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Abstract

Maintenance activities are a significant part of an advanced manufacturer’s budget

and could potentially represent an organization’s source of vulnerability in sustaining

a stable supply chain. It is crucial for a manufacturer to understand the implica-

tions of maintenance on their organization’s ability to produce quality products in an

e�cient time-frame at an acceptable cost. Furthermore, it can be expensive, time con-

suming, and create a risk to finished product supply to evaluate results from altering

maintenance activities and policies during a production cycle. This is especially true

when attempting to implement prognostics and health management (PHM) methods

on existing smart manufacturing systems (SMS). This thesis presents research study-

ing the trade-o↵s of various maintenance policies, including PHM methods, using a

simulation with the purpose of providing decision support. The modeling approach

involves building the structure for a simulation in which maintenance policies, prob-

abilistic models of failure rates, processing speeds, and costs are inputs into the

simulation environment. This generality allows for quickly altering a manufacturing

model, and the ability to consider novel policies where control of machine parameters

is needed. The outputs of the simulation evaluate policies in terms of cost per unit

produced and overall equipment e↵ectiveness (OEE), a widely used industry metric.

Data from industrial partners was used in the validation of the simulation environ-

ment. This work is part of a larger attempt to equip plant managers and business

leaders with the methods for understanding which PHM strategy is best suited for

their manufacturing system.
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1 Introduction

1.1 Motivation

Industries active in the manufacturing sector exist in a competitive landscape where

profitability is heavily influenced by their operational directives. Capital intensive

businesses, for example the automotive and airline industries, are under intense pres-

sure to keep their production costs low and guarantee high utilization of assets. A

crucial process that operates at the intersection of sustaining high asset utilization

and low costs is the maintenance policy a manufacturer has selected to follow. If not

chosen or managed wisely, maintenance policies can have adverse e↵ects on production

costs, product quality, people safety, and even employee morale. For benchmarking,

decision makers should have information that reflects a maintenance policy’s impact

on standard metrics such as (1) cost per unit produced, (2) cost of policy imple-

mentation, (3) overall equipment e↵ectiveness (OEE), and (4) labor hours needed for
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maintenance.

Fortunately, the rise of Smart Manufacturing Systems (SMS) has the potential to

change the way organizations make operations decisions so that they may drive down

costs, improve product quality, benefit employee safety, and ultimately propagate ef-

ficiencies throughout the enterprise. A SMS brings the ability to leverage hierarchical

information systems and real-time data analytics to implement immediate control

strategies over the systems. The SMS does this by employing a broad application of

networked information-based technologies throughout a company’s supply chain [1].

SMS sit adjacent to the Internet of Things (IoT) and Big Data revolutions whereby

connected machines can be monitored and controlled from anywhere, and an abun-

dance of information is available to make data-driven decisions. While there is not a

shortage of technologies available to enable smart manufacturing, there exists a lack

of modern methods with which to establish and utilize them. Evidence of this can

be seen in a recent report on the current state of manufacturing in the United States

which called for the need to fill the gap by developing new methodologies. [2]

To fill the void, the field of Prognostics and Health Management (PHM) attempts

to create the systems and methods which manufacturers employ to enhance their

asset maintenance programs. PHM policies are implemented as a better alterna-

tive to traditional corrective maintenance programs primarily defined by initiating

action only after a breakdown or some lost production time event has occurred. It

is through the use of condition-monitoring, diagnostic, and prognostic methods that

PHM attempts to understand the health states of the system and create a manufac-

turing environment where maintenance is carried out on a preventive, predictive, and

proactive basis. More specifically, PHM approaches maintenance by utilizing signals,
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measurements, models, and algorithms to detect, assess, and track degraded health

to predict failure progression [3]. A PHM maintenance policy proves beneficial by re-

ducing manufacturer dependence on non-value added maintenance time and capital

of parts replacement. PHM strives to increase asset lifespan while operating at lower

cost.

However, even after a method is selected or created, a distinct challenge to the

adoption of PHM methods in smart manufacturing systems is estimating their impact

on the system and its subsystems. This is owed to the nature of a modern, compet-

itive manufacturing system characterized by the complex composition of equipment,

processes, and people. It often proves too di�cult to measure the financial impacts

and develop a business case by experimenting with the actual system, building a

physical model, or deriving an analytical solution. Thus, simulation lends itself as

the tool of choice and has been widely used when evaluating complex manufacturing

environments for the comparison of maintenance policy decisions. Simulation allows

for the modeling of complex manufacturing systems with stochastic elements that

cannot be evaluated analytically, can maintain better control over the system than

would be possible if the manufacturer tested on its actual production lines, can com-

pare alternative maintenance strategies in a short time-frame without impacting the

current manufacturing system, and can study a large period of time in a short interval

[4].
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1.2 Purpose and Scope

The aim of this thesis is to present a simulation methodology that builds the business

case for supporting prognostics and health management (PHM) in smart manufactur-

ing systems (SMS). As compared to past e↵orts, the methodology targets the ability

to (1) simulate novel PHM policies, (2) adds generality for the purpose of quickly

updating a manufacturing model, and (3) provides the ability to integrate with a

decision module for the purpose of determining optimal policies. These additions can

be achieved by structuring the simulation such that maintenance policies, stochastic

models of failures, processing speeds, costs, mean time to repair equipment, etc. are

inputs into the simulation environment. Trade-o↵s such as cost per unit, cost of pol-

icy, OEE, and maintenance labor hours required are structured as outputs from the

simulation. It will also consider the manufacturing system hierarchically, allowing

the decision-maker to detail input parameters and collect output data down to the

equipment component level.

Previous work on building business cases for implementing PHM methods in SMS

using simulation has targeted specific applications such as electronic systems [5] and

helicopter avionics [6]. When it comes to developing the business case for imple-

menting PHM in smart manufacturing systems, the literature could benefit from a

formal presentation of a simulation method with a general input-output structure ca-

pable of considering new maintenance policies employing advanced PHM techniques

such as considering machine parameters as decision variables. Traditional reliabil-

ity literature does provide simulation models for comparing maintenance policies [7],

but can be augmented by reconciling their models with PHM techniques, modeling

hierarchically, and considering both cost and OEE metrics for analysis.
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This thesis focuses on the advanced manufacturing setting, and will be most help-

ful when applying the method to those industries which operate in complex envi-

ronments using smart manufacturing technologies. The simulation method will be

demonstrated with input data from an advanced manufacturer employing SMS tech-

nologies and investigating where their factory could benefit from PHM. The resulting

simulation, built in MATLAB, will be used to compare several maintenance policies

found in the literature for their cost and equipment e↵ectiveness. This includes con-

sidering a Corrective Maintenance policy, whereby maintenance activities are only

performed at the time of system failure, and preventive policies that attempt to plan

for failures by performing maintenance before they occur. Preventive maintenance

is the topic of an exhaustive amount of literature and extends to many subtopics

including time based maintenance (TBM) and condition based maintenance (CBM).

CBM also reaches further to include an array of policies, many of which are the topic

of current literature.

Figure 1 illustrates how this thesis fits into the larger e↵ort to equip manufacturing

leaders and systems analysts with the methods for understanding how to achieve a

PHM implementation in an existing system. The simulation methodology is the

second stage of implementation and an essential piece intended to complement the

broader body of work representing a holistic vision for enabling manufacturer’s to

adopt PHM techniques.
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Figure 1: For a PHM implementation, a manufacturer would follow along the three stages represented in this
figure. This thesis is primarily concerned with the Simulation stage and providing decision-makers with informed
trade-o↵ analysis based on a PHM focused simulation methodology.
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1.3 Organization of the Thesis

This thesis is arranged to include a literature review in Chapter 2 focused on the

current state of maintenance policies and the use of simulation in manufacturing.

Chapter 3 will review the simulation methodology. In Chapter 4, an application of

the simulation method will be presented using data from a advanced manufacturer.

Chapter 5 will conclude the thesis by discussing findings and considerations, contri-

butions, and potential for future work. The appendices will show detailed simulation

data and the MATLAB SimEvents workspace.
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2 Background

2.1 Chapter Overview

This chapter reviews topics presented in the literature and lays out the theoretical

basis of the thesis. It details the current state of maintenance in manufacturing and

how the study of maintenance policies has evolved. A map of how the policies are

related can be seen in Figure 2. The use of simulation in manufacturing is discussed

with a focus on simulation environments constructed specifically for manufacturing

maintenance. The chapter exposes gaps in the literature and closes by suggesting

that a holistic simulation method for driving PHM decision support with industry

substantiated metrics is needed to augment existing approaches.
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2.2 Maintenance Policies in Smart Manufacturing Systems

Maintenance is defined among the literature as a set of activities or tasks used to

restore an asset to a state in which it can perform its designed functions [8]. Mainte-

nance policies can be broadly classified into Corrective Maintenance, sometimes called

reactive, and Preventive Maintenance policies [9]. Preventive maintenance (PM) poli-

cies in particular have been the topic of research and development for a long time.

The field of operations research introduced the application of PM policies based on

mathematical descriptions as early as the 1950’s. An example of this work can be seen

in papers by [10] and [11] where they proposed the creation of two optimal preven-

tive maintenance policies and compared policies for stochastically failing equipment,

respectively.

Preventive maintenance evolved to be divided into two major categories, Time

Based Maintenance (TBM) and Condition Based Maintenance (CBM). CBM is the

parent discipline of most recent literature and therefore contains the broader spectrum

of policy development as compared to TBM. The domain of Prognostics and Health

Management (PHM) is mostly contained in and concerned with CBM practices. PHM

technologies reduce time and costs for maintenance of products or processes through

e�cient and cost-e↵ective diagnostic and prognostic activities. Diagnostics is defined

as process of finding the source of faults [12]. This is valuable to a manufacturer

since the aim of diagnosis is to provide early warning signs that equipment is about

to fail; the obvious and critical assumption being that there remains a period of

time whereby maintenance activities can still be performed before eventual failure.

In order to address this timing concern, prognosis must be practiced. Prognostic

methods endeavor to provide a prediction of when a failure will occur at a time
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interval greater than a diagnosis can provide.

It is not uncommon for PHM, and other forms of maintenance, to be discussed

from either a product or process point of view. Product PHM, which is more common,

refers to health monitoring, diagnostics, or prognostics of a finished system such as

a car or aircraft. Process PHM is for a system that incorporates one or multiple

pieces of equipment to complete a task such as an assembly or machining process

[13] [14] [15] [16]. Processes in manufacturing will be the focus of this thesis, and the

policies reviewed will be at both the component and higher system levels. It is also

important to note that this work is primarily concerned with PHM implementations

for existing manufacturing processes. While a new production facility could most

certainly use the simulation method to build a business case, the data for validation

of current processes will not be available, and thus possibly di�cult to estimate. The

use of interviewing subject matter experts and benchmarking other similar existing

processes would have to be used. Implementation of PHM techniques on existing

processes is often the more interesting and challenging case, since the cost to retool

equipment and retrain or hire employees may be significant.

Figure 2 illustrates a general overview of the literature and the relationship of how

maintenance policies can be categorized.

2.2.1 Corrective Maintenance

Corrective maintenance (CM), often referred to as reactive maintenance, is the easiest

policy to understand and for a manufacturer to implement. Under CM, the manufac-

turing system would only perform maintenance activities after a failure has occurred.

There are a few variations in the literature as to the exact policy being carried out,
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Figure 2: This is a visual representation of maintenance policies found in the literature. It should be noted that
it is not an exhaustive list, and that most industry maintenance policies are implemented as a hybrid of several
policies.
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dependent upon the system. For example, replacement of a component could hap-

pen immediately after a failure or after a specified number of failures [17]. Reactive

maintenance could be the best solution in situations where failures have little to near

zero impact on cost and system uptime, especially as compared to the cost of im-

plementing more progressive maintenance strategies. For example, light bulbs might

be something that are only changed after failure. Equipment and their respective

components that are best suited for CM would most likely be filtered out during the

first stage of a PHM implementation, as represented in Figure 1.

2.2.2 Time Based Maintenance

Time Based Maintenance (TBM) is often a manufacturer’s first foray into the realm

of preventive maintenance. This is because it can be simpler to implement since

maintenance activities are performed based upon a specific unit of time T or period:

meaning only a schedule, clock, or cycle counter is needed from an equipment per-

spective. There are several policies proposed in the literature that qualify as TBM.

For example, in a survey by [17] age-dependent, periodic, and sequential could all

be categories of TBM policies. In an age based policy, maintenance activities are

performed when a piece of equipment or component reaches a predetermined time T

or fails. Periodic denotes a policy where maintenance is performed at time intervals

kT where k = (0, 1, 2, 3, . . . ), regardless of failures that previously occurred. Sequen-

tial means that the time interval T for performing maintenance is changing, usually

decreasing, as the component ages.

TBM policies generally assume a stochastic nature for component mean time

between failure (MTBF), and that the system is deteriorating with the passage of
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time [18]. The challenge to manufacturer’s is to correctly estimate the randomness

of their equipment’s MTBF. This has been posed with the help of fitting probability

distributions such as the normal, the gamma, or Weibull [11]. The Weibull will be

the distribution used in Chapter 4 when fitting data from an advanced manufacturer

for generating failures. A major limitation to TBM may be the increased cost due

to performing more maintenance activities than actually required. This can occur

is the time interval T is too short. Conversely, a T set too aggressively close to the

mean failure time will allow for deviations to occur resulting in frequent corrective

maintenance activities, especially for equipment with large failure variances.

2.2.3 Condition Based Maintenance

Condition Based Maintenance is a policy that aids a manufacturer’s maintenance

decisions through real-time diagnostics of imminent failures and prognostics of future

equipment remaining usable life (RUL), or the health state. The decision to perform

maintenance is reached by observing a condition of the system and its components

[19]. CBM, sometimes termed predictive maintenance, may ultimately be more cost

e↵ective if a process’s or equipment’s health data accurately reflects its current state

and allows a machine to run longer until maintenance, as compared to a TBM policy.

CBM is wheelhouse of PHM methods and the topic of most current literature as it

represents the intersection of rapidly developing information systems technologies and

data analytics techniques.

CBM was found to be more realistic from a conceptual point of view when com-

pared with TBM [20]. This is aided by the findings of [21] where 99% of equipment

showed a sign or indication that a failure was about to occur. The challenge of
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CBM is gathering su�cient data to make a reasonably accurate prediction. If reli-

able data is available, CBM was found to be most cost e↵ective when employing a

grouping strategy that reacts to changing component deterioration and dependencies

in a multi-component system [22].

A general formula for the manufacturing cost of a CBM type policy as given by

[23] and used in calculation for the simulation method presented in Chapter 3 can be

written as:

C
Total

= (N
u

⇤ C
u

) + (N
m

⇤ C
m

) + C
d

Z
T

0

(1� A(t))dt

Where T is the lifetime of the system under review and,

N
u

= number of unplanned failures up to time T

C
u

= cost of an unplanned failure

N
m

= number of PM actions completed within time T

C
m

= cost of a PM activity

C
d

= cost rate of downtime

A(t) = Availability, or percentage of time in operational state

In 2010, a comprehensive review was conducted of prognostic and diagnostic

methodologies for CBM that presented existing policies in four categories: physi-
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cal models, knowledge-based models, data-driven models, and combination (hybrid)

models [19]. This review highlighted the successes and limitations of many spe-

cific methods across these four categories such as Hidden Markov Models, Bayesian

network-related methods, Fuzzy Logic, and Principal Components Analysis. No one

method stood out as being su�cient to provide both diagnostic and prognostic intelli-

gence at multiple levels. This review demonstrated that for every method’s strength,

there was at least a single weakness.

2.2.4 Extending CBM Policies

An exciting contribution of this thesis is the ability for the simulation method to

consider novel maintenance policies seeking to extend CBM approaches. Adaptive

Multi-Scale PHM (AM-PHM) is an example of one such policy [24]. AM-PHM fits

in the maintenance policy map (defined visually in Figure 2) under Condition Based

Maintenance as a hybrid of diagnostic and prognostic policies employing knowledge-

based and data-driven techniques. It was first posed to address the existing gap in

providing PHM for hierarchical manufacturing systems, which exist abundantly in

large-scale corporations.

AM-PHM incorporates multi-level, hierarchical relationships and PHM informa-

tion gathered from a manufacturing system. Diagnostic and prognostic information

regarding the current health of the system and its collective components are utilized

and propagated up the hierarchical structure. The goal is to create actionable prog-

nostic and diagnostic intelligence along the manufacturing process hierarchy. This

information is assumed to include the predicted health state upon completion of a

task. Thus, the benefit of an AM-PHM policy is more holistic, system-wide decision-

15



making to increase cost e�ciency and equipment e↵ectiveness with respective to busi-

ness goals.

New CBM policies, such as AM-PHM, will reject the notion that equipment pa-

rameters must only be optimized with respect to their specific manufacturing process.

For example, in a typical machining process, a lathe is normally setup with parameters

to achieve maximum e�ciency and a minimum smoothness specification. However,

in complex systems of systems this optimized element represents a trade-o↵ of other

elements. Each component of a manufacturing system is available with a multi-

dimensional spectrum of available parameter settings, not merely a one-dimensional

set of values. This type of policy can leverage hierarchical information and the ability

to manipulate system parameters to realize cost and equipment e↵ectiveness gains

that would ordinarily be missed with a less holistic policy.

No policy, however, is without its drawbacks. AM-PHM and others like it would

certainly require a high cost to implement on an existing manufacturing process that

did not already collect high-quality sources of diagnostic and prognostic data. A

company without the capital to invest in Enterprise Resource Planning (ERP) systems

that could propagate information up the hierarchy would also be less inclined to

pursue this type of advanced decision support method.
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2.3 Simulation of Maintenance in Manufacturing

Simulation has been used in past and present literature to assess the impact of a

maintenance policy on a manufacturing system. Manufacturing generally is the topic

of much simulation e↵orts in practice, and could arguably be the arena of more

simulation than any other application area. This is due to the fact that a localized

change can be tracked and understood system-wide; and manufacturing systems tend

to be complex enough that small changes do not give intuitive understanding of

system impact. Figure 3 details the steps taken in a general simulation methodology

as given by [4]. These steps will be altered in the next chapter to create a simulation

method for analyzing PHM implementations in SMS.

A review of individual simulation studies for maintenance in manufacturing shows

the abundance and diverse set of analyses performed. The work of [25] considered

and analyzed the e↵ect of five di↵erent maintenance policies: corrective maintenance,

30 day preventive, 90 day preventive, event-triggered preventive, and 30 day event-

triggered preventive. This study was to show that Flexible Manufacturing Systems

experience big variances for the number of tasks performed depending on the main-

tenance policy used.

[26] performed a simulation to compare the e↵ect of several maintenance poli-

cies on a heterogeneous job shop, where all the machines are performing di↵erent

tasks. There it was found that adding redundancy of machines does not generally

increase throughput, but rather e↵ective preventive maintenance polices can signifi-

cantly counteract unplanned failures.

Another paper [23] attempted to predict the performance of CBM policies. It

accomplished that by using simulation to explore several CBM policies under di↵erent
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Figure 3: This is a visual representation of a general simulation methodology and the steps taken as found in
widely accepted simulation literature [4].
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Figure 4: A literature review table of attributes that illustrates existing work in SMS maintenance simulation
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scenarios, and producing a Bayesian network learned from the simulation data to

obtain a model for failure prediction.

In yet another paper [27] a simulation model was used to compare the performance

of cellular and functional work cell layouts and the e↵ect of maintenance policies. The

mean work-in-process (WIP) inventory and throughput times were used to compare

the performance of a corrective maintenance and PM policy.

Where there is a significant gap in the literature is a common agreement on which

metrics are best suited to compare di↵erent maintenance policies. This thesis will

build commonly used manufacturing metrics into the simulation structure as out-

puts. Cost per unit produced, cost of maintenance policy implementation, overall

equipment e↵ectiveness (OEE), and the number of hours needed for maintenance

activities will all be considered standard outputs. These metrics were found to be

valuable to manufacturers through industry visits where the research team sought

expert opinions.

The literature also shows a lack of consistency in the method by which manu-

facturing systems were simulated for the comparison of maintenance policies. This

might owe to the fact that there is great diversity of systems, where each is tailored

to the product being produced. Simulations are by nature very specific programs

built to model unique systems as accurately as possible to answer a systems analysts’

questions. This thesis seeks to contribute a simulation method and structure that

would allow for easily updated inputs which has the potential to reduce time spent

making production runs in PHM implementation analysis. There are methods in ex-

istence which use an input-output simulation structure, but most are only built for

comparing current operations, excluding maintenance decision support [28] [29]. If
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manufacturing maintenance is analyzed, such as in [7], there is lack of a defined simu-

lation method and consideration of PHM specific attributes like cost and the system

hierarchy. A table of attributes that illustrates existing work in SMS maintenance

simulation is shown in Figure 4. This table shows how the simulation methodology

presented in this thesis compares to current literature and augments prior papers by

including all attributes for a more holistic approach.

2.4 Chapter Summary

This chapter dissected literature to define various types of maintenance policies and

map their relationships. This will be useful information when the simulation method

is applied to a real advanced manufacturer environment in chapter 4. It showed that

while there is an abundance of current research to develop condition based main-

tenance approaches in the field of PHM, there is a lack of unity for a method of

simulation to build the respective business case. The next chapter will discuss the

method used to close the gap found in the literature.
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3 Methodological Approach

3.1 Chapter Overview

This chapter reviews the PHM simulation methodology for smart manufacturing sys-

tems: formulation, building, testing, making production runs, outputting metrics,

performing analysis, and presenting trade-o↵s to the decision maker. Figure 5 illus-

trates the steps of the simulation method. Each step is explained in detail, however,

the chapter begins with the scoping stage of a PHM implementation and concluding

with the exploitation stage as referenced in Figure 1. This chapter concludes with

the insight needed to continue with a demonstration of the method where it will be

applied it an advanced manufacturer using data captured from an actual production

facility.
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Figure 5: This is a visual representation of the PHM specific simulation methodology for a SMS showing the steps
taken by a systems analyst to build a business case.
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3.2 Simulation Methodology Supporting PHM in SMS

Building from the general simulation methodology shown in figure 3, this thesis

presents a new method depicted in figure 5. The following sections are broken down

into (1) formulation, (2) building, testing and production runs, and (3) metrics, anal-

ysis, and trade-o↵s. Each section will explain in detail each step of the simulation

methodology. The steps are as follows:

1. Identify Areas for PHM

2. Identify Current and Candidate Policies

3. Form Structure of the SMS

4. Collect and Fit Data

5. Check if Assumptions are Valid

6. Build Simulation Structuring Data as Inputs

7. Make Pilot Runs and Check if the Model is Valid

8. Design Experiments

9. Make Production Runs

10. Gather, Data for OEE, Cost, and Maintenance Labor Hours

11. Analyze Trade-o↵s

12. Document and Use Results

13. Update Policies and Data, return to step 9
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3.2.1 Formulation

PHM implementations have the potential to be quite costly when you add up the costs

for sensor installation and activation, research and computing instrumentation for

predictive analytics capabilities, and continuous labor for monitoring and managing.

If a manufacturer were to blindly introduce a new PHM technique across their entire

manufacturing system, there would most likely be pieces of the system which would

be over-monitored or micro-managed and not necessarily worth the added expense.

Thus, it is important to prioritize exactly where PHM is implemented to guarantee

cost and equipment e↵ectiveness. A system-wide implementation has the potential to

stretch corporate budgets and stall PHM implementation. A focused PHM strategy

will allow for quicker return on investment, ultimately saving capital which could be

reinvested to new cost-saving projects.

This is where the field of Risk Analysis can provide help for identifying priori-

tized targets in a manufacturing system that most need PHM. Using the combined

methods of Hierarchical Holographic Modeling (HHM), Risk Filtering and Ranking

Method (RFRM), and Fault Tree Analysis (FTA) the method can achieve step one

of the PHM-specific simulation methodology [30], [31], [32]. Work has already been

completed on this e↵ort as apart of the aforementioned holistic vision for PHM im-

plementation defined in Figure 1 and presented in this paper [33]. The methods of

Risk Analysis (HHM, RFRM, and FCA) were harmonized with the field of PHM

and included the creation of PHM-specific rules for determining PHM targets. This

thesis’s PHM simulation methodology is benefited from applying the risk methods of

scoping by streamlining the simulation build process.

The second step in the PHM simulation methodology is to choose the set of can-
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didate maintenance and operations policies to be evaluated. This would be unique

to each manufacturer and also entails developing a concrete understanding of which

policy is currently being used. It is important to define the current policy being used

now for experimental design and trade-o↵ analysis to be performed later. The mainte-

nance policy map shown in Figure 2 can be used a reference for selecting an evaluation

set. The demonstration in chapter 4 used candidate policies which represented correc-

tive maintenance, time-based maintenance, and condition-based maintenance. The

policies should be chosen seeking to analyze impact on cost reduction and overall

equipment e↵ectiveness (OEE) improvements using PHM information for the areas

identified in step one. In addition to the current policy being used by the manu-

facturer, during this step would be the time to note any unused or under utilized

PHM technologies. For example, a piece of equipment might have sensing capabili-

ties that are either not activated or being analyzed. This capability will be a factor

when developing the set of potential policies, and could bring down the overall cost

of implementing a policy.

Each maintenance policy inputed into the simulation for comparison will also

have important assumptions and modeling approaches used in reliability theory such

as grouping of maintenance activities and the degree of maintenance e�ciency. These

assumptions should be defined as apart of step two. Grouping is an approach where

multiple components are repaired or replaced at the same time to limit aggregate

production downtime [34]. Maintenance e�ciency speaks to the concept that the

activities performed do not return equipment 100% back to the base condition [35].

Therefore, the systems analyst needs to assume the state of the equipment is either

as good as new (AGAN), as bad as old (ABAO), or somewhere in between. The later

26



state is usually referred to as imperfect maintenance [36]. The simulation structure,

discussed in step 6, is setup such that these maintenance policies and their respective

parameters are inputs. The reason for this structure is discussed later as an important

contribution.

The third step is to form the structure of the smart manufacturing system. This

structure should be hierarchical in nature to ensure capturing the necessary com-

plexity of the manufacturing system as simply as possible. To do this, evaluate and

write down or graph the factory hierarchy, but only for the resolution necessary to

evaluate cost and OEE impact. Step one and two will inform the decisions made on

the level of detail required both up and down the system hierarchy. For example,

the demonstration in chapter 4 did not consider every production line in the man-

ufacturing facility, and therefore the production-line was the highest level. Certain

equipment components filtered out in step one were also omitted the lowest levels.

The system structure might need to be re-evaluated and adjusted in the future as

the manufacturing system changes or radically new policies sought to be tested. Any

assumptions made in this step should be saved for a validation discussion late. An

example of this might be how raw materials and WIP are handled in the factory.

The fourth step is to collect and fit data from the existing manufacturing system.

This could prove to be a challenging step if purely corrective maintenance is currently

being performed. The manufacturer’s systems databases should be carefully analyzed

for any helpful information on previous operations history. The data to be collected

for input to the simulation could include, but not limited to:

• Processing times for each piece of equipment in the manufacturing process

• Mean Time Between Failure (MTBF)
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• Mean Time To Repair (MTTR)

• Operating costs such as labor, overhead, materials, etc.

• Maintenance costs such as labor, component replacement costs, etc.

• Equipment operating parameters

• Order schedule and SKU characteristics

• Policy implementation costs

The systems analyst will need to be diligent to search for clean data that is backed up

by observation. Interviews with experts should be conducted to bolster data collection

activities. It is most useful to create a survey form whereby all expert interviews

are conducted in a standard manner for a clearer picture of complex manufacturing

systems. Data such as MTBF should then be fitted to a distribution; this is easily

done by many software packages such as MATLAB or R. Chapter 4 will most often

use the Weibull distribution for processing, failure, and repair times. The Weibull is

the most widely used distribution in reliability research [7]. Its probability density

function is represented as:

f(x;�, k) =
k

�

⇣x
�

⌘
k�1

e�(x/�)k for x � 0

where k > 0 is the shape parameter and

where � > 0 is the scale parameter
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The fifth and final step of the formulation stage is to detail and validate the

PHM simulation model assumptions. This will require presenting assumptions to the

project team and ensuring that the simulation analysis will be able to achieve a com-

parison of system costs and OEE for each policy selected. Assumptions might have

to be made on how equipment deteriorates over time down to the component level,

whether the preventive policies considered support a grouping technique to compo-

nent replacement, the e↵ectiveness of maintenance activities on restoring equipment

back to its base-condition, and many other topics covered in the literature.

3.2.2 Building, Testing, and Production Runs

The sixth step of the PHM simulation methodology is to build the simulation and to

do so with the structure represented in Figure 6. This is an important contribution of

this thesis and is the driver behind three main benefits: the ability to simulate new,

novel PHM policies, a generality for the purpose of quickly updating the manufac-

turing model, and capability to integrate with a decision module for the purpose of

determining optimal policies. The type of simulation model used in this methodology

will be a Discrete Event Simulation (DES) where the system evolves through instan-

taneous state variable changes at separate points in time. From a PHM perspective,

health state variables are added and tracked to infer health state information. When

comparing condition-based policies, the simulation will then be able to take advantage

of health information before deciding on maintenance activities.

The inputs are anything that can a↵ect how the manufacturing system will operate

and additional parameters related to calculating output metrics. The structure clearly

identifies but is not limited to: distribution of processing times for each piece of
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Figure 6: This a representative view of the simulation structure where parameters such as processing times
and mean time between failure (MTBF) are treated as inputs. The inclusion of machine parameters is a new
consideration that will allow for the analysis of decision strategies that employ PHM information.
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equipment in the manufacturing process, distribution for each component’s mean

time between failure (MTBF), distribution for each component’s mean time to repair

(MTTR), operating costs, maintenance costs, equipment operating parameters, order

schedule, and policy implementation costs. The outputs represent data needed for

evaluation and presenting the business case. These include cost per unit produced,

cost of implementing a particular maintenance policy, overall equipment e↵ectiveness,

and maintenance labor hours. The choice of these metrics is explained further in the

next stage. The manufacturing system structure is the environment representing the

unique arrangement of a company’s hierarchical production facility, and will be driven

by the work completed in step three. Most software packages on the market today,

including MATLAB which is used for demonstration in Chapter 4, will be capable of

building a simulation in this manner.

Step seven is to make pilot runs and check if the simulation is producing valid

and useful results. In reality, the simulation should be tested at every step of the

build process. Quality checks early on in the building step will prevent large and

potentially project delaying changes later. If the real manufacturing system is at

your disposal, checking your simulation with real data operating under the current

maintenance policy is a great way to identify errors.

Step eight and nine are to design simulation experiments and make production

runs, respectively. Much literature is available with methods of creating scenarios and

measuring the impact. Generally speaking, the length of each simulation run, use of

a warm-up period, and number of independent simulation runs should be specified.

For the PHM simulation method presented here, this step will start by running the

simulation for each maintenance policy in the selected set developed in step two. The
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first set of experiments will be to collect output data for the costs and equipment

utilization metrics by keeping all manufacturing system inputs the same and only

varying the maintenance policy input. Further experiments should be discussed with

the project team and conducted to bolster the business case presented to decision

makers. The length of production runs made may depend on the complexity of the

model and computing power available to the systems analyst. From a manufacturing

standpoint, a unique consideration would be to ensure an entire product cycle is sim-

ulated. For example, a manufacturer might have seasonality in the SKU’s produced

and varying types of changeovers necessary at di↵erent times of the year (or longer

depending on product being made). In order to fully understand the impacts of a

particular maintenance policy, the entire production schedule cycle should be simu-

lated. Steps eight and nine should be repeated as new information becomes available

or di↵erent experiments are designed.

3.2.3 Metrics, Analysis, and Trade-o↵s

With the production runs complete, data needs to be collected for the unique metrics

of this thesis’s simulation method covered in step ten. If the simulation is built

according to the structure presented in step six, the output data should already be

available and ready for analysis. The output metrics were selected for their ability

to present a sound business case for decision makers and were validated with help

from industry visits after speaking with manufacturing experts. Overall Equipment

E↵ectiveness (OEE) is defined as:

OEE = A(t) ⇤ P (t) ⇤Q(t)

Where,
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A(t) = Availability =
Scheduled Time�Downtime

Scheduled Time

P (t) = Throughput =
Units Made ⇤ Theoretical Cycle Time

Scheduled Time

Q(t) = Quality =
Good Units

Total Units

This is a measure well known to advanced manufacturer’s using Lean Manufacturing

tools such Total Productive Maintenance (TPM), and is considered an essential mea-

sure of ensuring low waste[37]. World class OEE is considered to be any organization

that can achieve above 85% for their production facility. World class facilities that

have achieved that number are famously operated by several automakers including

Toyota Motor Corporation.

Cost per unit, or sometimes simply called unit cost, is calculated by adding up

total production costs and dividing by the number of units produced. This is an

important departure from merely considering total production costs, and is a widely

used measure across industries. The cost variables to be modeled and accumulating

as simulation time progresses are [38]:
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C
u

= Production cost per unit

C
c

= Replacement cost for a failed component

L
o

= Labor cost for operations employees

L
m

= Labor cost for maintenance employees

S
m

= Maintenance supplies cost

M
s

= Material cost, used to under cost of scrap

H
u

= Overhead cost for utilities

R
s

= Lost revenue due to stock outs, e.g. sales

T
s

= Transport cost, and other supply chain concerns

The cost of implementing a maintenance policy is a measure that will help for

return on investment (ROI) calculations and be presented to the decision makers in a

trade-o↵ analysis in the next step. This is the single biggest driver of whether plant

managers will choose to implement PHM into their facility. Cost of implementing

specific policies needs to be estimated for direct comparison. Through working with

our industrial manufacturing partner, costs could be incurred from but are not limited

to:

• Maintenance tracking and reporting software package purchase, subscription

fees

• Sensors purchase and installation

• Sensor activation fees (this occurs when physical sensors are already installed
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but equipment vendors charge to “activate” data collection and usability)

• Labor cost for employee to maintain, develop, implement, analyze, and update

the maintenance system (the position in a company that handle this role may

include a Reliability Engineer, Manufacturing Engineer, Maintenance Planner,

Maintenance Coordinator, etc.)

• Data storage solution

• Time needed to train operators, mechanics, and management how to perform

tasks required of a particular maintenance policy

Lastly, a measure that was consistently demanded through industry visits as is

also a topic of some current literature is the number of maintenance hours needed

for each particular policy [39]. The reason this is an important metric is due to two

reasons (1) the average age of a maintenance employee, including both mechanics

and electricians, is rising steadily for advanced manufacturers and (2) corporations

are having trouble hiring new maintenance personnel and keeping turnover rates low.

This has become such a common problem that companies will now often incentivize

employees to join their organization with higher pay and funding education programs.

Steps eleven and twelve are to analyze trade-o↵s and to document and use results,

respectively. The trade-o↵s analyzed depend on the experiments designed in step

eight. The systems analyst should present trade-o↵ curves for the purpose of showing

how much unit cost and OEE are impacted between di↵erent policies. Plotting these

standard charts will provide valuable insights for the company:

• Unit Cost versus OEE
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• Unit Cost versus Cost to Implement Policy

• OEE versus Cost to Implement Policy

• Number of Maintenance Hours versus Cost to Implement Policy

Additional experiments are welcome by varying input parameters of each main-

tenance policy. These can be used to further augment the business case and help

decision makers feel more comfortable with a holistic view of the system. An ex-

ample of this would be an experiment designed to answer the question: what would

the MTTR have to be before preventive maintenance activities are not worth the

cost? Of course, after trade-o↵ analysis work is complete it should be documented

and presented in a clear and concise manner to manufacturing leadership. The de-

cision makers should be informed of the model building and validation processes,

pointing-out assumptions where they exist. The decisions should be made based on

the analysis provided there is agreement on model validity. During this step, adding

simulation animation to the manufacturing system could help convey the message.

Step thirteen is to update data and policies when new information becomes avail-

able or new policies are developed. This is a step that could be automated and

potentially tied-in directly to data systems already in place. Information being gath-

ered on the production floor by the programmable logic controllers (PLC’s) has the

ability to be collected and auto-fitted to obtain distribution parameters which then

can be fed into the PHM simulation method. Outputs could also be auto-generated

and systems analysts alerted to new developments on a regular basis. It will be

most important to update data and review new results if product demand climbs or

significant process improvement were recently made.
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3.3 Simulation Design

The simulation architecture employs common design components and organization

found in discrete event simulations where the next event will advance the simulated

time [4]. These components are:

• Simulation clock : Maintains the currents simulation time as a state variable

• System state description: Variables used to describe system state at a specific

time

• Statistical counters : Variables used to collect metrics on the system

• System entities : Items of interest that makeup the simulation

• Events : An action or occurrence that changes the state of the system

• Events list : A list populated with times of scheduled events, updated by the

simulation program

• Simulation program: The main program that coordinates various subroutines

to determine the schedule of events, update system state variables, terminate

the simulation, and control reporting

The architecture of a PHM simulation for SMS must be adapted to include an

expanded decision space for the ability to consider new policies. This can be seen

in Table 1 with the addition of a state variables for machine parameters such as run

speed or feed rates and machine health.
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Entities in a PHM simulation design would include but are not necessarily limited

to: manufacturer orders or products being made, machines, machine queues, material

handlers, etc. Entities have attributes that can help track their state during all

simulation time. The system state can only change by the occurrence of an event or

action. In a PHM system, events and actions can be defined as the following:

• Machine Failure (MTBF)

• Maintenance Activities (MTTR)

• Machine Processing Activities

• Order Arrivals

• Change Parameters of Machine

• When to Perform Maintenance

• Change Maintenance Policy

Statistical Counters will be necessary to collect metrics for comparing the mainte-

nance policies and ultimately performing trade-o↵ analysis. The statistical variables
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used in a simulation for evaluating PHM policies should include but may not be

limited to the following:

• Order Received, Orders Finished

• Total Maintenance Hours

• Number of Failures

• Average Length of Queue

• Orders Served by Machine

• Scrapped Parts

• PM Time

• RM Time

• Processing Times

Similar to a majority of discrete event simulations, the simulation logic functions

as a combination of subroutines organized by the main program. The subroutines are

for initialization, order arrival event, order departure events, machine failure event,

changing machine parameter action, and a preventive maintenance event. These are

depicted below with a description of the simulation algorithm and simplified diagram

for each.
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Initialization at t0:

• Obtain and schedule the first order arrival time, A1

• Obtain machine failure time

• Obtain machine processing time

• Initialize states and statistics, advance clock to the first event

At simulation initialization, no orders are in the system therefore queue length is

0, machine parameters are set to their default, machine health is good, and machine

status is idle. No orders have entered or exited the system, therefore statistics are all

still at initial values.

Order Arrival at t
i

:

• Next order time A2 is scheduled in events list, the first order departure time D1

scheduled

• If the machine is idle, the order enters and changes machine status to busy

• If machine status was busy, the order goes to machine’s queue
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• Maintenance subroutine updates health states and will schedule maintenance

activities with respect to policy

• In a corrective policy, F
t

scheduled if F
t

< D
t

else departure occurs as planned

• In either a TBM and CBM policy, a preventive maintenance time PM
t

is sched-

uled if PM
t

< F
t

< D
t

• All states and statistics are updated with new values where applicable. Advance

clock to the next event.

At this order arrival, because the simulation checked to see if the machine was

busy and found it idle, the order will pass through the queue and enter the machine.

This will change the machine status to busy. No machine parameters have been

changed, queue length remains at 0, and machine health is still good.

Order Departure at t
i

:

• If parts are in queue, let first one flow into the machine

• If the machine queue is empty, change the machine status to idle

• Maintenance subroutine runs to update machine health
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• All states and statistics are updated with new values where applicable. Advance

clock to the next event.

After this order departure, when the subroutine checked the machine queue, no

more orders were found. Therefore the machine status was updated to idle. The

machine health was checked and reported to still be good. No machine parameters

were changed and queue length remains at 0. Statistics were updated, and as an

example, the orders completed statistic was updated to 1 in the above graphic.

Machine Failure at t
i

:

• At the last event, the maintenance subroutine checked health state and sched-

uled failure F
i

• If the failure time is scheduled to occur before a preventive maintenance event,

then a failure event will occur and a corrective maintenance event will be sched-

uled

• When CM
t

time ends, the program obtains a new failure time from the inputted

failure distribution and updates the health state

• Update arrival, departures event times to reflect maintenance delay
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• All states and statistics are updated with new values where applicable. Advance

clock to the next event.

After a machine failure, the machine status will change to reflect a corrective

maintenance event. Machine health state will be updated dependent upon e↵ective-

ness of the maintenance procedure. Queue length and machine parameters will also

be checked along with statistics. As an example, shown above there is a queue length

of 1 and orders completed at 7.

Machine Parameter Change at t
i

:

• Based on machine health or other factors, an action is scheduled next in the

events list to change a machine parameter e.g. speed to a new setting (often

with the goal of maximizing uptime between failures)

• Maintenance subroutine runs to determine necessary update to PM
t

time if, for

example, scheduling a preventive maintenance event after finished processing

order j

• Since machine parameters have changed, update with a new failure time F
t

from

new wear curve
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• Update arrival, departures event times to reflect new machine parameters

• All states and statistics are updated with new values where applicable. Advance

clock to the next event.

A machine parameter, such as speed rate, could be advantageous to change for

prolonging the life of an asset. After a parameter is changed in the simulation, the

corresponding parameter state change occurs. Machine health is updated to reflect

any change in the wear curve. As an example, shown above there is a queue length

of 3 and orders completed at 14.

Preventive Maintenance Performed at t
i

:

• After the last event, the machine health state is still reported as prior to failure

• In the events list, PM
t

< F
t

thus PM
t

will occur as scheduled

• Update health state to good, report out, receive action to schedule machine

speed to high

• Update arrival, departures event times to account for delay from PM

• All states and statistics are updated with new values where applicable. Advance

clock to the next event.
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For this type of event, the machine status will update to reflect it is in preventive

maintenance. After the PM has been performed, machine health will be updated

dependent upon e�ciency of maintenance completed. In the final example above,

orders completed are at 16 and the queue length has grown to 4.

3.4 Chapter Summary

This chapter gave a detailed description the PHM simulation methodology for SMS.

The simulation methodology is specific to PHM in smart manufacturing through the

addition or adaptation of steps one, two, three, six, ten, eleven, and thirteen. This

can be seen from a comparison of Figures 3 and 5. It also discussed simulation’s de-

sign including architecture and algorithm. The chapter provided the necessary setup

for the discussion in Chapter 4 where the method is demonstrated for an advanced

manufacturer. The demonstration will also serve as a validation of the method.
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4 Demonstration of Method

4.1 Chapter Overview

This chapter reviews a demonstration of the PHM simulation method introduced in

Chapter 3. It is demonstrated with the help of an actual industry partner, kind

enough to open its doors for data collection and expert interviews for an extended

period of time. The company represents an advanced manufacturing environment,

but for the purpose of confidentiality will remain nameless in this thesis.

4.2 Advanced Manufacturer Implementation

The company represents an advanced manufacturer setting, operating a smart man-

ufacturing system, and is interested in reviewing the business case for implementing

PHM policies. The company specifically noted that they sought to:

1. Improve their low OEE performance
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2. Combat an inability to hire more maintenance workers by reducing the needed

number of maintenance labor hours

3. Continually decrease unit cost to remain competitive

Therefore, the company is a great candidate for demonstration of the PHM simulation

methodology for SMS.

Following the implementation program represented in Figure 1 and the simulation

methodology, the team started by applying the risk analysis techniques of HHM,

RFRM, and FCA to identify prioritized targets for their PHM system. This was

done with the addition of PHM-specific rules for filtering through scenarios. At the

equipment level, the cuto↵ saw, lathes, and five-axis machines were identified to be

the prioritized targets for PHM implementation.

The manufacturer warranted the selection of the following set of policies to be

evaluated:

• Corrective Maintenance (CM) - Maintenance activities are only performed after

a failure has occurred. Here it is assumed the component will be replaced after

the first failure.

• Time-Based Maintenance (TBM) - Maintenance activities are performed when

a component reaches a predetermined time T or fails.

• Conditioned-Based Maintenance (CBM) - The decision to perform maintenance

is reached by observing a condition of the system and its components. It will be

assumed the health state can be determined, and thus, the condition to perform

maintenance is set at a pre-failure health state.
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Figure 7: The manufacturer’s production line hierarchy. These are purposely listed as general machines and
components to protect the manufacturer’s privacy.
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This is owed to finding their current maintenance policy to be a hybrid of corrective

and time based maintenance; most components, however, were corrective. Opportu-

nity was especially noticeable for the components prioritized from step one, which

were largely operating on a corrective policy. Therefore, it was decided a comparison

of the three main categories of maintenance policies would prove to be beneficial.

This would allow the company to understand a broad spectrum of maintenance im-

pacts on cost and OEE metrics. CBM in particular would represent the future of the

company’s factory if it were to use PHM methods. The company had some limited

abilities to collect and analyze data in a diagnostic and prognostic manner, with the

biggest obstacle being limited knowledge and training.

The structure of the smart manufacturing system was formed as illustrated in

Figure 7. It is hierarchical in nature to ensure capturing the necessary complexity of

the manufacturing system, but only for the resolution necessary to evaluate cost and

OEE impact. Step one used risk analysis techniques to inform the decisions made

on the level of detail required. A particular production-line was decided to be the

highest level, as it represented the greatest opportunity for the plant and was similar

to the other manufacturing lines. Thus, results from the chose production line could

be generalized to the rest of the factory network. The risk filtering performed in step

also informed the remaining levels of the operations hierarchy. Certain equipment

and their respective components were omitted at the middle and lowest levels.

Data was collected from a variety of sources, including a maintenance information

system, enterprise resource planning (ERP) system, and expert interviews using a

standard list of questions. The company had been collecting maintenance data on

MTBF, MTTR, and replacement costs for over a year. They made the entirety of
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that system available for the project team to review. The data was primarily best

fit using a Weibull distribution for both failure and processing times. This is a well

known and widely used distribution in the reliability literature, as discussed earlier.

An example of the data being fit for lathes processing times is shown in Figure 8.

The assumptions made for the simulation included:

• Not incorporating material handling simulation, as this represented a process

which took up practically zero time and never failed. Parts were delivered

primarily by hand to the next station

• The order schedule was built from the company’s most frequently demanded

and produced SKU’s

• The black oxide, heat treat, and assembly processes were only modeled to rep-

resent their variation in process times. There was not enough data to support

failure modeling and they are not bottle necks in the operation

• When a component fails it will not be replaced according to a grouping approach

• Maintenance work will be a highly e�cient operation and therefore components

will be considered as good as new (AGAN)

Next, the simulation was built following the input-system-output structure intro-

duced in Chapter 3. Figure 9 is a screen shot of the MATLAB simulation environment

for the Tool Company’s production line.

MATLAB, and more specifically, the SimEvents Toolbox was used as the com-

puterized simulation environment for programming the structure, inputs module, and
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Figure 8: Lathe processing times fit to a Weibull distribution with shape parameter, k = 1.45, and scale parameter,
� = 1.737.

51



Figure 9: Simulation built in MATLAB for an advanced manufacturer implementation
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analysis reports. The simulation clock advances by the next-event time advance ap-

proach as discussed in [4], since all major simulation software packages work in this

manner including MATLAB’s SimEvents toolbox.

4.3 Discussion of Results

The results were documented and can be seen in the following figures. Figure 10

shows that mean cost per unit decreases and mean OEE rises as the Tool Company

would head down the path towards implementing a condition-based policy. Error

bars based on a 90% confidence interval are also included for reference.

Figure 11 details an important trade-o↵ when considering the cost of implementing

a particular policy versus gains in mean OEE. While the mean OEE does improve

as the company moves towards a CBM strategy using PHM methods, it will cost

significantly more capital to achieve less gains in OEE when moving from TBM to

CBM as compared to Corrective to TBM. It will be up to the decision-maker as to

whether the invested capital would be worth the return in OEE. Additionally, after

examination through the use of a 90% confidence interval there is not strong evidence

the policies are di↵erent since the intervals overlap. The decision maker would most

likely conclude, based on this overlap and increased capital cost, to choose TBM

versus CBM.

Figure 12 compares mean unit cost versus cost to implement a particular policy.

This replicates a similar trade-o↵ seen in Figure 11, and will again be up to the

decision-maker is the margin expansion will be great enough to invest capital. For

example, the manufacturer might be planning to make significant product changes in

the next couple years and thus would not be able to recoup their return on invest-
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Figure 10: These results show the mean cost per unit decreases and mean OEE rises as the manufacturer drives
towards implementing a CBM policy. Error bars for a 90% confidence interval are shown in red for each point.
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Figure 11: These results compare the cost to implement each policy versus mean OEE with error bars for a 90%
confidence interval. There exists a trade-o↵ where the cost to implement a CBM over a TBM policy results in a
much smaller increase in OEE when compared to the gain in OEE realized from switching to a TBM policy from
Reactive.
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ment. However, if the company expects they will maintain steady demand with little

changes, any expansion of margin would be welcome.

Figure 13 represents the data which many maintenance managers and plant lead-

ership have requested the project team to see: the impact on the number of mainte-

nance employees required for a particular policy. As the three cumulative distribution

function plots show, maintenance employees tend to decrease as PHM techniques are

used. However, there is a bit of overlap between TBM and CBM. This might suggest

that testing a hybrid policy where Reactive, TBM, and CBM methods are all de-

ployed would produce smaller variations for required maintenance hours. Too much

maintenance time is probably being spent on components that do not need it.
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Figure 12: Mean unit cost with error bars for a 90% confidence interval are shown versus policy cost to implement.
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Figure 13: Maintenance labor hours were totaled and converted to show the number of employees needed for each
policy as a Cumulative Distribution Function.
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4.4 Chapter Summary

This chapter demonstrated the journey of implementing the PHM simulation method-

ology for SMS. By doing so, the method was calibrated and validated to focus gen-

eralized simulation e↵orts with for study of PHM techniques in the advanced manu-

facturing industry.
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5 Conclusions

5.1 Chapter Overview

This chapter will discuss the major findings and contributions of the thesis. It will

note observations from creating the simulation method and demonstration on an

actual Tool Company manufacturing system. The contributions are expanded upon

for the purpose of realizing where future work will be initiated. Figure 14 is introduced

and discussed with respect to a possible model-free reinforcement learning application

for optimization of maintenance and operations policies.

5.2 Findings and Contributions

Through deployment of the PHM simulation methodology for SMS, it was shown

that manufacturer’s can realize important trade-o↵s and valuable insights for their

business. It is an exciting realization of this thesis to recognize a great moment
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in time for advanced manufacturers to leverage their own data-rich systems. Many

corporations are “sitting-on” mountains of data waiting to be exploited, and the

PHM simulation method presented in this thesis is one such perfect application. An

explanation for this might be that there is a lack of technical knowledge in many

manufacturers’ employees, especially at the production line level. The companies

might not realize the benefit of budgeting for a data scientist or systems analyst;

however, this use of the simulation method indicated otherwise.

Through the implementation of the simulation method at the advanced manufac-

turer, we found that Condition-Based policies do provide the biggest potential for

cost savings. However, a caveat is that they should be implemented in areas where

PHM will have the greatest impact. Components that take very short periods of

time to replace with little or no impact on product quality during a failure would

not be good candidates for condition monitoring. High-cost components that have

a long mean time to repair will benefit the most from PHM. If data is not available

for determining these components, interviews with production floor employees and

other experts should quickly filter to the surface those high priority components. This

was achieved in our own implementation through completing step one of the PHM

simulation method with a combination of data and expert interviews.

A major contribution of this thesis is to provide advanced manufacturers a simu-

lation method for investigation and preparation of a PHM business case for SMS. The

field of simulation has supplied well established methods to build a general simulation

study and rigorous frameworks for analyzing the relevance of its results. However,

that field can be augmented and modified to fit the needs of manufacturers as they

seek to implement a PHM policy in their facilities.
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Further major contributions of this work is the simulation structure, created for

three benefits: first, to simulate novel PHM policies that extend the decision space

to include controlling machine parameters, second, to add generality for the purpose

of quickly updating input data to the model, and lastly, to provide the ability to

integrate with a decision module for the purpose of determining optimal policies.

This last contribution is illustrated in Figure 14.

5.3 Future Work

Much of the potential for future work revolves around expanding upon the contri-

bution of the simulation’s ability to integrate with a decision module. The decision

module would be able to communicate with the simulation structure by sending ac-

tions to update input parameters. The manufacturing system processes those inputs

and outputs are created; the manufacturing system will communicate state variables

and the outputs report out rewards. A structure like this would be beneficial for

the purpose of implementing a model-free reinforcement learning algorithm. The

goal of such a reinforcement learning technique would be to build a maintenance and

operations policy optimized to the component level.

Future work will also center around employing this method to build a simulation

which can be updated with real-time data from the manufacturing process. This

automation would present a way to reduce time spent gathering and fitting data.

The simulation would simply be ready to produce output metrics and show their

respective trade-o↵s immediately upon request.
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Figure 14: The simulation structure would allow for future work to be conducted by interfacing with a decision
module, or controller, for the purpose of generating optimal operations policies by use of a model-free reinforcement
learning method. The simulation could output both the state of the system and a reward to the controller where
an action is produced to alter inputs parameters.
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5.4 Chapter Summary

This chapter concluded the work presented in this thesis by noting major contribu-

tions and findings. Potential topics of future work are introduced and indicate the

on-going work happening at University of Virginia. It is certainly an exciting time

for the field of advanced manufacturing. The data-rich environment is perfect for

unlocking insights through data science techniques employed by PHM methods. The

connectedness of smart manufacturing systems will also bring great advancements in

providing decision support and automating our future.
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Appendix A: MATLAB Interface Subcomponents

The following pages will show figures for the various subcomponents of the simulation.
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Figure 15: View of the cuto↵ saw process
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Figure 16: View of the process for a component of the cuto↵ saw, the saw blade.
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Figure 17: View of the assembly process, which has two servers for the laser and inspection processes, respectively.
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