab, fabricated 
using 3D printed, stay-in-place formwork (Jipa, 2016). To the best of the author’s knowledge, no 
studies have been performed using TO for 3DCP applications. 
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Chapter 3: Posing the Problem  
 

3DCP fabrication dictates that, in order for a structure to be printable, the cement mortar should be 
flowable, extrudable, and buildable. Additionally, the design to be printed must lend itself to 
fabrication from the chosen cement mortar in its fluid state, as structural stability during the 3DCP 
process is determined by the fresh state properties of cement mortar as it is being extruded. In this 
way, to successfully fabricate the structure, both the material and the design must be printable. The 
material must display printable properties relative to the fabrication method, and the structure must 
be designed in such a way as to avoid excessive deformation and collapse during the printing process. 
Therefore, the goal of this work is to offer a connection between structural design, material properties, 
and fabrication technique, and, by employing TO, to use that connection to develop complex structural 
designs that can be successfully fabricated using 3DCP techniques.  
 
As discussed in section 2.1.10, flowability, extrudability, and buildability are all functions of the 
material’s yield shear stress. In order for the material to successfully move through the printing system 
and to be deposited through the nozzle, it must behave as a fluid when under pressure exerted by the 
pump. During these stages of the printing process, the applied stress must exceed the material’s yield 
stress. Once the material has been deposited, the material must behave as a solid in order to bear 
loading. After extrusion, the only forces acting on the material is its own self-weight. This self-weight 
loading must result in stress distribution where, at every material point, the applied shear stress is 
beneath the material’s yield stress, resulting in solid behavior. The yield stress of the material, then, 
functions as a design constraint, limiting the geometries that can be successfully fabricated using 3DCP. 
 
From the physical problem presented above, a theoretical topology optimization problem can be 
developed that will result in a printable design. This problem will be referred to as the “concrete 
problem.” The concrete problem is formulated in 5 parts:  
 

1. Objective Function  
 
The objective function is chosen to take advantage of the potential of 3DCP to produce complex 
structures without formwork, and to reduce the amount of material necessary in the building 
process. Therefore, the objective function is to minimize the volume of the structure. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒:    
∑(𝒙𝒊𝑽𝒊)

∑𝑽𝒊
 (21) 

 
2. Constraint Function 

 
The constraint is chosen based on material and fabrication limitations. Therefore, the constraint 
function is the material’s yield shear stress. A passive constraint is also imposed on the problem in 
the form of finite element equations. Stress calculations are performed using displacement results 
from FEA. Therefore, the stress is constrained by the FEA equations.  

 

|𝜎𝑥𝑦|
𝑚𝑎𝑥

≤  𝜎𝑦𝑖𝑒𝑙𝑑 (22) 

  
𝑲𝒖 = 𝑭 (23) 
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3. Loading 

 
The applied loading considers the loads acting on the material after it has been extruded. 
Therefore, the applied loading will be only the structural self-weight. 

 
𝐹𝑠𝑤𝑖 = 𝜌𝑔𝑉𝑖𝑥𝑖  (24) 

 
4. Geometry 

 
The design space in which the structure is to be optimized depends on the architectural constraints 
of the problem. Initially, the program will be written to allow the user to input the geometry in 
terms of length, width, and depth of a rectangular prism. This rectangular prism may represent a 
column, a beam, or another object of the designer’s choosing. This work considers both beam 
objects and column objects. 

 
5. Boundary Conditions 

 
Boundary conditions are set first to consider the surface upon which the structure is to be printed. 
The 3DCP process deposits material on a flat surface. Therefore, displacement of the bottom 
surface is to be fixed in the vertical direction. Additional boundary conditions are set and to 
consider architectural constraints and locations of “future loads,” or applied loading on the design 
once it has been fabricated and cured. Full material placement is forced at each location of future 
loads, or at each architectural constraint. This work considers wall and column elements with fixed 
bases. 

 
Combined into a mathematical expression, the TO problem can be formulated by equation 25. It is 
important to note that, though there are multiple shear stress components along different coordinate 
planes, for this problem, only shear stress on the x-y plane is considered, as this plane represents the 
plane of highest shear stress under vertical loading. The problem presented above will be developed in 
two stages. The first stage represents a proof of concept study, which serves to demonstrate the 
relationship between material and structural design, as well as the effectiveness of TO as a tool to 
develop and understand that relationship. To that effort, an open-source TO algorithm is modified to 
incorporate parts 1, 2, and 3 of the concrete problem. After demonstrating proof of concept, the 
second stage of this work develops an original TO algorithm designed to incorporate the full concrete 
problem.  
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{
 
 

 
 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒:          

∑(𝑥𝑖𝑉𝑖)

∑𝑉𝑖
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:           𝑲𝒖 = 𝑭

                                      |𝜎𝑥𝑦|
𝑚𝑎𝑥

≤  𝜎𝑦𝑖𝑒𝑙𝑑 

                                  0 ≤ 𝑥𝑖 ≤ 1

 (25) 

 
where  
 

 

𝑉𝑖 = Volume of the 𝑖𝑡ℎ element  
𝑥𝑖  = Element density  
 𝜎𝑥𝑦 = Shear stress in the element  

 𝜎𝑦𝑖𝑒𝑙𝑑 = Yield shear stress of the material.  

𝑭 = Applied force vector  
𝒖 = Displacement vector  
𝑲 = Stiffness matrix  
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Chapter 4: Proof of Concept Study 
 

Though research has been done into stress-based optimization, the only open-source code available 
incorporating a stress constraint was published by Biyikli and To (2015), and was named Proportional 
Topology Optimization (PTO). This program solves the problem of volume minimization under a VMS 
constraint, considering an applied point load. Volume minimization in this case refers to the volume 
fraction of material in the optimized structure relative to the volume of the original rectangular 
geometry. In addition to being available for use, PTO was chosen as the basis of this work for the 
following reasons: 1) formulation of a volume minimization problem; 2) incorporation VMS stress 
constraints, which are similar in formulation to shear stress constraints; 3) utilization of the SIMP 
method; and 4) code simplicity, in the form of a non-sensitivity based optimization method. 
 
Reasons 1 and 2 describe the similarities in the problems being solved in the PTO case and in the case 
of the work. This similarity can be seen when comparing the problem statements for each case: 

 
Current Work 

{
 
 

 
 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒:          

∑(𝑥𝑖𝑉𝑖)

∑𝑉𝑖
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:              𝑲𝒖 = 𝑭

                                      |𝜎𝑥𝑦|
𝑚𝑎𝑥

≤  𝜎𝑦𝑠 

                                  0 ≤ 𝑥𝑖 ≤ 1

 

 
where  
 

𝑉𝑖 = Volume of the 𝒊𝒕𝒉 element 
𝑥𝑖  = Element density 
𝜎𝑥𝑦 = Shear stress in the element 

𝜎𝑦𝑠 = Yield shear stress of the material. 

PTO 

{
 
 

 
 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒:          

∑(𝑥𝑖𝑉𝑖)

∑𝑉𝑖
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:           𝑲𝒖 = 𝑭

                                  𝜎𝑣𝑚𝑠
′ ≤ 𝜎𝑣𝑚𝑠

𝑚𝑎𝑥  

                                  0 ≤ 𝑥𝑖 ≤ 1

 

 
where 
 
𝜎𝑣𝑚𝑠
′  = Maximum VMS in the domain 
𝜎𝑣𝑚𝑠
𝑚𝑎𝑥  = VMS constraint  

 

 
In addition to the material constraints, each case is subject to the finite element equation relating 
applied force 𝑭 to the nodal displacements 𝒖 through the stiffness matrix 𝑲. 𝑲 is developed for 2D 4-
node square elements using the stiffness equation: 

 

𝑲𝒊 = ∫ 𝑩𝑻𝑫𝑩𝑑𝑉
𝑽𝒊

 (26) 

 
where 𝑫 is the elasticity matrix and 𝑩 is the strain displacement matrix. For a 2D 4-node square 
element, 𝑫 and 𝑩 are given as: 
 

𝑫 =
𝐸

1 − 𝜈2
 [

1 𝜈 0
𝜈 1 0

0 0
(1 − 𝜈)

2

] (27) 
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𝑩 =
1

2𝐿
 [
−1 0 1 0 1 0 −1 0
0 −1 0 −1 0 1 0 1
−1 −1 −1 1 1 1 1 −1

] (28) 

 
The elemental stresses are then calculated from  
 

𝝈(𝑥𝑖) = 𝑫(𝑥𝑖)𝑩𝒖(𝑥𝑖) (29) 
 

resulting in the stress vector 𝝈 = [

 𝜎𝑥
 𝜎𝑦
 𝜎𝑥𝑦

] from which the shear stresses 𝜎𝑥𝑦 are extracted. 

 
Incorporation of the SIMP method is desirable due to its effectiveness in stress-based topology 
optimization research (Duysinx, 1998; Lee 2012). PTO uses a modified form of SIMP developed by 
Andreassen (2011) where the stiffness is penalized as follows: 

 

𝐸(𝑥𝑖) = 𝐸𝑚𝑖𝑛 + 𝑥𝑖
𝑃𝐸0 (30) 

 
Additionally, PTO attempts to simplify the optimization problem by introducing a non-sensitivity-based 
approach to generate a solution. PTO assigns material to each element based on the level of Von Mises 
stress in that element during the previous iteration. The amount of material available for spatial 
allocation in each iteration is determined by adding or subtracting a discrete, fixed amount (0.5% of 
the original design volume) to or from the amount available in the previous iteration. The placement of 
the available material is then determined based on the relative stress levels in each element. 
Constraints are then considered globally, and the entire structure is optimized based on the maximum 
elemental VMS.  
 
In order to adopt this code to solve our proposed problem, three basic changes were necessary: (i) 
addition of self-weight loading; (ii) impose shear stress constraint and new optimization logic; (iii) 
incorporate physical quantities and material properties. These changes were implemented as follows 
(full code provided in Appendix C). 
 
 

4.1 Addition of Self-Weight Loading 
 

Lines 88-99 were added to the existing PTO code to incorporate self-weight loading into the 
optimization problem. Line 89 initiates an empty sparse matrix F_sw to store self-weight loading values 
at the nodes. Lines 90-95 add the self-weight loading to each node individually by locating the 
corresponding nodal Degree of Freedom (DOF) from the element degrees of freedom matrix edofMat.  

 

89 
90 
91 
92 
93 
94 
95 
96 

F_sw = sparse((nelx+1)*(nely+1)*2,1); 
for i = 1:nelx*nely 

for j = 2:2:8 
DOF = edofMat(i,j); 
F_sw(DOF) = F_sw(DOF)+(.25*den*MN_Factor*V*g)*x(i); 

end 
end 
F_total = F_sw+F_applied; 
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Since PTO is limited to 2D geometries, self-weight was simulated by assigning to each element a unit 
volume, and calculating the gravitational force acting at each node due to that volume. The nodal 
forces, defined in line 93, are applied to each node based on the self-weight (𝑭𝒔𝒘) of the surrounding 
elements, which is calculated as follows: 
 

(𝐹𝑠𝑤)𝑛 =∑
1

4
𝜌𝑔𝑉𝑖𝑥𝑖

𝑚

𝑖=1

 (31) 

where  

𝑛 = node  

𝑚 = number of nodes adjacent to node n  

𝜌 = physical density of the material  

𝑔 = gravitational constant  

𝑉 = volume  

𝑥𝑖  = element density  

 
Corner nodes therefore carry only ¼ of the elemental self-weight, edge nodes carry ¼ of the self-
weight of two adjacent elements, and interior nodes carry ¼ of the self-weight of four adjacent 
elements. Figure 19 shows how the self-weight is distributed from each element to each adjacent 
node. The resulting self-weight is converted to Mega-Newtons using the MN_Factor, as discussed later. 
Line 96 then calculates the total force vector 𝑭 by combining the applied and self-weight loadings as  
 

𝑭 = 𝑭𝒔𝒘 + 𝑭𝒂𝒑𝒑𝒍𝒊𝒆𝒅 (32) 

 
This section is nested at the beginning of the optimization loop (line 85), so that it runs before finite 
element analysis and after optimization step.  
 

 

 
Figure 19: Nodal distribution of self-weight from each element. Red areas attributed to corner nodes, green areas 

to edge nodes, and blue areas to the central node. 

  



 40 

4.2  Shear Stress Constraints and New Optimization Criteria 
 
The original PTO code was optimized considering a VMS constraint, meaning it searched for the 
optimal arrangement of material that would minimize the volume fraction while making sure the VMS 
in each element was less than or equal to a designated value. The optimization process would end 
when the difference between the maximum calculated VMS and the constraint was below a certain 
value (0.001). Due to its nature as a positive summation of all stress components, and due to the lack 
of self-weight consideration, VMS would always rise when the volume fraction decreased, and 
decrease as the volume fraction increased, so the constraint would always be reached. Therefore, the 
optimization process would add material when VMS was higher than the constraint, and remove 
material when it was lower, and only one stopping condition was necessary. 
 
On the other hand, the shear stress constraint functions quite differently. Depending on the loading 
and geometry, the shear stress could increase or decrease with addition or subtraction of material. As 
a result, changes in both shear stress and material volume must both be considered. Due to the lack of 
sensitivity analysis in PTO, simultaneous consideration was not possible. Therefore, new optimization 
criteria and stopping conditions were required. Figure 20 shows the optimization logic of the VMS case 
(a) and that developed for the shear stress constrained optimization (b). It is important to note that 
this optimization logic is applied to the global structure, determining material placement at every 
element during each iteration. 

a.   

b.  
Figure 20: a. Shear stress constraint constraint optimization logic; b. VMS constraint optimization logic. 
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Implementation of the shear stress optimization code begins as follows: 
 

108 
109 
110 
111 
112 
113 

s = (U(edofMat)*(DE*B)')*repmat(E',1,3); 
sxmat = reshape(s(:,1),nely,nelx);      
symat = reshape(s(:,2),nely,nelx);      
shear_mat = reshape(s(:,3),nely,nelx);  
abs_shear_mat = abs(shear_mat);         
cur_max_shear = max(abs_shear_mat(:)); 

 
Line 108 calculates the stress matrix resulting from finite element analysis. Lines 109 and 110 extract 
the normal stress matrices sxmat and symat from the stress matrix s, and line 111 extracts the shear 
stress matrix shear_mat. The shear matrix is then transformed into an absolute value matrix 
abs_shear_mat in line 112, as the directionality of shear is not under consideration. Line 113 then 
determines the global maximum shear value for the current iteration.  
 
The shear stress constraint was implemented by adding stopping conditions that would end the 
optimization process based on the shear stress value and volume fraction. Lines 121-131 encompass 
the main optimization section. The amount of material added or subtracted during each iteration is 
proportional to the number of elements in the volume, and the proportion was increased from 0.001 
to 0.005 in order to speed up the optimization process (lines 125, 127, and 130). 

 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 

if (cur_max_shear > yield_shear) 
    if prev_max_shear < yield_shear                
        disp('Optimization Complete < Yield Shear'); break; end 
    if prev_max_shear > cur_max_shear 
        xTarget = sum(x(:))-0.005*numel(x); 
    else 
        xTarget = sum(x(:))+0.005*numel(x); 
    end 
 else 
    xTarget = sum(x(:))-0.005*numel(x); 
end             

 
Additional stopping conditions were added to the code as well. Lines 149-156 define the end 
conditions where the minimum possible volume fraction (0.01) is reached and the structure satisfies 
the shear stress constraint (lines 150-152) and where an empty volume results (line 153-155).  
 

149 
150 
151 
152 
153 
154 
155 
156 

if cur_vol_fract < 0.01 
   if cur_max_shear < yield_shear 
       disp('Minimum Volume Reached');  
       break;  
   else 
       disp('Empty Volume'); 
   end      
 end 
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After running the optimization process and checking the stop criteria, and before the next iteration, 
the previous values for volume fraction and maximum shear stress are updated with the current values 
for comparison during the next iteration. This update is performed in lines 171-172. 
 

171 
172 

prev_vol_fract = cur_vol_fract; 
prev_max_shear = cur_max_shear; 

 
 

4.3 Incorporation of SI Units 
 

The original PTO code is unit-less. Therefore, while serving as a useful theoretical tool, it has no 
physical basis and cannot make quantitative predictions. In order to use this tool to solve physical 
problems, units must be added to allow inclusion of measurable quantities. The accompanying 
literature provides a suggestion for unit incorporation, however, when adopted, large values for 
Young’s Modulus resulted in poorly scaled matrices. Therefore, the base units incorporated into the 
code were meters (m), Newtons (N), and Mega-Pascals (MPa). MPa was chosen for its common use as 
descriptor of material strength, and also due the poorly scaled matrix discussed above. The beam 
length and height, element size, and volume are given in meters, the applied load is given in Newtons, 

and the shear stress constraint and Young’s Modulus are given in MPa. Material density is given in 
𝑘𝑔

𝑚3 

and gravity in 
𝑚

𝑠2
. Both the applied load and self-weight loading are converted into Mega-Newtons 

before stress calculations using the MN_Factor of 10−6. 
 
 

4.4 Results and Discussion 
  
4.4.1 Effect of Self-Weight 

 
In order to demonstrate the effect of self-weight loading on the optimized design, the unit-less 
program was used to run a single load case, Case 1, for fictitious materials with varying densities. The 
optimization problem was defined for a rectangular domain of 100 x 50 unit elements. The geometry 
simulated a cantilever beam with a fixed left edge and a point load mid-height on the right edge. Figure 
21 shows the problem set-up. 

 

 
Figure 21: Geometry, loading, and boundary conditions for Case 1. Distributed self-weight applied at each node 

(refer to Fig. 18). 
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The applied load P was set to 150, and the material properties were kept as those set in the original 
code: Young’s modulus was defined as 1, and Poisson’s ratio was given as 0.3. The densities considered 
were 0, 0.5, and 1, with a density of zero corresponding to no self-weight. The structure was then 
optimized for volume minimization under a shear stress constraint. Figure 22 shows the resulting 
optimized designed for each density, and Table 1 displays the numerical results. 

 
Material Material Material 

         

 
Shear Stress Shear Stress Shear Stress 

a.  b.  c.  

 
Figure 22: Case 1 optimized geometry with varying material density. a. Density = 0; b. Density = 0.5; c. Density = 1.0 

 
 

Table 1: Numerical results from Case 1. 

Fig. 
Material 
Density 

Shear Stress 
Constraint 

Iteration Result 
Maximum Shear 

Stress 
Volume 
Fraction 

a 0 100 135 Completed 68.68 0.222 

b 0.5 100 74 Completed 91.27 0.529 

c 1 100 51 Failed 127.801 0.814 

 
From these results, it can be seen that the design with the least amount of material corresponds to the 
no self-weight case (density = 0, Case 1 (a)). This result was expected considering the additional self-
weight load would result in higher shear stresses, requiring more material over which to distribute 
force to meet the constraint, as seen in Case 1 (b). It is also important to note that the optimization 
corresponding to a material density of 1 failed. The optimization process was designed to end after 50 
iterations if the shear stress constraint was not satisfied, and if placement of additional material 
increases the shear stress instead of decreasing it. If this pattern occurred, the shear stress constraint 
could never be reached. Case 1 (c) with a material density of 1 could not be optimized with a maximum 
shear stress of 100, indicating there is no possible arrangement of material within the design volume 
that would satisfy the constraint. Since this simulation does not have a physical basis of real material 
properties and physical loads, the reason for this failure is best understood by comparing material 
property values and their relationship to the applied load. For Case 1 (c), the material density and 
material stiffness are of equal value. This equality translates to an extremely dense material. For 
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example, if the unit-less quantities used in this case were simulated with real units, a material with 

stiffness of 10 GPa would have a density of 10,000,000,000 
𝑘𝑔

𝑚3
, the self-weight of which would cause 

very high shear stresses. Although this is clearly an unrealistic problem, such values in Case 1 (c) show 
that material properties place physical limits on the range of possible structural designs. This limit is 
important when considering the material properties of fresh concrete mortar used for 3D printing, as 
strengths of these materials are generally very low. Physical limits on structural designs will be 
discussed further in later sections.    

 
In order to rule out algorithm error as the cause of optimization failure in Case 1 (c), a new problem 
was posed by slightly altering the geometry. Figure 23 shows the successfully optimized design of Case 
2, with initial geometry 60 x 30, keeping all other variables the same as the Case 1 (c), including density 
= 1. These results show that the algorithm worked properly, and that optimization failure in Case 1 (c) 
resulted from a poorly posed problem.  

 
Material 

 

 
Shear Stress 

 

 
Figure 23: Case 2 optimized structures. 

 

Table 2: Case 2 numerical results. 

Density Constraint Iteration Result 
Max Shear 

Stress 
Volume 
Fraction 

1 100 65 Completed 93.432 0.571 

 
 

4.4.2 Validation of Optimized Results 
 

In order to validate the optimized results, finite element analysis was performed on an optimized 
design case, Case 3, using ANSYS Mechanical software. Specifically, the optimized structure was re-
produced in ANSYS, along with the applied loads, and the shear stress distribution from the code and 
from ANSYS were compared. Successful validation would show similar distribution and magnitude of 
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shear stress everywhere within the part, and all shear stress values in the simulated result would 
remain below the shear stress constraint.  The process was as follows: 

 
First, a material for consideration was chosen. Concrete was selected from the General Materials 
Library within the ANSYS material database, and the values below were incorporated into the 
optimization code.  

 

Density = 2300 
𝑘𝑔

𝑚3, Element Side Length = 0.01 m 

Young’s Modulus = 30 GPa Beam Length = 1 m 
Poisson’s Ratio = 0.18 Beam Width = 0.5 m 

 
The shear stress constraint was chosen based on the problem formulation as a cantilever beam with a 
point load, considered for a structural application. The American Concrete Institute (ACI) defines the 
maximum allowable shear stress for hardened structural concrete by the following equation 
 

                    𝑉𝑐 = 0.17𝜆√𝑓𝑐′𝑏𝑑                     (from ACI 318M-11 11.2.1.1 (11-3)) (33) 

where  

𝑓𝑐
′ = concrete compressive strength  

𝜆 = weight factor, given as 1 for normal weight concrete  

𝑏 = beam height  

𝑑 = beam depth  

 
The shear stress limit for Case 3 given by the above equation is 1.1 MPa. A load of 30 KN was applied to 
the same cantilever geometry as shown in Figure 21, while still considering the effect of self-weight. 
The structure was then optimized for minimum volume fraction using the new optimization code, and 
the resulting optimized design was drawn by hand using the ANSYS CAD tool, SpaceClaim. Since the 
optimization process does not attempt to smooth jagged edges or sharp curves, a design realization 
step was introduced before running FEA in order to analyze a more realistic component. Best efforts 
were made to keep the design geometry consistent. 

 
The greatest deviation from optimized design to the ANSYS model was the addition of depth. In order 
for ANSYS to simulate the effects of gravity and incorporate self-weight, the geometry must be drawn 
in 3D. In contrast, the optimized design is only a 2-dimensional structure, with self-weight simulated as 
described in earlier sections. Therefore, a depth the size of one element was used, and forces were 
assigned symmetrically in order to minimize the effect of the addition of depth, and to simulate a thin, 
planar structure. The shear stress calculation for the 2D optimized design assumes the third dimension 
to have a unit length. However, a unit length in this case would be 1 meter, which is not physically 
applicable for this problem. When a physical depth of 0.01 m is added to the ANSYS model instead of 
unit depth, the amount of material available to carry load is reduced by a factor of 100. Therefore, the 
ANSYS shear stress results were expected to be higher than that of the optimized results by a factor of 
100.  Optimized and ANSYS results for Case 3 are displayed in Figure 24. 
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b.          
Figure 24: Case 3; a. Optimized geometry (top) and shear stress distribution (bottom); b. ANSYS model shear 

stress distribution. Red areas indicate shear stresses higher than constraint. All results in MPa. 

 
Visual inspection of Figure 24 shows a consistent stress distribution when comparing the optimized 
result (Figure 24a, bottom) and the ANSYS result (Figure 24b). Dark spots in the optimized result 
correspond to higher relative stresses, while the ANSYS results display green/yellow (negative) or dark 
blue (positive) at locations of higher stress, and light blue for lower stress. The thin arms of the 
structure contain low stresses in both results, and thicker areas towards the left edge at top and 
bottom display relatively higher values. Additionally, higher stresses can be seen at areas of 
intersection and curvature. 

 
Only one very small region was found where shear stress exceeded the constraint, corresponding to 
the area where the point load is applied. In the ANSYS model, the 30 KN load was divided equally over 
6 nodes corresponding to three elements, so higher shear stresses at these nodes are artifacts due to 
point contact of the applied load. All other elements hold shear stresses below the constraint, 
indicating that the design has been successfully optimized for the shear stress constraint. Additionally, 
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a quantitative comparison of shear stresses is presented in Table 3, including adjustments for depth. 
Due to differences in mesh and the deformed geometry in ANSYS, stress values at specific locations 
could not be compared directly. Locations were defined by stress probes in ANSYS, and best attempts 
were made to locate the corresponding elements in the Matlab shear stress matrix. Locations in Table 
3 correspond to those in Figure 25. 

 

 
Figure 25: Case 3 selected locations for shear stress comparison. All results in MPa. 

 

 

Table 3: Case 5 shear stress comparison. All values in MPa. 

Location Code ANSYS 
Adjusted 

ANSYS 
Percent 

Difference 

1 0.219 21.645 0.216 1% 

2 0.164 15.839 0.158 3% 

3 0.251 26.768 0.268 7% 

4 0.084 6.230 0.062 26% 

5 0.391 45.975 0.460 18% 

6 0.476 53.371 0.534 12% 

7 0.625 120.290 1.203 92% 

 
Another simulation, Case 4, was performed to solve a problem identical to Case 3 while reducing the 

material density from 2300
𝑘𝑔

𝑚3 to 23
𝑘𝑔

𝑚3. Case 4 was run both to show the effect of self-weight and to 

confirm accuracy. Optimization and ANSYS results are displayed in Figure 26. Again, artifacts at the 
location of the applied point load result in shear stresses higher than the constraint. All other areas 
satisfy the shear stress constraint. The resulting design shows a volume fraction reduction of 6.5% from 

the original, from 0.358 to 0.293. With a density of 2300
𝑘𝑔

𝑚3, the weight of the original structure is 

equivalent to a 40 N force, and the reduced density structure has a weight equivalent to a 0.33 N force. 
The reduction in density has a significant effect on the optimized structure considering the weight 
reduction to applied load ratio of 0.0013. This effect of density on optimized structure is an important 
result, especially for the case of concrete 3D printing. By reducing the density of the concrete mortar, 
and if the shear strength can be maintained, it may be possible to significantly reduce the amount of 
material used, and to create a wider range of printable geometries. 
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b.       
Figure 26: Case 4; a. Optimized geometry (top) and shear stress distribution (bottom); b. ANSYS model shear 

stress distribution. 

 
 
4.4.3 Optimization Limitations 

 
Combining the heuristic nature of PTO and the newly implemented optimization logic results in 
structures that are optimized only to a local minimum. This limitation can be understood by the lack of 
sensitivity analysis and by the constant optimization parameters: penalty coefficient, proportion 
exponent, and filter radius. The local minima behavior can also be demonstrated by manually relaxing 
the stress constraint, as presented in Case 5. Figure 27 below shows the optimization progression of 
Case 5, which mirrors Case 4, but with a shear stress constraint of 1.5 MPa as opposed to 1.1 MPa. 
Figure 27 (a) corresponds to the final iteration of Case 4. 
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a. b. c. d. e. 

 
Figure 27: Optimization progression for Case 5 at various iterations (IT). Numerical results shown in Table 4. 

 

Table 4: Numerical results for Case 5. 

Fig. 
Constraint 

(MPa) 
Iteration Result 

Max Shear Stress 
(MPa) 

Volume 
Fraction 

a 1.5 121 Running 0.738 0.293 

N/A 1.5 122 Running 1.137 0.288 

b 1.5 123 Running 1.398 0.283 

c 1.5 124 Running 1.175 0.278 

N/A 1.5 125 Running 0.732 0.273 

d 1.5 151 Running 1.02 0.142 

e 1.5 154 Completed 1.483 0.127 
 

Between iterations 121 and 154, the volume fraction is constantly decreasing, as is the objective of the 
optimization problem. While the maximum shear stress increases above the original constraint of 1.1 
MPa for iterations 122 – 124, it then reduces below that constraint between iterations 125 and 151, 
before arriving at the optimized solution for the 1.5 MPa constraint at iteration 154. Iteration 151 
shows what would also be a minimum for Case 4. Therefore, resulting designs may not be fully 
optimized due to the optimization logic that was created to account for the lack of sensitivity analysis 
in the original code. Instead of ending the process after one instance of increased volume fraction, or 
after the first iteration exceeding the shear stress constraint, the optimization should be controlled by 
the rates at which these values change, relative to the constraint. As such, this work indicates the 
necessity of sensitivity analysis in shear stress constrained design. Sensitivity analysis incorporates the 
rate of change of design variables, and therefore allows convergence to be the determining factor 
when arriving at a solution, as opposed to a single value threshold. This convergence, as well as the 
ability to incorporate sensitivities of multiple variables, can lead to a better-defined solution. 

 
Along with sensitivity analysis, further methods must be employed in order to reach a globally 
optimized result. Rasmussen (2008) adopts the cut-and-branch method, a variation on branch-and-
bound, to solve a discreet truss optimization problem, while Sigmund (1998) concludes that 
continuation methods must be used. These continuation methods typically involve incrementally 
changing the optimization parameters until convergence. Due to the complex and large-scale nature of 
topology optimization problems, many are only solved to local minima. 
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4.4.4 The Material-Structure Relationship 
 
The optimization code herein can be used to aid in the material selection process. Consider the Ashby 
Chart in Figure 28, relating density to tensile strength, and the problem set-up from Case 3. By defining 
material properties corresponding to various materials from the CES material database, unique 
optimized results can be obtained. If a range of values was given in the database, the average value 
was used for this case. 

 

 
Figure 28: Ashby diagram of Density vs. Tensile strength of engineering materials (CES Edupack, 2019). Optimized 

structures from Case 3 shown for several selected materials. Average material property values were used if given a 
range of values in the software. 

 

Table 5: Properties of materials in Figure 28. Strength values and moduli given in MPa. 

 Material 
Tensile 

Strength 
Yield Shear 

Stress 
Young's 
Modulus 

Density 
(kg/m^3) 

1 Flexible Polymer Foam (LD) 1.30 0.65 2.00 54.00 

2 Cork 1.75 0.88 37.50 197.50 

3 Pine 3.55 1.78 750 520 

4 Rigid Polymer Foam (HD) 6.80 3.40 0.34 320.00 

5 Oak, across grain 7.9 3.95 5290 940.5 

6 Silicone Elastomers 9.25 4.63 27.5 1120 

7 Brick 10.46 5.23 23300.00 2035.00 

8 Lead 17.5 8.75 13500 1130 

9 Bronze 511.00 255.50 113500.00 8375.00 

10 Silica Glass 100.00 50.00 71000.00 2195.00 

11 Polypropylene (PP) 34.50 17.25 1223.00 900.00 

12 Bamboo 239.50 119.75 17500.00 700.00 
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It is important to note here that this simulation assumes all materials to be linear, elastic, isotropic, and 
homogeneous. This assumption is not true for all materials simulated here, but will be used for 
demonstrative purposes. Therefore, using plane stress transformation equations, the yield shear stress 
can be calculated as follows: 
 

𝜎𝑦𝑠 =
𝜎1
2

 (34) 

       𝜎𝑦𝑠 = yield shear stress  

       𝜎1 = principal stress = tensile stress  

 
A total of 12 different materials or material categories were simulated, considering an applied load of 
100 KN. Materials with tensile strength less than 3 MPa (Flexible Polymer Foams, Cork, Pine) cannot be 
optimized, as the process failed due to the constraint being unreachable. Materials with tensile 
strength greater than 12 MPa, however, result in structures with the minimum possible volume 
fraction (Low Alloy Steel, CFRP, Bronze, Tungsten Carbides, Bamboo, Silica Glass, Polypropylene). The 
results allow for consideration of a “sensitive range”, from 3 – 12 MPa (Rigid Polymer Foam, Oak, 
Silicone Elastomers, Brick, Lead), where minor differences in material properties can cause significant 
design changes. Materials with tensile strength less than 3 MPa are not suitable for design, while any 
material selected with a tensile strength greater than 12 MPa will result in the a similarly optimized 
structure.  This region is therefore not sensitive to material property changes, where even significant 
increases in tensile strength will result in similar designs. Figure 29 demonstrates this relationship 
between tensile strength and volume fraction by plotting the results from Table 5. The design engineer 
may use this idea of a sensitive region to understand the sensitivity of the design with respect to 
material changes or improvements.  
 

 
Figure 29: Volume fraction of case 3 optimized structures vs. tensile strength for 

materials in Table 5. 

 
Results were also plotted showing the relationship between stiffness and tensile strength (Figure 30). 
Again, a sensitive region can be seen, demonstrating the structural dependence upon tensile strength. 
Though this simulation is an over-simplification of a complicated process, it demonstrates the potential 
usefulness of shear stress-constrained topology optimization in material selection and structural 
design. 
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Figure 30: Chart of Young’s Modulus vs. Tensile strength of engineering materials (CES Edupack, 2019). 

 
This proof of concept study extends the existing topology optimization code PTO to solve the problem 
of volume minimization under a shear stress constraint and incorporated the effects of material self-
weight into the optimization process. This new optimization process can be used to show general 
trends in optimized designs based on material properties and the design domain. It allows the user to 
understand the effects of changing material properties on structural design, and it gives insight into 
how geometry can limit the materials available for design. By performing parametric studies on the 
considered material properties of yield shear stress and density, the optimization process can show not 
only the material properties necessary to achieve a viable structure, but also the structures that can 
result from consideration of different materials. Materials could potentially be designed to match the 
density or shear stress constraint in the hopes of being used to create a certain structure, or 
conversely, structures could be optimized and designed considering the constraints of the material. In 
this way, the design engineer would better understand the material and design spaces available for a 
given problem. 

 
Further work must be performed to refine the optimization process to produce fully optimized 
structures. Sensitivity analysis and methods for convergence at a global minimum must be 
incorporated into the optimization process. Code should also be developed to consider 3D geometry in 
order to more accurately model self-weight loading, and to fully realize geometric and material 
limitations. Additionally, the computational time of the optimization process should be accounted for, 
with an attempt made at time reduction. The code in its current state requires significant time to 
optimize geometries over 10,000 elements. This is due to the significantly larger force matrix that 
results from self-weight loading. Further investigation into implementation of self-weight loading may 
reduce the processing time, which will be necessary for consideration of real-world load cases. In order 
to optimize a design for 3D printable concrete, the problem set-up must also be changed to consider 
an initial design volume with a fixed base and no point load. 
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Chapter 5: Development of Shear Stress-Constrained Topology 
Optimization (SSTO) Code 

 
As mentioned previously in section 2.2, there are many open-source TO programs available. None of 
these available codes, however, are suitable for the concrete problem as presented in this work, as 
they do not incorporate shear stress constraints, and often omit self-weight loading. Therefore, a new 
TO program was developed for the purposes of solving the concrete problem, and for demonstrating 
the relationship between materials, structure, and design. This new code is known as Shear Stress-
Constrained Topology Optimization code, or SSTO. In order to develop this new code, an available TO 
program named Top3D (Liu, 2014) was chosen to serve as a guide.  
 
As it is written, Top3D solves a compliance minimization problem subject to a volume fraction 
constraint. With minor modification, it is also able to solve heat conduction problems, which minimize 
or maximize the transfer of thermal loads, and compliant mechanism problems, which maximize 
output displacements relative to input forces.. The program employs a modified SIMP method for 
determining material presence (eqn 35), the analytical method for sensitivity analysis, a density filter, 
and the Optimality Criteria method for optimization. Additionally, the accompanying literature 
provides directions for incorporating different optimization techniques such as MMA or SQP, as well as 
different filtering methods. Geometry is defined in three dimensions, and FEA is performed using 
hexahedral elements and an analytically prescribed stiffness matrix. 

 
𝐸(𝑥𝑖) = 𝐸𝑚𝑖𝑛 + 𝑥𝑖

𝑃(𝐸0 − 𝐸𝑚𝑖𝑛) (35) 
 
Top3D shares several of these requirements and methods with those chosen for concrete problem. 
The similarities between both programs are as follows: 

 
1. 3D Geometry 
2. SIMP Method 
3. Analytical Sensitivity Analysis  
4. Density Filter 
5. MMA Optimization 

 
These similarities allow for Top3D to be used as a guide to develop a new program. In the case of the 
density filter and MMA optimization implementation, sections of the Top3D code were inserted in 
their entirety into the new program, as will be discussed later. There are, however, several key 
differences between the functionality of Top3D and the concrete problem presented here, which 
require significant additions and modifications. These additions and modifications will be discussed in 
detail in the following sections, and include boundary and applied loading conditions, self-weight 
loading, formulation of the stiffness matrix, stress and strain calculations, shear stress constraints and 
sensitivity analysis, and termination criteria, among others. 

 
Presentation of the new code will proceed in order of the TO requirements listed in section 2.2.4, and 
the full Matlab code can be found in Appendix D. 

 
It is important to note here, that SSTO is capable of performing both shear stress-constrained and Von 
Mises Stress-constrained optimization. The user designates the type of constraint (lines 55 and 57, 
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respectively) and the respective constraint value (lines 56 and 58, respectively). Therefore, this section 
will discuss the formulation of both shear stress-constrained and VMS-constrained optimization code. 
Much of the code for these two problems is the same. However, where the code differs, the type of 
constraint will be indicated before presenting the formulation. 
 
 

5.1 Geometry 
 
As TO programs perform FEA calculations, the geometry of the design space must be defined in terms 
of nodes and elements. The number of elements in the x, y, and z directions are specified, as is the side 
length of each element. The initial design space is currently limited to rectangular prisms, defined by 
length, width, and height in terms of the number of elements along each coordinate direction. As will 
be discussed in the FEA section, each element is cubic in shape, so only one side length is defined, 
given in meters. Finally, the initial artificial density of each element is defined as a starting point from 
which optimization may proceed. For simplicity’s sake, each element is assigned the same initial 
density. This initial density should not equal 0, and ideally be greater than or equal to 0.5 to allow for 
optimization to initiate properly. Otherwise, the structure may result in a minimum volume 
termination case. These values can all be changed by the user in lines 15 – 19.  
 
The origin of the coordinate axes is placed at the bottom, left, rear corner of the design space, as 
shown in Figure 31. The elements are each assigned an element identification number (EID) starting 
with 1 at the top, left, rear corner. Each element in row z is numbered first, proceeding column-wise in 
the positive x direction, before moving to the subsequent row in the positive z direction. Each element 
is defined, not only by number, but also by eight nodes that correspond to the corners of the element. 
These nodes each have their own global and local node identification number (NID), as well as both 
global and local coordinates (Figure 32). Global NIDs are defined in the same manner and direction as 
EIDs, and the global coordinates are defined relative to the origin and are based on the element side 
length. The local NIDs are linked to the element to which they belong, and are assigned from 1-8 
corresponding to the pattern in Figure 33. Local coordinates are given in terms of the ζ1, ζ2, and ζ3 
directions, with the local origin placed at the center of the element. Each face of the element is a 
distance of one length unit from the origin, perpendicular to one of the three coordinate axes. 

 

 
 

Figure 31: SSTO element IDs. 
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Figure 32: SSTO global node IDs. 

 
 

 
Figure 33: SSTO local node IDs. 

 
In FEA, each node has the potential to be displaced in any of three directions x, y, and z. This 
directional freedom of movement in a specified direction is referred to as a degrees of freedom (DOF). 
Each of the three DOF assigned to each node is given a unique number corresponding to the node and 
direction of movement. Once numbered, these DOF are then assigned to each element for use in 
calculations.  
 
Geometric information and IDs are assigned to nodes in the nodal_data function (lines 421 – 435) and 
elements in the element_data function (lines 438 – 477). In both functions, the information is stored in 
structure data types. 

  



 56 

5.2 Boundary Conditions 
 

The various boundary conditions that can be implemented in SSTO are given in lines 22 – 24 and 
implemented in the BCs function (lines 371 – 418). Any of these conditions may be turned on or off, 
and multiple conditions can be used simultaneously. The conditions are as follows: 

 
BC 1. Top perimeter fixed (lines 402 – 417)  (Figure 34a) 
BC 2. Bottom perimeter fixed (lines 385 – 400) (Figure 34b) 
BC 3. Cantilever (lines 376 – 384). (Figure 34c) 

 
 

  
a. b. 

 
c. 

Figure 34: Boundary Conditions. a. BC1; b. BC2; c. BC3. 

 

In all three cases, the EIDs of the elements along the boundary face or edge are determined, and the 
nodes corresponding to the proper locations are identified. For BC 1 the nodes along the left face of 
the selected elements are fixed, while for BCs 2, 3, and 4 the nodes along the top or bottom edge are 
“fixed”. Fixed, here, refers to the specification that the nodes cannot move in a given direction under 
applied loading. Therefore, the DOF associated with the given node and direction is removed from the 
FEA equations. This is done by generating a list of fixed DOF and removing those values from the full 
list of DOF. The result is a list of “free” DOF, or nodes that are permitted to move in the given 
directions (line 417). This list of free DOF will be used in FEA calculations. 
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5.3 Loading 
 

Two types of loading may be applied to the structure: applied loading and self-weight loading. The type 
and location of loading for a given simulation is defined in lines 27-32, and multiple load cases can be 
considered simultaneously. 

 
1. Applied Loading (Lines 311 – 368) 

 
Applied loading is implemented by the function applied_load. The function begins by identifying 
the EIDs of elements that are subjected to the load. These EIDs are determined based on the 
selected load case, with available cases listed below: 

 
ALC 1. Point load at bottom right edge (lines 316 – 324) (Figure 35a) 
ALC 2. Point load at mid-height on right edge (lines 325 – 333) (Figure 35b) 
ALC 3. Point load at midpoint of top face (lines 334 – 346) (Figure 35c) 
ALC 4. Distributed load along the top face (lines 347 – 364) (Figure 35d) 

 
 

  
a. b. 

  
c. d. 

Figure 35: Applied loading conditions. a. ALC1; b. ALC2; c. ALC3; d. ALC4 
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In order to avoid stress concentrations that arise upon the application of a large load at a single 
node, point loads are divided and applied across two adjacent nodes, one on each side of the 
original loading location, as seen in Figure 35a/b. Additionally, if the geometric location of loading 
falls between nodes, such as ALC3 applied to Figure 35c, the load is similarly divided and applied 
to the two closest nodes. Figure 35c, then, applies the point load to 6 nodes in order to 1. Avoid 
stress concentrations and 2. Apply loading at the nodes, and not between them. 
 
The elements subjected to loading are manually forced to maintain full artificial density, as 
material must exist at the location of the applied load. 
 
In a method similar to that used for BCs, the appropriate nodes are selected where the loading 
will be applied. For ALC 1, 2, and 3, the magnitude of the point load is input in line 33. For the ALC 
4 the magnitude of load applied to each node is input in line 34. In all cases, the magnitude of the 
applied load is input in Newtons and, in order to maintain unit consistency and well-scaled 
matrices, Newtons are converted to Mega-Newtons using an MPa_Factor of 1x106. Additionally, 
all loading in these cases is applied in the y (vertical) direction, corresponding to DOF(2) for each 
node. 
 
The applied loads are assigned to a forcing vector F_applied, the entries of which correspond to 
the appropriate node DOF. 

 
 

2. Self-Weight Loading (Lines 480 – 502) 
 

Self-weight loading is implemented by the function Self_Weight, and is done so in a manner 
similar to that used in the alteration to PTO presented in section 4.1. Due to the 3D nature of the 
geometry, each node is attributed 1/8th of the self-weight of the element, and thus the loading 
formula changes to that shown in equation 36 (line 488). An MPA_Factor is applied resulting in 
units of Mega-Newtons, and the loads are stored in a self-weight loading vector F_Sw. 
 

(𝐹𝑠𝑤)𝑛 =∑
1

8
𝜌𝑔𝑉𝑖𝑥𝑖

𝑚

𝑖=1

 (36) 

where  
𝑛 = node  
𝑚 = number of elements adjacent to node n  
𝜌 = physical density of the material  
𝑉 = volume  
𝑥𝑖  = element density  

 
Finally, the full forcing vector F is created from the summation of F_applied and F_Sw (line 501), 
allowing for the simultaneous application of external and self-weight loading. This summation is 
performed in the Self_Weight function due to the fact that Self_Weight is always implemented 
after applied_load. Additionally, self-weight loading is dependent upon the artificial element 
density. Since the artificial density of each element changes with each iteration, the self-weight 
loading must be recalculated with each iteration as well, while applied loads are set before the 
iterative process begins. 
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5.4 Material Properties 
 

The material properties required for simulation are defined in lines 48 – 51 and 55, and are as follows: 
 

1. Young’s Modulus – Solid (E) 
2. Young’s Modulus – Void (Emin) 
3. Poisson’s Ratio (nu) 
4. Density (den) 
5. Yield Shear Stress (ys) 

 
Density is only required for self-weight loading cases. The use of Young’s Modulus, both solid and void, 
as well as Poisson’s Ratio will be discussed in section 5.6. Yield Shear Stress is a material property that 
is also defined as the constraint of the optimization process, and will be discussed further in section 
5.8. 

 
 

5.5 Iterations 
 

The iterative process is governed by the while loop initiated on line 151 of SSTO, and ending on line 
262. Within this loop, FEA is performed, the objective and constraint functions are calculated, 
sensitivity analysis and optimization are performed, and termination criteria are checked. With each 
iteration, important data resulting from these calculations are stored in data vectors, and specific key 
values are displayed as output (lines 205/208). This data is then stored in a data structure BigData 
when the loop is exited. Additionally, a plot of the material placement matrix is generated with each 
iteration by calling display_3D (lines 796 – 817), which is a plotting function taken directly from Top3D. 
If the termination criteria are met, as will be discussed in section 5.12, the program exits the while 
loop, and the data from the current iteration become the final optimization results. This process can be 
visualized in Figure 39 (section 5.14). 

 
 

5.6 FEA 
 

This section will develop the finite element equations that calculate displacements, strains, and 
stresses in a structure due to applied loads and subject to boundary conditions. First, the general FEA 
equations will be developed, and then their implementation in SSTO will be discussed. 

 
FEA begins by dividing a structure into a set number of discrete elements. These elements are treated 
as springs connecting two nodes, with each spring having a defined stiffness, or resistance to 
deformation under loading. The stiffness is proportional to the displacement under a given load, and 
therefore if the stiffness and loading are known, displacements can be found according to Newton’s 2nd 
Law (eqn 10). In the case of three-dimensional geometries, elements can connect multiple nodes, 
depending on the choice of element geometry and nodal placement. 
 
Forces and displacements are measured and applied at the nodes, while the element links the nodes 
together, as can be seen in Figure 36. 
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Figure 36: Finite element direct stiffness model. n = node, e = element, F = applied force. 
 
The elements relate the displacements in one node to the displacements in adjacent nodes. However, 
as elements represent a physical quantity of material in a defined space, in order to define the 
relationship between nodal displacements, the displacement field within the element must be 
determined as well. 

 
This displacement field is defined in terms of a shape function, also known as an interpolation function, 
which models how displacement varies within the element. Depending on the type and behavior of 
material, shape functions can be assumed as linear, quadratic, cubic, or even higher degree functions. 
Displacement at any node n, therefore, becomes proportional to the prescribed shape function, and 
displacement at any point within the element varies with position. As shape functions describe 
relationships between nodes of a single element, the functions can be expressed in terms of a 
coordinate system local to the element (zeta), and position within the element is given in this local 
coordinate system (Figure 37).  

 

 
Figure 37: Local coordinate system. 

 
Determining displacements using these shape functions requires the use of the Principle of Minimum 
Potential Energy. This principle states that any material, when subject to loading, will arrange itself in 
order to reach a state of minimum energy, resulting in some form of deformation or rigid body motion. 
Total potential energy in a structure can be expressed as: 

 
Π = 𝑈 −𝑊 (37) 

 
Where U represents elastic strain energy and W is the work done by an external force.  
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Returning to the elemental level, elastic strain energy in an element can be expressed in terms of 
stress and strain: 
 

𝑈𝑒 =
1

2
∫{휀}𝑇{𝜎}𝑑𝑉 (38) 

 

Stress and strain are both functions of displacement.  
 

𝜺 =

[
 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦
𝜕𝑤

𝜕𝑧
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧]
 
 
 
 
 
 
 
 
 
 
 
 

 (39) 

 

𝝈 = 𝐸𝜺. 
 

(40) 

   where 𝐸 = Young’s Modulus  
 

With linear shape functions, displacement 𝒖 at each node is proportional to the shape functions: 
 

[
𝑢
𝑣
𝑤
] = 𝑵

[
 
 
 
 
 
 
𝑢1
𝑣1
𝑤1
⋮
𝑢8
𝑣8
𝑤8]
 
 
 
 
 
 

= 𝑵 (41) 

 

Strain calculations, then, can be expressed in terms of the derivatives of shape functions. Compiling 
this relationship between strain and displacement at each node into matrix form, the strain-
displacement matrix 𝑩 for each node is generated, and is formulated as follows: 
 
 

𝑩𝑖 =

[
 
 
 
 
 
 
 
 
 
𝜕𝑁𝑖

𝜕𝑥
0 0

0
𝜕𝑁𝑖

𝜕𝑦
0

0 0
𝜕𝑁𝑖

𝜕𝑧
𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑖

𝜕𝑥
0

0
𝜕𝑁𝑖

𝜕𝑧

𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑖

𝜕𝑧
0

𝜕𝑁𝑖

𝜕𝑥 ]
 
 
 
 
 
 
 
 
 

;      𝑖 = 1 − 8  (42) 
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Strain in the element, therefore, can be represented as: 

 
𝜺 = 𝑩6𝑥24𝒒24𝑥6 (43) 

  

where:             double subscripts (n x m) subscripts indicate matrix dimensions  

                          single subscripts (i) indicate local node number  

  

𝑩6𝑥24 = [𝑩1 𝑩2…𝑩8]   

𝒒24𝑥6 = Matrix of nodal degree of freedom displacements  

  

and  
𝝈 = 𝐸𝑩6𝑥24𝒒24𝑥6 (44) 

 
Therefore, internal strain energy can be expressed as: 

 

𝑈𝑒 =
1

2
𝒖𝑇 (∫𝑩𝑇𝐸𝑩𝒅𝑽)𝒖 (45) 

 
In order to minimize the potential energy, the derivative is taken with respect to displacement: 

 
𝜕Π

𝜕𝑞
→
𝜕𝑈𝑒
𝜕𝒖

= (∫𝑩𝑇𝐸𝑩𝒅𝑽)𝒖 (46) 

 
The resulting integral, proportional to the displacement, is considered the stiffness of the element, and 
is defined as the elemental stiffness matrix K. A complication arises from the fact that shape functions 
are given in terms of local coordinates and displacements are given in global coordinates. Therefore, 
partial derivatives of shape functions with respect to global displacements cannot be calculated 
directly. Instead, partial derivatives are calculated in the local coordinate system (휁) and then 
converted from local to global coordinates using the Jacobian matrix, as shown in equation 47. 
 

𝑱 =

[
 
 
 
 
 
 
𝜕𝑥

𝜕휁1

𝜕𝑦

𝜕휁1

𝜕𝑧

𝜕휁1
𝜕𝑥

𝜕휁2

𝜕𝑦

𝜕휁2

𝜕𝑧

𝜕휁2
𝜕𝑥

𝜕휁3

𝜕𝑦

𝜕휁3

𝜕𝑧

𝜕휁3]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
∑(

𝜕𝑁𝑖
𝜕휁1

𝑥𝑖)

8

𝑖=1

∑(
𝜕𝑁𝑖
𝜕휁1

𝑦𝑖)

8

𝑖=1

∑(
𝜕𝑁𝑖
𝜕휁1

𝑧𝑖)

8

𝑖=1

∑(
𝜕𝑁𝑖
𝜕휁2

𝑥𝑖)

8

𝑖=1

∑(
𝜕𝑁𝑖
𝜕휁2

𝑦𝑖)

8

𝑖=1

∑(
𝜕𝑁𝑖
𝜕휁2

𝑧𝑖)

8

𝑖=1

∑(
𝜕𝑁𝑖
𝜕휁3

𝑥𝑖)

8

𝑖=1

∑(
𝜕𝑁𝑖
𝜕휁3

𝑦𝑖)

8

𝑖=1

∑(
𝜕𝑁𝑖
𝜕휁3

𝑧𝑖)

8

𝑖=1 ]
 
 
 
 
 
 
 
 

 (47) 

 
The elemental stiffness matrix can then be calculated locally (eqn 48), and converted to global 
coordinates using the inverse Jacobian. 

 

𝑲𝒆 = ∫𝑩𝑇𝑬𝑩𝒅𝑽 =∭𝑩𝑇𝑬𝑩|𝑱|𝛿휁1𝛿휁2𝛿휁3

1

−1

 (48) 
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The elasticity matrix 𝑬 can be decomposed into 𝑬 = 𝐸𝑪 where 𝑪 is the constitutive matrix for the class 
of material used in the simulation. Similar to Top3D, for the purposes of this study, the materials are 
considered to be isotropic. Concrete mortar, though composed of a material mixture, can be 
considered homogeneous and isotropic at the continuum level, as discussed in section 2.1.10. 
Therefore, the constitutive matrix represented as: 

 

𝑪 =
1

(1 + 𝜈)(1 − 2𝜈)

[
 
 
 
 
 
 
 
 
1 − 𝜈 𝜈 𝜈 0 0 0
𝜈 1 − 𝜈 𝜈 0 0 0
𝜈 𝜈 1 − 𝜈 0 0 0

0 0 0
(1 − 2𝜈)

2
0 0

0 0 0 0
(1 − 2𝜈)

2
0

0 0 0 0 0
(1 − 2𝜈)

2 ]
 
 
 
 
 
 
 
 

 (49) 

 

where 𝜈 = Poisson’s Ratio 
 

 
For 3D elements, equation 48 is difficult to calculate analytically. Therefore, numerical methods are 
often used. The most common method is Gauss-Quadrature (GQ), which calculates the integrand at a 
specified number of points within each element, prescribes a weighting coefficient to each value, and 
sums the result. The greater the number of GQ points, the more accurate the solution. However, there 
is a significant computational cost to increasing the number of GQ points. For this work, in order to 
evaluate the stiffness integral, three GQ methods are used and compared: 1. A 2x2x2 system of 
standard internal GQ points (Figure 38), the local coordinates of which are prescribed in line 67 (Table 
6); 2. A 2x2x2 system of GQ points comprised coordinates corresponding to each node, and 3. A single 
GQ point at the center of the element. Results showed little to no difference between methods, so the 
center-point method is used for calculations. 

 
 

 
 

Figure 38: 2x2x2 Gauss Quadrature points. 
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Table 6: Gauss Quadrature Coordinates 

GQ Point 𝜻𝟏 𝜻𝟐 𝜻𝟑 

1 −
1

√3
 −

1

√3
 −

1

√3
 

2 
1

√3
 −

1

√3
 −

1

√3
 

3 
1

√3
 

1

√3
 −

1

√3
 

4 −
1

√3
 

1

√3
 −

1

√3
 

5 −
1

√3
 −

1

√3
 

1

√3
 

6 
1

√3
 −

1

√3
 

1

√3
 

7 
1

√3
 

1

√3
 

1

√3
 

8 −
1

√3
 

1

√3
 

1

√3
 

 
Once the stiffness matrix has been calculated, the displacement at each node can be calculated using 
Newton’s Second Law (eqn 10). From the resulting displacements, strains can be calculated using 
equation 43, and stresses from equation 44. It is important to note that these stresses and strains are 
not calculated at the nodes, but instead are average values over the element. 

 
In SSTO, FEA is initiated by developing the stiffness matrix 𝑲 using the stiffness function (lines 505 – 
594). Similar to Top3D, an 8-node hexagonal element is used here for FEA calculations. Local 
coordinates are defined as in Table 7, and for simplicity, the shape functions are assumed to be linear 
(eqn 48). Therefore, the partial derivatives of the shape functions in terms of local coordinates can be 
calculated using equation 49. 

 

Table 7: Local nodal coordinates. 

Node 𝜻𝟏 𝜻𝟐 𝜻𝟑 

1 -1 -1 -1 

2 +1 -1 -1 

3 +1 +1 -1 

4 -1 +1 -1 

5 -1 -1 +1 

6 +1 -1 +1 

7 +1 +1 +1 

8 -1 +1 +1 
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𝑁𝑖 =  
1

8
(1 + 휁1𝑖)(1 + 휁2𝑖)(1 + 휁3𝑖)      𝑖 = 1 − 8 (48) 

  
𝜕𝑁𝑖
𝜕휁1

=
1

8
휁1𝑖(1 + 휁2𝑖)(1 + 휁3𝑖)

𝜕𝑁𝑖
𝜕휁2

=
1

8
휁2𝑖(1 + 휁1𝑖)(1 + 휁3𝑖)

𝜕𝑁𝑖
𝜕휁3

=
1

8
휁3𝑖(1 + 휁1𝑖)(1 + 휁2𝑖)}

  
 

  
 

     𝑖 = 1 − 8 (49) 

 

The Jacobian can be calculated from these partial derivatives and from the global coordinates of the 
GQ points (line 554), and the partial derivatives of the shape functions with respect to global 
coordinates can then be calculated in line 564. Lines 567 – 584 develop the strain-displacement matrix, 
line 581 calculates the local stiffness matrix at each GQ point, and lines 587 – 590 assembles the full 
elemental stiffness matrix. 

 
With the stiffness matrix fully assembled, FEA calculations can proceed. These calculations are 
performed by the FEA function (lines 625 – 731). The SIMP method is first employed at this point (line 
630) with the stiffness of each element penalized according to its artificial density. The global stiffness 
matrix is then assembled by compiling all elemental stiffness matrices into one global stiffness matrix 
(lines 628 – 631). Line 641 calculates displacements from the global stiffness matrix and the global 
forcing vector. Nodal displacement results are then stored in the node structure, and placed in vector 
form to be stored in the element structure. Full field displacements in all three directions are placed in 
matrix form as well for visual inspection (lines 697 – 708). 

 
Strains are calculated from displacements using the strain-displacement matrix at the center-point 
(line 715). Since stress calculations involve the elasticity matrix, the stresses are penalized according to 
the SIMP method, resulting in equation 50, calculated in line 716. Finally, stresses and strains are both 
stored in the element structure. 

 

𝝈(𝑥𝑖) = (𝐸𝑚𝑖𝑛 + 𝑥𝑖
𝑃(𝐸0 − 𝐸𝑚𝑖𝑛))𝑩𝒒(𝑥𝑖)𝜼𝒔(𝑥𝑖) (50) 

 

where 𝒏𝒔(𝑥𝑖) is a stress penalization factor:  𝜼𝒔(𝑥𝑖) = 𝑥𝑖
𝑠𝑝 

 
 

5.7 Objective Function 
 

Shear Stress 
 

As stated in Chapter 3, the goal of the concrete problem is to minimize the volume. Therefore, the 
objective function can be written as follows: 

 

𝑓(𝑥𝑖) =  
∑ 𝑉𝑖𝑥𝑖
𝑖
1

∑ 𝑉𝑖
𝑖
1

 (51) 

where  

𝑥𝑖  = Artificial density of element i  

𝑉𝑖 = Volume of element i  
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The objective function is normalized by the total volume of the design space in order to constrain the 
values to within an acceptable limit, as per MMA guidelines (Svanberg, 2007). Calculation of the 
objective function is performed on line 735, and normalization takes place on line 169.  

 
Von Mises Stress 
 
Both the concrete problem and VMS-based optimization share the goal of volume minimization 
Therefore, the VMS objective function is formulated in the same manner as the shear stress objective 
function. 
 
 

5.8 Constraint Function 
 

Shear Stress (Line 174) 
 
The constraint function, as defined in Chapter 3, is represented by an inequality relating the maximum 
calculated shear stress value to the shear strength of the material.  
 

|𝜎𝑥𝑦|
𝑚𝑎𝑥

≤ 𝜎𝑦𝑖𝑒𝑙𝑑 (52) 

 

Since directionality of shear stress does not play a role in failure due to self-weight loading, the 
absolute values of shear stress are considered when determining the maximum. The inequality 
formulation for MMA optimization requires the right side of the equation to be zero. Therefore, the 
inequality is rearranged to the form 
 

|𝜎𝑥𝑦|
𝑚𝑎𝑥

𝜎𝑦𝑖𝑒𝑙𝑑
− 1 ≤ 0 (53) 

 

The shear stress values for each iteration are calculated during FEA from equation (54). 
 

𝝈(𝑥𝑖) =

[
 
 
 
 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑥𝑦
𝜎𝑥𝑧
𝜎𝑦𝑧]

 
 
 
 
 

= 𝑬(𝑥𝑖)𝑩𝒒(𝑥𝑖) (54) 

 

where they can be isolated from the 4th term in the resulting elemental stress vectors (line 717). The 
maximum of these shear stress values is determined and used to evaluate the constraint function as 
follows: 
 

𝑔(𝑥𝑖)
𝑦𝑠 =

(
|𝜎𝑥𝑦|

𝑚𝑎𝑥

𝜎𝑦𝑖𝑒𝑙𝑑
− 1)

휀
 

(55) 

where   

𝜎𝑥𝑦
𝑚𝑎𝑥  = Maximum shear stress in the x-y plane  

𝜎𝑦𝑖𝑒𝑙𝑑 = Yield shear stress / shear strength  

휀 = Relaxation parameter  
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The constraint function is normalized by a relaxation parameter 휀 as per Duysinx and Bendsoe (1998) in 
order to avoid the stress singularities that result when the artificial element density approaches zero. 
 
Von Mises Stress 
 
Similar to the shear stress case, the VMS constraint is represented by inequality 56, though replacing 
maximum and yield shear stresses with VMS. The resulting constraint equation is calculated on line 185 
(eqn 57). 

𝜎𝑉𝑀𝑆
′ ≤ 𝜎𝑉𝑀𝑆

𝑚𝑎𝑥 (56) 
 

𝑔(𝑥𝑖)
𝑉𝑀𝑆 =

(
𝜎𝑉𝑀𝑆
′

𝜎𝑉𝑀𝑆
𝑚𝑎𝑥 − 1)

휀
 

(57) 

where   

𝜎𝑣𝑚𝑠
′  = maximum VMS in the domain  

𝜎𝑣𝑚𝑠
𝑚𝑎𝑥  = VMS constraint   

휀 = Relaxation parameter  

 
VMS for each element is calculated during FEA using equation 58 on lines 720 – 727. 
 

𝜎𝑉𝑀𝑆 = √𝜎𝑥𝑥
2 + 𝜎𝑦𝑦

2 + 𝜎𝑧𝑧
2 − (𝜎𝑥𝑥

2 ∗ 𝜎𝑦𝑦
2 ) − (𝜎𝑦𝑦

2 ∗ 𝜎𝑧𝑧
2 ) − (𝜎𝑥𝑥

2 ∗ 𝜎𝑧𝑧
2 ) + 3(𝜎𝑥𝑦

2 + 𝜎𝑦𝑧
2 + 𝜎𝑥𝑧

2 ) (58) 

 
 

5.9 Sensitivity Analysis 
 

Shear Stress 
 
All sensitivity analysis calculations are performed using the sensitivity function (lines 734 – 793). 
Analytical sensitivities of both the objective function and the constraint function are found by 
differentiating the respective functions with respect to the design variable 𝑥𝑖. In the case of shear 
stress-constrained optimization, these sensitivities are formulated by equations 59 and 60.  

 

𝜕𝝈(𝑥𝑖)

𝜕𝑥𝑖
=
𝜕𝐸(𝑥𝑖)

𝜕𝑥𝑖
𝑩𝒒(𝑥𝑖) + 𝐸(𝑥𝑖)𝑩

𝜕𝒒(𝑥𝑖)

𝜕𝑥𝑖
+ 𝐸(𝑥𝑖)𝑩𝒒(𝑥𝑖)

𝜕휂𝑠(𝑥𝑖)

𝜕𝑥𝑖
 (59) 

where  

𝜕𝐸(𝑥𝑖)

𝜕𝑥𝑖
= 𝑝𝑥𝑖

𝑝−1(𝐸 − 𝐸𝑚𝑖𝑛)  

𝜕𝒒(𝑥𝑖)

𝜕𝑥𝑖
= 𝑲−1 (

𝜕𝑭(𝑥𝑖)

𝜕𝑥𝑖
−
𝜕𝑲(𝑥𝑖)

𝜕𝑥𝑖
𝒒(𝑥𝑖))  

𝜕𝑲(𝑥𝑖)

𝜕𝑥𝑖
=
𝜕𝐸(𝑥𝑖)

𝜕𝑥𝑖
𝑲  

 
𝜕𝑉(𝑥𝑖)

𝜕𝑥𝑖
= 𝑉𝒊 (60) 
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However, applying stress sensitivity equation 59 resulted in optimization failure, indicated either by 
non-convergence, an empty volume solution, or a solution that was unpredictable, highly asymmetric, 
and non-intuitive. This failure may be due to the tensile and compressive nature of stresses, 
represented by positive or negative stress values for all stress components. These positive or negative 
values could misrepresent the appropriate search direction in the optimization step. The failure may 
also be caused by the local nature of the sensitivity calculations. Stress sensitivity equations require the 

calculation of the inverse elemental stiffness matrix 𝑲𝒆
−1 when determining the partial derivative of 

displacements. The local stiffness matrix 𝑲𝒆 is not invertible, since it is not subject to boundary 
conditions. In an attempt to circumvent this issue, the partial derivative of displacements was 
calculated on the global level using the invertible global stiffness matrix 𝑲−1. However, these global 
partial values do not necessary reflect the rate of change of displacements on the local level. 

 
Since the analytical method proved unsuccessful, a semi-analytical method was adopted (eqn 61) using 

chain rule differentiation. Analytical methods were used to determine 
𝜕𝑬(𝑥𝑖)

𝜕𝑥𝑖
 and 

𝜕𝜂𝑠(𝑥𝑖)

𝜕𝑥𝑖
, while the 

forward finite difference method was applied to calculate 
𝜕𝒒(𝑥𝑖)

𝜕𝑥𝑖
 at each node, with a given 

perturbation value.  
 

𝜕𝝈(𝑥𝑖)

𝜕𝑥𝑖
=
𝜕𝐸(𝑥𝑖)

𝜕𝑥𝑖
𝑩𝒒(𝑥𝑖)휂𝑠(𝑥𝑖) + 𝐸(𝑥𝑖)𝑩

𝜕𝒒(𝑥𝑖)

𝜕𝑥𝑖
휂𝑠(𝑥𝑖) + 𝐸(𝑥𝑖)𝑩𝒒(𝑥𝑖)

𝜕휂𝑠(𝑥𝑖)

𝜕𝑥𝑖
 (61) 

  

where  

𝜕𝒒(𝑥𝑖)

𝜕𝑥𝑖
=
𝑑𝒒(𝑥𝑖)

𝑑𝑥𝑖
=
𝒒(𝑥𝑖 + 𝜌) − 𝒒(𝑥𝑖)

𝜌
 (62) 

 
This semi-analytical method (line 758) requires FEA displacement calculations (𝒒) at both 𝑥𝑖  and 𝑥𝑖 + 𝜌 
values (lines 662 – 678), where 𝜌 is the perturbation factor, set in line 40. Due to the very small values 
resulting from this formulation (on the order of 10-3 – 10-5), sensitivity results were normalized such 
that the greatest value was equal to 1. 

 
Von Mises Stress 

 
Given that VMS- and shear stress-constrained optimization in this work share the same objective 
function, VMS sensitivity is also calculated using equations 51 and 56. However, the VMS constraint 
function requires a much different formulation for sensitivity analysis. For this work, VMS constraint 
sensitivity is calculated based on the work done by Holmberg (2013). Holmberg derives the following 
VMS sensitivity equation, implemented in SSTO in lines 765 - 782.  
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𝜕𝝈(𝑥𝑖)

𝜕𝑥𝑖
=
𝜕𝝈(𝑥𝑖)

𝜕𝜎𝑉𝑀𝑆
(
𝜕𝜎𝑉𝑀𝑆(𝑥𝑖)

𝜕𝝈
)

𝑇
𝜕(휂𝑠𝑥𝑖)

𝜕𝑥𝑖
𝑬(𝑥𝑖)𝑩𝒒(𝑥𝑖) − 휂𝑠𝑥𝑖𝑬(𝑥𝑖)𝑩

𝜕𝒒(𝑥𝑖)

𝜕𝑥𝑖
 (63) 

 
where 

 

 
𝜕𝒒(𝑥𝑖)

𝜕𝑥𝑖
= −𝑲−𝟏 (

𝜕𝑭

𝜕𝑥𝑖
−
𝜕𝑲

𝜕𝑥𝑖
𝒒(𝑥𝑖)) 

 

𝜕𝑲

𝜕𝑥𝑖
= 𝑝𝑥𝑖

𝑝−1(𝐸0 − 𝐸𝑚𝑖𝑛)𝑲  

𝜕𝜎𝑉𝑀𝑆(𝑥𝑖)

𝜕𝜎𝑥𝑥
=

1

2𝜎𝑉𝑀𝑆(𝑥𝑖)
(2𝜎𝑥𝑥(𝑥𝑖) − 𝜎𝑦𝑦(𝑥𝑖) − 𝜎𝑧𝑧(𝑥𝑖))  

𝜕𝜎𝑉𝑀𝑆(𝑥𝑖)

𝜕𝜎𝑦𝑦
=

1

2𝜎𝑉𝑀𝑆(𝑥𝑖)
(2𝜎𝑦𝑦(𝑥𝑖) − 𝜎𝑥𝑥(𝑥𝑖) − 𝜎𝑧𝑧(𝑥𝑖))  

𝜕𝜎𝑉𝑀𝑆(𝑥𝑖)

𝜕𝜎𝑧𝑧
=

1

2𝜎𝑉𝑀𝑆(𝑥𝑖)
(2𝜎𝑧𝑧(𝑥𝑖) − 𝜎𝑥𝑥(𝑥𝑖) − 𝜎𝑦𝑦(𝑥𝑖))  

𝜕𝜎𝑉𝑀𝑆(𝑥𝑖)

𝜕𝜎𝑥𝑦
=

3

𝜎𝑉𝑀𝑆(𝑥𝑖)
𝜎𝑥𝑦(𝑥𝑖)  

𝜕𝜎𝑉𝑀𝑆(𝑥𝑖)

𝜕𝜎𝑦𝑧
=

3

𝜎𝑉𝑀𝑆(𝑥𝑖)
𝜎𝑦𝑧(𝑥𝑖)  

𝜕𝜎𝑉𝑀𝑆(𝑥𝑖)

𝜕𝜎𝑥𝑧
=

3

𝜎𝑉𝑀𝑆(𝑥𝑖)
𝜎𝑥𝑧(𝑥𝑖)  

 
 
 

5.10 Optimization 
 

For this work, MMA was chosen as the method of optimization for the following reasons: 1. Common 
use in stress-based and non-stress based optimization (Bruggi and Duysinx, 2012; Gaynor, 2014; Li and 
Kim, 2018, and more); 2. Ability to handle a large number of constraints; 3. Straightforward 
implementation. For an in-depth discussion of the development of MMA equations, refer to Svanberg, 
1998; Svanberg 2007.  

 
For each iteration, in order to begin the MMA optimization process, certain variables and constants 
must be defined (lines 117 – 133) as per the Top3D instructional website and Svanberg (2007). The 
MMA program is a standalone open-source program provided by Svanberg, accessed by SSTO in lines 
229-231. The MMA program requires the input of the stated initiate coefficients and variables, as well 
as the calculated objective and constraint functions and their sensitivities. The result of the 
optimization is a new material geometry, represented by a vector of 𝑥𝑖  values. 
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5.11 Filtering 
 

The filtering technique employed in SSTO follows that used in Top3D (eqn 19), based on the method 
developed by Bruns and Tortorelli (2001), and implemented in lines 597 – 622.  

 
The weighting constants are used to scale objective and constraint functions and sensitivities (lines 790 
– 791), as well as artificial densities (line 241). 

 
 

5.12 Termination Criteria Checks 
 

SSTO contains four unique termination criteria. Each criterion is checked at the end of every iteration, 
and if any one of the checks is satisfied, the optimization process will end. The termination criteria are 
listed below, as is a discussion of the significance of each. 

 
1. Convergence 
 
In order to determine if the solution has converged, SSTO checks difference in artificial densities 
between the previous and current iterations. If the maximum difference is less than a designated 
amount, the resulting structure is no longer changing significantly, and the solution is considered to 
have converged. The maximum difference is designated by the change variable, calculated on line 
254, and compared to the tolerance variable tolx set by the user as an optimization parameter (line 
41). The criterion check is made at the beginning of the main while loop, which is defined to run if 
only change < tolx and if the continuation condition is also satisfied. 
 
2. Continuation 
 
To prevent the program from running indefinitely, a maximum number of iterations is set by the 
user (line 43). The main while loop runs only if the convergence criterion is satisfied and if the 
current iteration number is less than the maximum number of iterations. If the program reaches 
the maximum number of iterations, it cannot be determined whether the structure has been fully 
optimized. Therefore, the optimization is considered to be incomplete. 
 
3. Minimum Volume (lines 192 – 196) 
 
The optimization process is designed to end if a minimum volume fraction threshold is reached. 
The total volume of the structure is calculated at the end of each iteration, and compared to the 
designated minimum volume fraction. If the volume fraction is below the designated minimum, the 
while look is manually broken, and the optimization process ends. 
 
The minimum volume criterion exists in order to prevent the optimization process from resulting in 
a structure with no volume, or with a volume so small it cannot be realistically manufactured. This 
result may occur if the constraint is so high that the presence of even a small amount of material 
can support the design load while satisfying the constraint. 
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4. Maximum Volume (lines 197 – 201) 
 
Similar to the minimum volume criterion, the maximum volume criterion is designed to end the 
optimization process if a maximum volume threshold is met. 
 
Physically, this criterion signifies that the imposed constraint cannot be met by the available 
geometry. Volume will continually be added to the structure within the design space, but the 
structure will never be able to support the designed load and satisfy the constraint. 
 
In addition to these termination criteria, a continuation criterion is also imposed (lines 259 – 261). 
The continuation criterion is designed to force the optimization to proceed in the event that the 
constraint has not been satisfied. This criterion is necessary due to the fact that the convergence 
criterion has no relationship to the constraint function. Therefore, it is possible for the solution to 
have converged to a certain tolerance, without satisfying the constraint. In this case, the structure 
is not optimized within the bounds of the problem, so the process must continue.  

 
 

5.13 Other 
 

1. Plotting 
 

A 3D plot of element artificial densities is generated for each iteration using the display_3D 
function implemented by Liu (2014). This plot generates a gray-scale representation of each 
element based on the value of artificial density. Elements with 𝑥𝑖  values less than 0.3 are not 
displayed, and considered to be void areas in the final design. This void threshold can be adjusted 
in line 807. 

 
2. Parameterization 

 
SSTO has the ability to perform parametric studies considering the following optimization 
parameters, designated in lines 34, 37-40, and 55: 1. Distributed load; 2. Stiffness penalization 
factor; 3. Stress penalization factor; 4. Relaxation parameter factor; 5. Perturbation factor; 6. 
Constraint value. These parameters can be set as vectors of several values, over which SSTO will 
run new optimization processes. Parametric studies are incorporated programmatically by nesting 
the main program within four sequential for loops, one for each parameter. Data and results from 
each run is stored as indicated in the following section. 

 
3. Data Storage 

 
For each run, several important data points are stored for analysis. This data is stored upon 
termination of the main while loop in a structure designated BigData with each row of the 
structure representing a unique run (lines 272 – 300). Additionally, several of the data points stored 
include values calculated at each iteration throughout the optimization process. This iterative data 
is stored in column vectors, with each row associated numerically with the corresponding iteration 
(lines 176 – 180; 187-188.).  
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4. Density Forcing 
 

Due to the stress singularity problem, it is necessary to define and enforce a minimum artificial 
density value (Duysinx and Bendsoe, 1998). SSTO defines the minimum artificial density to be 0.1, 
and enforces this minimum by checking the density matrix for values less than 0.1 and manually 
forcing those values to zero (lines 243 – 246). 

 
Additionally, material must be present at the location of applied loads. Therefore, SSTO forces the 
artificial density to be equal to 1 for these elements (lines 247-250). 

 
 

5.14 Broad Overview of Program Order 
 

The requirements presented above form the basic structure of the TO program SSTO. SSTO performs 
each of these requirements in a specified order as follows: 

 
SSTO begins with sections defining the domain geometry, boundary and loading conditions, 
optimization parameters and constraints, material properties, and various constant values necessary 
for use throughout the program (lines 10 – 81). 

 
Following these definitions, the program defines nodal and element data by calling nodal_data and 
element_data functions (lines 84, 87). The boundary conditions are then set using the BCs function 
(line 90), and the elemental stiffness matrix is developed using the stiffness function (line 93). The 
filtering function is then called in order to define the element weights (line 96). 

 
The program then initiates the parameterization process, which is only run when specified parameters 
are entered as vector quantities instead of singular values (lines 99 – 112). If necessary, this 
parameterization includes the calculation of applied loads by calling the applied_load function (line 
102). The first iteration is then initialized by setting various variable, constant, and data storage values 
necessary for optimization (lines 117 – 142). 

 
The program then enters the main while loop, which checks two of the four termination criteria during 
each successive pass through the loop (criterion 1 and 2). Within the loop, self-weight loading may be 
applied by calling the Self_Weight function (lines 153 – 159). Then, FEA is performed using the FEA 
function (line 162), followed by sensitivity analysis, using the sensitivity function (line 165). At this 
point, all of the necessary information for optimization has been developed. 

 
The MMA optimization process is initiated first by adjusting values for elements with artificial densities 
less than 0.1 or equal to 1. Next, the objective and constraint function and sensitivity values are 
defined for passage to the MMA program. The MMA program mmasub is then called, and the new 
material placement values are updated and stored. Checks are made again for elements with artificial 
densities less than 0.1 or equal to 1, and specified values are adjusted accordingly. 

 
At this point, the remaining two termination criteria are checked (criterion 3 and 4), and a continuation 
condition is imposed. The program then prints key values to the command line and plots the artificial 
densities for the current iteration.  
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Once the program fails any of the termination criteria, the main while loop ends. Optimization data is 
then stored, and the command line displays the optimization result. If parametric studies are 
performed, a new run may be initiated. If not, the command line will display text indicating that the 
program has finished, and the program will end. The process explained here can be visualized in Figure 
39. 

 

  
a. b. 

 
Figure 39: Optimization processes: a. Setup; b. Main iterative loop. 
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Chapter 6: Validation Procedures 
 
Validation studies were performed throughout the development of SSTO to ensure that various 
components of the program were working properly and producing expected results. The first validation 
study was developed to determine the validity of the elemental stiffness matrix development. This test 
was performed by comparing the stiffness matrix produced by Top3D to that produced by SSTO. Values 
of Poisson’s Ratio were set at 0.3 and 0.1 for two separate test cases. The resulting stiffness matrices 
are shown in Appendix A. With a % difference of zero for each element in each case, it was determined 
that the stiffness matrix had been properly formulated. 
 
A second validation study was developed to ensure proper incorporation of the MMA optimization 
algorithm. In order to test the implementation of MMA optimization in SSTO, a compliance 
minimization problem was solved and compared with the results of Top3D. This problem was 
formulated in accordance with the example problem of a cantilever beam subject to a point load 
presented in section 2.2. The problem setup is shown in Figure 17. Top3D was altered to incorporate 
MMA optimization according to the included literature, so the results could be directly compared. 
Figure 40 shows that the resulting structures are almost identical, indicating proper implementation of 
the MMA optimization algorithm. 

 

  
Top3D SSTO 

Figure 40: MMA validation. Compliance minimization subject to 0.3 volume fraction constraint. 
 

A third validation study was developed to evaluate both the overall functioning of the completed SSTO 
in consideration of VMS-constrained optimization. This study was performed by posing a unit-less, 
VMS-constrained volume minimization problem, and comparing optimized structures resulting from 
SSTO, PTO, and the ANSYS topology optimization module. The posed problem considered a cantilever 
beam subject to a point load mid-height on the right edge. The VMS constraint was set at 2 MPa with 
an applied load of 100 Newtons. Material properties for concrete were selected from the ANSYS 
material database, and are given in Table 8. Optimized structures are displayed in Figure 41, and 
numerical results are given in Table 9. 
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Table 8: Hardened concrete material properties (ANSYS) 

Young’s Modulus (E) 30 GPa 

Poisson’s Ratio (𝜈) 0.18 

Physical Density (𝜌) 2300 
𝑘𝑔

𝑚3 

 

a. 

 

b. 

 

c. 

 
Figure 41: VMS-constrained optimized structures. a. SSTO; b. PTO; c. ANSYS. Red 

elements in ANSYS represent elements with 0.38-0.5 artificial density. 

 

Table 9: VMS Test Results 

 Iteration VMS Volume  

SSTO 132 2.00 496.08 

PTO 109 1.90 480.00 

ANSYS 86 1.55 558.00 

 
SSTO and PTO showed similar values for final VMS and volume. The structures, however, took on 
different forms, with SSTO displaying two sets of cross-bracing elements in the beam interior while 
PTO included only one set, with longer diagonal elements approaching the location of the point load. 
The perimeters of the SSTO and ANSYS structures are almost identical, save for ANSYS including 
additional material at the fixed end. On the interior, the ANSYS structure forms half of a cross-bracing, 
though the red elements show the potential formation of two full sets cross-bracing elements. From 
this test, it was determined that the VMS formulation in SSTO, and the overall code, were both 
functioning properly. With this knowledge, the shear stress-constrained formulation could be 
implemented under the assumption that all other sections of the code were functioning as expected.   
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Chapter 7: Results 
 
Parametric studies were performed to determine optimization parameters, considering both the VMS 
constraint and the SS constraint, with sensitivities calculated using the semi-analytical method. Both 
applied load and constraint values were varied in order to determine consistency of parameter 
performance. Stiffness penalization factors, stress penalization factors, perturbation factors, and 
relaxation parameters were the parameters evaluated through these studies. The optimal parameters 
were selected by considering success/failure rates, consistency of results, optimization trends, and an 
intuitive understanding of stress distributions in the resulting structures. The optimal parameters for 
both VMS- and SS-constrained optimization were determined to be: 

 

Stiffness penalization = 2 
Stress penalization = 8 
Perturbation factor = 10-7 
Relaxation parameter = 0.1 (Hardened State); 0.01 (Fresh State) 

 
 

7.1 Hardened State 
 

After determining optimal parameters, initial studies were performed considering the shear strength of 
hardened state concrete material, evaluating both wall and column geometries under an applied 
distributed load along the top surface (Figure 42). Hardened state material properties are defined in 
Table 8. Load values were defined in the code in terms of Newtons per node, and ranged in magnitude 
from 100 to 1000 N/node for both the wall and column geometries. In SI units, these values 
correspond to 1.36 – 13.56 MPa for the wall and 1.21 – 12.10 MPa for the column. The hardened state 
case was examined for two reasons: First, it called for application distributed load, which was desirable 
due to the uncertain behavior of optimization under self-weight loading only. It was hypothesized that 
the structure may reduce to a minimum volume, as removing material would reduce the self-weight, 
and thus, the shear stress in the structure. If this process were to iterate, the structure could 
potentially reduce to zero volume, as removal of all material also leads to removal of all shear stress on 
the structure. By imposing a distributed load of significant size, however, the load path from top 
surface to bottom surface would be clearly defined from FEA, forcing material placement in areas of 
greater stress. Second, the hardened state case allowed for direct comparison of optimized structures 
resulting from a shear stress constraint vs. a VMS constraint. These structures would also correspond 
to real-world loading cases, though irrespective of fabrication method.  
 

 

 
Wall geometry: 60cm x 20cm x 3cm Column geometry: 10cm x 50cm x 10cm 

Figure 42: Wall and column geometry, loading, and boundary conditions for hardened and fresh state cases. 
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The range of constraint values for shear stress-constrained optimization was determined from 
experimental shear strength measurements of Portland cement (Moosavi and Bawden, 2003). These 
values were set at 5, 10, 15, and 20 MPa. The SS-constrained column was a special case, as the 
optimization proceeded much more slowly, and results were poor and inconsistent. Only a single 
constraint of 10 MPa was imposed in this case, with loads ranging from 8.47 to 18.15 MPa. Greater 
loads and a smaller constraint were applied to the column because the optimization process would 
result in either a separation of the column into two pieces, one at the top and one at the bottom of the 
structure, or the reduction to zero volume. For the VMS constraint, values were set to be 
demonstrative, and determined by trial and error under the same loading conditions. The resulting 
constraints were 10, 20, 30, and 50 MPa for the wall, and 20, 30, 40, and 50 MPa for the column. The 
resulting optimized structures are shown in Tables 10 – 13, with corresponding numerical results 
presented in Tables 20 – 23, Appendix B. Note that negative loading indicates downward directionality 
of the applied load. 
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Table 10: VMS-Constrained Hardened State Wall 
 Load (MPa) 

Constraint (MPa) -2.71 -4.07 -6.78 -13.56 

10 

Run 1 Run 2 Run 3 Run 4 

20 

Run 5 Run 6 Run 7 Run 8 

30 

Run 9 Run 10 Run 11 Run 12 

50 

Run13 Run 14 Run 15 Run 16 
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Table 11: VMS-Constrained Hardened State Column 

 Load (MPa) 

Constraint 
(MPa) 

-1.21 -2.42 -3.63 -6.05 -12.10 

20 

Run 1 Run 2 
 

Run 3 
 

Run 4 
 

Run 5 

30 

 
Run 6 

 
Run 7 

 
Run 8 

 
Run 9 

 
Run 10 

40 

 
Run 11 

 
Run 12 

 
Run 13 

 
Run 14 

 
Run 15 

50 

 
Run 16 

 
Run 17 

 
Run 18 

 
Run 19 

 
Run 20 
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Table 12: Shear Stress-Constrained Hardened State Wall 
 Load (MPa) 

Constraint 
(MPa) 

-1.36 -2.71 -4.07 -6.78 -13.56 

5 

Run 1 Run 2 Run 3 Run 4 Run 5 

10 

Run 6 Run 7 Run 8 Run 9 Run 10 

15 

Run 11 Run 12 Run 13 Run 14 Run 15 

20 

Run 16 Run 17 Run 18 Run 19 Run 20 
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Table 13: Shear Stress-Constrained Hardened State Column 
 Load (MPa) 

Constraint (MPa) -8.47 -12.10 -18.15 

10 

 
Run 1 

 
Run 2 

 
Run 3 
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7.1.1 VMS-Constrained Hardened State Wall (Table 10) 
 
The range of applied loads and imposed constraints for the VMS-constrained hardened state wall case 
are shown in Table 14. Both visual and numerical analysis of the results show that, for a given 
constraint, the amount of material required increases as the applied load increases. This increase is 
due to the greater stresses induced in the material due to the increasing load. Addition of more 
material distributes the load throughout a greater material area, therefore reducing the overall stress 
level in each element. A similar trend can be seen under constant loading, as the constraint is relaxed 
from a tight (low-valued) constraint to a loose (high-valued) constraint. A loose constraint requires less 
material, as the material can be considered stronger, while a tight constraint represents a weaker 
material, thus requiring more material to support the load. 

 

Table 14: VMS-constrained hardened state wall loading and constraints 

Load (MPa) -2.71 -4.07 -6.78 -13.56 

Constraint (MPa) 10 20 30 50 

 
In cases of a large applied load and a tight constraint, this increase of material results in a maximum 
volume fraction (> 95%) and optimization failure (Runs 3, 4, and 8). This failure indicates that the 
imposed constraint is unreachable under the applied loading, and that there is no possible 
arrangement of material within the defined geometry that can support the load and satisfy the 
constraint, even if the structure is 100% solid. In cases of a small applied load and a loose constraint, 
the optimization proceeds until a minimum amount of material remains, defined by a volume fraction 
< 15% (Runs 5, 9, 10, 13, 14, and 15). This minimum indicates that the constraint is sufficiently high 
that only a minimal amount of material is required to support the load. 

 
Successful optimization terminates or reaches the maximum iteration threshold between 15% and 95% 
of the original design volume, allowing for analysis of the resulting designs. In these cases, the 
algorithm reduces the VMS stress summation by forming a series of column-like objects primarily in 
compression, connected by a series of arches, which minimize the dominant tensile and shear stress 
components, therefore minimizing VMS. The successful resulting structures, therefore, resemble 
arched bridges with columns of varying thicknesses. The varying thicknesses correspond to the 
magnitude of the applied load, with more material required to support larger loads in the form of 
thicker columns, as can be seen through comparison of Runs 6 and 7. 

 
7.1.2 VMS-Constrained Hardened State Column (Table 11) 
 
The range of applied loads and imposed constraints for the VMS-constrained hardened state column 
case are shown in Table 15. Similar to the VMS-constrained hardened state wall case, as the loading is 
increased, the amount of required material increases accordingly. Large loading and tight constraints 
result in optimization failure (Run 5) while smaller loads and loose constraints result in minimal volume 
designs (Runs 6, 11, 16, and 17). When optimization is successful or incomplete, the algorithm again 
seeks to minimize VMS by dividing the structure into smaller columns under compression at the four 
corners, connected to the top surface via a dome structure on the interior. The thickness of the 
columns again corresponds to the magnitude of the applied load. Additionally, if loading is held 
constant, and the constraint is relaxed from tight to loose, less material is required to support the load. 
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Table 15: VMS-constrained hardened state column loading and constraints 

Load (MPa) -1.21 -2.42 -3.63 -6.05 -12.1 

Constraint (MPa) 20 30 40 50 - 

 
7.1.3 SS-Constrained Hardened State Wall (Table 12) 
 
The range of applied loads and imposed constraints for the SS-constrained hardened state wall case 
are shown in Table 16. Similar to the VMS-constrained hardened state cases, SS-constrained results 
show that more material is required to support greater loads under a constant constraint, while if 
constraints are loosened, less material is required to meet the design specifications. Instances of 
minimum volume are seen (Runs 6, 11, 16, and 17), though unreachable constraints were not imposed 
for these loading conditions. Examination of numerical results show that in all cases, as the constraint 
is tightened or the applied load is increased, the resulting structure is approaching a maximum volume. 
In order to demonstrate this trend, an additional case was solved, holding the load of 81.3 KN/m 
constant, while tightening the constraint further to 0.5 MPa (Table 17, Run 21). As predicted, this run 
resulted in optimization failure by way of an unreachable constraint. 
 

Table 16: SS-constrained hardened state wall loading and constraints 

Load (MPa) -1.36 -2.71 -4.07 -6.78 -13.56 

Constraint (MPa) 5 10 15 20 - 

 

Table 17: SS-constrained hardened state wall case including unreachable constraint. 

 Constraint (MPa) 

Load 
(MPa) 

0.5 5 10 15 20 

-2.71 

 
Run 21 

 
Run 2 

 
Run 7 

 
Run 12 

 
Run 17 

Volume 
Fraction 

Constraint 
Unreachable 

0.58 0.41 0.35 
Minimum 
Volume 
Reached  

However, a major difference between the SS-constrained problem and the VMS-constrained problem 
can be seen in terms of the successfully optimized designs. While VMS-constrained results display 
arched bridge shapes of varying dimensions, SS-constrained results can vary dramatically from one 
constraint or loading condition to another. W-shapes are seen (Runs 2, 9, and 20), as are single arches 
(Runs 1 and 7), and even structures resembling the shape of a box girder (Runs 12 and 18). 
Additionally, Figure 43 shows that different structures result from VMS and SS optimization under the 
same loading conditions and constraints. This difference in optimal structure is due to the difference in 
stress distributions for VMS and shear stress, causing material placement in locations of greater 
respective stresses.  
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VMS Constraint Shear Stress Constraint 

Figure 43: Comparison of VMS-constrained and SS-constrained results for a single loading and constraint. 
Loading = 2.42 MPa, constraint = 10 MPa. 

 
 

7.1.4 SS-Constrained Hardened State Column (Table 13) 
 
The range of applied loads and imposed constraints for the SS-constrained hardened state wall case 
are shown in Table 18. As mentioned previously, only a single constraint is presented here, along with 
application of much higher applied loads. Results for the SS-constrained hardened state column were 
inconsistent, asymmetric, and not well formed. The reasons behind these unpredictable results are as 
yet unknown. It is hypothesized that, due to the region of very low shear stress that develops in the 
central part of the column, the numerical sensitivity method becomes unstable, and results in small 
deviations in sensitivity analysis, which compound with each iteration. These sensitivity deviations then 
cause unpredictable material placements. It is also possible that the optimization parameters used 
were not suitable for this combination of geometry and constraint. This case requires further work, 
beginning with further parametric studies of optimization parameters, and potentially extending to 
development of a new sensitivity formulation. 

 

Table 18: SS-constrained hardened state column loading and constraints 

Load (MPa) -8.47 -12.1 -18.15 

Constraint (MPa) 10 
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7.2 Fresh State Case 
 
The next step was to perform studies considering SS constraints and self-weight loading only for the 
wall geometry. Initial values for SS constraints were set corresponding to experimental yield shear 
stress value determined through shear vane testing of fresh concrete mortar for 3DCP applications 
(Rahul, 2019). Values for Young’s modulus (0.06 MPa) and Poisson’s ratio (0.3) for 3DCP fresh cement 
mortar were found in Panda (2019) and Wolfs (2018), respectively. It was shown that in all cases, the 
optimized structure reduced to zero volume as hypothesized, due to the direct relationship between 
material removal and shear stress reduction under self-weight loading. In an attempt to provide 
structural continuity and additional boundary conditions, a very small distributed load, ranging from 
1.36 – 3.39 KPa was imposed along the top surface of the wall. These loads were applied in the positive 
(upward) direction, and represented 30 – 75% of the self-weight of the initial volume. These small 
applied loads were necessary to create a boundary condition along the top surface of the structure, as 
a fixed condition resulted in negligible shear stress values throughout the structure due to support at 
both top and bottom surfaces. Application of this small distributed load allowed for successful 
optimization of SS-constrained wall geometries under very small distributed loads. Loads and 
constraints for the SS-constrained fresh state wall case are presented in Table 19. The resulting 
optimized structures are shown in Table 19, with corresponding numerical results are presented in 
Table 24, Appendix B. 
 

Table 19: SS-constrained fresh state wall loading and constraints 

Load (KPa) 1.36 2.03 2.71 3.39 

Constraint (KPa) 1 1.5 2 2.5 
 

As predicted, cases involving very small applied loads and loose constraints resulted in minimum 
volume designs (Runs 6, 9, 10, 13, and 14). Due to the low magnitude of the applied loads, the 
constraints never proved to be unreachable. Upon examination of the successful runs, a new problem 
emerged. There were many examples of disconnectivity present in the structures, or areas within the 
structures that appeared to have material suspended above a void space, as can be seen in Figure 44. 
In the context of a viscoelastic material, there would be no physical means for the material to behave 
as a solid and to be deposited above a void space. In these cases, there would be no load path for 
shear transfer from the top surface to the bottom surface through these void regions. Due to the fact 
that SSTO represents elements with an artificial density of < 0.3 as white (void) regions, the possibility 
exists that a small amount of material is in fact present. This possibility was refuted upon examination 
of the artificial material density matrix, which showed zero artificial density for elements in these 
regions. Further study is required to understand this resulting disconnectivity. Additional connectivity 
constraints may be required to mitigate this problem, which is present not only in the fresh state wall 
case, but also in the hardened state column case. 

 
Figure 44: SS-constrained fresh state wall showing disconnectivity (Run 7). 
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Table 19: Shear Stress-Constrained Fresh State Wall 
 Load (KPa) 

Constraint (KPa) 1.36 2.03 2.71 3.39 

1 

 
Run 1 

 
Run 2 

 
Run 3 

 
Run 4 

1.5 

 
Run 5 

 
Run 6 

 
Run 7 

 
Run 8 

2 

 
Run 9 

 
Run 10 

 
Run 11 

 
Run 12 

2.5 

 
Run 13 

 
Run 14 

 
Run 15 

 
Run 16 
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However, with proper selection of the applied load, it is possible to generate optimized structures that 
both satisfy the imposed constraint and intuitively represent valid structures consisting of well-defined 
load paths and full connectivity. Such structures can be seen resulting from Runs 3 and 4. The validity 
of this imposed distributed load boundary condition was determined by performing ANSYS FEA analysis 
on one of these optimized structures (Figure 45). The structure chosen for analysis was Run 3 (Table 
19).  
 
The results show that, when subjected to an upward distributed load (Figure 45b), only two small areas 
exceed the shear stress constrained imposed by the optimization process. These areas are adjacent to 
sharp corners, and therefore correspond to stress concentrations, which can be considered negligible. 
The remainder of the structure experiences a shear stress distribution below the constraint, indicating 
that the shear stress that develops in the structure is below the yield shear stress of the material. 
When the applied load is removed, and the structure is subjected only to its self-weight (Figure 45c), 
similar stress concentrations arise in other corner regions, but nearly the entire structure satisfies the 
shear stress constraint. These results indicate that the optimized structure in Figure 45a can be 
fabricated using 3DCP techniques without collapsing during the printing process. In order for the 
structure to maintain stability throughout printing, the material used must have a yield shear stress of 
1KPa or greater.  
 
Additionally, a downward distributed load was applied to the structure in order to determine the effect 
of self-weight only loading on the design. When subjected to the same low magnitude distributed load 
in the direction of gravity (Figure 45d), the structure experiences significant shear stresses originating 
at corners and radiating outwards, violating the shear stress constraint. This result shows that the 
application of even minor external loads causes the yield shear stress of the material to be exceeded, 
reinforcing the notion that structural design for 3DCP fabrication must consider self-weight only 
loading, as well as the yield shear stress of the concrete material. 
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 Load: 2.71 KPa; Yield shear stress: 1 KPa  

a. 

 

 

b. 

  

c. 

  

d. 

  
 

Figure 45: FEA results for SS-constrained fresh state optimization. Green region indicates 
satisfied constraint. a. SSTO optimized structure; b. ANSYS FEA results (deformed) including 

upward distributed load; c. ANSYS FEA results (deformed), self-weight only; b. ANSYS FEA results 
(deformed) including downward distributed load. 
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Chapter 8: Discussion 
 

8.1 Effect of Yield Shear Stress on Optimal Design 
 

The results of this work show that material yield shear stress or shear strength has a dramatic effect on 
optimal structural design, in the case of fresh state and hardened state concrete, respectively. In the 
SS-constrained hardened state wall case, increasing the shear strength of the concrete by a factor of 
1.5 changed the optimal design from an arch shape (Table 12, Run 7) to something resembling a box 
girder (Table 12, Run 12). Both of these designs are commonly used in bridge construction (Figure 46). 
A similar dramatic change to a W-shape can be seen by reducing the shear strength (Table 12, Run 2). 
These results differ greatly from those produced by the often-considered VMS-constrained problem, 
which can be used to consider hardened state failure by the use of a VMS failure criterion. These 
differences serve to highlight the fact that a single material property can drive optimal structural 
design. Additionally, selection of a specified optimal design, or designing with a specific geometry in 
mind, can lead the designer to select the proper materials capable of serving the designated purpose. 
By studying this effect of yield shear stress or shear strength on optimal design, a connection can be 
made between an intrinsic material property and design characteristics, such as unsupported angles, 
overhangs, or cross-sectional dimension limits. This connection between material and structure can 
then serve to quantify design characteristics in terms of a defined material property, allowing for an 
understanding of the full design space corresponding to the use of particular materials. Predictions can 
then be made regarding viable structural designs as well as the materials available for use. 
 

  

  
 

Figure 46: Comparison of SS-constrained hardened state wall results and common bridge designs. Top 
left: Table 12, Run 7; Top right: Table 12, Run 18; Bottom left: Bridge over the James River, Richmond VA 

(Photo by Seth Engel); Bottom right: Bonner Bridge box girder (Photo courtesy of HDR). 
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8.2 Available Material Property Range 
 

As is the case with all structural applications, there exists a limited selection of materials that can serve 
the design function. This selection of materials available for use is limited by specific materials 
properties that govern the specific design function. In structural design, this limitation typically comes 
in the form of yield or ultimate tensile, compressive, or shear strengths, or stiffness, defined by 
Young’s modulus. Materials are then selected for use based on these properties. Additional properties 
such as Poisson’s ratio or shear moduli may also limit structural design. As such, the design engineer 
must understand the properties that govern design, as well as be able to quantify the properties that 
can be used. The topology optimization tool presented here can serve to define these bounds on 
potential materials used in structural design through interpretation of the resulting optimal structures, 
or more importantly, of the overall success or failure of the constrained optimization process. If the 
optimization process succeeds, the material constraints are met, and a structure can be designed 
within the design domain. If, however, the constraint is unreachable, then the material is not suitable 
for design, as there is no possible arrangement of material that can support the given loading 
conditions. Similarly, if the optimization process proceeds to a minimum volume, then the material is 
not optimal for design. In these cases, increasing the strength of the material does not result in design 
changes, and a weaker material can be used that may perform better in terms of other material 
properties, such as stiffness. SSTO is capable of defining these material property bounds for shear 
strength and yield shear stress by imposing a shear stress constraint on the design process. 
 
This available material property range can be visualized by re-examining Table 17. The tight constraint 
of 0.5 MPa results in a design that cannot serve the required function, whereas the loose constraint of 
20 MPa results in a design of minimum volume. These results indicate a range of optimal shear 
strengths between 0.5 and 20 MPa for the given loading and boundary conditions. Within this range, 
materials may either be selected or designed in order to serve the desired function and support the 
applied load. Outside of this range, the material would either not serve the required function or not be 
optimal for use. From these results, then, an effective material property range emerges, which can 
guide the design engineer in selecting materials for the given application, providing another link 
between materials and structures in the design process. Additionally, this range can help material 
scientists develop materials with desired material properties. 
 
 

8.3 Design Sensitivity 
 

By altering the material property within the available range, the resulting optimal design may or may 
not vary significantly. This variance can be considered design sensitivity. High design sensitivity 
corresponds to large changes in the design variable (volume) when the constraint (shear stress) is 
changed by only a small amount. Similarly, low design sensitivity corresponds to minor changes in the 
design variable over a wide range of constraints. This sensitivity can be visualized graphically by 
plotting the design variable vs. the constraint (Figure 47). 
 
Consider the SS-constrained hardened state case presented in Table 17 and defined numerically in 
Table 20. Runs 2 and 7 show a dramatic difference in volume, indicating high design sensitivity, while 
Runs 7 and 12 display low design sensitivity, as the volume does not change drastically over a much 
larger range of imposed constraints. In this way, design sensitivity itself may vary throughout the 
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available material property range, with high or low gradients across small material property ranges. 
Understanding this design sensitivity can provide insight into material design, structural function, and 
the fabrication process. In the fresh state case, if an experimentally determined yield shear stress value 
for concrete mortar lies within a high design sensitivity range, any experimental or measurement 
errors may substantially change the printability of the structure. It would therefore be beneficial to use 
a material with low design sensitive properties in order to achieve a printable structure. 
 

 
Figure 47: Design sensitivity of shear stress-constrained hardened state wall (Table 12). 

 

Table 20: SS-constrained hardened state wall with constant loading. 

Run Load (MPa) Constraint (MPa) Result Volume Max Shear (MPa) 

21 -2.71 0.5 constraint unreachable > 95% > 0.5 

2 -2.71 5 max iterations 57.69% 4.99 

7 -2.71 10 max iterations 41.42% 9.92 

12 -2.71 15 max iterations 34.49% 14.86 

17 -2.71 20 minimum volume reached < 15.00% 6.45 

 
It should be noted that this design sensitivity was also seen in the case of the shear stress-constrained 
problem solved by PTO. Though presented in terms of tensile strength, the problem considered shear 
strength due to the use of linear plane strain transformation equations. A side-by-side comparison of 
the design sensitivity curves shows similar behavior when geometry and loading are held constant, but 
the constraint is varied (Figure 48). 
 

  
Figure 48: Comparison of design sensitivities for SSTO SS-constrained hardened state wall (left) and PTO cantilever beam 

(right). 
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Design sensitivity may arise from varying the material property in question, or by changing other 
material properties such as density or stiffness. It can also be set in terms of any dependent quantity, 
such as compliance, stress, or strain. Design sensitivity is therefore another example of the material-
structure relationship at work, with optimal structures dictating preferred material selection or design, 
and sensitive material properties limiting or expanding those available designs. 
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Chapter 9: Future Work 
 

The work presented here represents a jumping off point for further research into the relationship 
between materials, structural design, and fabrication process. There are several directions for future 
research that could develop this relationship, approached from all three angles. Ideas for these future 
research directions are presented here. 

 
 

9.1 Material Properties 
 
Yield shear stress is but one of the material properties that imposes limitations on design due to the 
fabrication process, and its inclusion here as a static, singular quantity does not represent the complete 
yielding behavior of the material. Several factors relating to yield shear stress were not considered 
here, and future research could include these factors for a more complete representation of material 
behavior. To begin, the yield shear stress here is considers only in one coordinate plane. However, in 3 
dimensional structures, shear stress occurs on three material planes. Inclusion of multiple planes of 
shear stress in the constrained optimization process could be achieved in one of two ways. First, 
multiple constraints could be included in the optimization process. MMA has the ability to incorporate 
multiple constraints, and could therefore consider shear stress constraints on all three planes 
simultaneously. Second, an equivalent shear stress representation could be developed, similar to the 
equivalent stress value represented by VMS. An equivalent value would not require the addition of 
multiple constraints. 
 
Multiple constraints could also be incorporated to optimize the structure considering local stress 
values. In its current form, SSTO optimizes the structure based on a global shear stress maximum. 
However, by constraining the shear stress in each individual element, a locally optimized structure 
would emerge, allowing for a greater potential design space. The reason for not including multiple 
constraints in SSTO is the increased computational expense, and the significant time required for 
optimization. 
 
Another potential use of multiple constraints in the TO process may help address the major problem 
experienced with column geometry: structural connectivity. If the loading was too small, the structure 
would separate and often reduce to zero volume. In order to prevent this from happening, and force 
the structure to maintain a load path through the entire geometry, a connectivity constraint could be 
developed. Ideas for connectivity constraints have been proposed (Li, 2016; Du, 2018) and could be 
incorporated as an additional constraint in the optimization process. 
 
Yield shear stress can also be further development by considering time-dependence. As discussed in 
section 2.1.11, yield shear stress is a time-dependent property. As time progresses, yield shear stress 
increases, allowing for the structure to take on additional load without deformation. This time 
dependence could be included in the optimization process as a reflection of the printing process. If the 
geometry and printing parameters are known, the time it takes to print a single layer can be calculated. 
If the thixotropy of the material is also known, the yield shear stress in each layer can be adjusted 
based on print time. Models of this material-fabrication relationship have been developed (Kruger, 
2020) and can be incorporated into the TO algorithm. 
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Yield shear stress is not the only material property that limits structural design. Stiffness, tensile and 
compressive strength, density, viscosity, among others all have a bearing on structural design. Often, 
these properties work in tandem, either as a result of the fabrication process or as a result of the 
indented structural application. Modification of the objective and/or constraint functions and their 
sensitivities allow for investigation into the limitations of these other material properties. Additionally, 
multiple material properties could be considered simultaneously, either through the use of multiple 
constraints, or by creating a singular constraint function as a linear combination of constraint functions 
representing the determination of multiple material properties. 
 
 

9.2 Real-World Application and Testing 
 

The work presented here is theoretical in nature. Though validation test have been performed using 
ANSYS FEA software, no physical experiments have been conducted to validate the printability of the 
optimized structures. Therefore, future physical experiments should be designed to test the 
application of this work in the real world. To that effort, an experimental program should be designed 
to include all aspects investigated here: materials, design, and fabrication. After selecting an initial 
geometry representative of a common structural component, initial parametric studies performed 
using SSTO would develop a range of desired yield shear stress values for the concrete mortar to be 
used in the printing process. Then, concrete mortar 3DCP mixes would be designed and tested for yield 
shear stress. The experimentally determined material properties would be input into SSTO and an 
optimized structure would be developed. This optimized structural design would then be converted 
into STL or Gcode for printing. Finally, the print would be attempted, and the results analyzed. This 
process could be repeated for different geometries, mixes, and print parameters. 
 
Currently, the initial geometries easily programmable in SSTO are limited to solid rectangular shapes. 
Modifications can be made to allow for initial geometries containing voids, or for those of non-
rectangular shape. Incorporating complex initial geometries will allow for optimization of more real-
world structural elements corresponding to architectural constraints. Additionally, complex initial 
geometries allow for development of intricate structures otherwise not considered by design 
engineers. 
 
The purpose of this work is to design structures optimized for the printing process. To that end, it 
considers only the fresh state material properties and self-weight loading. This work does not consider 
the properties of the structure in its hardened state, nor the structural performance under applied 
loading. The relationship between printable structures and structural performance has yet to be 
established. It is suggested here that TO may be able to help develop this relationship by considering 
material properties of both fresh and hardened concrete, as well as by considering multiple loading 
states. This process could be iterative in nature, where an initial design is determined using fresh state 
properties, followed by successive FEA analyses of that design, considering hardened state properties 
under varying loads. The process could also be direct, by incorporating multiple constraints and/or 
objective functions and performing FEA calculations under multiple loading states (self-weight only and 
applied). It may also be possible to develop a relationship between shear stresses developed for very 
small distributed loads (section 7.2) and real-world applied loads, and to use this relationship in design. 
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9.3 The Material – Structure Relationship in Design 
 
This work represents the first step on the path toward integrated design. It shows a direct connection 
between material and structure, and how the fabrication process can serve to limit or expand the 
design space created through this connection. The coupling of material, structure, and fabrication 
process has ramifications far beyond concrete 3D printing. Within the greater realm of additive 
manufacturing with any material, understanding design in terms of material properties and fabrication 
process is even more pronounced, as the processes are more precise, the designs more complex, and 
the applications more specialized than those of traditional methods of fabrication. However, even 
traditional fabrication methods can be analyzed in such a way. Every fabrication process has inherent 
material and structural design limitations. Every material has limitations on structural application due 
to inherent material properties. Every structural design has a set of material property and fabrication 
requirements. This study demonstrates that a full understanding of these limitations and requirements 
can be developed quantitatively through a thorough understanding of underlying material properties, 
and how they interact with the fabrication process and structural design requirements. Quantifying 
design in terms of material properties, then, allows a full range of design options to be explored, and 
optimal materials selected or designed to serve the purpose. With this work, the stage has been set for 
future exploration into the world of integrated design. Similar to the work done in this study, such 
investigations could begin by developing novel methods for quantifying design, or they could begin by 
altering current design methods to explore the material-structure interaction. Whatever the means for 
development, once harnessed, integrated design will be a powerful tool, both for design engineers and 
researchers alike. 
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Chapter 10: Conclusion 
 
Engineering design is the intersection of materials, structure, and fabrication process. The structure 
must be designed to serve a function, must be composed of a material capable of serving that function, 
and must be fabricated using techniques capable of working with the source material and converting it 
to a finished product. The engineering and economic challenges of the modern world require 
innovative solutions that take full advantage of the vast array of available engineering materials and 
fabrication methods, both of which continue to expand. In this environment, optimal solutions are not 
only desired, they are necessary. To meet that end, no single piece of the design puzzle can be 
prioritized over the others, as it is the symbiotic relationship between them that creates truly optimal 
designs.  
 
This work sought to begin the development of a symbiotic material – structure relationship 
contextualized by fabrication process with the goal of optimal structural design in mind. The 
relationship was developed in the context an emerging fabrication technique, 3DCP, which has the 
potential to revolutionize the construction industry. This construction revolution, however, can only 
take place if material, structure, and fabrication method each inform each other throughout the design 
process. 
 
In order to accomplish this goal, the fabrication process was examined from a process, design, and 
material perspective. A single material property, yield shear stress, was identified as being a vital and 
limiting factor in both successful design and fabrication. This material property was then 
contextualized as a constraint on design, and a computational design method was employed to create 
optimal designs based on this imposed constraint. This design method involved development of a 
novel topology optimization algorithm, and the optimization problem was posed to simulate the 3DCP 
environment. Specifically, this environment required consideration of a design domain with a fixed 
base, a geometry under self-weight loading only, and a design constrained by a maximum shear stress 
as given by material yield shear stress. 
 
Several optimization problems were solved, considering both hardened concrete design as well as 
fresh state design. From the resulting optimized structural designs, a picture of this material – 
structure relationship in design began to emerge through varying the yield shear stress in the material 
as well as the loading applied to the structure. This relationship can be used in the future to quantify 
available design spaces, geometric limits, structural applications, and fabrication requirements in terms 
of material properties, giving design engineers a better understanding of how to solve design 
problems, and giving material scientists a means to target material development for specific 
applications. Through further development of this relationship, the design process can become truly 
holistic in approach, which will prove vital when solving the increasingly complex engineering 
challenges of the future.   
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Appendix A: Stiffness Matrix Comparison 
 
2x2x2 GQ: Poisson’s Ratio = 0.3 

0.24 0.08 0.08 -0.11 0.02 0.02 -0.09 -0.08 0.01 0.05 -0.02 0.04 0.05 0.04 -0.02 -0.09 0.01 -0.08 -0.06 -0.04 -0.04 -0.01 -0.01 -0.01 

0.08 0.24 0.08 -0.02 0.05 0.04 -0.08 -0.09 0.01 0.02 -0.11 0.02 0.04 0.05 -0.02 -0.01 -0.01 -0.01 -0.04 -0.06 -0.04 0.01 -0.09 -0.08 

0.08 0.08 0.24 -0.02 0.04 0.05 -0.01 -0.01 -0.01 0.04 -0.02 0.05 0.02 0.02 -0.11 -0.08 0.01 -0.09 -0.04 -0.04 -0.06 0.01 -0.08 -0.09 

-0.11 -0.02 -0.02 0.24 -0.08 -0.08 0.05 0.02 -0.04 -0.09 0.08 -0.01 -0.09 -0.01 0.08 0.05 -0.04 0.02 -0.01 0.01 0.01 -0.06 0.04 0.04 

0.02 0.05 0.04 -0.08 0.24 0.08 -0.02 -0.11 0.02 0.08 -0.09 0.01 0.01 -0.01 -0.01 -0.04 0.05 -0.02 -0.01 -0.09 -0.08 0.04 -0.06 -0.04 

0.02 0.04 0.05 -0.08 0.08 0.24 -0.04 -0.02 0.05 0.01 -0.01 -0.01 0.08 0.01 -0.09 -0.02 0.02 -0.11 -0.01 -0.08 -0.09 0.04 -0.04 -0.06 

-0.09 -0.08 -0.01 0.05 -0.02 -0.04 0.24 0.08 -0.08 -0.11 0.02 -0.02 -0.06 -0.04 0.04 -0.01 -0.01 0.01 0.05 0.04 0.02 -0.09 0.01 0.08 

-0.08 -0.09 -0.01 0.02 -0.11 -0.02 0.08 0.24 -0.08 -0.02 0.05 -0.04 -0.04 -0.06 0.04 0.01 -0.09 0.08 0.04 0.05 0.02 -0.01 -0.01 0.01 

0.01 0.01 -0.01 -0.04 0.02 0.05 -0.08 -0.08 0.24 0.02 -0.04 0.05 0.04 0.04 -0.06 -0.01 0.08 -0.09 -0.02 -0.02 -0.11 0.08 -0.01 -0.09 

0.05 0.02 0.04 -0.09 0.08 0.01 -0.11 -0.02 0.02 0.24 -0.08 0.08 -0.01 0.01 -0.01 -0.06 0.04 -0.04 -0.09 -0.01 -0.08 0.05 -0.04 -0.02 

-0.02 -0.11 -0.02 0.08 -0.09 -0.01 0.02 0.05 -0.04 -0.08 0.24 -0.08 -0.01 -0.09 0.08 0.04 -0.06 0.04 0.01 -0.01 0.01 -0.04 0.05 0.02 

0.04 0.02 0.05 -0.01 0.01 -0.01 -0.02 -0.04 0.05 0.08 -0.08 0.24 0.01 0.08 -0.09 -0.04 0.04 -0.06 -0.08 -0.01 -0.09 0.02 -0.02 -0.11 

0.05 0.04 0.02 -0.09 0.01 0.08 -0.06 -0.04 0.04 -0.01 -0.01 0.01 0.24 0.08 -0.08 -0.11 0.02 -0.02 -0.09 -0.08 -0.01 0.05 -0.02 -0.04 

0.04 0.05 0.02 -0.01 -0.01 0.01 -0.04 -0.06 0.04 0.01 -0.09 0.08 0.08 0.24 -0.08 -0.02 0.05 -0.04 -0.08 -0.09 -0.01 0.02 -0.11 -0.02 

-0.02 -0.02 -0.11 0.08 -0.01 -0.09 0.04 0.04 -0.06 -0.01 0.08 -0.09 -0.08 -0.08 0.24 0.02 -0.04 0.05 0.01 0.01 -0.01 -0.04 0.02 0.05 

-0.09 -0.01 -0.08 0.05 -0.04 -0.02 -0.01 0.01 -0.01 -0.06 0.04 -0.04 -0.11 -0.02 0.02 0.24 -0.08 0.08 0.05 0.02 0.04 -0.09 0.08 0.01 

0.01 -0.01 0.01 -0.04 0.05 0.02 -0.01 -0.09 0.08 0.04 -0.06 0.04 0.02 0.05 -0.04 -0.08 0.24 -0.08 -0.02 -0.11 -0.02 0.08 -0.09 -0.01 

-0.08 -0.01 -0.09 0.02 -0.02 -0.11 0.01 0.08 -0.09 -0.04 0.04 -0.06 -0.02 -0.04 0.05 0.08 -0.08 0.24 0.04 0.02 0.05 -0.01 0.01 -0.01 

-0.06 -0.04 -0.04 -0.01 -0.01 -0.01 0.05 0.04 -0.02 -0.09 0.01 -0.08 -0.09 -0.08 0.01 0.05 -0.02 0.04 0.24 0.08 0.08 -0.11 0.02 0.02 

-0.04 -0.06 -0.04 0.01 -0.09 -0.08 0.04 0.05 -0.02 -0.01 -0.01 -0.01 -0.08 -0.09 0.01 0.02 -0.11 0.02 0.08 0.24 0.08 -0.02 0.05 0.04 

-0.04 -0.04 -0.06 0.01 -0.08 -0.09 0.02 0.02 -0.11 -0.08 0.01 -0.09 -0.01 -0.01 -0.01 0.04 -0.02 0.05 0.08 0.08 0.24 -0.02 0.04 0.05 

-0.01 0.01 0.01 -0.06 0.04 0.04 -0.09 -0.01 0.08 0.05 -0.04 0.02 0.05 0.02 -0.04 -0.09 0.08 -0.01 -0.11 -0.02 -0.02 0.24 -0.08 -0.08 

-0.01 -0.09 -0.08 0.04 -0.06 -0.04 0.01 -0.01 -0.01 -0.04 0.05 -0.02 -0.02 -0.11 0.02 0.08 -0.09 0.01 0.02 0.05 0.04 -0.08 0.24 0.08 

-0.01 -0.08 -0.09 0.04 -0.04 -0.06 0.08 0.01 -0.09 -0.02 0.02 -0.11 -0.04 -0.02 0.05 0.01 -0.01 -0.01 0.02 0.04 0.05 -0.08 0.08 0.24 
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Top3D: Poisson’s Ratio = 0.3 

0.24 0.08 0.08 -0.11 0.02 0.02 -0.09 -0.08 0.01 0.05 -0.02 0.04 0.05 0.04 -0.02 -0.09 0.01 -0.08 -0.06 -0.04 -0.04 -0.01 -0.01 -0.01 

0.08 0.24 0.08 -0.02 0.05 0.04 -0.08 -0.09 0.01 0.02 -0.11 0.02 0.04 0.05 -0.02 -0.01 -0.01 -0.01 -0.04 -0.06 -0.04 0.01 -0.09 -0.08 

0.08 0.08 0.24 -0.02 0.04 0.05 -0.01 -0.01 -0.01 0.04 -0.02 0.05 0.02 0.02 -0.11 -0.08 0.01 -0.09 -0.04 -0.04 -0.06 0.01 -0.08 -0.09 

-0.11 -0.02 -0.02 0.24 -0.08 -0.08 0.05 0.02 -0.04 -0.09 0.08 -0.01 -0.09 -0.01 0.08 0.05 -0.04 0.02 -0.01 0.01 0.01 -0.06 0.04 0.04 

0.02 0.05 0.04 -0.08 0.24 0.08 -0.02 -0.11 0.02 0.08 -0.09 0.01 0.01 -0.01 -0.01 -0.04 0.05 -0.02 -0.01 -0.09 -0.08 0.04 -0.06 -0.04 

0.02 0.04 0.05 -0.08 0.08 0.24 -0.04 -0.02 0.05 0.01 -0.01 -0.01 0.08 0.01 -0.09 -0.02 0.02 -0.11 -0.01 -0.08 -0.09 0.04 -0.04 -0.06 

-0.09 -0.08 -0.01 0.05 -0.02 -0.04 0.24 0.08 -0.08 -0.11 0.02 -0.02 -0.06 -0.04 0.04 -0.01 -0.01 0.01 0.05 0.04 0.02 -0.09 0.01 0.08 

-0.08 -0.09 -0.01 0.02 -0.11 -0.02 0.08 0.24 -0.08 -0.02 0.05 -0.04 -0.04 -0.06 0.04 0.01 -0.09 0.08 0.04 0.05 0.02 -0.01 -0.01 0.01 

0.01 0.01 -0.01 -0.04 0.02 0.05 -0.08 -0.08 0.24 0.02 -0.04 0.05 0.04 0.04 -0.06 -0.01 0.08 -0.09 -0.02 -0.02 -0.11 0.08 -0.01 -0.09 

0.05 0.02 0.04 -0.09 0.08 0.01 -0.11 -0.02 0.02 0.24 -0.08 0.08 -0.01 0.01 -0.01 -0.06 0.04 -0.04 -0.09 -0.01 -0.08 0.05 -0.04 -0.02 

-0.02 -0.11 -0.02 0.08 -0.09 -0.01 0.02 0.05 -0.04 -0.08 0.24 -0.08 -0.01 -0.09 0.08 0.04 -0.06 0.04 0.01 -0.01 0.01 -0.04 0.05 0.02 

0.04 0.02 0.05 -0.01 0.01 -0.01 -0.02 -0.04 0.05 0.08 -0.08 0.24 0.01 0.08 -0.09 -0.04 0.04 -0.06 -0.08 -0.01 -0.09 0.02 -0.02 -0.11 

0.05 0.04 0.02 -0.09 0.01 0.08 -0.06 -0.04 0.04 -0.01 -0.01 0.01 0.24 0.08 -0.08 -0.11 0.02 -0.02 -0.09 -0.08 -0.01 0.05 -0.02 -0.04 

0.04 0.05 0.02 -0.01 -0.01 0.01 -0.04 -0.06 0.04 0.01 -0.09 0.08 0.08 0.24 -0.08 -0.02 0.05 -0.04 -0.08 -0.09 -0.01 0.02 -0.11 -0.02 

-0.02 -0.02 -0.11 0.08 -0.01 -0.09 0.04 0.04 -0.06 -0.01 0.08 -0.09 -0.08 -0.08 0.24 0.02 -0.04 0.05 0.01 0.01 -0.01 -0.04 0.02 0.05 

-0.09 -0.01 -0.08 0.05 -0.04 -0.02 -0.01 0.01 -0.01 -0.06 0.04 -0.04 -0.11 -0.02 0.02 0.24 -0.08 0.08 0.05 0.02 0.04 -0.09 0.08 0.01 

0.01 -0.01 0.01 -0.04 0.05 0.02 -0.01 -0.09 0.08 0.04 -0.06 0.04 0.02 0.05 -0.04 -0.08 0.24 -0.08 -0.02 -0.11 -0.02 0.08 -0.09 -0.01 

-0.08 -0.01 -0.09 0.02 -0.02 -0.11 0.01 0.08 -0.09 -0.04 0.04 -0.06 -0.02 -0.04 0.05 0.08 -0.08 0.24 0.04 0.02 0.05 -0.01 0.01 -0.01 

-0.06 -0.04 -0.04 -0.01 -0.01 -0.01 0.05 0.04 -0.02 -0.09 0.01 -0.08 -0.09 -0.08 0.01 0.05 -0.02 0.04 0.24 0.08 0.08 -0.11 0.02 0.02 

-0.04 -0.06 -0.04 0.01 -0.09 -0.08 0.04 0.05 -0.02 -0.01 -0.01 -0.01 -0.08 -0.09 0.01 0.02 -0.11 0.02 0.08 0.24 0.08 -0.02 0.05 0.04 

-0.04 -0.04 -0.06 0.01 -0.08 -0.09 0.02 0.02 -0.11 -0.08 0.01 -0.09 -0.01 -0.01 -0.01 0.04 -0.02 0.05 0.08 0.08 0.24 -0.02 0.04 0.05 

-0.01 0.01 0.01 -0.06 0.04 0.04 -0.09 -0.01 0.08 0.05 -0.04 0.02 0.05 0.02 -0.04 -0.09 0.08 -0.01 -0.11 -0.02 -0.02 0.24 -0.08 -0.08 

-0.01 -0.09 -0.08 0.04 -0.06 -0.04 0.01 -0.01 -0.01 -0.04 0.05 -0.02 -0.02 -0.11 0.02 0.08 -0.09 0.01 0.02 0.05 0.04 -0.08 0.24 0.08 

-0.01 -0.08 -0.09 0.04 -0.04 -0.06 0.08 0.01 -0.09 -0.02 0.02 -0.11 -0.04 -0.02 0.05 0.01 -0.01 -0.01 0.02 0.04 0.05 -0.08 0.08 0.24 
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% Difference: Poisson’s Ratio = 0.3 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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2x2x2 GQ: Poisson’s Ratio = 0.1 

0.21 0.05 0.05 -0.06 -0.03 -0.03 -0.07 -0.05 -0.01 0.03 0.03 0.02 0.03 0.02 0.03 -0.07 -0.01 -0.05 -0.05 -0.02 -0.02 -0.02 0.01 0.01 

0.05 0.21 0.05 0.03 0.03 0.02 -0.05 -0.07 -0.01 -0.03 -0.06 -0.03 0.02 0.03 0.03 0.01 -0.02 0.01 -0.02 -0.05 -0.02 -0.01 -0.07 -0.05 

0.05 0.05 0.21 0.03 0.02 0.03 0.01 0.01 -0.02 0.02 0.03 0.03 -0.03 -0.03 -0.06 -0.05 -0.01 -0.07 -0.02 -0.02 -0.05 -0.01 -0.05 -0.07 

-0.06 0.03 0.03 0.21 -0.05 -0.05 0.03 -0.03 -0.02 -0.07 0.05 0.01 -0.07 0.01 0.05 0.03 -0.02 -0.03 -0.02 -0.01 -0.01 -0.05 0.02 0.02 

-0.03 0.03 0.02 -0.05 0.21 0.05 0.03 -0.06 -0.03 0.05 -0.07 -0.01 -0.01 -0.02 0.01 -0.02 0.03 0.03 0.01 -0.07 -0.05 0.02 -0.05 -0.02 

-0.03 0.02 0.03 -0.05 0.05 0.21 -0.02 0.03 0.03 -0.01 0.01 -0.02 0.05 -0.01 -0.07 0.03 -0.03 -0.06 0.01 -0.05 -0.07 0.02 -0.02 -0.05 

-0.07 -0.05 0.01 0.03 0.03 -0.02 0.21 0.05 -0.05 -0.06 -0.03 0.03 -0.05 -0.02 0.02 -0.02 0.01 -0.01 0.03 0.02 -0.03 -0.07 -0.01 0.05 

-0.05 -0.07 0.01 -0.03 -0.06 0.03 0.05 0.21 -0.05 0.03 0.03 -0.02 -0.02 -0.05 0.02 -0.01 -0.07 0.05 0.02 0.03 -0.03 0.01 -0.02 -0.01 

-0.01 -0.01 -0.02 -0.02 -0.03 0.03 -0.05 -0.05 0.21 -0.03 -0.02 0.03 0.02 0.02 -0.05 0.01 0.05 -0.07 0.03 0.03 -0.06 0.05 0.01 -0.07 

0.03 -0.03 0.02 -0.07 0.05 -0.01 -0.06 0.03 -0.03 0.21 -0.05 0.05 -0.02 -0.01 0.01 -0.05 0.02 -0.02 -0.07 0.01 -0.05 0.03 -0.02 0.03 

0.03 -0.06 0.03 0.05 -0.07 0.01 -0.03 0.03 -0.02 -0.05 0.21 -0.05 0.01 -0.07 0.05 0.02 -0.05 0.02 -0.01 -0.02 -0.01 -0.02 0.03 -0.03 

0.02 -0.03 0.03 0.01 -0.01 -0.02 0.03 -0.02 0.03 0.05 -0.05 0.21 -0.01 0.05 -0.07 -0.02 0.02 -0.05 -0.05 0.01 -0.07 -0.03 0.03 -0.06 

0.03 0.02 -0.03 -0.07 -0.01 0.05 -0.05 -0.02 0.02 -0.02 0.01 -0.01 0.21 0.05 -0.05 -0.06 -0.03 0.03 -0.07 -0.05 0.01 0.03 0.03 -0.02 

0.02 0.03 -0.03 0.01 -0.02 -0.01 -0.02 -0.05 0.02 -0.01 -0.07 0.05 0.05 0.21 -0.05 0.03 0.03 -0.02 -0.05 -0.07 0.01 -0.03 -0.06 0.03 

0.03 0.03 -0.06 0.05 0.01 -0.07 0.02 0.02 -0.05 0.01 0.05 -0.07 -0.05 -0.05 0.21 -0.03 -0.02 0.03 -0.01 -0.01 -0.02 -0.02 -0.03 0.03 

-0.07 0.01 -0.05 0.03 -0.02 0.03 -0.02 -0.01 0.01 -0.05 0.02 -0.02 -0.06 0.03 -0.03 0.21 -0.05 0.05 0.03 -0.03 0.02 -0.07 0.05 -0.01 

-0.01 -0.02 -0.01 -0.02 0.03 -0.03 0.01 -0.07 0.05 0.02 -0.05 0.02 -0.03 0.03 -0.02 -0.05 0.21 -0.05 0.03 -0.06 0.03 0.05 -0.07 0.01 

-0.05 0.01 -0.07 -0.03 0.03 -0.06 -0.01 0.05 -0.07 -0.02 0.02 -0.05 0.03 -0.02 0.03 0.05 -0.05 0.21 0.02 -0.03 0.03 0.01 -0.01 -0.02 

-0.05 -0.02 -0.02 -0.02 0.01 0.01 0.03 0.02 0.03 -0.07 -0.01 -0.05 -0.07 -0.05 -0.01 0.03 0.03 0.02 0.21 0.05 0.05 -0.06 -0.03 -0.03 

-0.02 -0.05 -0.02 -0.01 -0.07 -0.05 0.02 0.03 0.03 0.01 -0.02 0.01 -0.05 -0.07 -0.01 -0.03 -0.06 -0.03 0.05 0.21 0.05 0.03 0.03 0.02 

-0.02 -0.02 -0.05 -0.01 -0.05 -0.07 -0.03 -0.03 -0.06 -0.05 -0.01 -0.07 0.01 0.01 -0.02 0.02 0.03 0.03 0.05 0.05 0.21 0.03 0.02 0.03 

-0.02 -0.01 -0.01 -0.05 0.02 0.02 -0.07 0.01 0.05 0.03 -0.02 -0.03 0.03 -0.03 -0.02 -0.07 0.05 0.01 -0.06 0.03 0.03 0.21 -0.05 -0.05 

0.01 -0.07 -0.05 0.02 -0.05 -0.02 -0.01 -0.02 0.01 -0.02 0.03 0.03 0.03 -0.06 -0.03 0.05 -0.07 -0.01 -0.03 0.03 0.02 -0.05 0.21 0.05 

0.01 -0.05 -0.07 0.02 -0.02 -0.05 0.05 -0.01 -0.07 0.03 -0.03 -0.06 -0.02 0.03 0.03 -0.01 0.01 -0.02 -0.03 0.02 0.03 -0.05 0.05 0.21 
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Top3D: Poisson’s Ratio = 0.1 

0.21 0.05 0.05 -0.06 -0.03 -0.03 -0.07 -0.05 -0.01 0.03 0.03 0.02 0.03 0.02 0.03 -0.07 -0.01 -0.05 -0.05 -0.02 -0.02 -0.02 0.01 0.01 

0.05 0.21 0.05 0.03 0.03 0.02 -0.05 -0.07 -0.01 -0.03 -0.06 -0.03 0.02 0.03 0.03 0.01 -0.02 0.01 -0.02 -0.05 -0.02 -0.01 -0.07 -0.05 

0.05 0.05 0.21 0.03 0.02 0.03 0.01 0.01 -0.02 0.02 0.03 0.03 -0.03 -0.03 -0.06 -0.05 -0.01 -0.07 -0.02 -0.02 -0.05 -0.01 -0.05 -0.07 

-0.06 0.03 0.03 0.21 -0.05 -0.05 0.03 -0.03 -0.02 -0.07 0.05 0.01 -0.07 0.01 0.05 0.03 -0.02 -0.03 -0.02 -0.01 -0.01 -0.05 0.02 0.02 

-0.03 0.03 0.02 -0.05 0.21 0.05 0.03 -0.06 -0.03 0.05 -0.07 -0.01 -0.01 -0.02 0.01 -0.02 0.03 0.03 0.01 -0.07 -0.05 0.02 -0.05 -0.02 

-0.03 0.02 0.03 -0.05 0.05 0.21 -0.02 0.03 0.03 -0.01 0.01 -0.02 0.05 -0.01 -0.07 0.03 -0.03 -0.06 0.01 -0.05 -0.07 0.02 -0.02 -0.05 

-0.07 -0.05 0.01 0.03 0.03 -0.02 0.21 0.05 -0.05 -0.06 -0.03 0.03 -0.05 -0.02 0.02 -0.02 0.01 -0.01 0.03 0.02 -0.03 -0.07 -0.01 0.05 

-0.05 -0.07 0.01 -0.03 -0.06 0.03 0.05 0.21 -0.05 0.03 0.03 -0.02 -0.02 -0.05 0.02 -0.01 -0.07 0.05 0.02 0.03 -0.03 0.01 -0.02 -0.01 

-0.01 -0.01 -0.02 -0.02 -0.03 0.03 -0.05 -0.05 0.21 -0.03 -0.02 0.03 0.02 0.02 -0.05 0.01 0.05 -0.07 0.03 0.03 -0.06 0.05 0.01 -0.07 

0.03 -0.03 0.02 -0.07 0.05 -0.01 -0.06 0.03 -0.03 0.21 -0.05 0.05 -0.02 -0.01 0.01 -0.05 0.02 -0.02 -0.07 0.01 -0.05 0.03 -0.02 0.03 

0.03 -0.06 0.03 0.05 -0.07 0.01 -0.03 0.03 -0.02 -0.05 0.21 -0.05 0.01 -0.07 0.05 0.02 -0.05 0.02 -0.01 -0.02 -0.01 -0.02 0.03 -0.03 

0.02 -0.03 0.03 0.01 -0.01 -0.02 0.03 -0.02 0.03 0.05 -0.05 0.21 -0.01 0.05 -0.07 -0.02 0.02 -0.05 -0.05 0.01 -0.07 -0.03 0.03 -0.06 

0.03 0.02 -0.03 -0.07 -0.01 0.05 -0.05 -0.02 0.02 -0.02 0.01 -0.01 0.21 0.05 -0.05 -0.06 -0.03 0.03 -0.07 -0.05 0.01 0.03 0.03 -0.02 

0.02 0.03 -0.03 0.01 -0.02 -0.01 -0.02 -0.05 0.02 -0.01 -0.07 0.05 0.05 0.21 -0.05 0.03 0.03 -0.02 -0.05 -0.07 0.01 -0.03 -0.06 0.03 

0.03 0.03 -0.06 0.05 0.01 -0.07 0.02 0.02 -0.05 0.01 0.05 -0.07 -0.05 -0.05 0.21 -0.03 -0.02 0.03 -0.01 -0.01 -0.02 -0.02 -0.03 0.03 

-0.07 0.01 -0.05 0.03 -0.02 0.03 -0.02 -0.01 0.01 -0.05 0.02 -0.02 -0.06 0.03 -0.03 0.21 -0.05 0.05 0.03 -0.03 0.02 -0.07 0.05 -0.01 

-0.01 -0.02 -0.01 -0.02 0.03 -0.03 0.01 -0.07 0.05 0.02 -0.05 0.02 -0.03 0.03 -0.02 -0.05 0.21 -0.05 0.03 -0.06 0.03 0.05 -0.07 0.01 

-0.05 0.01 -0.07 -0.03 0.03 -0.06 -0.01 0.05 -0.07 -0.02 0.02 -0.05 0.03 -0.02 0.03 0.05 -0.05 0.21 0.02 -0.03 0.03 0.01 -0.01 -0.02 

-0.05 -0.02 -0.02 -0.02 0.01 0.01 0.03 0.02 0.03 -0.07 -0.01 -0.05 -0.07 -0.05 -0.01 0.03 0.03 0.02 0.21 0.05 0.05 -0.06 -0.03 -0.03 

-0.02 -0.05 -0.02 -0.01 -0.07 -0.05 0.02 0.03 0.03 0.01 -0.02 0.01 -0.05 -0.07 -0.01 -0.03 -0.06 -0.03 0.05 0.21 0.05 0.03 0.03 0.02 

-0.02 -0.02 -0.05 -0.01 -0.05 -0.07 -0.03 -0.03 -0.06 -0.05 -0.01 -0.07 0.01 0.01 -0.02 0.02 0.03 0.03 0.05 0.05 0.21 0.03 0.02 0.03 

-0.02 -0.01 -0.01 -0.05 0.02 0.02 -0.07 0.01 0.05 0.03 -0.02 -0.03 0.03 -0.03 -0.02 -0.07 0.05 0.01 -0.06 0.03 0.03 0.21 -0.05 -0.05 

0.01 -0.07 -0.05 0.02 -0.05 -0.02 -0.01 -0.02 0.01 -0.02 0.03 0.03 0.03 -0.06 -0.03 0.05 -0.07 -0.01 -0.03 0.03 0.02 -0.05 0.21 0.05 

0.01 -0.05 -0.07 0.02 -0.02 -0.05 0.05 -0.01 -0.07 0.03 -0.03 -0.06 -0.02 0.03 0.03 -0.01 0.01 -0.02 -0.03 0.02 0.03 -0.05 0.05 0.21 
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% Difference: Poisson’s Ratio = 0.1 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 



 103 

Appendix B: Tables of Numerical Results 
 

 

 

 
 

  

Table 21: VMS-Constrained Hardened State Wall 

Constraint: 10 MPa 

Run Load (KN/m) Result Volume Max VMS (MPa) 

1 -81.3 complete 56.36% 9.97 

2 -122.0 complete 79.16% 9.99 

3 -203.3 constraint unreachable > 95.00% 12.80 

4 -406.7 constraint unreachable > 95.00% 25.65 

Constraint: 20 MPa 

Run Load (KN/m) Result Volume Max VMS (MPa) 

5 -81.3 minimum volume reached < 15.00% 12.79 

6 -122.0 complete 45.67% 19.85 

7 -203.3 complete 65.91% 19.95 

8 -406.7 constraint unreachable > 95.00% 25.61 

Constraint: 30 MPa 

Run Load (KN/m) Result Volume Max VMS (MPa) 

9 -81.3 minimum volume reached < 15.00% 14.03 

10 -122.0 minimum volume reached < 15.00% 19.15 

11 -203.3 complete 46.53% 29.80 

12 -406.7 complete 79.54% 29.98 

Constraint: 50 MPa 

Run Load (KN/m) Result Volume Max VMS (MPa) 

13 -81.3 minimum volume reached < 15.00% 28.35 

14 -122.0 minimum volume reached < 15.00% 35.42 

15 -203.3 minimum volume reached < 15.00% 31.91 

16 -406.7 complete 56.37% 49.82 
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Table 22: VMS-Constrained Hardened State Column 

Constraint: 20 MPa 

Run Load (MPa) Result Volume Max VMS (MPa) 

1 -1.21 complete 6.13% 19.16 

2 -2.42 complete 26.33% 19.73 

3 -3.63 max iterations 32.02% 19.66 

4 -6.05 complete 43.08% 19.68 

5 -12.10 constraint unreachable > 95.00% 25.47 

Constraint: 30 MPa 

Run Load (MPa) Result Volume Max VMS (MPa) 

6 -1.21 minimum volume reached < 5.00% 19.04 

7 -2.42 complete 10.94% 28.80 

8 -3.63 complete 26.17% 29.58 

9 -6.05 max iterations 31.71% 29.39 

10 -12.10 complete 58.13% 29.72 

Constraint: 40 MPa 

Run Load (MPa) Result Volume Max VMS (MPa) 

11 -1.21 minimum volume reached < 5.00% 17.56 

12 -2.42 complete 6.34% 38.20 

13 -3.63 complete 13.02% 38.61 

14 -6.05 complete 27.80% 39.29 

15 -12.10 complete 43.06% 39.38 

Constraint: 50 MPa 

Run Load (MPa) Result Volume Max VMS (MPa) 

16 -1.21 minimum volume reached < 5.00% 22.43 

17 -2.42 minimum volume reached < 5.00% 34.08 

18 -3.63 complete 9.51% 48.28 

19 -6.05 complete 26.16% 49.29 

20 -12.10 complete 39.38% 49.04 
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Table 23: Shear Stress-Constrained Hardened State Wall 

Constraint: 5 MPa 

Run Load (KN/m) Result Volume Max Shear (MPa) 

1 -40.7 max iterations 46.46% 4.88 

2 -81.3 max iterations 57.69% 4.99 

3 -122.0 max iterations 74.30% 5.05 

4 -203.3 complete 73.94% 4.99 

5 -406.7 max iterations 85.16% 5.01 

Constraint: 10 MPa 

Run Load (KN/m) Result Volume Max Shear (MPa) 

6 -40.7 minimum volume reached < 15.00% 5.89 

7 -81.3 max iterations 41.42% 9.92 

8 -122.0 max iterations 47.27% 9.97 

9 -203.3 max iterations 56.48% 9.40 

10 -406.7 max iterations 79.24% 9.86 

Constraint: 15 MPa 

Run Load (KN/m) Result Volume Max Shear (MPa) 

11 -40.7 minimum volume reached < 15.00% 10.06 

12 -81.3 max iterations 34.49% 14.86 

13 -122.0 max iterations 44.76% 13.95 

14 -203.3 max iterations 57.39% 14.67 

15 -406.7 max iterations 65.69% 16.36 

Constraint: 20 MPa 

Run Load (KN/m) Result Volume Max Shear (MPa) 

16 -40.7 minimum volume reached < 15.00% 3.90 

17 -81.3 minimum volume reached < 15.00% 6.45 

18 -122.0 max iterations 32.75% 19.66 

19 -203.3 complete 49.35% 17.69 

20 -406.7 max iterations 66.55% 19.79 

 
 

Table 24: Shear Stress-Constrained Hardened State Column 

Constraint: 10 MPa 

Run Load (MPa) Result Volume Max Shear (MPa) 

1 -8.47 max iterations 58.54% 13.05 

2 -12.10 max iterations 69.20% 11.53 

3 -18.15 constraint unreachable > 95.00% 104.67 
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Table 25: Shear Stress-Constrained Fresh State Wall 

Constraint: 1 KPa 

Run Load (KN/m) Result Volume Max Shear (KPa) 

1 0.047 complete 48% 1.00 

2 0.0610 complete 68% 1.00 

3 0.0813 complete 70% 1.00 

4 0.1017 complete 72% 0.99 

Constraint: 1.5 KPa 

Run Load (KN/m) Result Volume Max Shear (KPa) 

5 0.047 complete 23% 1.49 

6 0.0610 minimum volume reached 15% 1.47 

7 0.0813 complete 61% 1.50 

8 0.1017 complete 67% 1.49 

Constraint: 2 KPa 

Run Load (KN/m) Result Volume Max Shear (KPa) 

9 0.047 minimum volume reached 17% 0.78 

10 0.0610 minimum volume reached 46% 1.28 

11 0.0813 complete 55% 1.99 

12 0.1017 complete 60% 1.99 

Constraint: 2.5 KPa 

Run Load (KN/m) Result Volume Max Shear (KPa) 

13 0.047 minimum volume reached 18% 1.00 

14 0.0610 minimum volume reached 46% 1.29 

15 0.0813 complete 52% 2.49 

16 0.1017 complete 63% 2.50 
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Appendix C: Proof of Concept Study Full Matlab Code 
 
1 % Proportional Topology Optimization stress (PTOs) - Cant Beam - (2014) 

2 % Modified by Seth Engel 

3 % CURRENT STATE: Cantilever left edge, point load, shear stress constraint 

4 clc;clear; 

5 %% Inputs 

6 E0 = 30000;             % Young's Modulus of solid (MPa) 

7 Emin = 1e-9;            % Young's Modulus of void (MPa) 

8 L = 1;                  % Length of geometry (m) 

9 H = 0.5;                % Height of geometry (m) 

10 size_el = 0.01;         % Length of element side (m) 

11 lv = 30000;             % Load value (N) 

12 ld = 3;                 % Number of elements with loading/displacements 

13 nelx = L/size_el;       % Number of elements in x direction 

14 nely = H/size_el;       % Number of elements in y direction 

15 nu = 0.18;              % Poisson's ratio 

16 penal = 3;              % Penalization factor 

17 q = 2;                  % Proportion exponent 

18 rmin = 1.5;             % Filter radius 

19 yield_shear = 1.1;      % Yield shear (MPa) 

20 xlim = [0,1];           % Lower and upper bounds on element density 

21 den = 2300;             % Material density 

22 V = size_el^3;          % Element volume (m^3) 

23 g = -9.81;              % Gravitational acceleration (kg/m^2) 

24 MPa_Factor = 10^-6;     % MPa adjustment factor 

25 abs_shear_mat = [];     % Initiates absolute shear matrix 

26 prev_vol_fract = 1;     % Sets initial volume fraction to 1 

27 prev_max_shear = 1000;  % Initiates maximum shear value 

28 SW = true;              % Includes self-weight if true 

29   

30 %% Setup Finite Element Analysis 

31 A11 = [12  3 -6 -3;  3 12  3  0; -6  3 12 -3; -3  0 -3 12]; 

32 A12 = [-6 -3  0  3; -3 -6 -3 -6;  0 -3 -6  3;  3 -6  3 -6]; 

33 B11 = [-4  3 -2  9;  3 -4 -9  4; -2 -9 -4 -3;  9  4 -3 -4]; 

34 B12 = [ 2 -3  4 -9; -3  2  9 -2;  4  9  2  3; -9 -2  3  2]; 

35 KE = 1/(1-nu^2)/24*([A11 A12;A12' A11]+nu*[B11 B12;B12' B11]); 

36 nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx); 

37 edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nelx*nely,1); 

38 edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -1],nelx*nely,1); 

39 iK = reshape(kron(edofMat,ones(8,1))',64*nelx*nely,1); 

40 jK = reshape(kron(edofMat,ones(1,8))',64*nelx*nely,1); 

41   

42 %% Define Loads and Supports 

43 iF = 2*(nelx*(nely+1)+nely/2+1+(-(ld-1)/2:(ld-1)/2)); 

44 jF = ones(1,ld); 

45 sF = -lv/ld*ones(ld,1); 

46 F_applied = sparse(iF,jF,sF,2*(nely+1)*(nelx+1),1)*MPa_Factor; 

47   

48 %% Define Displacement and DOF Sets 

49 U = zeros(2*(nely+1)*(nelx+1),1); 

50 fixeddofs = 1:2*(nely+1); 

51 alldofs = 1:2*(nely+1)*(nelx+1); 

52 freedofs = setdiff(alldofs,fixeddofs); 

53   

54 %% Setup Stress Analysis 

55 B = (1/2/size_el)*[-1 0 1 0 1 0 -1 0; 0 -1 0 -1 0 1 0 1; -1 -1 -1 1 1 1 1 -1]; 

56 DE = (1/(1-nu^2))*[1 nu 0; nu 1 0; 0 0 (1-nu)/2]; 

57   

58 %% Setup Filter 

59 iW = ones(nelx*nely*(2*(ceil(rmin)-1)+1)^2,1); 

60 jW = ones(size(iW)); 

61 sW = zeros(size(iW)); 

62 k = 0; 

63 for i1 = 1:nelx 
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64   for j1 = 1:nely 

65     e1 = (i1-1)*nely+j1; 

66     for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-1),nelx) 

67       for j2 = max(j1-(ceil(rmin)-1),1):min(j1+(ceil(rmin)-1),nely) 

68         e2 = (i2-1)*nely+j2; 

69         k = k+1; 

70         iW(k) = e1; 

71         jW(k) = e2; 

72         sW(k) = max(0,rmin-sqrt((i1-i2)^2+(j1-j2)^2)); 

73       end 

74     end 

75   end 

76 end 

77 w = sparse(iW,jW,sW); 

78 W = bsxfun(@rdivide,w,sum(w,2)); 

79   

80 %% Initialize Iteration 

81 x = repmat(0.9,nely,nelx); 

82 loop = 0; 

83   

84 %% Run Iteration 

85 while loop<500 

86  %% Define Self-Weight Loading 

87  loop = loop+1; 

88  if SW == true 

89      F_sw = sparse((nelx+1)*(nely+1)*2,1); 

90      for i = 1:nelx*nely 

91        for j = 2:2:8 

92            DOF = edofMat(i,j); 

93            F_sw(DOF) = F_sw(DOF)+(.25*den*V*g)*x(i)*MPa_Factor; 

94        end 

95      end 

96      F_total = F_sw+F_applied; 

97  else 

98      F_total = F_applied; 

99  end 

100   

101  %% Finite Element Analysis 

102  E = Emin+x(:)'.^penal*(E0-Emin); 

103  sK = reshape(KE(:)*E,64*nelx*nely,1);  

104  K = sparse(iK,jK,sK); K = (K+K')/2; 

105  U(freedofs) = K(freedofs,freedofs)\F_total(freedofs); 

106   

107  %% Stress Calculation 

108  s = (U(edofMat)*(DE*B)').*repmat(E',1,3); 

109  sxmat = reshape(s(:,1),nely,nelx);     % SigmaX matrix 

110  symat = reshape(s(:,2),nely,nelx);     % SigmaY matrix 

111  shear_mat = reshape(s(:,3),nely,nelx); % SigmaXY matrix 

112  abs_shear_mat = abs(shear_mat);        % Absolute value shear stress matrix 

113  cur_max_shear = max(abs_shear_mat(:)); % Defines current maximum shear stress value 

114  vms = reshape(sqrt(sum(s.^2,2)-s(:,1).*s(:,2)+2.*s(:,3).^2),nely,nelx);  

115   

116  %% Compliance Calculation 

117  ce = E'.*sum((U(edofMat)*KE).*U(edofMat),2);     

118  C = reshape(ce,nely,nelx); 

119   

120  %% Optimization Algorithm 

121  if (cur_max_shear > yield_shear) 

122     if prev_max_shear < yield_shear                

123         disp('Optimization Complete < Yield Shear'); break; end 

124     if prev_max_shear > cur_max_shear 

125         xTarget = sum(x(:))-0.005*numel(x); 

126     else 

127         xTarget = sum(x(:))+0.005*numel(x); 

128     end 

129  else 

130     xTarget = sum(x(:))-0.005*numel(x); 
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131  end 

132   

133  xRemaining = xTarget; 

134  yield_shear_proportion = abs_shear_mat.^q/sum(sum(abs_shear_mat.^q)); 

135  yield_shear_proportion(:) = W*yield_shear_proportion(:); 

136  x(:) = 0; 

137  %% 

138  while (xRemaining > 0.1)  

139   xDist = xRemaining.*yield_shear_proportion; 

140   x(:) = x(:)+xDist(:); 

141   x = max(min(x,xlim(2)),xlim(1)); 

142   xRemaining = xTarget-sum(x(:));   

143  end 

144  cur_vol_fract = sum(x(:))/(nelx*nely); 

145 %% Results 

146  % Print Results 

147  fprintf('It:%5i  MaxShearStress: %5.3f   VolumeFraction: %5.3f\n',... 

148           loop,cur_max_shear,cur_vol_fract); 

149  if cur_vol_fract < 0.01 

150    if cur_max_shear < yield_shear 

151        disp('Minimum Volume Reached');  

152        break;  

153    else 

154        disp('Empty Volume'); 

155    end      

156  end      

157        

158  % Plot Results 

159  colormap(flipud(gray)); 

160  subplot(2,1,1); imagesc(x); axis equal off; text(2,-2,'Material'); 

161 
 subplot(2,1,2); imagesc(abs(shear_mat)); axis equal off; text(2,-2,'Shear Stress'); 

drawnow; 

162  %subplot(4,1,3); imagesc(sxmat); axis equal off; text(2,-2,'X-axis Stress'); drawnow; 

163  %subplot(4,1,4); imagesc(symat); axis equal off; text(2,-2,'Y-axis Stress'); drawnow; 

164    

165  if x == ones(nely,nelx); disp('Full Volume'); break; end 

166   

167  %% Check Stop Criteria  

168  if cur_vol_fract > prev_vol_fract && loop > 50 

169      disp('Max Yield Shear Stress Cannot Be Reached'); break; end   

170  prev_vol_fract = cur_vol_fract; 

171  prev_max_shear = cur_max_shear; 

172 end 

173 % 

174 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

175 % Copyright (C) 2014 University of Pittsburgh. All rights reserved. 

176 % Modified by Seth Engel, University of Virginia (2019) 

177   

178 % Any person who obtained a copy of this software can (in part or whole) copy,  

179 % modify, merge, publish, and distribute the software on condition of retaining 

180 % this license with the software. The user is allowed to utilize the software 

181 % for all purposes but commercial. Also, appropriate credit must be provided. 

182 %  

183 % The software is provided "as is", without warranty of any kind, express or  

184 % implied, including but not limited to the warranties of merchantability,  

185 % fitness for a particular purpose and noninfringement. In no event shall the  

186 % authors or copyright holders be liable for any claim, damage or other  

187 % liability, whether in an action of contract, tort or otherwise, arising from,  

188 % out of or in connection with the software or the use or other dealing in the  

189 % software. 

190 %  

191 % The software is coded by Emre Biyikli (biyikli.emre@gmail.com) and Albert C.  

192 % To (albertto@pitt.edu). The software can be downloaded from www.ptomethod.org. 
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Appendix D: SSTO Full Matlab Code 
 
1 %%% Shear Stress-constrained Topology Optimization (SSTO) 

2 %%% Developed by Seth Engel (2020) 

3 %%% University of Virginia Department of Engineering Systems and Environment 

4   

5 %%% Current problem setup: SS-constrained fresh state wall 

6 %%%     Bottom-fixed wall geometry subject to self-weight loading and 

7 %%%     distributed loading across the top surface. 

8   

9   

10 %% Constants, Definitions, and Initializations 

11 clc; clear;                 % Clears contents 

12 vid_set = false;            % Initializes video recording if true 

13   

14 % Domain Geometry 

15 nelx = 60;                  % # of elements in x 

16 nely = 20;                  % # of elements in y (vertical direction) 

17 nelz = 3;                   % # of elements in z 

18 L = 0.01;                   % element side length (m) 

19 volfrac = 0.9;              % Initial element density 

20   

21 % Boundary Conditions 

22 cantilever = false;         % Sets cantilever boundary condition 

23 bottom_edge_fixed = true;   % Sets bottom-fixed boundary condition 

24 top_edge_fixed = false;     % Sets top-fixed boundary condition 

25   

26 % Loading 

27 Applied = true;             % Initializes applied loading (if true) 

28 Sw = true;                  % Initializes self-weight loading (if true) 

29 top_distributed = true;     % Initiates distributed load along top of structure 

30 bottom_pl = false;          % Sets location of point load (bottom right edge) 

31 mid_pl = false;             % Sets location of point load (mid right edge) 

32 top_mid_pl = false;         % Sets location of point load (top mid-span) 

33 Pu = -30000;                % Applied point load (N) 

34 Distributed = [0.1];        % Applied distributed load on each node (N) 

35   

36 % Optimization Parameters 

37 k_penal_vect = [2];         % Stiffness Penalization factor (SIMP) 

38 penalization = [8];         % Stress Penalization factor (Holmberg) 

39 relax = [0.01];             % Minimum density for constraint function 

40 perturb = [10^-6,10^-7];            % Sensitivity FDM perturbation 

41 tolx = 0.01;                % Optimization tolerance 

42 rmin = 1.5;                 % Filter radius 

43 maxloop = 500;              % Maximum number of iterations 

44 minvol = 0.15;              % Minimum volume fraction termination criteria 

45 maxvol = 0.95;              % Maximum volume fraction termination criteria 

46   

47 % Material Properties 

48 E = 0.06;                   % Young's Modulus of solid material (MPa) 

49 Emin = 1e-9;                % Young's modulus of voided material (MPa) 

50 nu = 0.3;                   % Poisson's Ratio 

51 den = 2300;                 % material density (kg/m^3) 

52   

53 % Constraint 

54 shear = true;               % Initiates yield shear stress constraint 

55 ys_vect = [0.002];          % Shear Stress constraint (MPa) 

56 VMS = false;                % Initiates VMS constraint (MPa) 

57 VMSy = 10;                 % Von Mises Stress constraint (MPa) 

58   

59 % Constants 

60 g = -9.81;                  % Gravitational acceleration (m/s^2) 

61 V = L^3;                    % Element volume (m^3) 

62 MPa_Factor = 10^-6;         % Mega-Pascal Conversion Factor 

63 nele = nelx*nely*nelz;      % Total number of elements 
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64 nnode = (nelx+1)*(nely+1)*(nelz+1);     % Total number of nodes 

65 ndof = nnode*3;             % Total number of degrees of freedom 

66 run = 1;                    % Initiates first run 

67 GQ_matrix = [-1/sqrt(3) -1/sqrt(3) -1/sqrt(3); % 2x2x2 Gauss Quadrature Coordinates 

68             -1/sqrt(3) -1/sqrt(3) 1/sqrt(3); 

69             -1/sqrt(3) 1/sqrt(3) -1/sqrt(3); 

70             -1/sqrt(3) 1/sqrt(3) 1/sqrt(3); 

71             1/sqrt(3) -1/sqrt(3) -1/sqrt(3); 

72             1/sqrt(3) -1/sqrt(3) 1/sqrt(3); 

73             1/sqrt(3) 1/sqrt(3) -1/sqrt(3); 

74             1/sqrt(3) 1/sqrt(3) 1/sqrt(3)]; 

75   

76 C = (1/((nu+1)*(1-2*nu)))*[1-nu nu nu 0 0 0; % Formulates Elasticity Tensor (C) 

77                            nu 1-nu nu 0 0 0; 

78                            nu nu 1-nu 0 0 0; 

79                            0 0 0 (1-2*nu)/2 0 0; 

80                            0 0 0 0 (1-2*nu)/2 0; 

81                            0 0 0 0 0 (1-2*nu)/2]; 

82   

83 % Formulates Nodal Data 

84 [nodes,NIDgrid] = nodal_data(nelx,nely,nelz,L); 

85   

86 % Formulates Element Data 

87 [edofmat,element,EIDgrid] = element_data(nelx,nely,nelz,nele,nodes,L); 

88   

89 % Boundary Conditions 

90 

[freeDOFs,fixedDOFs,element] = 

BCs(element,nelx,nely,nelz,ndof,nodes,cantilever,bottom_edge_fixed,top_edge_fixed,EID

grid); 

91   

92 % Develop Element Stiffness Matrix 

93 [element] = stiffness(nele,element,GQ_matrix,C); 

94   

95 % Prepare Filtering 

96 [H,Hs] = filtering(nele,rmin,nelx,nely,nelz); 

97   

98 % Parameterization 

99 for load = 1:length(Distributed) % Distributed loading parameterization 

100     Wu = Distributed(load); 

101     % Applied Loading 

102 

    [F_applied,LoadEID,element] = 

applied_load(nelx,nely,nelz,nodes,Pu,nnode,Applied,MPa_Factor,element,bottom_pl,mid_p

l,top_mid_pl,top_distributed,Wu); 

103     for v = 1:length(perturb) % Perturbation factor parameterization 

104         delta = perturb(v); 

105         for e = 1:length(relax) % Relaxation factor parameterization 

106             eps = relax(e); 

107 

            for stiff = 1:length(k_penal_vect)  % Stiffness penalization factor 

paramterization 

108                 k_penal = k_penal_vect(stiff); 

109 

                for s = 1:length(penalization)  % Stress penalization factor 

parameterization 

110                     s_penal = penalization(s); 

111 

                    for con = 1:length(ys_vect) % Shear stress constraint 

parameterization 

112                         ys = ys_vect(con); 

113                         % Start clock for each run 

114                         tic 

115                          

116                         % Initialize Iteration 

117 

                        x = repmat(volfrac,[nely,nelx,nelz]);       % Defines initial 

value of design variables 

118 

                        xPhys = x;                                  % Defines initial 

value of filtered design variables 

119 

                        change = 1;                                 % Initiates 

change variable 

120                         iter = 1;                                   % Initial 
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iteration number 

121 

                        active = setdiff(EIDgrid(:),LoadEID(:));    % Defines the set 

of active elements 

122 

                        m = 1;                                      % The number of 

general constraints. 

123 

                        n = nele;                                   % The number of 

design variables x_j. 

124 

                        xmin = zeros(n,1);                          % Column vector 

with the lower bounds for the variables x_j. 

125 

                        xmax = ones(n,1);                           % Column vector 

with the upper bounds for the variables x_j. 

126 

                        xold1 = x(:);                               % xval, one 

iteration ago (provided that iter>1). 

127 

                        xold2 = x(:);                               % xval, two 

iterations ago (provided that iter>2). 

128 

                        low = ones(n,1);                            % Column vector 

with the lower asymptotes from the previous iteration (provided that iter>1). 

129 

                        upp = ones(n,1);                            % Column vector 

with the upper asymptotes from the previous iteration (provided that iter>1). 

130 

                        a0 = 1;                                     % The constants 

a_0 in the term a_0z. 

131 

                        a = zeros(m,1);                             % Column vector 

with the constants a_i in the terms a_iz. 

132 

                        c_const = 10000*ones(m,1);                  % Column vector 

with the constants c_i in the terms c_iy_i. 

133 

                        d = zeros(m,1);                             % Column vector 

with the constants d_i in the terms 0.5d_i(y_i)^2. 

134                          

135                         % Initiates data storage 

136                         maxshear_store = []; 

137                         maxshear_sense_store = []; 

138                         maxVMS_store = []; 

139                         maxVMS_sense_store = []; 

140                         fval_store = []; 

141                         change_store = []; 

142                         objective_store = []; 

143                         % Initiate Video 

144                         if vid_set == true 

145 

                            vid = VideoWriter(char('Run '+string(run)),'Motion JPEG 

AVI'); 

146                             vid.FrameRate = 5; 

147                             vid.Quality = 100; 

148                             open(vid); 

149                         end 

150                         % Iterations 

151                         while (change > tolx) && (iter < maxloop) 

152                             % Defines Self-Weight Loading 

153                             if Sw == true 

154 

                                [F,F_Sw_partial,element,nodes] = 

Self_Weight(nele,element,nodes,den,g,V,F_applied,nnode,MPa_Factor,xPhys); 

155                             else 

156                                 F = F_applied; 

157                                 F_Sw = zeros(nnode*3,1); 

158                                 F_Sw_partial = zeros(nnode*3,1); 

159                             end 

160   

161                             % Finite Element Analysis 

162 

                            

[U,UxMat,UyMat,UzMat,element,nodes,KE,VMS_mat,shearXY_mat] = 

FEA(nelx,nely,nelz,element,nodes,Emin,E,k_penal,s_penal,nele,edofmat,freeDOFs,C,ndof,

F,F_Sw_partial,nnode,xPhys,Sw,delta); 

163   

164                             % Sensitivity Analysis 

165 

                            [element,VMS_sensitivity_mat,vol,d_vol,pshearXY_mat] = 

sensitivity(nelx,nely,nelz,xPhys,element,H,Hs,C,nele,k_penal,s_penal,E,Emin,delta); 

166   

167                             % Define MMA functions 
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168                             xval = x(:);        % Design variable values x 

169                             f0val = vol/nele;   % Objective function value at x 

170 

                            df0dx = d_vol(:);   % Derivative of objective function at 

x 

171                             if shear == true 

172 

                                sense_scalar = max(abs(pshearXY_mat(:)));      % 

Sensitivity analysis normalization 

173 

                                fval = (max(abs(shearXY_mat(active)))/(ys) - 1)/eps;    

% Constraint function value at x 

174 

                                dfdx = -abs(pshearXY_mat(:)/sense_scalar)';    % Sets 

constraint sensitivity at x 

175                                 % Data storage 

176 

                                maxshear_store = 

[maxshear_store;max(abs(shearXY_mat(active)))]; 

177 

                                maxshear_sense_store = 

[maxshear_sense_store;max(abs(pshearXY_mat(:)))]; 

178                                 fval_store = [fval_store;fval]; 

179                                 change_store = [change_store;change]; 

180                                 objective_store = [objective_store;f0val]; 

181                             end 

182                             if VMS == true 

183 

                                sense_scalar = max(abs(VMS_sensitivity_mat(:)));    % 

Sensitivity analysis normalization 

184 

                                fval = (max(VMS_mat(active))/(VMSy) - 1)/eps;       % 

VMS formulation from Holmberg 

185 

                                dfdx = (VMS_sensitivity_mat(:)/sense_scalar)';      % 

Sets constraint sensitivity at x 

186                                 % Data storage 

187 

                                maxVMS_store = 

[maxVMS_store;max(abs(VMS_mat(active)))]; 

188 

                                maxVMS_sense_store = 

[maxVMS_sense_store;max(abs(VMS_sensitivity_mat(:)))]; 

189                             end 

190   

191                             % Min/Max volume fraction termination conditions 

192                             if f0val < minvol  

193                                 disp("Minimum Volume Reached") 

194                                 terminate = "minimum volume reached"; 

195                                     break;  

196                             end 

197                             if f0val > maxvol 

198                                 disp("Constraint Unreachable") 

199                                 terminate = "constraint unreachable"; 

200                                     break;  

201                             end 

202   

203                             % Print results to command window 

204                             if shear == true 

205 

                                fprintf(' It.:%5i Obj.:%9.5f Shear.:%7.5f 

Shear_Sense.:%7.3f MaxFval.:%7.3f 

ch.:%7.3f\n',iter,f0val,max(abs(shearXY_mat(active))),max(abs(dfdx(:))),fval,change);     

206                             end 

207                             if VMS == true 

208 

                                fprintf(' It.:%5i Obj.:%11.4f VMS.:%7.5f 

VMS_Sense.:%7.3f MaxFval.:%7.3f 

ch.:%7.3f\n',iter,f0val,max(VMS_mat(active)),max(abs(dfdx(:))),fval,change);     

209                             end 

210                              

211                             % Plot densities 

212                             clf; display_3D(xPhys); 

213                             iter = iter+1; 

214                              

215                             % Write to video 

216                             if vid_set == true 

217                                 writeVideo(vid,getframe); 

218                             end 

219                              
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220                             % Defines results for complete/incomplete optimization 

221                             if f0val <= maxvol && f0val >= minvol && iter < maxloop 

222                                 terminate = "complete"; 

223                             end 

224                             if iter == maxloop 

225                                 terminate = "max iterations"; 

226                             end 

227                              

228                             % Call MMA for optimization 

229                             [xmma,ymma,zmma,lam,xsi,eta,mu,zet,s,low,upp] = ... 

230                               mmasub(m,n,iter,xval,xmin,xmax,xold1,xold2, ... 

231                               f0val,df0dx,fval,dfdx,low,upp,a0,a,c_const,d); 

232   

233                             % Update MMA Variables 

234                             xnew = reshape(xmma,nely,nelx,nelz); 

235                             for EID = 1:nele 

236 

                                if element(EID).fixed == 1 % Hold material at fixed 

elements 

237                                     xnew(EID) = 1; 

238                                     xPhys(EID) = 1; 

239                                 end 

240                             end 

241                             xPhys(:) = (H*xnew(:))./Hs; % Apply density filtering 

242                             for EID = 1:nele 

243 

                                if xPhys(EID) < 0.1 % Define minimum element density 

of 0.1 

244                                     xnew(EID) = 0; 

245                                     xPhys(EID) = 0; 

246                                 end 

247 

                                if element(EID).fixed == 1 % Hold material at fixed 

elements 

248                                     xnew(EID) = 1; 

249                                     xPhys(EID) = 1; 

250                                 end 

251                             end 

252                             xold2 = xold1(:); 

253                             xold1 = x(:); 

254                             change = max(abs(xnew(:)-x(:))); % Calculate tolerance 

255                             x = xnew; 

256 

                            new_volfract = sum(xPhys(:))/nele; % Calculate new 

objective function 

257   

258                             % Continuation condition 

259                             if fval > 0 

260                                 change = 1; 

261                             end 

262                         end 

263                         if vid_set == true 

264                             close(vid); 

265                         end 

266                         disp('Run '+string(run)+' finished') 

267                         clf; display_3D(xPhys); 

268                         % Save/Store Final Optimized Design Results 

269                         figname = 'Run '+string(run)+'.fig'; 

270                         savefig(string(figname)); 

271 

                        fprintf(' It.:%5i Obj.:%9.5f Shear.:%7.3f Shear_Sense.:%7.3f 

MaxFval.:%7.3f ch.:%7.3f 

\n',iter,f0val,max(abs(shearXY_mat(active))),max(abs(pshearXY_mat(active))),fval,chan

ge); 

272                         Bigdata(run).time = toc; 

273                         Bigdata(run).Wu = Wu; 

274                         Bigdata(run).eps = eps; 

275                         Bigdata(run).k_penal = k_penal; 

276                         Bigdata(run).s_penal = s_penal; 

277                         Bigdata(run).perturb = delta; 

278                         Bigdata(run).end = terminate; 

279                         Bigdata(run).ys = ys; 
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280                         Bigdata(run).obj_final = f0val; 

281                         Bigdata(run).maxshear_final = max(abs(shearXY_mat(:))); 

282                         Bigdata(run).maxshear = maxshear_store; 

283                         Bigdata(run).maxshearsense = maxshear_sense_store; 

284                         Bigdata(run).VMSy = VMSy; 

285                         Bigdata(run).maxVMS_final = max(abs(VMS_mat(:))); 

286                         Bigdata(run).maxVMS = maxVMS_store; 

287                         Bigdata(run).maxVMS_sense = maxVMS_sense_store; 

288                         Bigdata(run).it = iter - 1; 

289                         Bigdata(run).fval_final = fval; 

290                         Bigdata(run).ch_final = change; 

291                         Bigdata(run).fval = fval_store; 

292                         Bigdata(run).obj = objective_store; 

293                         Bigdata(run).ch = change_store; 

294                         Bigdata(run).xPhys_final = xPhys; 

295                         Bigdata(run).shear_final = shearXY_mat; 

296                         Bigdata(run).shearsense_final = pshearXY_mat; 

297                         Bigdata(run).VMS_final = VMS_mat; 

298                         Bigdata(run).VMSsense_final = VMS_sensitivity_mat; 

299                         Bigdata(run).init_vol = volfrac; 

300                         save('Bigdata.mat','Bigdata'); 

301                         run = run + 1; 

302                     end 

303                 end 

304             end 

305         end 

306     end 

307 end 

308 disp("All Runs Finished") 

309   

310 %% Applied Loading Condition 

311 

function [F_applied,LoadEID,element] = 

applied_load(nelx,nely,nelz,nodes,Pu,nnode,Applied,MPa_Factor,element,bottom,mid,top_

mid,top_distributed,Wu) 

312     F_applied = zeros(nnode*3,1); % Applied load vector 

313     LoadEID = []; 

314     if Applied == true 

315         for z = 1:nelz 

316             if bottom == true % Point load bottom right edge 

317                 EID = nelx*nely*z; 

318                 element(EID).fixed = 1; 

319                 LoadEID = [EID,EID-1]; 

320                 Load_NID1 = element(EID).nodeIDs(2); 

321                 Load_NID2 = element(EID).nodeIDs(6); 

322                 F_applied(nodes(Load_NID1).dof(2)) = Pu*MPa_Factor/(nelz+1); 

323                 F_applied(nodes(Load_NID2).dof(2)) = Pu*MPa_Factor/(nelz+1); 

324             end 

325             if mid == true % Point right edge mid-height 

326                 EID = nelx*nely*z-(nely/2); 

327                 element(EID).fixed = 1; 

328                 LoadEID = [EID,EID+1]; 

329                 Load_NID1 = element(EID).nodeIDs(2); 

330                 Load_NID2 = element(EID).nodeIDs(6); 

331                 F_applied(nodes(Load_NID1).dof(2)) = Pu*MPa_Factor/(nelz+1); 

332                 F_applied(nodes(Load_NID2).dof(2)) = Pu*MPa_Factor/(nelz+1); 

333             end 

334             if top_mid == true % Point load top face midspan 

335                 EID = (nely*(nelx/2)+1)*z; 

336                 element(EID).fixed = 1; 

337                 LoadEID = [EID]; 

338                 Load_NID1 = element(EID).nodeIDs(4); 

339                 Load_NID2 = element(EID).nodeIDs(8); 

340                 Load_NID3 = element(EID).nodeIDs(3); 

341                 Load_NID4 = element(EID).nodeIDs(7); 

342                 F_applied(nodes(Load_NID1).dof(2)) = Pu*MPa_Factor/(nelz+1)/2; 

343                 F_applied(nodes(Load_NID2).dof(2)) = Pu*MPa_Factor/(nelz+1)/2; 

344                 F_applied(nodes(Load_NID3).dof(2)) = Pu*MPa_Factor/(nelz+1)/2; 
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345                 F_applied(nodes(Load_NID4).dof(2)) = Pu*MPa_Factor/(nelz+1)/2; 

346             end 

347             if top_distributed == true % Distributed load top surface 

348                 EIDs = []; 

349                 for x = 1:nelx 

350                     EID = nely*(x-1)+nelx*nely*(z-1)+1; 

351                     element(EID).fixed = 1; 

352                     EIDs = [EIDs,EID]; 

353                     Load_NID1 = element(EID).nodeIDs(3); 

354                     Load_NID2 = element(EID).nodeIDs(4); 

355                     F_applied(nodes(Load_NID1).dof(2)) = Wu*MPa_Factor; 

356                     F_applied(nodes(Load_NID2).dof(2)) = Wu*MPa_Factor; 

357                     if z == nelz 

358                         Load_NID3 = element(EID).nodeIDs(7); 

359                         Load_NID4 = element(EID).nodeIDs(8); 

360                         F_applied(nodes(Load_NID3).dof(2)) = Wu*MPa_Factor; 

361                         F_applied(nodes(Load_NID4).dof(2)) = Wu*MPa_Factor; 

362                     end 

363                 end 

364             end 

365         end 

366     end 

367     F_applied = sparse(F_applied); 

368 end 

369   

370 %% Boundary Conditions (fixed DOF's) 

371 

function [freeDOFs,fixedDOFs,element] = 

BCs(element,nelx,nely,nelz,ndof,nodes,cantilever,bottom_edge_fixed,top_edge_fixed,EID

grid) 

372     fixedNID = [];  % Initializes vector of fixed NIDs 

373     fixedDOFs = []; % Initializes vector of fixed DOFs 

374      

375     new_fixedDOFs = []; 

376     if cantilever == true % Fixed left face 

377         for z = 1:nelz+1 

378             for y = 1:nely+1 

379                 new_NID = y+(nelx+1)*(nely+1)*(z-1); 

380                 fixedNID = [fixedNID,new_NID];              % Vector of fixed NIDs 

381 

                fixedDOFs = [fixedDOFs;nodes(new_NID).dof]; % Defines DOFs of fixed 

nodes 

382             end 

383         end 

384     end 

385     if bottom_edge_fixed == true % Fixed bottom perimeter 

386         EIDs = []; 

387         EIDouter = EIDgrid(nely,1:nelx,1:nelz); 

388         EIDinner = EIDgrid(nely,2:nelx-1,2:nelz-1); 

389         EIDs = setdiff(EIDouter,EIDinner); 

390         for i = 1:length(EIDs) 

391             EID = EIDs(i); 

392             element(EID).fixed = 1; 

393             fixed_NID1 = element(EID).nodeIDs(1); 

394             fixed_NID2 = element(EID).nodeIDs(2); 

395             fixed_NID3 = element(EID).nodeIDs(5); 

396             fixed_NID4 = element(EID).nodeIDs(6); 

397 

            new_fixedDOFs = 

[nodes(fixed_NID1).dof,nodes(fixed_NID2).dof,nodes(fixed_NID3).dof,nodes(fixed_NID4).

dof]; 

398             fixedDOFs = [fixedDOFs,new_fixedDOFs]; 

399         end     

400     end 

401     if top_edge_fixed == true % Fixed top perimeter 

402         EIDs = []; 

403         EIDouter = EIDgrid(1,1:nelx,1:nelz); 

404         EIDinner = EIDgrid(1,2:nelx-1,2:nelz-1); 

405         EIDs = setdiff(EIDouter,EIDinner); 

406         for i = 1:length(EIDs) 
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407             EID = EIDs(i); 

408             element(EID).fixed = 1; 

409             fixed_NID1 = element(EID).nodeIDs(3); 

410             fixed_NID2 = element(EID).nodeIDs(4); 

411             fixed_NID3 = element(EID).nodeIDs(7); 

412             fixed_NID4 = element(EID).nodeIDs(8); 

413 

            new_fixedDOFs = 

[nodes(fixed_NID1).dof,nodes(fixed_NID2).dof,nodes(fixed_NID3).dof,nodes(fixed_NID4).

dof]; 

414             fixedDOFs = [fixedDOFs,new_fixedDOFs]; 

415         end      

416     end 

417     freeDOFs = setdiff(1:ndof,fixedDOFs); % column vector of free DOFs 

418 end 

419   

420 %% Formulates Nodal Data Structure 

421 function [nodes,NIDgrid] = nodal_data(nelx,nely,nelz,L) 

422     for z = 1:nelz+1 

423         for x = 1:nelx+1 

424             for y = 1:nely+1 

425 

                NID = (nely+1)*(x-1)+((nelx+1)*(nely+1)*(z-1))+y; % Individual node 

ID 

426                 NIDgrid(y,x,z) = NID; 

427 

                nodes(NID).Gcoords = [(x-1)*L (nely-y+1)*L (z-1)*L]; % Stores global 

coordinates 

428                 dofx = (NID-1)*3+1; 

429                 dofy = (NID-1)*3+2; 

430                 dofz = (NID-1)*3+3; 

431 

                nodes(NID).dof = [dofx;dofy;dofz]; % Stores nodal degrees of freedom 

[x,y,z] 

432             end 

433         end 

434     end 

435 end 

436   

437 %% Formulates Element Data Structure 

438 function [edofmat,element,EIDgrid] = element_data(nelx,nely,nelz,nele,nodes,L) 

439     % Sets local coordinates of 8 corner nodes 

440     n1_Lcoord = [-1 -1 -1]; 

441     n2_Lcoord = [1 -1 -1]; 

442     n3_Lcoord = [1 1 -1]; 

443     n4_Lcoord = [-1 1 -1]; 

444     n5_Lcoord = [-1 -1 1]; 

445     n6_Lcoord = [1 -1 1]; 

446     n7_Lcoord = [1 1 1]; 

447     n8_Lcoord = [-1 1 1]; 

448     edofmat = zeros(nele,24); % Initializes element DOF matrix 

449     for z = 1:nelz 

450         for x = 1:nelx 

451             for y = 1:nely 

452                 EID = y+nely*(x-1)+(nely)*(nelx)*(z-1); % Determines element ID 

453                 EIDgrid(y,x,z) = EID; 

454                 % Relates local node IDs (n_) to global 

455                 n4 = y+(nely+1)*(x-1)+(nely+1)*(nelx+1)*(z-1); 

456                 n1 = n4+1;  

457                 n8 = n4+(nely+1)*(nelx+1); 

458                 n2 = n1+nely+1; 

459                 n3 = n4+nely+1; 

460                 n5 = n8+1; 

461                 n6 = n5+nely+1; 

462                 n7 = n8+nely+1; 

463 

                element(EID).nodeIDs = [n1 n2 n3 n4 n5 n6 n7 n8]; % Defines node IDs 

corresponding to each element 

464 

                element(EID).Lcoord = [n1_Lcoord; n2_Lcoord; n3_Lcoord; n4_Lcoord; 

n5_Lcoord; n6_Lcoord; n7_Lcoord; n8_Lcoord]; % Stores local coordinates of all nodes 

associated with EID 

465                 element(EID).CP = [nodes(n4).Gcoords(1)+L/2 nodes(n4).Gcoords(2)-L/2 
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nodes(n4).Gcoords(3)+L/2]; % Stores global coordinate of element center point 

466                 element(EID).Gcoords = []; 

467                 element(EID).DOF = []; 

468                 element(EID).fixed = 0; 

469                 for i = 1:8 % Stores global coordinates of each node of the element 

470 

                    element(EID).DOF = [element(EID).DOF; 

nodes(element(EID).nodeIDs(i)).dof]; 

471 

                    element(EID).Gcoords = [element(EID).Gcoords; 

nodes(element(EID).nodeIDs(i)).Gcoords(:)']; 

472                 end 

473                 edofmat(EID,:) = element(EID).DOF; 

474             end 

475         end 

476     end 

477 end 

478   

479 %% Self-Weight Loading 

480 

function [F,F_Sw_partial,element,nodes] = 

Self_Weight(nele,element,nodes,den,g,V,F_applied,nnode,MPa_Factor,xPhys) 

481     F = zeros(nnode*3,1); % Combined load vector 

482     F_Sw = zeros(nnode*3,1); % Self-Weight load vector 

483 

    F_Sw_partial = zeros(nnode*3,1); % Self-Weight load vector for partial 

displacement calculation 

484     for EID = 1:nele 

485         xi = xPhys(EID); 

486         for n = 1:8 

487             % Assigns self-weight loading 

488 

            F_Sw(nodes(element(EID).nodeIDs(n)).dof(2)) = 

F_Sw(nodes(element(EID).nodeIDs(n)).dof(2))+(1/8)*xi*den*g*V*MPa_Factor; 

489             % Partial derivative of self-weight loading vector 

490 

            F_Sw_partial(nodes(element(EID).nodeIDs(n)).dof(2)) = 

F_Sw_partial(nodes(element(EID).nodeIDs(n)).dof(2))+(1/8)*den*g*V*MPa_Factor; 

491         end 

492     end 

493     % Stores load vectors with associated elements 

494     element(EID).g = []; 

495     for EID = 1:nele 

496         for n = 1:8 

497 

            element(EID).g = 

[element(EID).g;full(F_Sw(nodes(element(EID).nodeIDs(n)).dof(2)))]; 

498 

            nodes(element(EID).nodeIDs(n)).SW = 

F_Sw(nodes(element(EID).nodeIDs(n)).dof(2)); 

499         end 

500     end 

501     F = sparse(F_applied+F_Sw); 

502 end 

503   

504 %% Develop Stiffness Matrix 

505 function [element] = stiffness(nele,element,GQ_matrix,C) 

506     for EID = 1:nele 

507         element(EID).K = zeros(24,24); %Initialize stiffness matrix 

508         for t = 1:2 

509             for point = 1:8 % Local formulations at GQ points or nodes 

510                  

511                 % Formulate Matrix of Partial Derivatives of Shape Functions 

512                 if t == 1 % GQ points 

513 

                    element(EID).BGQ(point).B = []; % Initializes local B matrix for 

each GQ point 

514 

                    sai1 = GQ_matrix(point,1); sai2 = GQ_matrix(point,2); sai3 = 

GQ_matrix(point,3); 

515                 end 

516                 if t == 2 

517 

                    element(EID).BCP = []; % % Initializes local B matrix for 

centerpoint 

518                     sai1 = 0; sai2 = 0; sai3 = 0; 

519                 end 

520                  
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521                 % Calculates partial derivatives of shape functions 

522                 pN = zeros(8,3); 

523                 pN(1,1) = -(1/8)*(sai2-1)*(sai3-1); 

524                 pN(1,2) = -(1/8)*(sai1-1)*(sai3-1); 

525                 pN(1,3) = -(1/8)*(sai1-1)*(sai2-1); 

526                 pN(2,1) = (1/8)*(sai2-1)*(sai3-1); 

527                 pN(2,2) = (1/8)*(sai1+1)*(sai3-1); 

528                 pN(2,3) = (1/8)*(sai1+1)*(sai2-1); 

529                 pN(3,1) = -(1/8)*(sai2+1)*(sai3-1); 

530                 pN(3,2) = -(1/8)*(sai1+1)*(sai3-1); 

531                 pN(3,3) = -(1/8)*(sai1+1)*(sai2+1); 

532                 pN(4,1) = (1/8)*(sai2+1)*(sai3-1); 

533                 pN(4,2) = (1/8)*(sai1-1)*(sai3-1); 

534                 pN(4,3) = (1/8)*(sai1-1)*(sai2+1); 

535                 pN(5,1) = (1/8)*(sai2-1)*(sai3+1); 

536                 pN(5,2) = (1/8)*(sai1-1)*(sai3+1); 

537                 pN(5,3) = (1/8)*(sai1-1)*(sai2-1); 

538                 pN(6,1) = -(1/8)*(sai2-1)*(sai3+1); 

539                 pN(6,2) = -(1/8)*(sai1+1)*(sai3+1); 

540                 pN(6,3) = -(1/8)*(sai1+1)*(sai2-1); 

541                 pN(7,1) = (1/8)*(sai2+1)*(sai3+1); 

542                 pN(7,2) = (1/8)*(sai1+1)*(sai3+1); 

543                 pN(7,3) = (1/8)*(sai1+1)*(sai2+1); 

544                 pN(8,1) = -(1/8)*(sai2+1)*(sai3+1); 

545                 pN(8,2) = -(1/8)*(sai1-1)*(sai3+1); 

546                 pN(8,3) = -(1/8)*(sai1-1)*(sai2+1); 

547                 pN = pN'; % Transposes matrix for multiplication             

548   

549                 % Calculate Jacobian 

550                 Jacobian = zeros(3,3); 

551                 for c = 1:3 % # of columns 

552                     for r = 1:3 % # of rows 

553                         for i = 1:8 % # of nodes 

554 

                            Jacobian(r,c) = 

Jacobian(r,c)+pN(r,i)*element(EID).Gcoords(i,c); % Determines Jacobian at first GQ 

point 

555                         end 

556                     end 

557                 end 

558                 if t == 1 

559 

                    element(EID).Jac(point).J = Jacobian; % Stores Jacobian at each 

GQ point 

560                 end 

561                 if t == 2 

562 

                    element(EID).JacCP = Jacobian; % Stores Jacobian at each 

centerpoint 

563                 end 

564 

                pN_global = Jacobian\pN; % Creates global partial derivatives matrix 

3x8 (coord x node) 

565                  

566                 % Formulate Strain Displacement Matrix 

567                 for i = 1:8     

568                     Bl = zeros(6,3); % Initializes local B matrix for each point 

569 

                    l_pN_vect = [pN_global(1,i),pN_global(2,i),pN_global(3,i)]'; % 

Local coordinate vector of partial derivatives of N 

570                     % Assignes PDE values to B matrix 

571                     Bl(1,1) = l_pN_vect(1); 

572                     Bl(2,2) = l_pN_vect(2); 

573                     Bl(3,3) = l_pN_vect(3); 

574                     Bl(4,1) = l_pN_vect(2); 

575                     Bl(4,2) = l_pN_vect(1); 

576                     Bl(5,2) = l_pN_vect(3); 

577                     Bl(5,3) = l_pN_vect(2); 

578                     Bl(6,1) = l_pN_vect(3); 

579                     Bl(6,3) = l_pN_vect(1); 

580                     if t == 1 % Creates B matrix at each GQ point 

581                         element(EID).BGQ(point).B = [element(EID).BGQ(point).B,Bl]; 
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end 

582                     if t == 2 % Creates B matrix at centerpoint 

583                         element(EID).BCP = [element(EID).BCP,Bl]; end 

584                 end 

585                  

586                 % Calculate stiffness matrix for each element using GQ points 

587                 if t == 1 

588 

                    KGQ = 

element(EID).BGQ(point).B'*C*element(EID).BGQ(point).B*det(Jacobian); % Stiffness 

matrix at each GQ point 

589 

                    element(EID).K = element(EID).K+KGQ; % Creates global stiffnes 

matrix for the element 

590                 end 

591             end 

592         end    

593     end 

594 end 

595   

596 %% Prepare Filter (From TOP3D) 

597 function [H,Hs] = filtering(nele,rmin,nelx,nely,nelz) 

598     iH = ones(nele*(2*(ceil(rmin)-1)+1)^2,1); 

599     jH = ones(size(iH)); 

600     sH = zeros(size(iH)); 

601     k = 0; 

602     for k1 = 1:nelz 

603         for i1 = 1:nelx 

604             for j1 = 1:nely 

605                 e1 = (k1-1)*nelx*nely + (i1-1)*nely+j1; 

606                 for k2 = max(k1-(ceil(rmin)-1),1):min(k1+(ceil(rmin)-1),nelz) 

607                     for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-1),nelx) 

608                         for j2 = max(j1-(ceil(rmin)-1),1):min(j1+(ceil(rmin)-1),nely) 

609                             e2 = (k2-1)*nelx*nely + (i2-1)*nely+j2; 

610                             k = k+1; 

611                             iH(k) = e1; 

612                             jH(k) = e2; 

613                             sH(k) = max(0,rmin-sqrt((i1-i2)^2+(j1-j2)^2+(k1-k2)^2)); 

614                         end 

615                     end 

616                 end 

617             end 

618         end 

619     end 

620     H = sparse(iH,jH,sH); 

621     Hs = sum(H,2); 

622 end 

623   

624 %% Finite Element Analysis 

625 

function [U,UxMat,UyMat,UzMat,element,nodes,KE,VMS_mat,shearXY_mat] = 

FEA(nelx,nely,nelz,element,nodes,Emin,E,k_penal,s_penal,nele,edofmat,freeDOFs,C,ndof,

F,F_Sw_partial,nnode,xPhys,Sw,delta) 

626     % Formulate Global Stiffness Matrix: unperturbed 

627     KE = element(1).K; 

628     iK = reshape(kron(edofmat,ones(24,1))',24*24*nele,1); 

629     jK = reshape(kron(edofmat,ones(1,24))',24*24*nele,1); 

630     sK = reshape(KE(:)*(Emin+xPhys(:)'.^k_penal*(E-Emin)),24*24*nele,1); 

631     K = sparse(iK,jK,sK); K = (K+K')/2; % Sparse global stiffness matrix 

632   

633     % Formulate Partial Derivative of Global Stiffness Matrix (unpertubed) 

634     iK2 = reshape(kron(edofmat,ones(24,1))',24*24*nele,1); 

635     jK2 = reshape(kron(edofmat,ones(1,24))',24*24*nele,1); 

636     sK2 = reshape(KE(:)*((xPhys(:)'.^(k_penal-1))*(E-Emin)*k_penal),24*24*nele,1); 

637 

    K_partial = sparse(iK2,jK2,sK2); K_partial = (K_partial+K_partial')/2; % Sparse 

global stiffness matrix 

638      

639     % Finite Element Analysis 

640     U = zeros(ndof,1); 

641     U(freeDOFs,:) = K(freeDOFs,freeDOFs)\F(freeDOFs,:); 
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642   

643     % Calculate global partial derivatives of displacement 

644 

    partial_u = zeros(ndof,1); % Initiates vector of partial derivatives of 

displacement 

645     if Sw == true % Includes Force Vector 

646 

        partial_u(freeDOFs) = K(freeDOFs,freeDOFs)\(F_Sw_partial(freeDOFs,:)-

K_partial(freeDOFs,freeDOFs)*U(freeDOFs,:)); 

647     else % No Force Vector (applied load only) 

648 

        partial_u(freeDOFs) = K(freeDOFs,freeDOFs)\(-

K_partial(freeDOFs,freeDOFs)*U(freeDOFs,:)); 

649     end 

650   

651     % Store Nodal Displacement (u) in Node Structure (unpreturbed) 

652     for i = 1:nnode 

653         nodes(i).ux = U(nodes(i).dof(1)); 

654         nodes(i).uy = U(nodes(i).dof(2)); 

655         nodes(i).uz = U(nodes(i).dof(3)); 

656         % Partial displacements 

657         nodes(i).qx = partial_u(nodes(i).dof(1)); 

658         nodes(i).qy = partial_u(nodes(i).dof(2)); 

659         nodes(i).qz = partial_u(nodes(i).dof(3)); 

660     end 

661   

662     % Formulate Global Stiffness Matrix: perturbed 

663     KE = element(1).K; 

664     iKd = reshape(kron(edofmat,ones(24,1))',24*24*nele,1); 

665     jKd = reshape(kron(edofmat,ones(1,24))',24*24*nele,1); 

666     sKd = reshape(KE(:)*(Emin+(xPhys(:)+delta)'.^k_penal*(E-Emin)),24*24*nele,1); 

667     Kd = sparse(iKd,jKd,sKd); Kd = (Kd+Kd')/2; % Sparse global stiffness matrix 

668   

669     % Finite Element Analysis 

670     Ud = zeros(ndof,1); 

671     Ud(freeDOFs,:) = Kd(freeDOFs,freeDOFs)\F(freeDOFs,:); 

672   

673     % Store Nodal Displacement (Ud) in Node Structure (perturbed) 

674     for i = 1:nnode 

675         nodes(i).uxd = Ud(nodes(i).dof(1)); 

676         nodes(i).uyd = Ud(nodes(i).dof(2)); 

677         nodes(i).uzd = Ud(nodes(i).dof(3)); 

678     end 

679      

680     % Store Nodal Displacement in Element Structure 

681     for EID = 1:nele 

682         element(EID).u = []; 

683         element(EID).ud = []; 

684         element(EID).q = []; 

685         for n = 1:8 

686             NID = element(EID).nodeIDs(n); 

687 

            element(EID).u = [element(EID).u, [nodes(NID).ux nodes(NID).uy 

nodes(NID).uz]]; 

688 

            element(EID).ud = [element(EID).ud, [nodes(NID).uxd nodes(NID).uyd 

nodes(NID).uzd]]; 

689 

            element(EID).q = [element(EID).q, [nodes(NID).qx nodes(NID).qy 

nodes(NID).qz]]; 

690         end 

691         element(EID).q = element(EID).q'; 

692         element(EID).u = element(EID).u'; 

693         element(EID).ud = element(EID).ud'; 

694     end 

695   

696     % Displacement Matrices 

697     Ux = [nodes(:).ux]; 

698     UxMat = reshape(Ux,[nely+1,nelx+1,nelz+1]); 

699     Uy = [nodes(:).uy]; % Vertical displacement 

700     UyMat = reshape(Uy,[nely+1,nelx+1,nelz+1]); 

701     Uz = [nodes(:).uz]; 

702     UzMat = reshape(Uz,[nely+1,nelx+1,nelz+1]); 
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703     Uxd = [nodes(:).uxd]; 

704     UxMatd = reshape(Uxd,[nely+1,nelx+1,nelz+1]); 

705     Uyd = [nodes(:).uyd]; % Vertical displacement 

706     UyMatd = reshape(Uyd,[nely+1,nelx+1,nelz+1]); 

707     Uzd = [nodes(:).uzd]; 

708     UzMatd = reshape(Uzd,[nely+1,nelx+1,nelz+1]); 

709   

710     % Stress Calculation (at centerpoint) 

711     VMS_vect = zeros(nele,1); 

712     shearXY_vect = zeros(nele,1); 

713     for EID = 1:nele 

714         element(EID).x = xPhys(EID); % Assign element density to each element 

715 

        element(EID).strainCP = element(EID).BCP*element(EID).u; % Calculate element 

strains 

716 

        element(EID).stressCP = (Emin+(E-

Emin)*element(EID).x^k_penal)*C*element(EID).strainCP*element(EID).x^s_penal; % 

Calculate element stress 

717         shearXY_vect(EID) = element(EID).stressCP(4); % Isolate shear stress 

718          

719         % Calculate VMS 

720         s11 = element(EID).stressCP(1); 

721         s12 = element(EID).stressCP(6); 

722         s13 = element(EID).stressCP(5); 

723         s22 = element(EID).stressCP(2); 

724         s23 = element(EID).stressCP(4); 

725         s33 = element(EID).stressCP(3); 

726 

        element(EID).VMS = sqrt(s11^2+s22^2+s33^2-s11*s22-s22*s33-

s33*s11+3*(s12^2+s23^2+s13^2)); 

727         VMS_vect(EID) = element(EID).VMS; 

728     end 

729     VMS_mat = reshape(VMS_vect,[nely,nelx,nelz]); % Form VMS matrix 

730     shearXY_mat = reshape(shearXY_vect,[nely,nelx,nelz]); % Form SS matrix 

731 end 

732   

733 %% Sensitivity Analysis 

734 

function [element,VMS_sensitivity_mat,vol,d_vol,pshearXY_mat] = 

sensitivity(nelx,nely,nelz,xPhys,element,H,Hs,C,nele,k_penal,s_penal,E,Emin,delta) 

735     vol = sum(xPhys(:)); % Objective function 

736     d_vol = ones(nely,nelx,nelz); % Objective function sensitivity 

737      

738     % Constraint function sensitivity 

739     pshearXY_vect = zeros(nely,nelx,nelz); 

740     VMS_sensitivity_vect = zeros(nele,1); 

741     for EID = 1:nele 

742         element(EID).pshear = []; 

743         xi = element(EID).x; 

744         Ei = (Emin+xi'^k_penal*(E-Emin))*C; % SIMP stiffness 

745 

        Eip = (xi'^(k_penal-1)*(E-Emin)*k_penal)*C; % Partial derivative of stiffness 

(SIMP) 

746         ui = element(EID).u; % Unperturbed displacement 

747         uid = element(EID).ud; % Perturbed displacement 

748         uip = (uid-ui)/delta; % Finite Difference of displacement 

749         q = element(EID).q; % Partial of displacement 

750         pi = xi^s_penal; % Penalized design variable 

751         pip = s_penal*xi^(s_penal-1); % Derivative of penalized design variable 

752         Bi = element(EID).BCP; % B matrix at centerpoint 

753         VMS = element(EID).VMS; 

754         stress_vect = element(EID).stressCP; 

755   

756         % Calculates Shear Stress Sensitivity 

757         if xi >= delta 

758             sense_vect = Eip*Bi*ui*pi + Ei*Bi*uip*pi + Ei*Bi*ui*pip; 

759             pshearXY_vect(EID) = sense_vect(4); 

760         else 

761             pshearXY_vect(EID) = 0; 

762         end 

763          
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764         % Calculate Derivatives of VMS with respect to its stress componenets 

765         VMS_p_wrts = zeros(6,1); 

766         VMS_p_wrts(1) = (1/(2*VMS))*(2*stress_vect(1)-stress_vect(2)-stress_vect(3)); 

767         VMS_p_wrts(2) = (1/(2*VMS))*(2*stress_vect(2)-stress_vect(1)-stress_vect(3)); 

768         VMS_p_wrts(3) = (1/(2*VMS))*(2*stress_vect(3)-stress_vect(1)-stress_vect(2)); 

769         VMS_p_wrts(4) = (3/VMS)*stress_vect(4); 

770         VMS_p_wrts(5) = (3/VMS)*stress_vect(5); 

771         VMS_p_wrts(6) = (3/VMS)*stress_vect(6); 

772          

773         % Calculate VMS Sensitivity 

774 

        element(EID).VMS_sense = ((((VMS^s_penal)^(1/s_penal-1))*(VMS^(s_penal-

1)))*VMS_p_wrts')*(((0.5/sqrt(xi))*E*C*Bi*ui)+(sqrt(xi)*(E*C*Bi*q))); 

775          

776         % Prevents VMS sensitivity singularities 

777         if isreal(element(EID).VMS_sense) 

778             VMS_sensitivity_vect(EID) = element(EID).VMS_sense; 

779         end 

780 

        if (isnan(element(EID).VMS_sense) == true) || (isinf(element(EID).VMS_sense) 

== true) 

781             VMS_sensitivity_vect(EID) = 0; 

782         end 

783     end 

784      

785     % Form sensitivity matrices 

786     VMS_sensitivity_mat = reshape(VMS_sensitivity_vect,[nely,nelx,nelz]); 

787     pshearXY_mat = reshape(pshearXY_vect,[nely,nelx,nelz]); 

788      

789     % Filtering of Sensitivities 

790     pshearXY_mat(:) = H*(pshearXY_mat(:)./Hs); 

791     VMS_sensitivity_mat(:) = H*(VMS_sensitivity_mat(:)./Hs); 

792     d_vol(:) = H*(d_vol(:)./Hs); 

793 end 

794   

795 % === DISPLAY 3D TOPOLOGY (ISO-VIEW) === (From Top3D) 

796 function display_3D(rho) 

797 [nely,nelx,nelz] = size(rho); 

798 hx = 1; hy = 1; hz = 1; % User-defined unit element size 

799 face = [1 2 3 4; 2 6 7 3; 4 3 7 8; 1 5 8 4; 1 2 6 5; 5 6 7 8]; 

800 set(gcf,'Name','ISO display','NumberTitle','off'); 

801 for k = 1:nelz 

802     z = (k-1)*hz; 

803     for i = 1:nelx 

804         x = (i-1)*hx; 

805         for j = 1:nely 

806             y = nely*hy - (j-1)*hy; 

807             if (rho(j,i,k) > 0.3)  % User-defined display density threshold 

808 

                vert = [x y z; x y-hx z; x+hx y-hx z; x+hx y z; x y z+hx;x y-hx z+hx; 

x+hx y-hx z+hx;x+hx y z+hx]; 

809                 vert(:,[2 3]) = vert(:,[3 2]); vert(:,2,:) = -vert(:,2,:); 

810 

                patch('Faces',face,'Vertices',vert,'FaceColor',[0.2+0.8*(1-

rho(j,i,k)),0.2+0.8*(1-rho(j,i,k)),0.2+0.8*(1-rho(j,i,k))]); 

811                 hold on; 

812             end 

813         end 

814     end 

815 end 

816 axis equal; axis tight; axis off; box on; view([30,30]); pause(1e-6); 

817 end 
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