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Abstract 

 

Myocardial strain imaging adds diagnostic and prognostic value in the assessment of many 

types of heart disease. Cine displacement encoding with stimulated echoes (DENSE) is among the 

most accurate and reproducible myocardial strain imaging methods with growing clinical 

applications.  This dissertation research seeks to develop methods to shorten the scan time for cine 

DENSE and to develop free-breathing cine DENSE methods, both of which would facilitate 

greater clinical usage of the method. 

During DENSE data acquisition, a signal due to T1-relaxation (T1-echo) is simultaneously 

acquired along with the displacement-encoded stimulated echo which generates stripe artifacts and 

leads to inaccurate strain measurement. The T1-echo is typically suppressed by acquiring 

additional phase-cycled data, which despite its effectiveness, leads to increased scan time. 

In addition to the T1-echo, respiratory motion also leads to undesired artifacts. The standard 

DENSE image acquisition protocol requires breath-holding to avoid respiratory motion artifacts, 

and this can be challenging for heart failure and pediatric patients and for those under sedation. 

This creates a broad need for free-breathing methods. In free-breathing cine DENSE acquisitions, 

three types of artifacts arise: (a) those due to incomplete suppression of the T1-echo, (b) those due 

to (approximately) rigid translation of the tissue, and (c) encoding of breathing-induced tissue 

motion into the phase of the stimulated-echo. Previously, methods were developed to compensate 

for the first and the second types of artifacts in DENSE. The third type of artifact causes unique 



 

 xxi 

respiratory-induced k-space phase errors which correspond to phase shifts in the image domain 

and lead to signal loss and phase corruption artifacts. 

A deep learning model was developed for suppression of the artifact-generating T1-echo in 

cine DENSE for the purpose of eliminating the phase-cycling acquisitions and reducing the scan 

time limitation. A U-Net (DAS-Net) was trained to suppress the artifact-generating T1-echo using 

phase-cycled data as the ground truth. A data augmentation method was developed that generates 

synthetic DENSE images with arbitrary displacement encoding frequencies to suppress the T1-

echo modulated for a range of frequencies. DAS-Net was evaluated on non-phase-cycling cine 

DENSE images from healthy subjects. Comparisons between DAS-Net processed images and the 

corresponding phase-cycling reference data using signal-to-noise ratio and strain measurements 

demonstrated that DAS-Net provides an effective alternative approach for suppression of the 

artifact-generating T1-echo in DENSE MRI, enabling a 42% reduction in scan time compared to 

DENSE with phase cycling. 

A new model was introduced that describes artifacts due to encoding of respiratory motion 

into the phase of the stimulated echo. Phantom experiment and Bloch-equation simulations were 

performed to validate the model. The model was used along with the simulation of respiratory 

motion to generate synthetic images with phase shift artifacts to train a U-Net, DENSE-RESP-

NET for compensation of signal loss and phase corruption artifacts. Evaluations of the DENSE-

RESP-NET on self-navigated free-breathing cine DENSE from healthy volunteers showed that the 

DENSE-RESP-NET is an effective method to compensate for breathing-associated signal loss and 

phase corruption artifacts. 

The developed motion compensation method, DENSE-RESP-NET, was used and 

evaluated in concert with adaptive free-breathing acquisitions and self-navigation applied on 
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healthy volunteers and heart disease patients. Assessment of motion compensated images for strain 

and signal-to-noise ratio demonstrated that the proposed motion compensation method 

outperforms the conventional diaphragm navigator-gated method and provides reliable free-

breathing cine DENSE acquisitions for measurement of systolic and diastolic parameters. 
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Chapter 1 : Introduction 

Magnetic resonance imaging (MRI) is a non-invasive imaging technique used to study the 

anatomy and function of living tissue. Advantages of MRI compared with other non-invasive 

techniques such as x-ray computed tomography (CT), positron emission tomography (PET), and 

ultrasound imaging techniques are the absence of radiation risks, better soft-tissue contrast, 

flexibility for arbitrary imaging plane, high resolution and high signal-to-noise ratio images, and 

flexibility for imaging different mechanism (relaxometry, displacement, diffusion, perfusion, 

blood oxygen level-dependent, etc.) in tissue. 

MRI is based on nuclear magnetic resonance (NMR) where certain atoms with non-zero 

nuclear magnetic moment are perturbed by a small oscillating magnetic field (radiofrequency 

pulses) with a certain frequency characteristic when placed in a strong static magnetic field (B0 

field). The advances during the 1970s with the utilization of magnetic field gradients enabled 

localization of NMR signal and production of MR images1. 

1.1 Nuclear Magnetic Resonance 

The NMR phenomenon only occurs for atoms with odd numbers of protons and/or neutrons 

where the nuclear magnetic moment is non-zero; these atoms are said to have spins. The 

probability of the spins being at a specific energy state follows the Boltzmann distribution. 

𝑝𝑖 ∝ 𝑒−
𝐸𝑖
𝑘𝑇  (1.1) 

𝑝𝑖 is the probability, 𝐸𝑖 is the energy level associated with the spin state, k is the Boltzmann 

constant, and T is the absolute temperature. In the absence of the static magnetic field B0, the 
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energy level of the system is zero and all the spins are in a single energy state. The magnetic 

moments of the spins cancel out and the net magnetization is zero. When the system is placed in 

the static magnetic field B0, the energy state of the system splits into multiple levels (the Zeeman 

splitting). For those nuclei with ½ -spin, the energy level splits in two equal states in magnitude, 

1

2
𝛾ℏ𝐵0, but different in signs, where 𝛾 the is the gyromagnetic ratio, ℏ is the reduced plank 

constant, and 𝐵0 is the strength of the static magnetic field B0. According to the Boltzmann 

equation (1.1), the smaller energy state is preferred for the spins to occupy. The ratio of spins that 

occupy the lower energy state (N1) to those in the higher energy state (N2) is defined by the 

Boltzmann factor in equation (1.2). 

𝑝−½ 

𝑝+½

=
𝑁1

𝑁2

= 𝑒
Δ𝐸(=𝛾ℏ𝐵0)

𝑘𝑇   (1.2) 

The difference between N1 and N2 creates a net magnetization along the static magnetic 

field. The net magnetization is denoted by M0 at thermal equilibrium where the temperature is 

constant spatially and temporally. The magnetization vector has a natural frequency defined by the 

Larmor equation in (1.3). 

𝜔𝐿 = 𝛾𝐵  (1.3) 

The Larmor frequency depends on the magnitude of the external magnetic field 

experienced by the nuclei sample (and other factors such as the chemical environment and the 

magnetic properties of the nuclei). When a weak (in magnitude compared to the static magnetic 

field) oscillating magnetic field (usually called radiofrequency or RF pulse) with a frequency set 

at the Larmor frequency is applied on the nuclei sample, the magnetization starts to align with the 

oscillating field, the phenomena which is known as NMR. With long enough duration of oscillating 

field (RF pulse), the magnetization can be tipped down onto the transverse plane. When the 

oscillating field is switched off, the magnetization starts to relax back to its original state, M0; This 
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process is called relaxation. The transverse and longitudinal components of the magnetization 

decay and relax respectively with different time constant, the T2 and T1, known as transverse 

relaxation time and the longitudinal relaxation time respectively. The macroscopic behavior of the 

magnetization is described using the Bloch equation described in (1.4). 

𝑑

𝑑𝑡
�⃗⃗� (𝑡) = 𝛾 (�⃗⃗� (𝑡) × 𝐵(𝑡)) −

1

𝑇2

𝑀𝑥𝑦(𝑡) −
1

𝑇1

(𝑀𝑧(𝑡) − 𝑀0)  (1.4) 

M(t) denotes the magnetization with respect to time, B(t) is the external magnetic field 

applied on the sample of nuclei, 𝑀𝑥𝑦(𝑡) and 𝑀𝑧(𝑡) are the transverse and longitudinal components 

of magnetization vector respectively. 

1.1.1 Gradient fields 

Gradient fields are used to link the dynamic of the magnetization described by Bloch 

equation to its position. In classical description of NMR, the magnetization precesses at a 

frequency determined by the Larmor equation around the axis defined by the direction of static 

magnetic field. Gradient fields point toward the static magnetic field and change linearly in with 

respect to position. This creates the linear magnetic gradient from one end of the material to 

another end. Magnetization at each point in the material precesses at a frequency different than the 

neighboring point. With a gradient field, the procession frequency of magnetization at different 

position can be described in equation 1.5). 

𝜔𝐿(𝑟) = 𝛾(𝐵0 + 𝐺𝑟𝑟) 1.5) 

𝐺𝑟 is the gradient field linearly varying with respect to position r. Gradient fields are used 

for (1) selective excitations where the oscillating field resonates with magnetizations at certain 

positions, (2) localization of NMR signal, (3) creating dephasing among magnetization at different 

positions and etc. 
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1.2 Cardiac Magnetic Resonance 

Cardiac magnetic resonance provides non-invasive methods to assess heart and vascular 

anatomy and function. These methods are used to assess ventricular function and structure, blood 

hemodynamic, myocardial tissue composition, microstructure, perfusion, coronary microvascular 

function and etc. 

Late gadolinium enhancement (LGE) is routinely used to measure myocardial viability 

through the assessment of myocardial scar formation and regional myocardial fibrosis after 

myocardial infarction2. Myocardial relaxometry using T1, T2, and T2* mapping is used to assess 

the presence of diffuse interstitial fibrosis in ischemic and nonischemic cardiomyopathy3, image 

myocardial edema4, and measure iron overload5 respectively. Diffusion-weighted and diffusion 

tensor imaging provide microstructural information myocardial fibers through directional 

measurement of water motion. This information plays a key role to link the function and structure 

in various cardiac diseases6. Myocardial perfusion imaging enables the assessment of patient 

condition in coronary artery disease. Velocity-encoded MRI provides information about 

myocardial hemodynamics which has clinical implications for various cardiac diseases. 

1.3 Myocardial Strain CMR 

Various cardiac disease can adversely affect the cardiac function. Abnormalities in cardiac 

function can negatively affect other systems in the body. The precise assessment of cardiac 

function is important for diagnosis and treatment of diseases. Cardiac MRI provide high resolution 

and signal-to-noise ratio cross-sectional images and has shown to be a powerful tool for such 

assessments7. 
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Quantification of cardiac function using MRI has primarily been focused on global 

parameters derived from anatomical information as indicator of systolic function. Specifically, 

ejection fraction measurements as the change in ventricular volume during cardiac cycled has been 

used as an indicator of cardiac function and for classification of heart-failure types8. However, 

there are limitations with ejection fraction. First, ejection fraction as a global parameter does not 

reflect the regional changes in cardiac function which may have important clinical implications. 

Second, ejection fraction is a measure of systolic function. Several preliminary studies have shown 

the value of diastolic function assessments9–11. Third, while many heart-failure patients have 

reduced ejection fraction, as many as half of patients presenting with symptoms of heart failure 

have an essentially preserved ejection fraction12. 

Myocardial strain measurements are more likely to reflect subtle changes in the myocardial 

contraction pattern due to local tissue alterations than global measures based on volume change. 

In addition, strain measurement provides information about temporal variations in cardiac function 

which enables for more comprehensive assessment during both systole and diastole. In addition, 

fusion of regional strain measurements with other kinds of imaging modalities may help to better 

distinguish different kinds of failures in cardiac function and guide the therapies13. 

Conventional cross-sectional methods used to image regional strain include 

echocardiography and cardiac MRI. Echocardiography of the heart is widely used for assessing 

global and regional cardiac function. A strength of echocardiography is its relatively high temporal 

resolution. However, it has important drawbacks, including its dependence on operator experience, 

and limited acoustic windows due to the presence of bone and lung.  

Myocardial wall motion assessment using feature tracking in steady-state free precession 

MRI provides global and regional strain analysis. While they provide good images of the moving 
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heart wall, motion analysis is primarily based on inner and outer boundaries as there is little 

intrinsic structure within the myocardial wall. MRI-based strain imaging methods are those based 

on magnetization tagging, tissue phase mapping, displacement-encoded, and strain-encoded 

imaging. 

1.4 Myocardial Strain Measurement using DENSE 

Displacement encoding with stimulated echoes (DENSE) provide direct displacement 

measurement of myocardial contraction by encoding the motion into the phase of the stimulated 

echo14,15. The nature of this method provides accurate measurement of myocardial displacement 

and strain and studies has shown that DENSE measurements are highly reproducible16,17. In 

addition, recent advances in post-processing algorithms provided automatic analyses of DENSE 

images18.  

DENSE employs electrocardiogram-gated segmented acquisitions using spiral 

trajectories19. Figure 1.1 shows a diagram of spiral DENSE acquisition. Upon the detection of R-

wave, a set of displacement-encoding pulses are applied following a fat-saturation module. The 

displacement encoding pulses modulates the location into the longitudinal magnetization. The 

readout module consists of small flip angle RF pulse and displacement rephrasing gradient 

followed by spiral readout gradient pulses. The RF pulse tips down a portion of modulated 

longitudinal magnetization onto the transverse plane and generates the stimulated echo. The 

displacement rephrasing gradient restore the phase that was modulated to the magnetization during 

the encoding module with respect to the location. 
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Figure 1.1 – Diagram showing the components of cine DENSE acquisitions using spiral trajectories. Cine DENSE is 

electrocardiogram-gated. Upon the detection of R-wave, saturation pulses are applied to null the signal from fat 

followed by a set of displacement encoding pulses. The acquisition module consists of a small flip angle RF pulse to 

tip down a small portion of the position-modulated longitudinal magnetization onto the transverse plane and generate 

the stimulated echo followed by a displacement rephrasing gradient and spiral readout gradients. 

1.4.1 Mathematical description of the DENSE signals 

Assuming thermal equilibrium prior to the application of the displacement encoding 

module, the magnetization only has a longitudinal component as described in equation (1.6). 
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𝑀𝑧(𝑟, 𝑡) = 𝑀0  (1.6) 

The first 90-degree RF pulse tip down the magnetization onto the transverse plane. The 

displacement encoding gradient (𝐺𝑒) corresponding to a displacement encoding frequency 𝑘𝑒 =

𝛾

2𝜋
𝐺𝑒𝑡 generates a position dependent phase shift on the transverse magnetization as described in 

equation (1.7). 

𝑀𝑥𝑦(𝑟, 𝑡) = 𝑀0 𝑒
𝑖2𝜋〈𝑘𝑒,𝑟〉  (1.7) 

𝛾 is the gyromagnetic ratio of proton, and 𝐺𝑒 is the gradient pulse magnitude, and 〈 , 〉 

denotes the dot product. The second 90-degree RF pulse would rotate back a portion of transverse 

magnetization along the longitudinal axis. Assuming the second RF pulse has zero phase shift (𝜃 =

0 according to Figure 1.1), the longitudinal magnetization at the end of displacement encoding 

module is cosine-modulated as described in equation (1.8). 

𝑀𝑧(𝑟, 𝑡) = 𝑀0 cos(2𝜋〈𝑘𝑒, 𝑟〉)  (1.8) 

Between the application of displacement encoding pulses and the readout module, the 

longitudinal magnetization undergoes longitudinal relaxation (T1 relaxation). The third RF pulse 

(with flip angle α) projects a portion of the longitudinal magnetization onto the transverse plane as 

described in equation (1.9). 

𝑀𝑥𝑦(𝑟, 𝑡) =
1

2
 𝑀0[𝑒

𝑖2𝜋〈𝑘𝑒,𝑟〉 + 𝑒−𝑖2𝜋〈𝑘𝑒,𝑟〉]𝑒
−

𝑡
𝑇1 sin(𝛼) + [1 − 𝑒

−
𝑡
𝑇1]𝑀0 sin(𝛼)  (1.9) 

In equation (1.8), the cosine term is replaced by its equivalent exponential terms using 

Euler’s formula. In addition to the longitudinal relaxation of the magnetization, the tissue 

undergoes deformation during the time between displacement encoding and readout modules. The 

tissue element at the position 𝑟 − 𝛥𝑟𝑐 and at the time when the displacement encoding module is 

applied moves to the position 𝑟 at the time of readout, where 𝛥𝑟𝑐 denotes the deformation of the 
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myocardial tissue element. The transverse magnetization after application of displacement 

rephrasing gradient can be described in equation (1.10). 

𝑀𝑥𝑦(𝑟, 𝑡) =
1

2
 𝑀0 sin(𝛼) 𝑒−𝑖2𝜋〈𝑘𝑒,Δ𝑟𝑐〉 +

1

2
 𝑀0 sin(𝛼) 𝑒−𝑖2𝜋〈𝑘𝑒,−2𝑟+ Δ𝑟𝑐〉

+ [1 − 𝑒
−

𝑡
𝑇1]𝑀0 sin(𝛼) 𝑒−𝑖2𝜋〈𝑘𝑒,𝑟+ Δ𝑟𝑐〉 

 (1.10) 

The DENSE pulse sequence generates three echoes: (a) the desired displacement-encoded 

stimulated echo which is centered in k-space, (b) the complex conjugate echo which is modulated 

at the frequency 𝑘 = 2𝑘𝑒 in k-space, and (c) an echo due to T1-relaxation of the magnetization 

which is modulated at the frequency 𝑘 = 𝑘𝑒 in k-space (T1-echo). While the displacement-encoded 

stimulated echo is a desired signal, the other two echoes generate artifacts and should be 

suppressed. 

1.4.2 Artifact-generating echoes in DENSE 

The displacement encoded stimulated echo contains the displacement information of the 

tissue and since it has properties that are refocused, it is considered a desired signal. The other two 

echoes are generally considered to cause artifacts in magnitude images, lead to inaccurate phase 

information, and should be suppressed. With the choice of appropriately higher displacement 

encoding frequency, the complex conjugate stimulated echo can be modulated to a higher 

frequency than those measured during the readout. The displacement encoding frequency could 

also be set to a high enough magnitude to shift the T1-echo out of acquisition window as well. 

However, this would lead to signal dephasing in stimulated echo and loss of measurement 

sensitivity in addition to more phase-wrapping in stimulated echo which can lead to a more 

challenging post-processing. For these reasons, the T1-echo is simultaneously acquired with the 

stimulated echo during the readout for typical values of displacement encoding frequencies.  
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The source of T1-echo is the relaxation of the longitudinal magnetization and thus, it has 

larger magnitude in diastolic frames than early systolic frames. The T1-echo can grow to a larger 

magnitude compared to the other echoes in diastolic cardiac frames and because of this, 

suppression of this echo is essential prior to post-processing of the displacement encoded 

stimulated echoes. Conventionally, the T1-echo is suppressed by using phase-cycling method and 

the use of through-plane dephasing gradients. In phase-cycling method, additional images are 

acquired by changing the phase of the second RF pulse (𝜃) in the DENSE pulse sequence diagram. 

By inducing a 180-degree phase shift to the stimulated echo in the phase-cycled data, one can 

suppress the T1-echo through subtraction of the two data. The through-plane dephasing of the T1-

echo is performed by playing a dephasing gradient in addition to the displacement encoding 

gradient during the time between applications of the first and the second RF pulses. The difference 

between the two gradients is their direction. While displacement encoding gradient is parallel to 

the imaging plane, the dephasing gradient is orthogonal to the imaging plane. As the tissue 

undergoes the deformation throughout the cardiac cycle, the through-plane motion is encoded to 

the phase of the T1-echo and leads to its dephasing. The combination of phase-cycling20,21 and 

through-plane dephasing22 methods is effective for suppression of the T1-echo. However, it has 

some limitations. Phase cycling requires additional acquisitions which leads to longer data 

acquisition times. In addition, phase-cycling is susceptible to motion. Since typical DENSE 

acquisition times are comparable to respiration period, respiratory motion can cause the T1-echo 

being originated from different tissue and imperfect suppressions. 

1.4.3 Phase-cycling method 

Phase cycling acquisitions in DENSE MRI are used to suppress artifact-generating echoes. 

In phase cycling method, the second RF pulse in the pulse sequence of DENSE imaging is phase 
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shifted by θ and this phase shift is reflected as a phase shift on the acquired echoes. 2-point and 3-

point phase-cycled acquisitions are used in DENSE to suppress the T1-echo and the complex 

conjugate echoes. For in-plane myocardial displacement measurements using typical acquisition 

parameters, only T1-echo is within the acquisition window. The measured signal can be described 

in equation 6. 

𝑀𝑥𝑦
𝜃=0(𝑟, 𝑡) =

1

2
 𝑀0 sin(𝛼) 𝑒−𝑖2𝜋〈𝑘𝑒,Δ𝑟𝑐〉 + [1 − 𝑒

−
𝑡
𝑇1]𝑀0 sin(𝛼) 𝑒−𝑖2𝜋〈𝑘𝑒,𝑟+ Δ𝑟𝑐〉  (1.11) 

To suppress the T1-echo, the phase of the second RF pulse is shifted by θ=180⁰ to acquire 

the phase-cycled data. The phase of the acquired displacement encoded stimulated echo is shifted 

by θ=180⁰ in the phase-cycled data as described in equation (1.12). 

𝑀𝑥𝑦
𝜃=𝜋(𝑟, 𝑡) = −

1

2
 𝑀0 sin(𝛼) 𝑒−𝑖2𝜋〈𝑘𝑒,Δ𝑟𝑐〉 + [1 − 𝑒

−
𝑡
𝑇1]𝑀0 sin(𝛼) 𝑒−𝑖2𝜋〈𝑘𝑒,𝑟+ Δ𝑟𝑐〉  (1.12) 

By subtracting the phase-cycling data, the T1-echo is suppressed the resulting signal in 

equation (1.13) is comprised of only the displacement encoded stimulated echo (𝑀𝑆𝑇𝐸). 

𝑀𝑆𝑇𝐸(𝑟, 𝑡) = 𝑀𝑥𝑦
𝜃=0 − 𝑀𝑥𝑦

𝜃=𝜋 = 𝑀0 sin(𝛼) 𝑒−𝑖2𝜋〈𝑘𝑒,Δ𝑟𝑐〉  (1.13) 

Figure 1.2.A shows the magnitude, phase, and k-space images of a phase-cycled data and 

resulting artifact-free stimulated-echoes computed by subtraction of the phase-cycled data. 

1.4.4 Through-plane dephasing 

This technique takes the advantage of the through-plane motion of the tissue to induce 

dephasing on the artifact-generating echoes. The encoding of the through-plane tissue motion into 

the phase of the acquired signals is done by playing a through-plane dephasing gradient 

simultaneously with the displacement encoding and displacement rephrasing gradients. The effect 

of the through-plane dephasing gradient on the acquired signal can be described by modifying the 

equation (1.11) to equation (1.14). 
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𝑀𝑥𝑦
𝜃=𝜋(𝑟𝑥𝑦 , 𝑧, 𝑡) =

1

2
 𝑀0 sin(𝛼) 𝑒−𝑖2𝜋[〈𝑘𝑒,Δ𝑟𝑥𝑦

𝑐 〉+〈𝑘𝑑,Δ𝑟𝑧
𝑐〉]

+ [1 − 𝑒
−

𝑡
𝑇1]𝑀0 sin(𝛼) 𝑒−𝑖2𝜋[〈𝑘𝑒,𝑟𝑥𝑦+Δ𝑟𝑥𝑦

𝑐 〉+〈𝑘𝑑,𝑟𝑧+ Δ𝑟𝑧
𝑐〉] 

 (1.14) 

𝑘𝑑 is the through-plane dephasing frequency, and Δ𝑟𝑥𝑦
𝑐  and Δ𝑟𝑧

𝑐 are in-plane and through-

plane components of myocardial displacement respectively. While encoding of the in-plane 

displacement is measured as the signal phase, the through-plane encoding leads to dephasing of 

the T1-echo signal as the measured signal is summed along the thickness of the imaging plane. 

1.4.5 Displacement measurement 

After suppression of the artifact-generating echoes, the displacement can be measured by 

post-processing the displacement encoded stimulated echo images. The stimulated echo phase 

contains tissue displacement projected along the displacement encoding gradient direction as 

denoted by the dot product in equation (1.13). To provide multidimensional displacement 

measurement, the DENSE sequence in repeated to acquire multiple orthogonal displacement 

measurements. An additional measurement is required to correct for the background phase in the 

measured stimulated echoes. 

1.4.6 Background phase corrections 

Equation (1.13) related the stimulated echo phase to the tissue displacement in an ideal 

scenario where the stimulated echo phase approaches zero by using a very small (or zero in 

magnitude) displacement encoding gradients. In practice, field inhomogeneities and other 

nonlinearities23 (such as eddy currents, Maxwell concomitant terms, and gradient distortions) leads 

to non-zero phase of the stimulated echo when small encoding gradients are used as described in 

equation (1.16). 
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𝑀𝑆𝑇𝐸(𝑟, 𝑡) = 𝑀0 sin(𝛼) 𝑒−𝑖[2𝜋〈𝑘𝑒,Δ𝑟𝑐〉+𝜙𝑏(𝑟)]  (1.15) 

The non-zero phase is referred to as background phase and can lead to inaccurate 

measurements. The non-zero background phase can be measured by setting the displacement 

encoding gradient to zero as described in equation (1.16). 

𝑀𝑆𝑇𝐸
𝜙𝑏 (𝑟, 𝑡) = 𝑀0 sin(𝛼) 𝑒−𝑖𝜙𝑏(𝑟)  (1.16) 

The background phase can be obtained using a separate measurement by nulling the 

displacement encoding gradients (simple-encoding method) or it can be subtracted by combining 

displacement measurements using two different encoding frequencies (balanced-encoding 

method).  

1.4.7 Displacement encoding methods 

DENSE uses two types of displacement encoding methods: (a) simple-encoding and (b) 

balanced-encoding24. The major difference between the two methods is how the reference 

measurement is acquired. In simple-encoding method, the reference measurement is acquired as a 

separate acquisition where the displacement encoding gradients are set to zero (the through-plane 

dephasing gradient is still used to correct for the phase shift corresponding to the through-plane 

motion). In the balanced encoding method, there is no separate measurement for the background 

phase. Instead an additional displacement measurement in a new direction is acquired and the 

background phase is treated as an auxiliary variable in the measurement equation. Independent of 

the displacement encoding method, multiple displacement measurement can be described using an 

encoding matrix W. The relationship between the stimulated echo phase, the tissue displacement 

and the encoding matrix W can be described using equation (1.17). 
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[
𝜙1

⋮
𝜙𝑁

] = 𝑊 [
𝜙𝛥𝑥

⋮
𝜙𝑏

]  (1.17) 

The 𝜙𝑖  (𝑖 = 1,… ,𝑁) are the stimulated echo phase corresponding to the ith displacement 

measurement, 𝜙𝛥𝑥, 𝜙𝛥𝑦, and 𝜙𝛥𝑧 are the processed (background-phase-corrected) stimulated echo 

phase proportional to the tissue displacements along different spatial directions, and the 𝜙𝑏 is the 

background phase. The displacements are calculated by solving the equation (1.17) for the 

displacement values. Figure 1.2 shows the 3-point balanced-encoding magnitude and phase images 

from a DENSE short-axis slice of left ventricle used to calculated the background phase and the 

background-corrected phase images proportional to the in-plane displacements. 

 

Figure 1.2 – The T1-echo suppression using phase-cycling method and phase decoding of the resulting stimulated 

echoes. A) For each displacement measurement, the phase-cycled images are acquired where the stimulated echo 
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phase is shifted by 180⁰. For each measurement, the magnitude and phase images in addition to the real (instead of 

complex) k-space data are shown. The subtraction of the k-space images leads to suppression of the T1-echo (marked 

by yellow arrows) and artifact-free stimulated echo images. B) The raw stimulated echo phase is processed by the 

inverse of the displacement encoding matrix to calculate the back-ground phase corrected tissue displacements.  

1.4.8 Image Analysis 

Displacement fields and strain data are calculated by post-processing the phase information 

from the displacement encoded stimulated echoes. The post-processing consists of three major 

steps: (1) segmentation for a region-of-interest, (2) unwrapping the phase values within the region-

of-interest, and (3) calculation of displacement fields and strain. Figure 1.3 illustrates the steps in 

post-processing of DENSE images from image to strain information. 

There are automatic and semi-automatic approaches for post-processing of the DENSE 

images. In the semi-automatic approach (shown in Figure 1.3), the myocardial region-of-interest 

is manually contoured on a magnitude image from a single frame (usually an end-diastolic or early-

systolic frame). The contour is propagated through cardiac frames using a motion-guided 

segmentation algorithm25. The phase values within the segmented region is processed using a 

phase unwrapping algorithm to calculate the true phase values26. The resulting phase information 

is used to calculate the displacement field through time using either polynomial interpolations or 

regularized least square fit. In the automatic approach, deep learning models are used to 

automatically segment the myocardial region-of-interest and to unwrap the phase values. U-Nets 

models were trained previously that could perform the segmentation and the phase-unwrapping 

task accurately which led to elimination of inter-observer variability in DENSE post-processing in 

addition to reduced processing time and labor18.  

The displacement measurements from DENSE images are in Eulerian frame of reference 

meaning that at each point and time, the phase is proportional to the number of material elements 
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moving in or out. The displacement fields are typically more appreciated and are more intuitive 

when they are described in Lagrangian frame of reference. During DENSE post-processing, the 

Lagrangian fields (Figure 1.3.K) are calculated by tracking each spatial element through time. 

 

Figure 1.3 – Analysis of DENSE images include segmentation for a region-of-interest, un-wrapping of the phase 

information within the region-of-interest to compute the true phase values, and interpolation of the displacement field 

using the true phase values. The displacement fields are then used to calculate strain data. Circumferential strain 

(Ecc) shown in panels J and L is the most common strain parameter used for assessment of cardiac function with 

DENSE. 

1.5 Breath-hold DENSE acquisitions 

As it was illustrated in Figure 1.1, the DENSE acquisition is electrocardiogram-gated and 

use spiral trajectories to sample the k-space. With typical length of spiral readouts, multiple spiral 

acquisitions are required to sufficiently sample the k-space corresponding to a single cardiac 

frame. A shorter spiral readout does not sufficiently traverse the k-space, while the longer spiral 

readout might be adversely affected by artifact due to myocardial motion or T2-relaxation of the 
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transverse magnetization or the artifacts due to myocardial tissue deformation during the readout. 

Using typical imaging parameters, acquisitions have to iterate through multiple heartbeats to 

sufficiently sample the k-space. This makes the DENSE acquisitions times in cardiac applications 

comparable to the respiratory motion period. As shown in Figure 1.4, respiratory motion creates 

artifacts in the MRI acquisitions and should be avoided for reliable measurements. For this reason, 

the DENSE acquisitions are performed during breath-holding. Multiple short-axis DENSE slices 

are required to sufficiently cover the left-ventricle where each slice requires a separate breath-hold 

scans. 

 

Figure 1.4 – Example DENSE magnitude and phase images from breath-hold (A) and free-breathing (B) 

acquisitions 

Breath-holding could be challenging for multiple reasons. (1) Cardiac MRI examinations 

can last for 60-90 minutes with multiple breath-holding which can be challenging and 

discomforting for patients. Usually patients get tired or fall asleep during data acquisitions and fail 

to perform a perfect breath-holds which can lead to sub-optimal image quality. It is very common 

during cardiac MRI to repeat the acquisition multiple slices to ensure high quality of the incoming 

data. This leads to prolonged cardiac MRI scans and more discomfort for patients. (2) In many 

clinical scenarios, breath-hold acquisitions are challenging or even impossible. For example, 

drowsiness as side effect of many pain medications can affect the patients’ consciousness and 
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ability to hear the breath-hold instructions. In more extreme examples such as patients that are 

under sedation or pediatric patients, breath-hold scans are even impossible to perform. These 

challenges create a broad need for free-breathing DENSE acquisitions. 

1.6 Free-breathing DENSE 

There have been two major methods developed previously for DENSE MRI that enables 

free-breathing acquisitions: (1) diaphragm navigator-gated DENSE19, and (2) self-navigated 

DENSE27. 

1.6.1 Diaphragm navigator-gated DENSE 

In diaphragm navigator-gated DENSE, data is continuously acquired during free-

breathing. A navigator echo is acquired at the beginning or at the end of each heartbeat to track 

the superior-inferior position of the diaphragm. Since the respiratory motion during end-expiration 

is minimal, data that fall within a small acceptance window corresponding to the end-expiration is 

used for images reconstruction. 

The diaphragm navigator-gated acquisitions start by acquiring additional sagittal and 

coronal scout images (Figure 1.5.A-B) to locate the diaphragm. Additional RF pulses are used to 

place two intersecting bands at the right dome of the diaphragm (marked by yellow arrows in 

Figure 1.5.A-B). Navigator echoes are acquired and reconstructed in the readout direction and are 

displayed as a line of data. After placing the navigator bands, a scout scan is performed to identify 

the end-expiration position of the diaphragm and select the acceptance window (Figure 1.5.C). 

Once the navigator set-up is complete, the gated scan is performed with a live tracking of 

diaphragm position (Figure 1.5.D). 
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Figure 1.5 – Diaphragm navigator-gated DENSE enables free-breathing acquisitions. Additional coronal (A) and 

sagittal (B) scout images are acquired to find the position of diaphragm. The navigator bands are placed on the right 

dome of diaphragm (marked by yellow arrows in A and B). A scout scan is performed to track the position of right 

dome. A small window at end-expiration position of the diaphragm is used to accept or reject the acquired free-

breathing data. Data that fall within the accept widow is used for image reconstruction. One limitation of this method 

is the variable image quality. Example images are shown in panels E and F illustrating this limitation. 

The diaphragm navigator-gated DENSE has some limitations: (1) The quality of the 

acquired data is variable from scan to scan. Figure 1.5.E-F show DENSE images corresponding to 

two separate diaphragm navigator-gates scans from the same short-axis slice location. While 

DENSE images in panel F display comparable quality to the breath-hold scan of the same slice, 

images in panel E show significant level of artifacts. (2) The navigator set-up is complex and time-

consuming. Additional scout scan prolongs the scan time. Typically, multiple scout images are 
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required to precisely locate the dome of diaphragm. In addition, patients’ motion during the scan 

may require the operator to re-adjust the location of the navigator bands. (3) The imaging 

efficiently is as low as 20-30%. In the image reconstruction, only data that falls within the 

acceptance window are used in image reconstruction and the remaining data are discarded. This 

leads to low acquisition efficiently in diaphragm navigator-gated DENSE. Variations in respiratory 

pattern due to subjects’ motion, deep breath, or subject falling asleep can drastically reduce the 

acquisitions efficiency or may require re-adjusting the navigator in some cases. These challenges 

motivated us to pursue alternative free-breathing methods in DENSE. 

1.6.2 Free-breathing DENSE using match-making and self-navigation 

The self-navigation is an alternative approach that that enables free-breathing acquisitions 

without diaphragm navigators. In self-navigation, respiratory motion is estimated from acquired 

data and the respiratory motion errors are corrected using the estimated motion28.  

Figure 1.6 shows a general approach used in self-navigated MRI. As shown in panels A 

and B, acquired free-breathing data from different heartbeats are assigned to different motion 

states. Low-resolution images are reconstructed by combining the consecutive segments in each 

motion state (panel C). Typically, segmented acquisitions with golden-angle or uniform rotations 

through time is used to so that consecutive segments form fully-sampled images. Image-based 

navigators are used in a rigid registration algorithm to estimate the motion between states and also 

between the navigators within each state (panel D). The estimated motion is used to correct for the 

respiratory motion errors.  

Respiratory motion can also affect the T1-echo. In free-breathing acquisitions, the 

respiratory motion causes tissue motion and the T1-echo being originated from different tissue. 

This can affect the images in the phase-cycled acquisitions. Motion between phase-cycling data 
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leads to imperfect suppression and residual T1-echo after phase-cycling subtractions. Prior to 

motion compensation using self-navigation, the T1-echo needs to be suppressed in free-breathing 

data. Previously, match-making method was developed that can effectively suppress the T1-echo 

by identifying the phase-cycling pairs at the matched respiratory positions. Residual T1-echo 

energy was shown to have strong correlation with the matched position of the phase-cycled data 

and is used in the match-making algorithm to identify the phase-cycling pairs. Once T1-echo is 

suppressed, the self-navigation method can be used to correct for the motion artifacts on the 

stimulated echoes. 

 

Figure 1.6 – Diagram showing the general approach for motion estimation using self-navigation. Data from different 

heartbeats are assigned to different motion states. Multiple low-resolution image navigators are reconstructed from 

data within each motion state. The image navigators are used in rigid registration algorithm to estimate the motion 

between different states and between different navigators within each state. The estimated motion is used for motion 

compensation. 
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Motion compensation using self-navigation accounts for the tissue position shifts in image 

domain. The position shift (approximately rigid) in image domain corresponds to linear phase 

errors in k-space. In segmented DENSE acquisitions, each segment is affected by a unique 

respiratory-motion-induced position shift. The resulting artifact is blurring/ghosting in image 

domain. This type of artifact is the most common among spin-echo-based and gradient-echo-based 

MRI methods. Self-navigation is an effective method to correct the blurring/ghosting artifact. 

However, it does not account for all types of respiratory motion artifacts that arise in stimulated 

echo imaging. Figure 1.7 illustrates two examples from self-navigated free-breathing DENSE. 

While the blurring/ghosting artifact is corrected in the first acquisition, self-navigation failed to 

correct all the artifacts due to respiratory motion in the second acquisition. This example 

demonstrates that a more accurate motion compensation method is required for reliable free-

breathing DENSE. 

 

Figure 1.7 – Two examples showing motion compensation using self-navigation in DENSE. The estimated motion 

from self-navigation is used to correct the linear phase errors in the first and the second acquisitions after suppression 

of the T1-echo. While blurring/ghosting artifacts are corrected in the first acquisitions, the motion compensation failed 

to correct the all types of artifacts including the signal loss in the second acquisition. This example demonstrates that 

motion compensations should be extended to account for all types of respiratory motion artifacts in stimulated echo 

imaging. 
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1.7 Respiratory motion artifacts in DENSE MRI 

Three types of artifacts arise in free-breathing DENSE MRI due to respiration: (1) First 

respiratory motion shift the tissue during free-breathing acquisition and because of this shift, 

different tissue might contribute to the formation of the T1-echo in the phase-cycling acquisitions. 

This leads to imperfect suppression of the T1-echo after phase-cycling subtraction. The residual 

T1-echo energy in k-space manifest in the form of stripe artifact in the image domain. (2) 

Respiratory motion causes position shift of the tissue during the free-breathing acquisitions. The 

approximately rigid position shift leads to linear phase errors in k-space. The linear phase errors 

lead to blurring/ghosting artifacts in segmented DENSE where each segment is affected by a 

unique position shift and the corresponding linear phase error. (3) The tissue displacement encoded 

to the phase of the stimulated echo leads to phase shift in image domain. While the phase shift due 

to tissue deformation are measured in the post-processing, the respiratory-induced-phase shifts 

generate artifact in the simulated echo images. The respiratory-induced phase shift corresponds to 

a constant phase error in k-space and in the segmented DENSE, lead to signal loss and phase 

corruption in magnitude- and phase-reconstructed stimulated echo images. Figure 1.8 shows the 

three types of artifacts in DENSE images on a phantom. 

Convectional motion compensation methods are developed for spin-echo and gradient-

echo imaging account for position shift and the corresponding linear phase errors. For stimulated-

echo imaging, these methods need to be extended to account for respiratory-induced phase shifts 

and the corresponding constant phase errors.  
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Figure 1.8 - Example magnitude images, phase image, and k-space showing three types of respiratory-motion-induced 

artifacts in DENSE on a phantom. 1) Stripe artifacts (A-C) are caused by imperfect suppression of the T1-echo due to 

motion. 2) Position shift of tissue leads to approximately linear phase errors in k-space. In segmented DENSE, liner 

phase errors manifest in the form of blurring/ghosting artifacts (E). 3) The encoding of the tissue motion to the phase 

of the stimulated echo leads to phase shifts in image domain and constant phase errors in k-space. In segmented 

DENSE, this manifests in the form of signal loss (H) and phase corruptions (I) in image domain.  

 

1.8 Deep learning 

Deep learning is set of machine learning techniques and algorithms that enable computers 

to automatically extract complex features and patterns in large data sets that are otherwise 

challenging or impossible to perform manually. Deep learning has gained tremendous attention 
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and investment for development over the past decade after outperforming other methods in several 

image analysis benchmarks.  

Deep learning methods are neural networks with multiple layers (arrays) of computational 

units (called neuron) where each unit is connected to all the units in previous layer (fully connected 

neural network). The input layer of the neural network processes the input data and transform it to 

a higher-level representation. The output layer transforms the data into the desired output format. 

The input and output layers are sandwiched by one or more (hence the name, deep) hidden layers 

that process the high-level representations (features) as the data flows through. The network is 

trained to produce desired output per input data by determining parameters of each neuron through 

a process called training. A set or input and desired output is used for training the neural networks. 

Generally, the training has two major phases: (1) In feedforward, the input data flows through the 

layers of the network and the corresponding output is generated. The output is compared to the 

desired output using an objective function. (2) In the learning phase, the values of the objective 

function are used in a backpropagation algorithm to update the parameters of each neuron to 

generate a more accurate output. This process usually is performed using multiple batches of the 

training data depending on the size of the training set, number of learnable parameters, and the 

limitations enforced by the hardware computational power. The training usually iterates in multiple 

passes (epochs) until convergence is observed in the values of objective function.  

Conventional machine learning models used to employ hand-crafted features extracted 

from the raw data either by manually design or learning from other simple machine learning 

models29. By contrast, deep learning models merged the feature extraction and the performing the 

task into one problem30. The power of deep learning models is the automatic feature learning.  
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The most common type of deep learning models are convolutional neural networks for 

image analysis applications31. Convolutional neural networks are regularized version of fully 

connected networks by limiting the activation of each neuron to a small receptive field from the 

previous layer. This aims to preserve spatial information in the input images and avoid overfitting 

problems in the fully connected neural networks.  

Deep learning has gained much attention in the field of MRI for its potential to learn high 

level feature automatically. There have been several studies that demonstrated applications of deep 

learning for elevating user experience by automating the image post-processing18,32–35 or 

generating imaging protocols36,37, for improving and accelerating the image reconstruction38,39, 

overcoming challenges in data acquisitions40,41, or artifact suppression and noise reductions from 

various sources42–44. Specifically, deep learning has been used for correction of artifacts caused by 

voluntarily motion of subject in brain imaging, respiratory motion for cardiac and abdominal 

imaging, and motion in pediatric imaging applications45–50. 

 

1.9 Statement of research objectives 

My dissertation research is primarily focused on application of deep learning methods for 

artifact suppressions in cine DENSE MRI. 

In Chapter 2, a deep learning method is introduced for suppression of the artifact-

generating T1-echo to overcome the long acquisitions times of the phase-cycling method. The 

proposed deep learning method uses the stripe-artifact-free phase-cycled and a non-phase-cycling 

images as reference and input respectively to train a convolutional neural network. The trained 

model is able to suppress the T1-echo in non-phase-cycling input images without the need for 
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phase-cycling acquisitions. The feasibility of the trained model was evaluated on non-phase-

cycling cine DENSE images from healthy human subjects. 

In Chapter 3, a deep learning model is developed for compensation of respiratory-motion-

induced signal loss and phase corruption in self-navigated cine DENSE. A new mathematical 

model is introduced that accounts for the respiratory-motion-induced phase shifts due to the 

encoding of the respiration motion into the phase of the simulated echo. Phantom experiments and 

simulation were performed to validate the proposed mathematical model and demonstrate the 

effect of phase shift in segmented DENSE acquisitions. The mathematical model was used to 

simulate artifacts due to respiratory-motion-induced phase shifts on breath-hold data to train a 

convolutional neural network. The trained convolutional neural network was evaluated on self-

navigated free-breathing cine DENSE images from healthy human subjects. 

In Chapter 4, the developed motion compensation model (from Chapter 3) was evaluated 

on self-navigated cine DENSE images acquired using adaptive free-breathing from healthy 

subjects and heart-failure patients. Systolic and diastolic strain parameters in addition to image 

quality measures were used to evaluate the processed images using the developed deep learning 

model. The deep learning motion compensation in conjunction with adaptive acquisition was 

compared to the diaphragm-navigator gated method. 

In Chapter 5, an overview of my doctoral research is presented, the developed methods are 

discussed in addition to their limitations and future research directions. 
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Chapter 2 : Suppression of Artifact-Generating Echoes in Cine DENSE Using 

Deep Learning 

 

2.1 Abstract 

Purpose: To employ deep learning for suppression of the artifact-generating T1-echo in 

cine displacement encoding with stimulated echoes (DENSE) for the purpose of reducing the scan 

time. 

Methods: A U-Net was trained to suppress the artifact-generating T1-echo using 

complementary phase-cycled data as the ground truth. A data augmentation method was developed 

that generates synthetic DENSE images with arbitrary displacement encoding frequencies to 

suppress the T1-echo modulated for a range of frequencies. The resulting U-Net (DAS-Net) was 

compared to a k-space zero-filling as an alternative method. Non-phase-cycled DENSE images 

acquired in shorter breath-holds were processed by DAS-Net and compared to DENSE images 

acquired with phase-cycling for the quantification of myocardial strain.   

Results: DAS-Net effectively suppressed the T1-echo and its artifacts, and achieved root 

mean square error (RMSE) = 5.5±0.8 and structural similarity index (SSIM) = 0.85±0.02 for 

DENSE images acquired with a displacement encoding frequency of 0.10 cycles/mm. DAS-Net 

outperformed zero-filling (RMSE = 5.8±1.5 vs 13.5±1.5, DAS-Net vs zero-filling, p<0.01 and 

SSIM = 0.83±0.04 vs 0.66±0.03, DAS-Net vs zero-filling, p<0.01). Strain data for non-phase-

cycled DENSE images with DAS-Net showed close agreement with strain from phase-cycled 

DENSE. 
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Conclusion: DAS-Net provides an effective alternative approach for suppression of the 

artifact-generating T1-echo in DENSE MRI, enabling a 42% reduction in scan time compared to 

DENSE with phase cycling. 

2.2 Introduction 

Cine displacement encoding with stimulated echoes (DENSE) is a strain MRI method with 

applications to the heart1–4, brain5, blood vessel wall6, skeletal muscle7, and other areas. In DENSE, 

tissue displacement is encoded in the phase of the stimulated echo; however, when generating a 

stimulated echo, other echoes such as the conjugate stimulated echo and an echo due to T1 

relaxation are also generated (T1-echo)8. As only the stimulated echo has the properties that it is 

refocused and its phase is directly encoded for tissue displacement, the other echoes are generally 

considered to cause artifacts. Methods have been developed to isolate the stimulated echo and 

suppress the other echoes. These methods include using a relatively high displacement-encoding 

frequency1, acquiring complementary phase-cycled acquisitions9–11, applying inversion 

recovery12, using through-plane dephasing8, and combinations of the aforementioned methods. 

However, these methods have limitations such as partial loss of the stimulated echo signal due to 

intravoxel dephasing8, imperfect suppression of the artifact-generating echoes due to motion 

between complementary acquisitions13, decreasing the signal amplitude and altering the contrast, 

and increasing the scan time. An ideal method would suppress the artifact-generating echoes 

without these limitations. 

While artifact suppression in DENSE has previously been addressed using solutions based 

on MR physics, isolation of the stimulated echo and suppression of the other echoes may also be 

seen as a single-channel signal separation problem and may be addressed using signal processing 

or deep learning. Since single-channel signal separation problems are inherently ill-posed, linear 
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techniques such as independent component analysis require strong priors 14. Recent studies have 

applied deep convolutional neural networks (CNNs) to address this class of problems in audio and 

visual domains15–17 without the need for assumptions about the signals. Also, CNNs have been 

used for suppression of MRI artifacts from various sources including partial volume effects18, fat19, 

motion20–28, and others. In most cases, training is formulated as supervised learning 18,20,22–24,26–29, 

and the U-Net with modifications has been a popular choice for network architecture2,5,6,10. As 

typical DENSE protocols for cardiac imaging use a displacement-encoding frequency that shifts 

the conjugate stimulated echo outside the acquisition window, we investigated the use of a U-Net31 

to suppress the T1-echo. 

2.3 Methods 

We trained a U-Net using artifact-free DENSE images obtained from phase-cycled 

acquisitions to isolate the stimulated echo and suppress the T1-echo (Figure 2.1). Also, a data 

augmentation technique was developed to generate synthetic DENSE training data with arbitrary 

displacement-encoding frequencies to achieve a more generalized model.  
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Figure 2.1 - Diagram illustrating the use of deep learning to suppress the artifact-generating T1-

echo (T1E) in DENSE images. Artifact-free images with suppressed T1-echoes obtained from 

complementary phase-cycled DENSE acquisitions were used to train the DAS-Net. Once trained, 

the DAS-Net takes non-phase-cycled images as input, and its output is a DENSE image where the 

T1-echo and associated artifacts have been suppressed. STE: Stimulated echo. 

2.3.1 U-Net design  
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A U-Net consisting of encoding and decoding paths, each with multiple convolutional 

layers, was used. Each layer consists of 3×3 convolutions followed by the sigmoid function. A 3×3 

max pooling operator with stride 2 was used between convolutional layers of the encoding path. 

Prior to each convolutional layer in the decoding path, a 2×2 upsampling convolution was used 

and its outputs were concatenated with the output of the corresponding layer in the encoding path. 

The layers within the encoding path downsampled the input and increased the number of feature 

channels, and these operations were reversed in the decoding path. The convolutional and max-

pooling operators had the same kernel size as those in the generic U-Net architecture. However, 

different numbers of convolutional layers and feature channels were chosen to avoid 

overfitting/underfitting. 

For training, non-phase-cycled DENSE images were provided as the input and 

corresponding artifact-free DENSE images after subtraction of phase-cycled data were used as the 

ground-truth data.  Training was posed as minimization of the absolute difference between the 

ground-truth and the output of the U-Net using the Adam optimizer. The training was implemented 

using the TensorFlow32 library on an NVIDIA TITAN Xp graphical processing unit. 

2.3.2 Training dataset 

A 3T scanner (Prisma, Siemens, Erlangen, Germany) with an 18-channel body phased-

array RF coil was used to acquire images from 23 healthy volunteers (age=28.7±4.7, 52% female). 

Informed consent was obtained from all subjects. A spiral cine DENSE sequence33,34 with 

prospective cardiac gating was employed for breath-hold scans with the following parameters: 

slice thickness = 8 mm, variable flip angle with final α=15⁰, field-of-view=200×200 mm2 (with 

outer volume suppression), spiral readout length=5.6 ms, in-plane spatial resolution=3.4×3.4 mm2, 

TR=15 ms,  and TE=1.26 ms. Balanced 3-point displacement encoding35 was used for in-plane 2D 
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displacement measurements. Four spiral interleaves per image with 2 interleaves acquired per 

heartbeat provided a temporal resolution of 30 ms. Phase-cycling was used to suppress the T1-

echo. With two heartbeats to acquire field maps, the total scan time per slice was 14 heartbeats 

(14-HB protocol). The spiral multi-coil cine DENSE data were gridded using the non-uniform fast 

Fourier transform36 and were adaptively combined37. 

Short-axis images from 17 subjects were used for training. For each subject, 6 slices were 

acquired, each with 20-27 cardiac phases. For each slice, displacement encoding in three directions 

(three-point displacement encoding) was used to measure two-dimensional in-plane displacements 

and perform correction for non-zero background phase. Also, for each slice, images were acquired 

using three different displacement-encoding frequencies: ke=0.06, ke=0.08, and ke=0.10 cyc/mm. 

With these parameters, we define a dataset as the multiphase images corresponding to each slice, 

displacement-encoding frequency, and displacement-encoding direction. This yields a total of 

N=918 datasets (17 subjects × 6 slices/subject × 3 encoding frequencies/slice × 3 encoding 

directions/slice). Each dataset is of size (94x94x20), as each image is a 94x94 matrix, and we used 

20 cardiac phases (the minimum number of phases from the 17 subjects studied). 

2.3.3 Determination of the optimal training domain 

As 2D planes are the input to the U-Net, we investigated whether any particular 2D data 

representation would be advantageous. We hypothesized that the k-t domain, which shows the 

different temporal dynamics of the T1-echo vs. the stimulated echo, would lead to better signal 

separation than other domains.  To test this hypothesis, N=108 datasets from six subjects acquired 

with ke =0.06 cyc/mm were divided into training (NTR=66), validation (NVL=12), and test (NTS=30) 

subsets. To accommodate for unseen geometries, spatial translations and rotations were used to 

augment the training subset. Each DENSE dataset with size of (949420) was formatted into the 
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spatial domain, the k-space domain, and the k-space-time domain (k-t) as 2D planes with sizes 

9494, 9494 and 9420 respectively, and these data were used to train three U-Nets: UNxy, UNkk 

and UNkt, respectively. This approach provided N=10560 training planes for the spatial and k-

space domains and N=49,632 training planes for the k-t domain. The complex data were converted 

to real-valued data by separating the real and imaginary parts. The number of convolutional layers 

(nL) and initial feature channels (nF) were chosen empirically as (nL=2, nF=24), (nL=2, nF=16) and 

(nL=3, nF=32) for UNxy, UNkk and UNkt, respectively. After training, each U-Net was evaluated 

using the testing subset. The root mean squared error38 (RMSE) and structural similarity index39 

(SSIM) applied to concatenated real and imaginary parts of the images were used to quantify the 

performance of each network relative to the ground-truth images. End-systolic RMSE and SSIM 

were compared by one-way ANOVA and a post-hoc Tukey’s test. 

2.3.4 Data augmentation with remodulation of the displacement-encoding frequency 

As the displacement-encoding frequency, ke, is a user-selectable parameter, the DAS-Net 

should be trained to suppress the T1-echo for any typical value of ke.  While we acquired DENSE 

images with three different encoding frequencies, it is not practical to acquire images with all 

possible encoding frequencies.  Instead, we developed a data augmentation method to synthesize 

any encoding frequency from authentic images. For DENSE images, this method isolates each 

echo (the stimulated echo and T1-echo) using a linear combination of phase-cycled data as 

previously described35. Then, the phases of the images corresponding to the isolated stimulated 

echo and T1-echo are multiplied by a constant cr. A new dataset is formed by summing the 

manipulated stimulated echo and T1-echo, where the new dataset has an encoding frequency of 

kecr. As this process mimics the use of a different displacement-encoding frequency, we refer to cr 
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as the remodulation constant. To describe the effect of frequency remodulation, we employ the 

DENSE signal model11 that relates the DENSE signals in the image and k-space domains as: 

𝑐1𝑚𝑆𝑇𝐸(𝑟)𝑒
−𝑖2𝜋 𝑘𝑒Δ𝑟 + 𝑐2𝑚𝑇1𝐸(𝑟)𝑒

−𝑖2𝜋 𝑘𝑒(r+Δ𝑟)
𝐹
⇔ 𝑐1𝑀𝑆𝑇𝐸(𝑘) ∗ 𝛿(𝑘) + 𝑐2𝑀𝑇1𝐸(𝑘) ∗ 𝛿(𝑘 − 𝑘𝑒)  (2.1) 

where r is the tissue position, r is the tissue displacement, mSTE and mT1E are the 

magnitudes of the stimulated echo and T1-echo, respectively, c1 and c2 are constants associated 

with the acquisition parameters, F denotes the Fourier transform, MSTE and MT1E are the Fourier 

transforms of mSTE and mT1E, respectively, and δ is the Dirac delta function. The augmented version 

of the DENSE signal after remodulation can be described in the image and k-space domains as: 

𝑐1𝑚𝑆𝑇𝐸(𝑟)𝑒
−𝑖2𝜋 𝑐𝑟𝑘𝑒Δ𝑟 + 𝑐2𝑚𝑇1𝐸(𝑟)𝑒

−𝑖2𝜋 𝑐𝑟𝑘𝑒(r+Δ𝑟)
𝐹
⇔ 𝑐1𝑀𝑆𝑇𝐸

𝑟  (𝑘) ∗ 𝛿(𝑘) + 𝑐2𝑀𝑇1𝐸
𝑟 (𝑘)

∗ 𝛿(𝑘 − 𝑐𝑟𝑘𝑒) 
 (2.2) 

In the augmented DENSE signal, the phase of the stimulated echo is proportional to crker 

instead of ker and the k-space location of the T1-echo is shifted by ke(cr-1). 

Because frequency remodulation is a new data augmentation method, we investigated 

whether the method improves U-Net training. Three U-Nets with three different datasets were 

trained: UN30 was trained using 30 authentic datasets with ke=0.06 cyc/mm, UN60 was trained 

using 30 authentic datasets with ke=0.06 cyc/mm and 30 authentic datasets with ke=0.1 cyc/mm, 

and UN30A was trained using 30 authentic datasets with ke=0.06 cyc/mm and 30 synthetic datasets 

with ke=0.1 cyc/mm, where the synthetic datasets were computed using the frequency 

remodulation method. The three U-Nets were evaluated on a test subset containing authentic 

datasets with ke=0.06 cyc/mm (N=6) and 0.10 cyc/mm (N=6). The RMSE and SSIM of end-

systolic images were used to compare the networks using one-way ANOVA and a post-hoc 

Tukey’s test. 

2.3.5 DENSE artifact suppression network 
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After determining the optimal training domain and developing a data augmentation 

method, we trained the U-Net using larger and more diverse datasets. A total of 918 authentic 

datasets with ke=0.06 (N=306), 0.08 (N=306) and 0.10 (N=306) cyc/mm and 612 synthetic datasets 

with ke=0.07 and 0.09 cyc/mm were used for training in the k-t domain. After data augmentation, 

575,280 k-t planes were provided for training. The final U-Net is referred to as the DENSE artifact 

suppression network (DAS-Net). 

2.3.6 Comparison to k-space zero-filling 

Since harmonic phase (HARP)40,41 MRI has previously employed k-space zero-filling to 

suppress unwanted signals, as a comparison to the DAS-Net method, we employed zero-filling as 

an alternative method.  For zero-filling, a circular region with a diameter of 20 pixels around the 

T1-echo center was replaced with zeros in k-space. The performance of DAS-Net and zero-filling 

were evaluated on test datasets with ke=0.06 cyc/mm (N=30 datasets) and ke=0.10 cyc/mm (N=30 

datasets). A two-sided t-test was employed to compare the end-systolic RMSE and SSIM. 

2.3.7 Evaluation of the method using DENSE data without phase-cycling  

Non-phase-cycled and phase-cycled DENSE images were acquired from six healthy 

human subjects using ke=0.06 and 0.09 cyc/mm. Elimination of phase-cycling while keeping all 

other acquisition parameters unchanged led to a new 8-heartbeat protocol (8-HB protocol), rather 

than 14 heartbeats.  

The non-phase-cycled images were passed through the DAS-Net to suppress the T1-echo. 

The 8-HB protocol DAS-Net images and the reference standard images underwent segmental 

strain analysis using well-established methods42–44, and were compared using Bland-Altman 

analysis of end-systolic strain. Also, the Intra-class Correlation Coefficient (ICC) and Coefficient 
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of Variation (CoV)45,46 were calculated for circumferential and radial strain. For ICC, agreement 

was considered as excellent (ICC≥0.75), good (ICC 0.6–0.74), fair (ICC 0.4–0.59), or poor 

(ICC<0.40)45–47. 

The signal-to-noise ratio (SNR) of DAS-Net processed images was assessed and compared 

to that of phase-cycled images. As DENSE measures displacement using the myocardial phase, 

we measured the phase SNR48 that was computed as described in equation (2.3)49. 

𝑝ℎ𝑎𝑠𝑒 𝑆𝑁𝑅 =  ‖
𝑚𝑒𝑎𝑛(𝑢𝑛𝑤𝑟𝑎𝑝𝑝𝑒𝑑 𝑝ℎ𝑎𝑠𝑒 𝑜𝑓 𝑒𝑛𝑑 − 𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐 𝑅𝑂𝐼)

𝑠𝑡𝑑𝑒𝑣(𝑝ℎ𝑎𝑠𝑒 𝑜𝑓 𝑒𝑛𝑑 − 𝑑𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐 𝑚𝑦𝑜𝑐𝑎𝑟𝑑𝑖𝑢𝑚 )
‖  (2.3) 

where the mean unwrapped phase of an end-systolic region of interest (ROI) measures the 

DENSE phase in the region with greatest displacement (representing the signal of interest), and 

the standard deviation of the phase of the end-diastolic myocardium provides a measure of the 

standard deviation of phase at a cardiac frame where the mean phase is essentially zero. 

The image quality of DAS-Net processed and phase-cycled magnitude DENSE images was 

assessed by two experts, F.H.E and K.C.B, with 30 and 20 years of experience, respectively. Cine 

movies were presented in a random order and were rated using a 5-point scale with 5 indicating 

highest quality and 1 indicating poor quality. A Wilcoxon Rank-Sum test was performed on paired 

scores with the null hypothesis that the means of the scores were different. 

2.4 Results 

2.4.1 k-t is the optimal training domain 

Figure 2.2 illustrates examples of artifact suppression using UNkt, UNxy and UNkk and 

summarizes the RMSE and SSIM results. The images from UNkt had the lowest RMSE 

(RMSE=7.0±1.4, 8.7±1.8, and 9.3±2.1 for UNkt, UNxy, and UNkk, respectively, p<0.05) and the 
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highest SSIM (SSIM=0.79±0.03, 0.76±0.03, and 0.74±0.05 for UNkt, UNxy, and UNkk, 

respectively, p<0.05). 

 

Figure 2.2 - U-Nets were trained using DENSE data formatted in k-t planes (UNkt), spatial planes (UNxy), and k-space 

planes (UNkk). A) An example showing DENSE magnitude and phase images, the k-space magnitude data, and k-t 

planes after application of the UNkt, UNxy and UNkk U-Nets. (B) Bar-plots and error bars (representing the standard 

deviation) of RMSE and SSIM computed from the output of each U-Net and the ground-truth data for end-systolic 

images of N=30 test datasets show that the UNkt network provides the best performance. 

2.4.2 Data augmentation with remodulation of the displacement-encoding frequency enhances 

T1-echo suppression 

Figure 2.3.A shows an example of synthetic DENSE images generated using remodulation 

of the displacement-encoding frequency. The original version of the image is also shown, as is an 

authentic image using the higher encoding frequency. Figure 2.3.B summarizes the evaluation of 

the UN30, UN30A and UN60 on the test images. RMSE and SSIM show three findings: first, the 

UN30A and UN60 outperform UN30 based on RMSE (RMSE=8.07±0.74, 7.13±0.53, and 7.07±0.52 

for UN30, UN30A and UN60, respectively, p<0.05) and SSIM (SSIM=0.78±0.02, 0.81±0.02, and 

0.82±0.02 for UN60, UN60A and UN120, respectively, p<0.05). Second, the performance of UN60 is 
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almost identical to that of UN30A. Third, the three networks performed better with ke = 0.10 cyc/mm 

compared to 0.06 cyc/mm. 

 

Figure 2.3 - Demonstration of data augmentation using remodulation of the displacement-encoding frequency. A) 

Authentic data are shown in left column of (A), acquired with an encoding frequency of 0.06 cycles/mm. Using the 

frequency remodulation method, the authentic data in the left column was phase remodulated to generate the synthetic 

image shown in the middle column, with encoding frequency of 0.10 cycles/mm. Compared to the authentic image, the 

synthetic image are reasonably realistic.  B) Training a U-Net with 30 authentic and 30 augmented datasets (UN30A) 

results in lower RMSE and higher SSIM than training with only 30 authentic datasets (UN30), and provides similar 

RMSE and SSIM as training with 60 authentic datasets (UN60). The error bars represent standard deviation. 

2.4.3 DAS-Net outperforms k-space zero-filling 
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Relative to the ground-truth, for ke=0.10 cyc/mm the DAS-Net achieved RMSE=5.5±0.8 

and SSIM=0.85±0.02, and for ke=0.06 cyc/mm the DAS-Net achieved RMSE=6.0±1.8 and 

SSIM=0.82±0.04. Figure 2.4 summarizes the comparison of the DAS-Net and k-space zero-filling. 

The example images from DAS-Net are more similar to the ground-truth images compared to those 

of k-space zero-filling. DAS-Net showed significantly better performance than zero-filling with 

regard to RMSE (5.8±1.5 vs 13.5±1.5, DAS-Net vs zero-filling, p<0.01) and SSIM (0.83±0.04 vs 

0.66±0.03, DAS-Net vs zero-filling, p<0.01). 

 

Figure 2.4 - The DAS-Net is effective for suppression of the T1-echo. In (A), example magnitude images, phase images, 

k-space data, and k-t planes are shown for input images, ground truth using phase-cycling, DAS-Net, and images after 
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k-space zero-filling. As observed in (A) and quantified for all datasets in (B), the DAS-Net provided lower RMSE and 

higher SSIM values than zero-filling. 

 

Figure 2.5 - Circumferential strain measurements are similar for non-phase-cycled DENSE images using DAS-Net 

for T1-echo suppression (8-heartbeat protocol) and phase-cycled DENSE images (14-heartbeat protocol). A) Example 

magnitude images, phase images, and k-space data are shown for the 8-heartbeat protocol without DAS-Net 

processing (8-HB protocol), the 8-heartbeat protocol with DAS-Net processing (8HB DAS-Net processed), and the 

14-heartbeat protocol with phase-cycling (14-HB protocol). The end-systolic circumferential strain maps of the DAS-

Net processed and the 14-heartbeat protocol data are shown in the bottom row. (B)  Multiphasic segmental 

circumferential strain-time curves of the DAS-Net processed 8-HB protocol and the 14-HB protocol images are 

shown. (C) Bland-Altman analysis shows good agreement between the 8HB DAS-Net processed and 14-HB protocols 

for end-systolic segmental circumferential strain (Ecc) from the six test subjects. 

2.4.4 Strain data from non-phase-cycled images processed by DAS-Net are in close agreement 

with ground-truth 
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Figure 2.5.A illustrates example images acquired with (a) the 8-HB protocol (without 

DAS-Net processing), (b) the 8-HB protocol and application of the DAS-Net, and (c) the 14-HB 

standard protocol. The corresponding multiphasic circumferential strain (Ecc)-time curves and end-

systolic Ecc maps are presented in Figure 2.5.B. Figure 2.5.C shows a Bland-Altman analysis 

comparing the DAS-Net processed 8-HB protocol and the 14-HB protocol for the assessment of 

segmental end-systolic Ecc from six subjects, demonstrating close agreement. The radial strain 

comparisons are included in Figure 2.6. The ICC and CoV were 0.76 and -0.13 for circumferential 

strain, respectively, and 0.72 and 0.28 for radial strain, respectively. 

The phase SNR of the DAS-Net processed and phase-cycled images were 32.32 ± 12.84 

and 33.39 ± 12.89, respectively for images with ke=0.06 cyc/mm, and 35.20 ± 16.03 and 39.54 ± 

17.60, respectively, for ke=0.09 cyc/mm; showing 3% and 10% reductions, respectively, in SNR 

of DAS-net processed images. 

The image quality scores for DAS-Net processed and phase-cycled images were 3.59±0.91 

and 3.44±0.75, respectively, with p=0.22, indicating similar image quality of the two methods. 

2.5 Discussion 

The major finding of this study is that deep learning can effectively perform signal 

separation for cine DENSE, isolating the displacement-encoded stimulated echo and suppressing 

the artifact-generating T1-echo without employing methods based on MRI physics. After training 

the DAS-Net and achieving good performance for test data, we demonstrated its use by acquiring 

accurate cine DENSE strain data without phase-cycling, shortening the scan time from 14 to 8 

heartbeats.   

We compared network training in various domains and achieved the best performance 

using the k-t domain. The temporal dynamics captured in the k-t domain may contribute to better 
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performance compared to the spatial and k-space domains. Alternatively, 3-dimensional50,51 and 

2+1-dimensional51 networks may be used to incorporate the both spatial and time dimensions. 

The quality of T1-echo suppression depends on the k-space location of the T1-echo. The DAS-Net 

showed better performance for higher displacement encoding frequencies, likely due to greater 

spacing between echo centers in k-space, making the signal separation task easier.  

We employed a novel data augmentation strategy using remodulation of the displacement-

encoding frequency. While our authentic training data were acquired with three different 

displacement-encoding frequencies, a design feature of the DAS-Net is that it should be able to 

suppress the T1-echo for any displacement-encoding frequency. We developed the frequency 

remodulation method to provide training data with arbitrary displacement-encoding frequency.  

Our results showed that with the augmented data, lower RMSE and higher SSIM were achieved.  

We compared the DAS-Net to k-space zero-filling, for this signal separation task. Zero-filling 

showed worse performance as assessed by RMSE and SSIM, demonstrating the difficulty of the 

problem for conventional methods and the capabilities of deep learning to solve this challenging 

problem.  

While this study applied deep learning to DENSE, similar methods could be applied to 

HARP imaging40, where k-space filters are used to suppress various signals; however, they degrade 

spatial resolution.  Our results suggest that deep learning could improve HARP by suppressing 

signals and preserving spatial resolution.   

We had anticipated that the 8-HB protocol with DAS-Net processing would lead to a 40% 

decrease in SNR compared to the phase-cycled 14-HB protocol, as phase-cycling provides signal 

averaging of the stimulated echo in addition to suppression of the T1-echo.  However, we measured 
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just a 3-10% SNR reduction.  We attribute this finding to DAS-Net denoising, as previously shown 

for CNNs52.  

Limitations of this study were that DENSE images were acquired using only 3T scanners from a 

single vendor and included only healthy volunteers. DAS-Net may not perform as well using 

different field strengths such as 1.5T because SNR is generally lower at 1.5T, T1 values are 

different, and off-resonance effects are different Also, training data from just 17 subjects were 

employed. Better and more generalized DAS-Net performance would likely be achieved by 

retraining using data from 1.5T and more subjects. In addition, the U-Net trained in the k-t domain 

requires a consistent number of cardiac phases and we used the minimum number of 20 phases 

from all datasets. This limitation can be obviated by incorporating time using CNNs with 3D 

convolutions. 

In conclusion, the DAS-Net provides an effective alternative to phase-cycling for 

suppression of the T1-echo in DENSE MRI. Artifact suppression with DAS-Net enabled the 

elimination of phase-cycling and provides a 42% reduction in the acquisition time. The approach 

may be extended in the future to suppress the T1-echo and conjugate stimulated echo, potentially 

leading to faster 3D DENSE33. 
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Figure 2.6 - (A) Example multiphasic segmental radial strain (Err)-time curves from the DAS-Net processed 8-HB 

protocol and the 14-HB protocol are shown, as are example end-systolic radial strain maps. (B) The Bland-Altman 

analysis for segmental end-systolic Err for the six test subjects is shown 
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Chapter 3 : Compensation for Respiratory-Motion-Induced Signal Loss and 

Phase Corruption in Free-breathing Self-navigated Cine DENSE using Deep 

Learning 

3.1 Abstract 

Purpose: To introduce a mathematical model that describes artifacts due to encoding of 

respiratory motion into the phase of the stimulated echo and to use the model to develop a deep 

convolutional neural network for correcting the artifacts in self-navigated free-breathing cine 

DENSE. 

Methods: The mathematical model describes the phase shifts of stimulated echoes due to 

breathing that corresponds to constant phase error in k-space. Phantom experiments and Bloch-

equation simulations were performed to validate the model. The model was used along with the 

simulation of respiratory motion to generate synthetic images with phase shift artifacts to train a 

U-Net, DENSE-RESP-NET. Self-navigated free-breathing cine DENSE from healthy volunteers 

was used and processed by DENSE-RESP-NET to evaluate its performance using phase signal-

to-noise ratio and strain analysis. 

Results: Phantom experiments and Bloch-equation simulations showed that constant phase 

errors in segmented DENSE leads to signal loss in magnitude images and phase corruption in the 

phase images of the stimulated echo. However, these artifacts can be restored using known 

respiratory motion and the developed model. For self-navigated free-breathing DENSE where 

respiratory motion could not be accurately estimated, the DENSE-RESP-NET significantly 
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corrected the signal loss and phase corruption and provided reliable strain measurement for systolic 

and diastolic parameters. 

Conclusion: DENSE-RESP-NET is an effective method to correct for breathing-

associated constant phase errors. DENSE-RESP-NET in concert with self-navigated free-

breathing DENSE images can provide reliable myocardial strain measurements. 

3.2 Introduction 

Cine displacement encoding with stimulated echoes (DENSE) is an accurate and 

reproducible method of myocardial strain imaging and provides automatic displacement and strain 

analysis1–4. These properties have led to increasing clinical applications. For example, Bilchick et 

al. showed an important role of DENSE for prognostication in heart failure patients undergoing 

cardiac resynchronization therapy5, Mangion et al. showed the prognostic value of DENSE in acute 

myocardial infarction6, and Jing et al showed that DENSE detects systolic dysfunction in 

childhood obesity7.  While these studies used breath-hold or navigator-based DENSE protocols, 

breath-holding is taxing for patients and diaphragm navigator methods are burdensome for 

technologists, prompting the need for self-navigated free-breathing DENSE8. 

For DENSE imaging, three echoes are generated from the application of three RF pulses 

and the corresponding displacement-encoding gradient pulses9, namely (1) the displacement-

encoded stimulated echo, (2) an echo due to T1 relaxation (T1 echo), and (3) the complex conjugate 

of the stimulated echo. While the stimulated echo is the desired signal as its phase is proportional 

to tissue displacement10, the other two echoes are generally considered to cause artifacts and should 

be suppressed9,11. The T1 echo is typically suppressed by combining two phase-cycled 

acquisitions12,13 and the complex conjugate echo is typically shifted outside of the acquisition 

window by using an appropriately large displacement-encoding frequency9. 
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Considering these echoes and suppression methods, in free-breathing DENSE respiratory 

motion can lead to three types of artifacts. The first type is striping artifacts due to imperfect 

suppression of the T1 echo, as different tissue contributes to the T1 echo during the different phase-

cycled acquisitions14. The second type is blurring related to respiratory motion induced position 

shifts of the tissue and its magnetization, which correspond to (approximately) linear phase errors 

in k-space of the stimulated-echo signal. The third artifact type comes from a phase shift of the 

stimulated echo due to breathing (i.e., the breathing induced tissue displacement that is encoded 

into the phase of the stimulated echo).  This image domain phase shift due to breathing corresponds 

to a constant phase error in k-space of the stimulated-echo signal and manifests as signal loss (as 

demonstrated later in this paper). The first and third artifact types are specific to stimulated-echo 

imaging. The second type of artifact is common among most MRI methods and is predicted and 

accounted for using conventional models that describe the effects of breathing in MRI14.  

Prior work developing self-navigated DENSE introduced the match-making method8 

which effectively deals with suppression of the T1 echo in free-breathing phase-cycled DENSE 

and also employs stimulated-echo-based image navigators (ste-iNAVs) to estimate and correct for 

in-plane position shifts due to breathing (i.e., the first and second types of artifacts discussed 

above). However, the third type of artifact (encoding of respiratory motion into the phase of the 

stimulated echo) has yet to be well described and corrected.   

In this paper we (1) present a new model that fully describes the effect of breathing in cine 

DENSE, and (2) develop a method for the correction of respiratory-induced constant phase shifts 

that can be combined with match-making and ste-iNAVs to enable accurate free-breathing self-

navigated cine DENSE. 
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3.3 Theory 

In DENSE, the acquired signal can be described by equation (3.1). 

𝑠(𝑟) =
1

2
𝑀(𝑟) sin(𝛼) 𝑒

−
𝑡
𝑇1𝑒−𝑖2𝜋〈𝑘𝑒,Δ𝑟〉 + 𝑀0(𝑟) sin(𝛼) (1 − 𝑒

−
𝑡
𝑇1) 𝑒−𝑖2𝜋〈𝑘𝑒,𝑟+Δ𝑟〉  (3.1) 

where the first and the second terms describe the stimulated echo and the T1 echo, 

respectively, 𝑀 is the displacement-encoded longitudinal magnetization, 𝑀0 is the longitudinal 

magnetization at thermal equilibrium, T1 is the longitudinal relaxation time, 𝑘𝑒 denotes the 

displacement encoding frequency vector, α is the flip angle of the RF excitation pulse, 〈. , . 〉 denotes 

the dot product, 𝑟 denotes the position of the tissue at the time of signal readout, and 𝛥𝑟 is the 

displacement of the tissue during the time between application of the displacement-encoding 

pulses and the readout.  

Diagrams of a short-axis view of the heart and motion and deformation of a small element 

of myocardium, as well as DENSE sequence diagrams, are illustrated in Figure 3.1.A and Figure 

3.1.B, respectively, and show that, without respiratory motion, the stimulated-echo phase is 

proportional to 𝛥𝑟 = 𝛥𝑟𝐶, where 𝛥𝑟𝐶 represents displacement due to cardiac motion.  For the case 

with both cardiac and respiratory motion (Figure 3.1.C), we define two displacements related to 

respiratory motion.  First, 𝛥𝑟𝑅1 is defined as the in-plane translation of the myocardium due to 

breathing immediately prior to the application of the displacement-encoding pulses. Next, 𝛥𝑟𝑅2 is 

defined as the in-plane displacement due to breathing during the time between application of the 

displacement-encoding pulses and the readout.   With these definitions, equation (3.2) can be 

written as follows by adding the effects of respiratory motion into equation (3.1): 
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�̂�(𝑟) =
1

2
𝑀(𝑟 − 𝛥𝑟𝑅1 − 𝛥𝑟𝑅2) sin(𝛼) 𝑒

−
𝑡
𝑇1𝑒−𝑖2𝜋〈𝑘𝑒,𝛥𝑟𝑅2+𝛥𝑟𝐶〉 + 𝑀0(𝑟 − 𝛥𝑟𝑅1

− 𝛥𝑟𝑅2) sin(𝛼) (1 − 𝑒
−

𝑡
𝑇1) 𝑒−𝑖2𝜋〈𝑘𝑒,𝑟+𝛥𝑟𝑅2+𝛥𝑟𝐶〉 

 (3.2) 

 

Figure 3.1 - Effect of respiratory motion on the DENSE signal. (A) Schematic diagram showing the left and right 

ventricles in a short-axis view. (B) In the absence of respiratory motion, cardiac contraction causes displacement of 

myocardial tissue and this displacement, 𝛥𝑟 = 𝛥𝑟𝐶 , is encoded into the phase of the DENSE stimulated-echo.   During 

a free-breathing acquisition (C), the displacement of myocardial tissue is due to both heart deformation and 

respiratory motion.  There are two types of respiratory motion: (1) that which changes the heart’s position prior to 

displacement encoding, 𝛥𝑟𝑅1 , and that which occurs between displacement encoding and readout, 𝛥𝑟𝑅2. 𝛥𝑟𝑅1 leads 
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to a position shift of the magnetization amplitude, while 𝛥𝑟𝑅2  gets encoded into the phase of the stimulated echo in 

addition to leading to a position shift of the magnetization amplitude. 

While respiratory motion affects both the stimulated echo and the T1 echo, the match-

making method8 has previously been shown to effectively perform phase-cycling suppression of 

the T1 echo during free breathing, such that here we focus our attention on the effects of respiratory 

motion on the displacement-encoded stimulated-echo, �̂�𝑆𝑇𝐸, as shown in equation (3.3). 

�̂�𝑆𝑇𝐸(𝑟) =
1

2
𝑀(𝑟 − 𝛥𝑟𝑅1 − 𝛥𝑟𝑅2) sin(𝛼) 𝑒

−
𝑡
𝑇1𝑒−𝑖2𝜋〈𝑘𝑒,𝛥𝑟𝑅2  +𝛥𝑟𝐶〉   (3.3) 

Equation (3.3) is expressed in the image domain. Assuming that 𝑚(𝑘) represents the 

Fourier transform of �̂�𝑆𝑇𝐸(𝑟) when 𝛥𝑟𝑅1 = 𝛥𝑟𝑅2 = 0, then by invoking Fourier Transform properties, 

equation (3.4) shows that respiratory motion leads to linear and constant phase errors in the k-

space domain given by: 

�̂�(𝑘) = 𝑚(𝑘) 𝑒−𝑖2𝜋𝑘 (𝛥𝑟𝑅1+𝛥𝑟𝑅2)𝑒−𝑖2𝜋〈𝑘𝑒,𝛥𝑟𝑅2〉  (3.4) 

where �̂�(𝑘) is the k-space representations of the stimulated-echo in the presence of 

respiratory motion. The previously developed ste-iNAV method has been shown to be effective 

for correcting the linear phase errors by estimating the in-plane position shifts and applying the 

corresponding phase correction terms in k-space. However, the remaining constant phase errors 

due to the respiratory-induced shifts of the stimulated echo phase can still lead to large degrees of 

signal loss and phase corruption, as shown in Figure 3.2, and need to be corrected. Specifically, as 

shown in Figure 3.2, when the respiratory-induced shifts of the stimulated echo phase are different 

for different k-space segments (e.g., when there are different phase shifts of the different spiral 

interleaves in ECG-gated spiral cine DENSE15), then signal loss and phase corruption artifacts as 

shown in Figure 3.2 occur.  Mathematically, the stimulated echo affected by per-segment 

respiratory-induced constant phase shifts is expressed as equation (3.5): 
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�̂�𝑆𝑇𝐸
𝑐  = ∑ ℱ−1 (𝑈𝑖(𝐸𝑖

𝑐ℱ(𝑠𝑆𝑇𝐸)))
𝑁

𝑖=1
  (3.5) 

where 𝑠𝑆𝑇𝐸 is the displacement-encoded stimulated-echo image in the absence of 

respiratory motion, ℱ is the 2D Fourier transform, Ui is the sampling operator corresponding to 

the acquisition of the ith k-space segment, and 𝐸𝑖
𝑐 is a complex constant representing the unique 

respiratory motion-induced constant phase error for the ith k-space segment.  

 

Figure 3.2 - Respiratory motion encoded into the phase of the stimulated-echo in segmented DENSE leads to signal 

loss and phase corruption artifacts. The respiratory-motion-induced phase shifts were calculated from simulated 

respiratory motion and applied on breath-hold data on a per-segment basis. The simulated phase shifts lead to signal 

loss and phase corruptions in segmented DENSE acquisitions. 

Because the constant phase errors originate from both in-plane and through-plane motion 

in DENSE, where it is common to use through-plane gradients to help suppress the T1 echo9, 2D 

ste-iNAVs are ineffective for estimating these errors. In addition, ste-iNAVs do not provide 
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sufficient temporal resolution to accurately estimate the phase errors through time. For these 

reasons, we investigated a deep learning solution to correct for these artifacts. 

3.4 Methods 

3.4.1 Phantom Experiments  

We performed phantom experiments to validate the DENSE motion model provided by 

equations (3.3), (3.4), and (3.5). The diagram in Figure 3.3.A shows the experimental setup used 

for the phantom experiment. An agar-gel-filled spherical phantom was used and positioned on a 

wagon that was moveable inside the bore of the magnet using a slider-crank device. Since motion 

prior to the application of the displacement-encoding pulses, 𝛥𝑟𝑅1, causes linear phase errors that 

can be corrected using ste-iNAVs, we have validated the model for motion that occurs during the 

time between the application of the initial displacement-encoding pulses and the readout module, 

 𝛥𝑟𝑅2. Imaging was performed on a 3T MRI system (Magnetom Prisma, Siemens Healthineers) 

with an 18-channel phased-array body coil using a spiral cine DENSE sequence15. DENSE images 

were acquired from a coronal cross-section of the phantom with diameter R = 16.4 mm using the 

following imaging parameters: field of view (FOV) = 350 × 350 mm2, 4 spiral interleaves per 

image with 2 interleaves acquired per simulated heartbeat, spiral readout length of 5.6 ms, in-plane 

spatial resolution of 3.4 × 3.4 mm2, TR = 15 ms, TE = 1.26 ms, slice thickness = 8 mm, and variable 

flip angle with final α = 15°. The displacement encoding frequency was 0.10 cycles/mm, the 

through-plane dephasing frequency was 0.06 cycles/mm, and the simple encoding method was 

employed16. A simulated RR interval of 3000 ms was used. The use of longer than typical RR 

interval provided sufficient time to move the phantom to the exact designated positions between 

applications of the displacement-encoding and readout pulses.  
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Figure 3.3 - Phantom experiment and Bloch equation simulations used to validate the DENSE motion model that 

accounts for breathing. Diagrams illustrating A) the phantom experiment used to validate the DENSE motion model 

where the phantom can be moved in the scanner between the displacement-encoding pulses and the readout, and B) 

the modules embedded in a Bloch-equation-based DENSE simulator, including the simulation of cardiac motion and 

the two types of respiratory motion. 

Two sets of data were acquired. The first dataset was for reference, where the phantom was 

kept still during the acquisition. For the second dataset, the phantom was moved using the slider-

crank device by 𝛥𝑟𝑅2 = 35 mm or by 𝛥𝑟𝑅2 = 0 mm during the time between application of the 

displacement-encoding pulses and the corresponding readout, as illustrated in Figure 3.4.A. To 

demonstrate the relationships between the direction of phantom motion and the displacement-

encoding direction, a 3-point displacement encoding16 method was used to acquire three 

displacement measurements for each set of data. In the first and second measurements, the 

phantom motion was parallel to or orthogonal to the displacement encoding direction, respectively. 

The third acquisition, without displacement-encoding gradients, was used to correct for the 
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nonzero background phase. Phase-cycled datasets at matched phantom locations were also 

acquired to suppress the T1 echo. 

For image reconstruction, phase-cycling subtraction was performed to suppress the T1 

echo. Next, to simulate stimulated-echo imaging during breathing, stimulated-echo images were 

reconstructed by selecting two k-space segments from the phantom position with 𝛥𝑟𝑅2 = 0 and 

combining them with two segments from the dataset with 𝛥𝑟𝑅2 = 35 mm. Using the displacement 

encoding frequency, ke = 0.10 cycle/mm, these parameters induce a 𝜋 phase shift (0.1 cycle/mm × 

35 mm = 3.5 cycles) corresponding a constant phase error of 𝑒𝑖𝜋 for the second set of k-space 

segments. The motion-corrupted k-space data were corrected for linear phase errors and constant 

phase errors using equation (3.4). After motion correction was performed in k-space, images were 

reconstructed using the nonuniform fast Fourier transform17. 

3.4.2 Bloch-equation DENSE simulations incorporating cardiac and respiratory motion 

We also performed simulations to computationally investigate the effects of respiratory 

motion on DENSE images, where the effects of respiratory motion could be investigated in 

combination with simulated cardiac deformation (which was not feasible in our non-deforming 

phantom). Figure 3.3.B shows a diagram of the DENSE Bloch equation simulations incorporating 

cardiac and respiratory motion15. The simulator received the geometry of a computational phantom 

and its corresponding temporal deformation function18 as input. For each voxel in the phantom, 

the Bloch equations were solved to compute the magnetization with respect to time, accounting 

for the application of RF and gradient pulses in the displacement-encoding and readout modules, 

as well as for the effects of motion and T1 relaxation. As motion prior to application of the 

displacement-encoding pulses can be corrected using the ste-iNAV method, we only investigated 

the effect of motion during the time between application of the displacement-encoding and the 
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readout pulses. The 2D Fourier transform was applied to the transverse magnetization during the 

readout to compute its k-space representation. The simulated k-space signal was sampled using 

interleaved spiral trajectories computed according to the parameters used to acquire data in the 

phantom experiment. 

 

Figure 3.4 - Experimental and simulation results demonstrating that motion in the displacement-encoding direction 

is encoded into the phase of the stimulated echo and, when the motion is different for different segments, causes signal 

loss and phase corruption. Phase correction using the signal model of equation (3.4) and the known motion can 

correct the artifacts. (A) A diagram showing the acquisition of four k-space segments where 𝛥𝑟𝑅2  = 0 mm for segments 

one and three and 𝛥𝑟𝑅2  = 35 mm for segments two and four. (B) DENSE images corresponding to the conditions 

shown in panel (A) where the object motion is orthogonal and parallel, respectively, to the displacement-encoding 

direction. Different types of artifacts are observed when motion is orthogonal or parallel to the displacement-encoding 

direction, and per-segment linear and constant phase corrections applied in k-space can recover artifact-free 

stimulated-echo images from the motion-corrupted versions. 

We used the simulations in two different scenarios. First, we performed simulations of the 

previously described phantom experiments using a computational non-deforming phantom. The 

geometry of the phantom was obtained from the data collected during phantom experiment. The 

T1 of the phantom was measured as 1.1 seconds. Other simulation parameters included: FOV = 
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350 × 350 mm2, spiral readout length = 5.6 ms, in-plane spatial resolution = 3.4 × 3.4 mm2, and 

variable flip angle with final α = 15°. Simple 3-point displacement encoding16 and four spiral 

interleaves per image were used. The actual background phase of the experimental phantom, 

reflecting the true B0 inhomogeneity, was also used. 

Second, we performed simulations that included synthetic cardiac and respiratory motion. 

For this purpose, we used a computational phantom consisting of two components as shown in 

Figure 3.5.A: a deforming annulus19 representing a short-axis image of the heart, and a static 

component representing other tissue. The concentric circles of the annulus represent the end-

diastolic epicardial and endocardial borders. Respiratory motion was simulated by rigid translation 

of the tissue using a sinusoidal function defined as. 

𝑟𝑘
𝑅(𝑛) = 𝑎𝑘 sin (

2𝜋

𝑝𝑘

𝑇𝑅𝑛 + 𝜓𝑘)  (3.6) 

where 𝑎𝑘, 𝑝𝑘, and 𝜓𝑘 denote the magnitude, period, and initial phase of the sine wave for 

the kth heartbeat at the readout time corresponding to sampling of the nth cardiac phase, and TR 

denotes the repetition time of the readout module. The rigid translations representing respiratory 

motion were applied to the phantom between applications of displacement encoding pulses to 

simulate 𝛥𝑟𝑅1, and between application of the displacement encoding and readout modules to 

simulate 𝛥𝑟𝑅2. We used the following parameters: in-plane translation 𝑎𝑘 = [3, 3]T mm, 𝑝𝑘 = 14 

times/minutes, and 𝜓𝑘 was randomly selected from a uniform distribution 𝑢(−𝜋,+𝜋). In addition, 

simulated reference data were generated using the null respiratory function. 

The T1 of the deforming annulus and the static component were set to 1.1 and 0.7 seconds, 

respectively, to simulate myocardium and other tissue at 3T. The parameters of the simulation 

were selected to mimic the following imaging parameters: FOV = 200 × 200 mm2, spiral readout 

length = 5.6 ms, in-plane spatial resolution = 3.4 × 3.4 mm2, and variable flip angle with final α = 
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15°. Balanced 3-point displacement encoding16 was used for 2D in-plane displacement 

measurements, and four spiral interleaves per image with two interleaves acquired per cardiac 

cycle were used.  The simulated cardiac cycle had a duration of 0.8 seconds, and these parameters 

provided a temporal resolution of 30 ms per cardiac phase. Phase-cycled acquisitions were also 

simulated, and matchmaking suppression of the T1 echo was simulated by using matched 

respiratory positions for the phase-cycling pairs. The displacement-encoding frequency was set to 

0.06 cycles/mm.  

The simulated motion-corrupted data were corrected for linear and constant phase errors 

(following equations (3.4) and (3.5)) using the known motion and the resulting k-space data were 

reconstructed using the nonuniform fast Fourier transform17. The motion-corrupted and motion-

compensated images were compared to reference images without motion. 

 

Figure 3.5 - Bloch equation simulations using a deforming heart motion phantom demonstrate respiratory-motion 

induced DENSE artifacts and their correction using the DENSE motion model of Equations (3.3), (3.4), and (3.5).  

(A) The computational deforming phantom consists of a deforming annulus where the concentric circles define the 
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epicardial and endocardial borders in the heart short-axis view and a static component. (B-F) The motion corrupted 

DENSE images were simulated using the Bloch equations with typical DENSE sequence parameters and the 

incorporation of motion.  Motion correction based on the known motion and the linear (corresponding to 𝛥𝑟𝑅1 and 

𝛥𝑟𝑅2) and constant corrections (corresponding to 𝛥𝑟𝑅2) of Equations (3.4) and (3.5) recover images that are nearly 

identical to the reference images and preserve the phase-based measurement of heart contraction. 

3.4.3 Acquisition of training data for the convolutional neural network 

To provide training data to develop a deep learning model, we acquired breath-hold 

DENSE images from twenty-three healthy volunteers (age = 28.7 ± 4.7, 52% female) using a 3T 

MRI system. All CMR was performed in accordance with a protocol approved by the Institutional 

Review Board for Human Subjects Research at our institution and informed consent was obtained 

from all subjects prior to imaging. A spiral cine DENSE sequence15 with prospective cardiac gating 

was used for breath-hold scans with the following parameters: FOV = 200 × 200 mm2 (with outer 

volume suppression), spiral readout length = 5.6 ms, in-plane spatial resolution = 3.4 × 3.4 mm2, 

TR = 15 ms, TE = 1.26 ms, slice thickness = 8 mm, and variable flip angle with final α = 15°. Four 

spiral interleaves per image with two interleaves acquired per heartbeat provided a temporal 

resolution of 30 ms. Phase-cycling was used to suppress the T1-echo. The displacement encoding 

frequency and the through-plane dephasing frequency were set to 0.06 cycles/mm and 0.08 

cycles/mm, respectively. Short-axis images at basal, mid-ventricular, and apical levels were 

acquired for each subject. For each slice, balanced three-point displacement encoding was used to 

measure 2D in-plane displacements and perform correction for background phase. The spiral 

multicoil cine DENSE data were reconstructed using the nonuniform fast Fourier transform17 and 

adaptive coil combination20.  

3.4.4 Architecture of the deep learning model 
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We used an instance of a U-Net21  with recurrent convolutional modules as the deep 

learning model. The convolutional modules in the generic U-Net were replaced with convolutional 

long short-term memory (LSTM)22,23 cells to exploit the time correlations of the cine DENSE data. 

The output of each LSTM was normalized using instance normalization24 and activated using leaky 

rectified linear units. The network receives a time-series of images and processes one frame at a 

time while incorporating the accumulated features from the previous frame. Specifically, the 

hidden and the cell states of each LSTM are computed by processing the current input frame which 

is used as input for the processing of the next frame. In addition, the skip connections pass the 

current hidden states of the convolutional LSTM cells. 

3.4.5 Training of the constant-phase correction deep learning model (DENSE-RESP-NET) 

We postulated that the artifacts due to the respiratory-motion-induced constant phase error 

could be corrected using a deep learning model. Referring to Figure 3.6, to train the model, phase 

error-corrupted DENSE images, �̂�𝑆𝑇𝐸
𝑐 , were generated using equation (3.5) and the following steps: 

(a) respiratory motions were simulated using the sine wave defined in equation (3.6), (b) the 

corresponding phase errors were computed using the simulated motion , 𝐸𝑖
𝑐 = 𝑒𝑖2𝜋𝑘𝑒𝛥𝑟𝑖

𝑅2  where i 

denotes the ith k-space segment, and (c) the phase error terms were applied to the breath-hold 

DENSE data according to equation (3.5). The respiratory-induced translations, 𝛥𝑟𝑖
𝑅2, were 

calculated using 𝛥𝑟𝑖
𝑅2 = 𝑟𝑖

𝑅(𝑛) − 𝑟𝑖
𝑅(1), where 𝑟𝑖

𝑅(𝑛) denotes the position of the heart when the 

nth frame is acquired and 𝑟𝑖
𝑅(1) denotes the position of the heart at the beginning of the 

corresponding heartbeat. 
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Figure 3.6 - Diagram illustrating the generation of phase-shift-corrupted DENSE images for training a convolutional 

neural network, DENSE-RESP-NET, to correct the signal loss and phase corruption artifacts in self-navigated free-

breathing cine DENSE. Respiratory motion was simulated using sine waves with magnitude and frequency similar to 

physiological values. The constant phase errors were calculated and applied on per-segment breath-hold DENSE 

images. The motion-corrupted images were generated by summing the manipulated per-segment images according to 

equation (3.6). The motion-corrupted and the corresponding breath-hold images were used to train an instance of U-

Net with recurrent connections and long-short term memory cells. 

The resulting motion-corrupted and the corresponding uncorrupted breath-hold images 

were used to train the model serving as input and ground-truth, respectively. A diagram of the 

training is shown in Figure 3.6. The breath-hold data from twenty-three healthy volunteers with 

three slices per subject and three displacement measurements (x-, y-, and background) per slice 

provided 207 multiphase DENSE slices (time-series) for training. To accommodate for unseen 

geometries, spatial translations and rotations in addition to image flipping were used to augment 

the training set which provided 828 time-series after data augmentation. For each time-series, the 

amplitude and the period of the sine wave were randomly selected from uniform distributions 

𝑢(0 , 25) mm and 𝑢(10 , 20) times/minute, respectively. Thirty and six combinations of sine wave 
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amplitude and frequency, respectively, were simulated per time-series resulting in 24840 and 4968 

pairs of time-series for training and validating the model, respectively. The real and imaginary 

parts of images were separated and formatted as two-channel data. Training was performed on a 

Nvidia Tesla V100 GPU core for 72 hours. The trained model is referred to as DENSE-RESP-

NET.  

3.4.6 Testing of the methods using prospectively acquired free-breathing DENSE 

To test the trained model, we acquired free-breathing cine DENSE from nine healthy 

volunteers (age = 25.9 ± 3.7, 44% female). These healthy subjects were different than those 

recruited for acquisition of the training data. Free-breathing data were acquired using a modified 

spiral DENSE sequence8 with uniform rotation of the spiral interleaves through time to enable 

construction of the ste-iNAVs8,25. To facilitate T1-echo suppression using match-making, the 

acquisition of each interleaf was repeated 4 times using an average loop, resulting in a 50-heartbeat 

imaging protocol while keeping all other parameters the same as those used for breath-hold data. 

Short-axis free-breathing images at basal, mid-ventricular, and apical levels were acquired per 

subject. Breath-hold images at matched slice positions were acquired to serve as reference for 

comparisons. For each slice, 18-30 frames were acquired depending on the subject’s heart rate. 

For each time frame, phase-cycled spiral interleaves at matched respiratory position were 

identified using the match-making algorithm8 and subtracted to suppress the T1-echo. To correct 

for inter-segment in-plane position shifts and corresponding linear phase errors, ste-iNAVs were 

generated using consecutively acquired interleaves. In the current design, each ste-iNAV consisted 

of 4 consecutively acquired interleaves with uniform rotation of spiral interleaves through time. 

For each heartbeat, multiple ste-iNAVs were reconstructed. The inter-heartbeat in-plane 

translations were automatically estimated using 2D cross-correlation26 and linear phase corrections 
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were applied using the estimated translations on a per-segment basis in k-space. The resulting 

spiral multicoil cine DENSE data were reconstructed as described previously. These images are 

referred to as self-navigated free-breathing images.  

3.4.7 Evaluation of the deep learning model 

The trained motion compensation model, DENSE-RESP-NET, was evaluated on volunteer 

data by comparing self-navigated free-breathing images processed by DENSE-RESP-NET to 

unprocessed self-navigated free-breathing images, free-breathing data with multiple averages 

without any type of self-navigation or phase correction, and to breath-hold data which served as 

the reference standard. 

Because DENSE measures tissue displacement using the signal phase, we used phase SNR 

as one metric of image quality. Since the phase error due to breathing accumulates over time and 

the diastolic frames are more affected by the corresponding artifacts, the phase SNR was computed 

on three mid-diastolic frames. The calculation of phase SNR is described as follows4,11: 

𝑝ℎ𝑎𝑠𝑒 𝑆𝑁𝑅 =  ‖
𝑚𝑒𝑎𝑛(phase of mid − diastolic ROI)

𝑠𝑡𝑑𝑒𝑣(phase of end − diastolic ROI)
‖  (3.7) 

where the standard deviation of the phase of the end-diastolic myocardial ROI provides a 

measure of the standard deviation of phase at a cardiac frame where the mean phase is essentially 

zero. The measured phase SNR values were used to compare the images using one-way analysis 

of variance and a post hoc Tukey’s test. 

In addition, the DENSE-RESP-NET processed, self-navigated free-breathing, and breath-

hold images were analyzed for strain using established methods27–29. The averaged free-breathing 

images did not undergo strain analysis because the image quality was so poor that the semi-

automated myocardial segmentation procedure generally failed for these datasets. Since end-
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systolic circumferential strain is the most commonly reported metric for cardiac strain MRI, we 

performed Bland-Altman analysis for this parameter. In addition, we analyzed the early diastolic 

circumferential strain rate since the constant phase error has a greater impact on diastolic frames. 

3.5 Results 

3.5.1 Validation of the DENSE signal model that accounts for the effects of respiratory motion 

using a moving, non-deformable phantom 

Motion-corrupted DENSE magnitude and phase images from experimental and simulation 

studies are shown in Figure 3.4.B-G for the cases where the moving, non-deforming phantom 

motion was parallel (panels E-G) to or orthogonal (panels B and C) to the displacement-encoding 

direction. When motion is orthogonal to the displacement-encoding direction, only linear phase 

errors and blurring/ghosting artifacts occur, and the artifacts are eliminated by correcting the per-

segment linear phase errors. When the motion is parallel to the displacement-encoding direction, 

the motion is encoded into the phase of the stimulated-echo and causes constant phase errors in k-

space in addition to the linear phase errors. Motion-corrupted images corrected for just the known 

linear phase errors are shown in Figure 3.4.F, and the remaining artifacts in the images are due to 

the constant phase errors. The images corrected for the remaining constant phase errors, using 

equation (3.4), are shown in Figure 3.4.G. 

3.5.2 Simulated respiratory motion-induced artifacts in DENSE images of a deforming digital 

phantom and their correction using the proposed model 

Figure 3.5.B-F shows DENSE magnitude and phase images from the deforming 

computational digital phantom generated using Bloch equation simulations. Simulated motion-

corrupted images are shown at the initial, end-systolic, and mid-diastolic phases of the cardiac 
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cycle. Using Eqs. 4-5, linear phase corrections corresponding to 𝛥𝑟𝑅1 and 𝛥𝑟𝑅2 and constant phase 

corrections were applied to the simulated motion-corrupted data and the resulting images are 

shown in panels C, D, and E of the figure. The reference images are shown in panel F. The 

simulated respiratory motion led to signal loss in the magnitude images and phase corruption in 

the phase images. However, using the known respiratory motion and the per-segment linear and 

constant phase corrections according to equations (3.4) and (3.5), the displacement-encoded 

stimulated-echo images are recovered from their respiratory motion-corrupted versions, and the 

effects of cardiac motion on the image phase are preserved. 

3.5.3 The deep learning model can correct the respiratory motion-induced artifacts in self-

navigated free-breathing DENSE  

Example magnitude and phase images from self-navigated free-breathing DENSE 

processed with DENSE-RESP-NET are shown in Figure 3.7 for an end-systolic (I, J) and a 

diastolic frame (K, L), and for comparison the same images are shown for averaged free-breathing 

(A-D), self-navigated free-breathing without DENSE-RESP-NET (E-H), and breath-hold DENSE 

(M-P). Signal loss in the magnitude images (G) and phase corruption in the phase images (H) of 

the self-navigated free-breathing data due to respiratory motion are readily apparent in the diastolic 

images where breathing has a larger effect. The deep learning model restored the signal loss and 

corrected the phase values in the DENSE-RESP-NET processed magnitude (K) and phase (L) 

images, respectively. 

The bar plot in Figure 3.8 summarizes the comparisons of the phase SNR. The phase SNR 

assessed for DENSE-RESP-NET processed images was significantly higher compared to the self-

navigated and averaged free-breathing images and was comparable to those of breath-hold images. 
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In addition, the self-navigated free-breathing images had significantly higher phase SNR than the 

averaged free-breathing data. 

 

Figure 3.7 - DENSE-RESP-NET compensates for the signal loss and phase corruption in self-navigated free-

breathing cine DENSE. Example magnitude and phase images of averaged free-breathing, self-navigated free-

breathing, DENSE-RESP-NET processed and ground-truth breath-hold cine DENSE images are shown for an end-

systolic frame and a diastolic frame. DENSE-RESP-NET effectively corrects the signal loss and phase corruption, 

and the results are more pronounced in the diastolic frame where 𝛥𝑟𝑅2 is greater. 

Figure 3.9 shows segmental circumferential strain-time curves and global circumferential 

strain rate-time curves for the breath-hold, the DENSE-RESP-NET processed, the self-navigated 

free-breathing, and the averaged free-breathing images computed from the example images shown 
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in Figure 3.7. Overall, the DENSE-RESP-NET processed curves are in close agreement with 

breath-hold curves for both segmental strain and the global strain rate. The segmental strain and 

the global strain rate curves from the self-navigated free-breathing images are in close agreement 

with those of the reference and the DENSE-RESP-NET processed images early in the cardiac 

cycle. However, the agreement worsens in diastole. The segmental strain and the global strain rate 

curves from the averaged free-breathing images were unreliable compared to those of reference 

images. 

 

Figure 3.8 - Diastolic phase SNR demonstrates improved image quality in DENSE-RESP-NET corrected self-

navigated images compare to uncorrected self-navigated and averaged free-breathing images. Breath-hold DENSE 

images represent the reference standard. Bar plots and error bars show the mean and standard deviation of the phase 

SNR calculated according to equation (3.7). The phase SNR values were 8.75±2.67, 9.07±3.06, 6.38±2.77, and 

1.29±0.52 (p-value < 0.001) for the breath-hold, the DENSE-RESP-NET self-navigated, the self-navigated free-

breathing (without DENSE-RESP-NET), and the averaged free-breathing images respectively. 

Figure 3.10 summarizes the Bland-Altman analysis for the segmental end-systolic 

circumferential strain and the global early diastolic circumferential strain rate for the twenty-seven 

DENSE slices acquired from the nine healthy volunteers. The end-systolic segmental strain shows 
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modestly better agreement for DENSE-RESP-NET compared to unprocessed self-navigated free-

breathing images with respect to the breath-hold images.  For early diastolic strain rate, agreement 

and accuracy are substantially improved in favor of the DENSE-RESP-NET processed images 

compared to the self-navigated free-breathing images. 

 

Figure 3.9 - Strain measurement in a healthy subject shows good agreement between the DENSE-RESP-NET 

corrected data compared to the breath-hold data, whereas the self-navigated and averaged free-breathing data are 
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unreliable in diastole. A) Segmental circumferential strain (Ecc)-time curves, and B) global circumferential strain 

rate-time curves of the example in Figure 3.7 are shown for averaged free-breathing, self-navigated free-breathing, 

DENSE-RESP-NET processed and ground-truth breath-hold images. 

 

Figure 3.10 - Bland-Altman analysis of segmental circumferential strain and global circumferential strain rate of the 

DENSE-RESP-NET corrected data shows improved accuracy and a better agreement with the breath-hold (BH) 

DENSE data compared to uncorrected self-navigated free-breathing data (self-NAV FB). 

3.6 Discussion 

The main contributions of this study are that (a) a new model was introduced and validated 

that describes the effects of breathing on the magnitude and phase of the DENSE signal, and (b) 

the new motion model was used to train a deep convolutional neural network, DENSE-RESP-

NET, to correct the constant phase artifacts in free-breathing cine DENSE attributed to the 



 

 

 

105 

encoding of respiratory motion into the phase of the stimulated echo. When used in concert with 

the match-making method for suppression of the T1 echo and ste-iNAVs for correction of linear 

phase errors in k-space related to object motion, DENSE-RESP-NET-corrected self-navigated 

free-breathing DENSE images show good agreement with breath-hold DENSE images and the 

corresponding strain data show good agreement with breath-hold strain data for the evaluation of 

both systolic and diastolic parameters.   

Our phantom experiments and Bloch equation simulations using non-deforming and 

deforming computational phantoms were used to validate the DENSE motion model of equations 

(3.3), (3.4), and (3.5).  For the phantom experiments, DENSE images were formed by combining 

spiral interleaves acquired when the phantom was in different positions at the time of data readout.  

For the simulations, the Bloch equations were solved to generate the raw data.  In both cases, the 

object motion was known, and our results in Figure 3.4 and Figure 3.5 showed that correcting the 

phase of the k-space data according to equations (3.3), (3.4), and (3.5) successfully removed the 

signal loss and phase corruption artifacts from the images.  Together, these results demonstrate the 

validity of equations (3.3), (3.4), and (3.5) for describing the effects of motion on segmented 

stimulated-echo images.  

The present study used the new DENSE motion model, represented by equations (3.3), 

(3.4), and (3.5), in combination with breath-hold DENSE k-space data to generate synthetic data 

that was used to train DENSE-RESP-NET. An alternative approach could be to use breath-hold 

DENSE images and free-breathing DENSE images acquired at matched locations; however, that 

approach is very challenging and unlikely to be successful because matching locations between 

breath-hold and free-breathing acquisitions is imperfect. Unsupervised and semi-supervised 

learning approaches could be used when the training pairs are at different locations or when only 
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a few pairs at matched locations are available, respectively. However, hundreds or thousands of 

datasets would be needed to represent sufficient variability in respiration.  To our knowledge, other 

than using synthetic data as presented in this study, there is no other time- and cost-efficient way 

to obtain training data for this task.  Therefore, for this task it was essential to understand the 

physics underlying the artifacts, as a description of the underlying physics was needed to generate 

training data and facilitate a deep learning solution. 

The recurrent neural connections in DENSE-RESP-NET using the LSTM cells provided 

two main advantages. First, it exploits the time correlations of the cine DENSE data by 

accumulating the spatial features through time. This is important for correction of the artifacts 

caused by constant phase error as they temporally grow in magnitude. Second, DENSE-RESP-

NET is able to process the cine DENSE images independent of the number of acquired cardiac 

frames, which facilitates its application in in vivo imaging where heart rates vary. 

A limitation of the current approach was that the in vivo images used for training and 

evaluation of the model did not include data from heart disease patients. Although the developed 

deep learning model was effective, in the future a more generalized model may require data from 

heart disease patients. Another limitation was that long-axis images were not included in the 

training and testing data. Finally, the in vivo data used in this study were acquired with a specific 

set of acquisition parameters. While we showed good performance of free-breathing cine DENSE 

with match-making, ste-iNAVs and DENSE-RESP-NET using a specific protocol, a generalized 

deployment of the deep learning model on self-navigated free-breathing images with different 

acquisition parameters and various types of heart disease may require re-training of the model.  

Future studies may evaluate the current model in heart disease patients and evaluate its 

generalizability.   
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3.7 Conclusion 

A new model was introduced to describe the effects of breathing on the magnitude and 

phase of the DENSE signal, and it was used to train DENSE-RESP-NET to correct for breathing-

associated constant phase errors. When used in combination with the match-making method for 

suppression of the T1 echo and ste-iNAVs for correction of linear phase errors, DENSE-RESP-

NET-corrected self-navigated free-breathing DENSE images and myocardial strain data show 

good agreement with breath-hold DENSE. 
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Chapter 4 : Compensation for respiratory-induced stimulated-echo artifacts 

in free-breathing adaptive-matchmaker DENSE applied in healthy subjects 

and heart failure patients 

4.1 Abstract 

Motion compensated DENSE imaging requires methods to correct all three types of 

artifacts in free-breathing DENSE MRI. The adaptive match-making method and in-plane motion 

estimation and correction using the ste-iNAVs were previously developed and shown to be 

effective to suppress the first two types of artifacts. The developed deep learning model (DENSE-

RESP-NET) for compensation of signal loss and phase corruption due to respiratory-motion-

induced phase errors has shown to be an effective on free-breathing self-navigated DENSE. While 

DENSE-RESP-NET was evaluated on free-breathing images acquired with multiple acquisitions, 

the previously developed adaptive free-breathing method provides a more efficient way of 

suppressing the T1-echo. The DENSE-RESP-NET method in conjunction with the adaptive free-

breathing and the ste-iNAV methods will potentially compensate for all types of respiratory motion 

artifacts in free-breathing DENSE MRI. In this study, DENSE-RESP-NET is evaluated on 

adaptive free-breathing cine DENSE image from healthy human subjects and heart failure patients. 

4.2 Introduction 

Displacement-encoding with stimulated-echo (DENSE) is an accurate and reproducible 

method of myocardial strain imaging and with automatic post-processing1–3.  
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Cine DENSE data is typically collected using breath-hold protocols which leads to patient 

discomfort and limitations with pediatric subjects and those under anesthesia4. Conventional 

methods such as diaphragm navigator-gated acquisitions enables free-breathing cine DENSE 

imaging by continuously collecting cine DENSE data while allowing the subject to breath during 

acquisitions5. A navigator-echo is acquired at the end of each cardiac cycle to track the position of 

the diaphragm. After data acquisition, only data falls into the end-expiration phase of the 

respiratory cycle is used for image reconstruction. The limitations of diaphragm navigator-gated 

method are low acquisition efficiency, complexities with the navigator setup, requirements for 

additional scout imaging, and variably in image quality4,6.  

Motion compensation in free-breathing DENSE requires effective suppression of the three 

types of artifacts that arise in free-breathing DENSE. In Chapter 3, we evaluated the offline 

reconstruction match-making algorithm for suppression of the T1-echo in self-navigated free-

breathing acquisitions. To increase the likelihood of finding phase-cycling pairs at the matched 

respiratory positions, acquisition of each k-space segment was repeated multiple time using an 

averaging loop. DENSE-RESP-NET has shown to be effective for compensation of signal loss and 

phase corruption using this approach. 

Repeated acquisition of each k-space segment reduces the imaging efficiency and may not 

guarantee effective suppression of the T1-echo as the number of required repetitions may vary from 

subject to subject. Previously, an adaptive match-making acquisition method was developed that 

addresses these limitations by prospectively identifying the matched phase-cycling pairs using 

online feedback during free-breathing acquisitions7. I hypothesized that the adaptive free-breathing 

acquisitions used in concert with self-navigation and the developed DENSE-RESP-NET can 
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ensure suppression of the free-breathing artifacts in DENSE in healthy human subjects and heart 

disease patients.  

The purpose of this study is to evaluate the DENSE-RESP-NET in self-navigated adaptive 

free-breathing DENSE imaging applied on healthy human subjects and heart-failure patients. 

4.3 Methods 

4.3.1 Prospective in vivo cine DENSE imaging 

To evaluate the DENSE-RESP-NET on adaptive free-breathing images, cine DENSE 

acquisitions were performed on nine healthy volunteers (age = 25.9 ± 3.7, 44% female) and four 

heart-failure patients (age = 60.5 ± 10.8, 100% male, 50% ischemic and 50% non-ischemic heart 

disease) using 3T MRI systems (Siemens Healthineers, Erlangen, Germany). All CMR was 

performed in accordance with a protocol approved by the Institutional Review Board for Human 

Subjects Research at our institution and informed consent was obtained from all subjects prior to 

imaging. The adaptive free-breathing method previously implemented on a spiral cine DENSE 

sequence5 with prospective cardiac gating was used with the following parameters: FOV = 200 × 

200 mm2 (with outer volume suppression), spiral readout length = 5.6 ms, in-plane spatial 

resolution = 3.4 × 3.4 mm2, TR = 15 ms, TE = 1.26 ms, slice thickness = 8 mm, and variable flip 

angle with final α = 15°. Four spiral interleaves per image with two interleaves acquired per 

heartbeat provided a temporal resolution of 30 ms. The displacement encoding frequency and the 

through-plane dephasing frequency8 were set to 0.06 cycles/mm and 0.08 cycles/mm, respectively. 

18-30 cardiac frames were acquired depending on the subject’s heart rate. Short-axis images at 

basal, mid-ventricular, and apical levels were acquired for each subject. For each slice, balanced 
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three-point displacement encoding was used to measure 2D in-plane displacements and perform 

correction for nonzero background phase9.  

In addition, the diaphragm navigator-gated sequence5 was used to acquire free-breathing 

images to evaluate how the proposed method performs in comparison to the conventional free-

breathing method. Short-axis cine DENSE were acquired at the same slice locations using the same 

imaging parameters. Breath-hold images were also acquired to serve as reference for comparisons.  

4.3.2 Evaluation of deep learning model on adaptive free-breathing cine DENSE 

The performance of the DENSE-RESP-NET on adaptive free-breathing images was 

evaluated on in vivo data using the phase SNR and strain analysis. 

The adaptive free-breathing images were reconstructed on an offline MATLAB 

workstation (MathWorks inc.). The adaptive match-making algorithm was used to subtract the T1-

echo using the matched phase-cycled data4. Multiple ste-iNAVs (10-14 depending on the heartrate 

of the subject) were reconstructed and used to estimate the inter-segment position shifts and to 

correct the corresponding linear phase errors in k-space. The linear-phase-corrected data were 

adaptively combined and reconstructed using non-uniform fast Fourier transform10,11. The 

resulting cine DENSE images, referred to as self-navigated adaptive free-breathing images, were 

processed by the DENSE-RESP-NET for correction of the signal loss and phase corruption due to 

constant phase errors. 

The phase SNR was measured on diastolic frames of self-navigated adaptive free-breathing 

images processed using DENSE-RESP-NET, self-navigated adaptive free-breathing images 

(without DENSE-RESP-NET processing), and diaphragm navigator-gated images according to 

equation (4.1). The phase SNR value were compared to that of reference breath-hold images using 

one-way analysis of variance (ANOVA) and a post-hoc Tuckey’s test. 



 

 

 

115 

𝑝ℎ𝑎𝑠𝑒 𝑆𝑁𝑅 =  ‖
𝑚𝑒𝑎𝑛(phase of mid − diastolic ROI)

𝑠𝑡𝑑𝑒𝑣(phase of end − diastolic ROI)
‖  (4.1) 

In addition to the image-based quality measures, strain analysis was performed to evaluate 

the proposed method. The DENSE-RESP-NET processed, self-navigated adaptive free-breathing, 

diaphragm navigator-gated, and breath-hold images were analyzed for strain using the established 

methods12,13. Segmental circumferential strain from entire cardiac cycle was used in Pearson’s 

correlation analysis and Bland-Altman analysis to measure the agreements between different 

methods. Analyses were performed separately on healthy and heart-failure cohorts. Since end-

systolic circumferential strain is the most commonly reported metric for cardiac strain MRI, we 

performed Bland-Altman analysis for this parameter. In addition, we used Bland-Altman analysis 

of early diastolic circumferential strain rate due to importance of this parameter in prognostication 

of cardiac diseases14 and since diastolic DENSE images are more affected by the constant phase 

errors. The Pearson’s correlation analysis was not performed on strain values corresponding to a 

single time point due to challenges with the range restriction in correlation analysis15. 

4.4 Results 

Example magnitude and phase images from DENSE-RESP-NET processed self-navigated 

adaptive free-breathing method in addition to self-navigated adaptive free-breathing images 

(without DENSE-RESP-NET processing), diaphragm navigator-gated, and the reference breath-

hold methods are shown in Figure 4.1 for a healthy subject in panel A and for a heart-failure patient 

in panel B.  
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Figure 4.1 - Example magnitude and phase images from self-navigated adaptive free-breathing (without DENSE-

RESP-NET processing), DENSE-RESP-NET processed, diaphragm navigator-gating, reference breath-hold images 

are shown from a healthy human subject (A) and heart-failure patient (B). While end-systolic images show small 

improvement in DENSE-RESP-NET processed images compared to self-navigated adaptive data, improvement are 

significant for the diastolic images. 

 For both healthy subject and the heart-failure patient, the DENSE-RESP-NET processed 

images show improved image quality compared to self-navigated adaptive free-breathing images 

without DENSE-RESP-NET processing. The self-navigated adaptive free-breathing images 

(without DENSE-RESP-NET processing) show signal loss and phase corruption in diastolic 

magnitude and phase images. DENSE-RESP-NET significantly restored the signal loss and 

corrected the phase images. The DENSE-RESP-NET produced similar magnitude and phase 

images to the reference breath-hold images and both methods show significantly better image 

quality that those of diaphragm navigator-gated method. 

  The bar plots in Figure 4.2 summarizes the comparisons of the methods using diastolic 

phase SNR values where separate comparisons were performed healthy (panel A) and patient 
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(panel B) cohorts. The diastolic phase SNR computed on DENSE-RESP-NET processed images 

were significantly higher than those from self-navigated adaptive free-breathing images and 

comparable to those of reference breath-hold data. These results also suggest that both the 

reference breath-hold and DENSE-RESP-NET processed images have significantly higher 

diastolic phase SNR compared to diaphragm navigator-gated images. 

 

Figure 4.2 – Bar plots of diastolic phase SNR measured according to Equation (4.1) on patients and healthy-subject 

images. The DENSE-RESP-NET shows significantly better phase SNR compared to the self-navigated adaptive and 

diaphragm navigator-gated images and comparable values compared to reference breath-hold images. The error bars 

indicate the standard deviations. 

Figure 4.3 and Figure 4.4 shows the Bland-Altman and correlation analysis for 

circumferential strain computed from DENSE-RESP-NET processed, self-navigated adaptive 

free-breathing (without DENSE-RESP-NET processing), and diaphragm navigator-gated images 

compared to the reference breath-hold data for healthy subjects and heart-failure patients 

respectively. 
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Figure 4.3 – Pearson’s correlation and Bland-Altman analysis show better agreements for segmental circumferential 

strain (Ecc) measured on DENSE-RESP-NET processed images compared to the self-navigated adaptive and 

diaphragm navigator-gated data in healthy subjects.  

In both test groups, strain from DESEP-RESP-NET processed images was more correlated 

with the reference data (y = 0.94x-0.01: Pearson's R = 0.96 for healthy subjects and y = 0.81x+0.0: 

Pearson’s R = 0.85 for patients) compared to that of self-navigated adaptive free-breathing (y = 

0.89x-0.01: Pearson’s R = 0.93 for healthy subjects and y = 0.73x+0.0: Pearson’s R = 0.76 for 

patients) and diaphragm navigator-gated methods (y = 0.82+0.0: Pearson’s R = 0.76 for healthy 

subjects and y = 0.80x+0.0: Pearson’s R = 0.71 for patients). The Bland-Altman analysis also 

shows improved agreement when DENSE-RESP-NET processed strain is compared to the 

reference data than the other two methods. 
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Figure 4.4 – Segmental circumferential strain (Ecc) measurements on heart-failure patients show better agreements 

between DENSE-RESP-NET processed images and reference data compared to those of self-navigated adaptive and 

diaphragm navigator-gated data using both Pearson’s correlation and Bland-Altman analysis. 

Figure 4.5 is the Bland-Altman analysis of end-systolic segmental circumferential strain 

(panel A) and early diastolic global circumferential strain rate (panel B) from healthy subjects. 

Figure 4.6 shows the Bland-Altman analysis of the early diastolic global circumferential strain rate 

from heart-failure patients.  

Overall, the strain from DENSE-RESP-NET processed and self-navigated adaptive free-

breathing data show better agreement with the reference data compared to strain from diaphragm 

navigator-gated method. The early diastolic circumferential strain rate from DENSE-RESP-NET 

for both healthy and heart-failure cohorts shows significantly improved accuracy and agreement 

compared to the self-navigated adaptive and diaphragm navigator-gated free-breathing data. 
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Figure 4.5 – DENSE-RESP-NET significantly improved diastolic measurements. Global early diastolic 

circumferential strain rate from DENSE-RESP-NET processed data show significantly better agreement compared to 

those of self-navigated adaptive and diaphragm navigator-gated images on healthy subjects. Self-navigated adaptive 

images (with or without DENSE-RESP-NET processing) provided more accurate segmental systolic circumferential 

strain measurements compared to diaphragm navigator-gated images. 

4.5 Discussion 

We evaluated the trained deep learning model (DENSE-RESP-NET) for correction of 

signal loss and phase corruption due to respiratory-induced constant phase errors in self-navigated 

adaptive free-breathing acquisitions. Our evaluations using in vivo data from healthy subjects and 

heart-failure patients demonstrates that the motion compensated images generated using adaptive 

free-breathing acquisition for suppression of the T1-echo, the self-navigation method for correction 

of linear phase errors in k-space, and the DENSE-RESP-NET method for correction of constant 
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phase artifacts show good agreement with the reference breath-hold images for image quality 

measures and systolic and diastolic parameters. 

 

Figure 4.6 – Evaluation of global early diastolic circumferential strain rate on heart-failure patient demonstrates the 

improved accuracy and agreement in favor of DENSE-RESP-NET compared to other methods. 

DENSE-RESP-NET was effective for correction of phase corruption due to the encoding 

of the respiratory motion into the phase of the stimulate-echo. Diastolic phase SNR and strain 

measurements shows a very good agreement between the motion compensated free-breathing and 

breath-hold images and a superior performance compared to free-breathing images without 

DENSE-RESP-NET processing and the diaphragm navigator-gated methods. 

Strain measurements using the self-navigated adaptive free-breathing data with or without 

DENSE-RESP-NET processing were in a good agreement with the reference measurements for 

end-systolic parameters on healthy subjects. The DENSE-RESP-NET provide more accurate and 

better agreement with reference measurements for diastolic parameters compared to data without 

DENSE-RESP-NET processing. The respiratory-induced constant phase errors are greater in 

magnitude in diastole compared to earlier cardiac phases and because of this effect, the diastolic 

self-navigated free-breathing images are more affected by the constant phase artifacts. Our results 
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demonstrate that DENSE-RESP-NET was effective for compensation of content phase errors in 

diastole and can provide an effective solution for measurement of diastolic parameters when used 

in concert with adaptive free-breathing DENSE and self-navigation. 

The constant phase artifacts can occur in the diaphragm navigator-gated method as well. 

Ideally, the acceptance window in diaphragm navigator-gated acquisitions are set to the position 

of the diaphragm at end-expiration phase of respiration where the respiratory motion in a 

corresponding cardiac cycle is minimal. However, variations in respiratory pattern during the 

acquisition can shift the end-expiration baseline to a position where the accepted data are affected 

by respiratory motion with larger magnitude. This can lead to significant constant phase artifacts 

and inaccurate strain measurements. 

The limitation of this study is the lack of training data from heart-failure patients. Although 

DENSE-RESP-NET was effective in compensation of constant phase artifacts in healthy subjects 

and patients, a better and more generalized performance might be achieved by inclusion of data 

from various cardiac diseases for training. The cine DENSE images used in this study (whether 

for training or evaluation) were acquired using a one set of acquisitions parameters and only 3T 

scanners manufactured by a single vendor. A more comprehensive analysis requires cine DENSE 

images from various magnetic fields, vendors, and acquisitions parameters. 

4.6 Conclusion 

Motion compensation with DENSE-RESP-NET provides reliable free-breathing cine 

DENSE for measurement of systolic and diastolic parameters when used in concert with the 

adaptive match-making acquisitions and self-navigation.  
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Chapter 5 : Summary, Discussion, Limitations, Conclusion 

5.1 Summary of the work 

This work has presented deep learning methods for suppression of artifacts due to 

undesired echoes and the respiratory motion in cine displacement encoding with stimulated echoes 

(DENSE) for myocardial strain imaging. 

A deep learning method based on a convolutional neural network was developed and 

evaluated in the first phase of the project for suppression of the artifact-generating T1-echo. The 

developed model (DAS-Net) was shown to be an effective method for suppression of the strip 

artifacts due to T1-echo in breath-hold data. While conventionally, MR physics-based phase-

cycling method1 is used to suppress the T1-echo which requires additional acquisitions, the 

developed framework eliminated this requirement and shortened the breath-hold scan time by 42% 

in myocardial strain imaging. To achieve a more generalized performance of DAS-Net for 

suppression of the T1-echo modulated in a range of displacement encoding frequencies, a data 

augmentation method was developed to generate synthetic DENSE images with arbitrary 

displacement encoding frequency for training. The feasibility of the data augmentation method 

was evaluated for situations where availability of training data the desired displacement encoding 

frequencies is limited. In addition, DAS-Net was shown to significantly outperform the zero-filling 

method which is routinely used in harmonic phase MRI2 for suppression of undesired echoes. 

Myocardial strain measurements from healthy subjects using non-phase-cycled images processed 

with DAS-Net showed excellent agreement with the phase-cycling. 
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In the second phase of this work, a deep learning method was developed for compensation 

of respiratory-motion-induced signal loss and phase corruption in self-navigated free-breathing 

cine DENSE3 for myocardial strain measurements. While myocardial motion is measured as phase 

shift in stimulated echo images, the phase shift due to encoding of the respiratory motion into 

stimulated echo phase creates error and inaccurate myocardial displacement measurements in self-

navigated free-breathing cine DENSE and manifest as signal loss and phase corruption. The 

artifact due to respiratory-motion-induced phase shifts are unique to stimulated echo imaging and 

is not accounted for in conventional motion compensation models. We introduced a model using 

stimulated echo signal that accurately describes this artifact. Phantom experiments and simulation 

were performed to validate the new model. The accurate description of respiratory-induced phase 

shifts using the proposed model created a framework for simulation of associated artifacts on 

breath-hold images. The simulated data were used to develop a convolutional neural network 

(DENSE-RESP-NET) that can compensate for the signal loss and phase corruptions in self-

navigated free-breathing DENSE. The DENS-RESP-NET was evaluated on self-navigated free-

breathing DENSE images from healthy human subjects. Strain measurements from motion 

compensated images showed significant improvement in measurement of diastolic parameters. 

In the last phase of this work, a free-breathing cine DENSE method using adaptive match-

making acquisitions4, self-navigation3, and the DENSE-RESP-NET processing for compensation 

of three intrinsic artifacts that arise in free-breathing DENSE was evaluated. Free-breathing images 

using the proposed methods were acquired from healthy human subjects and heart disease patients 

in addition to diaphragm navigator-gated images. Image-based quality measures in addition to the 

strain analysis demonstrated that the proposed method outperform the diaphragm navigator gated 

method using both image-based quality measures and the strain. The proposed free-breathing 
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method showed a very good agreement to the breath-hold method for measurement of diastolic 

and systolic strain parameters. These results suggest that the DENSE-RESP-NET processing used 

in concert with the adaptive free-breathing acquisitions and the self-navigation is a reliable free-

breathing method for myocardial strain imaging 

5.2 Discussions 

5.2.1 Artifact-generating T1-echo 

In breath-hold cine DENSE, the major source of artifact is the T1-echo5. Suppression of the 

T1-echo is required for high-quality and accurate strain measurements using cine DENSE. Since 

the T1-echo is not centered in k-space, it creates stripe artifacts in the image domain and leads to 

inaccurate displacement measurements. The source of T1-echo is the relaxation of the longitudinal 

magnetization after application of the displacement-encoding pulses and because of this, the 

magnitude of T1-echo grows over time during each cardiac cycle6. Although the magnitude of the 

T1-echo is negligible for systolic images, it grows to a large magnitude (compared to the 

stimulated-echo) in diastolic images and adversely affect the diastolic strain measurements 

especially in those subjects with lower heart-rates. Figure 5.1 shows example DENSE magnitude 

and phase images before and after T1-echo suppression using phase-cycling subtractions. The 

strain measurement from non-phase-cycling images are unreliable compared to those from artifact 

free images obtained after phase-cycling subtractions. 
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Figure 5.1 – Suppression of the T1-echo is essential prior to processing the DENSE images as T1-echo adversely 

affects the displacement measurements. Since the source of T1-echo is the relaxation of the longitudinal magnetization, 

it grows over time during each cardiac cycle and because of this, diastolic images are more affected. Examples of 

strain measurement from DENSE image before and after T1-echo suppression using phase-cycling and the 

corresponding magnitude and phase images from three different cardiac phases are shown. 

Phase-cycling used for suppression of the T1-echo is in essence similar to active noise 

reduction method used in audio domain where noise is measured and an anti-noise signal is 

generated with a 180⁰ phase shift so that the sum of noise and anti-noise is zero7. In phase-cycling, 

the phase shift in the undesired signal is induced by shifting the phase of second RF pulse in the 

DENSE pulse sequence1. Phase-cycling method used in conjunction with the through-plane 

dephasing has been effective for suppression of the T1-echo. However, longer acquisition times 

due to the acquisition of additional data and susceptibility to motion are limitation of this method. 

The respiratory or subject’s voluntary motion can cause contribution of different tissue in 
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formation of the T1-echo. Because of this reason, it is essential for the phase-cycling acquisitions 

to have the matched tissue position. For breath-hold scans, this means that the phase-cycled data 

has to be acquired during the same breath-holding. A typical DENSE protocol requires 14 

heartbeat for in-plane displacement measurements including phase-cycling acquisitions. Although, 

healthy subjects might be comfortable with multiple breath-holds with this duration, it can be 

discomforting in heart disease patient. This is especially important for heart disease subjects with 

lower heart rate as the breath-holds are longer. 

 

Figure 5.2 – Example magnitude and phase images in addition to k-space data showing the signal separation using 

ED-PCA method applied on non-phase-cycling images. The performance of ED-PCA is sub-optimal compared to 

phase-cycling method. 

Alternative approach for T1-echo suppression include the use of higher displacement 

encoding frequency or signal separation approaches during post-processing. An appropriately high 

displacement encoding frequency modulates the T1-echo to a frequency outside the readout 

window6. However, higher displacement encoding frequency would induce more phase wrapping 

in the stimulated echo phase which could be problematic for post-processing of the data. In 
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addition, measurement sensitivity could decrease with the use of higher displacement encoding 

frequency. Signal separation methods based on principle component analysis or independent 

component analysis typically use strong priors8 about the signal which leads to sub-optimal 

performance. Figure 5.2 shows example non-phase-cycling DENSE image processed using the 

eigenvalue decompositions with PCA (ED-PCA)9. The ED-PCA method use the assumptions that 

the signal to be separates are stationary and non-stationary. While this assumption could 

approximately hold for the stimulated and T1 echoes, the performance of the method was sub-

optimal compared to the phase-cycling method. 

5.2.2 Suppression of T1-echo using DAS-Net 

DAS-Net is an effective alternative method for suppression of artifacts caused by T1-echo. 

DAS-Net can provide high-quality stimulated echo images from non-phase-cycling acquisitions. 

For breath-hold acquisitions, T1-echo suppression using DAS-Net reduced the scan time from 14 

heartbeats to only 8 heartbeats. This reduction in breath-hold acquisition times can significantly 

reduce the overall scan time in clinical practices and facilitate the strain measurements using 

DENSE for heart disease patients.  

DAS-Net could potentially be used for suppression of residual T1-echo artifacts when 

phase-cycling subtractions are imperfect. In diaphragm navigator-gated images for example, the 

T1-echo could originate from slightly different tissue when a wider acceptance window is used. 

This may lead to imperfect suppression of the T1-echo especially in diastolic frame as shown in 

Figure 5.3. DAS-Net could potentially suppress the residual artifacts in the reconstructed images. 

Another potential application of DAS-Net is the T1-echo suppressions in free-breathing images. 

Although match-making method was used in this work for such task, a retained version of DAS-
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Net is a potential alternative for suppression of T1-echo when applied on per-segment free-

breathing data. 

 

Figure 5.3 – Motion from various sources could leads to imperfect suppression of the T1-echo using phase-cycling in 

diaphragm navigator-gated images. DAS-Net could potentially be used after phase-cycling subtraction to suppress 

the residual T1-echo. Example diastolic images from a diaphragm navigator-gated data shows stripe artifacts - 

possibly due to imperfect phase-cycling subtractions. 

For DAS-Net, a U-Net with 2-dimensional convolution kernels was used to process a single 

2-dimensional plane at a time. Since cine DENSE data are basically 3-dimensional (2-dimensioanl 

images through time), extension of U-Net with 3-dimensional convolution kernels or recurrent 

connections, or other architectures such as V-Net10 incorporate spatio-temporal correlations and 

could potentially improve T1-echo suppressions. 

Non-phase-cycling DENSE images used to evaluate DAS-Net were acquired using 

through-plane dephasing method which selectively induces dephasing onto the T1-echo and 

diminishes its magnitude. Although the through-plane dephasing method could be used for 

measurement of in-plane displacement with DENSE, this method cannot be used when for 3-

dimensional displacement measurement. TheT1-echo without through-plane dephasing will have 
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a larger magnitude and extend to a larger area in k-space. For this reason, application of DAS-Net 

with the current approach in training the model is limited to those cases where the through-plane 

dephasing of the T1-echo is used. A more generalized performance may require re-training the 

model with images from 3-dimensional displacement measurements or images acquired without 

through-plane dephasing. Figure 5.4 shows performance of DAS-Net for suppression of the T1-

echo applied on a DENSE image acquired without the through-plane dephasing gradient. 

 

Figure 5.4 – DAS-Net eliminates the need for phase-cycling acquisitions. DENSE images used to train DAS-Net were 

acquired using through-plane dephasing gradient. Through-plane dephasing method cannot be used for three-

dimensional (2-dimensional in-plane and one-dimensional through-plane) displacement measurement in DENSE. T1-

echo suppression using DAS-Net is shown for a DENSE image acquired without the through-plane dephasing in 

addition to T1-echo suppression using phase-cycling. 

5.2.3 Respiratory motion-induced phase shifts 

The material displacement result in stimulated echo phase. Although phase shifts due to 

tissue motion (or deformation) is a desired parameter in DENSE measurements, the phase shift 
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due to respiratory motion result is undesired and leads to artifacts. In segmented DENSE 

acquisitions for myocardial displacement measurements, the phase shifts due to myocardial 

deformation is consistent when different segments of k-space are acquired. However, phase shifts 

due to respiratory motion vary for each segment during free-breathing acquisitions which leads to 

signal loss and phase corruptions in stimulated echo images. This artifact is unique to stimulated 

echo imaging.  

The proposed model in Chapter 3 describes the encoding of the tissue motion due to 

respiration into the phase of the stimulated echo during the time between application of the 

displacement encoding pulses and the readout. Respiration also causes position shifts in the 

stimulated echo images. The in-plane position shifts can be estimated using the ste-iNAVs to 

correct the corresponding errors in k-space. However, the estimated motion may not be used to 

correct the corresponding phase shifts because: (1) the phase shifts originate from encoding of 

both in-plane and the through-plane motion as in-plane displacement encoding and through-plane 

dephasing gradients are both played during the application of displacement encoding pulses, (2) 

the motion estimation using ste-iNAV does not provide sufficient temporal resolution to accurately 

correct the phase shifts. The through-plane motion also leads to through-plane position shifts and 

the corresponding linear phase errors in k-space.  

5.2.4 Motion compensations with DENSE-RESP-NET 

The DENSE-RESP-NET was an effective method for compensation of signal loss and 

phase corruption due to respiratory-induced phase shift artifacts. Although these artifacts are 

negligible for systolic DENSE images, they significantly deteriorate the diastolic images. Both 

phase signal-to-noise ratio and strain analysis demonstrated that the DENSE-RESP-NET 

compensation provided more accurate diastolic measurements. 
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The accurate description of the artifacts using the model in Chapter 3 provided framework 

for simulation of phase shift artifacts and generation of training data for DENSE-RESP-NET. 

Alternative approaches for training the model may be to use pairs of free-breathing and breath-

hold images. A major challenge with this approach is the unmatched position of heart in input and 

reference images. Possible solutions are (1) to use image registration algorithms to match the 

location of heart in the pairs of training data as a pre-processing step, (2) or to use semi-supervised 

learning methods11.  

The semi-supervised learning approach could be used when only a small set of training 

pairs have matched slices locations. The rest of the training images could be graded depending on 

the level of degradations due to the phase shift artifacts. The deep learning model can be 

augmented by inclusion of the additional layer (including fully connected layers) and trained using 

the graded images as a classification problem. Once the model is trained on a larger dataset, added 

layers could be removed and the model could be further trained using the small training set with 

matched slice locations. This approach of semi-supervised learning uses the concept of transfer 

learning that parameters of the initial layers in convolutional neural networks have smaller 

variations when the model is trained on different data sets or for different tasks. By training the 

model on a classification task, the trained initial layers could be used (transferred) to the motion 

compensation task. The limitation of this approach might be compromised performance compared 

to supervised learning approaches. 

The respiratory-induced phase shift artifacts are not specific to self-navigated adaptive 

free-breathing DENSE. It can affect the diaphragm navigator-gated images as well, especially 

when the accept window is not accurately placed on the end-expiration position of diaphragm or 

when variabilities in respiration pattern shift the end-expiration baseline during acquisition. In 
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these situations, the signal loss and phase corruption can occur in diaphragm navigator-gated 

images as well. DENSE-RESP-NET could potentially compensate for these artifacts when used as 

an extra processing step in image reconstruction. Figure 5.5 shows example magnitude and phase 

diaphragm navigator-gated images affected by respiratory-induced phase shift artifacts in addition 

to DENSE-RESP-NET processed data. 

 

Figure 5.5 – Signal loss and phase corruption can affect the diaphragm navigator-gated images as well as self-

navigated adaptive free-breathing images. Example magnitude and phase images affected by these artifacts and the 

application of DENSE-RESP-NET for motion compensation. 

5.3 Limitations of this work 

There are few limitations in this work. First, all the imaging was performed on 3T Siemens 

scanners. Many research and clinical studies are routinely performed on 1.5T scanner due to 

challenges with stronger magnets such as variabilities in electrocardiogram gating. A more 

comprehensive analysis of the techniques presented in this work will require inclusion of DENSE 

images from 1.5T scanners for training and evaluations. For example, DAS-Net trained on 3T 

DENSE images will most likely have a compromised performance if applied on 1.5T non-phase-

cycling images. The T1-relaxation times are shorter at 1.5T which means that it can grow to a 
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larger magnitude when compared 3T. In addition, DENSE images exhibit lower signal-to-noise 

ratio at 1.5T due to relatively weaker bulk magnetizations. These factors can affect the 

performance of DAS-Net for T1-echos suppressions. For the same reason, evaluation of DENSE-

RESP-NET on 1.5T self-navigated free-breathing images may be required. A more comprehensive 

and representative training data would include 1.5T DENSE images for development of the DAS-

Net and the DENSE-RESP-NET. In addition, different vendors use different hardware when 

manufacturing their MR scanners and this might cause variabilities in the acquired images. 

DENSE images from various vendors would also be beneficial for evaluations of the deep learning 

models. 

Second, only a single set of acquisition parameters are used for DENSE imaging. Variation 

in acquisition parameters may result in variations of image features such as resolution, signal-to-

noise ratio, signal from other tissues than myocardium (such as blood pool) and etc. An important 

parameter to consider is the displacement encoding frequency. Although DAS-Net was evaluated 

for a range of displacement encoding frequencies, DENSE-RESP-NET was evaluated for only a 

single displacement encoding frequency. The magnitude and temporal variations of the 

respiratory-induced phase shift artifacts depends on the displacement encoding frequency and 

because of this, evaluation of DENSE-RESP-NET on DENSE images acquired using other 

displacement encoding frequency may be required. 

Third, both DAS-Net and DENSE-RESP-NET were evaluated on short-axis DENSE 

images, but not long-axis images. For T1-echo suppressions, the characteristics of T1-echo in long-

axis data may be very similar to those in short-axis images. However, the magnitude of the tissue 

displacement due to respiration varies in short-axis and long axis directions.  
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5.4 Future directions 

Future work can potentially aim to (1) accelerate volumetric cine DENSE acquisitions by 

elimination phase-cycling, and (2) accelerate free-breathing cine DENSE acquisitions by 

combination of motion compensation and multi-band techniques. 

In volumetric cine DENSE, the major source of artifacts is the T1-echo the conjugate 

stimulated echo. The phase-cycling approach requires three acquisitions to suppress artifacts 

attributed to the undesired echoes. The elimination of phase-cycling using DAS-Net in volumetric 

acquisitions can significantly reduce the acquisition times. In addition, volumetric acquisitions can 

be combined with compressed sensing method to further reduce the acquisition times. The intrinsic 

higher signal-to-noise ratio in volumetric DENSE images (compared to 2-dimensional acquistions) 

can compensate for the reduction of signal-to-noise ratio due to compressed sensing under-

sampling. DAS-Net suppression in conjunction with compressed sensing can potentially enable 

volumetric acquisitions in a single breath-hold. 

The acquisition times in adaptive free-breathing is considerable compared to that of breath-

hold acquisitions. In myocardial strain imaging, typically three slices are acquired to assess the 

ventricular function. The acquisition times for three slices with the current approach may be 

considerable. A potential approach to alleviate this problem is to combine the adaptive acquisitions 

with multi-band imaging techniques. In the multi-band acquisition approach, RF pulse is modified 

to excite multiple slices at the same time. The information corresponding to each slice is phase 

modulated with a different modulation factor. This approach can be combined with the residual 

T1-echo energy to find phase-cycled data at matched respiratory position. The reconstruction of 

multi-band images can be combined with motion compensation using the deep learning methods. 
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5.5 Conclusion 

Strain imaging using cine DENSE is accurate and reproducible and provide automatic 

strain analysis. Application of DENSE for quantification of myocardial global and regional 

function is increasing. The deep learning methods developed in this work provided faster breath-

hold acquisitions and enabled motion compensated free-breathing DENSE imaging with accurate 

measurements of systolic and diastolic parameters. Evaluation of the motion compensated free-

breathing method in heart disease patients suggests that the developed method is promising for 

utilization in clinical practices. 
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