
 

 

 

A Multi-Scale, Systems Biology View of Fat 

Distribution and Storage Provides Novel Insight into 

Gene Regulation in Adipose Tissue 

 

A Dissertation 

Presented to 

the faculty of the School of Engineering and Applied Science 

University of Virginia 

 

 

in partial fulfillment of the requirements for the degree 

 

Doctor of Philosophy 

 

by 

 

Jordan N Reed 

 

October 2023 

  



1 
 

ABSTRACT: 

Adipose tissue is a complex organ that is capable of maintaining metabolic homeostasis. Storing 

fat, and specifically storing fat in the abdomen, increases the risk of cardio-metabolic diseases. 

Abdominal fat confers disease risk by inducing inflammation and insulin resistance. Pathways in 

the brain control overall obesity, while the preferential storage of fat in abdominal depots is likely 

controlled intrinsically by adipose tissue. Obesity and fat distribution are both complex traits, and 

genetic, lifestyle, and environmental factors interact to modify risk. Our understanding of the 

cellular and molecular mechanisms that cause obesity has allowed us to develop targeted 

therapeutics to treat it, but our understanding of body fat distribution is more limited. 

In this dissertation, we investigate how gene expression and regulation in adipose tissue can 

influence fat storage at multiple biological scales. Chapter 1 summarizes abdominal and lower 

body adipose tissue function in health and disease states, how adipocytes contribute to tissue 

expansion. We discuss the genetics of complex diseases and review the genetics of obesity and 

fat distribution. 

In Chapter 2, we predicted genes that were likely to regulate fat distribution in adipose tissue by 

modeling the gene-gene interactions using Bayesian networks. We first explored the parameters 

that influence the predictive power and biological relevance of the networks. We used optimal 

parameters to construct sex- and depot-specific models of adipose tissue gene regulation, and 

identified the putative network regulators in two independent datasets.  

In Chapter 3, we narrowed this list of putative fat distribution regulators by considering publicly 

available data. We prioritize seven candidate genes within the Wnt signaling pathway or in 

mitochondria. We identify novel functions for five genes in adipogenesis or in mitochondrial 

function. 

In Chapter 4, we study how diet composition and genetic background interact to influence body 

weight and other metabolic parameters in mice. We found that genetic background accounted for 

much of the variation, though diet was able to modify these effects. We identified genes in visceral 

adipose tissue that also respond to genetic background and diet interactions and found that these 

were partially explanatory of the observed phenotypes. 

In Chapter 5, we discuss how our findings align with known biology and highlight some of our 

novel findings and predictions. Taking a systems biology approach, we integrate results from 

Chapters 2 and 3 to assess the predictive power of our models. We discuss future experimental 

and computational research directions. 

Broadly, these studies investigated the regulation of gene expression in adipose tissue and the 

consequences on whole-body fat storage and metabolism. We identify novel regulators of 

adipocyte fat storage, and hypothesize a role for many more. We integrate predictive and 

experimental data at multiple biological scales to provide a holistic picture of how gene expression 

influences tissue function in health and disease. 
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Chapter 1: Introduction 

1.1 Adipose Tissue: 

Endothermic animals require energy to conduct normal metabolism and maintain body 

temperature. Thus, mammals, birds, and some fish have developed specific organs, called 

adipose tissue, to store excess energy for times of high demand1. Specialized cells in adipose 

tissue store the excess nutrient input as triglycerides2. During times of increased energy demand, 

such as starvation or illness, adipose tissue can break down its stores and release fatty acids, 

which can be used by peripheral tissues. These processes are carefully orchestrated by hormonal 

signaling from adipose tissue to the brain3. Further, adipose tissue provides mechanical padding 

for limbs and organs and maintains body temperature via physical insulation and electrochemical 

heat production, called thermogenesis2.  

1.1.1 A Brief History – 

Throughout human evolution, our species faced the challenges of food scarcity and under-

nutrition1. Storing excess fat in adipose tissue during times of abundance would have been 

advantageous. Since the industrial revolution, large parts of the world now have cheap, immediate 

access to food sources, particularly calorie-dense but nutrient-lacking foods, and thus, now face 

challenges of over-nutrition.  

Until the 1940s, our conception of adipose tissue was simplistic. The prevailing school of thought 

was “calories in- calories out”, or, the amount of fat stored in adipose tissue –and thus overall 

body weight- was directly determined by a person’s chosen diet and exercise regime3. Then, 

researchers identified that lesions in the rat hypothalamus could cause obesity4, as could a 

genetic mutation on chromosome 6 of the ob/ob mouse5. For the first time, researchers showed 

that obesity and eating behavior were under intrinsic control by the brain and some element of 

the genome, and were not the result of simply choosing to eat more6. Further studies using ob/ob 



12 
 

and db/db7 mice identified leptin as a hormone secreted from adipose tissue that signaled to a 

receptor in the hypothalamus that controlled eating behavior8. Mice without leptin could not signal 

to the brain to stop feeding, while mice without the receptor could not respond the leptin signal. 

Since the discovery of leptin, researchers have identified other genes, pathways, and adipose 

tissue secreted factors (adipokines) that contribute to obesity and its complications, leading them 

to conclude that storing fat is a complex process in which adipose tissue has an active role3. 

Further, we have a better understanding of how excess adipose tissue storage dysregulates 

overall metabolic health and contributes to the risk of disease in some individuals2. 

1.1.2 Structure and Function- 

1.1.2.1 Adipose Tissue Depots: 

Adipose tissue is distributed across the human body into depots (Figure 1.1 A). Most fat is stored 

in white adipose tissue, named for the white appearance of the large lipid droplets in gross 

dissection1,2. Subcutaneous white adipose tissue is found directly under the skin, with large 

depots in the gluteo-femoral region, lower abdomen, upper arms, and face. Visceral white adipose 

tissue is located within the abdominal or chest cavity, with depots found among or even wrapped 

around the organs. While all white adipose tissue is capable of storing lipids, there are large 

differences the metabolic health and homeostasis maintained by certain depots. Brown adipose 

tissue’s primary function is not lipid storage; thus, it appears brown in dissection2. Instead, it 

produces heat electrochemically and is found primarily behind the neck in infants and in adults 

with prolonged exposure to cold. Adipose tissue can also be found in the breast, where it has a 

range of additional functions9. 
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Figure 1.1: Adipose tissue depot locations in human and mouse.  

(A) Humans have white adipose tissue depots in the abdomen, arms, and lower body and sometimes 
have intra-scapular brown fat. 

(B) Mice have white adipose tissue depots in the abdomen and have intra-scapular brown fat. 
Figure created with BioRender.com 

 

1.1.2.2 Cell Types: 

Adipose tissue is made up of a diverse collection of cell types that are loosely organized in support 

of the primary functional cell, the adipocyte2. White adipocytes are large (70-300 µM), spherical 

cells whose cytoplasmic space is dominated by a single triglyceride-storing organelle, the lipid 

droplet. Because of this structure, large adipocytes are fragile and prone to lyse apart. Healthy 

adipocytes maintain communication with the brain and other organs and thus have many surface 

receptors to remain responsive to signaling cues10. Brown adipocytes, found in brown adipose 

tissue, have multiple smaller lipid droplets and many mitochondria2. These thermogenic 

adipocytes upregulate a gene uncoupling protein 1 (UCP1) whose protein is able to produce heat 

by dissipating the electrochemical energy produced by the electron transport chain. In white 

adipose tissue, a subset of adipocytes upregulate UCP1 and produce heat, termed beige 

adipocytes. All adipocytes are terminally differentiated from precursor cells and cannot proliferate. 
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Adipocyte precursor cells called pre-adipocytes are mesenchymal, fibroblast-like cells that can 

migrate, proliferate, and ultimately differentiate to mature adipocytes by taking up glucose and 

free fatty acids (FFA) and storing them as triglycerides. These cells are derived from 

mesenchymal stem cells (MSC), which can ultimately giving rise to white and brown adipocytes, 

osteoblasts, and smooth muscle cells.  

Adipose tissue and adipocytes are sensitive to hypoxia and thus require blood vessels throughout 

the tissue11. Endothelial cells, smooth muscle cells, pericytes, and some pre-adipocytes12 are 

found in and around the vasculature and communicate reciprocally with adipocytes13. Neurons 

innervate the tissue and provide catecholamine signals to adipocytes through b-adrenergic 

receptors14. Adipose tissue contains many immune cells including monocytes, macrophages, T-

cells, B-cells, neutrophils, etc15. Because of these resident and responsive cells, adipose tissue 

can launch a robust inflammatory response that may become dysregulated in old age16 or 

obesity15,17. In visceral adipose tissue only, an outer layer of mesothelial cells surrounds the 

tissue, though their role has not been precisely determined18.  

The main function of adipose tissue is to maintain metabolic homeostasis; adipocytes in white 

adipose tissue accomplish this by storing excess caloric energy, and communicating with 

systemic organs and the brain to modify behavior2.  

1.1.2.3 Adipocyte signaling: 

Adipocytes respond to many signaling cues in order to maintain metabolic homeostasis3. Insulin 

induces glucose uptake in adipocytes by turning on PI3K and AKT, which leads to GLUT4 

translocation to the cell membrane10. Insulin signaling also leads to downstream inhibition of food 

intake in favor of triglyceride breakdown. JAK/STAT signaling molecules influence leptin 

secretion, while MAPK pathways induce tissue inflammation10. B-adrenergic signals from the 

brain can stimulate the adipocyte to break down its triglyceride stores14. Cyclic-AMP (cAMP) 
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signaling mediates this lipid breakdown, and in brown adipocytes, it promotes thermogenic 

uncoupling10. AMPK signaling also helps maintain brown adipocyte identity10,14. Wnt signaling and 

TGF-β/BMP pathways regulate pre-adipocyte proliferation by turning on cell cycle genes10,19,20; 

Wnt also inhibits master adipocyte identity genes PPARG and CEBPA.  

Adipocytes release a variety of signaling molecules, the most famous being leptin3,21,22. Leptin is 

a peptide hormone released into the blood stream, where it moves to the hypothalamus and binds 

the leptin receptor. This turns on satiety pathways in pro-opiomelanocortin (POMC) neurons, 

which release α-melanocyte-stimulating hormone (a-MSH) and turns off hunger pathways, which 

release agouti-related protein (AgRP). These signals are integrated by the melanocortin receptor 

(MC4R), which propagates the satiety behavior23. While leptin promotes glucose utilization in 

peripheral tissues, at sustained high doses, cells can become leptin resistant and, in turn, insulin 

resistant22,24. Other adipokines like adiponectin and omentin help promote glucose homeostasis 

and insulin sensitivity in surrounding tissues, while resistin and inflammatory cytokines TNF-α and 

IL6 lead to insulin resistance3,24. Finally, adipocytes release fatty acids and glycerol. While this is 

normal and necessary to provide peripheral tissues with energy, the uncontrolled or sustained 

release of FFAs can cause insulin resistance, inflammation, and lipotoxicity25. 

1.1.2.4 Mechanisms of fat storage:  

Adipose tissue accommodates excess nutritional energy by increasing the number or size of 

adipocytes in the tissue26–28 (Figure 1.2). To increase the total number of mature adipocytes, 

called hypertrophic expansion, pre-adipocytes must differentiate into mature lipid-storing 

adipocytes (Figure 1.2 A, C). Differentiation is initiated by transcription factors PPARɣ, CEBPα, 

CEBPβ, and CEBPδ, which turn on insulin signaling, glucose uptake, and triglyceride synthesis-

related genes29. The pre-adipocyte pool is carefully regulated by Wnt and TGF-β signaling 

pathways to maintain a proliferative subpopulation10,30,31 (Figure 1.2 B). Old or dysfunctional 
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adipocytes often undergo apoptosis, reducing the total number of adipocytes and recruiting 

immune cells to participate in clearance29,32.  

Existing adipocytes can accommodate energy excess by increasing the size of the lipid droplet, 

called hyperplastic expansion (Figure 1.2 C, D). Adipocytes do this primarily by taking up free 

fatty acids through fatty acid transporters (FATP) and re-esterifying them to glycerol via the 

enzyme DGAT33. When adipocytes take up glucose via GLUT4, they undergo a process called 

de novo lipogenesis, in which they convert glucose to citrate in the TCA cycle, then use enzymes 

FASN, ACC1, ACLY, and SCD1 to convert citrate to a fatty acid34. This process requires 

mitochondria, which are bound to the surface of the lipid droplet35. While most of adipocyte 

triglyceride stores come from fatty acid uptake33, there is evidence that de novo synthesized fatty 

acids may be used in lysosomal and autosomal membranes, involved in protein degradation36. 

Lipolysis is the process by which adipocytes break down stored triglycerides to release FFAs and 

glycerol. Lipases ATGL, HSL, and MGL each remove one fatty acid from the backbone, which 

are released into the bloodstream37. Brown and beige adipocytes upregulate UCP1 and are 

capable of thermogenesis38–40. Upon cold or β-adrenergic stimulation, these cells undergo 

lipolysis, and the resulting fatty acids are metabolized via the TCA cycle and β-oxidation 

pathways. This fuels a proton gradient down the electron transport chain, where UCP1 shuttles 

the H+ ions across the mitochondrial membrane without driving ATP production; instead, the 

energy is dissipated as heat into the surrounding cell and tissue. 
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Figure 1.2: Adipose tissue expands through hypertrophic and hyperplastic adipocyte processes.  

(A) In hypertrophic expansion, pre-adipocytes increase the number of mature adipocytes 
(B) Pre-adipocytes proliferate and differentiate to contribute to hypertrophic processes. 
(C) In hyperplastic expansion, existing adipocytes increase size by storing more lipid 
(D) Adipocytes take up glucose and fatty acids, undergo lipogenesis or re-esterification to store lipids 

and release stored lipids via lipolysis and thermogenesis to contribute to hyperplastic processes. 
Figure made using BioRender.com 
 

1.1.2.5 Maintaining Healthy adipose tissue: 

Healthy adipose tissue is characterized by functional adipocytes that stably store triglycerides and 

can sense and respond to signaling cues1,28. In times of nutritional excess, adipose tissue first 

tries to accommodate by differentiating more pre-adipocytes into lipid-storing mature 

adipocytes26. These small adipocytes are sensitive to signals and can easily be oxygenated by 

the vasculature26. If the proliferative capacity cannot meet demand, the tissue will add more lipids 

to existing adipocytes. Larger adipocytes cannot be vascularized well and will become hypoxic11. 

This causes the cells to release inflammatory cytokines, which will recruit immune cells to 

propagate the inflammatory response15. If an adipocyte becomes too large, it can become 
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apoptotic or necrotic, propagating the immune response32. Unresolved inflammation can 

contribute to insulin resistance in adipose and systemic tissues15,24. Eventually, the adipose tissue 

will reach its storage capacity, and excess lipids will be stored ectopically in other tissues41.  

1.1.2.6 Visceral adipose tissue dysfunction: 

Subcutaneous adipose tissue is considered the model for healthy fat storage43. Subcutaneous 

pre-adipocytes have a large capacity to proliferate and differentiate2,44,45. These cells can be easily 

vascularized and innervated, and thus, the tissue remains normoxic and responsive to signaling 

cues11,26. Each individual has a different capacity for subcutaneous fat storage26, and sex, 

hormones, and age play significant roles in fat storage16. Pre-menopausal women tend to store 

more fat in gluteo-femoral subcutaneous depots than men43,46. Men instead preferentially store 

fat in visceral abdominal depots. Visceral pre-adipocytes are less able to proliferate and 

differentiate to accommodate over-nutrition44,45,47. Excess caloric energy is stored in the lipid 

droplets of existing adipocytes, making them large, fragile, insulin-resistant, and hypoxic11,26,41,49. 

While visceral adipocytes are smaller than subcutaneous in healthy adults, in disease conditions, 

they expand more, and their expansion is correlated with diabetes phenotypes26,48,49. It is thought 

that evolutionarily, visceral fat exists to elicit an inflammatory response during gut infection or 

injury50. As such, visceral tissue is prone to inflammation. Macrophages surround dead and dying 

adipocytes in “crown-like structures” and release inflammatory cytokines49,51. Further, visceral 

adipocytes are more metabolically active, undergoing lipolysis at higher rates than subcutaneous 

cells, releasing FFAs into the bloodstream49. In total, the unhealthy mechanisms of visceral fat 

storage cause harm to adipose tissue and to systemic metabolism. 

1.1.2.7 Visceral adipose contributes to systemic metabolic dysfunction: 

Visceral adipose tissue is located within the abdominal cavity and is vascularized by the portal 

vein. Inflammatory cytokines and FFAs are released into the portal vein, where they move toward 
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other metabolic organs, including liver and pancreas52. This causes lipotoxicity53, 

inflammation51,54,55, insulin resistance56, hypertension57, and ectopic fat deposition32,42 in these 

tissues, contributing to diabetes and fatty liver disease phenotypes32,57. Diseased cells secrete 

abnormal levels of adipokines, which can further dysregulate systemic metabolism24. Conversely, 

subcutaneous adipose tissue simultaneously releases fewer inflammatory molecules and FFAs 

and releases them to the peripheral tissues where the detrimental effects on metabolism are 

lessened.  

1.1.3 Phenotypes of Over-nutrition- 

1.1.3.1 Obesity: 

Obesity is a disease of excess adiposity. Clinicians often use the body mass index (BMI), or the 

ratio of weight (in lbs.) to height2 (in ins), as an approximation of fat storage58. They define 

underweight as BMI < 18.5, normal weight as BMI 18.5-25, overweight as BMI 25 -30, obese as 

BMI > 30, and morbidly obese as BMI > 35. While BMI is a reliable weight indicator, it can conflate 

lean mass and adiposity and sometimes mis-categorize healthy individuals. Obesity is caused by 

various factors, including diet (caloric and nutritional content), exercise and lifestyle factors, 

prescription medications, stress, socioeconomic status, hormonal imbalances, and genetic 

variation, among others59. Over 40% of adults in the United States are obese, and prevalence 

rates are higher in Black and Hispanic populations60. For a majority of the population, increased 

BMI is associated with the prevalence of other diseases. Observational studies show that higher 

BMI is associated with mortality of all causes61, cardio-vascular disease61–64, stroke64,65, type 2 

diabetes61,64, fatty liver disease66, cancer61,64,67,68, and infectious disease61,69–71. Interestingly, 

having an underweight BMI is also associated with the risk for many infectious diseases61,70,71.  

The disease risk imparted by increased BMI is due to harmful adipose tissue expansion. In 

vascular diseases, the increased lipid species released into the blood can build up in vessel 
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walls72. These cell and lipid-filled plaques can occlude the vessel, causing heart disease, or 

rupture, causing downstream clots like strokes. Obesity increases insulin resistance and causes 

glucose dysregulation in type 2 diabetes73. Ectopic fat deposition in other organs, such as the 

liver or skeletal muscle, causes fatty liver disease and increased insulin resistance74. Finally, lipid 

species increase the inflammatory response in other tissues. As macrophages try to clear dead 

and dying cells, they become lipid-loaded, perpetuating aberrant inflammatory responses in 

vascular disease75 and cancer progression76. 

1.1.3.2 Metabolically Healthy Obesity: 

While excess adipose tissue fat storage often leads to whole-body metabolic dysfunction and a 

range of comorbidities, each individual has a different capacity for healthy fat storage26,41. 

Clinicians observe that a subset of obese and overweight individuals are metabolically healthy- 

these people remain sensitive to insulin, have normal circulating levels of glucose and 

triglycerides, and do not have ectopic fat deposition in other organs or dangerous plaques in 

vessels77. This condition is termed metabolically healthy obesity (MHO), and its discovery has 

helped some clinicians and researchers to redefine obesity as increased adiposity that presents 

a risk to health. Using obesity status and metabolic parameters together, researchers show that 

abnormal metabolic parameters have larger influence on all-cause mortality and cardiovascular 

and cancer-related deaths78. 

The discovery of MHO also forced clinicians to consider what types of adiposity present the 

greatest risk to health. Pre-menopausal women with more subcutaneous fat storage than men 

are at lower risk for cardiovascular disease79,80. The prevalence of these diseases increases in 

post-menopausal women, when estrogen hormone signaling is lost and fat storage shifts from 

lower body subcutaneous depots to visceral abdominal storage81. In the past several decades, 

more research has been devoted to understanding the differences between subcutaneous and 

visceral adipose tissue and the implications on metabolic health. 
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1.1.3.3 Body Fat Distribution:  

The relative storage of fat between different depots is called body fat distribution. While there are 

dozens of depots throughout the body, many studies focus on the differences between disease-

causing visceral abdominal fat45,47 and healthy lower body subcutaneous fat43. Clinicians 

approximate the storage in these locations as the waist-to-hip ratio (WHR), which is the waist 

circumference divided by hip circumference. Using whole-body dual X-ray absorptiometry (DXA) 

or magnetic resonance imaging (MRI)82, researchers find that WHR and other anthropometric 

traits are fairly correlated with imaging based metrics of depot-specific storage83–89, depending on 

the imaging modality and study population. An individual’s WHR is relatively constant throughout 

adult life, and researchers find that hormones, age, sex, genetics, and some HIV prescription 

medications can modify fat distribution90,91. However, our understanding of the genetic and 

molecular mechanisms contributing to fat distribution is limited. Thus unlike overall obesity92,93, 

no targeted therapeutics or lifestyle interventions to combat abdominal obesity are known91. 

WHR is strongly associated with the prevalence of cardiovascular disease94–96, stroke97–100, and 

type 2 diabetes101. Because obesity also increases the risk for these diseases, researchers often 

regress out the effects of BMI (WHRadjBMI). They find that WHRadjBMI is also highly associated with 

these diseases102 and conclude that WHR likely confers disease risk through independent 

mechanisms than those conferred by BMI. 
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1.2 Complex Trait Genetics: 

The chromatin sequence in a person’s cells has a strong influence on the function or dysfunction 

of  the cell, tissue, and whole body103,104. Most human cells have 23 pairs of chromosomes, one 

copy from each parent. Following the central dogma, the chromatin sequence encodes genes, 

which are transcribed into mRNA copies, which are then translated into proteins. Altering the 

sequence of a gene within the chromatin can alter the structure and function of the encoded 

protein, while the chromatin sequences outside of gene bodies can regulate how many copies of 

each gene are transcribed103,105,106. Thus, mutations or naturally occurring variations in the DNA 

sequence can have sizable effects on cellular phenotypes and disease risk103,104. 

1.2.1 Monogenic disorders-  

Some diseases and phenotypes are regulated by a single gene103,107. Gregor Mendel first 

discovered this phenomenon when crossing pea plants. He found that certain traits were inherited 

across generations and were inherited in conserved patterns. Although forgotten for over a 

hundred years, his discoveries paved the way for our modern understanding of genetics108. In the 

1900s, novel discoveries showed that DNA was the “transforming factor” that conferred variation 

and that the genetic sequence encoded protein amino acid sequence108. Since these discoveries, 

we have identified many single gene defects that cause disease in the same conserved patterns 

of inheritance described by Mendel. Specifically, most genes will have a dominant and a recessive 

version, called an allele; in Mendelian inheritance, any number of copies of the dominant allele 

causes expression of the dominant phenotype103. The recessive phenotype is only seen when the 

alleles from both parents are recessive. Often, the dominant allele encodes a functional protein, 

while the recessive version encodes a truncated, misfolded, or nonfunctional version. Sometimes, 

these proteins are rendered nonfunctional by a single base pair change in the coding sequence, 

called a single nucleotide polymorphism (SNP), while other protein changes are caused by large 

insertions or deletions of DNA sequence103. Inheriting at least one dominant, functional copy from 
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either parent leads to healthy functional cells containing the protein, while having two recessive 

copies usually means an individual does not have any functional protein. In some cases, this does 

not affect the health of the individual, but if the protein is very important, having two recessive 

alleles will lead to disease107. For example, patients with phenylketonuria lack the gene PAH, 

which breaks down dietary phenylalanine. People with one or two functional copies will be 

phenotypically normal, while people with two recessive, non-functional copies have phenylalanine 

buildup in cells109. Disease-causing recessive alleles are often present at a very low frequency in 

the population, but have a large effect size on the disease or trait of interest104.  

1.2.2 Polygenic complex diseases and traits- 

Most common diseases and phenotypes are not caused by a defect in a single gene; instead, 

they result from many different alleles and other risk factors that each confer a small amount of 

risk or protection104,110. Usually, the SNPs that confer disease risk are not found within the gene 

body and do not cause changes in the protein structure. Instead, the SNPs reside in regulatory 

regions, such as promoters or enhancers, and influence the number of copies of each gene 

transcribed105,106. Promoters are regions of the genome directly upstream from gene bodies 

(Figure 1.3 A). They often have conserved sequence elements where transcriptional machinery 

binds. Enhancer sequences also bind transcriptional machinery but are great distances upstream 

of the gene body; the chromatin loops around to facilitate a physical connection (Figure 1.3 A). 

Transcription factors bind the DNA at specific sequences and can help or hinder transcription of 

the gene. SNPs in enhancer or promoter regions often change the sequence of a transcription 

factor binding site (TFBS), which can alter the affinity of binding and, ultimately the amount of 

transcription (Figure 1.3 B,C). For example, height is a complex, polygenic trait. Hundreds of 

SNPs in the genome confer a small amount of change to overall height111, many by altering the 

expression of nearby genes. Modern schools of thought believe that genetic variation’s heritable 

effects on phenotypes are due to linear combinations of SNP effects112,113 and non-linear 
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interaction effects between the genetic variants and with other risk factors and 

confounders110,114,115. 

 

Figure 1.3: Genetic variants that affect transcription factor binding sites may regulate gene expression.  

(A) Transcription factors bind to conserved DNA sequences to facilitate the transcription of the gene 
by RNA polymerases. Regulatory sequences can be proximal to the gene start site, called 
promoters, while enhancers are distal regulator elements that loop to facilitate connections with the 
promoter  

(B) Genetic variants that affect the binding site of important transcription factors affect the expression 
of those target genes. For example, one allele at a SNP may create a higher-affinity binding site 
and thus encourages transcription of the gene. 

(C) While the alternate allele at the SNP leads to less transcription factor binding and fewer copies of 
the target gene. 
Figure made using BioRender.com 
 

1.2.3 Expression Quantitative Trait Loci (eQTL)- 

One way to determine if a SNP affects the expression of a nearby gene is to perform eQTL studies 

in tissues of interest104,106. In these studies, hundreds of individuals are recruited, and first, their 

genome is sequenced. The human genome is structured into haplotypes, or long regions on each 

chromosome that are consistently inherited together116,117. During meiotic cell division, the 
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chromosome pairs will align, and “crossing over” events occur when a homologous segment of 

each chromosome breaks off and recombines with the other chromosome pair. These events 

happen at conserved locations in the genome and create haplotype blocks. The SNPs in these 

haplotypes are consistently inherited together and are in high linkage disequilibrium (LD) with 

each other103. Therefore, instead of sequencing the entire genome for every individual, we 

sequence a subset of SNPs unique to each haplotype block and impute, or infer, the rest of the 

SNPs in high LD118. 

Next, researchers take a biopsy or sample of the tissue of interest and sequence119 the RNA 

species. Using the gene expression and alleles at each SNP for the same individuals, they use 

linear regression to determine if there is a significant association between the number of copies 

of the risk allele and the expression of the gene120. To obtain appropriate power, researchers will 

often consider associations between SNPs and genes that are proximal (± 1Mb) as cis-eQTLs, 

because most enhancers and promoters are on the same chromosome and are short distance 

away121–123. This allows us to correct for fewer tests and use a statistical threshold of ~ P < 1x10-

4 when determining significance.  

Researchers will then consider associations between SNPs and distal genes, called trans-

eQTLs106. Because of the great distance, these associations likely represent secondary effects 

where a SNP regulates the expression of a diffusible transcription factor, which binds DNA and 

regulates distal genes. These effects are usually very strong to be detected in a small sample 

size and over a higher multiple testing correction burden120. 

1.2.4 Genome-wide Association Studies- 

We can determine which SNPs are associated with complex diseases and traits using genome-

wide association studies (GWAS)103. In GWAS, researchers recruit hundreds of thousands of 

people, both with and without the disease of interest, and sequence their genomes to determine 
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which alleles they have at each SNP of interest.  Next, they perform association tests to determine 

which SNPs are significantly associated with having the disease (Figure 1.4 A). Because of the 

LD structure of the genome, often a group of proximal SNP are significantly associated124 (Figure 

1.4 B). We term this area in the genome a locus, and often refer to an associated locus instead 

of individual associated SNPs. The large sample size allows researchers to correct for the multiple 

tests performed; the genome-wide level for significance of P < 5x10-8 corrects for the number of 

SNPs tested125,126. GWAS can be performed on continuous traits as well, and have become a 

powerful tool for determining the genetic regulation of a disease or trait103,104.  

However, there are significant challenges associated with identifying the mechanism by which an 

associated SNP affects the trait of interest, given that there can be multiple genes and signals in 

the locus, and the strengths of these signals can vary between populations and with biological 

confounders, such as sex and age124. Further, many GWAS have been performed primarily in 

European and secondarily in Asian populations127,128. While these have advanced our 

understanding of disease in these populations, other populations contain different SNPs at 

different allele frequencies129. PCSK9 was identified as a regulator of fatty liver disease only after 

studying an African American population where the risk allele was present at higher 

frequencies130. Additionally, studies have found that the nearest gene to the GWAS signal is the 

causal gene in 70% of loci; in the other 30% of loci, this assumption does not hold, and a more 

distal gene is responsible for the disease risk imparted by the SNP122. Finally, genes not under 

significant genetic regulation may also contribute to the studied phenotype or disease; they may 

be under environmental control131. These considerations will be discussed further in Chapter 3 

and 4. 
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Figure 1.4: Genome-wide association studies identify genetic variants associated with disease 

(A) Manhattan plot showing the associations between SNPs across the genome and a disease or trait 
of interest. Associations greater than 5 x10-8 are considered genome-wide significant. 

(B) The associated variants in one locus within the GWAS. The color represents the linkage 
disequilibrium (LD) with the highest associated variant. Blue line represents the rate of crossover 
events at each location. Gene bodies in the locus are plotted below 
Figure made using BioRender.com 

 

1.2.5 Mendelian Randomization- 

To determine how two polygenic traits are causally related, we can use Mendelian Randomization 

(MR)132,133. In this approach, we know that a risk factor is significantly associated with SNPs in 

the genome, and using central dogma, we conclude that these SNPs are regulatory of that risk 

factor. We want to test if the risk factor is causal for the disease of interest. Because alleles of 

each SNP are assigned randomly during meiosis, we employ this natural variation to create 

randomized groupings based on genotype. We then statistically determine if the SNPs are 

associated with the disease of interest only through the risk factor, not indirectly or by some 

unmeasured confounder. If this assumption is true, we can say the risk factor is causal for the 

disease of interest (Figure 1.5). 
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Figure 1.5: Hypothesis testing used to determine if a complex risk factor is causal for a complex disease or 
trait using Mendelian Randomization.  

 

1.2.6 Genetics of Obesity- 

Obesity, as measured by BMI, is a complex trait determined by genetics and other risk factors58. 

BMI is up to 55% heritable- meaning that, in some populations, up to 55% of a person’s BMI can 

be explained by their genetic background134. Single gene defects in the leptin (LEP) and the leptin 

receptor (LEPR), or its downstream signaling partners melanocortin 4 receptor (MC4R) and 

POMC, can cause monogenic forms of obesity135,136.  To date, GWAS have been performed on 

>1,000,000 individuals and have uncovered over 1,200 loci associated with BMI in at least one 

population. These studies have implicated many other genes in the leptin-melanocortin pathway, 

including AGRP, PCSK1, PHIP, SH2B1, SIM1, and ADCY3, and additional genes that control 

brain function, including BDNF, NEGR1, and NTRK2111,136,137. When considering the genes 

nearby the BMI GWAS loci, researchers found that they often contained brain specific enhancer 

and promoter sequences, and the genes were preferentially expressed in brain138,139.  

Using MR studies, we find that BMI is a causal risk factor that increased the odds ratio of incident 

disease risk for cardio-vascular disease102,140, type 2 diabetes102,140–143, cancer144, and infectious 

disease145. Because of our understanding of the genetic causes of obesity, researchers have 

identified druggable targets and have successfully created therapeutics to modify them10,58. In 
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individuals with upstream mutations in the leptin/MC4R pathway, Setmelanotide can successfully 

signal to MC4R to indicate satiety146. Further, GLP1 and GIPR agonists have shown success in 

recent trials92,93.  

1.2.7 Genetics of Fat Distribution- 

Body fat distribution, as measured by WHRadjBMI, is a complex trait determined by genetics and 

other risk factors; it is up to 60% heritable in some populations147. Monogenic forms of extreme 

fat distribution phenotypes are called lipodystrophies148. AGPAT2, BSCL2, CAV1, and PTRF 

mutations cause almost complete loss of all adipose tissue, while mutations in LMNA, PPARG, 

PLIN1, CIDEC, and LIPE all cause loss of subcutaneous fat from limbs, and AKT2, PCYT1A, 

PIK3R1, MFN2, PSMB8, and ADRA2A present partial lipodystrophy features. Many of these 

genes normally function in adipocyte fat storage pathways, and most forms of lipodystrophy are 

accompanied by metabolic dysfunction.  

The first meta-analysis of GWAS of WHR was performed in 2009 and identified 1 locus nearby 

gene LYPLAL1149. Subsequent studies and meta-analysis of GWAS in WHR and WHRadjBMI 

predicted many more candidates150–154 and showed that the expression of those genes differed 

between visceral and subcutaneous depots154. Using promoter and enhancer, open chromatin 

profiling, and gene expression data, researchers found that the genes nearby the loci were likely 

expressed and regulated in adipose tissue138,154. They focused on a group of developmentally 

related genes, and showed that TBX15 regulated fat storage differently in visceral and 

subcutaneous adipocytes154. The most recent GWAS meta-analyses have uncovered ~350 loci 

associated with WHRadjBMI
155. These genes include RSPO3, TBX15, VEGFA, CPEB4, and others. 

Approximately one-third of the GWAS loci are associated with fat distribution in only one sex155,156, 

and some have a greater magnitude of association in one sex153.  
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Mendelian Randomization studies showed that WHR and WHRadjBMI are causal risk factors for 

cardiovascular disease102,157, stroke102, type 2 diabetes102,141, fatty liver disease158, and 

cancer159,160. Measures of central obesity increase disease risks as much or more than BMI. 

Despite the strong genetic component of this trait, only five genes (KLF14, LRP5, TBX15, RSPO3, 

and SHOX2) have been mechanistically linked to disproportionate fat storage in one depot 

compared to the other161–167. While these studies have been crucial to advancing our 

understanding of this phenotype, we have not yet identified any druggable targets, and therefore, 

no targeted therapeutics to modify WHR exist91. 

Because many of these genes putatively act in adipose tissue, fat distribution researchers take 

advantage of public –omics data in adipose tissue to uncover the genetic and cellular 

mechanisms. eQTL studies associating SNPs and adipose tissue gene expression have been 

performed in European men of the Metabolic Syndrome in Men (METSIM) cohort168, primarily 

European-ancestry adults of the Gene Tissue Expression (GTEx)169, and in European adults of 

the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET)170. Single-

cell and single-nucleus RNA-sequencing approaches have been applied to adipose tissue with 

varying success171–178. Large adipocytes often lyse open when sorted into single droplets, so most 

sequencing will either exclude adipocytes, use nuclei instead of whole cells, or only contain small 

adipocytes. Other common problems persist in this data, such as lack of sequencing depth and 

lack of reproducibility of findings179. Despite these problems, single-cell experiments have 

illuminated sub-populations of adipocytes and pre-adipocytes poised for different types of 

metabolism178. 
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1.3 Summary of Thesis: 

In summary, adipose tissue is a complex, active organ that regulates systemic metabolism. 

Dysfunction in brain pathways and in communication between adipose and the brain leads to 

excess adiposity, while gene expression in adipose tissue determines the distribution of fat 

between depots. We have uncovered many mechanisms by which protein integrity and gene 

expression cause obesity and have designed therapeutics to target some of these. To treat the 

metabolic complications of excess visceral adiposity, we need to broaden our understanding of 

the genes and pathways that control preferential fat storage in this depot.  

Chapter 2 will discuss strategies to identify and prioritize putative gene regulators of body fat 

distribution using Bayesian networks and publicly available data. Chapter 3 will discuss strategies 

to identify causal genes and report our results experimentally validating seven candidate fat 

distribution genes. Chapter 4 will investigate how genetic background and diet composition 

interact to influence metabolic parameters and adipose tissue gene expression. Chapter 5 will 

discuss the implications of these results. 
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2.1 Introduction: 

2.1.1 Biological Networks- 

Much of the natural world is organized into systems of individual parts that work together in 

sometimes random, often organized ways1. From making friends and networking with colleagues, 

to how proteins bind and interact, natural processes usually follow similar patterns that we can 

describe with biological networks2. Networks are a graphical and mathematical way to describe 

the interactions between parts of the system1. By studying the parts as a whole, we can predict 

and explain phenomena that only occur when the parts work together and identify which parts are 

critical for the system to function1,3. 

2.1.1.1 Definitions:  

Networks are made up of nodes, each representing one part of the system1, such as a person or 

a protein (Figure 2.1 A). The nodes are connected by edges that describe an interaction between 

those nodes1, like a link on a social media app or a protein binding event. Edges can be weighted, 

or have different strengths depending on some criteria, like affinity of the protein-protein 

interaction. These edges are bidirectional in that both nodes participate in the interaction. Edges 

of a network can also be directed, in which the parent node is causal to the child node. For 

example, phosphorylation of protein A causes degradation of protein B. We refer to the series of 

edges between two nodes as the path. Often, the network structure, or the arrangement of nodes 

and edges, can be described by some mathematical model1,4.  
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Figure 2.1: Basic definitions and properties of biological networks 

(A) Node 1 and 2 are connected by an undirected edge, while nodes 3 and 4 are connected by a 
directed edge. 

(B) Compared to a random graph, biological networks have few nodes with many connections, and 
many nodes with few connections 

(C) This creates a modular structure, where each node is usually associated with one hub. These 
hubs are interconnected such that the distance between any two nodes in the network is small. 

 

2.1.1.2 Properties of biological networks: 

Most biological networks have a similar, conserved structure. We observe that these networks 

are organized into modular communities, have short path distances between nodes, and have a 

small number of well-connected nodes1,3. 

Scale-free networks have few nodes with many edges and many nodes with few edges, often 

described as a ‘hub and spokes’ model1,3 (Figure 2.1 B). The number of edges per node, in scale-
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free networks, follows the power law P(k) ~ k-a, where k represents the number of edges and P(k) 

represents the fraction of nodes with k edges5. a is called the degree exponent, determined by 

fitting the line log(P(k) ~ -a log(k). Most biological networks are scale-free, with a degree exponent 

between 2 and 3 (Ref. 5).5This observed scale-free structure is thought to be evolutionarily driven 

by the genomic replication of structurally similar genes, leading to redundant network connections 

with shared hubs1. 

Small world networks are organized into modular communities of nodes, yet have short path 

distances between nodes6–8 (Figure 2.1 C). The smallest number of edges crossed to connect 

two nodes in the network is called the shortest path4,9. Biological networks often have a shorter 

average shortest paths than networks with the same nodes and randomly assigned edges. The 

clustering coefficient of a network describes the extent to which nodes in the network are 

interconnected, calculated as the number of three-node triplets with edges between each node 

divided by the number of three-node triplets without all three edges8. All three-node combinations 

in the network are considered. Biological networks often have a higher clustering coefficient than 

networks with the same nodes and randomly assigned edges, 6.  

Biological networks are clustered into communities that have stronger connections between group 

members than with non-group members1–3. The number of edges connecting to nodes in and out 

of the cluster can be used to determine the cluster’s connectivity2. In biological networks, nodes 

are often grouped, with a small number of ‘hub’ nodes connecting the peripheral nodes10. 

However, the distance between any two nodes in the full network is small, because the hubs are 

highly interconnected1,3. This makes the biological networks robust to perturbation and node 

removal1,3; we see in networks and in mechanistic biology that a small subset of all expressed 

genes and proteins are necessary for system function1. 

2.1.1.3 Applications of Biological Networks: 
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Biological networks have incredible descriptive and predictive power11,12. By organizing large 

amounts of data into interpretable mathematical models, we can observe emergent properties of 

the system1,3,13, predict nodes critical to these outcomes10, and observe how these responses 

lead to disease progression11,12,14,15. For example, by organizing the proteins in a signaling 

pathway into a network, we might observe feedback loops or crosstalk between two pathways. 

These features would not be observed when considering one protein or pathway at a time3. 

Further, we might observe groups of nodes with a shared attribute, for example, a highly 

connected group of genes related to cell cycle. We might hypothesize that other highly connected 

genes with unknown function act in the cell cycle pathway, and that the cell cycle was an important 

pathway in the gene set. The network structure allows one to interrogate which nodes are critical 

for the system to function10,16. We can identify nodes with many connections or remove nodes to 

observe how the network compensates.  

Different types of biological networks are best at describing different phenomena, such as protein 

interactions17, signaling pathways, gene regulation18,19, single-cell RNA19, metabolic reactions20,21, 

and more. Protein-protein interaction networks, like STRING22 and Reactome23, are often 

undirected networks where the edge weight is related to the strength of the interaction and can 

be used to infer the function of proteins based on binding partners. Signaling networks, like 

KEGG24, are directed networks and often have nodes with phenotypic outcomes. They are often 

used to predict which pathways will be turned on or off in response to shared stimuli. Gene 

expression networks can be directed or undirected25,26; both are used to predict novel gene drivers 

of disease. Recently, network models have been applied to single-cell RNA-seq data, where they 

are used to predict cell-type specific gene regulation27 and ligand-receptor interactions between 

cell types28.  

The human genome encodes more than 80,000 transcripts that encode an estimated 20,000 

proteins29. It is estimated that we do not know the function of up to 6,000 genes, and we know 
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even fewer tissue- and disease-specific functions. As further discussed in Chapter 3, GWAS 

predict that hundreds of genes are potentially involved in obesity and fat distribution30,31, yet only 

a subset have been mechanistically linked to disease progression. It can be costly and time-

consuming to perform experiments that assess gene function, but using networks, we can 

organize known and novel genes and prioritize essential network genes for future study.  

2.1.2 Co-expression networks: 

Co-expression networks are undirected networks made using the correlation structure within gene 

expression data, where edges represent scaled Pearson correlations between nodes, or 

genes32,33. By design, these are scale-free, modular networks with groups of highly correlated 

genes emerging32. We can then look at the function and disease relevance of the genes within 

modules to make inferences about unknown genes.  

2.1.2.1 Theory and Construction:  

Genes are often regulated in conserved groups, potential due to a signaling pathway or by a 

shared transcription factor. To identify the correlated and putatively co-regulated genes within a 

dataset, we first find the correlations between every gene in the dataset. Since gene expression 

data is noisy, we can amplify the true differences by raising all correlations to a power. The power 

is chosen such that the network structure follows the power law. Once we have the adjusted 

correlations, we identify groups of highly correlated genes using hierarchical clustering. The 

groups are called modules; and genes that are not highly expressed, variable, or correlated with 

other genes are not sorted into modules. The average module gene’s expression per sample has 

low variation and has stronger correlations with genes within the module than without. We can 

also calculate the module eigengene per sample, which is the first principal component through 

the gene expression in that module, representing the axis of highest variation. We use the R 
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package Weighted Gene Co-Expression Network Analysis (WGCNA) to construct and analyze 

these networks.  

The Python package iterativeWGCNA improves upon the WGCNA construction methods by 

iteratively reassigning genes to new modules of best fit. First, the connectivity of genes in the 

module to the eigengene is assessed, and genes that do not strongly fit with the eigengene are 

removed. Genes not in modules are re-run through the module detection pipeline iteratively until 

no new modules are found and similar modules are merged. iterativeWGCNA ensures that all 

genes in the module are strongly correlated to the module eigengene and, therefore, to each 

other. iterativeWGCNA assigns more genes into modules than does WGCNA, and those modules 

are small and more numerous.  

Once we identify the communities of highly correlated genes, called modules, we next try to find 

the module’s function and disease relevance. Using annotated pathways, such as gene ontology 

(GO), molecular signature database (msigDB), or KEGG24, we can test if there is significant 

enrichment for any particular pathway within the module of interest. We perform a Fisher’s exact 

test to see if the module contains more than expected pathway genes, compared to the whole 

gene set. Using phenotypic data collected in the same samples as the gene expression data, we 

can look at module gene correlations with disease indicators, biomarkers, and phenotypic traits. 

We calculate the Pearson correlations between the phenotypes and the module average gene 

expression or the module eigengene. Using Fisher’s exact test, we can also test whether the 

module is enriched for candidate GWAS genes for the disease or trait of interest. The success of 

linking module gene expression to disease depends on using gene expression data from a 

disease-relevant cell line or tissue. Once we identify these modules of interest, we can further 

investigate the genes contained within.  

2.1.2.2 Applications in gene expression data: 
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Co-expression networks are often used to predict the function of unknown genes in the tissue of 

interest. By annotating the module with enriched pathways, we can infer that other genes in the 

module may be part of those pathways34–37, and by using unbiased construction methods, we can 

ensure that disease-relevant but unknown function genes will be considered38. We can also 

identify hub genes, which are the most highly connected genes in the module, and are, therefore, 

putatively more biologically relevant39–44. This approach has had success in WGCNA modules but 

might have limited applicability in iterativeWGCNA because the module genes have highly similar 

patterns of expression. By comparing gene expression in two conditions, we can make inferences 

about diseases45 or identify conservation between datasets46,47. Finally, module genes are 

expressed, correlated, and putatively co-regulated in the gene set of interest16, which may provide 

clues to the normal or disease function of a gene in that tissue. 

2.1.3 Bayesian Networks: 

Bayesian networks are directed acyclic graphs made using the underlying structure of gene 

expression data. According to Bayes’ Theorem, the edges represent putative causal relationships 

between two nodes, or genes, i.e. expression of gene A → expression of gene B. Bayesian 

networks in biology often follow scale-free and small-world properties, but the construction is 

unbiased and must be assessed. These networks are powerful predictive tools; because the 

edges imply causality between genes, we can infer which genes may be regulatory of many 

others. By annotating the network with disease-relevant genes, we can identify putative regulators 

of disease. 

2.1.3.1 Theory and Construction:  

Genes expression is a tightly regulated process, where the expression of specific regulatory 

genes, like transcription factors and signaling molecules, controls the expression of downstream 
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programs of genes48. To capture the causal relationships between the expression of many genes 

and identify key regulators of these processes, we must employ networks with directed edges49.  

A Bayesian network is a type of directed acyclic graph (DAG), where, based on Bayes’ theorem, 

the probability that a node in the network has a certain expression value depends on the 

expression of its parent nodes, or the nodes upstream of it26,49. For a gene A, with parent genes 

B and C, the probability that A has a particular expression value depends on the expression state 

of B and C: 

𝑝(𝐴)  =  𝑝(𝐴|𝐵, 𝐶)  =  𝑝(𝐴|𝐵) ∙ 𝑝(𝐴|𝐶), 

where 𝑝(𝐴|𝑝𝑎𝑟𝑒𝑛𝑡) is the conditional probability between the two nodes26,49,50. These conditional 

probabilities are the parameters of the network, which might be known or experimentally 

determined, or can be learned from data. Graphs made from discrete data uses contingency 

tables to represent the conditional probabilities, while continuous data forms a probability 

distribution50.  

Each edge in the network represents one of these conditional relationships between nodes. The 

total structure of the graph describes all relationships between genes as a joint probability. The 

joint probability of a full graph, X, is the geometric sum of all individual node probabilities. 

𝑝(𝑿) =  ∏ 𝑝(𝑋𝑖 |𝐷𝑖) 

where X is the full graph, Xi is a node in the graph X, and Di is the set of parents for node Xi26,49,50. 

In some applications of Bayesian networks, the graph structure is known, and we want to learn a 

set of parameters, for example, the conditional probabilities of each node50–52. This can help make 

decisions about which outcomes will be observed in which scenarios. When using gene 

expression data, we know the probability distribution of expression values for each gene across 
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all samples in the dataset. Instead, we want to learn the graph structure that best fits the observed 

data26,53. 

Popular score-based methods to learn the relationships within the graph generally try to maximize 

a likelihood function, which increases the ability of the graph’s joint probability to describe the 

observed gene expression data53. Since adding more edges will almost always increases the 

likelihood of the new graph structure by overfitting the sample data, most scoring metrics also 

have a term to penalize each new edge added. The Bayesian Information Criterion is commonly 

used as a scoring metric: 

𝐵𝐼𝐶 = 𝑘 ∙ ln(𝑛) − 2 ∙ ln (𝐿)  

where n is the number of nodes, k is the number of parameters estimated (edges), and L is the 

likelihood function. Maximizing this function results in the best-fit graph structure that is not overly 

complex54. Algorithms may be able to identify the global optimal solution for a network made up 

of a small number of nodes, but Bayesian network construction is an N-P hard problem that scales 

with each node added26. Thus, heuristic search algorithms and other computational tools must be 

employed to identify maxima. Greedy hill-climbing algorithms pursue the immediate optimal 

solution55 and Markov blankets can reduce the parent-gene search space49. We also construct 

many iterations of the same network and merge the results to avoid local maxima56. 

Further, multiple network structures can result in the same likelihood when there is not enough 

evidence in the gene expression data to determine which of two related genes are parent and 

child. To break the equivalency, we add prior information to improve predictions, such as known 

direct connections or eQTL data16,57. In theory, genes that are regulated by SNPs on the chromatin 

might be more likely to be upstream of and turn on or off other genes; therefore, we denote the 

gene with the eQTL as the parent in these cases. Early studies in Bayesian network reproducibility 

showed that adding genetic information improved precision and recall58. 
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Bayesian network construction is a time- and computationally-intensive process, and few popular 

construction tools can handle networks with more than 100 nodes. R packages bnlearn and deal 

construct reproducible networks on small gene expression datasets59. However, to investigate the 

relationships between thousands of genes at once, we require the Reconstructing Integrative 

Molecular Bayesian Network (RIMBANET) tool56, which is able to handle up to 10,000 nodes 

(Table 2.1) by discretizing the gene expression data to reduce computational complexity. 

RIMBANET also takes in diverse prior information, including direct connections, eQTL data, and 

continuous gene expression data, to improve the predictive power of the network. 

2.1.3.2 Applications in gene expression data: 

Large-scale Bayesian networks were first applied to yeast gene expression data60,56,58 and have 

been applied to gene expression data from model organisms61–64. In human data, Bayesian 

networks were used to predict novel disease regulators47,65–71. Many studies went on to 

experimentally validate that the predicted gene affected a relevant disease process in cells16,72–

79. Bayesian networks can even be used to further interrogate the module genes identified in co-

expression networks65.  

2.1.3.3 Key driver analysis: 

Because of the causal structure of the network, we can more easily identify the putative regulatory 

genes, called key driver genes12,80. Depending on the goals of the analysis, we may be interested 

in finding key driver genes that regulate many others in the gene set16, or we might want to find 

regulators of disease-related genes81. Studies show that, compared to other network features, 

key drivers are more likely to be replicated across samples and robust to sub-sampling82. 

An unbiased approach of key driver identification uses the network structure to prioritize genes 

that are a parent, and therefore putatively regulatory, of many others in the network83 (Figure 2.2 

A). These key drivers are putatively regulatory of normal tissue function and may be involved in 
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disease processes. To identify these key drivers, we define a set of downstream genes as the 

genes within a certain shortest path distance from the tested gene. We term the distances n-hops. 

For a given n-hop, we determine whether the number of downstream genes is an extreme value 

for this dataset- whether it is more than one standard deviation from the mean of all network 

genes83. Some applications of this method use one distance, while some integrate multiple n-

hops into a score for each gene. In each dataset, the top scoring or most extreme values, usually 

top the 10%, are called key driver genes, and are prioritized for further study83. 

Disease-related key driver genes are putatively regulatory of disease-causing genes, and are of 

particular interest81 (Figure 2.2 B). Given a list of disease-related genes, such as candidate GWAS 

genes, we can perform a Fisher’s exact test to determine if the downstream gene set of a gene 

in the network is enriched for the disease-related genes, compared to the entire network. The 

downstream gene set can be defined as the genes within a certain shortest path distance from 

the tested gene. Mergeomics implements this method for some path distances81.  

 

 

Figure 2.2: Identification of key drivers in Bayesian networks 

(A) Using the structure of the graph, we can identify key driver nodes that regulate more than 
expected number of downstream nodes 

(B) We can identify key driver genes by annotating the nodes with disease or trait related genes. We 
determine which nodes are enriched for downstream disease related genes. 
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This section explores the parameters that influence Bayesian network construction and key driver 

identification. To prioritize candidate genes involved in fat distribution, we harnessed the 

predictive power of the Bayesian network and key driver analysis approach to identify genes likely 

to drive fat storage in subcutaneous and visceral fat (Figure 2.3). Due to the differences in body 

fat distribution between males and females, we constructed separate Bayesian networks of each 

sex-depot pair to model the distinct gene regulation in each tissue. To increase the predictive 

power, we identified key driver genes replicated in two independent cohorts. These identified key 

drivers are unbiased network predictions of the gene regulation in adipose tissue. 

 

Figure 2.3: Overview of the network construction and key driver gene identification schema used in main 

analyses: Publicly available RNA-seq gene expression data (GTEx84 and STARNET85) from 

subcutaneous and visceral adipose tissue were subset between males and females. Co-expression 

network genes and WHRadjBMI GWAS genes30 used to construct Bayesian networks representing each 

sex and depot using RIMBANET56. Key driver genes shared between STARNET and GTEx were 

identified in each network, and the shared key driver genes were prioritized.  

Figure made with BioRender. 
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2.2 Results: 

2.2.1 Optimal Parameters for Bayesian Networks using RIMBANET in adipose tissue 

2.2.1.1 Network maximum number of nodes is less than 10,000 

To determine the utility of Bayesian network analysis transcriptome-wide, we determined the 

maximum number of input genes that could form a consensus network. In RIMBANET, 1,000 

individual graphs are constructed, then are merged into one consensus graph that represents 

connections found in 70% of the iterations. The rate-limiting step for these analyses is network 

consensus, which must iteratively identify and remove loops in the final structure to produce an 

acyclic graph. 

We attempted to build networks from 6,000, 8,000, and 10,000 genes that were most variably 

expressed in METSIM RNA-seq data from the subcutaneous adipose tissue of 434 men. We 

found that the time per iteration and consensus graph formation time scaled with the number of 

input nodes (Table 2.1). Networks with 10,000 input genes were not able to reach a consensus 

graph within three days of computation time, though each of the 1,000 iterations was successfully 

run. Future analyses showed that the complexity and resulting computation time varied by input 

dataset and by fat depot; subcutaneous expression data and STARNET datasets resulted in more 

complex networks that took longer to reach a consensus graph. We also observed that networks 

made with microarray data were more complex. 

Table 2.1: Number of input genes effects computational success and time of Bayesian network 
construction 

Number of 
Nodes 

Reached 
consensus? 

Estimated Time 
per iteration 

Estimated Time 
to consensus 

>1,000 yes > 5 minutes > 1 hr. 

6,000 yes 45 minutes 3-6 hr. 

8,000 yes 1-2 hr. 6-12 hr. 

10,000 no 2-4 hr. never 
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2.2.1.2 Selection of gene set using iterativeWGCNA module genes  

We performed much of the initial testing using the METSIM subcutaneous adipose tissue RNA-

seq expression data. Initially, we selected the top n most variable genes to determine some of 

the initial parameters. We then focused our analyses to include genes that were more likely to be 

regulatory of body fat distribution. We used WGCNA and iterativeWGCNA to identify genes co-

expressed and likely co-regulated in modules. We infer that genes sorted into modules are 

expressed and regulated in adipose tissue, while genes not assigned modules are either not 

expressed or are not co-regulated with other adipose tissue genes. We found that 

iterativeWGCNA was able to sort more genes into modules than WGCNA and that those modules, 

while usually smaller, were more variable in size (Table 2.2).  

Table 2.2: iterativeWGCNA sorts more genes into modules than WGCNA 

METSIM WGCNA iterativeWGCNA 

Genes in Modules 3024 9796 

Number of Modules 28 46 

Module Size Range 31-992 20-4100 

 

Table 2.3: iterativeWGCNA applied to adipose tissue RNA-seq data 

 

N input genes 
passing QC 

N genes in 
modules N modules 

Average 
module size 

N GO-term 
enriched modules 

STAR SQ 15514 10483 58 262.9 30 

MET SQ 15899 9796 46 388.3 30 

GTEX SQ 16466 3514 81 200.8 37 

STAR V 16109 10437 80 198.9 44 

GTEX V 16507 6792 98 166.7 63 

 

While iterativeWGCNA seemed more attractive in its ability to find strong correlations between 

larger numbers of genes, we wanted to make sure that the genes identified represented true 

biology and that it could be applied to all datasets. We used STARNET, METSIM, and GTEx 

adipose tissue gene expression data, considering samples from both sexes together. We followed 

initial quality control steps described in methods and used ~16,000 expressed genes as input for 
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each dataset. iterativeWGCNA partitioned 9,000-10,000 genes into 50-80 modules in METSIM 

and STARNET (Table 2.3). The other ~6,000 genes in these datasets were not strongly correlated 

(biweight midcorrelation) with others and were not assigned to modules. Fewer genes were 

assigned into modules in GTEx, which seemed to be driven by the loss of the single large module 

that STARNET and METSIM possessed (Figure 2.4). GTEx co-expression networks identified 

more modules, but they contained fewer genes (Table 2.3). GTEx RNA is lower quality and 

contains more noise, which may account for the information loss. 

 

Figure 2.4: Number of Genes assigned to modules in each adipose tissue gene expression dataset 

(A) Number of genes sorted into each iterativeWGCNA module in STARNET Subcutaneous adipose 
tissue gene expression data 
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(B) Number of genes sorted into each iterativeWGCNA module in STARNET Visceral adipose tissue 
gene expression data 

(C) Number of genes sorted into each iterativeWGCNA module in GTEx Subcutaneous adipose tissue 
gene expression data 

(D) Number of genes sorted into each iterativeWGCNA module in GTEx Visceral adipose tissue gene 
expression data 

(E) Number of genes sorted into each iterativeWGCNA module in METSIM Subcutaneous adipose 
tissue gene expression data 

 

We wanted to make sure that normal and potentially disease adipocyte cell processes were 

represented within the modules. We tested to see whether the large modules contained genes 

within specific gene ontology (GO) pathways. The large module not seen in GTEx is enriched for 

basic cell processes like transcription and protein homeostasis (Supplemental Table 2.1). We 

applied GO term enrichment to the rest of the modules to see whether these processes were 

missing from GTEx modules. We identified modules within GTEx enriched for similar basic cell 

processes, though these were dispersed over a greater number of enriched modules 

(Supplemental Table 2.1). Further, we find a wide array of adipose tissue processes within the 

enriched GO terms; each dataset contains basic cell processes-related modules, lipid 

metabolism-related modules, and modules related to other tissue resident cell types. Despite 

known differences in cell-type composition, we observed a similar number of modules related to 

lipid processes and to immune processes in all datasets. 

We conclude that, while there are differences between the gene-gene correlation structures of 

STARNET, GTEx, and METSIM, iterativeWGCNA is a good method for identifying groups of 

genes that represent shared adipose tissue biology. In future analyses, we identify the genes that 

are assigned to modules in both datasets as a set representative of conserved adipose tissue 

gene expression and use this gene set to construct meaningful adipose tissue Bayesian networks. 

2.2.1.3 K-means clustering is optimal method of discretization              

RIMBANET is able to create large Bayesian networks in part by discretizing the gene expression 

into three bins corresponding to low, medium, and high expression. Specifically, the network is 
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built and scored using the conditional probabilities between discretized gene expression values; 

continuous data is only used to update prior information. Others found that the method of 

discretization effects the structure and confidence of the graph26, therefore using discretized data 

that accurately represents the continuous data in necessary for accurate modeling and 

predictions. 

We first investigated the distribution of expression within k-means discretized bins in METSIM 

RNA-seq data. We used WGCNA to identify modules within the METSIM data, then identified six 

modules containing ~3,000 genes that were highly correlated with WHRadjBMI. We used expression 

from the module genes to create large Bayesian networks, each using a different set of user 

defined or k-means discretized expression values.  

 

Figure 2.5: K-means cluster assigns genes to overlapping expression bins. 

(A) Continuous gene expression in METSIM adipose tissue gene expression 

(B) Expression data discretized using k-means clustering 
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(C) Continuous expression  of values assigned to the ‘low’ expression bin 

(D) Continuous expression of values assigned to the ‘medium’ expression bin 

(E) Continuous expression of values assigned to the ‘high’ expression bin 

Natural log (ln) transcripts per million + 1  displayed 

We observe that the k-means discretization created bins that are overlapping, and that the low 

expression bin contains expression values between 0 and 3.5, in log-scaled Transcripts per 

Million (TPM) (Figure 2.5). Most values in the low bin had expression less than 2.5 log-scaled 

TPM. Equal number of values were sorted into the low and medium bins, while the high 

expression bin was comparatively small. 

We compared k-means clustered bins to user the defined, cut-off based bins. We created  schema 

for binning expression in five ways, increasing the size of the “low” bin (Table 2.4). The bins we 

defined represented a range of artificially lower and higher number of expression values sorted 

into the ‘low’ bin.  

Table 2.4: User defined discretization schema are less successful at constructing predictive 

Bayesian networks than k-means clustering 

Discretization low range medium range high range 
Reached 

consensus? Nodes Edges Degree 
Key 

Drivers 

Disc 1 0-2 2-4 >4 no 6536 8785 2.20 0 

Disc 2 0-3 3-6 >6 no 6051 7418 2.74 1 

Disc 3 0-4 4-8 >8 no 4748 5632 2.52 0 

Disc 4 0-5 5-10 >10 yes 2937 3630 2.54 0 

Disc 5 0-6 6-12 >12 yes 1719 2115 2.26 6 

K-Means Disc <~2.5 ~2.5 - ~6 > ~6 yes 5282 6248 2.05 
 

17 

*red = determined from one iteration, green = determined from 
consensus network   

 

 

We found that the user defined bins most similar in size to the k-means declared bins, Disc 1, 2, 

and 3, could not form consensus graphs from the 1,000 iterations (Table 2.4). Artificially forcing 

the ‘low’ bin to contain more expression values, as in Disc 4 and 5, created iterations that could 

reach a consensus graph, but these networks contained fewer edges and nodes. We randomly 

selected one iteration of each of Disc 1, 2, and 3 networks, and found that these network 

structures were more similar to the k-means graph. The number of nodes and edges in each 
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graph scaled with the size of the ‘low’ bin. Finally, we identified key drivers that were enriched for 

downstream WHRadjBMI key driver genes. We found that k-means discretized data produced the 

only network with the power to predict GWAS regulators. Therefore, we use k-means to discretize 

data in future studies. 

2.2.1.4 Including zero values may improve the predictive power of the networks 

Since we observed such differences in network structure based on the number of expression 

values sorted into the ‘low’ bin, we hypothesized that the size of the ‘low’ bin may have a large 

effect on k-means discretized networks. In our initial data quality control, we removed lowly 

expressed genes that had TPMs < 0.1 in more than 80% of the samples. In these analyses, we 

tested the effect of including genes with zero values (TPMs < 0.1) in less than 20, 40, 60, and 

80% of the samples. We used gene expression from GTEx, STARNET, and METSIM, with both 

sexes considered together. We used iterativeWGCNA to identify module genes in each dataset, 

then found the union set in each depot as described above. We used the combined gene set of 

6,275 genes in subcutaneous or visceral modules as the input gene set, and we included a set of 

705 WHRadjBMI and T2D related genes to test the enrichment of potential key drivers.  
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Figure 2.6: Removing genes with zero values in many samples clustered more values in the ‘low’ bin 
(A) Continuous gene expression in STARNET subcutaneous adipose tissue data including genes with 

zeros < 80% of the samples. 
(B) K-means discretization of gene expression in STARNET subcutaneous adipose tissue data 

including genes with zeros < 80% of the samples. 
(C) Continuous gene expression in STARNET subcutaneous adipose tissue data including genes with 

zeros < 60% of the samples. 
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(D) K-means discretization of gene expression in STARNET subcutaneous adipose tissue data 
including genes with zeros < 60% of the samples. 

(E) Continuous gene expression in STARNET subcutaneous adipose tissue data including genes with 
zeros < 40% of the samples. 

(F) K-means discretization of gene expression in STARNET subcutaneous adipose tissue data 
including genes with zeros < 40% of the samples. 

(G) Continuous gene expression in STARNET subcutaneous adipose tissue data including genes with 
zeros < 20% of the samples. 

(H) K-means discretization of gene expression in STARNET subcutaneous adipose data including 
genes with zeros < 20% of the samples. 

 

We found that increasing the number of zeros allowed in the gene set slightly decreased the 

amount of expression values that were sorted into the ‘low’ bin; restricting the gene set to genes 

with less than 20% zeros across samples resulted in more non-zero expression values sorted into 

the low bin (Figure 2.6). This was true for all five datasets, though only STARNET subcutaneous 

is shown here. The number of genes and edges scaled with the number of zero genes included, 

but these changes were small in magnitude (Figure 2.7). The degree distribution was between 

2.6 and 2.9 for all networks, but did not scale with number of zeros included.  
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Figure 2.7: Removing genes with many zero values across samples causes no change in network structure 

(A) Number of nodes included in the consensus graph versus percent zeros included 

(B) Number of edges included in the consensus graph versus percent zeros included 

(C) Degree of the consensus graph versus percent zeros included 

 

The number of structural and enriched key drivers identified was similar between datasets, and 

the number of zero genes included had a small effect on total number of key drivers identified. All 

networks were scale-free and capable of making predictions (Figure 2.8-2.10). However, the key 

drivers identified in each network were not the same. The identity of both enriched (Figure 2.8) 
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and structural (Figure 2.9) key driver genes were only somewhat conserved between networks 

including 60 and 80% zero genes, while the 20 and 40% zero gene networks were usually more 

dissimilar.  

 

Figure 2.8: More key drivers enriched for downstream WHRadjBMI genes are shared between the networks 
that allow 60 and 80% zeros across samples 

(A) Enriched key driver genes shared in Bayesian networks made from STARNET subcutaneous 
adipose tissue gene expression data including genes with zeros < 20, 40, 60 and 80% of the 
samples. 

(B) Enriched key driver genes shared in Bayesian networks made from STARNET visceral adipose 
tissue gene expression data including genes with zeros < 20, 40, 60 and 80% of the samples. 
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(C) Enriched key driver genes shared in Bayesian networks made from GTEx subcutaneous adipose 
tissue gene expression data including genes with zeros < 20, 40, 60 and 80% of the samples. 

(D) Enriched key driver genes shared in Bayesian networks made from GTEx visceral adipose tissue 
gene expression data including genes with zeros < 20, 40, 60 and 80% of the samples. 

(E) Enriched key driver genes shared in Bayesian networks made from METSIM subcutaneous 
adipose tissue gene expression data including genes with zeros < 20, 40, 60 and 80% of the 
samples. 

 

 

Figure 2.9: More high-scoring structural key driver genes are shared between the networks that allow 60 
and 80% zeros across samples 

(A) Structural key driver genes shared in Bayesian networks made from STARNET subcutaneous 
adipose tissue gene expression data including genes with zeros < 20, 40, 60 and 80% of the 
samples. 
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(B) Structural key driver genes shared in Bayesian networks made from STARNET visceral adipose 
tissue gene expression data including genes with zeros < 20, 40, 60 and 80% of the samples. 

(C) Structural key driver genes shared in Bayesian networks made from GTEx subcutaneous adipose 
tissue gene expression data including genes with zeros < 20, 40, 60 and 80% of the samples. 

(D) Structural key driver genes shared in Bayesian networks made from GTEx visceral adipose tissue 
gene expression data including genes with zeros < 20, 40, 60 and 80% of the samples. 

(E) Structural key driver genes shared in Bayesian networks made from METSIM subcutaneous 
adipose tissue gene expression data including genes with zeros < 20, 40, 60 and 80% of the 
samples. 

 

When considering both types of key driver genes, we found similar reproduction of key drivers 

between subcutaneous networks of including different numbers of zeros (Figure 2.10). In visceral, 

60% and 80% zero networks reproduced the most key driver genes between datasets. We 

conclude that removing genes that are lowly expressed in some samples does not affect the 

structure or predictive power of the networks; however, the reproducibility of those predictions 

within and between datasets may be slightly improved by including genes with more zero values. 

Since the BIC score of the network is calculated based on the discretized data, assigning more 

values to the zero bin likely reduces noise in the discretized data and therefore may reduce the 

number of false positive connections.  
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Figure 2.10: Key driver genes are similarly replicated between subcutaneous networks 

(A) Key driver genes shared in Bayesian networks made from subcutaneous adipose tissue gene 
expression data including genes with zeros < 20% of the samples. 

(B) Key driver genes shared in Bayesian networks made from subcutaneous adipose tissue gene 
expression data including genes with zeros < 40% of the samples. 

(C) Key driver genes shared in Bayesian networks made from subcutaneous adipose tissue gene 
expression data including genes with zeros < 60% of the samples. 

(D) Key driver genes shared in Bayesian networks made from subcutaneous adipose tissue gene 
expression data including genes with zeros < 80% of the samples. 
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(E) Key driver genes shared in Bayesian networks made from visceral adipose tissue gene 
expression data including genes with zeros < 20% of the samples. 

(F) Key driver genes shared in Bayesian networks made from visceral adipose tissue gene 
expression data including genes with zeros < 40% of the samples.  

(G) Key driver genes shared in Bayesian networks made from visceral adipose tissue gene 
expression data including genes with zeros < 60% of the samples. 

(H) Key driver genes shared in Bayesian networks made from visceral adipose tissue gene 
expression data including genes with zeros < 80% of the samples. 

 

2.2.1.5 Subsampled networks are able to partial replicate the predictions of the original 

To test the robustness of network predictions and the utility of using different samples sizes in the 

same study, we subsampled all datasets to 10, 50, and 90% of the original samples. We used 

STARNET and GTEx, divided into males and females, and used ~7,000 input genes using 

Bayesian network modules. We chose genes assigned to modules in both GTEx and STARNET 

in at least one sex and depot. Then, randomly chose the samples included and constructed 

Bayesian networks in RIMBANET. 

We found that the number of genes and edges included into the networks increased with the 

percent of total samples included (Figure 2.11 A, B). Specifically, these characteristics scaled with 

log number of samples (Figure 2.12). Larger networks also had higher average path distance and 

smaller clustering coefficient compared to random networks (Figure 2.11 C-E). These 

characteristics were all higher in STARNET networks compared to GTEx networks of the same 

size. Depot and sex did not affect network size independent of the sample size effect (Figure 2.12 

I, J). The 90% networks are similar to the original networks, the 50% sub-sampled networks 

appear able to replicate the size of the originals but not the structure, while 10% sub-sampled 

networks are not similar to full networks.  

We assessed the predictive power of the sub-sampled networks by identifying the reproducibility 

of the structural and enriched key driver genes of the full network (Figure 2.11 F, H). Since 

structural key drivers represent the top 10% network genes, these scaled with number of genes, 

and thus increased with sample size. Networks containing 90% of the original samples replicated 
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over 50% of the original network’s predictions. Key drivers enriched for downstream WHRadjBMI 

GWAS genes also increased with sample size, though did not reproduce the original results to 

the same extent as the structural key drivers. We found that the number of samples was correlated 

with the number of key drivers predicted, both structural and enriched (Figure 2.12). Though we 

found that STARNET networks identified more total key drivers, networks made by sub-sampling 

GTEx datasets were equally good at reproducing the results of the original. The reproducibility of 

key driver predictions differs by sex and depot (Figure 2.11 I). The key drivers shared between 

STARNET and GTEx were identified in the original networks and in the sub-sampled networks. 

The male subcutaneous and female visceral networks had the best ability to reproduce the results 

of the original (Table 2.5) 
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Figure 2.11: Sub-sampling the networks to different percentage of input samples impact structural and 
predictive properties 

(A) Number of genes in each network by the percent subsampled 
(B) Number of edges in each network by the percent subsampled 
(C) Degree exponent of each network by the percent subsampled 
(D) Average shortest path distance of each network compared to a random network of the same size, 

by the percent subsampled 
(E) Clustering coefficient of each network compared to a random network of the same size, by the 

percent subsampled 
(F) Percentage of structural key drivers predicted by the full network that were recovered by the sub-

sampled networks 
(G) Percentage of enriched key drivers predicted by the full network that were recovered by the sub-

sampled networks 
(H) Percentage of all key drivers predicted by the full network that were recovered by the sub-sampled 

networks 
(I) Percentage of all key drivers predicted by the full network that were recovered by the sub-sampled 

networks, grouped by sex and depot 
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Figure 2.12: Including a different number of input genes impacts structural and predictive properties 

(A) Number of genes in each network by the log number of genes in the network 
(B) Number of edges in each network by the log number of genes in the network 
(C) Degree exponent of each network by the log number of genes in the network 
(D) Average shortest path distance of each network compared to a random network of the same size, 

by the log number of genes in the network 
(E) Clustering coefficient of each network compared to a random network of the same size, by the log 

number of genes in the network 
(F) Number of structural key drivers predicted by the sub-sampled networks 
(G) Number of enriched key drivers predicted by the sub-sampled networks 
(H) Number of all key drivers predicted by the sub-sampled networks, colored by dataset 
(I) Number of all key drivers predicted by the sub-sampled networks, colored by depot 
(J) Number of all key drivers predicted by the sub-sampled networks, colored by sex 

 

Table 2.5: 90% subsampled networks have the greatest ability to reproduce shared key drivers 

Percent 
Sub-Sample 

Number of 
Shared Key 
Drivers 

Percent 
Overlap with 
Original 

Sex Depot 

10 29 0 Female Subcutaneous 

10 50 5.04 Male Subcutaneous 

10 19 0 Female Visceral 

10 38 5.04 Male Visceral 

50 69 15.68 Female Visceral 

50 92 14.2 Male Visceral 

50 51 11.36 Female Subcutaneous 

50 72 17.65 Male Subcutaneous 

90 76 37.25 Female Visceral 

90 102 13.45 Male Visceral 

90 103 39.4 Male Subcutaneous 

90 79 29.5 Female Subcutaneous 

 

2.2.1.6 eQTL priors do not significantly improve the structure of small graphs 

Because others find that including prior information improves the confidence in the identified 

structure58, we tested the effects of adding or not adding eQTL prior information to construct small 

Bayesian networks. First, we tested the utility of adding direct connections representing genetic 

regulation. Using WGCNA, we created modules in METSIM RNA-seq gene expression data, then 

used RIMBANET to construct Bayesian networks using the genes from individual modules. Here, 

we defined eQTLs as genes whose expression was significantly associated with a SNP in cis 
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(<1Mb, p < 2.46x10-4) and in trans (>1Mb, 1x10-4). A permissive trans-eQTL cutoff was employed 

purposefully, as few genome-wide significant trans-eQTLs are identified. We define pairs where 

the eSNP was associated with a gene in cis and a different gene in trans. We infer that the trans 

eGene levels are mediated by the cis eGene. We then define an edge in the network that connects 

the cis and trans pair if both genes are present in the input gene set. 

We find that user defined edges inconsistently improve the ability of the networks to describe 

observed expression data, as measured by the BIC score (Table 2.6). This does not appear to be 

related to the size of the network or the number of cis-trans gene edges included. 

Table 2.6: User defined eQTL edges do not consistently improve BIC score 

Module 
Name 

Number of 
eQTL pairs 
added 

Total Genes in 
Module 

BIC with 
eQTLs 

BIC 
without 
eQTLs 

BIC Score 
Improvement? 

black 1 95 -78416.96 -78447.8 Yes 

blue 9 251 -197577.97 -197607.86 Yes 

brown 2 199 -145467.82 -145449.74 No 

purple 4 174 -137225.91 -137346.39 Yes 

royalblue 1 45 -38177.92 -38178.39 Yes 

tan 1 72 -53779.59 -53776.9 No 

turquoise 58 992 -744039.87 -743543.88 No 

 

We statistically determined if the SNP effects on trans eGene expression were caused by the cis 

eGene using causal inference testing. Like Mendelian Randomization, causal inference testing 

identifies the likelihood of that the hypothesis of SNP->cis eGene->trans eGene is more likely that 

other connection structures. This test identified only eight significant SNPs that are associated 

with the Trans eGene when considering the cis eGene effects. In large networks, both genes in 

a pair were present for four pairs, on average. These were unlikely to have large effects in 

networks of thousands of genes and edges, and thus, were not employed in final iterations of 

network construction. 
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Next, we assessed the effect of adding cis-eQTL information to the graph. We assume that genes 

regulated by SNPs are more likely to be regulatory, as in the above model of SNP->cis eQTL-> 

effector gene. In these analyses, though we don’t know the trans-effector gene, we still assume 

the cis eGene is a potential regulator. When determining the more likely graph of two equivalent 

structures, the gene with SNP associations is chosen as the parent gene. The effect of including 

eQTL prior information on overall graph structure was minimal. Using 500 highly expressed genes 

in METSIM adipose tissue, we tested the effect of artificially declaring 0%, 10%, 50%, and 90% 

of the network genes as eQTL-eGenes on network structure. We observed that the networks are 

nearly identical; over ~500 edges in the networks, between zero and three edges were different. 

This was untested in larger networks; the same trend of limited effect may hold, or there may be 

more instances of graph equivalency. Therefore, in future analyses, we included eQTL prior 

information, though it may not be necessary. 

2.2.2 Applications of optimal Bayesian networks in adipose tissue: 

2.2.2.1 Bayesian Networks model adipose tissue gene connections in a sex- and depot-specific 

manner: 

We interrogated two independent datasets of subcutaneous and visceral adipose tissue gene 

expression, Genotype-Tissue Expression project (GTEx)84 and the Stockholm-Tartu 

Atherosclerosis Reverse Network Engineering Task (STARNET)85 (Methods) and stratified each 

dataset by sex. There are about twice as many males as females in each resulting dataset (Table 

2.7). 

Table 2.7: Adipose tissue donor characteristics  

  Subcutaneous Visceral 

  Male Female Male Female 

  STARNET GTEx STARNET GTEx STARNET GTEx STARNET GTEx 

Samples 387 444 162 219 362 370 147 171 

Age 64.3 ± 9.1 53.0 ± 12.8 69.2 ± 7.0 52.5 ± 12.7 64.4 ± 9.0 53.2 ± 12.8 69.2 ± 6.7 51.2 ± 12.6 

BMI 28.7 ± 4.3 27.7 ± 4.1 29.5 ± 4.8 26.6 ± 4.2 28.7 ± 4.2 27.5 ± 4.0 29.5 ± 4.8 26.9 ± 4.2 
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Ideally we would probe gene-gene interactions at a genome-wide level, but Bayesian network 

construction is computationally intensive, and therefore, we limited this analysis to a subset of 

<10,000 genes that are more likely to regulate body fat distribution (Figure 2.3). We prioritized 

putative regulators of body fat distribution using three strategies: (1.) genes whose expression 

are co-expressed with others in adipose tissue, (2.) genes proximal to body fat distribution GWAS 

loci30, and (3.) genes that are putatively regulated by the transcription factor KLF1486, see 

Methods. For a gene to be connected to others in a co-expression network, it must be expressed 

in the measured dataset, must vary between samples, and must be correlated with the expression 

of other genes. These properties are optimal for Bayesian network construction and can indicate 

gene function in the tissue of interest, therefore, we constructed adipose tissue co-expression 

networks for all eight datasets and identified genes connected in the corresponding STARNET 

and GTEx networks. The union set of replicated connected genes from co-expression networks 

contained 7,928 genes and made up the bulk of the input to Bayesian network construction. 

Genes nearest to WHRadjBMI GWAS loci likely contain a mix of 30% false positives and 70% true 

drivers of fat distribution87, so we added 443 genes proximal to the 346 significant WHRadjBMI loci 

to the input gene set (Methods)30,88,89. Two previous studies identified high confidence WHRadjBMI 

GWAS candidate genes using colocalization methods, so we also included these 59 genes. In 

total, we considered this combined set of 495 genes as WHRadjBMI GWAS genes in this study. 

While this set does not contain all possible causal genes, it is likely enriched for them. Finally, we 

have previously demonstrated that KLF14 expression regulates fat distribution in both female 

mice and humans90 and is associated with the trans-regulation of 385 genes in adipose tissue 

specifically86. We hypothesized that KLF14’s effect on fat distribution is mediated by some of the 

genes it regulates transcriptionally, and we included 385 KLF14 putative target genes in the input 

gene set. The union set contained 8,492 genes that were used to construct all eight Bayesian 

networks (Supplemental Table 2.2). From this diverse gene set, we aim to prioritize putative 
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candidate GWAS genes and genes outside of GWAS loci that may play a causal role for body fat 

distribution.  

Table 2.8: Sex- and depot-specific adipose tissue Bayesian network construction and key driver 
analysis results 

  Subcutaneous Visceral 

  Male Female Male Female 

  STARNET GTEx STARNET GTEx STARNET GTEx STARNET GTEx 

Genes 7360 6066 6814 5560 7343 6402 5908 4546 

Edges 9174 6782 6865 5651 8752 6845 5962 4533 

Key Drivers 833 695 753 632 779 670 660 502 

Shared Key 
Drivers 

119 88 119 51 

 

We chose RIMBANET to construct Bayesian networks for its ability to handle large input gene 

sets and its reproducibility between datasets58,91. We also added prior information about some 

genes to improve network performance, including genes with eQTLs in the corresponding adipose 

tissue depot (Supplemental Table 2.3). We constructed eight sex- and depot-specific networks 

(Methods) that contained an average of 6,250 genes connected, with an average of 6,821 directed 

edges between those genes (Table 2.8, Supplemental Table 2.4). Each network displayed scale-

free and small-world properties consistent with known biological networks (Table 2.9) 

Table 2.9: Biological properties of sex- and depot-specific adipose tissue Bayesian networks 

  True 
Biological 
Network 
Values 

Subcutaneous Visceral 

Biological 
Property Parameter 

Male Female Male Female 

STARNET GTEx STARNET GTEx STARNET GTEx STARNET GTEx 

Scale Free 
Degree Exponent 

Between 
2-3 

2.97 2.63 2.57 2.35 2.71 2.09 3.12 2.92 

Small 
World 

Average Shortest 
Path: 

Network/Random 

Less than 
1 

0.555 0.120 0.002 0.005 0.115 0.024 0.003 0.001 

Small 
World 

Clustering 
Coefficient: 

Network/Random 

Greater 
than 1 

45.882 72.222 113.333 55.556 68.750 76.471 117.647 38.636 

 

In general, the male networks had more connected genes and edges than the female networks, 

which could be due to the difference in input sample size. To test this, we randomly subsampled 
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the male input gene sets to include the same number of donors as the female networks, and 

constructed networks from these smaller sets. We identified an intermediate number of genes 

and edges for most subsampled networks (Table 2.10). The sparsity of the female networks is 

partially due to fewer female donors than male donors in the datasets.  

Table 2.10: Connected genes, edges, and key drivers in full male networks (left), sub-sampled 

male networks (middle), female networks (right) 
  Subcutaneous Visceral 

  Male Male Subsampled Female Male Male Subsampled Female 

  STARNET GTEx STARNET GTEx STARNET GTEx STARNET GTEx STARNET GTEx STARNET GTEx 

Genes 7360 6066 6586 5685 6814 5560 7343 6402 6788 5595 5908 4546 

Edges 9174 6782 7106 6116 6865 5651 8752 6845 7284 6374 5962 4533 

Key 
Drivers 

833 695 751 656 753 632 779 670 749 684 660 502 

Shared 
Key 
Drivers 

119 75 88 119 84 51 

 

2.2.2.2 Bayesian Network structure identifies putative sex- and depot-specific “Key Drivers” of 

adipose tissue function and disease: 

Using the eight constructed networks, we identified putative regulators of body fat distribution, 

termed key driver genes (Methods, Figure 2.3). Since we know that many body fat distribution 

genes are expressed and regulated in adipose tissue, a key driver gene that regulates many other 

genes in adipose tissue networks may also be a regulator of body fat distribution. Key driver genes 

have been biologically validated16,74 for their regulatory roles in Bayesian networks.  

We identified an average of 691 key driver genes per network (Table 2.8, Supplemental Table 

2.5). Bayesian networks, like other models, are subject to overfitting and false positive predictions, 

but others observe that key driver genes are more likely than other network features to be 

reproduced between datasets91 and may represent true biology. We compared the key driver 

predictions between our corresponding GTEx and STARNET networks and identified 334 

replicated key driver genes in total (Table 2.8, Supplemental Table 2.6). Only 38 replicated key 
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driver genes were found in multiple sex-depot groups, and only one key driver, ARHGEF12, was 

identified in all eight networks. There were more shared key driver genes found in male networks 

than in female networks, and in the subsampled male networks referenced above, we identified 

an intermediate number of shared key driver genes, showing that the number of replicated key 

drivers is partially a result of the input sample size (Table 2.10). 
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2.3 Discussion: 

We conclude that Bayesian networks have incredible predictive power but are highly susceptible 

to spurious connections. These can occur to due to improperly defining the bin of lowest 

expressed genes, or by including a small sample size. Here, we explore the effect of important 

parameters on network structure and key driver prediction, then apply optimal Bayesian networks 

in adipose tissue data in a sex and depot specific manner. We identified important key drivers of 

each network and found which were shared between datasets. 

We and others26 find that the network structure and key driver predictions were highly responsive 

to discretization method and inclusion of true-lowly expressed genes in the “low” bin, while eQTL 

prior information had a small effect on the structure. K-means clustering was required to group 

expression values, even when the number of genes include in the ‘low’ bin was conserved. 

Removing true zeros from the data did not affect the network structure, the number of key drivers, 

or shared key drivers identified, but the shared key drivers were not reliably reproduced between 

networks. Since Bayesian networks depend on the conditional probabilities between expression 

of genes, accurate definition of the zero bin as true lowly expressed genes is essential to compare 

to low and high expression bins and score the model using likelihood estimation26. Other studies 

show that micro-array data, unlike RNA-seq, cannot accurately measure gene expression near 

zero92,93; corresponding, networks produced using microarray data were extremely densely 

connected and were likely overfit. 

Models, including Bayesian networks, are prone to over-fitting to the construction dataset, and as 

such, may not be reproducible between datasets. One way to overcome overfitting is to increase 

the sample size. We find that increasing sample size increases the power to predict key drivers 

and to reproduce the key drivers identified in the original. However, more genes are included in 

the graph, which reduces important characteristics of small-world biological networks. There may 
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be an optimal maximum number of genes that creates a biologically meaningful network in each 

dataset while conserving the predictive power.  

To overcome the challenges of overfitting, we also identified key drivers in two independent 

cohorts and compared the shared biology. Although there are major differences between GTEx84 

and STARNET85 that likely drive gene expression, like biopsy location, cell composition, donor 

ethnicity, post-mortem tissue collection, or cardiovascular disease diagnosis, the shared gene 

regulation likely represents conserved adipose tissue function. We found that about 10% of key 

driver genes were shared between the two datasets, and similar overlap with METSIM, which was 

used in some studies. It may be possible to batch correct and merge samples of the same tissue 

to create a consensus network, although we would anticipate significant information loss due to 

the important differences listed above. However, this may be a novel way to identify only robust 

key driver genes. The 90% sub-sampled networks were able to capture part of the overlap 

between STARNET and GTEx, and male subcutaneous and female visceral were the most able 

to recapitulate the predictions of the full network. In our final application, we find that the smaller 

sample size of the female networks results in fewer predicted key drivers and shared key driver 

genes. We find few genes that are both replicated between samples and robust to sub-sampling, 

and most key driver genes are predicted to regulate one sex and depot.  

We hypothesize that key driver genes may regulate adipose tissue biology. Further prioritization 

is needed to identify testable key driver genes that may regulate WHRadjBMI and act in adipocytes, 

and further experiments are needed to determine their function. However, Bayesian networks 

were able to organize thousands of unknowns into one coherent model and predict the likely 

regulators. 
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2.4 Methods: 

2.4.1 Input Data:  

We interrogated RNA-sequencing gene expression data from subcutaneous adipose tissue and 

visceral abdominal adipose tissue from the Genotype-Tissue Expression project (GTEx)84 and the 

Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET)85. We used 

subcutaneous adipose tissue gene expression data from Metabolic Syndrome in Men (METSIM) 

cohort89, Detailed explanations of participant inclusion, data collection, sequencing, and 

quantification can be found at each source. Briefly, STARNET participants are people living with 

coronary artery disease, from whom biopsies of abdominal subcutaneous fat and abdominal 

visceral fat were obtained during open thorax surgery. Samples were sequenced using the 

Illumina HiSeq 2000 platform. GTEx biopsies of abdominal visceral fat and leg subcutaneous fat 

were taken from deceased donors shortly after death. Samples were sequenced using the 

Illumina TruSeq platform. All datasets were obtained in transcripts per million (TPM) format. 

2.4.1.1 Expression Data Processing:  

For some studies, we first used annotation meta-data from each source to divide the data into 

males and females. We used XIST expression to confirm these assignments. Next, we used 

annotations from the R package bioMart for genome build hg38 to select only the protein coding 

genes within each dataset. We then removed genes with less than 0.1 TPM value in greater than 

80% of the samples. Finally, we log transformed the gene expression values for subsequent 

analysis. 

2.4.2 Bayesian Network Input Genes: 

2.4.2.1 Co-expressed Genes:  
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We used the python package iterativeWGCNA94 to obtain modules of co-expressed genes in each 

dataset. Weighted gene co-expression network analysis (WGCNA)25 employs correlations found 

within the data to determine which groups of genes are highly correlated and likely co-regulated. 

First, we computed the correlations between all genes. We raised these correlation coefficients 

to an empirically determined power to increase the differences observed. Next, we performed 

hierarchical clustering on the correlation matrix to define modules of highly correlated genes. We 

then assessed the success of this clustering, and iteratively reassigned genes to the modules in 

which they fit best. Lowly expressed or uncorrelated genes were not assigned a module. We 

identified which genes were assigned to modules in each of the 8 datasets. We then compared 

the GTEx and STARNET module assignments for each depot and sex; we found genes assigned 

to modules in both datasets in the 4 depot and sex groups. We then took the union set of these 4 

gene sets as the co-expressed gene set (Supplemental Table 2.2).  

2.4.2.2 KLF14 trans-eQTL Network Genes:  

KLF14 predicted target genes were determined previously86. Single nucleotide polymorphism 

(SNP) rs4731702 is significantly associated with KLF14 expression in cis in adipose tissue of 

multiple cohorts86,89. The same variant is also associated with the expression of 385 genes across 

the genome in trans.(Supplemental Table 2.2).  

2.4.2.3 WHRadjBMI GWAS loci-adjacent genes:  

The largest WHRadjBMI GWAS meta-analysis to date was performed in primarily European 

ancestry and discovered 346 loci associated with WHRadjBMI
30. Multiple sources have determined 

that the functional gene is the nearest gene to the locus in ~70% of cases87, so we identified 

genes overlapping or nearest to the lead SNP (and SNPs with LD r2 > 0.8) of each WHRadjBMI 

GWAS loci using haploReg95. Further, we used 2 studies that identified high quality candidate 

genes using colocalization methods88,89, where the SNPs that affect association with WHRadjBMI 
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also affect the expression of the candidate gene, which is more likely to be functional 

(Supplemental Table 2.2).  

The union set of WGCNA module genes, KLF14 targets, and putative GWAS genes made up the 

input to Bayesian Network construction. For each dataset, the 8,492 gene expression values were 

discretized into “low” “medium” and “high” bins using k-means clustering. 

2.4.3 Prior Information: 

Since multiple graph structures can result in the same likelihood score, we can use prior 

information to improve confidence in the network structure. 

2.4.3.1 eQTLs:  

For each dataset, we determined which genes had cis-eQTLs with SNPs < ± 500 kb. These 

eGenes were more likely to be parent nodes in the Bayesian networks. Neither STARNET nor 

GTEx determined cis-eQTLs in a sex specific manner, so these eQTL eGenes were nearly 

identical for male and female networks (Supplemental Table 2.3). 

2.4.3.1 Continuous Data:  

Although the network is built on discretized gene expression data, RIMBANET is able to use 

continuous gene expression data to inform network construction. First, the continuous data is 

used to generate Pearson correlations between all genes. Correlations with significance p < 0.01 

are used as prior information to determine possible parents and prioritize which edges to add or 

remove. 

2.4.4 Bayesian Network Construction:  

Bayesian Networks for each dataset were constructed using RIMBANET using the discretized 

gene expression data, a list of eQTL eGenes, and the continuous gene expression data. The 

RIMBANET shell script was adapted for implementation on the University of Virginia’s high-
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performance computational cluster (Rivanna). RIMBANET was run with these tags: –C TRUE to 

specify continuous data, -w to add the continuous dataset, -d to add the discretized dataset, -e to 

add eQTL eGenes. RIMBANET scores networks using the BIC score and uses the 1,000 network 

iterations. It creates a consensus network by retaining edges present in 30% of the iterations. 

Finally, RIMBANET produces a directed acyclic graph by removing complete cycles.  

2.4.5 Properties of Biological Networks: 

Scale-free networks are have edge probability distributions that follow the power law5. We used 

the igraph() package in R to calculate the degree exponent for each network. Small world 

networks are highly clustered, yet have a short average distance between nodes8. We used the 

qgraph() package in R to calculate the clustering coefficient and average path length between 

nodes for each network. Since these properties scale with the number of nodes in the network, 

we compared these metrics to a random graph of the same size. 

2.4.6 Key Driver Analysis:  

Key driver genes of each network were identified with two methods: 1. by the number of 

downstream genes regulated by each potential key driver gene and 2. by the enrichment of 

disease genes in the set of downstream genes regulated by each potential key driver gene.  

To identify type 1 key driver gene testing, first, every gene in the network was profiled to determine 

its number of downstream genes at distances 1-10 edges away using the shortest path. Then, 

the mean and standard deviation in the number of downstream genes at each edge distance was 

calculated for the network.  

For each potential key driver gene, we calculated ten score functions: 

𝑆𝑐𝑜𝑟𝑒𝑑𝑖𝑠𝑡=𝑛 = (𝐺𝑑𝑖𝑠𝑡=𝑛 − 𝑁𝑀𝑑𝑖𝑠𝑡=𝑛)/𝑁𝑆𝑑𝑖𝑠𝑡=𝑛  
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where n is the distance in edges, G is the number of downstream genes the potential key driver 

gene has at distance n, NM is the network mean number of downstream genes at distance n, NS 

is the network standard deviation in the number of downstream genes at distance n. This is a 

metric of the extremeness of G, effectively a z-score. 

Finally, we calculated a total score for each potential key driver gene by summing the ‘z-scores’, 

weighting smaller edge distances away from the potential key driver higher than large edge 

distances: 

𝐺𝑒𝑛𝑒𝑆𝑐𝑜𝑟𝑒 =  𝑆𝑐𝑜𝑟𝑒𝑑𝑖𝑠𝑡=1 ∙ 1 + 𝑆𝑐𝑜𝑟𝑒𝑑𝑖𝑠𝑡=2 ∙ 1 + 𝑆𝑐𝑜𝑟𝑒𝑑𝑖𝑠𝑡=3 ∙ 1 +  𝑆𝑐𝑜𝑟𝑒𝑑𝑖𝑠𝑡=4 ∙ 0.75 +  𝑆𝑐𝑜𝑟𝑒𝑑𝑖𝑠𝑡=5 ∙

0.5 + 𝑆𝑐𝑜𝑟𝑒𝑑𝑖𝑠𝑡=6 ∙ 0.25 + 𝑆𝑐𝑜𝑟𝑒𝑑𝑖𝑠𝑡=7 ∙ 0.125 + 𝑆𝑐𝑜𝑟𝑒𝑑𝑖𝑠𝑡=8 ∙ 0.0625 +  𝑆𝑐𝑜𝑟𝑒𝑑𝑖𝑠𝑡=9 ∙ 0.03125  

The top 10% highest scoring genes in the network were declared type 1 key driver genes, similar 

to previous studies16. 

To identify type 2 key driver genes, a ‘neighborhood’ of downstream genes was declared for every 

gene in the network as those genes within 4 edges away. Next, WHRadjBMI GWAS genes30, defined 

above, were identified within the downstream neighborhood. Finally, using Fisher’s exact test, we 

determined whether the number of GWAS genes in the downstream neighborhood was 

significantly more than expected by chance, compared to the whole network. Genes with 

significant downstream enrichments for WHRadjBMI GWAS genes were declared type 2 key driver 

genes. 

Key driver genes for each network were the union set of type 1 and type 2 key driver genes. 

Shared key driver genes were genes identified as either type 1 or type 2 key driver genes in both 

STARNET and GTEx networks of the same type. 
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2.4.7 Data and code availability: 

Gene expression and eQTL data from GTEx can be found at dbGaP Accession 

phs000424.v8.p2on 10/01/2020. Gene expression and eQTL data STARNET can be found at 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001203.v3.p1, data 

available on request. Code used in these analyses can be found at  

https://github.com/jnr3hh/Reed_Civelek_2023_manuscript. 
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Chapter 3: Identifying and experimentally validating genes that cause fat storage in 

adipocytes 
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3.1 Introduction:  

Around the completion of the sequencing of the human genome in 20101, researchers undertook 

the first genome-wide association studies (GWAS) to identify single nucleotide variation (SNP)s 

associated with disease2,3. Some were surprised to find that the identification of mechanistically 

causal genes and even causal SNPs was less than trivial4. Knowing the mechanism of action of 

the causal gene can facilitate drug development, while knowing the causal SNP can help identify 

upstream regulators of the gene and can be used to identify individuals at higher risk for disease. 

3.1.1 Problems associated with GWAS follow-up- 

3.1.1.1 Haplotype Structure: 

The human genome is fragmented into haplotype blocks causing groups of SNPs in high linkage 

disequilibrium (LD) with each other5–7. If one SNP is significantly associated with the trait of 

interest, likely other SNPs in high LD will also be strongly associated4. Before using experimental 

validation, researchers employ a variety of computational ‘fine-mapping’ approaches to determine 

which of the many SNPs in the locus is likely causal8. First, since different ancestral groups have 

different haplotype structures, we can see which SNPs are significantly associated in multiple 

populations9. Specifically, the African genome is evolutionarily the oldest and has had more time 

to fragment into smaller haplotype blocks, meaning fewer SNPs are in LD with each other10,11. 

This requires recruiting more diverse populations into GWA studies and more participants to be 

powered to test more SNP-trait associations8. Other computational approaches use summary 

statistics or information about the chromatin structure to predict which SNPs are more likely to be 

causal8. Both approaches can help narrow tens or hundreds of SNPs in a locus to a handful that 

can be tested experimentally.  
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3.1.1.2 Gene-dense loci: 

Most loci contain multiple gene bodies, as well as non-coding RNAs and anti-sense transcripts4. 

While the majority of SNPs identified in GWAS regulate the nearest gene, a subset of SNPs 

regulate more distal genes. The FTO locus contains SNPs nearby the gene body FTO, but the 

SNPs regulate the expression of distal genes IRX3 and IRX512. Further, some genes in the locus 

have a clear mechanistic link to the disease or trait of interest, while some require phenotyping to 

determine how they contribute to the disease in the cell type or tissue of interest. eQTL data can 

help determine the gene of interest at the locus4. If the same SNPs are associated with the trait 

of interest and with the expression of a nearby gene, one could hypothesize that the gene might 

be regulatory of the trait. Colocalization methods statistically determine if the same SNPs are 

associated with both13–15. This requires robust eQTL data, which can be hard to come by. We 

need to know the tissue in which the genes likely act and have access to a biopsy of that tissue 

in living or recently deceased people. In diabetes, it can be hard to determine in which of the many 

metabolic organs that gene could act, while in cardiovascular disease, it is difficult to obtain major 

arteries of living people. 

3.1.1.3 European study populations: 

As mentioned before, much of the genotyping, gene expression, and multi-omics data in most 

diseases are primarily collected in European ancestry populations16. As such, conclusions about 

which SNPs and genes are causal for disease may only apply to patients of European ancestry17. 

Due to genetic drift, the European population contains a subset of the genetic variation present 

in older African genomes18. We know that SNPs have different allele frequencies in different 

populations19, and that different populations have different LD structures that predict different sets 

of associated SNPs5,11. By extending our GWAS and eQTL cohorts to include individuals of 

diverse ancestry, we can identify more SNPs and genes associated with disease. Further, the 

findings in these studies will be easier to fine-map and extensible to more individuals.  
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3.1.1.4 Non-linear effects: 

After completing the first few GWAS, researchers tried to use the associated SNPs to account for 

the heritability of each disease20, but found that SNPs could only explain a portion of the 

heritability. Recruiting more participants and increasing the power could not fully explain the 

“missing heritability”21,22. It is possible that non-linear effects between SNPs, genes, and 

confounding variables could explain the heritability. For example, we often consider an additive 

model of SNP effects, however, there are often cases where a certain gene is only deleterious in 

a certain context, be that another SNP’s allele, another gene’s expression, a risk factor’s 

presence, etc23. In the case of phenylketonuria, the disease is only deleterious when the patient 

eats a high protein diet24. When the diet is modified to exclude excess phenylalanine, these 

patients function normally. Other genes may not be regulated directly by SNPs, but still contribute 

to disease processes23.  

3.1.2 Experimental Validation-  

3.1.2.1 SNP-to-Gene: 

Early methods to test whether the mechanistic link between SNP alleles and the expression of a 

gene of interest co-opted the luminescent protein luciferin25. The luciferin gene is added to a 

plasmid construct under regulation of the endogenous enhancer or promoter containing the SNP 

of interest. Both alleles are tested to see if one version can produce more luciferin and therefore 

has stronger regulatory activity. While these studies were illuminating, they are time consuming 

to repeat for multiple SNPs or genes of interest. Further, they use sequences expressed from an 

artificial plasmid, which can’t replicate the complex, nonlinear effects of the 3-D chromatin 

structure.  

To edit the endogenous SNP, researchers use the Clustered Regularly Interspaced Short 

Palindromic Repeats (CRISPR) system26. A guide-RNA targets the location of the SNP and a 
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Cas9 enzyme makes the edit. Both alleles are tested to see if expression of the target gene is 

affected by the SNP. Although this system uses the endogenous chromatin structure, it is still very 

time consuming to edit and test multiple SNPs and genes.   

To decrease the time associated with identifying the causal SNP, researchers developed 

massively parallel reporter assays (MPRA)27. This assay relies on plasmid constructs to insert a 

putative enhancer sequence with one allele for one SNP of interest, as well as a minimal promoter 

and reporter gene, and barcode sequences to label the cells. The plasmids are inserted into the 

cells of interest, and we can measure the expression of the barcoded reporter genes to infer the 

activity of each allele. While this system does not use the endogenous chromatin structure, it can 

profile hundreds or thousands of SNPs at once, making it an attractive option to narrow the 

candidate SNP list. 

3.1.2.2 Gene-to-Phenotype: 

To test whether there is a mechanistic link between gene expression and the phenotype or 

disease of interest, researchers employ in vitro and in vivo models. Usually, these studies involve 

modulating the expression of the gene of interest, and observing the resulting phenotypic 

changes3,26. 

Using a cell type of interest, researchers can use pharmacologic or chemical agents to lower the 

expression of the gene of interest. If none exist, small interfering RNA molecules (siRNA) can be 

used to target and deplete the gene of interest28–30. Some cells easily take up plasmid DNA31,32, 

while some cells require lenti-virus to introduce the new constructs33,34. Conversely, we can add 

extra copies of the gene, usually on a plasmid under a constitutive promoter. The success of 

these studies depends on using a cell type relevant to the disease of interest and on measuring 

phenotypes that contribute to the disease process.  
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In fat distribution studies, the genes of interest usually act in adipose tissue and adipocytes35–37.  

Unfortunately, endlessly replicating human pre-adipocyte cell lines do not exist38. Instead, we use 

pre-adipocytes isolated from the subcutaneous fat of a male with Simpson-Golabi-Behmel 

Syndrome (SGBS cells)39. SGBS cells can proliferate and differentiate into mature adipocytes, up 

to passage ~45-50. After, these cells lose their ability to store lipids and differentiate into mature 

adipocytes, and can no longer be used as pre-adipocytes. Some researchers instead choose the 

mouse fibroblast cell line NIH 3T3-L1, which can take up plasmid DNA and can differentiate into 

mature adipocytes at any passage number40. While there are differences between mouse and 

human biology, these cells share similar features to human adipocytes that make them an useful 

resource for high throughput experiments41,42. Finally, other researchers choose to use primary 

pre-adipocytes isolated from human adipose tissues43. These cells can be hard to obtain, rapidly 

lose the ability to differentiate when cultured in a dish, and can exhibit large differences between 

individuals that introduce noise into the data. Subcutaneous adipose can be biopsied easily, while 

obtaining visceral adipose requires opening the abdominal cavity and is collected during surgery. 

However, these cells are necessary when studying females or visceral cells, since to date, no 

female pre-adipocyte or visceral pre-adipocyte cell lines exist38. 

Using cell lines, one can make conclusions about cell behavior and inferences about how that 

behavior contributes to disease. In obesity and fat distribution studies, the cellular phenotype is 

often increased or decreased fat storage, which clearly contributes to disease processes38. We 

often look at which fat storage processes (adipogenesis, lipogenesis, lipolysis, etc) are altered by 

the gene of interest. For other diseases, it may be less clear how the cellular phenotype 

contributes. For example, a gene that increases smooth muscle cell migration may help or hinder 

atherosclerosis progression, and further studies are required to link the cell behavior to disease 

processes44.  



96 
 

In vitro models, though more time consuming to produce, allow us to look holistically at the effect 

of the gene on disease phenotypes45. Mouse models are commonly used, as mice grow quickly 

and recapitulate many of the phenotypes seen in humans. Although there are differences in fat 

storage between mice and humans, there are many conserved pathways that point to shared 

genetic mechanisms and similar biological outcomes41,42. In mice, the subcutaneous fat depot is 

supra-abdominal, but studies confirm it plays the same physiological role in healthy fat storage 

as human subcutaneous fat. Mice also have permanent brown fat depots behind the neck, while 

most adult humans do not, though most humans do have the same thermogenic capacity as mice. 

Finally, female mice store less fat mass and more lean mass than male mice, though the opposite 

is true in humans42. Despite these differences, there are large similarities in fat storage processes 

and outcomes between humans and mice, making them an effective model of fat storage42. 

Mouse models were used to identify leptin (ob/ob)46 and the leptin receptor (db/db)47, and these 

models are still used to study genetic obesity. High fat, high sugar, or high cholesterol diets are 

also used to induce obesity in mice45, and are often used to promote atherosclerosis in mice48. 

To test the effects of a gene in a mouse model, that gene is knocked out or extra copies are 

added. Mice are usually bred in Mendelian ratios, such that wild type litter mates can be compared 

directly to the tested mice. Using these mice, we can look at body weight, fat and lean mass, 

glucose and insulin tolerance, fat pad size, adipocyte size, and other phenotypes45. Further, we 

can isolate the pre-adipocytes from these mice and perform cellular phenotyping, as described 

above. 

Other animal models of fat storage exist, notably zebrafish, flies, and worms, which can be used 

to rapidly profile phenotypes49. For example, zebrafish were used to confirm that the deletion of 

gene RSPO3 shifted fat storage from abdominal to peripheral fat storage. While these fat pads 

do not fully correspond with human anatomy, the results aligned well with the human data and 

provided additional evidence that RSPO3 affects fat distribution50. C. elegans worms only store 



97 
 

fat in one location, but can be used for rapid screening of potentially obesogenic genes51. Ideally, 

all studies in model organisms would be followed up or supported by human data. 

3.1.2.3 Challenges of studying fat distribution: 

Fat distribution is a complex, full body phenotype that is difficult to recapitulate with in vitro and in 

vivo models. Because it depends on differences between two tissues, fully characterizing a fat 

distribution gene requires testing its effects in both depots. Due to the lack of visceral cell lines, 

one must either use a model organism with multiple fat depots or primary human pre-

adipocytes38,45,49. The time and money required, the difficulty acquiring or producing the cells or 

mouse, and the lack of available cell lines all hinder the progress of fat distribution research. 

3.1.2.4 Previous experimental validation in fat distribution and fat storage: 

All of the previously validated fat distribution genes (RSPO3, LRP5, KLF14, SHOX2, and TBX15) 

effect pathways crucial to the expansion of subcutaneous and visceral adipocyte populations50,52–

57. RSPO3 and LRP5 studies used primary human pre-adipocytes isolated from both depots, while 

KLF14, SHOX2, and TBX15 relied on mouse cells isolated from both depots. LRP5 and RSPO3 

affect adipocyte differentiation by controlling Wnt signaling, while TBX15 controls adipocyte 

differentiation and mitochondrial function. While these are the only examples of genes with proven 

effects on depot-specific fat storage, researchers have shown that many other genes control 

adipocyte fat storage in one depot or cell type.  

The Wnt signaling pathway is a well-established driver of cell fate, differentiation, and proliferation 

in many cell types; Wnt inhibits adipogenic differentiation by transcriptionally upregulating 

osteogenic genes while downregulating PPARG and CEBPA. In many contexts, the non-

canonical Ca2+ form of Wnt signaling is inhibitory of the canonical Wnt pathway. Wnt signaling 

activity is positively associated with visceral adiposity, and many Wnt pathway genes, especially 
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ligands and receptors used in Ca2+ non-canonical Wnt signaling, are differentially expressed 

between fat depots.  

Mitochondrial function correlates strongly with cardio-metabolic diseases and can alter 

adipogenic differentiation. In mature adipocytes, mitochondria can facilitate physical connections 

with the lipid droplet, dissipate excess energy via thermogenesis through UCP1, and promote 

lipid homeostasis. Human visceral fat has increased mitochondrial activity compared to 

subcutaneous fat, and in multiple metabolic disease states, only visceral mitochondria become 

dysregulated. We hypothesize that other putative drivers of fat distribution affect Wnt signaling or 

mitochondrial function in adipocytes, with different outcomes in each depot. 

 

In this chapter, we applied some of these in vitro models to study select key driver gene function 

in adipocyte processes (Figure 3.1). First, we used curated, publicly available data to prioritize 

testable, likely functional genes within the set of key drivers identified in Chapter 2. Then, we 

modulated the expression of the key driver genes in pre-adipocyte cells, and measured the effects 

on adipogenesis and mitochondrial activity. 
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Figure 3.1: Overview of key driver gene functional validation: Key driver genes shared between STARNET 

and GTEx were identified in each network in chapter 2. 53 key driver genes expressed in (pre-)adipocytes 

but unstudied in adipose tissue were prioritized for further study. Seven selected key driver genes identified 

were perturbed in human pre-adipocyte cells, and functional readouts of adipogenesis, Wnt signaling, 

proliferation, and mitochondrial oxygen consumption were collected.  

Figure created with BioRender 
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3.2 Results: 

3.2.1 Prioritization pipeline identifies 53 novel and putatively functional adipocyte and pre-

adipocyte key driver genes: 

While the set of 334 replicated key driver genes (Supplemental Table 2.6) likely contains many 

novel mechanistic drivers of fat distribution or fat storage, it also likely contains false positives and 

well-characterized genes. Further, we hypothesize that fat distribution is driven, mainly, by 

adipocyte expansion, and that other adipose tissue processes, such as tissue structure, immune 

function, vascularization, etc, might contribute to fat distribution or its comorbidities by maintaining 

adipocyte health. We modeled these inter-cell interactions in networks, however we focused our 

experimentation only on genes likely acting in adipocytes. We employed three steps to narrow 

this list to likely functional, testable adipocyte key driver genes (Figure 3.2A, Methods). First, using 

a curated set of six publicly available single-cell and single-nucleus RNA-sequencing studies from 

human and mouse adipose tissue, we identified the cell types in which each key driver gene was 

expressed58–64 and removed 110 genes that were primarily expressed in non (pre-)adipocyte cell 

types (Figure 3.2B). These genes were primarily expressed in immune cells, smooth muscle cells, 

and endothelial cells (Figure 3.3). Second, we identified many well-studied genes in the key driver 

analysis, such as FGF1, DPP4, LRP6, and RXRA. While this points to the fact that our approach 

can identify well-known regulators of adipocyte function, we were interested in adding to the body 

of literature by validating genes unstudied in (pre-)adipocytes. We performed a comprehensive 

search of the existing literature to identify genes with known function in adipocytes and we 

removed 45 key driver genes involved in adipocyte processes (Figure 3.2C, Supplemental 

Bibliography 3.1). Third, we used multiple lines of genetic evidence to prioritize a subset of the 

remaining genes. We reasoned that the set of 495 WHRadjBMI GWAS genes likely contains many 

genes that play a mechanistic role in fat distribution, and we prioritized 41 WHRadjBMI GWAS genes 
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within the 179 remaining key driver genes (Figure 3.2D, Supplemental Table 2.6). Their identity 

as a regulator of genes within the network and their location nearby a significant GWAS locus is  

 

Figure 3.2: Prioritization of key driver genes for functional testing.  

(A) 334 key driver genes prioritized to 53 putative candidate regulators of WHRadjBMI  and adipocyte function 
using publicly available data.  
(B) Cell types in adipose tissue single cell- and single nucleus- RNA-seq data58–64 in which each key driver 
is expressed.  
(C) Key driver gene with known function in pre-adipocyte and adipocyte fat storage pathways.  
(D) Genetic evidence (status as WHRadjBMI GWAS gene or causes mouse fat storage phenotype) for key 
driver genes.  
Green checkmark indicates genes kept in analysis pipeline, red X indicates genes removed. 
 

strong evidence that they likely have a functional role in fat distribution. Additionally, we queried 

the functional role these genes play when knocked out in mouse models. Although there are 

differences in fat storage between mice and humans, there are many conserved pathways that 

point to shared genetic mechanisms and similar biological outcomes41,42. We found that 15 genes, 

when knocked out in mice, affect fat storage phenotypes, and we hypothesized that they play a 
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similar role in human fat storage (Figure 3.2D). In total, we prioritize 53 key driver genes with 

putative roles in human fat distribution via altered adipocyte fat storage, that currently have 

unknown function in adipose tissue (Supplemental Table 2.6).

  

Figure 3.3: The 110 key driver genes removed from analyses due to primary expression in other cell types, 
in Figure 3.2, step 1.  

We applied the same genetic evidence criteria (GWAS gene, mouse phenotype) to the 45 well-

studied key driver genes that were removed in step 2 (Figure 3.2C). We found that almost half of 

these genes were identified without additional evidence from human GWAS or mouse 

phenotyping (Figure 3.4), showing the strength of this approach as an orthogonal method with 

which to identify candidate functional genes. 

 

Figure 3.4: The 45 key driver genes with known function in adipose tissue that were removed in Figure 3.2, 
step 2 were subjected to the Genetic Evidence criteria used in Figure 3.2, step 3.  
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Figure 3.5: The 53 key driver genes prioritized for further study were not enriched for any specific 
pathways.  
(A) The top 20 Gene Ontology (GO) biological processes pathways, tanked by adjusted p-value.  
(B) The top 20 msigDB Hallmark pathways, ranked by p-value, adjusted p-value shown. Fisher’s exact 
test used to test enrichments, FDR correction used to adjust p-values. 

 

3.2.2 Four key driver genes in the Wnt signaling pathway are highly correlated with WHR adjBMI: 

To further characterize the 53 key driver genes, we attempted to find enrichment of specific 

pathway genes, but did not identify any enriched gene ontology (GO) terms or msigDB Hallmark 

pathways, likely due to the removal of well-characterized genes (Figure 3.5). We performed a 

second literature search to determine the primary function of the 53 genes in other cell types and 
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found that 13 affect the activity of the Wnt signaling pathway in other cell types (Table 3.1, 

Supplemental Bibliography 3.2). These 13 genes were identified as key driver genes in all four 

sex-depot networks, and ten are WHRadjBMI GWAS candidate genes.  

Table 3.1: Key driver genes that act in Wnt signaling in other cell types 

Key 
Driver 
Gene 

Network Public Data 

Depot Sex Cell Type Evidence 

BAZ1B Subcutaneous Male Multiple GWAS 

HELZ Subcutaneous Male Multiple GWAS 

MTMR9 Subcutaneous Male Unknown GWAS 

TYRO3 Subcutaneous Male Unknown GWAS 

ANTXR1 Visceral Male Multiple GWAS 

ARFGEF2 Visceral Male Multiple GWAS 

ARMCX3 Visceral Male Multiple Mouse 

ANAPC2 Subcutaneous Both Adipocyte GWAS 

BNIP2 Subcutaneous Both Multiple Mouse 

KIAA1522 Visceral Female Unknown GWAS 

PSME3 Visceral Female Adipocyte GWAS 

RSPO1 Visceral Female Multiple Mouse 

ZNF148 Visceral Female Multiple GWAS 

 

In canonical Wnt signaling, β-catenin and transcription factors TCF/LEF repress PPARG and 

CEBPA expression, which are necessary to initiate adipogenesis65,66 (Figure 3.6A).  In other cell 

types, the 13 gene’s proteins interact with the canonical and non-canonical Wnt signaling pathway 

in a variety of ways (Figure 3.6A, Supplemental Bibliography 3.2). For example, RSPO1 (r-

spondin 1) is a known member of the Wnt signaling pathway; like other r-spondins, it prevents 

LRP degradation at the cell membrane67,68. TYRO3 (TYRO3 protein tyrosine kinase) activates 

Wnt signaling by upregulating AKT69,70. PSME3 (proteasome activator subunit 3, REG-ɣ, PA28-

ɣ) is known to bind and target GSK3β for degradation, which releases sequestered β-catenin71,72. 

ANAPC2 (anaphase promoting complex 2), interacts with Disheveled to inhibit Wnt signaling73. 

Their role in adipose remains unknown.  
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Figure 3.6: Thirteen prioritized key driver genes may affect fat storage in adipocytes through the Wnt 
signaling pathway.  
(A) The Wnt signaling pathway consists of canonical β-catenin signaling and non-canonical pathways. 
Key driver genes interact with Wnt pathways in other cell types (gray and yellow).  
(B) Key driver gene expression in adipose tissue correlations with WHRadjBMI in STARNET. Pearson 
correlations are shown by color, p-values adjusted using FDR correction shown with * (*** = adj.P < 
0.001, * = adj.P < 0.05).  
Four selected key driver genes (red) regulate both WHRadjBMI downstream genes74 (yellow) and Wnt 
signaling downstream genes (blue, GO term “Wnt signaling pathway”) in GTEx and STARNET: 
(C) ANAPC2 in the GTEX Subcutaneous Female network,  
(D) PSME3 in the STARNET Visceral Female network,  
(E) RSPO1 in the GTEx Visceral Female network, and 
(F) TYRO3 in the GTEx Subcutaneous Male network.  
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We prioritized genes related to fat distribution by calculating the correlation of each gene’s 

expression in each depot with overall WHRadjBMI, measured in STARNET, since GTEx did not 

measure WHR. We found that, while not all are significant, four genes have Pearson correlations 

with WHRadjBMI > 0.12 in at least one sex-depot (Figure 3.6B) and these correlations differ by sex 

or by depot. While these correlations are not numerically large because they incorporate the noise 

of human data and are adjusted for BMI, the correlations are extreme values for this data (Figure 

3.7).  

 

 

Figure 3.7: Gene expression correlations with WHRadjBMI in STARNET in 
(A) female subcutaneous,  
(B) male subcutaneous,  
(C) female visceral, and  
(D) male visceral samples.  
Arrows indicate prioritized Wnt-related genes (Table 3.1) and mitochondrial-related genes (Table 3.2) 
whose correlation with WHRadjBMI is greater than 0.1.  

 

The four strongly correlated genes, ANAPC2, PSME3, RSPO1, and TYRO3, regulate a large 

number of downstream genes in their STARNET and GTEx networks (Figure 3.6 C-F). Those 

downstream genes contain WHRadjBMI GWAS genes (Supplemental Table 2.6), and often contain 
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genes that are part of the Wnt signaling pathway. Additional evidence of involvement in fat 

distribution, such as expression differences between depots, WHRadjBMI GWAS signal strength, 

and enrichment of relevant GO terms in downstream gene sets further prioritize these four genes 

(Figures 3.8-3.11). ANAPC2, PSME3, and TYRO3 are all found within gene dense WHRadjBMI 

GWAS loci, and may be the causal gene at the locus, while RSPO1 is a putative regulator 

WHRadjBMI without genetic regulation. The lead SNP in the ANAPC2 locus, rs144926207, is 

located in the intronic region of ANAPC2, and reference allele T is associated with higher 

WHRadjBMI
74 and higher excision of an intronic region of ANAPC2 in subcutaneous and visceral 

depots in GTEx75 (Figure 3.12).  
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Figure 3.8- Additional evidence of ANAPC2 involvement in WHRadjBMI and Wnt signaling. (A) A significant 
GWAS signal is detected near ANAPC2 in WHRadjBMI GWAS meta-analysis1.  
(B) In GTEx, both males and females show higher expression of ANAPC2 in subcutaneous fat depots 
over visceral depots, though the change is non-significant after p-value adjustment.  
(C) ANAPC2 is a key driver that regulates downstream WHRadjBMI GWAS genes in the STARNET 
subcutaneous male network,  
(D) the GTEx subcutaneous male network, and  
(E) regulates both WHRadjBMI GWAS genes and Wnt genes in STARNET female subcutaneous. 
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Figure 3.9- Additional evidence of PSME3 involvement in WHRadjBMI.  

(A) A significant GWAS signal is detected near PSME3 in WHRadjBMI GWAS meta-analysis1.  
(B) This same signal is strongly associated with WHRadjBMI in the female-specific GWAS meta-analysis, 
(C) but is not present in the male-specific GWAS.  
(D) In GTEx, there are no significant changes in PSME3 gene expression between depots or sexes.  
(E) PSME3 regulates WHRadjBMI GWAS gene in the GTEx visceral female network. 

 

 

Figure 3.10- Additional evidence of RSPO1 involvement in WHRadjBMI.  
(A) In GTEx, both sexes show higher expression of RSPO1 in visceral fat depots over subcutaneous depots 
(adjusted.P = 5.1e-21), and males show higher expression than females in both depots (adjusted.P = 4.9e-
57). 
 (B) RSPO1 is a key driver that regulates many downstream genes in the STARNET female visceral 
network.  



111 
 

 

Figure 3.11- Additional evidence of TYRO3 involvement in WHRadjBMI.  
(A) A significant GWAS signal is detected near TYRO3 in WHRadjBMI GWAS meta-analysis1.  
(B) This same signal is strongly associated with WHRadjBMI in the female-specific GWAS meta-
analysis,  
(C) but is not present in the male-specific GWAS.  
(D) In GTEx subcutaneous male networks, the genes downstream of TYRO3 are significantly 
enriched for lipid-related biological processes.  
(E) In GTEx, both males and females show higher expression of TYRO3 in visceral fat depots 
over subcutaneous depots, though the change is non-significant after p-value adjustment.  
(F) TYRO3 regulates one WHRadjBMI GWAS gene in the STARNET subcutaneous male network. 
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Figure 3.12- Genetic regulation of ANAPC2 intronic excision by WHRadjBMI SNP rs144926297 in GTEx 

(A) Alternate transcripts of ANAPC2 in GENCODE 44, the lead SNP in the ANAPC2 WHRadjBMI, 

rs144926297 is located within the intron 

(B) Normalized intronic excision by genotype in subcutaneous and visceral fat in GTEx 

 

Both subcutaneous male sub-sampled networks (Table 2.10) recovered ANAPC2 and TYRO3 as 

key driver genes, showing that the subsampled networks are able to replicate the predictions of 

the original. 

By virtue of their status as prioritized network key driver genes and their strong correlation with 

WHRadjBMI in humans, we hypothesize that these four genes affect fat storage in adipocytes. If the 
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four genes also affect Wnt signaling activity in adipocytes, their effects on overall fat storage may 

be due to increases or decreases in Wnt signaling activity. 

3.2.3 ANAPC2, PSME3, and RSPO1 overexpression alter adipogenesis, not proliferation: 

To test these hypotheses, we first overexpressed each of the four Wnt key driver genes or a GFP 

control plasmid in human male pre-adipocyte cell line39,76 using lenti-virus (Methods, Figure 3.1). 

We were not able to perform similar experiments in female and visceral cells since no such cell 

lines exist at this time. We confirmed the overexpression of each gene compared to GFP controls 

using qPCR (Figure 3.13 A). We also overexpressed gene RSPO3 as a positive control, because 

previous literature shows that RSPO3 has no effect on subcutaneous pre-adipocyte proliferation, 

but impairs adipogenesis50. 

We assessed the ability of these cell lines to proliferate by seeding each at the same density and 

counting representative wells every 24h (Methods). We found no differences in the rate of 

increase in cell number or the mean doubling time during exponential growth between any lines 

and GFP controls (Figure 3.13 B, C). 
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Figure 3.13: RSPO1, PSME3, and ANAPC2 affect fat storage in a pre-adipocyte cell line.  
(A) Expression of key driver genes compared to GFP controls at day 0 and 12 after onset of differentiation 
(n = 3).  
(B) Percent change in cell number over 6 days (n = 4).  
(C) Calculated doubling time in days (n = 12).  
(D, E) Oil Red O staining of cells was performed for each gene of interest and GFP controls at day 0, 6 and 
12 after beginning differentiation,  
(E) representative images of one well of a 12-well plate are shown (n = 3-15).  
RSPO3 serves as a positive control. All plots show mean ± standard error of the mean. Differences between 
groups determined using 2-way ANOVA by day and gene (Gene of Interest vs GFP controls), post-hoc 
tests were performed using pooled t-test with Dunnett’s adjustment. Adjusted p-values shown with * (*** = 
adj.P < 0.001, ** = adj.P < 0.01, * = adj.P < 0.05). 
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We quantified the alterations in adipogenesis due to key driver overexpression by staining cells 

with the neutral lipid specific dye, Oil Red O (ORO), at 0, 6, and 12 days after the onset of 

differentiation. As expected, we observe an increase in lipid accumulation at day 6 and 12 

compared to day 0 in all cell lines, confirming successful induction of adipogenesis, with a 4.25-

fold increase in ORO absorbance in GFP controls at day 12 compared to day 0 (Figure 3.13 D,E). 

Compared to GFP controls, ANAPC2 and RSPO1 overexpressing cells were deficient in 

adipogenesis, with 24.6% and 45.4% less lipid accumulation, respectively, than GFP controls at 

day 12. We observed that PSME3 overexpressing cells show a 31.6% increase in lipid 

accumulation compared to controls at day 12. TYRO3 overexpression caused no significant 

differences in lipid accumulation from controls at any time point. Positive control RSPO3 

overexpressing cells were also deficient in lipid accumulation by 37.3% compared to controls at 

day 12, consistent with previous studies50. Expression of adipocyte markers CEBPA, PPARG, 

and ADIPOQ also increased over the 12 days, and showed significant differences between 

ANAPC2 and RSPO1 overexpressing cells and controls, in agreement with adipogenesis (Figure 

3.14) 

 

Figure 3.14- Markers of differentiation increase over time. Gene expression of  
(A) CEBPA,  
(B) PPARG,  
(C) ADIPOQ increase over time, with some significant differences between cells overexpressing genes of 
interest. n = 3 replicates used in all assays. Differences between groups were determined using 1-way 
ANOVA within each timepoint by gene (Gene of Interest vs NTCcontrols). All post-hoc tests were performed 
using pooled t-test with Dunnett’s adjustment. Adjusted p-values shown with * (*** = adj.P < 0.001,* = adj.P 
< 0.05, # = adj.P < 0.1). Error bars show mean ± SEM 
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To fully characterize the effects of these genes, we would need to perform the same functional 

studies in both subcutaneous and visceral cells to determine the magnitude of adipogenic 

alterations in each cell type and infer effects on body fat distribution. However, pre-adipocyte cell 

lines from female subcutaneous tissue or any visceral tissue do not exist; therefore, in the 

absence of this data, we used the correlations with WHRadjBMI in STARNET (Figure 3.6 B) to 

determine if our data could explain relationship between gene expression and body fat 

distribution. RSPO1 findings are well aligned with human data – e.g., if RSPO1 inhibits fat storage 

in both subcutaneous (Figure 3.13 D) and visceral adipocytes, then expression of RSPO1 in 

visceral adipose should decrease visceral fat storage and hence decrease WHRadjBMI, and 

expression in subcutaneous adipose should decrease subcutaneous fat storage to increase 

WHRadjBMI. This is perfectly replicated in STARNET correlation data (Figure 3.6 B) - positive 

correlations between subcutaneous RSPO1 expression and WHRadjBMI, but negative correlations 

between visceral RSPO1 expression and WHRadjBMI. Although ANAPC2 and PSME3 findings are 

not immediately explained by the correlation data, phenotypic effects in visceral adipocytes of 

different magnitude or direction could explain the observed changes. 

3.2.4 RSPO1 activates Wnt signaling to inhibit adipogenesis: 

We assessed the activity of the canonical Wnt signaling pathway using cells expressing both an 

overexpression plasmid and the 7TFC-luciferase construct, which measures the output of β-

catenin-TCF/LEF transcription via luminescence (Methods). PSME3 and RSPO1 overexpressing 

cells were able to activate canonical Wnt signaling significantly more than GFP controls; 

luminescence increased by 0.74-fold and 1.34-fold in PSME3 and RSPO1 overexpressing cells, 

respectively (Figure 3.15 A). 

Next, we looked at individual molecules of the canonical Wnt signaling pathway66. We quantified 

the ratio of active (non-phosphorylated) β-catenin to total β-catenin using immunoblotting (Figure 

3.15 B,C), and we observed that PSME3 and RSPO1 overexpressing cells had a 25.4% and 
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33.1% increase in active/total β-catenin species compared to controls, respectively, consistent 

with the luciferase reporter assay. We quantified AXIN2 mRNA expression, a target of canonical 

Wnt signaling, using qPCR (Figure 3.15 D). We observed that, compared to GFP control cells, 

cells overexpressing ANAPC2 and RSPO1 increased AXIN2 expression by 1.9-fold and 2.2-fold, 

respectively. Finally, using ELISAs, we measured the ratio of active to total GSK3β, an inhibitor 

of canonical Wnt signaling pathway (Figure 3.15 E). Compared to GFP controls, we observed a 

28.2% decrease in the ratio of active to total GSK3β in PSME3 overexpressing cells. 

We also assessed the consequences of gene overexpression on non-canonical Wnt signaling77,78. 

We observed a significant 21.7% decrease in the mRNA expression of IL6, a target of multiple 

types of non-canonical Wnt signaling, in PSME3 overexpressing cells (Figure 3.15 F). RSPO1 

overexpressing cells also show a non-significant 15.8 % decrease in IL6 expression. Using 

ELISAs, we measured the ratio of active to total CAMK2A, a member of the Ca2+ non-canonical 

Wnt pathway, and we observed a significant 70.2% and 85.0% decrease in active to total 

CAMK2A ratio in PSME3 and RSPO1 overexpressing cells, respectively (Figure 3.15 G). Finally, 

we measured the ratio of active to total JNK, a member of the planar cell polarity (PCP) non-

canonical Wnt pathway and observed no differences between cell lines (Figure 3.15 H). 

RSPO1 appears to play a straightforward role in inhibiting adipogenesis by turning on canonical 

Wnt signaling. PSME3 likely has a different mechanism by which promotes adipogenesis, 

although these cells may experience some of the protective metabolic effects of canonical Wnt 

signaling. We did not uncover the mechanism by which ANAPC2 inhibits adipogenesis, but in 

subcutaneous male cells, we now know that it does not affect proliferation rates or Wnt signaling 

activity. 



118 
 

 

Figure 3.15: RSPO1 and PSME3 activate canonical Wnt signaling while inhibiting the Ca2+ non-canonical 
Wnt pathway.  
(A) Wnt transcriptional activity measured by luminescence of luciferase reporter (n = 3-6).  
(B) Representative images and  
(C) Quantification of active (non-phosphorylated) and total β-catenin by immunoblotting (n = 12).  
(D) Gene expression of AXIN2 measured by qPCR (n = 3).  
(E) Ratio of active (phosphorylated): total GSK3β measured by ELISA (n = 3).  
(F) Gene expression of IL6 measured by qPCR (n = 3).  
(G) Ratio of active (phosphorylated): total CAMK2A measured by ELISA (n = 2).  
(H) Ratio of active (phosphorylated): total JNK measured by ELISA (n = 3).  
All plots show mean ± standard error of the mean. Differences between groups determined using 1-way 
ANOVA by gene (Gene of Interest vs GFP controls), post-hoc tests were performed using pooled t-test with 
Dunnett’s adjustment. Adjusted p-values shown with * (*** = adj.P < 0.001, ** = adj.P < 0.01, * = adj.P < 
0.05). 
 

3.2.5 Eight key driver genes related to mitochondrial function are correlated with WHRadjBMI or 

UCP1 expression: 

Among the 53 prioritized key driver genes, we identified a group of 13 genes that alter the function 

of the mitochondria in other cell types (Table 3.2). These genes were of particular interest, due to 

the variety of ways mitochondria impact adipocyte function and lipid storage, and the 13 genes 

affect a variety of mitochondrial functions in other cell types (Supplemental Bibliography 3.3).  
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Table 3.2: Key drivers that act in mitochondria in other cell types 

Key 
Driver 
Gene 

Network Public Data 

Depot Sex Cell Type Evidence 

INO80D Subcutaneous Male Adipocyte Both 

SPART Subcutaneous Male Multiple Mouse 

TRIP12 Subcutaneous Male Multiple GWAS 

A4GALT Visceral Male Adipocyte GWAS 

ARMCX3 Visceral Male Multiple Mouse 

BAD Visceral Male Multiple GWAS 

MIGA1 Visceral Male Adipocyte Mouse 

NMT1 Visceral Male Multiple GWAS 

YME1L1 Both Both Multiple Mouse 

C1QTNF3 Visceral Female Adipocyte GWAS 

PSME3 Visceral Female Adipocyte GWAS 

UBR1 Visceral Female Multiple Mouse 

ZNF148 Visceral Female Multiple GWAS 

 

For example, in vascular smooth muscle cells, cardiomyocytes, and hippocampal neurons, 

C1QTNF3 (Complement C1q Tumor Necrosis Factor-Related Protein 3) signals through PGC-1 

to increase biogenesis, oxygen consumption, and ATP synthesis79–81. MIGA1’s protein 

(Mitoguardin 1) is localized to the outer mitochondrial membrane (OMM) and promotes 

mitochondrial fusion82,83.  Psme3 knockout mice have larger mitochondria that are structurally 

dysregulated84 and fibroblasts overexpressing Psme3 have elevated Bax, Cytochrome C, with 

concomitant anti-apoptotic effects85. UBR1 (Ubiquitin Protein Ligase E3 Component N-Recognin 

1) encodes an E3-ligase that degrades proteins using the N-end rule86. In yeast, UBR1 is localized 

to the OMM and targets misfolded proteins87 and in mouse embryonic fibroblasts, UBR1, with 

UBR2 and UBR4, target PINK1 in the cytosol and prevent mitophagy88. 



120 
 

 

Figure 3.16: Thirteen prioritized key driver genes may affect mitochondrial function in adipocytes.  
(A) Key driver gene expression in adipose tissue correlations with WHRadjBMI in STARNET.  
(B) Key driver gene expression in adipose tissue correlations with UCP1 expression in STARNET. 
Pearson correlations are shown by color, p-values adjusted using FDR correction shown with * (*** = 
adj.P < 0.001, * = adj.P < 0.05).  
(C-F) Four selected key driver genes are regulate both WHRadjBMI downstream genes (yellow, Pulit et al) 
and mitochondrial downstream genes (purple, GO term “Mitochondrion”) in GTEx and STARNET.  
(C) C1QTNF3 in the GTEX Visceral Female network,  
(D) UBR1 in the GTEx Visceral Female,  
(E) MIGA1 in the GTEx Visceral Male network, and  
(F) PSME3 in the STARNET Visceral Female network. 
  

We used depot-specific expression correlations with WHRadjBMI in STARNET to prioritize genes 

for further study (Figure 3.16). We identified four genes with Pearson correlation > 0.13 (Figure 

3.7). We also considered correlation to UCP1 expression in STARNET, since this gene is a driver 

of thermogenesis in adipocytes. We found nine correlated genes, eight of which were expressed 
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at appreciable levels (TPM ≥ 5, INO80D removed) in the pre-adipocyte cells used for testing 

(Figure 3.17).  

 

Figure 3.17- Mitochondrial candidate key driver expression in primary adipocyte cells. 

 

The eight mitochondrial key driver genes, including C1QTNF3, MIGA1, UBR1, and PSME3, 

regulate a large number of downstream genes in the corresponding STARNET and GTEx 

networks (Figure 3.16 C-F). Those downstream genes contain body fat distribution GWAS 

genes (Table 2.6) and genes related to mitochondrial function. Additional evidence of 

involvement in fat distribution, such as expression differences between sexes and depots, and 

WHRadjBMI GWAS signal strength, further prioritized some of these genes (Figures 3.9, 3.18-

3.20). C1QTNF3 and PSME3 are found in WHRadjBMI GWAS loci along with other genes, and we 

hypothesize they may be the causal gene in these loci, while MIGA1 and UBR1 are putative 

mechanistic genes that are not in GWAS loci. 
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By virtue of their status as prioritized network key driver genes and their strong correlation with 

WHRadjBMI in humans, we hypothesize that these eight genes affect mitochondrial function in 

adipocytes (Figure 3.1).  

 

Figure 3.18- Additional evidence of C1QTNF3 involvement in WHRadjBMI.  
(A) A significant GWAS signal is detected near C1QTNF3 in WHRadjBMI GWAS meta-analysis1. This same 
signal is strongly associated with WHRadjBMI in the female-specific GWAS meta-analysis, but is not 
present in the male-specific GWAS.  
(B) In GTEx, both males and females show higher expression of C1QTNF3 in visceral fat depots over 
subcutaneous depots, though the change is non-significant after p-value adjustment.  
(C) C1QTNF3 regulates one WHRadjBMI GWAS gene in the STARNET subcutaneous male network. 
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Figure 3.19- Additional evidence of MIGA1 involvement in WHRadjBMI.  
(A) In GTEx, both males and females show higher expression of MIGA1 in visceral fat depots over 
subcutaneous depots, though the change is non-significant after p-value adjustment.  
(B) MIGA1 regulates mitochondrial genes in the STARNET subcutaneous male network. 
 

 

Figure 3.20- Additional evidence of UBR1 involvement in WHRadjBMI.  
(A) In GTEx, both males and females show higher expression of UBR1 in visceral fat depots over 
subcutaneous depots, though the change is non-significant after p-value adjustment.  
(B) UBR1 regulates one WHRadjBMI GWAS genes in the STARNET subcutaneous male network. 
 

3.2.6 Knockdown of MIGA1 and UBR1 inhibits oxygen consumption in differentiated adipocytes: 

To test these hypotheses, we downregulated each of the eight genes using siRNA in primary 

human female pre-adipocyte cells, with non-targeting siRNA as a control (Methods). We obtained 

mature adipocytes by differentiating these cells for 18 days, then measured the mRNA expression 

of each gene to confirm that the knockdown efficiency was still more than 50% compared to 
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controls (Figure 3.21 A). A4GALT, ZNF148, and TRIP12 did not meet these criteria and BAD was 

not able to be detected, thus we removed these genes from subsequent analyses.  

 

Figure 3.21: UBR1 and MIGA1 affect mitochondrial function in adipocytes.  
(A)Gene expression of key driver genes in non-targeting control cells and in siRNA knockdown lines.  
(B)Expression of UCP1 in siRNA knockdown lines and controls. 
(C)Oxygen consumption rates genes in non-targeting control cells and in siRNA knockdown lines.  
(D)Extracellular acidification rates genes in non-targeting control cells and in siRNA knockdown lines.  
(E)Phenotypes calculated from oxygen consumption rates under various stimulation. 
(F)Analysis of mitochondrial phenotypes upon siRNA perturbation under stimulations. 
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 n = 6 replicates used in all assays. ROSI cells were treated with 2µM rosiglitazone for 24 h prior to assay. 
Differences between groups in A, B, and E were determined using 1-way ANOVA by gene (Gene of Interest 
vs NTC controls). Differences between groups in C and D were determined using 1-way ANOVA within 
each timepoint by gene (Gene of Interest vs NTCcontrols). All post-hoc tests were performed using pooled 
t-test with Dunnett’s adjustment. Adjusted p-values shown with * (*** = adj.P < 0.001,* = adj.P < 0.05, # = 
adj.P < 0.1). 

 

We examined the effect of the knockdown of the remaining four genes on UCP1 expression in 

differentiated adipocytes. We found that C1QTNF3 and MIGA1 knockdown significantly reduced 

UCP1 expression, 71.1% and 48.7% respectively, compared to controls (Figure 3.21 B). We 

also measured the expression of mature adipocyte markers. PPARG, CEPBA, and FAPB4. 

UBR1 knockdown resulted in a significant 40.6% increase in FABP4 expression (Figure 3.22).  

 

Figure 3.22- Marker of mature adipocytes FABP4 increases when mitochondrial key driver gene UBR1 is 
knocked down. Gene expression of  
(A) CEBPα,  
(B) PPARɣ,  
(C) FAPB4 in mature adipocytes treated with siRNA for the indicated gene.  
n = 3-6 replicates used in all assays. Differences between groups were determined using 1-way ANOVA 
by gene (Gene of Interest vs NTCcontrols). Post-hoc tests were performed using pooled t-test with 
Dunnett’s adjustment. Adjusted p-values shown with * (*** = adj.P < 0.001,* = adj.P < 0.05, # = adj.P < 
0.1). 
 

We then determined the effect of knockdown of each gene on cellular oxygen consumption rate 

(OCR) using the Seahorse assay89 (Methods). Importantly, we found that MIGA1 knockdown 

significantly reduced the basal OCR and OCR after adding ATP-synthase inhibitor compared to 

controls (Figure 3.21 C). Additionally, we found that UBR1 knockdown significantly reduced the 

OCR after adding ATP synthase inhibitor compared to controls. Only MIGA1 knockdown 
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resulted in significantly reduced extracellular acidification rate (ECAR) in differentiated 

adipocytes compared to controls (Figure 3.21 D).  

Since each stimulation used in the OCR assay inhibits specific parts of the respiratory chain, we 

derived deeper mitochondrial phenotypes90,91 (Figure 3.21 E, Methods). For example, we 

calculated the amount of oxygen consumed by mitochondrial proton leak, which refers to the 

futile H+ shuttling across the OMM that does not produce ATP; thermogenic uncoupling through 

UCP1 contributes to proton leak92. Both MIGA1 and UBR1 knockdown cells showed significantly 

less proton leak compared to controls; proton leak was decreased by 40.4% and 39.9% 

respectively (Figure 3.21 F). 

Of the genes tested, MIGA1 had the strongest effect on cellular respiration. Its effects on ATP-

independent oxygen consumption, calculated proton leak, and UCP1 expression indicate that 

MIGA1 may promote thermogenesis. To say definitively that MIGA1 promotes thermogenesis, 

we would measure the contributing processes lipolysis, glucose uptake, and beta-oxidation, and 

we could observe the response in oxygen consumption to cold exposure or beta-adrenergic 

stimulation. We could also measure the expression of other thermogenic genes such as 

PGC1A, CIDEA, and PRDM16. UBR1 had a smaller effect on oxygen consumption, only under 

baseline conditions, and does not seem to be involved in adipocyte thermogenesis. 
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3.3 Discussion: 

We present the first large-scale investigation into gene regulators of body fat distribution in 

adipose tissue in a sex- and depot-specific manner. We constructed large Bayesian networks 

using male and female adipose tissue gene expression from subcutaneous and visceral samples 

and identified over 300 putative regulators spanning both sexes and depots. Using additional 

evidence, we prioritized 53 unstudied key driver genes that may affect adipocyte function, and 

putatively regulate body fat distribution. Because of the unbiased nature of our initial key driver 

selection, we were able to prioritize putative candidate GWAS genes, as well as putative causal 

genes that are not in GWAS loci. 

Identifying the causal GWAS gene at a given locus is a difficult task93, given that there can be 

multiple genes and signals in the locus, and the strengths of these signals can vary between 

populations and with biological confounders, such as sex and age. Further, while studies have 

found that the nearest gene to the GWAS signal is the causal gene in 70% of loci94, in the other 

30% of loci, this assumption does not hold. For example, while RSPO3 and KLF14 are the only 

gene in the locus, the locus containing TBX15 also contains WARS2, and therefore mechanistic 

studies had to be performed to show that TBX15 was the causal gene55,74. Finally, genes not in 

significant GWAS loci may also contribute to the studied phenotype; in fact in the latest WHRadjBMI 

GWAS, SHOX2 and LRP5 are not located in significant loci, and still alter fat distribution in 

humans54,57,74.  

Status as a replicated key driver provided independent evidence that allowed us to prioritize 41 

of the 495 genes in WHRadjBMI GWAS loci, including COL8A1, PSME3, and ANAPC2. We showed 

here that PSME3 and ANAPC2 have novel functional effects on adipogenesis; COL8A1 was also 

prioritized in the colocalization studies by Raulerson et al95 and is likely a functional regulator of 

fat distribution as well.  
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Our network analyses were able to capture known biology, as well as make novel predictions. We 

identified 45 key driver genes that were already well-studied in adipocytes. Many of these genes 

were tested in the SGBS or NIH 3T3-L1 lines, and many effect classical fat storage pathways 

such as adipogenesis, glucose uptake, lipolysis, etc (Supplemental Bibliography 3.1). These well-

studied genes included 12 genes in WHRadjBMI GWAS loci and 33 non-GWAS genes. Genes 

ACO1, ACAT1, and SLC25A1 have well-characterized effects on adipogenesis and lipogenesis 

(Supplemental Bibliography 3.1) and are also regulated in trans by KLF14; these three key driver 

genes may mediate KLF14’s effects on female fat distribution.  

Our analyses also highlighted 23 novel genes in two well-established pathways, Wnt signaling 

and mitochondrial function, as putative drivers of adipocyte function; we demonstrated a 

functional role for five of the genes in these pathways. Two genes, PSME3 and RSPO1, showed 

antagonistic effects on Ca2+ non-canonical and canonical Wnt signaling, consistent with 

literature78. Although the implications in adipocytes are not fully known and warrant further study, 

non-canonical Wnt ligands cause inflammation and vascular disease78 and are released from 

visceral fat more than subcutaneous fat96. While these two pathways were the focus of this paper, 

other pathways that contribute to fat distribution are likely represented within the 53 genes. Three 

validated key driver genes, UBR1, ANAPC2, and PSME3, have known roles in protein 

degradation; protein quality control may also be an important pathway regulating adipocyte 

function. Because of the bulk nature of the adipose tissue gene expression datasets, we also 

identified key drivers that likely act in immune cells, endothelial cells, and smooth muscle cells 

(Figure 3.3). Although these were not the focus of our in vitro validation, these cell types and 

genes may contribute to the overall body fat distribution phenotype. Of course, key driver genes 

and other predictions made by networks are putative, and must be experimentally validated. 

We showed that key driver gene RSPO1 inhibited lipid accumulation by upregulating the 

canonical Wnt signaling pathway. This is similar to the role played by RSPO3, which has been 
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shown to have different effects in visceral and subcutaneous cells that explain its effects on fat 

distribution50. In addition, RSPO2 was recently shown to inhibit adipogenesis84  and RSPO1 is a 

novel serum marker of obesity97. A recent study shows it may have a role in adipocyte beiging as 

well98. In single-cell and single-nucleus studies, RSPO1 is expressed in pre-adipocytes and in 

mesothelium, the cells lining the outer wall of visceral adipose, and in GTEx, RSPO1 expression 

is higher in visceral compared to subcutaneous samples (Figure 3.10). RSPO1 may be released 

primarily from visceral mesothelial cells, upregulating Wnt to a greater degree in visceral adipose 

than in subcutaneous depots, which could contribute to overall differences in WHR.  

We showed that key driver gene ANAPC2 inhibited adipogenesis. Further, we saw that ANAPC2 

overexpression led to elevated AXIN2 expression but no increases in other read-outs of Wnt 

signaling activity. This may explain the smaller decrease in adipogenesis compared to RSPO1 

overexpressing cells, which had a large effect on Wnt activity, although the loss of overexpression 

at day 12 may also account for the partial impairment of adipogenesis. ANAPC2 encodes the 

cullin-like member of the anaphase promoting complex/cyclosome (APC/C) E3-ligase99, which 

degrades cell cycle machinery to promote progression to the next cell cycle phase. Interestingly, 

we saw no differences in proliferation due to ANAPC2 overexpression. Studies show the 

necessity of exiting the cell cycle before beginning adipogenesis100. Others have shown that 

manipulating the expression of APC/C interactors Bubr1 and Cdc20 in cells has directionally 

consistent effects on adipogenesis101,102.  GWAS and QTL studies show that the same variant 

rs144926207 is associated with higher WHRadjBMI and lower retention of intron 4 in subcutaneous 

and visceral adipose tissue (Figure 3.12). ANAPC2 intronic retention causes cell cycle delays in 

other cell types103; ANAPC2 may also delay and inhibit adipogenesis by continuing cell cycle 

mechanisms. Further, evidence of genetic regulation and functionality in adipocytes prioritizes 

this gene as candidate regulator of WHRadjBMI. Future experimentation is required to test these 

hypotheses. 
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We showed that key driver gene PSME3 promoted adipogenesis, promoted Wnt signaling activity, 

and had no effect on mitochondrial function. Its protein product functions as a cap for the 20S 

proteasome104, and in this context REG-ɣ degrades GSK3β72. We confirmed that PSME3 

overexpressing cells had lower levels of active:total GSK3β than controls, although Wnt signaling 

is unlikely the mechanism by which PSME3 increases adipogenesis, due to the directionally 

inconsistent effects. 20S proteasome member Psmb4 promotes adipogenesis in brown 

adipocytes by maintaining proteostasis105 and mutations in PSMB8 cause lipodystrophy in 

humans106. PSME3 has diverse roles in many cell types, with and without the 20S proteasome, 

including  in development, fertility, cancer, and metabolism104; aging107, ribogenesis and 

autophagy104, and in lipid accumulation in hepatocytes and mouse models via sirtuin 

degradation108. Therefore, further experimentation is required to determine the mechanism by 

which PSME3 increases adipogenesis. 

We showed that key driver gene MIGA1 knockdown decreased multiple components of 

mitochondrial function in differentiated adipocytes, suggesting that MIGA1 contributes to normal 

mitochondrial function and may promote thermogenesis. Other outer membrane proteins that 

regulate mitochondrial fusion, MIGA2 and MFN2, also control the membrane’s interactions with 

lipid droplets, which affects lipid storage109–111. MIGA1 could affect fat storage in adipocytes 

through a dual role in controlling the OMM’s interactions with other mitochondria and with the lipid 

droplet, but further studies are required to test these hypotheses. 

We showed that key driver gene UBR1 knockdown lowered mitochondrial function in 

differentiated adipocytes. It had no effect on UCP1 expression, so its role in regulating 

mitochondrial function is likely non-thermogenic. UBR1 could function by maintaining protein 

quality and decreasing PINK1-induced mitophagy, although future studies are required to 

determine its precise role in mitochondria and adipocyte fat storage.  
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Fat distribution is a complex, full-body phenotype that is difficult to recapitulate in in vitro and in 

vivo models. We used subcutaneous and visceral gene expression data to make predictions, but 

we tested those predictions in a subcutaneous pre-adipocyte cell line that was available to us. 

Only ANAPC2 was tested in the same sex-and depot-derived cell as the network in which it was 

a key driver. Remarkably, we observed that many predicted visceral fat key drivers had function 

in subcutaneous adipocyte cells, but due to these limitations, we have not fully characterized the 

effects of these genes on adipocyte function or fat distribution. All five genes require further 

studies via comparative experiments in adipocytes from subcutaneous and visceral depots. 

Further, the genes that were found to have no effect on adipogenesis or mitochondrial function in 

our studies may impact these processes in visceral adipocyte cells. 

There is strong evidence that the validated key driver genes act in a sex-biased manner; therefore, 

follow-up studies must include cells of both sexes. Of the 53 prioritized key drivers, only five genes 

are replicated key drivers in both male and female networks; highlighting the unique in silico gene 

regulatory structure in each sex. Four of the validated key driver genes, MIGA1, ANAPC2, 

PSME3, and RSPO1, have a role in fertility and the development of gonads or gametes82,112–114. 

Further, RSPO1 upregulates estrogen receptor ESR1 in vitro115, and PSME3 is located in a gene-

dense female-specific WHRadjBMI GWAS locus (Figure 3.9). Two of the validated genes, RSPO1 

and PSME3, were discovered in female visceral networks and tested in male cells, while MIGA1 

was identified in male visceral networks and tested in female cells; these may have distinct roles 

in the opposite sex that were not investigated in this study. 

We showed the validity and strength of Bayesian network modeling to predict known and novel 

gene regulators. We provided additional evidence of the role of Wnt signaling and mitochondria 

in adipocyte function, and putatively in body fat distribution. Finally, we hypothesize a broader 

role for five genes in regulating fat distributions in humans.  

 



132 
 

3.4 Methods: 

3.4.1 Gene Expression and Phenotypic Data:  

We interrogated RNA-sequencing gene expression data from subcutaneous adipose tissue and 

visceral abdominal adipose tissue from the Genotype-Tissue Expression project (GTEx)75 and the 

Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET)93. Detailed 

explanations of participant inclusion, data collection, sequencing, and quantification can be found 

at each source. Briefly, STARNET participants are people living with coronary artery disease, 

from whom biopsies of abdominal subcutaneous fat and abdominal visceral fat were obtained 

during open thorax surgery. Samples were sequenced using the Illumina HiSeq 2000 platform. 

GTEx biopsies of abdominal visceral fat and leg subcutaneous fat were taken from deceased 

donors shortly after death. Samples were sequenced using the Illumina TruSeq platform. Both 

datasets were obtained in transcripts per million (TPM) format. The participants of STARNET 

were deeply metabolically phenotyped, while the GTEx subjects were assayed for more basic 

anthropometric traits.  

Expression Data Processing: We first used annotation meta-data from each source to divide the 

data into males and females. We used XIST expression to confirm these assignments. Next, we 

used annotations from the R package bioMart for genome build hg38 to select only the protein 

coding genes within each dataset. We then removed genes with less than 0.1 TPM value in 

greater than 80% of the samples. Finally, we log transformed the gene expression values for 

subsequent analysis. 

3.4.2 Testable Key Driver Gene Selection:  

3.4.2.1 Identification of cell type:  

We used 7 publicly available single cell- or single nucleus- adipose tissue or adipose tissue 

derived- stromal vascular fraction RNA sequencing datasets from both human and mouse58–64. 
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Since there was some disagreement between studies, all cell types in which the gene was 

expressed in any study are reported in Supplemental Table 2.6. We removed genes that were 

only expressed in non-adipocyte cell types. 

3.4.2.2 Identification of Function in Adipocytes:  

We identified well-studied key driver genes using a comprehensive literature search 

(Supplemental Bibliography 3.1). For each gene, we used GeneCards to identify alternate names 

for each gene or corresponding protein. We then searched PubMed and Google Scholar for 

functional studies in cells demonstrating a role for that gene in pre-adipocytes or adipocytes. 

Terms searched include “adipocyte”, “adipogenesis”, “differentiation”, “lipogenesis”, “lipolysis”, 

“glucose uptake”, “browning”, and “thermogenesis”.  

3.4.2.3 Additional Genetic Evidence:  

We prioritized key driver genes based on two types of genetic evidence. First, we identified 

WHRadjBMI GWAS genes74 within the set of key driver genes. Second, we prioritized genes 

involved in fat storage and distribution in mouse models. We queried the Mouse Genome 

Informatics database116 and the International Mouse Phenotyping Consortium117 to determine if 

the gene knockout in mice results in significant differences in fat pad size, total body fat mass, 

lean mass, or related phenotypes. We did not consider overall body size differences, as these 

may be indicative of BMI related phenotypes.  

3.4.3 Lentivirus Construction:   

Overexpression plasmids were constructed by VectorBuilder (VectorBuilder Inc, Chicago, Illinois, 

USA) using the mammalian gene expression lenti-viral vector backbone with 1 open reading 

frame. This backbone contains 3rd generation lenti-viral integration sites and ampicillin resistance. 

Using GTEx, we identified the most abundant isoform in adipose tissue for each gene. This 

isoform was added to the plasmid, followed by a P2A linker, then the GFP reporter sequence. 
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This construct was under the CMV promoter. Control plasmids contain the GFP reporter gene 

under the CMV promoter with no P2A linker.  

7TFC was a gift from Roel Nusse, purchased from Addgene (Addgene, Watertown, 

Massachusetts, USA; Addgene plasmid # 24307). The 7TFC plasmid contains 3rd generation 

lenti-virus integration sites, the Firefly Luciferase gene under 7 repeats of the TCF promoter and 

an mCherry marker under the SV40 promoter and ampicillin bacterial resistance gene. 

We obtained the plasmids in E. coli swabs in agar. We cultured the E. coli on Luria-Bertani broth 

agar plates containing 100 µg/mL ampicillin, and sub-cultured single colony forming units in 50 

mL Luria-Bertani broth containing 100 µg/mL ampicillin. Plasmids were isolated from E. coli using 

the Nucleobond Xtra Midi prep kit (Takara Bio, San Jose, California, USA) following the 

manufacturer’s protocol (Cat# 740422.50). Plasmids were packaged into 3rd generation 

replication deficient lenti-virus in HEK-293T cells using the Lenti-Pac HIV Expression Packaging 

Kit (Genecopoeia, Rockville, Maryland, USA) following manufacturer’s protocol (Cat# LT001).  

3.4.4 Transduction and Sorting of Human Pre-adipocyte Overexpression Cell Lines:  

We obtained human male pre-adipocyte Simpson-Golabi-Behmel syndrome (SGBS) cells from 

Dr. Martin Wabitsch39 at passage number 35-40. All pre-adipocyte cells were grown and 

maintained as described previously76 in DMEM:F12 media (ThermoFisher Scientific, Waltham, 

Massachusetts, USA) containing 10% Fetal Bovine Serum, 1% Penicillin/Streptomycin, 8.1 ng/mL 

biotin and 3.5 ng/mL pantothenate. During transduction with lenti-virus, the fetal bovine serum 

was first heat-inactivated at 65 C for 30 minutes, and 8 µg/mL polybrene was added to improve 

transduction efficiency. We plated cells in 6 well plates and grew them to 70% confluence before 

transducing the cells with lenti-viral-particles containing each of the plasmids listed above. Cells 

containing high levels of GFP or mCherry were sorted using the FACS Aria Fusion Cell Sorter 
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(BD Biosciences, Franklin Lakes, New Jersey, USA). We used cells with passage number less 

than 46 for subsequent assays. 

3.4.5 siRNA of Target Genes 

Table 3.3: siRNA sequences 

Gene Symbol Sequence 

A4GALT GGACACGGACUUCAUUGUU 

A4GALT GCACUCAUGUGGAAGUUCG 

A4GALT AGAAAGGGCAGCUCUAUAA 

A4GALT UGAAAGGGCUUCCGGGUGG 

BAD GAUCGGAACUUGGGCAGGG 

BAD CAGAGUUUGAGCCGAGUGA 

BAD GAGCUCCGGAGGAUGAGUG 

BAD UUGUGGACUCCUUUAAGAA 

C1QTNF3 CCGCAAAUUCUAAAUCUUA 

C1QTNF3 UCAACCUAGUAGAGGACAA 

C1QTNF3 AGGUGAGAAGGGCGACAAA 

C1QTNF3 CAGUAUCAGGUGUGUAUUU 

MIGA1 GCUCUGACCUUUCGCAAUA 

MIGA1 ACACAGAGAAGUACGGCAU 

MIGA1 GGAAAUAUCUCUUUAUCGU 

MIGA1 CUUGAAGACAGCAGCGCUA 

PSME3 GAAUCAAUAUGUCACUCUA 

PSME3 UCUGAAGGAACCAAUCUUA 

PSME3 GCUAAGAACUGUUGAGAGU 

PSME3 GACCAGAUUUCUAGAUAUU 

UBR1 GGAAAUCAGCGCGGAGUUA 

UBR1 GUACAAUCGUGUGGACAUA 

UBR1 GCGAAGAAAUGGACUGUCU 

UBR1 GAUCAGCAAACCCACAAUA 

ZNF148 UGGAAUAGCUACUCAAUUU 

ZNF148 UUGAAUAGCCCGAGCCUUA 

ZNF148 GGAUCAAGCUCCCAAGCAU 

ZNF148 CUAAGAACAACUCCAGAUA 

TRIP12 GAACACAGAUGGUGCGAUA 

TRIP12 GACAAAGACUCAUACAAUA 

TRIP12 GCUCAUAUCGCAAAGGUUA 

TRIP12 GGUAGUGACUCCACCCAUU 
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3.4.6 Transfection and Differentiation of Human Primary Pre-adipocytes  

Human female subcutaneous primary pre-adipocytes were purchased from Zenbio (Zenbio, Cat# 

SP-F-SL; Lot# SL0061) and were differentiated according to the standard Zenbio white adipocyte 

differentiation protocol. Briefly, human primary subcutaneous pre-adipocytes were seeded on 

collagen-coated 96-well plate (20,000cell/well, Corning, 354650) with 200µl of PM-1 medium 

(Zenbio, #PM-1) and the cells were established overnight, then transfected with siRNAs of target 

genes or scramble controls for 3 days using Lipofectamine RNAiMAX (Invitrogen, cat# 13778-

150). The culture medium was replaced with 150µl of differentiation medium DM-2 (Zenbio, #DM-

2), and cells were cultured for 7 days. Media was replaced with maintenance medium AM-1 and 

cells were cultured for additional 7 days for the following qPCR and Seahorse experiments.  

3.4.7 Quantification of Gene Expression in lenti-viral treated Human Pre-Adipocytes and 

Differentiating Cells:  

We grew cells in 12 well plates. Once they reached confluency, they were washed with Phosphate 

Buffered-Saline (PBS) and incubated in 400 µL Trizol, then scraped and harvested. We extracted 

RNA using the RNeasy Micro Kit (Qiagen, Velno, Netherlands), following manufacturer’s protocol 

(Cat# 74004). We digested the DNA species on the Qiagen spin column using the RNAse-free 

DNAse kit (Qiagen, Velno, Netherlands) following manufacturer’s protocol (Cat# 79254). We 

quantified the isolated RNA using the Qubit with RNA Broad Range assay kit (ThermoFisher 

Scientific, Waltham, Massachusetts, USA), following manufacturer’s protocol (Cat# Q10210). We 

reverse transcribed cDNA from the RNA templates using SuperScript IV Reverse Transcriptase 

Kit (ThermoFisher Scientific, Waltham, Massachusetts, USA) with Oligo(dT)20 primers, following 

manufacturer’s protocol (Cat# 18090010). We quantified cDNA abundance using quantitative-

polymerase chain reaction (qPCR). Samples and standard curves were prepared using GoTaq 

qPCR Master Mix (Promega, Madison, Wisconsin, USA) and gene specific primers (Integrated 

DNA Technologies, Coralville, Iowa, USA) (Table 3.4). Samples were measured using the 
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QuantStudio 5 Real Time PCR system (ThermoFisher Scientific, Waltham, Massachusetts, USA), 

and were analyzed using Thermo Fisher Connect qPCR Standard Curve analysis software. 

3.4.8 Quantification of Gene Expression in siRNA treated Human Differentiated Adipocytes 

The total RNA samples were isolated from human differentiated adipocytes using KingFisher™ 

Flex Magnetic Particle Processor according to the MagMAX™ mirVana™ Total RNA isolation 

protocol. We obtained the cDNA samples from the RNA templates using SuperScript IV Reverse 

Transcriptase Kit (ThermoFisher Scientific, Waltham, Massachusetts, USA) with Oligo(dT)20 

primers, following manufacturer’s protocol (Cat# 18090010). We quantified cDNA abundance 

using quantitative-polymerase chain reaction (qPCR) using the QuantStudio 5 Real-Time PCR 

system (ThermoFisher Scientific, Waltham, Massachusetts, USA). The conditions were: 42 °C for 

5 min, a 10s denaturation step at 95 °C, followed by 40 cycles of 95 °C for 5s and 58 °C for 40s. 

Table 3.4: qPCR Primer Sequences 

Primer name Sequence 

Primers used in adipogenesis/Wnt signaling assays 

ADIPOQ F GGAGATCCAGGTCTTATTGGTCC 

ADIPOQ R GCACCTTCTCCAGGTTCTCC 

ANAPC2 F GCGAGAAGAAGTCCACACTATG 

ANAPC2 R GACTCTCAAGAAGCACCCATAC 

AXIN2 F GACCAAGTCCTTACACTCCTTATT 

AXIN2 R TCTAAGGTATCCACGCATTTCTC 

B2M F AGATGAGTATGCCTGCCGTGT 

B2M R TGCTGCTTACATGTCTCGATC 

CEBPA F TATAGGCTGGGCTTCCCCTT 

CEBPA R AGCTTTCTGGTGTGACTCGG 

IL6 F CCAGGAGAAGATTCCAAAGATGTA 

IL6 R CGTCGAGGATGTACCGAATTT 

PPARG F ACCCAGAAAGCGATTCCTTCA 

PPARG R TCCACTTTGATTGCACTTTGGT 

PSME3 F CTGAGATCCGGCTGTTGATT 

PSME3 R CAGGAGCTGTACCCACATTT 

RSPO1 F GTGAAATGAGCGAGTGGTCT 

RSPO1 R GTAGCACCCTGCGTGTC 

RSPO3 F GAAACACGGGTCCGAGAAATA 

RSPO3 R CCCTTCTGACACTTCTTCCTTT 
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TYRO3 F GAGTGTATGGAGGACGTGTATG 

TYRO3 R GTTCCATTCGCAGACAAGTAAAG 

Primers used in mitochondrial function assays 

A4GALT-F GCATCTACCTGGACACGGACTT 

A4GALT-R ATGCACAGCGCCATGAACTCGT 

AKAP9-F GGCGTCATTGATGGCTATGCAG 

AKAP9-R GCTGTTGCTCTGCCTCCAATTC 

ARAP1-F GTGTGGACTACATCACGCAGTG 

ARAP1-R CCGAGGAAACATCATCCACGTG 

BAD-F CCAACCTCTGGGCAGCACAGC 

BAD-R TTTGCCGCATCTGCGTTGCTGT 

C1QTNF3-F GGAGACTACAGCTTTCGAGGCT 

C1QTNF3-R TTGTCGCCCTTCTCACCTTTGG 

LDHD-F GATGGATGCCTGCAACAGGTAC 

LDHD-R TCCGTTCTGCTGGACTATCTCC 

MIGA1-F GTGCAGGAGATGCCATTGCTGA 

MIGA1-R ACTCCTCTTGGAGACGATAGGC 

PSME3-F ATGAATCTCCCAGTCCCTGACC 

PSME3-R GGGCATCACAAACACCTTGGTTC 

QTRT1-F GTAGTCTGCGTGGCTCTTGGAT 

QTRT1-R GCCGAAGTCCTTCTCAAACACC 

UBR1-F GTAGCAACCACATCAGGATCGG 

UBR1-R CTGTAAGGCAGACATCTGAGCC 

ZNF148-F CACGTTTGTGAGCACTGCAATGC 

ZNF148-R GCAGGTACTTCTGTATGAAACGC 

TRIP12-F GGCTGCCTCAAAGGATACCATC 

TRIP12-R GCAGCACAAAGTCTCTGAAGGAC 

GAPDH-F GTCTCCTCTGACTTCAACAGCG 

GAPDH-R ACCACCCTGTTGCTGTAGCCAA 

hCEPBA-F ACAAGAACAGCAACGAGTACCG 

hCEPBA-R CATTGTCACTGGTCAGCTCCA 

hFABP4-F ACGAGAGGATGATAAACTGGTGG 

hFABP4-R GCGAACTTCAGTCCAGGTCAAC 

hUCP1-F AGTTCCTCACCGCAGGGAAAGA 

hUCP1-R GTAGCGAGGTTTGATTCCGTGG 

hPPARG-F AGCCTGCGAAAGCCTTTTGGTG 

hPPARG-R GGCTTCACATTCAGCAAACCTGG 

 

3.4.9 Cellular Phenotyping: 

3.4.9.1 Proliferation Assay:  
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We plated 20,000 cells/well in 24 well plates. After 24 hours, 4 wells were trypsinized and cells 

were counted using a hemocytometer. Wells were washed with PBS and growth media was 

replaced. Every 24 hours, 4 more wells were counted, for a total of 6 days. Growth media was 

replaced every 2 days. Most cells reached exponential growth by day 4 (Figure 3.13 B). We then 

calculated the doubling time of each cell line using the formula: 

𝑇𝑑 = (𝑇2 −  𝑇1) ∙ [
ln(2)

ln(
𝑁2
𝑁1

)
]  

where Td is doubling time, T1 and T2 are initial and final time measurements, and N1 and N2 are 

the initial and final quantity of cells.  

3.4.9.2 Adipogenesis Assay:  

We differentiated cells into lipid-containing adipocytes as detailed previously76. Briefly, we plated 

40,000 cells/well in 12 well plates. Cells were incubated for 2-5 days until they reached 100% 

confluency, then incubated for 48 hours post-confluency. Adipogenic media (DMEM:F12, 1% 

Penicillin/Streptomycin, , 8.1 ng/mL biotin, 3.5 ng/mL pantothenate, 0.01 mg/ml transferrin, 20 nM 

insulin, 100 nM cortisol, 0.2 nM triiodothyronine, 25 nM dexamethasone, 250 µM 3-isobutyl-1-

methylxanthine, and 2 µM rosiglitazone) was added to each well to initiate differentiation. After 4 

days, we changed the media to DMEM:F12, 1% Penicillin/Streptomycin,  8.1 ng/mL biotin, 3.5 

ng/mL pantothenate, 0.01 mg/ml transferrin, 20 nM insulin, 100 nM cortisol, and 0.2 nM 

triiodothyronine. Every 4 days, this media was replaced.  

3.4.9.3 Quantification of Adipogenesis:  

We quantified the amount of lipid stored in cells using Oil Red O (ORO) dye. 0.25 grams of dye 

was suspended in 48 mL of 98% isopropanol and 32 mL of DI water. Unsuspended dye was 

removed from the ORO solution using 0.045 µM vacuum filtration. We repeated filtration (~3X) 

every 24 hours until no precipitate was observed. Cells were washed with PBS, then fixed in 300 
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µL 4% paraformaldehyde for 15 minutes. Cells were washed with 60% isopropanol, then dried 

completely. 250 µL of ORO solution was added to the cells for 5 minutes. Cells were washed with 

DI water twice, then dried completely. We imaged the full wells using the EVOS microscope 

(below). Oil Red O dye was then eluted from cells in 200 µl of 100% isopropanol for 2 minutes. 

Eluted ORO was quantified by measuring absorbance at 450 nm. 

3.4.9.4 Imaging:  

We took images using the EVOS M7000 imaging system (ThermoFisher Scientific, Waltham, 

Massachusetts, USA) at 10x magnification, using phase contrast and color. We constructed full 

well composite images by taking 30 adjacent images in a 5x6 grid that covers most of the well. 

Composite images were stitched together using imageJ:Fiji plugin Grid/Collection Stitching118. 

3.4.10 Quantification of Wnt Signaling:  

3.4.10.1 Quantification of Wnt Signaling Transcriptional Activation:  

We performed luciferase assays using the SGBS:7TFC reporter line. SGBS:7TFC cells were 

transduced with lenti-virus containing the gene of interest or GFP control plasmids. Images were 

taken to ensure a high percentage of dual mCherry and GFP expressing cells. 10,000 cells/well 

were plated in clear bottom, white-walled 96 well plates, with 6 replicates of each gene or control. 

After 24 hours of incubation, luciferase activity was measured using the Luciferase Assay System 

(Promega, Madison, Wisconsin, USA) following manufacturers protocol (Cat# E1500). Briefly, the 

cells were lysed in 20 µl lysis buffer, 100 µl of luciferin-containing reagent was added, then emitted 

light was measured for 10 seconds using a luminescence plate reader. Luminescence readouts 

in each well were normalized to mCherry fluorescence to account for total luciferase insertions by 

the 7TFC cassette.  

3.4.10.2 Quantification of Protein Activation:  
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Active (Ser33/Ser37/Thr41 non-phosphorylated) β-catenin and total β-catenin species were 

measured using western blotting. Total proteins were isolated in RIPA buffer containing 1% 

protease and 1% phosphatase inhibitors (ThermoFisher Scientific, Waltham, Massachusetts, 

USA, Cat# 89901, Cat# 78429, Cat# 78426). We quantified total protein species using the 

bicinchoninic acid (BCA) assay (ThermoFisher Scientific, Waltham, Massachusetts, USA) 

following the manufacturer’s protocol (Cat# 23225). We denatured samples at 70°C for ten 

minutes, then ran 20 µg total protein on a NuPAGE 4-10% BisTris Gel at 240V for 40 minutes 

(ThermoFisher Scientific, Waltham, Massachusetts, USA, Cat# NP0336BOX). We transferred the 

protein to an Immobilon-FL PVDF membrane at 80V for 60 minutes (MilliporeSigma, Burlington, 

Massachusetts, USA, Cat# IPFL00010). We labeled active and total β-catenin and β-actin control 

bands using primary antibodies (Cell Signaling Technologies, Danvers, Massachusetts, USA; 

Non-phospho (Active) β-Catenin (Ser33/37/Thr41) (D13A1) Rabbit mAb Cat#8814, dilution 1:500; 

β-Catenin (15B8) Mouse mAb Cat#37447, dilution 1:1000). Bands were labelled with 

fluorescently conjugated secondary antibodies (ThermoFisher Scientific, Waltham, 

Massachusetts, USA; Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, 

Cyanine3, Cat# A10521, dilution 1:20,000; Goat anti-Rabbit IgG (H+L) Cross-Adsorbed 

Secondary Antibody, Cyanine3, Cat# A10520, dilution 1:20,000). We imaged the labelled protein 

on Amersham Imager 600 (Global Life Sciences Solutions, Marlborough, Massachussets, USA) 

using RGB fluorescence settings. Densitometry calculations were performed using imageJ.  

Amount of active and total GSK3β, JNK, and CAMK2A were quantified using Enzyme-linked 

immunoassays (ELISA). Cells were harvested and lysed according to each manufacturer’s 

protocol. Active GSK3β (Ser9 phosphorylated) and total GSK3β were measured using an ELISA 

kit (RayBiotech, Peachtree Corners, Georgia, USA) using manufacturer’s protocols (Cat# PEL-

GSK3b-S9-T ). Active JNK (Thr183/Tyr185 phosphorylated) and total JNK were measured using 

an ELISA kit (RayBiotech, Peachtree Corners, Georgia, USA) using manufacturer’s protocols 
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(Cat# PEL-JNK-T183-T-1). Active CAMK2A (Thr286 phosphorylated) and total CAMK2A were 

measured using an ELISA kit (Assay BioTechnology, Fremont California, USA) using 

manufacturer’s protocols (Cat# FLUO-CBP1509 and CB5092).  

3.4.11 Quantification of oxygen-consumption rate and extracellular acidification rate: 

Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) was determined 

using a Seahorse XF96 analyzer in combination with the Seahorse mitochondrial stress test kit 

according to a standard protocol89. In brief, human primary pre-adipocytes were plated and 

differentiated as described above. Differentiated cells were washed with DPBS twice and 

incubated with Seahorse XF assay medium supplemented with 2 mM glutamax, 10 mM glucose, 

1 mM sodium pyruvate (PH 7.4) for 45 min at 37 °C in a non-CO2 environment. Both OCR and 

ECAR were subsequently measured in real time using XF96 extracellular flux analyzer (Seahorse 

Bioscience). The optimized concentration of compounds for mito-stress assay were 1.5 μM of 

oligomycin, 1.5 μM of carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), and 0.5 μM 

of Rotenone&antimycin A. Following the extracellular flux analysis, the OCR and ECAR were 

normalized by cell number, quantified using Hoechst staining. 

3.4.11.1 Quantification of deep OCR phenotypes:  

We calculated basal mitochondrial respiration, ATP-linked respiration, proton leak, maximal 

respiratory capacity, reserve capacity, and non-mitochondrial respiration from the OCR assay as 

described previously90,91. We defined condition ‘A’ as timepoints 1, 2, and 3 under basal 

stimulation; condition ‘B’ as timepoints 4,5,6 under oligomycin stimulation; condition ‘C’ as 

timepoints 7,8,9 under FCCP stimulation; and condition ‘D’ as timepoints 10,11 and 12 under 

Rot/AA stimulation. We considered each of the three timepoints within each condition as technical 

replicates, and the six samples as biological replicates. We averaged the three timepoints per 

condition into one value per biological replicate. We then defined non-mitochondrial respiration 
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as D; basal mitochondrial respiration as A - D; ATP-linked respiration as A - B, proton leak as B - 

D; maximal respiratory capacity as C - D; and reserve capacity as C-A.  

3.4.12 Statistical Methods:  

Differences in proliferation and differentiation assays using the GFP-expressing control cells and 

cells expressing the gene of interest were assessed using 2-way ANOVA by gene and time (day). 

Post-hoc tests were performed between GFP controls and genes of interest within each timepoint 

using pooled t-tests with p-value adjustment using Dunnett’s adjustment. Differences in Wnt 

signaling using the GFP-expressing control cells and cells expressing the gene of interest and 

mitochondrial assays using the non-targeting control-expressing cells and cells with siRNA for the 

gene of interest were assessed using 1-way ANOVA by gene. Post-hoc tests were performed 

between controls and genes of interest using pooled t-tests with p-value adjustment using 

Dunnett’s adjustment. Analyses were performed using base R’s anova() function and the 

emmeans package’s emmeans() and contrasts(). We reported only significant p-values, with the 

exception of Figure 3.21 where indicated. All bar plots display the mean, with error bars displaying 

the standard error of the mean (S.E.M). 
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4.1 Summary 

In human subjects, different diet patterns affect weight and metabolism differentially. Wide 

variations in outcomes between individuals on the same diet suggest diet effects are modified 

by genetic background. To start uncovering the genetic basis for differential effects of diets on 

weight gain/loss and other metabolic parameters, we subjected different mouse strains 

(C57BL/6J, A/J, DBA/2J and SJL) to humanized diets (American, Mediterranean, Vegetarian, 

and Vegan), measured various metabolic parameters, and performed RNA-seq on muscle and 

fat tissues. We observed pronounced diet- and strain-dependent effects on body weight (despite 

similar caloric intake) and on triglyceride and insulin levels. Glucose uptake into skeletal muscle 

and brown adipose tissue and total body fat showed predominantly strain-dependent 

differences. RNA-seq analysis revealed strain-dependent differences in gene expression in 

most tissues. Conversely, ~400 genes in visceral adipose tissue differentially responded to diet 

and strain. These genes are in metabolite transport and lipid metabolism pathways and thus 

affect metabolic parameters. The results suggest differential impact of genetic backgrounds on 

metabolism with nutrient sources in diet modifying effects. 
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4.2 Introduction 

4.2.1 Diet modification used to prevent and treat cardio-metabolic disease 

In the United States, 73% of the adult population is obese (42%) or overweight (31%)1. Diet 

modification is considered key to weight management and prevention of the complications of 

excess weight, prominently type 2 diabetes and cardiovascular disease2,3. 

The most common dietary patterns investigated for effects on weight loss and cardio-metabolic 

disease are Mediterranean style4,5, vegetarian and vegan6–9, low and very low fat10, low and very 

low carbohydrates10–14, Dietary Approaches to Stop Hypertension (DASH)15, and Paleo diets16. 

Mediterranean diet is typically high in polyphenols and omega-3s, and plant-based diets are high 

in fiber and anti-oxidant nutrients; both are low in saturated fat and red meats. Because of the 

different nutrient composition, dietary patterns of Mediterranean, DASH, and plant-based diets 

improve weight loss, insulin sensitivity, and circulating metabolite levels in the general 

population4,17. These diets were associated with favorable cardio-metabolic disease outcomes18–

22 and are prescribed by clinicians to prevent/treat diabetes and cardiovascular disease2,3.  

However, diets caused variable degrees of improvement between individuals; for low fat and low 

carbohydrate-containing diets, study subjects within diet groups with similar caloric intake 

exhibited weight changes ranging from 25 kg weight loss to 5 kg weight gain10. Iso-caloric 

Mediterranean and Chinese plant-based diets in pre-diabetic patients also caused high variability 

in weight changes between individuals23.  

4.2.2 Diet effects on cardio-metabolic disease traits are modified by genetic variation 

These suggested that genetic background may modify an individuals’ responses to diets; indeed, 

others find that diet significantly modifies the genetic risk imparted by disease-associated single 

nucleotide variants (SNPs)24. The effects of Mediterranean diet were modified SNPs in 



159 
 

transcription factor 7-like 2, TCF7L2, on body composition25–28, in apo-lipoprotein E, APOE, on 

triglycerides29, and in cholesteryl ester transfer protein, CETP, on cholesterol30,31. A combination 

of Mediterranean-DASH modified the effects of a SNP in caveolin 1, CAV1, on lipids32,33. A SNP 

in carnitine palmitoyltransferase 1A, CPT1A, modified the effect of Inuit diet on fatty acids34, and 

a SNP in glucokinase regulatory protein, GCKR, modified the effect of high-fish diets on circulating 

triglycerides35,36.  

Genotype can also modify the relationship between the macronutrient content and metabolic 

outcomes. SNPs in fat mass and obesity associated, FTO37, neuropeptide Y, NPY38, Perilipin, 

PLIN39–41, fibroblast growth factor 21, FGF2142, adiponectin, ADIPOQ43, Melatonin Receptor 1B, 

MTNR1B44, fatty acid desaturase, FADS245–47, hepatocyte nuclear factor 1α, HNF1A48, 3-hydroxy-

3-methylglutaryl-coenzyme A reductase gene, HMGCR49, and apo-lipoprotein A2, APOA250, 

modified the relationship between dietary macronutrients and anthropometric traits or circulating 

metabolites. Finally, SNPs in insulin receptor substrate 1, IRS151, uncoupling protein 2 UCP252, 

and beta-2 adrenergic receptor ADRB253,  modified the effect of overall energy intake or caloric 

content on various metabolic parameters. 

Analysis of the UK Biobank identified common variation near 4 genes (Solute carrier family 12 

member 3, SLC12A3, ATP Binding Cassette Subfamily A Member 6, ABCA6, MLX Interacting 

Protein Like, MLXIPL, and the gap junction GJB6-GJB2-GJA3 cluster) that modified the effects 

of dietary fish oil on cholesterol or triglycerides54. Many SNPs also interact with diet to influence 

cardiovascular disease outcomes55,56. 

4.2.3 Genetically diverse mouse models are used to study diverse responses to diet 

While many gene-diet interactions have been identified, studies in humans are limited because it 

can be hard to include enough human subjects, get accurate self-reporting of or adherence to 

diet, and control the environment to tease out subtle genotype-diet interaction effects57. The 
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smaller studies, referenced above, have primarily identified SNPs that edit the coding region of 

the genes and likely have large effect size; few have enough power to detect interactions between 

diet and common regulatory variants54.  

Mouse populations with genetic diversity equivalent to human genetic diversity provide a 

renewable resource for controlled studies, the results of which can be tested in humans at limited 

scale58. Mouse models allow deeper tissue and cellular phenotyping, and the controlled 

environment reduces noise and ensures adherence to diet. Studies using genetically diverse mice 

show that, when challenged with high fat or high carbohydrate diet, individual genetic background 

causes diverse responses in body weight gain58–60, atherosclerosis development58,61, insulin 

resistance58,62,63, circulating metabolites60,63, glucose uptake63, adipocyte size63, and protein 

abundances63. In populations of ~100 mouse strains, genetic loci that favor body fat gain on a 

high-fat high-sucrose diet and loci associated with atherosclerosis overlapped with the loci 

identified in humans58,61,64. Further, many lipid metabolism genes and pathways in adipose tissue 

are conserved between human and mouse65. In all, the effect of macronutrient content in diets on 

metabolic parameters is significantly modified by genetic variation in mice, and the genetic and 

cellular mechanisms are likely conserved in humans. However, most studies were performed 

under high fat diet conditions, and do not test the more subtle effects of nutrient source. 

Recently, Barrington et al. used humanized mouse diets when studying effects of diets on 

metabolic parameters and DNA methylation, thereby further expanding the possibilities for mouse 

studies relevant to human diet patterns66. They used mouse diets representative of human 

American, Mediterranean, Ketogenic, and Japanese diets in four genetically diverse strains of 

mice. They showed that body fat, cholesterol, glucose tolerance, and liver triglycerides were all 

affected by significant interactions of between diet and the genetic background of the mice. 

Though iso-caloric, the diets were formulated to represent human diet composition, and were 

therefore not similar in macronutrient composition, which could drive differences. 
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The goal of this study was to investigate metabolic effects of different diets and evaluate how 

genetic background modifies their effects. We used common human diets (American, 

Mediterranean, vegetarian, and vegan) and studied their effects on weight and other metabolic 

parameters as well as gene transcription in key metabolic tissues in four mouse strains (A/J, 

C57BL/6J, DBA/2J and SJL). We observed clear strain-dependent differences in metabolic 

parameters and distinct strain-dependent effects of different diets suggesting an interplay 

between diets and genetic background. 
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4.3 Results  

4.3.1 Design of mouse diets that reflect clinically relevant human nutrient sources 

To evaluate how the metabolic responses to clinically relevant diets are mediated by genetic 

background, we selected four genetically diverse strains of mice, A/J, C57BL/6J, DBA/2J, and 

SJL67. These four strains showed widely varying weight gains and insulin resistance in response 

to high fat diets58,62. SJL is resistant to weight gain, C57BL/6J and A/J mice have intermediate 

weight gains, while DBA/2J has the most extreme weight gain. C57BL/6J and A/J are insulin 

sensitive, while DBA/2J mice are insulin resistant. We hypothesized that the metabolic 

responses of these mice could be modified by the nutrient sources in the diet they consume.  

The chosen diets (Mediterranean, Vegetarian, and Vegan) are the most prevalent human diet 

patterns consumed with beneficial effects, compared to an American diet pattern most 

associated with negative health effects. To avoid variability in responses due to variations in 

macronutrient contents in diets, we equalized the amount of fat, carbohydrate and protein to the 

average consumption of these nutrients in the American population,68 35% fat, 50% 

carbohydrate, and 15% protein (Supplemental Table 4.1). Importantly, the macronutrients were 

derived from different sources. Human versions of each diet were generated, then translated 

into mouse chow by sourcing the nutrients from the same foods as the human diet (Figure 4.1). 

The American diet contained the highest amounts of nutrients sourced from animal products 

(beef, milk, etc.) and had with high amounts of saturated fatty acids, animal proteins, and 

refined carbohydrates. The Mediterranean diet was made from plant and animal products (fish, 

vegetables, and olive oil, etc), was high in fiber, unsaturated fatty acids, and cholesterol. 

Vegetarian diet was made from plants and animal products (wheat, milk, eggs, etc) and was 

high in fiber, unsaturated fatty acids, and low in cholesterol. Vegan diet was made from only 

plants products (grain, vegetables, etc) and was high in fiber, unsaturated fatty acids, and 

lowest in cholesterol. 
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Figure 4.1: Overview of experimental procedures and design of diets 

A. Experimental design of study 1 and 2 
B. Major macronutrient sources for each of the 4 constructed diets 
C. Representative photo of the American diet 
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D. Representative photo of the Mediterranean diet 
E. Representative photo of the Vegetarian diet 
F. Representative photo of the Vegan diet 

MUFA = Mono-unsaturated fatty acid, PUFA = Poly-unsaturated fatty acid, SFA = Saturated fatty 
acid 

 

4.3.2 Genetic background and diet interaction effects body weight gain and metabolic parameters 

An initial study was carried out using male mice, who fed ad libitum on one of the humanized diets 

or mouse chow diet, starting at 14-15 weeks of age. Body weights and food intake were 

determined weekly, while blood samples for measuring glucose, insulin, triglycerides, and non-

esterified fatty acids were taken before starting the diets and at 4, 8, and 16 weeks on the diet 

(Figure 4.1). 

Over 16 weeks, C57BL/6J and DBA/2J mice showed the largest weight gains (Figure 4.2 A). This 

effect was modified by the diet, where mice fed American or Mediterranean diet continued to gain 

weight over 16 weeks, while mice fed Vegetarian or Vegan diets reached a maximum weight 

around week 4 (Figure 4.3 A). A/J and SJL mice did not gain much weight over the 16-week 

period, and this effect was unchanged by the diet consumed.  
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Figure 4.2: Diet and genetic background impact body weight and metabolic parameters in male mice 
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A. Body weight in grams after 16 weeks on diet. (n = 8, 14 weeks old at week 0, male mice) 
B. Circulating levels of triglycerides in blood after 16 weeks on diet. (n = 8, 14 weeks old at week 0, 

male mice) 
C. Circulating levels of insulin in blood after 16 weeks on diet. (n = 8, 14 weeks old at week 0, male 

mice) 
D. Principal components analysis of all traits measured in study 1 using all samples, PC 1 and 2 shown 

with samples colored by genetic background 
E. Principal components analysis of all traits measured in study 1 using all samples, PC 1 and 2 shown 

with samples colored by diet 
Error bars represent mean ± SEM, 3-way ANOVAs performed considering the effects of Strain, 
Diet, Time, and all interaction effects.  
 

 
Figure 4.3: Diet and genetic background impact body weight in male mice 

A. Body weight (g) percent change after 16 weeks on diet. (n = 8, 14 weeks old at week 0, male 
mice) 
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B. Food intake in kcal per gram body weight per day over 10 weeks on diet. (n = 8, 14 weeks old at 
week 0, male mice, average per cage) 
Error bars represent mean ± SEM 

 

Since we were interested in studying the unique effects a diet can cause on different genetic 

backgrounds, we used the Analysis of Variance (ANOVA) tests to determine the independent 

effects of strain, diet, and the interaction effects of strain and diet (Strain:Diet). Interactions occur 

when the effects of one variable depends on state of the other. The Strain:Diet interaction term is 

significant if there the effect of one or more diets significantly differ between one or more strains, 

or vice versa. Using a 3-way ANOVA account for the effect of time, we determined that there is a 

significant effect of strain, diet, and Strain:Diet interactions on body weight (Table 4.1). DBA/2J 

and C57BL/6J mice gain the most weight and American and Mediterranean diets promote weight 

gain most. The effect of diet was blunted in A/J mice and was not observed in SJL mice. Post-

hoc tests showed many significant differences between groups, which were not plotted due to 

space.  

Table 4.1: P-values derived from three-way ANOVA interaction test in cohort 1 phenotypic data 

Term Strain Diet Week Strain:Diet Strain:Week Diet:Week Strain:Diet:Week 

Body Weight < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 2.68E-16 

NEFA 6.76E-15 4.36E-05 1.12E-14 1.35E-05 2.56E-13 4.95E-09 3.90E-08 

Glucose < 2.2e-16 7.53E-07 9.50E-13 0.001803 3.19E-14 0.114361 0.001352 

Insulin < 2.2e-16 1.06E-08 < 2.2e-16 9.45E-09 < 2.2e-16 1.44E-05 0.0001823 

Triglycerides < 2.2e-16 0.005577 < 2.2e-16 6.84E-09 3.54E-15 0.009593 0.003218 

We observed no large changes in caloric intake between our diet groups (Figure 4.3).  We 

observed small differences between strains, with SJL mice eating more and DBA/2J mice eating 

less than average. Since these effects are opposite in direction to the observed body weight 

change, we conclude that the differences in food intake are unlikely the cause of differences in 

weight gain between strains. 

To understand if altered metabolism accompanied the altered body weights observed in these 

mice, we measured blood insulin, triglycerides, glucose, and non-esterified fatty acids (NEFA) 
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after challenge with the “humanized” diets. DBA/2J mice had elevated triglycerides (Figure 4.2 B) 

at baseline and on the diets, while SJL mice have elevated triglycerides only after challenge with 

the new diet. The Vegan diet causes the largest increase in triglycerides in SJL mice, while the 

American diet causes the largest increase in triglycerides in C57BL/6J mice (Figure 4.4). We also 

observed that DBA/2J mice have elevated insulin (Figure 4.2 C) at baseline and on the 

“humanized” diets, and A/J mice have consistently low insulin levels. C57BL/6J and SJL insulin 

levels are responsive to diet, with Vegan being the most protective (Figure 4.4). Using the 3-way 

ANOVA, we determined that there were significant effects due to Strain:Diet interactions for both 

triglycerides and insulin (Table 4.1). Blood glucose and NEFA measurements also varied 

significantly by strain, diet, and the interaction effects of Strain:Diet (Figure 4.5, Table 4.1).  
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Figure 4.4: Diet and genetic background impact metabolic parameters in male mice 
A. Triglycerides after 16 weeks on diet. (n = 8, 14 weeks old at week 0, male mice) 
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B. Insulin over 16 weeks on diet. (n = 8, 14 weeks old at week 0, male mice)  
C. Blood glucose after 16 weeks on diet. (n = 8, 14 weeks old at week 0, male mice) 
D. Non-esterified fatty acids (NEFA) over 16 weeks on diet. (n = 8, 14 weeks old at week 0, male 

mice) 
Error bars represent mean ± SEM 

 

Figure 4.5: Genetic background impacts glucose and fatty acids in male mice 
A. Blood glucose after 16 weeks on diet. (n = 8, 12 weeks old at week 0, male mice) 
B. Non-esterified fatty acids (NEFA) over 16 weeks on diet. (n = 8, 12 weeks old at week 0, male 

mice) 
Error bars represent mean ± SEM 

 

We used principal components analysis (PCA) to explore our multi-dimensional metabolic 

phenotype data in two dimensions on calculated axes of highest variability. The axis of highest 

variability through the data, principal component one, separates DBA/2J samples and C57BL/6J 

samples into clear groups, while A/J and SJL are less discriminated on components one and two 

(Figure 4.2 D, E). Neither axis groups the samples by diet, meaning the strain can explain more 

of the variability in the metabolic phenotypes than the diet.  
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4.3.3 Deeper phenotyping of body fat and glucose uptake reveal variation due to genetic 

background 

Using the information obtained from the first study, we placed a second cohort of mice, 16 each 

of A/J, C57BL/6J, DBA/2J, and SJL, on the four diets at 12 weeks of age. We took weekly body 

weight and food intake measurements and blood samples at the start of the diet and at euthanasia 

after 6 weeks on the diet. Glucose uptake was measured at 4 weeks of age and total body fat 

was imaged at 5 weeks of age. At euthanasia, blood was collected for analysis of metabolic 

parameters and tissues for RNA-seq analysis (Figure 4.1).  

Similar to the first study, we saw that the DBA/2J and C57BL/6J mice gained weight rapidly, 

while the A/J and SJL mice were more protected (Figure 4.6). We also observed again that 

DBA/2J and C57BL/6J were most responsive to diet, with American causing more weight gain 

and Vegan causing less in these mice. These effects were less pronounced than the first study, 

but using 3-way ANOVA, we show that the effects of strain, diet, and the interaction effects of 

Strain:Diet were all significant (Table 4.2). We also show that the blood insulin and triglycerides, 

at baseline and after 6 weeks on the diets, are similar to the first study (Figure 4.6). Blood 

insulin, triglycerides, and glucose are all significantly affected by strain and the Strain:Diet 

interactions, though diet only had a significant main effect on body weight (Table 4.2). 

After 5 weeks on the “humanized” diet, we used magnetic resonance imaging (MRI) to measure 

the total body fat (Figure 4.7 A). We observed that C57BL/6J and DBA/2J had the highest body 

fat, and in C57BL/6J, Vegan diet was more protective than the other three diets. We used a 2-

way ANOVA test to determine the effects of strain, diet and Strain:Diet interaction effects. We 

found that the effects of Strain:Diet were suggestive but not significant; only strain-dependent 

effects were significant (Table 4.2). 
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Figure 4.6: Diet and genetic background impact metabolic parameters in male mice 
A. Body weight in grams after 6 weeks on diet. (n = 4, 12 weeks old at week 0, male mice) 
B. Triglycerides after 6 weeks on diet. (n = 4, 12 weeks old at week 0, male mice) 
C. Insulin over 6 weeks on diet. (n = 4, 12 weeks old at week 0, male mice)  
D. Blood glucose after 6 weeks on diet. (n = 4, 12 weeks old at week 0, male mice) 

Error bars represent mean ± SEM 

 

Table 4.2: P-values derived from two- and three-way ANOVA interaction tests of cohort 2 

phenotypic data 

Term Strain Diet Strain:Diet Week Strain:Week Diet:Week Strain:Diet:Week 

Body Weight 

< 2.2e-

16 

1.26E-

07 4.94E-06 

< 2.2e-

16 0.0010 0.9399 1.0000 

Glucose 

1.06E-

13 0.4692 0.0173 

< 2.2e-

16 0.0039 0.1525 0.0996 

Insulin 

< 2.2e-

16 0.4710 0.0014 

< 2.2e-

16 0.0004 0.1402 0.0639 

Triglycerides 

< 2.2e-

16 0.2650 0.0042 2.50E-05 0.0104 0.1225 0.0902 

MRI-Total Fat 

1.42E-

09 0.9533 0.0611     

FDG-PET-VAT 

1.07E-

13 0.1583 0.9668     
FDG-PET-BAT 0.0070 0.5012 0.1759     
FDG-PET-Quad 0.0145 0.4809 0.1481     

VAT Weight / Body 

Weight 

2.90E-

11 0.1161 0.3730     
SAT Weight / Body 

Weight 

7.90E-

08 0.3660 0.6787     
BAT Weight / Body 

Weight 

1.82E-

14 0.1177 0.8495     
Quadriceps Weight / 

Body Weight 

9.39E-

05 0.4665 0.4320     
Gastrocnemius Weight / 

Body Weight 

4.39E-

08 0.6367 0.2555     
Pancreas Weight / Body 

Weight 

2.05E-

07 0.6602 0.6538     
Brain Weight / Body 

Weight 0.0385 0.8781 0.5050     
Liver Weight / Body 

Weight 0.0303 0.8587 0.4358     

  

At 4 weeks on the “humanized” diet, we used positron emission tomography (PET) imaging to 

track radiolabeled glucose uptake (FGD-PET) in visceral adipose tissue (VAT), brown adipose 

tissue (BAT), and quadriceps muscle. We found that SJL mice uptake the most glucose in VAT, 

while SJL Vegan mice take up the most in skeletal muscle (Figure 4.7 B,C).  DBA/2J and A/J 

uptake the most glucose in BAT (Figure 4.8). Using the 2-way ANOVA test, while skeletal 
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muscle was suggestive, none had a significant Strain:Diet effect; only strain-dependent effects 

were significant (Table 4.2). 

 

 

Figure 4.7: Genetic background impacts glucose-related metabolic parameters in male mice 

A. Total body fat measured via MRI after 5 weeks on diet. (n = 4, 12 weeks old at week 0, male 
mice)  

B. Glucose uptake in visceral adipose tissue measured via FDG-PET imaging at 4 weeks on diet. (n 
= 4, 12 weeks old at week 0, male mice) 

C. Glucose uptake in quadriceps skeletal muscle measured via FDG-PET imaging at 4 weeks on 
diet. (n = 4, 12 weeks old at week 0, male mice) 

D. Principal components analysis of all traits measured in study 2 using all samples, PC 1 and 2 
shown with samples colored by genetic background 

E. Principal components analysis of all traits measured in study 2 using all samples, PC 1 and 2 
shown with samples colored by diet 
Error bars represent mean ± SEM 
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Figure 4.8: Glucose uptake in brown adipose tissue, as measured via FDG-PET imaging after 4 weeks on 

diet. (n = 4, 12 weeks old at week 0, male mice) 

 

After 6 weeks the mice were sacrificed, and selected metabolic organs were harvested and 

weighed. DBA/2J mice had the heaviest fat pads (Figure 4.9); subcutaneous adipose tissue 

(SAT), VAT, and BAT were consistently largest in DBA/2J and smallest in SJL. C57BL/6J mice 

had the largest quadriceps and gastrocnemius muscles, and the largest brain weights. Liver 

weights were consistent among diets and strains, while pancreas weights were highest in DBA/2J 

and C57BL/6J. Using the 2-way ANOVA test, no organ weights significantly differed due to 

Strain:Diet interactions; only strain-dependent effects were significant (Table 4.2). 

Using the basic and extended phenotype data from the second cohort, we performed PCA and 

plotted the data on principal components 1 and 2, the axes of highest variability. We show again 

that this axis is able to separate the samples based on strain, but not diet (Figure 4.7 D,E), 

showing that strain is able to explain more of the variability seen in the measured traits. 
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Figure 4.9: Diet and genetic background impact orgain weights in male mice 
A. Visceral adipose tissue weight per gram body weight after 6 weeks on diet. (n = 4, 12 weeks old 

at week 0, male mice) 
B. Subcutaneous adipose tissue weight per gram body weight after 6 weeks on diet. (n = 4, 12 

weeks old at week 0, male mice) 
C. Brown adipose tissue weight per gram body weight after 6 weeks on diet. (n = 4, 12 weeks old at 

week 0, male mice)  
D. Liver weight per gram body weight after 6 weeks on diet. (n = 4, 12 weeks old at week 0, male 

mice) 
E. Quadriceps muscle weight per gram body weight after 6 weeks on diet. (n = 4, 12 weeks old at 

week 0, male mice) 
F. Gastrocnemius muscle weight per gram body weight after 6 weeks on diet. (n = 4, 12 weeks old 

at week 0, male mice) 
G. Brain weight per gram body weight after 6 weeks on diet. (n = 4, 12 weeks old at week 0, male 

mice) 
H. Pancreas weight per gram body weight after 6 weeks on diet. (n = 4, 12 weeks old at week 0, 

male mice) 
Error bars represent mean ± SEM 
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Figure 4.10: Genetic background impacts gene expression in liver, muscle, SAT, and BAT 
A. Principal components analysis of expressed RNA species using all samples, PC 1 and 2 shown 
with samples colored by tissue 
B. Principal components analysis of expressed RNA species using all samples, PC 1 and 2 shown 
with samples colored by genetic background 
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C. Principal components analysis of expressed RNA species using all samples, PC 1 and 2 shown 
with samples colored by diet 
D. Expression of gene Mrap2 in subcutaneous adipose tissue, with significant strain-dependent 
effects. (n = 2, 18 weeks old, male mice) 
E. Expression of gene Mrap2 in quadriceps skeletal muscle, with significant strain-dependent 
effects. (n = 2, 18 weeks old, male mice) 
F. Expression of gene Ucp2 in liver, with significant diet-dependent effects. (n = 2, 18 weeks old, 
male mice) 
G. Expression of gene Agtrap in liver, with significant diet-dependent effects. (n = 2, 18 weeks old, 
male mice) 
H. Expression of gene Cfap65 in subcutaneous adipose tissue, with significant strain:diet-
dependent effects. (n = 2, 18 weeks old, male mice) 
I. Expression of gene Fbf1 in brown adipose tissue, with significant strain:diet-dependent effects. 
(n = 2, 18 weeks old, male mice) 
Error bars represent mean ± SEM 
 

4.3.4 Gene expression differences are predominantly dependent on genetic background 

To determine which genes are expressed in response to diet, in combination with genetic 

background, we isolated and sequenced mature RNA species from the VAT, SAT, BAT, liver, and 

quadriceps skeletal muscle of two mice from each strain and diet group (Methods). We found that 

between ~24,000 (Liver) and ~31,000 (SAT) genes were expressed in each tissue. 

We used PCA to reduce the dimensionality of the gene expression data. When viewing all 

samples on principal components 1 and 2, we observe clear separation of the samples by tissue, 

with strong overlap between the two white adipose tissues (SAT and VAT) (Figure 4.10 A). We 

considered principal components 3 and 4, which explain a smaller portion of the variation in the 

data (Figure 4.11). These components also separate the samples by tissue, including SAT and 

VAT. As expected, differences between tissue types account for the most variation in the 

expressed genes. We found that principal components 5, 6, and 7 separate the samples by strain 

(Figure 4.11), but we did not find any axes that were able to separate samples by diet.  
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Figure 4.11: RNA expression separates samples by tissue, genetic background 

A. Principal components 3 and 4, with samples colored by tissue 
B. Principal components 3 and 4, with samples colored by genetic background 
C. Principal components 3 and 4, with samples colored by diet 
D. Principal components 5 and 6, with samples colored by tissue 
E. Principal components 5 and 6, with samples colored by genetic background 
F. Principal components 5 and 6, with samples colored by diet 

 

Because of the dominating differences in gene expression due to tissue type, we separated the 

data by tissue and performed the PCA per tissue. In all tissues, principal components 1 and 2 

separated samples by strain, but no components could separate the samples by diet (Figure 

4.12). Strain is also more explanatory of the variation in gene expression than diet. 
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Figure 4.12: RNA expression separates samples by genetic background when considering only the samples 
of one tissue 

A. Brown adipose tissue principal components 1 and 2, with samples colored by genetic background 
B. Brown adipose tissue principal components 1and 2, with samples colored by diet 
C. Subcutaneous adipose tissue principal components 1 and 2, with samples colored by genetic 

background 
D. Subcutaneous adipose tissue principal components 1and 2, with samples colored by diet 
E. Visceral adipose tissue principal components 1 and 2, with samples colored by genetic background 
F. Visceral adipose tissue principal components 1and 2, with samples colored by diet 
G. Liver principal components 1 and 2, with samples colored by genetic background 
H. Liver principal components 1and 2, with samples colored by diet 
I. Quadriceps muscle principal components 1 and 2, with samples colored by genetic background 
J. Quadriceps muscle principal components 1and 2, with samples colored by diet 

 

For each tissue, we used the 2-way ANOVA test to identify genes whose expression varies across 

samples due to the effects of strain, diet, and the Strain:Diet interactions. We identified between 

~8,300 (Quad) and ~13,600 (SAT) genes with a significant strain effect (Supplemental Tables 

4.2-4.6). Melanocortin 2 Receptor Accessory Protein 2, Mrap2, expression in SAT (Figure 4.10 

D) and RUNX Family Transcription Factor 1, Runx1, expression in skeletal muscle are 

significantly affected by strain (Figure 4.10 E). Far fewer genes were impacted by diet; we 

identified between 0 (BAT) and 50 (VAT) genes with a significant diet effect (Supplemental Tables 

4.2-4.6). Angiotensin II Receptor Associated Protein, Agtrap, and Uncoupling Protein 2, Ucp2, 

expression in liver were significantly affected by diet (Figure 4.10 F,G). After VAT, liver showed 

the largest response to diet (Supplemental Table 4.3).  

In most tissues, we identified few genes with significant Strain:Diet interaction effects (Table 4.3, 

Supplemental Table 4.7). Fas Binding Factor 1, Fbf1, is the only gene that shows interaction 

effects in BAT (Figure 4.10 I), while SAT had six genes including Cilia and Flagella Associated 

Protein 65, Cfap65, (Figure 4.10 H); liver had five genes, and muscle had two genes (Table 4.3). 

In VAT, however, 421 genes had significant interaction effects between diet and genetic 

background on gene expression (Table 4.3, Supplemental Table 4.7). 
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Table 4.3: 2-way ANOVA reveals genes whose expression depends on strain and diet interactions 

Tissue Ensembl ID Gene Symbol strain:diet adjusted P value 

BAT ENSMUSG00000020776 Fbf1 1.33E-02 

Liver ENSMUSG00000028610 Dmrtb1 7.50E-05 

Liver ENSMUSG00000112384 Gm34921 7.50E-05 

Liver ENSMUSG00000107964 4930447C11Rik 5.65E-04 

Liver ENSMUSG00000047222 Rnase2a 3.27E-02 

Liver ENSMUSG00000031860 Pbx4 5.04E-02 

Quadriceps ENSMUSG00000097149 G630030J09Rik 1.44E-05 

Quadriceps ENSMUSG00000109643 Gm31545 3.71E-03 

SAT ENSMUSG00000096824 Ighv2-7 2.86E-05 

SAT ENSMUSG00000110123 Gm18562 2.86E-05 

SAT ENSMUSG00000031881 Cdh16 3.49E-04 

SAT ENSMUSG00000047021 Cfap65 5.68E-04 

SAT ENSMUSG00000108947 Or4d29-ps1 2.26E-02 

SAT ENSMUSG00000103939 Ighv3-4 3.82E-02 

VAT ENSMUSG00000024987 Cyp26a1 4.80E-05 

VAT ENSMUSG00000042129 Rassf4 4.80E-05 

VAT ENSMUSG00000094732 1500015L24Rik 4.80E-05 

VAT ENSMUSG00000110537 Gm4316 4.80E-05 

VAT ENSMUSG00000041468 Gpr12 1.69E-04 

VAT ENSMUSG00000089873 Mup13 2.45E-04 

VAT ENSMUSG00000095385 D630033O11Rik 2.45E-04 

VAT ENSMUSG00000103706 6820402A03Rik 2.45E-04 

VAT ENSMUSG00000104200 Gm37399 2.45E-04 

VAT ENSMUSG00000085818 Gm13267 4.23E-04 

VAT ENSMUSG00000020926 Adam11 4.83E-04 

VAT ENSMUSG00000103258 Gm37518 4.83E-04 

VAT ENSMUSG00000115919 Gm31583 4.83E-04 

VAT ENSMUSG00000024130 Abca3 5.36E-04 

VAT ENSMUSG00000069170 Adgrv1 7.18E-04 

VAT ENSMUSG00000120238 Gm57333 7.18E-04 

VAT ENSMUSG00000061356 Nuggc 7.79E-04 

VAT ENSMUSG00000118345 Gm7105 7.79E-04 

VAT ENSMUSG00000043671 Dpy19l3 8.24E-04 

VAT ENSMUSG00000084132 Gm15982 8.87E-04 

VAT ENSMUSG00000091157 Serpina3l-ps 9.71E-04 

VAT ENSMUSG00000035864 Syt1 1.18E-03 

VAT ENSMUSG00000085123 Rubie 1.18E-03 

VAT ENSMUSG00000109480 Gm45042 1.18E-03 

VAT ENSMUSG00000022003 Slc25a30 1.31E-03 

*Top 20 most significant interactions per tissue show, full list in Supplemental Table 4.7 

4.3.5 Lipid metabolism and transport genes in are regulated by strain and diet interactions in VAT 

To understand which pathways were effected by Strain:Diet interactions, we identified gene 

ontology (GO) biological process pathways that were enriched within our gene set. We found that 
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fatty acid and sterol transport and metabolism pathways and P450 cytochrome pathways were 

enriched in our Strain:Diet responsive gene set (Figure 4.13).  

 

Figure 4.13: Pathway analysis of 421 visceral adipose tissue genes that exhibit with significant strain:diet-
dependent effects 

A. Significantly enriched pathways from the Gene Ontology- biological processes database. P-
values adjusted using FDR correction for multiple tests. 
 

We observe various patterns of expression in the 421 genes (Figure 4.14 A). To reconcile the 

patterns with our observed phenotypes, we investigated a small subset of the 421 genes whose 

expression varies in a similar way to the certain traits. Some genes, such as High-mobility group 

box 2, Hmgb2, (Figure 4.14 B) and Neurocan, Ncan, (Figure 4.14 C), were higher in DBA/2J mice, 

and diets affected expression in each strain in a similar pattern to body weight or insulin 

phenotypes, respectively. Fat pad weights somewhat corresponded with both genes. 
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Figure 4.14: 421 genes in visceral adipose tissue are driven by strain:diet interaction effects 
A. Heatmap of 421 visceral adipose tissue genes that exhibit with significant strain:diet-dependent 

effects 
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B. Expression of gene Hmgb2 in visceral adipose tissue, with significant strain:diet-dependent 
effects. (n = 2, 18 weeks old, male mice) 

C. Expression of gene Ncan in visceral adipose tissue, with significant strain:diet-dependent effects. 
(n = 2, 18 weeks old, male mice) 

D. Expression of gene C1s2 in visceral adipose tissue, with significant strain:diet-dependent effects. 
(n = 2, 18 weeks old, male mice) 

E. Expression of gene C1rb in visceral adipose tissue, with significant strain:diet-dependent effects. 
(n = 2, 18 weeks old, male mice)  

F. Expression of gene Plpp1 in visceral adipose tissue, with significant strain:diet-dependent effects. 
(n = 2, 18 weeks old, male mice) 

G. Expression of gene Slc2a2 in visceral adipose tissue, with significant strain:diet-dependent 
effects. (n = 2, 18 weeks old, male mice) 
Error bars represent mean ± SEM 

 

Other genes also follow the pattern of highest expression in DBA/2J mice on American diet, and 

often, for the same gene, the SJL samples have the highest expression on Vegan diet (Figure 

4.15). These genes respond to diet on some genetic backgrounds, and may directly contribute 

to the observed weight gain and blood metabolite levels. Expression of complement Factor 1 

genes C1s2 and C1rb (Figure 4.14 D,E) partially reflected MRI total body fat patterns. Vegan 

diet increased expression of these genes on SJL, and to a larger degree, on C57BL/6J 

backgrounds. 
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Figure 4.15: Expression of 7 select genes that exhibit DBA-strain effects of the 421 visceral adipose 

tissue, with significant strain:diet-dependent effects 
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Other genes were expressed specifically in some strains or diets in a way that did not reflect any 

observed phenotypes, such as Phospholipid phosphatase 1, Plpp1 (Figure 4.14 F), was specific 

to A/J Vegan samples. A large portion of Strain:Diet interaction genes was dominated by 

C57BL/6J Vegan-specific effects, which did not reflect any observed phenotypes. Hmgcr followed 

this pattern of expression (Figure 4.14 G), and other C57BL/6J Vegan-specific genes fell into 

broad categories, such as solute carriers and transporters (Figure 4.16). These encoded 

transporters of metabolically relevant molecules [Slc2a2- glucose, Slc17a8- glutamate, Slc13a2- 

citrate, Slc22a7- prostaglandins, Slc22a1- Na+/vitamin C, Slc30a1- manganese, Slc35a2- 

nucleotide sugars, Slc36a1- apolar amino acids (aa), Slc39a2- zinc, Slc40a1- iron, Slc66a1- 

cationic aas, Kcnk10- Potassium]. Other categories of genes included ATP-binding cassettes 

(Figure 4.17), cytochrome P450s (Figure 4.18), hydroxysteroid dehydrogenases (Figure 4.19), 

and serine protease inhibitors (Figure 4.20). Other notable genes include sterol and fatty acid 

metabolism genes, including fatty acid binding proteins Fabp1 and Fabp2, lipases Lipc and Lipg, 

and insulin like growth factor binding protein 2 Igfbp2 (Figure 4.21). This pattern of expression 

was unique to C57BL/6J Vegan diet-fed mice, which did not correspond specifically with any 

observed phenotypes. 
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Figure 4.16: Expression of transporter genes that exhibit C57BL/6J-Vegan effects of the 421 visceral 
adipose tissue genes with significant strain:diet-dependent effects 
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Figure 4.17: Expression of ATP-binding cassette genes that exhibit C57BL/6J-Vegan strain:diet-dependent 
effects 
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Figure 4.18: Expression of cytochrome P450 genes that exhibit C57BL/6J-Vegan strain:diet-dependent 
effects 
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Figure 4.19: Expression of hydroxyl-steroid dehydrogenase genes that exhibit C57BL/6J-Vegan strain:diet-
dependent effects 
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Figure 4.20: Expression of serine protease genes that exhibit C57BL/6J-Vegan strain:diet-dependent 
effects 
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Figure 4.21: Expression of other genes that exhibit C57BL/6J-Vegan strain:diet-dependent effects  
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4.3.6 Patterns of visceral adipose tissue gene expression may control strain- and diet dependent 

metabolic responses 

The patterns of gene expression were only partially explanatory of the strain and diet responses 

observed in metabolic phenotyping. Therefore we employed a computational tool called partial 

least-squares regression (PLSR) to investigate how the gene expression and metabolic traits are 

related using the underlying correlation structure within both datasets. Like PCA, this approach 

reduces the high dimensional data to one or two component axes. In PLSR, we reduce two high 

dimensional datasets, and the axes represent the direction in the predictor dataset that explains 

the most variability in the outcome dataset. Predictors, outcomes, and samples that are highly 

related are grouped together in the component space.  

We used the expression of the 421 genes with significant Strain:Diet responses to predict the 

observed metabolic phenotypes (Figure 4.22 A). Like PCA, PLSR components 1 and 2 are able 

to separate the samples by strain. The phenotypes cluster into logical groups; body weight 

phenotypes are grouped on the bottom left, muscle weights at the bottom, glucose on the right, 

and fat pad weight, insulin, and triglyceride phenotypes are grouped at the top left. The y-axis 

appears to separate lean mass from fat mass, while the x-axis seems to control triglyceride 

storage versus glucose utilization. DBA/2J mice overlap with fat pad phenotypes in the component 

space, while C57BL/6J were spread between body weight and glucose phenotypes. Some SJL 

overlapped with glucose phenotypes, and A/J mice did not overlap with any measured 

phenotypes. 
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Figure 4.22: Dimensionality reduction predicts correlated genes and traits 

A. PLSR components 1 and 2, scaled to [-1,1], with samples colored by genetic background. 
Loadings of predictor (black) and outcome (blue) variables shown. 

B. Expression of gene Akr1b8 in visceral adipose tissue, with significant strain:diet-dependent 
effects. (n = 2, 18 weeks old, male mice) 
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C. Expression of gene Twist1 in visceral adipose tissue, with significant strain:diet-dependent 
effects. (n = 2, 18 weeks old, male mice) 

D. Expression of gene Gckr in visceral adipose tissue, with significant strain:diet-dependent effects. 
(n = 2, 18 weeks old, male mice) 

E. Expression of gene Flvcr2 in visceral adipose tissue, with significant strain:diet-dependent effects. 
(n = 2, 18 weeks old, male mice) 
Error bars represent mean ± SEM 

 

The 421 genes can be found near the phenotypes they are most predictive of. Hmgcr is found on 

the left, near both weight and adipose tissue phenotypes, as are other genes with known links to 

adipocyte expansion Hmgb269,70 and Kcnk1071,72. Aldo-keto reductase family 1 B8, Akr1b8 is a 

gene involved in lipid processing in liver73,74; its expression in VAT shows strong strain and diet 

interactions (Figure 4.22 B). Other genes closer to the fat pad weight area include transcription 

factors Twist175 (Figure 4.22 C) and E2f876,77 that show similar patterns of expression to Akr1b8. 

Gckr is found between body weight, liver, and muscle phenotypes, and its expression shows 

strong diet effects in C57BL/6J mice (Figure 4.22 D). Other genes in this area include metabolic 

genes alanine-glyoxylate aminotransferases Agxt and Agxt278, and ketogenic gene 3-

hydroxybutyrate dehydrogenase, Bdh179. In the glucose uptake area on the right, we observe the 

iron exporter ferroportin, Slc40a180, and heme/ choline transporter feline leukemia virus subgroup 

C cellular receptor 2 Flvcr281,82. These show a similar pattern of expression to other C57BL/6J-

Vegan-specific genes (Figure 4.22 E). 
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4.4 Discussion 

We show that body weight gain and metabolic phenotypes in mice are a result of diet source, 

genetic background, and interaction effects between the two. We consistently find that the effect 

of genetic background is stronger than the effect of diet. We find that DBA/2J mice store the most 

weight and have the highest insulin and glucose, and this effect is modified by diet. We identify 

over 400 genes whose expression is responsive to the interaction effects of strain and diet in 

visceral adipose tissue. We find some genes with expression patterns that match the patterns of 

body weight gain, like Hmgb2, Akr1b8, and Twist1 in VAT and, to some degree, Ucp2 in liver. 

Ncan expression in VAT matches insulin measurements and fat pad weights, Runx1 expression 

in muscle aligns with glucose uptake measurements, and C1s2 and C1rb expression patterns in 

VAT partially match total fat. Using dimensionality reduction tools, we predict that Hmgb2, Akr1b8, 

and Twist1 expression influence fat storage phenotypes, most strongly in DBA/2J mice. 

Previous mouse studies show large differences in weight gain and insulin resistance between the 

A/J, C57BL/6J, DBA/2J and SJL strain at baseline and in response to high fat diet feeding58; we 

also capture a large effect of strain on body weight gain and insulin levels. Other studies that used 

humanized diets showed stronger effects of diet66; however, differences in macronutrient content 

between those diets could account for the observed differences. Keeping fat, carbohydrate, and 

protein levels the same between our diets perhaps blunted the benefits. Each diet contained 

around twice the fat content as mouse chow; abnormal macronutrient content could also mute 

the effects as well. Further, while we observed similar caloric intake between groups, we 

measured food consumption per cage (4-5 animals averaged). Individual-level phenotyping using 

metabolic cages would allow us to accurately measure food consumption and energy expenditure, 

as well as observe any confounding behavior such as coprophagy. 

We also saw larger, more significant differences in metabolic parameters in study 1 than study 2, 

though the directionality and pattern between strains and diets was largely conserved. The study 
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2 mice we younger and on the diet for less time; age-related weight gain could magnify the 

differences. We also performed more intrusive tests in study 2 that could illicit stress responses 

and introduce noise. We only used four mice per group in study 2, and we are underpowered to 

fully detect differences. Similarly, with n=2 mice per group, RNA-seq was underpowered to identify 

the full spectrum of Strain:Diet responsive genes; only large magnitude changes in gene 

expression were identified as significant. Further, we only considered male mice in this study, 

which limit our conclusions to this population. 

Our ANOVA analysis identified 400 genes in VAT whose expression is altered by Strain:Diet 

interactions, many of which were identified previously. Genetic variation in HMGCR49 and 

GCKR35,36 modify the effect of diet on metabolic parameters, here we show that the expression 

of these genes in visceral adipose is responsive to genetic background and diet interactions. We 

identify Ucp2 as strain and diet responsive but without a significant interaction effect; previous 

studies show interactions between dietary energy intake and SNPs in UCP2 on metabolic 

parameters52. Ncan is a gene previously identified in fatty liver disease83.  

Previous studies identified a mechanistic role in for Hmgb269 and KcnK1071 in regulating early 

stages of adipogenesis, and for Twist1 in regulating adipose tissue angiogenesis75. We find their 

expression is responsive to genetic background and diet. These genes may coordinate adipose 

expansion under diet challenge. We also identified genes that had been previously studied in the 

liver (Agxt, Agxt2, Bdh1, Slc40a1, Hmgcr, and Gckr)79,80,84–87 that regulate fatty acid and sterol 

metabolism. These genes had highest expression in C57BL/6J-Vegan fed mice specifically. 

Interestingly, in cohort 1, the C57BL/6J mice had the lowest circulating NEFA at week 16, though 

this was not specific to Vegan diet. In the PLSR plot, we find the adipogenic/angiogenic genes 

among fat pad and body weight phenotypes and, at the opposite side of the plot, we find the liver-

related genes among glucose phenotypes, though NEFAs were not measured in cohort 2, and 

thus could not be predicted. 
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We used multiple dimensionality reduction techniques to view our samples based on the 

underlying correlation structure within the data. PLSR was chosen for its ability to dissect 

relationships among multiple co-correlated variables. The model recapitulates relationships 

between samples and between observed phenotypes, and predicts known and novel regulators 

of fat storage. Mechanistic studies are required to determine if and how these genes respond to 

components of the diet. 

These studies present a novel resource for the study precision nutrition, which attempts to apply 

diets in the populations in which they would be most beneficial88. By considering the genetic risk, 

among other factors, clinicians can prescribe diets to patients and populations who would see the 

most disease protection. We identify known and novel candidate genes that respond to nutrient 

source and genetic background, and lay the groundwork for identifying future mechanistic studies.   
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4.5 Methods 

4.5.1 Experimental Details and Study Participant Details 

Animals: Male mice were obtained from Jackson Laboratories at 9 weeks of age except where 

noted, C57BL/6J (Stock #000664), A/J (Stock #000646), DBA/2J (Stock #000671), and SJL/J 

(Stock #000686). For the first study SJL/JCrNTac (Model # SJL-M) were obtained from Taconic 

Biosciences. For the second study SJL/J mice were obtained from Jackson Laboratories, but at 

5 weeks of age (as they were not available for purchase at a later age). Mice were housed under 

temperature-(22oC) and humidity-controlled conditions and a constant light-dark cycle with free 

access to water and chow. They were fed a standard chow diet (cat. no. 7912 Teklad LM-485; 

Harlan Laboratories) until the start of the humanized special diets at 14-15 weeks of age (first 

study) and at 12-13 weeks of age (second study). After this time mice were fed one of the 4 

humanized diets (described in detail below under “Humanized Diets”), American, Mediterranean, 

Vegetarian, Vegan, until euthanasia (16 weeks on diets for study 1 and 6 weeks for study 2, see 

Figure 4.1). Before starting the diets, mice were weighed and mice from each strain were assigned 

to the different diets such that the average body weight of mice on each diet was similar. Mice 

were housed 4 per cage for all strains except for SJL/J that required single housing due to 

aggressive behavior against each other. Body weights and food intake were determined weekly 

in both studies until euthanasia for study 2 and up to 10 weeks of age and then at euthanasia for 

study 1. Blood draws for measurements of metabolic parameters (blood glucose, insulin, 

triglycerides, and free fatty acids) were obtained before starting the diets and then at 4, 8, and 16 

weeks on diets for study 1 and for study 2 before starting the diets and at euthanasia. Glucose 

uptake in different tissues was measured in live mice at 4 weeks on diets in study 2 using FDG-

PET. MRI was performed at 5 weeks of age in study 2 mice. The number of mice to begin diets 

was n=7-8 for study 1 and n=4 for study 2. There were a few deaths (for unknown reasons) during 

study 1 (C57BL/6J 1 on Mediterranean diet, 1 on Vegetarian diet, DBA/2J 1 on Mediterranean 
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and 1 on Vegetarian diet and 1 death in study 2 A/J on American diet). Mice were euthanized and 

blood collected by cardiac puncture and tissues dissected. Tissues were frozen in liquid nitrogen 

and stored at -80oC until further processing. All animal procedures were approved by the 

University of Virginia Institutional Animal Care and Use Committee.  

4.5.2 Design of clinically relevant mouse diets 

We designed four mouse versions of common human diets. To avoid issues with differences in 

macronutrient composition, we kept macronutrient composition the same for all diets. 

Average/mean macronutrient intake among adults in the US68 served as a guide; 49-51% kcal 

from carbohydrates, 15-16% kcal from protein; 33-34% kcal from fat settling on a constant content 

of macronutrients in each diet of 35% fat, 15% protein, 50% carbohydrates. Meal plans for 

humans containing the desired macronutrient composition of 35% fat, 15% protein, 50% 

carbohydrate were designed for a “typical” American, Mediterranean, Vegetarian, and Vegan 

diets (Figure 4.1). The sources for macronutrients used in these human diets were translated into 

mouse diets (Supplemental Table 1). A “humanized” mouse version of each diet was milled. Each 

diet is iso-caloric and contains equivalent macronutrient content (Supplemental Table 1). 

4.5.3 Food Intake Measurements  

Food weights were measured before addition to top of cages. One week later remaining food was 

weighed and subtracted from food weight added a week later to obtain food intake/cage during 

the week. 

4.5.4 Blood Collection 

Blood was collected between 8-9 AM from nicked tail veins of mice fed ad libitum. The first drop 

was used for blood glucose measurements (as described below) and additional blood was then 

collected into heparinized and non-heparinized capillary tubes. Blood was transferred to 0.65 ml 

microfuge tubes and kept on ice before being centrifuged at 1,600 g for 30 min at 4oC. Plasma or 
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serum was collected and stored at -20oC until further analysis (see below). Blood at euthanasia 

was collected by cardiac puncture (right after CO2 asphyxia) with a 1 ml syringe connected to a 

23-gauge needle, transferred to a 1.5 ml microcentrifuge tube, allowed to clot for 30 min on ice, 

and was then centrifuged at 1,600 g for 30 min at 4oC. Serum was stored at -20 (short-term 

storage) and -80oC (long-term storage).  

4.5.5 Measurements of Metabolic Parameters 

Blood glucose was measured using a glucometer in a drop of blood collected from the nicked tail 

vein (as described above). At euthanasia blood glucose measurements were performed before 

animals were euthanized. Insulin and triglycerides were measured in plasma or serum (terminal 

bleed only) using an Insulin Rodent Chemiluminescence ELISA (cat. no. 80-INSMR from ALPCO) 

and the L-Type Triglyceride M Assay (Triglyceride M Color A 994-02891, Triglyceride M Color B 

cat. no. 990-02991 and Multi-Lipid Calibrator cat. no. 464-01601 from FUJIFILM Wako 

Diagnostics USA Corporation). Non-esterified fatty acid levels (NEFA) were determined in serum 

using the HR Series NEFA-HR(2) assay (Color Reagent A cat. no. 999-34691, Solvent A cat. no. 

995-34791, Color Reagent B cat. no. 991-34891, Solvent B cat. no. 993-35191, NEFA Standard 

Solution cat. no. 276-76491 from FUJIFILM Wako Diagnostics USA Corporation).  

4.5.6 2-[18F] Fluoro-2-Deoxy-D-Glucose Positron Emission Tomography (FDG-PET) Imaging in 

vivo 

Mice fed ad libitum were injected intraperitoneally with 2-[18F] fluoro-2-deoxy-D-glucose (100-

200 μCi) between 8-9 AM. After 30 min, during which mice were allowed to move freely in their 

cages, mice were anesthetized with isoflurane (3% in oxygen/air (50/50, 1 L/min).) and imaged 

in a Bruker Albira Si PET-CT system (Bruker, Billerica, MA) for 10 min to acquire a single static 

PET image followed by a CT scan for 5 min to ensure attenuation correction and anatomical co-

registration. Anesthesia was maintained during scanning using 1.5-2% isoflurane. The images 
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were automatically reconstructed and registered using the Albira reconstruction tool box as both 

the PET and CT images are in the same image space. Visualization and quantification of 

PET/CT data were performed using Pixel wise MODeling (PMOD)’s image View tool (version 

3.9, PMOD Technologies Ltd., Zurich, Switzerland). Briefly, the whole-body PET and CT images 

were read using the View tool and volumes of interest (VOI) drawn on the CT images on regions 

corresponding to the brown adipose tissue (BAT), quadriceps skeletal muscle (SM) and 

epididymal white adipose tissue (WAT). The same VOI were then automatically drawn on the 

PET images. The Contour tool with appropriate thresholding was then applied for accurate 

delineation of the boundaries on BAT, SM and WAT. Standardized uptake values (SUV) were 

computed for the VOI normalizing by the injected dose per gram body weight. The SUV 

computations were performed using PMOD. 

4.5.7 Magnetic Resonance Imaging (MRI) 

MRI was performed using a 9.4T horizontal bore Biospec AVANCE neo preclinical imaging 

system equipped with a 116 mm bore gradient insert (Bruker BioSpin GmbH, Germany, maximum 

gradient strength 660 mT/m). Between 8-10 AM mice fed ad libitum were anaesthetized with 3% 

isoflurane and secured in an MRI compatible cradle. Anesthesia was maintained during scanning 

using 1.5-2% isoflurane in oxygen/air (50/50, 1 L/min). The respiration rate and rectal temperature 

were monitored throughout, body temperature maintained at 37°C (SA Instruments Inc., Stony 

Brook, NY, USA). A 40-mm inner diameter quadrature radiofrequency coil was used for signal 

transmission and reception. Scout images were taken to confirm correct positioning and 

orientation of subsequent scans. A 2-dimensional 28-slice T2-weighted (RARE) 3-point DIXON 

scan was performed for water-fat separation (1 mm slice thickness, image matrix = 256 x 128, 

field of view = 50 x 35 mm, repetition time = 1404 ms, echo time = 18 ms, signal averages = 2, 

RARE-factor = 4). The fat fraction (FF) map was calculated from the separated fat images. 

Quantification of fat volumes (from the FF maps) were performed using PMOD’s VOI and contour 
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(with appropriate thresholding) tools as described above. The volumes were then normalized to 

the body weight for each mouse.  

4.5.8 Isolation and Sequencing of Nature RNA Species 

4.5.8.1 Homogenization of VAT, SAT and Liver- Because some of the fat pads, quad muscle and 

livers were very large and dense, we were concerned about the ability of Trizol reagent to 

permeate the tissue quickly. We homogenized the tissues at liquid nitrogen (LN2) temperatures 

using the Cell Crusher Tissue Pulverizer (from CELLCRUSHER, Portland Oregon, USA). Briefly, 

tissues were kept on dry ice until use, and all devices and tools were cooled in LN2. The whole 

tissue was inserted into the cell crusher device and crushed, then the powdered tissue was 

collected in 1.5ml tubes in LN2. Tubes were used in tissue isolation or frozen at -70C until use. 

4.5.8.2 RNA Isolation- All tissues were weighed before powdering or digestion, and all tissues 

were kept on dry ice until digestion. For BAT and small SAT tissues, the whole tissue was added 

to 1 mL Trizol. For powdered tissues (VAT, liver, quad muscle, large SAT), added ~.3 g (not 

weighed to keep samples cold) of powdered tissue to 1 mL Trizol. Samples were spun at 4C, 

15,000xg, for 15 minutes to remove lipid and cell debris. We then extracted RNA using the 

RNeasy Micro Kit (Qiagen, Velno, Netherlands), following manufacturer’s protocol (Cat# 74004). 

We digested the DNA species on the Qiagen spin column using the RNAse-free DNAse kit 

(Qiagen, Velno, Netherlands) following manufacturer’s protocol (Cat# 79254). We quantified the 

isolated RNA using the Qubit with RNA Broad Range assay kit (ThermoFisher Scientific, 

Waltham, Massachusetts, USA), following manufacturer’s protocol (Cat# Q10210). We assayed 

the RNA quality using the TapeStation RNA Broad Range assay (Aligent, Santa Clara California, 

USA). RNA species with RNA Integrity Number (RIN) > 7.5 were used in analyses. 

4.5.8.3 Sequencing and Quantification- RNA species were sequenced by Psomagen. Raw fastq 

files will be available on GEO upon the publication of the manuscript. Using fastQC, we assessed 
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the quality of the sequenced reads, and we removed low quality reads (Phred < 28) with 

trimGalore. We aligned our sequenced reads to the mouse genome GRCm39 using hisat2 and 

quantified the aligned reads using htseq. 

4.5.9 Quantification and Statistical Analyses: 

All data are presented as mean ± SEM. All gene expression plots show normalized counts. 

4.5.9.1 Analysis of Variance- Gene expression was normalized using R package DESeq2 with a 

design matrix Strain*Diet. Genes with zero values in more than 75% of the samples were 

removed. Statistical analyses were performed using R, ANOVA tests were performed using aov(). 

[2-way: trait or gene expression ~ Strain*Diet, 3-way: trait ~ Strain*Diet*Time]. P-values were 

adjusted using FDR correction for the number traits or genes tested.  

4.5.9.2 Principal components analysis- Principal components analysis was performed using base 

R pca() on transcripts per million normalized gene expression data or phenotypic traits. We 

removed genes with less than 0.1 TPMs in 80% of the samples. For phenotypic data, we removed 

traits with many zeros, then removed samples with any zeros.  

4.5.9.3 Partial Least Squares Regression- Partial least squares regression was performed using 

R package mixOmics. We used transcripts per million normalized gene expression data for 421 

genes in visceral adipose tissue as the X predictor variable. We used phenotypic traits for cohort 

2 as the Y response variables. Pls() performs a linear regression to identify the combination of 

predictor variables, or X-latent variable 1, that explain the axis of most variance within the 

response variables, the Y-latent variable 1. We performed validation to include the optimal 

number of latent variables in the model. These axes in X- and Y- latent variables are averaged to 

create a shared component space. Pls regression creates loadings, or mappings of the predictor 

and response variables to the latent space, and variates, which map each sample to the latent 
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space. We use a biplot to visualize the predictor and response loadings and the variates in the 

shared component space, with each variable scaled [-1, 1]. 

4.5.10 Data and Code Availability 

Counts, TPMs and fastq files from the RNA-seq generated in this study will be publicly available 

as of the date of publication. Code to perform the analyses in this study will be available on 

https://github.com/jnr3hh/. 
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Chapter 5: Discussion- 
5.1 Systems Biology Approaches are characterize fat storage and distribution 

Biological processes are carefully regulated by the complex interactions between many individual 

parts1,2.  We identify conserved, organized systems at all scales of biology3,4 (Figure 5.1 A). In 

diseases of overnutrition, the brain and adipose tissue work together to control energy storage 

and expenditure5,6. Adipose tissue stores fat and releases signaling molecules7–9 accomplished 

by adipocytes and other cell types10. Adipocyte differentiation and fatty acid uptake contribute to 

lipid accumulation, while lipolysis and thermogenesis reduce fat storage9. Key molecular 

regulators, like PPARG11 orchestrate molecular signaling that drives these cellular phenotypes12. 

While we are limited by models13–15 considering these processes in isolation is reductive. The full 

body phenotype fat distribution result from linear and non-linear effects between expressed 

genes, pathways, and cell phenotypes that result in asymmetrical lipid storage between two 

adipose tissue depots. To fully characterize their effects in context, we can employ a systems 

biology approach.  
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Figure 5.1: Applications of systems biology in adipose tissue health and disease 

(D) Biological systems control health and disease at many scales, from the organism-level to the 

molecular level. 

(E) Systems biology employs multiple methodologies to iteratively generate and test data-driven 

hypotheses. 

(F) In Chapter 2, we use Bayesian networks to model adipose tissue gene regulation in silico. This 

enables us to predict key driver genes, and in Chapter 3, we integrate public data to prioritize key 

drivers in relevant pathways. We use gain and loss of function experiments in (pre)-adipocytes to 

show that key driver genes impact adipogenesis and mitochondrial function. We align these with 

human phenotype data to refine predictions. 

(G) In Chapter 4, we investigate the effect of genetic background and diet composition on metabolic 

outcomes and on gene expression in metabolic tissues. We use the gene expression to predict the 

observed phenotypes using partial least squares regression (PLSR) models, which leads to the 

generation of new hypotheses.  

Figure Created using BioRender. 

 



213 
 

Systems biology is a field in which we attempt to understand these systems of natural phenomena 

through experimental and computational techniques16–18. In these studies, we used computational 

techniques to model the interactions between the components of large biological systems, then 

used these models to make predictions about the underlying biology (Figure 5.1 B). We generated 

experimental data to validate these predictions. We used unbiased methods to generate models, 

then focused our hypotheses using public data and previous literature19. 

In Chapters 2 and 3, we use Bayesian networks to model the gene regulation in adipose tissue 

(Figure 5.1 C). We compare sex- and depot-specific networks to identify unique putative 

regulators of fat storage. Using publicly available data, we prioritize a subset of network regulators 

that likely act in adipocytes. Finally, we test the role of each gene in fat storage, mitochondrial 

function, and Wnt signaling. We use the results of these experiments to refine our hypotheses 

about predicted gene function and about the predictive power of the networks. 

In Chapter 4, we start by generating phenotypic and gene expression data to understand the 

effects of diet composition and genetic background on metabolism at multiple scales (Figure 5.1 

D).  We use partial least squares (PLSR) regression to model the predicted effects of gene 

expression in metabolic tissues on fat storage and circulating metabolites. We use these models 

to make predictions about the genes and pathways that regulate these phenotypes. 

These studies integrate large and small data at multiple biological scales. We observed in vivo 

whole body phenotypes in mouse, and used human in vivo expression data to build causal gene 

regulatory networks. We conducted in vitro cellular phenotyping and characterized molecular 

pathways. We built in silico models of gene-gene regulation in human data and modeled the gene-

phenotype associations in mouse data. By using the framework of systems biology, we generate 

and made meaningful conclusions from big data.  
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5.2 Multi-scale mechanisms of fat distribution 

By taking a holistic, systems approach, we recapitulated known mechanisms of disease biology 

and nominated novel regulators. Throughout our studies, we confirmed the dominating effect of 

male visceral adipose tissue that contributes to the harmful effects of excess adiposity9. In 

response to diet challenge, mouse visceral adipose tissue (VAT) showed a large strain and diet 

specific response in gene expression, which could explain part of the strain and diet specific 

variation seen in metabolic phenotypes. in silico Bayesian network analyses nominated 119 key 

drivers of male VAT gene expression. Interestingly, these contained over 30 genes primarily 

expressed in immune cells. We also identified that two complement 1 genes were responsive to 

strain and diet in mouse VAT, confirming that VAT is capable of robust immune response7,20.  We 

showed, in subcutaneous cells, that four key drivers of visceral networks affected adipocyte 

function, identifying a novel role for these genes.  

We also observed a dominating effect of genetic background on metabolic outcomes. Certainly, 

we know that obesity and fat distribution are highly heritable21,22 and are caused by the combined 

small effects of many genetic variants21,23,24. We observed that genetic background explained 

many of the observed differences in metabolic phenotypes measured in mice, and had a strong 

effect on gene expression in metabolic disease. Conversely, the effects of non-linear interactions 

between genetic background and diet composition were apparent in whole body phenotypes, but 

not in organ level phenotypes or in gene expression, with the exception of VAT gene expression. 

These differences may be explained by assaying other tissues or time-points, as discussed in 

Chapter 4.  

We also know that sex-differences in WHRadjBMI and in cardio-metabolic disease outcomes are 

thought to be driven by differences in visceral adipose tissue between sexes25,26. WHRadjBMI has 

different heritability between men and women27 and different genetic architecture at almost a third 

of the GWAS loci24,28.  Though our in vitro and in vivo studies were limited by using cells and mice 
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of one sex, our network models predict sex-specific regulation of adipose tissue gene expression. 

Key driver analysis and prioritization identified putative key driver genes that were largely unique 

to one sex or depot. Interestingly, most validated key drivers were predicted to regulate female 

networks.  

At the cell and molecular scale, we observed mechanisms of both hyperplastic and hypertrophic 

adipocyte expansion9. The humanized diets used in Chapter 4 contained more fat content than 

chow, and were obesogenic on some genetic backgrounds, likely inducing hyperplastic adipose 

expansion. Within the strain and diet responsive genes identified in mouse VAT, we find 

enrichment for fatty acid and sterol transport and metabolism, and the upregulation of cholesterol 

releasing ATP-binding cassette genes. This may indicate increased lipolysis in the tissue, which 

may explain lower fat storage seen in these mice.  

Our studies in Chapter 3 identified genes that effected adipogenesis and hypertrophic adipocyte 

expansion, ANAPC2, PSME3 and RSPO1. These genes were predicted to regulate female 

networks, and two were predicted in female visceral networks specifically. This could indicate that 

hypertrophic expansion is driven more by putative female genes; mechanistic studies of adipocyte 

hyperplastic processes might validate more putative male driver genes. Both visceral female 

network key driver genes, PSME3 and RSPO1, inhibit non-canonical Wnt signaling, favoring 

canonical pathways. Because non-canonical Wnt signaling has disease implications29,30, these 

genes may act in female visceral adipocyte to exert protective, anti-inflammatory effects.  

Following the systems biology framework, we attempted to align our findings with other human 

data and refine our hypotheses. RSPO1’s effect on fat storage in adipocytes, and correlation with 

WHRadjBMI could explain its effect on WHRadjBMI; we hypothesize that RSPO1 expression inhibits 

storage in both depots and may have different magnitude of effect in each depot that would create 

fat distribution differences. We also find associations between genetic variants in an ANAPC2 

intron and WHRadjBMI; the same variant causes excision of the intron from ANAPC2 transcripts. 
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We hypothesize that the alternate transcript may have a role in WHRadjBMI regulation or in 

regulating expression of the main transcript. In Chapter 4, we identify three genes that respond 

to diet and genetic background, and previous studies show that genetic variation in these genes 

in humans modify diet effects on metabolic traits. We make predictions that genes with similar 

patterns of expression may function in the same pathways. 

5.2 Limitations 

5.2.1 Cell and mouse model limitations 

While studies that model human body fat distribution in cells and mice have large predictive and 

descriptive power31, they are limited by the choice of models used13. Our cell studies of 

adipogenesis in subcutaneous cells are only partially predictive of WHRadjBMI; future 

experimentation in primary cells of both depots would fully characterize these effects. Further, sex 

differences in WHRadjBMI presentation and genetic regulation necessitate26,28,32 modeling and 

testing these predictions in a sex-specific manner. Our focus on primarily male cells and mice 

neglects female disease and protection mechanisms.  

Because of the challenges working with primary cells, summarized in Chapter 3, immortalizing 

the cells using hTERT and SV40 could help them retain adipogenic potential at higher 

passages13,33,34. Adipocytes are spherical cells that normally grow in 3-D space with other cell 

types. Models of 3-D culture and co-culture with other cell types can improve the application of 

cell model predictions to organism health35,36.  

5.2.1 Limitations of computational models 

Computational models of biological processes can be incredible tools for describing and 

predicting natural phenomena1,2; however, model predictions are that- predictions- and must be 

biologically validated16,31. Models are by necessity approximations of a more complex process 

and make assumptions that sometimes don’t represent biology. We find that discretization, an 
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approximation of gene expression, has a large effect on the Bayesian network structure. Even 

completely unbiased model construction from observed data is skewed by observed and 

underlying characteristics of the samples used to build the model, as well as noise introduced 

during sample isolation and analyte quantification. Large data in genomics research is dominated 

by European ancestry subjects, which hinders the application of their conclusions in other 

populations.  

5.3 Validated, functional key driver genes are robust to sub-sampling 

Reproducibility of data is essential in biology, and often, networks can be descriptive of the 

specific population used to generate the model42. We find that subsampled networks partially 

recapitulate the key driver predictions of the full networks and that STARNET and GTEx share 

about 10% of key driver predictions; therefore, a large subset of key drivers aren’t robust or 

meaningful.  

However, literature studies summarized in Supplemental Bibliography 3.1 show that 45 key driver 

genes already have a known role in adipocyte biology. While these point to the predictive power 

of the Bayesian network approach, literature searches are biased by well-studied genes and 

pathways43, e.g. CTNN1B is one of the most cited genes on PubMed. To assess the power of 

networks in predicting key driver genes of unknown function, we used our unpublished negative 

results. Studies in Chapter 3 validated ANAPC2, MIGA1, PSME3, RSPO1, and UBR1, and found 

negative results for TYRO3 and C1QTNF3. Using previous iterations of the prioritization pipeline, 

we identified key driver genes MCC, MTARC1, ANTXR1, AKAP9, ARAP1, LDHD, and QTRT1 as 

genes of interest (Table 5.1). When tested in cells, we found that these genes did not affect the 

tested phenotype, either adipogenesis or mitochondrial function (not shown). 
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Table 5.1: Characteristics of validated and non-functional key driver genes  

Key 
Driver 
Gene 

Network Public Data Network Predictions Validation 

Depot Sex Cell Type Evidence 
Replication in 
both datasets 

Reproduction in 90% 
subsampled networks, 

both datasets 
Functional 

MIGA1 Visceral Male Adipocyte Mouse Replicated Neither Functional 

ANAPC2 Subcutaneous Both Adipocyte GWAS Replicated 
Reproduced in both 

male subq. 
Functional 

PSME3 Visceral Female Adipocyte GWAS Replicated Reproduced Functional 

RSPO1 Visceral Female Multiple Mouse Replicated Reproduced Functional 

UBR1 Visceral Female Multiple Mouse Replicated Reproduced Functional 

TYRO3 Subcutaneous Male Unknown GWAS Replicated GTEx only X 

QTRT1 Subcutaneous Female Adipocyte GWAS Replicated GTEx only X 

ARAP1 Subcutaneous Female Adipocyte Both Replicated STARNET only X 

AKAP9 Visceral Male Adipocyte Mouse Replicated STARNET only X 

ANTXR1 Visceral Male Multiple GWAS Replicated Neither X 

LDHD Visceral Male Unknown GWAS Replicated GTEx only X 

C1QTNF3 Visceral Female Adipocyte GWAS Replicated GTEx only X 

MCC Visceral Both Multiple GWAS 
STARNET 

only 
STARNET only X 

MTARC1 Both Both Adipocyte GWAS GTEx only 
Reproduced in both 

male visc. 
X 

 

We find that positive results in functional studies are frequently predicted by visceral and by 

female networks, while negative results are found mostly by visceral networks of both depots. We 

tested few key drivers predicted by subcutaneous networks. Many of the tested genes were 

prioritized for their location in significant GWAS loci, only validated key driver genes are found 

outside genetic loci as well. Genes that were strong key drivers in multiple networks of one dataset 

but were not replicated in the other (MCC, MTARC1) did not have a role in adipogenesis. This 

may indicate over-fitting of the model, and highlights the need to use multiple cohorts. Sub-

sampling may be the strongest indication of functional validation in cells. When considering 

networks constructed using 90% of the original samples, we identify 4/5 validated genes as key 

drivers of the sub-sampled network. Using a predictive pipeline that considers whether a 

replicated key driver gene is robust to subsampling in both networks, we would make only one 

false negative prediction, MIGA1. While the 90% networks have significant predictive power, the 
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50% and 10% sub-sampled networks have only some (Table 5.2). RSPO1 and PSME3 were 

identified in 50% subsampled networks, while MIGA1 was reproduced in the 10%. In GTEx female 

visceral networks (n = 3), predictions were largely conserved between iterations (Table 5.2). 

Table 5.2: Tested key driver reproduction by percent sub-sampling 

   10% Subsampled 50% Subsampled 90% Subsampled 

   STARNET GTEx STARNET GTEx STARNET GTEx 

Key 
Driver Depot Sex Female Subcutaneous 

MTARC1 Both Both 0/1 1/1 0/1 1/1 0/1 1/1 

ANAPC2 Subcutaneous Both 1/1 0/1 0/1 0/1 1/1 0/1 

ARAP1 Subcutaneous Female 0/1 1/1 0/1 0/1 1/1 0/1 

QTRT1 Subcutaneous Female 0/1 0/1 0/1 0/1 0/1 1/1 

      Male Subcutaneous 

MTARC1 Both Both 0/1 1/1 0/1 1/1 0/1 1/1 

ANAPC2 Subcutaneous Both 0/1 0/1 0/1 0/1 1/1 1/1 

TYRO3 Subcutaneous Male 0/1 0/1 0/1 1/1 0/1 1/1 

      Female Visceral 

MTARC1 Both Both 1/1 2/3 0/1 3/3 0/1 3/3 

MCC Visceral Both 0/1 0/3 0/1 0/3 1/1 0/3 

C1QTNF3 Visceral Female 0/1 0/3 0/1 2/3 0/1 3/3 

PSME3 Visceral Female 0/1 2/3 1/1 2/3 1/1 1/3 

RSPO1 Visceral Female 0/1 1/3 1/1 3/3 1/1 3/3 

UBR1 Visceral Female 0/1 0/3 0/1 1/3 1/1 2/3 

      Male Visceral 

MTARC1 Both Both 0/1 1/1 0/1 1/1 1/1 1/1 

MIGA1 Visceral Male 1/1 1/1 0/1 0/1 0/1 0/1 

AKAP9 Visceral Male 1/1 0/1 1/1 0/1 1/1 0/1 

ANTXR1 Visceral Male 0/1 0/1 0/1 0/1 0/1 1/1 

LDHD Visceral Male 0/1 1/1 0/1 1/1 0/1 1/1 

 

Using the systems biology framework, we can update our models to include some metric of 

robustness to sub-sampling in the key driver identification or prioritization pipeline. Since we know 

that some key driver predictions and therefore some network connections are false, we may be 

able to identify features of the original network that would indicate non-robust predictions. 

Simultaneously, we should pinpoint sub-sampling parameters that optimize predictive power and 
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reduce the associated computation time. Interestingly, the network construction method already 

uses 1,000 random-seed iterations and a score penalty-term to avoid over-fitting the data. We 

found that the networks were likely still overfit, and only made accurate predictions only when 

comparing two datasets and sub-sampling.  

5.4 Future Directions 

Based on the results in table 5.1, we conclude that both robustness to subsampling and replication 

across datasets is necessary for a key driver to be validated in cells. We will incorporate both of 

these requirements when performing experiments based on Bayesian network predictions. 

Because of the time required to construct networks, it might be useful to find the optimal 

subsampling threshold. We could randomly subsample the network to 50, 55, 60 ,65, 70, 75, 80, 

85, 90, and 95% of original samples, repeating this random subsampling 3 times per condition. 

Then, as we did before, we would determine the key drivers replicated in both the STARNET and 

the GTEx networks. We would continue to use the subsampling percentage that predicts the most 

true positive key driver genes without falsely predicting the non-functional genes. So far, we have 

performed experimental validation on 14 key driver genes. While this is a very small sample size 

that was not chosen randomly, we may be able to make rudimentary precision-recall curves to 

mathematically determine the “best” subsampling percentage.  

In chapter 3, we show that five of the predicted key driver genes affect the function of pre-

adipocytes or adipocytes in vitro. To make conclusions about overall fat distribution, we must 

show that there is a difference in fat accumulation between adipocytes derived from subcutaneous 

and visceral adipose tissue. Since there is high variability between individuals, we would ideally 

obtain primary subcutaneous and visceral pre-adipocytes from 3-6 donors each. We would 

immortalize the cells and then characterize their baseline proliferation and adipogenic rates. Then, 

we could introduce extra copies of the gene of interest and assess the difference between controls 

and overexpressing cells. Much like in chapter 4, we would use ANOVA to test if there is an 
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interaction effect between the gene of interest and the depot of origin. For example, if the gene of 

interest promotes adipogenesis more strongly in adipocytes from visceral fat, we could conclude 

that that gene promotes abdominal obesity. These studies would also allow us to determine if 

MIGA1 and UBR1 cause changes in lipid accumulation in either depot, in addition to their effects 

on cellular respiration. Ideally, we would obtain these primary cells from at least 3 males and 3 

females. Using 3-way ANOVA, we could then determine the effects of the variables sex, depot, 

and gene of interest. Based on other mechanistic studies and GWAS signals, we predict that 

RSPO1 and PSME3 may have female specific effects, and we would expect to see larger 

magnitude changes in adipogenesis in female cells than in male cells.  

In chapter 4, we observed large changes in gene expression in mouse visceral adipose tissue 

due to the interaction effects of genetic background and diet composition. However, due to our 

small sample size, we were only able to identify large magnitude changes as significant. Further, 

all 4 mice in strain/diet group (n = 2 used for RNA-seq) were housed in the same cage besides 

SJL, who were singly-housed. In future studies, we would focus only on the visceral adipose 

tissue, ideally sequencing RNA from ≥6 mice. In this way, we would be powered to detect more 

subtle differences, and we could better account for the batch effects resulting from cage 

assignments. We might even consider replacing the SJL mice with a different strain that can be 

co-housed, to reduce noise and strain differences. We would ideally perform this experiment using 

a sex-balanced cohort, with ≥2 cages of mice in each sex/strain/diet group. However, since we 

know that male visceral adipose is more active than female visceral adipose, we might consider 

a smaller pilot experiment to first determine if there are detectable differences in gene expression 

in female visceral adipose between strain and diet groups. 

5.5 Conclusions 

Our studies represent significant contributions to our understanding of the genetic basis of 

abdominal obesity. Using systems biology, we investigated the causes of these diseases using 
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multiple data types and methodologies. Networks and other models integrated the large amount 

of unknowns into coherent structures of gene regulation. We used these models to inform 

mechanistic studies and draw conclusions. Further advances in this field will require dedicated 

research in the computational analysis of big data and in the experimental validation of predicted 

disease drivers using cell and mouse models; more than ever, we need interdisciplinary 

researchers who can apply these tools in biologically meaningful ways. 
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