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 Clinical gait analysis can provide valuable information about walking pathologies 

experienced in neuromuscular conditions such as cerebral palsy. However, the motion 

capture based gait analysis commonly used is not without its limitations. In particular, most 

subject visits are short and may repeat yearly or even less often. During this span, the 

effectiveness of interventions and pathological progression can be difficult to assess. Recent 

developments in sensor technology have made gait analysis using accelerometers, 

gyroscopes, and other sensors feasible. The development of new analytical tools could 

provide never before seen insight into pathology and its propagation in everyday activity. As 

a potential solution, this work proposes comprehensive methods for sensor signal 

preparation and processing applied to a wireless, remote gait sensing platform.  

 A validated framework will be presented for creation of a gait observation system for 

everyday activities, particularly walking and running. Elaboration of spatio-temporal 

methodology ascends from the lowest level of design as follows: sensor calibration; 

coordinate frame alignment; gait event detection; spectrum analysis of static and dynamic 

activity; sensor orientation; and stride motion. Methods are validated using data collected on 

five healthy participants wearing a sensor embedded ankle-foot-orthosis. Each level of 

validation produced comparable, if not superior accuracy relative to claims of singular 

studies in the literature. The work is concluded with a follow-up collection on a single 

subject, on which this work’s all-inclusive capabilities are demonstrated by successfully 

pairing the spatio-temporal methodology with a modified adaptation of a previously 

validated activity recognition approach. Ultimately, the proposed framework proved capable 

of high fidelity gait identification and tracking in healthy subjects with potential extensibility 

to the clinical gait analysis of disorders such as cerebral palsy. 
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INTRODUCTION 

Motion analysis has tremendous applications in many fields, particularly athletics and 

medicine. Labs using optical motion capture (motion analysis/gait labs) have become the 

gold standard for measuring human kinematics and with force plate data, kinetics. However, 

these systems are expensive and data collected in the lab may not correlate with actual 

performance in daily life. To address this concern, researchers and to a limited extent 

clinicians have begun to use inertial measurement units (IMUs) to record movements in and 

out of the lab. 

Initial work with IMUs has been performed in the lab or at locations where data 

could be sent via Bluetooth to a local computer. However, such systems, which can be less 

expensive and more portable than optical motion capture systems, do not address the 

challenge of measuring out-of-lab naturally occurring movement over extended periods of 

time. Some additional work has been started to improve these systems by integrating local 

data storage, removing the need for a nearby collecting computer.  

This thesis presents work that is part of a project to develop the ability to measure 

movement, i.e. gait, over periods of months where the IMUs are mounted in an ankle foot 

orthosis (AFO). Specifically, this work addresses the calibration of accelerometers and 

gyroscopes, the development of algorithms to compute stride kinematics in walking and 

running, and corresponding validation so that such systems are all-inclusive and available for 

use in the field. 

While disciplines as diverse as athletics and ergonomics can benefit from out-of-lab 

movement measurement, the ultimate goal here is to measure children’s gait as affected by 

cerebral palsy (CP), which is often assisted by AFOs. A primary reason for prescribing these 
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devices to these children is preventing contractures of the plantar flexors of the ankle. To 

date, there has been no unequivocal evidence indicating whether AFOs prevent contractures 

or under what conditions/use they could prevent contractures of the plantar flexors of the 

ankle. In addition, previous work in our lab has shown that AFOs do not always improve 

the gait of children with CP.
1
 The development of the instrumentation and associated 

algorithms will for the first time allow testing of the hypothesis that AFO use can prevent 

these contractures during functional, everyday use, as well as how everyday gait changes as a 

result. In particular, observation of walking on a stride by stride basis can provide relevant 

clinical information and will be the primary focus of this work, along with general activity 

recognition. 

PROPOSED SOLUTION TO REMOTE GAIT ANALYSIS 

In summary this thesis describes the development of algorithms and procedures to create a 

high fidelity inertial based gait system, as well an analytical framework by which similar 

systems could be constructed. A bottom-up approach is used to identify and expound upon 

key operations necessary to produce an accurate system. Solutions for calibration and 

conversion; coordinate frame alignment; noise compensation; stride detection and 

segmentation; stride kinematics; and activity recognition toward long-term, self-contained 

gait analysis are cohesively demonstrated using TEMPO (Technology Enabled Medical 

Precision Observation) IMUs developed by the Inertia Team at the UVA Center for 

Wireless Health. For cerebral palsy subjects, individual TEMPO nodes were strapped to the 

legs and feet. Additionally, a deployable custom AFO was manufactured and fit to an 

average adult foot by UVA Health’s Prosthetics and Orthotics and tested on healthy adult 

subjects. The individual sections’ results were comparable and in many cases more accurate 



8 

 

 

 

than those presented in previous literature. Additionally, the methods presented function 

together to provide identification and quantitative characterization of walking and running 

without any user supervision. The system is proven to be comparable to motion capture in 

accuracy without many of its limitations, rivaling previous attempts in the literature to 

produce a validated high accuracy remote gait analysis platform. 

The remainder of this thesis is organized in the following manner. First related 

background is explored. This includes a basic description of human gait, the characteristics 

of available micro-electro-mechanical sensors/systems (MEMS), the UVA TEMPO nodes 

that were used, and signal processing algorithms previously employed by other researchers. 

Next the calibration process for both the accelerometers and gyroscopes is discussed. In 

order to produce accurate and precise estimations, removal of undesirable characteristics of 

sensors is essential. Since the framework for stride tracking is purely physical based, sensor 

measurements need to be as ideal as possible; this involved removal of constant biases, 

imperfect orthogonality, and axis inter-dependence. Calibration is followed by a description 

of how the local axes of the instruments are aligned with a known global coordinate system 

to establish clinically relevant measurements.  

Then the method by which gait events, e.g. foot contact and foot off, are detected. 

This allows for segmentation and framing of results consistent with traditional motion 

capture and clinical analysis. Subsequent estimation methods for kinematics and gait metrics 

also require this detection and segmentation process. Since much of the error in the original 

sensor signals cannot be removed via calibration, noise can further be reduced by choosing 

filtering cutoffs carefully with frequency analysis during static and active periods of interest. 

Furthermore, a spectral analysis of accelerometer and gyroscope signals is also presented to 
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optimize signal filtering with respect to static and active periods, as well as gain insight into 

frequency content of gait.  

Finally, the computational algorithms for kinematics and gait metrics based on a first 

principle approach are described. Specifically, sagittal rotation (flexion/extension) and stride 

speed on a treadmill are validated to provide accuracy and precision measures. A first 

principle approach is implemented to allow for highly generalized results with extensibility to 

a large number of applications. Additionally, sample by sample kinematic measurements are 

retrievable due to this implementation, since only physically related processing and 

corrections are performed as opposed to methods such as linear regression or machine 

learning. This spatio-temporal body of work is then combined with a modified version of 

Archer’s activity recognition method.2 The modified method is tested on a returning subject 

to demonstrate its potential as a gait analysis tool. In conclusion, the work is summarized 

and discussed with respect to application, limitations, and future work. 
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BACKGROUND 

This thesis outlines a framework for acquiring quantitative spatio-temporal gait information 

from IMUs mounted in AFOs. This work includes using activity recognition methods 

previously developed in conjunction with the spatio-temporal methods of this research. This 

section begins with a basic description of gait biomechanics and the sensors used in IMUs 

including a description of the TEMPO devices. Next the methods used to interpret the IMU 

signals are described. Lastly, research applying such methods to pathological gait is 

discussed.   

GAIT BIOMECHANICS 

The purpose of modern day motion analysis is to measure kinematics and/or kinetics to gain 

insight into human movement. Biomechanics parameters are measured depending upon the 

application as movement examination is used both in research and the clinic with walking, 

running, jumping, and many other athletic motions. For clinical assessments of pathological 

gait, certain metrics are commonly used to frame normal walking kinematics. Using these 

metrics, a subject’s gait is often compared to that of healthy individuals to narrow what 

deficiencies could be causing pathological patterns. The following section will briefly outline 

some of these metrics and details of the gait cycle. 

Gait Cycle 

The “gait cycle” is a term which describes the repetitive mechanical processes of the lower 

body which propel the body center of mass (COM) forward during walking or running. 

Because walking is the most efficient form of locomotion on level terrain, most humans 

have very similar gait patterns. The gait cycle encompasses a full stride, or a single stride by 

both the left and right legs, and consists of phases of double support, stance, and swing. 
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Figure 1 shows a full human gait cycle.
3
 Double support phases are defined by periods when 

both feet contact the ground. The stance phase for a leg is defined by the period when the 

foot touches the ground. The stance phase for each leg encompasses both the double 

support phase and the swing phase of the opposite leg. Swing phase for a leg is defined by 

the period when the foot is not in contact with the ground, and it coincides entirely with the 

stance phase of the opposite leg.  

 

 

Most clinicians choose the beginning of the gait cycle to be defined by foot contact 

of the forward leg. In this discussion, the initial forward leg will be the right leg. At this point 

the rearward (left) leg will still be in contact with the ground, so the gait cycle begins in an 

initial double support phase. During the initial double support phase, the anchoring of the 

right leg results in a deceleration of the COM, with most of the weight of the body shifting 

to the right leg
4
. As the weight shifts forward, the left leg supports less and less weight, and 

the left ankle alternates from dorsiflexion to plantarflexion in typical subjects. This 

plantarflexion of the rear foot provides the majority of the propulsive power in the gait 

Figure 1. Common gait cycle event terminology with approximate percentage of stance and swing phase. 
Taken from Cuccurollo.
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cycle. However, the presence and extent of plantarflexion and dorsiflexion may vary and be 

more unpredictable in pathological gait patterns. 

Gait Metrics 

Locomotion is also of clinical significance, especially in cases of CP, injury rehabilitation and 

traumatic brain injury.
5–7

 The most common measures examined by clinicians, biomechanics, 

and researchers include joint angle, step or stride length, step or stride, cadence, and step or 

stride speed. As far as joint angles, sagittal rotations are typically of the most interest as they 

are the primary driving motion related to walking and running motions. For gait analysis, 

sagittal knee and ankle angle are of particular interest to biomechanists. In the case of 

cerebral palsy, sagittal ankle angle is particularly informative for clinicians as it indicates 

extent of plantar/dorsiflexion in subjects.  

Often times, stride speed or distance is used as a parameter to test rehabilitative 

progress at physician and therapist visits. Additionally, speed, distance, and time of strides 

and steps are performance measures in sports such as running. Step and stride related 

metrics deal with single leg and combined leg motion during walking, respectively. 

Remaining consistent with the gait cycle, a step begins with a heel strike and ends with a 

contralateral heel strike. A stride begins with a heel strike and ends with an ipsilateral heel 

strike. Length of steps and strides are calculated as the distance covered between the 

beginning and ending condition. Similarly, cadence is the time it takes to complete one such 

sequence. Speed is calculated by distance times cadence on a per step or per stride basis. 
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LIMITATIONS OF CLINICAL GAIT ANALYSIS 

Although traditional gait analysis in neurological disorders such as CP is the gold standard, 

there is significant room for improvement. From the patient’s standpoint, even scheduling 

an appointment can be challenging due to the travel time and costs of medical visits for 

patients and their families. This immediately limits the practical frequency at which gait 

analysis can be performed. Even so, there is no work providing perspective on how a 

subject’s gait or even general activity may change in continuous, everyday settings. Attempts 

to assess changes in pathology over multiple lab visits are the closest studies have come to 

long-term analysis. Insight into repeated everyday activity could provide valuable 

information about treatment options and effectiveness of interventions but is currently 

unavailable with traditional gait analysis. In particular, the effectiveness of ankle-foot-

orthoses is difficult to assess given the spacing of medical visits and controlled environment 

in an in-lab gait analysis. A gait sensing system that is unobtrusive but constantly collecting 

data every day could potentially determine the effectiveness of AFOs in improving 

functional gait as compared to no corrective devices.   

Motion capture gait analysis is based on the premises that results are both 

representative of “normal” functioning of the subject on an everyday basis and superior to 

human observation alone. The first premise is very difficult to assess since an out-of-lab to 

in-lab activity comparison is not yet possible, although the foundation for such work is being 

laid by this and other research.  Although this premise may not be presumed by experts or 

clinicians, a system that could identify in-lab to out-of-lab relationships would be useful. The 

second premise may be true in some regards but a gait expert could hypothetically observe 

much of what is occurring pathologically without the assistance of an automated, computer 

based method provided by motion capture systems such as Vicon. In some instances, 
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biomechanists, physicians or physical therapists are knowledgeable enough to function as 

gait experts, making quantitative gait analysis via motion capture somewhat redundant from 

a practical, treatment standpoint. This is not to say that motion capture based gait analysis is 

not useful but that even with automated computer algorithms, it is still an expert supervised 

process.  

Thus, an ideal system would allow remote, unsupervised collection that would 

otherwise be impossible with motion capture. If validated and proven to produce accurate 

results, such a system would dispel any controversy related to the aforementioned premises 

involved with traditional motion capture. In particular, gait experts could not possibly 

observe and analyze a subject over the course of a day, nor would the “normal” functioning 

of the participants be in question since the data would be collected over long periods of 

time. Additionally, this would complement traditional motion capture by providing 

supplementary information to in-lab analysis to assess longitudinal change continuously. 

Zatsiorsky’s book on human gait can provide extensive insight into gait metrics and 

common conventions.8 

SENSING OPTIONS 

For the design of a system small enough to be implanted in an AFO without affecting gait, a 

sensor system must be small, efficient, self-contained, and comparable to the accuracy and 

precision of traditional methods of gait analysis. Modern micro-electro-mechanical systems 

(MEMS) assembled into IMUs fit all these requirements, enabling research into topics such 

as this thesis. Although MEMS magnetometers and GPS are sometimes used in navigation 

systems, the present work only employed accelerometers and gyroscopes. An overview of 
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the advantages, disadvantages, operational characteristics and motivation for the design 

choices made in this work is presented below. 

MEMS Accelerometers 

An accelerometer measures the proper acceleration of the small fixed area of which it is 

attache. There are both digital and analog varieties of accelerometers. Practically, both types 

will be functionally consubstantial since analog accelerometers are conventionally converted 

to digital signals. Most commonly, digital outputs (ADC values) correspond to voltages 

experienced by each axis within the accelerometer structure. Therefore, calibration models 

must be used to convert the digital signal to a conventional unit. Accelerometers are 

designed to have linear conversions from ADC to conventional units. Due to manufacturing 

limitations, there are relatively small interactions between each sensing axis of the 

accelerometer modeled by cross-axis sensitivities. Similarly, the axes are not perfectly 

orthogonal. Manufacturers provide specifications of the manufacturing tolerances for these 

factors, as well as sensitivities (scale factor) and biases (offsets) for converting digital output 

to g’s or some other conventional unit. High-frequency, zero-mean noise is present in 

MEMS accelerometers due to their internal mechanisms. Temperature also affects sensor 

output but the relationship is not usually modeled for room temperature applications. 

Energy consumption for MEMS accelerometers is considerably lower than gyroscopes, 

leading to some attempts to replace gyroscopes with rigid accelerometer arrays.
9,10

  

MEMS Gyroscopes 

From a practical standpoint, gyroscopes function comparably to accelerometers, except that 

they measure angular velocity instead of linear acceleration. They can be produced in both 

digital and analog forms. Manufacturers account for a linear conversion model with 
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sensitivities, biases, and misalignment tolerances. Temperature dependence is usually treated 

the same as with accelerometers, although power consumption is much higher which can 

result in larger internal gradients. Consequently, low-frequency drift is a common 

characteristic of MEMS gyroscopes, most notably directly following turn-on. High-

frequency noise is less prevalent than in accelerometers, leading to better results for 

integration if low-frequency biases are removed. A further complication arises from many 

commercially available gyroscopes being limited to bi-axial or uniaxial configurations, forcing 

users to manually align a uniaxial and biaxial gyroscope for a triaxial system. 

MEMS Magnetometer 

Magnetometers are commonly used in modern navigation systems to yield sensor orientation 

in highly dynamic periods of motion. Since accelerometers can only accurately yield 

orientation during static periods and gyroscopes may drift when integrated for orientation, 

magnetometers can counteract the error accumulated by integration drift through feedback 

systems such as Kalman filters. However, as they measure magnetic field, they are sensitive 

to changes in location and metal interactions. Additionally, they tend to sample much slower 

than accelerometers and gyroscopes making them unreliable at exclusively tracking 

orientation during high frequency activity. Ultimately, difficulty in obtaining a compatible 9-

axis (accelerometer, magnetometer, and gyroscope) solution led to the use of a 6-axis IMU 

(accelerometer and gyroscope) in this work. A better solution would include a magnetometer 

considering its physical and energy footprint are a relatively small addition. 

GPS 

Global Positioning Systems (GPS) have also been used for navigation systems, notably for 

military or automotive purposes. A GPS receiver is located by orbiting satellites providing a 
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global position trajectory at a specified sampling rate. Its effectiveness over long-distances 

and in varied circumstances is the biggest advantage of this system, as long as the GPS 

receiver can be seen by four or more satellites. However, GPS precision can vary more than 

local, self-contained solutions such as gyroscopes, accelerometers, and magnetometers, 

particularly over small distances. Navigation solutions adding GPS to 6- or 9-axis systems 

have been well researched, showing little advantage at the scale needed for gait analysis. This 

along with the added size requirement deemed GPS inappropriate for this work. GPS is also 

occasionally used as validation when motion capture is unavailable. Due to the 

aforementioned issues, its use as a high fidelity validation tool is inferior to motion capture 

in a lab setting. 

TEMPO SOLUTION 

TEMPO 3.1 and 3.2f are custom body sensor platforms designed and built by researchers of 

the University of Virginia’s Inertia Team. TEMPO body sensor networks (BSNs) 

incorporate an accelerometer and gyroscope in the form factor of a wristwatch to enable 

kinematic data collection. These systems have been previously used in assessing human 

motion and gait pathology. Specifically, the sensors have been used to assess tremor in 

individuals with Parkinson’s disease
11

, differentiating normal and “shuffling” gait
12

, fall 

detection
13

, and spatio-temporal gait feature extraction
14,15

. These studies have demonstrated 

success in using TEMPO sensors to quantify and classify normal and pathological 

movement and gait, and provide additional support to the concept of AFO sensor mounting 

as a means of quantifying and classifying gait in AFO users such as children with CP.  

TEMPO BSNs are particularly attractive for use with AFOs because they are 

wireless, capable of Bluetooth real-time data receiving (TEMPO 3.1), as well as long-term 
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Flash memory storage (TEMPO 3.2f). Their small form factor allows them to be discreetly 

mounted within modified AFOs with no discomfort to the wearer. To test the efficacy of 

each version, integrated AFO solutions were created for both 3.1 and 3.2f versions of 

TEMPO. 

General AFO Design 

Two versions of the AFO instrumentation were created similarly in design and execution. 

The two systems were meant to be compared, validated and assessed for advantages and 

disadvantages. The primary practical difference between the two versions was wireless data 

collection (3.1 version) vs. flash storage (3.2f version). Left and right AFOs were molded to 

size US 10.5 male feet for 3.2f and 3.1 versions, respectively, thanks to UVA Health’s 

Prosthetics and Orthotics group. Two sensors were placed in each AFO corresponding to 

areas proximal of the instep of the foot (slave sensor) and posterior shank (master sensor). A 

rechargeable battery was placed posterior to the shank sensor and directly wired to both 

sensors. A single, unified USB breakout for data download and charging was created inferior 

to the shank sensor and superior to the ankle. 

TEMPO 3.1 AFO 

The TEMPO 3.1 solution incorporated a mixed-signal processor (TI MSP430F1611) to 

facilitate digital signal processing and a Bluetooth 2.0 transceiver (Roving Networks RN-41) 

for wireless communication to a PC or smart phone. The shank and foot sensors functioned 

independently, each requiring wireless connection and emission for data collection; this 

design was not optimal given that a recording computer was required to continually receive 

the data. Freescale MMA7261 tri-axial, monolithic, micro-machined accelerometer records 

accelerations at a selected sensitivity of ±10g to accommodate a wide range of human 
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movement applications. Two micro-machined gyroscopes, the InvenSense IDG-300 (dual 

axis) and Analog Devices ADXRS610 (single axis), capture triaxial angular velocity to up to 

±500 degrees per second. Experimentation on running trials indicate angular velocity in the 

shank and foot may approach 400 degrees per second, indicating the need for such ranges 

for high intensity observation.  

Sensor outputs were conditioned by single-pole low-pass filters with 60 Hz cutoff 

frequencies. The six signals were captured by 12-bit analog to digital converter (ADC) 

channels. Conditioned signals were sampled at 128 Hz – a bandwidth far exceeding the 

characteristic response of human movement. 

The MSP430 processor operated at 4 MHz by a 

digitally-controlled oscillator synchronized to a 

low-power 32 kHz crystal. For a complete 

introduction to TEMPO 3.1 BSNs, see the 

seminal work by Barth et al
16

.  

TEMPO 3.2f AFO 

TEMPO 3.2f utilized the aforementioned 

MSP430 with improved sensors and local data 

collection. A flash card was placed directly on 

the PCB board along with the sensors and 

processor; Bluetooth capabilities were omitted. 

Accelerometry was performed with a tri-axial 

Freescale MMA7331LC set to ±9g. A biaxial (InvenSense IDG-650) and uniaxial 

(InvenSense ISZ-650) gyroscope combined to make a tri-axial gyroscope set to sense bounds 

Figure 2. Prototypes for 3.1 (left) and 3.2f 
(right) AFOs. 
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of ±2000°/sec, improving upon the sensor used in the 3.1 version. These sensors were 

superior to those of TEMPO 3.1 in energy consumption as well as precision. Figure 2 shows 

the final prototype for the TEMPO 3.1 and 3.2f AFO. 

SIGNAL PROCESSING FOR WIRELESS GAIT ANALYSIS 

Sensors provide valuable real-word observations when the proper measures are taken to 

synthesize raw data. For a self-contained wireless gait analysis tool, important gait events, as 

well as kinematic information must be recoverable. The background for these topics will be 

presented in the following section. 

Activity Recognition 

Activity recognition of human motion from IMU signals is a dense field with many methods 

for probabilistic determination of gestures and movement patterns.
17

 Feature selection is 

particularly appropriate for pathological gait analysis, given that the kinematic basis for 

walking or any activity may be highly variable between participants due to neuromuscular 

conditions. One such hierarchical feature selection based method, k-Nearest Neighbor 

(kNN), was validated by Archer et al.
2
 on an IMU AFO system as a supplementary approach 

to this thesis. This technique required computation of 23 features for the training and test 

data sets.  

A six level kNN decision tree aided computational load and reduced false positives. 

As shown in Figure 3, specific designations of types of walking, running, and basic postural 

gestures were determined throughout the decision tree. Sensitivities for recognition of 

annotated activities surpassed 90% using less than 5 minutes of training data. A training 

partition of that data at 120 seconds was chosen as a benchmark for high sensitivity and 
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specificity. However, stair walking sensitivity faltered relative to level walking, incline 

walking, and basic gestures. To address specificity, a declassification algorithm was also 

developed. For more background information and further details on this algorithm, see 

Archer’s thesis.
18

  

 

 

Spatio-Temporal Gait Parameter Determination 

Different methods and order of operations may be implemented with sensor systems to 

observe gait. For example, machine learning coupled with regression can provide spatio-

Figure 3. Hierarchical decision tree for Archer et. al's kNN method. Diamonds represent decisions and grey 
boxes show possible classifications. Taken from Archer et al. 
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temporal estimations without the need for precisely calibrated sensors but may not observe 

pathological scenarios accurately. For most first principle methods, calibration is performed 

separately and prior to other measures, following which activities and spatio-temporal 

parameters are identified. The following section will build upon this order, leading up to 

more comprehensive literature in a bottom-up fashion.  

SENSOR CALIBRATION  

For sensors to be used with physical models, it is important that they are calibrated as 

accurately as possible to some known measures. Often times, this process is ignored in favor 

of manufacturer’s conversion values with little to no validation. However, sensors will vary 

at least slightly with time due to startup and wear. Additionally, manufacturer’s specifications 

are designed to fall within specified manufacturing tolerances so maximum precision and 

accuracy for an individual unit will likely not be achieved without a user calibration. Given 

the capabilities of accelerometers and gyroscopes, user calibrations can be performed in 

various ways. Conversion models for the sensors are most commonly linear but non-linear 

models have been proposed as well. To be clear, the problems required to solve for 

conversion model constants are usually non-linear, regardless of the linearity of the 

conversion model. 

Some models have attempted to characterize nonlinearities which may be present. 

Non-linear models are more difficult to use than linear and often require large amounts of 

highly accurate relatable data. Additionally, non-linear models are disadvantageous due to the 

added complexity and cost of constructing an accurate test setup. As an alternate to more 

complex non-linear methods, Stakkeland et al. used non-linear Kalman filters with a non-

linear conversion model to account for high frequency vibrations using validation from a 
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position sensor, and compared to a linear model.
19

 The linear model provided the most 

accurate and precise calibration of the accelerometer, despite presence of high frequency 

vibrations. Although not considered in their work, a low-pass filter could partially if not fully 

negate high frequency noise and vibration. Another similar method, used a rate table to force 

an accelerometer into a variety of known orientations to account for a non-linear model.
20

 

Experimental validation was provided but root mean square error (RMSE) was not reported. 

The method appeared to work very effectively but explicit error measures were not provided 

and convergence was not addressed. Cai et al. proposed a further improved non-linear 

model using a single non-linear scale factor calibrated over 24 positions.
21

 GPS data was 

compared to accelerometer integration for vehicle driving trajectories which indicated an 

abundance of calibration positions. The addition of the non-linear scale factor reduced 

maximum positions error. Generally, gyroscope models are more difficult or time consuming 

to fit since relatable data is more difficult to obtain. Potentially as a result of this, work with 

non-linear conversion models could not be found for gyroscopes. 

 Linear conversion models are more commonly used for their ease of calculation and 

repeatability, considering recalibration may occur many times over the life of a sensor. For 

accelerometers, many procedures have been devised to manipulate knowledge of the gravity 

vector to solve for linear constants. These vary from methods using only the magnitude of 

gravity,
22

 only the orientation of gravity, or a combination of both. Fitting data to the 

magnitude is the most common method, as demonstrated by Won & Golnaraghi.
23

 Their tri-

axial linear models had 6 conversion constants (scale factor and offset for each axis). They 

solved for these constants in 3 or less iterations of a non-linear problem. Using unique static 

positions, an RMSE lower than 0.09 m/s2 was observed when each position was compared 
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to the magnitude of gravity. Grip and Sabourova designed a non-iterative solution for a 6 

constant model by fitting accelerometer data to the magnitude of gravity for 6 unique 

positions.
24

 Simulations including noise yielded no more than 0.016% error in sensitivity and 

offset calculations. Another non-iterative solution for a 6 constant model involving 3-d 

ellipsoid fitting was proposed by Gietzelt, et. al
25

 and performed similarly to other methods. 

As an alternative or complementary measure to offline calibrations, Beravs, et. al 

demonstrated the ability to calibrate data real time using a Kalman filter with results 

comparable to offline least squares methods by using a typical six parameter model with an 

additional three parameters for cross-axis sensitivity
26

.  

 Similar to accelerometers, most gyroscope models use six parameters and are solved 

using cost functions relating rate table outputs to those of the gyroscopes. Depending on 

how the problem is formulated, a linear cost function can be more feasible than with 

accelerometers. Nevertheless, non-linear cost functions are normally posed, as they can 

provide a more robust problem statement. A nine parameter model was proposed by Zhang 

et al. to account for axis misalignment, in addition to the normal principal scale factors and 

offsets.
27

 This model was applied to both accelerometers and gyroscopes and compared to 

the typical approach using a 6 parameter model. RMS errors for the accelerometer method 

were below 15µg and 30 µg, respectively. Gyroscope RMSE did not vary significantly 

between the two methods, with an RMSE below 0.075°/h. An alternative method foregoing 

a rate table was introduced by Olivares and Olivares.
28

 An accelerometer-gyroscope package 

was placed on a spinning bicycle wheel. Sinusoidal behavior of the accelerometer was used 

to determine rotational velocity of the wheel and fit to a 6 parameter model. This clever 

setup worked with a biaxial gyroscope but the addition of a third axis could cause 
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complications. Additionally, the rotational velocity during one 360° period is not constant as 

their problem assumes. Although this method is clever and good for practical use, it is not a 

high precision, well validated calibration option. The largest linear conversion model in the 

literature involved 12 parameters, which extended the 9 parameter model with 3 non-

symmetric axis misalignment terms.
29

 This method appears to be accurate and performed 

well in Monte Carlo simulations but real data was untested. Comparisons to other models 

were also not provided. Much of the calibration analysis to be performed in this work is 

related to this work by Skog & Händel. Additional information on proposed calibration 

methods can be explored by Fong et al.’s survey.
30

  

 The work presented in this thesis compares six, nine, and 12 parameter models 

similar to the aforementioned previous studies. Additionally, least squares methods and 

number of positional data are compared with respect to the models. Determination of 

positions and assessment of algorithm effectiveness are performed with respect to two 

wireless sensors implanted in an AFO. 

EVENT DETECTION 

Similar to activity recognition, gait events must be reliably tracked on a stride by stride basis 

to allow for parallelism with common gait analysis terminology. The most common 

techniques for event detection during known walking periods are machine learning methods 

and peak detection. One method for using machine learning was proposed by Park and Suh 

to detect zero velocity intervals through angular velocity
31

. Their Hidden Markov Model is 

useful for integration boundary conditions, although it lacks direct translation to gait 

terminology such as foot flat, heel strike, and toe off. Peak detection algorithms have been 

found to be equally robust and easier to implement and compute. In fact, the one study 



26 

 

 

 

using IMUs to measure gait in children with CP successfully used peak detection algorithms 

applied to foot sensors.
32

 In general, peak detection methods can use data from single 

accelerometers, gyroscopes, or can combine both sensors. An algorithm tested in two studies 

was developed and validated with high accuracy results using threshold based methods.
33,34

 

However, force sensitive resistors were placed under the foot and used in conjunction with 

gyroscopes for event detection. Kose et al employed a unique extension of peak detection 

methods by using wavelet decomposition of accelerometer data with a waist sensor to 

achieve 96% accuracy of heel strike identification.35 

COMPUTATION OF SEGMENT & JOINT ANGLES 

Gyroscopes provide true angular velocity and theoretically should be able to produce sensor 

orientation at each sample. However, noise limits the accuracy and precision with which 

angles are reproducible by integration alone. Accelerometers can make up for this deficiency 

to some extent by providing orientation during static (stationary) periods. As dynamic 

motion mixes with the gravity vector, orientation via accelerometry becomes more 

inaccurate. While accelerometers have been used to exclusively track angular velocity and 

orientation of low frequency movement, they do not provide the fidelity required for a gait 

analysis system.
36

 In fact, accelerometers are limited to only providing 2 of the 3 Tait-Bryan 

or Euler angles desired.
37

 Without a magnetometer, perfect removal of gyroscope integration 

drift from the heading angle (yaw) is very challenging.  

Gyroscope drift has been removed using a variety of methods. Detrending data 

between two known boundary conditions is commonly used. The corresponding events are 

often heel strike, foot flat, or toe-off. The boundary conditions are either user-defined 

assumptions or provided by other sensors such as accelerometers and/or magnetometers. 
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The other most common method utilizes digital filters and possibly knowledge of noise 

characteristics to reduce drift. A complementary filter provides a simple filter 

implementation for 6-axis systems. This filter weights and combines low-passed acceleration 

with high-passed angular velocity to estimate sensor orientation to reduce offset bias. 

Chalmers et. al compared various implementations of a complementary filter, demonstrating 

superiority of adaptively weighting a complementary filter.
38

 Kalman filters are also 

commonly used to combine multiple observation models to reduce orientation error using 

predict-update cycles for each sample given a noise covariance matrix. Although Kalman 

filters can be implemented using gyroscopes and accelerometers, they are most effective 

when including magnetometers as shown by various studies.
39–42

 Highly accurate Kalman 

filter methods for angle tracking have been proposed that assume the knee is a perfect 

hinge.
43,44

 However, the knee and ankle are far from perfect hinges which must be 

accounted for when analyzing frontal and transverse rotations during a stride. Favre et. al 

developed a Kalman filter to reliably track sagittal and transverse orientations using only 

accelerometers and gyroscopes.
45

  

Comprehensive angle calculation comparisons were performed by Olivares et.al
46

 

and Öhberg et al.
47

 Both studies found that over long periods of time, standard Kalman 

filters will not converge as they only update based on quasi-static periods, similar to 

complementary filters. Olivares et al.’s comparison between various least squares and 

Kalman filters found recursive least squares schemes to be optimal. Öhberg et al. extended a 

similar study comparing a number of methods which supported Olivares et al.’s results and 

proposed an modified Kalman filter (similar to a complementary filter) for superior results. 

Another Kalman filter for accelerometers and gyroscopes similar to the previous was 
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proposed by Mazzà et al, which includes a quasi-static threshold for switching between 

accelerometer and gyroscope proximal to the trunk as the most trusted sensor.
48

 

WALKING ESTIMATION 

Many studies have attempted to estimate walking speed or stride length from inertial sensors, 

as reviewed by Yang et al.
49

 Sensors are commonly placed on the shank, foot, or even the 

waist to determine segment and/or center-of-mass motion of the body. For first principal 

methods, a zero-velocity update (ZVU) has commonly been added as a boundary condition 

for acceleration integration. Since heel strikes are an important event in gait analysis, many 

studies segment integration periods at these events and argue zero velocity at boundaries. 

Peruzzi et al performed a comparative study on sensor placement and accuracy of ZVU at 

heel strike50. They found velocity varies over at eight different sensor placements (shank, 

ankle, and 6 foot locations), with the shank having much higher velocity than foot or ankle 

placements. Considering many studies find consistent underestimates of stride length, non-

zero velocity boundary conditions that are ignored could significantly affect accuracy. 

Therefore, more robust methods have used accelerometers and/or magnetometers for 

quantification of boundary conditions and choose different segmentation events. 

Treadmill walking speed is commonly tested due to its prescribed walking direction, 

easy validation, and potential for collecting many strides. Sabatini et al varied treadmill speed 

and incline while using a biaxial accelerometer and uniaxial gyroscope. Gait cycles were 

averaged and compared to treadmill speed (no motion capture validation) to produce a 

coefficient of variation (CV) of 4% and RMSE = 0.18 km/h on five normal subjects at six 

different speeds51. An RMSE of 1.52% was found for their method of determining incline. 

Although the accelerometer was trusted for initial conditions, segmentation was performed 
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between heel strikes. Similar to our AFO design, the sensor resided on the instep of the foot. 

Li validated a walking speed estimation algorithm based on shank-mounted sensors at 

different level inclines. Mean percent error reached as high as 10% and was commonly 

above 5% in estimation of speed using a hinge model.52 Yang et al performed a similar 

experiment with shank mounted sensors to assess the best signal processing approach.
53

 A 

biaxial accelerometer and uniaxial gyroscope were used. Gait cycles were segmented by mid-

stance.  Accelerometer tilt provided boundary condition orientation. Boundary conditions 

for velocity were provided by ω*L to correct for known non-zero velocity; L was the 

distance from the sensor to the ankle and ω was the angular velocity from the uniaxial 

gyroscope positioned sagittally. Treadmill speed RMSE% (RMSE/Treadmill Speed) totaled 

3.5% over 5 different walking speeds on a treadmill. As with the previous study, there was 

no motion capture validation and RMSE was calculated by root-mean-squaring the mean 

walking speed – treadmill speed for each period. Another significant limitation to these studies 

and most regarding walking speed is the assumption of the knee as a perfect hinge. This is 

problematic because the knee is not a perfect hinge (in particular can experience 

internal/external rotation) and assuming so also limits the feasibility of 3-d  walking 

trajectories. A more general model should not assume the nature of a joint, especially 

considering the need for local and global segment angles, as well as other fully articulating 

joint angles such as ankle angle. 

Using an integration method proposed by Zok et al,
54

 Kose et al validated an 

alternative approach with waist-mounted sensors (tri-axial accelerometer and gyroscope) for 

heel strike accuracy and distance estimation.35 Over nine trials, their estimation of 75 m 

distances varied from -1.11% to 1.12%, centered on -0.02%. Despite using a waist sensor, 
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heel strike was detected within a margin no larger than 50 ms. Although this method was 

relatively accurate, any angular information about the lower body is irretrievable because of 

sensor location. Kose et al extended this method with another paper in determining each 

step length during 30 m walks. Mean error for this study ranged between about -3% and 3% 

mean error for each step.
55

 Yang et al proposed a foot based system including a triaxial 

accelerometer, gyroscope, and magnetometer for estimating track walking. An adaptive gain 

complementary filter was used to keep track of orientation and global frame rotations. Using 

validation from GPS, no more than 1.1% distance error was reported.  

RUNNING ESTIMATION 

Other than use as a temporal identifier or pedometer as described by Lee et al,56 validation of 

running with inertial sensors is limited in the literature. Yang et al.
57

 used a shank mounted 

triaxial acclererometer and gyroscope, although only sagittal motions were considered. Two 

separate gait segmentations were made to satisfy observable boundary conditions for 

orientation and velocity, respectively. For acceleration integration, toe-off boundaries are set 

with the same ω*L velocity boundary condition as used in their walking study. Angle 

boundaries were provided by detection of shank vertical and set to θ=0. Seven subjects ran 

at four speeds. RMSE was calculated identically to the last study and found to range from 

2.87% to 5.85%; this equated to an overall RMSE of 4.1% and absolute means ranging from 

0.08 to 0.11 m/s. Calculated stride length was consistently underestimated which can be 

attributed to their analysis of only the sagittal plane, as well as initial velocity and initial angle 

miscalculations. A couple other methods have proposed modeling techniques for spatio-

temporal tracking of gait but no validation was provided.
58,59

 Ultimately, robust methods 

regarding spatio-temporal parameters of running using inertial sensors are scarce. 
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PATHOLOGICAL SPECIFIC STUDIES 

Despite the need for wireless sensing methods in clinical gait assessment, only a few studies 

have validated spatio-temporal, first principal methods on pathological gait. Chalmers et al 

presented methods for tracking sagittal foot angle in idiopathic toe walking similar to those 

previously mentioned.
38

 The most effective method (predict-update: similar to a Kalman 

filter) was evaluated on both normal and idiopathic subjects with RMS (mean) errors of 4.9° 

(3.4°) and 6.5° (4.5°), respectively. A normal complementary filter produced slightly more 

error than the predict-update algorithm.  

The only cerebral palsy (CP) study to date using spatio-temporal methods was 

conducted by Bourgeois et al and used a pre-validated, commercial inertial measurement unit 

by Physilog.
32

 Fourteen CP and 15 normal subjects straight-line walked for a total of 1490 

gait cycles, with Vicon motion capture providing validation. Their study validated many 

different kinematic parameters (error: mean±std, %mean/actual) in CP but most notably stride 

length (3.4±4.6 cm, 2.8%), speed (4.3±4.2 cm/s, 3.8%), and strike angle (0.5±2.9°, 20%).  

RMSE values were not provided and angle calculations other than at boundaries (foot strike, 

foot off) were not validated or provided. ZVUs were applied at stance. Although this study 

is the only of its kind using CP, the motion capture validation was not quite up to par with 

previous studies examining normal gait and angle variation throughout the stride was not 

even considered. The algorithm also only considered sagittal angles and the nature of the 

algorithms used were not made entirely clear. 

Hemiparetic gait has also been quantified using inertial sensors by Yang et al.
53

 

Walking speed using sagittal accelerometer and gyroscope readings and the velocity update 

correction proposed in their previous papers was validated with a stopwatch. Walking speed 
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seemed unaffected by which leg was analyzed (paretic or non-paretic), with paretic leg stride 

errors of 0.00 ±0.9 m/s, given the precision of the stopwatch and user error. The lack of 

motion capture validation and 3-d analysis limit the extensibility of this method to 

comprehensive gait analysis modules.  

The current work attempts to provide consistently accurate and precise observation 

measurements for all types of gait. Unlike much of the literature, 3-d angular and linear 

motion will be employed in an attempt to observe as many features of gait as possible. 

Although a magnetometer is not employed, this work is capable of extracting yaw 

components of motion. Additionally, an activity recognition method will be employed that 

complements and enables first principal spatio-temporal gait analysis. 
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SENSOR CALIBRATION 

This section describes the need for and design of a simple new calibrating process for the 

TEMPO IMUs mounted in an AFO. The calibration process produces a conversion model 

to change raw sensor digital output (ADC) to a recognized unit such as g’s or °/s. Previously 

used methods may provide sufficient accuracy for machine learning or less precise analyses 

but the first principal model to be presented in following sections requires high accuracy 

conversions to real world values. Normal TEMPO nodes, as shown in Figure 4, are 

traditionally calibrated prior to deployment but rely on proper sensor alignment with testing 

orientations. The methods recommended here can circumvent this requirement with much 

higher accuracy and convergence, despite minimal additional work on the part of user. 

 

Figure 4. Wristwatch style TEMPO nodes commonly used by UVA Center for Wireless Health
15
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TRADITIONAL TEMPO SPECIFIC CALIBRATION 

For the accelerometer calibration, the node is placed in six positions corresponding to 

alignment with principal axes and solved for a six parameter linear model using a gravity 

magnitude based non-linear cost function. This cost function   is a scalar function of the 

error between the estimated acceleration data in g’s ( ̂) and the ground truth (1 g 

acceleration at static periods).  

  ∑(‖ ̂ ‖ 
  )

 
 

   

                 

The explicit calculation of estimated acceleration will be a function of the six parameters and 

will be addressed later. The cost function is then minimized by a non-linear iterative Gauss-

Newton method.  

The gyroscope is calibrated by rotation on a rate table at ±33 1/3 RPM along the 

approximate axes of the gyroscope then solved for a six parameter linear model identical to 

the accelerometer. However, instead of comparing gravity, the linear cost function relates 

each directional angular velocity. Gyroscope parameters are determined simply by 

connecting positive and negative 33 1/3 RPM rotations for each principal axis to determine 

sensitivities (slopes) and offsets (biases). 

These calibration methods do not provide the fidelity required for the work 

presented here for a number of reasons. In the AFO implementation of these nodes, both 

sensors, particularly the gyroscope, are hard to calibrate given that both nodes are connected 

by brittle wires and have a peripheral battery. Even if a method was designed to efficiently 
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and accurate calibrate the sensors in this form, once they are built-in the AFO, the method 

would not be repeatable since it was not designed for sensors mounted in an AFO.  

The other reasons stem from inaccuracy and unreliable convergence. The 

accelerometer cost function is non-linear, yet only 6 positions are provided to solve for 6 

parameters, making the equation barely solvable and not robust, as will be demonstrated. 

Additionally, the simplified Gauss-Newton method used can have difficulty converging 

given the details of the algorithm and the small number of positions provided.  

Gyroscope calibration is limited severely by the need to align the sensors’ principal 

axis with axis of rotation. Any error in this alignment, which is sure to occur, will skew the 

results. The gyroscopes used here are biaxial+uniaxial configurations so axis misalignment is 

more likely to be present and cannot be accounted for with a 6 parameter model. Also, the 

rate table used is capable of ±45 and ±78 RPM for additional validation information, yet 

only ±33 RPM is used. 

MANUFACTURER’S SPECIFICATIONS 

Another consideration is the use of manufacturer’s specifications for conversions to some 

unit, e.g. m/s2. For less demanding applications, their specifications may be sufficient for 

producing ball-park results with minimal work. However, it is important to realize 

manufacturer’s sensitivities and offsets are estimates based on electromechanical 

relationships in the accelerometer. Their specified sensitivity errors are chosen to account for 

general variability during life of the sensor and manufacturing tolerances. Since the model 

proposed in this work is based on first principle methods, achieving the highest raw sensor 

exactness possible will reduce sources of error and improve reliability. Manufacturer’s 

specifications will be used as a starting point for further methods. 
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Figure 5. Conversion model overview. Note, noise 
may be a function of time (t), temperature (T), and 

white noise (w). 

CONVERSION MODELS 

The goal of calibration is to 

provide parameters for a 

conversion model to produce 

an ideal standardized measure 

of acceleration, as shown in 

Figure 5. Sensor noise 

primarily occurs from 

electromechanical and 

temperature related artifacts. 

As mentioned, accelerometer noise is generally zero-mean and high-frequency, while 

gyroscope noise is mostly low-frequency and drifting with time. Although temperature does 

affect drift, temperature is assumed constant, as explicitly correcting for it is very challenging 

and all of this work is performed at room temperature. Similarly, over time sensor 

parameters will change due to mechanical wear. However, this error will be assumed 

negligible between calibrations. Random, white noise produced at high frequencies can be 

treated by filtering. Therefore, the resulting conversion model ignores sources of noise, i.e. 

                         (   ). 

The effectiveness of three models – six, nine, and 12 parameter models were 

examined. These models are not new developments but a comprehensive comparison 

between them has not been performed.
29
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The 6 parameter model is a simple linear fit with a scale factor (Sxx, Syy, Szz) and bias 

(Ox, Oy, Oz) for each axis. Variable X represents sensor measurement for either a gyroscope 

or accelerometer. 
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Note, principal components of S correspond to the inverse of the principal 

sensitivites provided by the manufacturer. 

Due to internal mechanisms, each axis has dependence on the others resulting in 

cross-axis sensitivity. The 9 parameter model adds 3 symmetric cross-axis sensitivities (Sxy, 

Sxz, Syz) to the 6 parameter model. 

  
      

         , 
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] 

Since, sensor axes are based on physical positioning of componentry ADC output 

never corresponds to perfectly orthogonal axes. The 12 parameter method adds 3 new 

misalignment constants (mxy, mxz, myz) to further reduce sources of error. Note this model 

now converts ADC using a non-symmetric matrix. 
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ACCELEROMETER CALIBRATION 

Two possible validation solutions were considered for accelerometer calibration. The 

simplest used verification of static magnitude during a number of stationary periods. The 

second included sensor orientation validated by Vicon motion capture in addition to the 

static magnitude verification. Below are the relative advantages and disadvantages of the 

solutions.

Static Magnitude Verification 

Relative Pros 

 Ground truth is a direct physical 

quantity 

 No secondary system 

 Easy sensor model 

implementation with cost 

function 

Relative Cons 

 Only magnitude is verified 

 Orientation accuracy is 

unassessed 

 

 

Sensor Orientation Verification 

Relative Pros 

 Highly specific and unique 

ground truth info 

 Angle based verification 

Relative Cons 

 Increased model complexity 

 Time onsuming 

 Verification with black box 

system (motion capture)  

 …or very specific, prearranged 

test setup 

 

Due to the demands for repeatability and simplicity, sensor orientation was omitted 

in favor of static magnitude verification. Although a sensor orientation based method could 

provide even more precise results, the following section will demonstrate the high levels of 

precision obtainable by a robust static magnitude verification method. 
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Gravity Based Least Squares 

A procedure was established to place the AFO in 14 unique static positions (Figure 6). This 

number was chosen to provide an excess of required positions for the 12 parameter model 

and provide comparisons between using the minimal number of positions for each model 

increasing up to the maximum of 14. The 14 positions are unique but can be arbitrarily 

chosen as long as there is sufficient differentiation between them. The resulting error vector 

is as follows. 

 ̂     
     

        
    

   (‖ ̂ ‖ 
  )                                           

The p ADC outputs are determined by averaging the entire static period during each 

corresponding annotation. 
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LEAST SQUARES METHODS 

The non-linear least squares problem to select n (6, 9, or 12) constants c is: 

   ( )           (            ) 

Figure 6. Diagram of static positions used for accelerometer calibration. 
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In addition to varying parameter models and positions, three least squares methods 

were compared for exactness and convergence. Initial guess (i=0) for each method was 

supplied by manufacturer’s specification. Iterations were performed by augmenting the last 

guess by a correction size h, which was determined by each least squares method. 

 ̂      ̂                                                          

  ̂                                            )  

Gauss-Newton (GN) 

The standard Gauss-Newton method only considered the number of positions equal to the 

number of parameters to be solved for, e.g. 6 parameter model could be solved by GN only 

when using 6 positions. From the Jacobian J the correction size was determined by: 

     (   )       

   
   

   
  

                                   

                                     

The error matrix and Jacobian were evaluated at each iteration to find h. A 

divergence tolerance of 104 for the norm of the correction would trigger a replacing of the 

current correction with a sign change*2 of the previous correction to avoid divergent 

solutions and local minima. A scaling factor α was introduced to minimize false convergence 

and set empirically to 0.9. Note use of the Hessian was tested but far too unstable to be used 

as is the case for most least squares applications. 
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Gauss-Newton Matrix Rank Partition (GN-MRP) 

This least squares algorithm was identical to GN. However, the number of positions could 

be larger than the number of constants to be solved for. This was achieved by extracting the 

full rank portion of the Jacobian at each iteration and passing it through GN. Automatic 

reduction to row echelon form yielded the rank matrix. Zero tolerance of 10-9 was used to 

improve invertability. 

Levenberg-Marquardt (LM) 

Levenberg-Marquardt least squares was performed through MATLAB’s function lsqnonlin. 

Error tolerance (10-9) was chosen identical to GN and GN-MRP methods. Correction size 

calculation was modified to include a damping factor λ set to 0.1. This damping factor 

modifies the gradient of descent to improve convergence and circumvent misleading 

gradients. Often times this step formulation is regarded as a trust region step, as it will only 

follow the gradient so far.  

    (      )      

Data Collection and Analysis 

In order to compare and validate the effectiveness of these methods, five separate sessions 

were recorded and analyzed with the 3.2f AFO. The AFO was left still during the first few 

minutes of collection to remove startup drift. Following which, the AFO was placed in the 

proper 14 unique positions (split 1). After around a couple of hours, another calibration 

procedure was performed prior to ending the session (split 2).  

Each least squares method and parameter model was performed for the entire range 

of possible input positions to compare models, least squares methods, and required 



43 

 

 

 

positions. Data was analyzed as a whole, as well as with respect to time of calibration. The 12 

parameter model was only performed using LM, as will be justified later. Also, GN-MRP 

methods were not performed at the minimum positions per parameter model, since they 

would produce identical results to the GN method. 

A number of constraints were imposed on all the methods. After each iteration, if 

the error tolerance (10-6) exceeded  , a solution was found. This low tolerance was chosen in 

order to produce the best results possible, even though most local minima found could not 

achieve this accuracy. The GN methods needed significantly more iterations than the LM 

methods to find a local minimum. It is worth noting, LM was vastly superior at converging 

to a minimum within 20 iterations.  

Since these calibrations were not performed often, absolute accuracy was deemed 

more important than computational efficiency. Furthermore, max iterations were limited to 

50 in order to improve convergence of GN methods. If a reasonable solution (     ) 

could not be found in 50 iterations, the method was said to be divergent. Additionally, false 

convergence could occur due to the lack of an acceleration directionality component in the 

Jacobian. To identify if this happened, a standard deviation tolerance for the static periods 

was introduced and manually verified. Since the sensors have an inherent noise floor, 

standard deviation measures also have a floor which could only be surpassed by false 

convergence.  Empirically, the threshold was chosen to be 1% standard deviation from the 

mean for the entirety of the static periods, per axis. 

The manufacturer supplied initial parameters for conversion to g’s were as follows: 
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Another analysis which will not be explicitly presented indicated GN and GN-MRP 

methods were highly sensitive to which positions were provided to the algorithm (e.g., for 9 

position input to 6 position model, the different combinations of 9 positions could be 

constructed from the total of 14). The LM method was vastly superior in this regard and 

could produce high accuracy results with positions that would not converge with GN and 

GN-MRP methods. More than likely, this is a result of the damping factor included in the 

LM method. Since the less unique combinations of positions caused the most problems, the 

Jacobians calculated at each iteration were poorly defined resulting in more unstable step 

sizes. The damping factor λ can compensate for step sizes that would be too big and 

otherwise skip over minima. Additionally, this was further justification for a scale factor α in 

the GN methods to improve convergence. The order of positions passed was empirically set 

to position numbers 1, 3, 4, 6, 7, 10, 5, 9, 11, 2, 8, 12, 13, and 14 (e.g. 9 required position 

simulations would pass 1, 3, 6, 7, 10, and 5 to the least squares method). This optimal 

ordering helped remove any potential issue related to the aforementioned sensitivity of 

Gauss-Newton to less than optimal positions. 

Results 

The LM approach was found to be the preferred method for determining the calibration 

coefficients. Root-mean-square error (RMSE) was calculated for each trial via the mean of 

each static period, i.e., each trial’s RMSE was calculated using 14 values. For example, a 9 

parameter LM method using 12 positions had an RMSE determined over all 14 positions to 

assess the importance of providing the algorithm with more positions than required. Figure 

7 shows the RMSE results for the entirety of the data. Figure 8 and Figure 9 demonstrate 
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RMSE when examining the beginning (split 1) and end (split 2) of session calibrations, 

respectively. In general, increasing passed positions to any method and model decreased 

RMSE. The 9 parameter model is consistently superior to the 6 parameter model, regardless 

of changes to least squares methods. This is particularly prevalent for split 1. Furthermore, 

GN-MRP and LM perform very similarly with respect to RMSE. However, 9GN-MRP 

falters with a high percentage of diverging solutions as shown in Table 1. Additionally, one 

false convergence was found in split 2 with 9GN. All models’ error increased during split 2 

(end of session calibrations) with the 12 parameter model encountering the most significant 

increase in error; this model may have also needed more positions to converge to the proper 

misalignment values, as the other models seemed to converge to an error floor. 

A number of conclusions can be made from this calibration analysis. Levenberg-

Marquardt least squares method was by far the most robust and consistent method for any 

model and any number of passed positions. The nine parameter model was optimal in 

producing the smallest error in all cases. However, the 6 parameter was still effective and 

converged for every least squares method and passed positions. Twelve parameter results 

indicated an insufficient number of positions for ideal convergence. 

Gauss-Newton, particularly the MRP version struggles with the 9 parameter model. 

Although looking at mean RMSE may suggest GN-MRP is more accurate than LM, this is 

not necessarily true as divergent groupings were not factored into this calculation; the 

groupings that were divergent for GN-MRP likely increased the relative mean RMSE for 

LM.  

A possible explanation for the high divergence rate in 9GN-MRP lies within the step 

size h calculation. Since LM and GN-MRP are both gradient descent based methods, 
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depending on how positions are chosen and set, the Jacobian may not be optimally defined. 

LM accounts for this by using a damping factor which GN-MRP omits. Since an apparatus 

does not hold the AFO in the precisely same positions every calibration, significant 

variations in the line of descent between calibrations are expected. Furthermore, since the 

initial guesses were given by manufacturer’s specifications and already close to the solution, a 

damped step size should not considerably affect rate of convergence.  

For high fidelity applications, the Levenberg-Marquardt method was vastly superior 

to Gauss-Newton. A six parameter model is feasible but a higher parameter model is optimal 

and requires little additional computation. Whether to choose a 9 or 12 parameter model 

may depend on the manufacturing process of the sensor. In the case of triaxial 

accelerometers as shown here, axis misalignment is probably negligible relative to the order 

of RMSE achievable. Increasing number of passed positions was the most effective at 

reducing RMSE for 6 parameter models. Nine parameter models only saw a significant 

reduction in RMSE at 10 positions; further additional positions did not seem to affect 

RMSE but could still be useful if available. A maximum of only two extra positions were 

passed to the 12 parameter model. More positions would need to be added in order to assess 

this method’s effectiveness.  
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Table 1. Instances of divergence categorized by groupings and calibration times. Split 1 for beginning 

of session calibrations and split 2 for those at the end. 

Divergences 

 
Positions Passed 6GN 6GN-MRP 6LM 9GN 9GN-MRP 9LM 12LM 

Split 1 

6 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 

9 0 0 0 3 0 0 0 

10 0 0 0 0 3 0 0 

11 0 0 0 0 3 0 0 

12 0 0 0 0 4 0 0 

13 0 0 0 0 3 0 0 

14 0 0 0 0 3 0 0 

Split 2 

6 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 

9 0 0 0 1 0 0 0 

10 0 0 0 0 3 0 0 

11 0 0 0 0 3 0 0 

12 0 0 0 0 3 0 0 

13 0 0 0 0 3 0 0 

14 0 0 0 0 3 0 0 

Totals (abs) 0 0 0 4 31 0 0 

 

(%) 0.00% 0.00% 0.00% 4.44% 34.44% 0.00% 0.00% 
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Individual Node Adaptation for CP group 

For data collections involving individual 3.2f nodes strapped to cerebral palsy participants, 

the accelerometer calibration was modified slightly. Despite using 14 positions in the control 

group, the aforementioned analysis suggested any more positions than 12 produced 

negligible RMSE decrease. Thus, a 12-sided (dodecahedron) calibration rig was prototyped 

and used to calibrate accelerometers. Figure 10 shows the prototype prior to and following 

sensor placement within.  

 

Figure 10. Dodecahedron calibration solution before and after assembly around a sensor.  

Each side of the dodecahedron was numbered for ease of calibration. The rig and 

sensor within were both held in place by rubber bands as a temporary solution; a future 

prototype could use pins for easy closure and opening. The rig was then placed on all of its 

side to achieve unique static positions for each individual node accelerometer calibration. 

Results for one 3.2f node calibration are shown in Table 2 and are comparable to the 

analysis previously presented. 
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Table 2. Acceleration calibration results for individual 3.2f node 104. 

Node Axis 
Fit 

RMSE 
(g) 

Total 
Mean 

Drift (g) 

Total 
RMSE 

(g) 

LM 
Runtime 

(s) 

104 Norm 0.0017 0.0023 0.0841 3.01 

 

The calculated conversion model for g’s was found to be: 

       [
                        
                        
                     

] (         [
      
      
      

] ) 

Adaptation of LM methods used on the AFO produced similarly precise results on a 

single 3.2f node placed in 12 unique positions. Cross-axis terms in this particular instance 

were very small and probably negligible. However, use of those terms for robustness and 

generality over different sensors is essential. 
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GYROSCOPE CALIBRATION 

Gyroscope calibration for TEMPO systems has typically been done by aligning the sensors 

in the direction of their principal axes and rotating at ±33 RPM on a turntable. Principal 

scale factors and offsets (6 parameter model) are then determined by the slope and y-

intercept of the line connecting +33 and -33 RPM for each axis. This setup is problematic 

for a number of reasons. First, sensor axis alignment with the rotation axis is an educated 

guess.  Sensor misalignment or transverse sensitivity is also ignored which additionally 

conflicts with the assumption that the sensor axes are perfectly aligned. Other external 

factors such as levelness of the turntable will always inadvertently limit the precision of this 

method. Lastly, the turntable is also capable of various rotation speeds although only one has 

been utilized in previous procedures. Two methods were devised to improve gyroscope 

calibration and address these issues. 

Linear Least Squares, 6 Parameter 

In order to improve the previously used procedure with minimal changes, some adjustments 

were made to the test setup and processing. Instead of only performing 33 RPM rotations, 

45 and 78 RPM rotations were tested as well. Rotations at 78 RPM were found to be 

unstable with the housing platform used so rotations became ±33 and ±45 RPM. Following 

careful node setup to align axes, manual inspection of off axis rotation magnitude was 

necessary to ensure properly aligned axes. Three linear methods were compared. The first 

was identical to the original, which finds the line between +33 and -33 RPM rotations. The 

second makes a small adjustment by adding a 0 RPM period then finding sensitivities for the 

positive and negative spectrum via 33 RPM. The last method performed linear regression on 

-45, -33, 0, 33, and 45 RPM rotations. 
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Figure 11. Diagram of configurations 
used to perform 33 and 45 RPM 
turntable rotations for gyroscope 

calibration 

Levenberg-Marquardt Least Squares, 9 Parameter 

Although the regression technique improved upon the 

original TEMPO calibration procedure, many 

limitations of the original were unaddressed. Similar to 

the accelerometer calibration, a LM 12 parameter non-

linear least squares problem was posed to reconcile 

the need for sensor axis alignment with the turntable. 

This conversion model has previously been discussed, 

this time being implemented for gyroscope output  ̂. 

One again, the digital output (ADC) is the convertible 

measure, this time produced by the gyroscop.e 

 ̂        
          

     [

     
     

     

]         [

  

  

  

]  

     [

       

     

   

] 

The cost function was constructed similarly to 

that of the accelerometer. Since proper axis alignment 

with rotation direction was omitted, directionality of 

the known speed was impossible to validate. 

However, this did not limit effectiveness as directionality is ultimately preserved in the 

conversion model for each axis. 
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All further methodology involving LM least squares was preserved from the 

accelerometer technique. A total of 5 orientations at ±33 and ±45 RPM were enforced by a 

makeshift box, as shown in Figure 11. Along with a static, non-rotating period, a total of 21 

unique combinations of orientation and speed were performed. 

Calibration Validation 

This section will validate and compare the proposed methods, as well as describe the 

calibration measures used in order to achieve upcoming kinematic results. Data was collected 

on a number of different subject groups. The gyroscope calibrations performed on each 

group were different, as well as performed sparingly but still produced results similar in 

precision. Different methods were performed due to necessity and evolving methodologies. 

The reason for sparing calibrations was two-fold. First, turntables were not feasible to access 

directly before recording a subject. Secondly, the most variable parameter for accelerometers 

and particularly gyroscopes is the resting voltage, which will vary over time and between 

startups. In these devices, the resting voltage will directly influence the bias for each axis. 

Although scale factors may change, they are less likely to in the short-term. Furthermore, 

compensation for bias accumulation in the gyroscope and accelerometer will be discussed 
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later. The following section will present the procedure and results for gyroscope calibration 

in each group. 

CONTROL GROUP, PART A  

The control group, part A (NOA) consisted of five subjects without any walking disabilities 

wearing the custom made 3.2f AFO. Prior to assembly of electronics into the custom made 

AFO, each sensor was rotated on the turntable per the principal axis alignment method 

previously described by Linear Least Squares, 6 Parameter section. This method was performed 

only once in late June 2013. The date of the last subject’s collection (NOA05) was mid-

December 2013. Despite half of a year separation between the calibration and last trial, there 

were no noticeable issues with the calibration parameters in upcoming gyroscope-related 

methods.  

 Prior to statistical analysis, highly linear nature of the gyroscope and biaxial+uniaxial 

related misalignment were obvious. The master in particular demonstrated nearly identical 

ADC output for two of the axes, as shown in Figure 12, and the only significant difference 

between the uniaxial and biaxial axes appears to be bias.  
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Figure 12. ADC vs. RPM for the master node of the custom 3.2f AFO showing the linear behavior of 
the gyroscope between -45 and 45 RPMs. Standard deviation bars are centered around the mean ADC 

for each annotated speed period. Note, y and z data are overlapping. 

Upon analysis, very little differences were observed between the three methods 

(point to point linear methods and regression). Virtually no error was observed between 

positive and negative spectrum when creating two point to point lines (i.e. line from 0 to 33 

RPM and line from -33 to 0 RPM) when compared to simply finding the slope and offset 

connecting -33 RPM and 33 RPM. Additionally, the 5-point regression provided statistically 

insignificant improvement over point to point methods. Furthermore, only results for the 5-

point regression are provided via Table 3. 

 

-40 -30 -20 -10 0 10 20 30 40

1000

1200

1400

1600

1800

2000

2200

Angular Velocity (RPM)

A
D

C

Master: Meaned Periods for Each Speed

 

 

x

y

z



58 

  

 

5
8

 

Table 3. Linear regression calibration results. These results only pertain to validation of converted 
sensor speed relative to known speed during annotated periods for the principal axis being rotated. 

Presence of off-axis rotation was deemed negligible. 

Node Axis 
Fit RMSE 

(°/s) 

Total 
Mean 

Drift (°/s) 

Total 
RMSE 
(°/s) 

Master 

X 0.053 0.0001 0.303 

Y 0.135 0.0064 0.287 

Z 0.058 0.0005 0.256 

Slave 

X 0.041 0.0001 0.294 

Y 0.109 0.0003 0.274 

Z 0.128 0.0018 0.315 

 

The parameters for conversion to degrees per second (DPS) were found as follows: 

           [
     
     
     

] (           [
      
      
    

] ) 

          [
     
     
     

] (          [
      
      
      

])  

As compared to manufacturer’s specifications (same for biaxial and uniaxial): 

          [
   
   
   

] (          [
    
    
    

]) 

For whatever reason, there is a larger discrepancy between manufacturing 

specifications and those produced by the calibration. The calibration tolerance provided by 

the manufacturer is 6%, which still cannot account for the differences shown above. A 

difference in the bias is expected since the manufacturer’s reference voltage is 1350 mV and 
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the ADC output for the sensor axes analyzed is around 1670-1700 mV. However, the ~20% 

difference in sensitivity was unexpected.  

 These results indicate that the gyroscope sensors are highly linear and simple to 

calibrate, if principal axes can be isolated and rotated about on a turntable. However, if the 

axes orientations are unknown, this method will not work. Even so, approximated principal 

axis alignment on the turntable will inevitably introduce some error, as it cannot be explicitly 

known. Lastly, manufacturer’s specifications were proven to be unreliable for the AFO 

application outlined in this paper. It is possible that assembly of the sensors (soldering, etc.) 

changed some thermal or electromechanical properties in the sensors. Regardless, this is a 

clear indication of the importance of manual calibration, if high precision outputs are 

desired. 

CP GROUP AND CONTROL GROUP, PART B 

Despite high accuracy results given in the linear calibration results, much of the error 

accumulated could not be tracked since off-axes outputs are assumed to be zero and have no 

axis misalignment. Additionally, linear calibration could only be performed when the sensor 

orientation was known prior to setup. The non-linear, Levenberg-Marquardt method was 

able to work around these issues and provide a more robust calibration for the CP group, A 

and control group, B. Since these groups used different sensor arrangements, the procedure 

and results for both will be demonstrated separately. 

Control Group, Part B 

This group used the same custom 3.2f AFO used in part A. Since the nodes were already 

placed in the AFO, a linear calibration would have required their removal and was not 
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feasible. Using the arrangements in Figure 11, 21 axial rotations are obtained in a data 

collection prior to control group B recordings. The Levenberg-Marquardt method was 

executed as previously defined. Fit RMSE calculated RMSE of meaned unique 

speed/orientation periods and represented least squares effectiveness. Total mean drift and 

RMSE are calculated from the entirety of each period and is more indicative of sensor 

characteristics. Table 4 shows the results for both nodes. Figure 13 depicts the gyroscope 

calibration for the master (shank node). 

Table 4. Results for NOA LM calibration. Note, axial* calculations are artificial calculations used to 

estimate axial error for comparison to linear methods.      √          

Node Axis 
Fit RMSE 

(°/s) 

Total 
Mean 

Drift (°/s) 

Total 
RMSE 
(°/s) 

LM 
Runtime 

(s) 

Master 
Norm 0.207 0.061 1.873 

2.25 
Axial* 0.120 0.035 1.081 

Slave 
Norm 0.264 0.061 0.715 

1.07 
Axial* 0.152 0.036 0.413 
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Figure 13. Gyroscope (master node) data after using LM least squares with turntable calibration at ±33 and ±45 RPM rotations over 5 positions. 
Annotated periods are marked between grey and black lines, during which turntable rotations were performed at constant speeds. Upon examination, the 

axial components of each rotation period appear to be unique as desired. Note negative range was cut off to more clearly display norm values.
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As would be expected, the precision of the calibration was not as high as in the linear 

calibration. This is not an indicator of a less accurate calibration but instead more 

comprehensive error accounting. In this sense, the two methods were directly comparable, 

although axial error approximations would indicate the data still has a very low error ceiling. 

The slave produced better RMSE with faster convergence time than the master. Since the 

total mean drifts and fit RMSE were nearly identical between the nodes, the difference in 

RMSE was independent of the LM method used. The slave annotated data was less noisy 

than that of the master. This could be a direct result of sensor characteristics but was more 

than likely caused by movement and vibration within the master’s housing in the AFO or 

inconsistent turntable rotations. Additional filtering, which will be analyzed, will be able to 

correct any unwanted high frequency vibration in the nodes. Concerns that some of the 

position-rotation combinations would not be unique enough were dispelled by both the 

slave and the master node data. Figure 13 depicts uniqueness of each position in the master 

node, which is also representative of the slave. The parameters for conversion to degrees per 

second (DPS) were found as follows for a 12 parameter model: 
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In general, cross-axis terms were very small and less than 2% of the principal scale 

factors in the master and slave. The x-z misalignment factor mmaster,xz for the master was 

~15% of the principal scale factor indicating significant axis misalignment correction. The 

slave only produced a maximum misalignment percentage relative to the principal scale 

factor of ~2.5% for the x-y axis. 

This LM procedure was highly effective and much easier than the linear calibration 

to physically setup. Any rigid sensor array could be calibrated in the same fashion as 

described here, with no limitations for embedded sensors. Direct accuracy comparisons 

between LM and the linear calibration are not possible with this data and are grounds for 

future work. This was not directly possible here as the linear regression collection 

requirements were not performed concurrently with that of the LM method. Ideally, the two 

methods could be performed together and the results from each individual method could be 

compared with the ground truths obtained by the other method, as the data would be 

unique. 

CP Group 

For cerebral palsy data collection, individual 3.2f nodes were placed on the foot and shank of 

the participant. Since individual nodes were used, the manual axis alignment method was not 

feasible. Despite sensors identical to the custom AFO, the previous tested LM setup had to 

be modified for a practical calibration due to the footprint of the nodes. The exact 

orientations used for the AFO were difficult to reproduce with the individual nodes, without 

some external hardware. Instead, these nodes were placed in 4 unique positions and rotated 

at the same speeds as previously defined, resulting in 17 unique orientation-speed 

combinations. The positions were arranged in such a way to produce large magnitude 
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contributions from each axis at a given speed. The specific orientations will not be provided 

as they were determined ad hoc and may vary for each sensor used. Data treatment was 

identical to that presented for the control group, part B. The results for one node’s 

calibration are presented in Table 5. Figure 14 shows the converted data and relative 

uniqueness of each position. 

Table 5. Results for CPA LM calibration. Note, axial* calculations are artificial calculations used to 

estimate axial error for comparison to linear methods.      √          

Node Axis 
Fit 

RMSE 
(°/s) 

Total 
Mean 

Drift (°/s) 

Total 
RMSE 
(°/s) 

LM 
Runtime 

(s) 

120 
Norm 0.096 -0.115 0.4918 

2.4 
Axial* 0.055 0.066 0.284 
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Figure 14. Gyroscope (individual node 120) data after using LM least squares with turntable calibration at ±33 and ±45 RPM rotations over 5 positions. 
Note the negative range was cut off to more clearly display norm values. 
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The results were similar to the NOB group. Direct comparisons show this particular 

calibration was slightly less accurate (total mean drift) but more precise (fit and total RMSE). Such 

variations were expected, given that the individual nodes were calibrated in their hard, tight fitting 

cases and the AFO housing is slightly less rigid and roomier. The subsequently reduced vibrations 

can account for the increased precision or decreased noise ceiling seen in the individual nodes. 

Additionally, only 17 unique validations were passed through LM, while the AFO method passed 21. 

Since there is less validation data, the accuracy and precision could presumably be higher. As with 

the previous group, more comparative experiments would need to be carried out to gauge the 

importance of method procedure and parameters. The conversion model to degrees per second 

(DPS) was found as follows for node 120: 

         [
                  
                  

                   
] (         [

        
        
        

] ) 

                                                          

Cross-axis sensitivities were consistently small relative to principal sensitivities. Similar to a 

previous slave calibration, x-z misalignment was corrected by a factor of ~16% of the principal scale 

factor.
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SUMMARY OF CALIBRATION ANALYSIS 

This section outlined high precision methods for calibrating rigid accelerometer and 

gyroscope arrays. For the accelerometer, an instrumented AFO was propped in 14 unique, 

pre-defined static positions, which takes approximately two minutes and requires no external 

equipment. Other high accuracy models may involve validation systems such as motion 

capture or mechanical rigs, while the model presented requires only the accelerometer array 

and something to prop it against. Offloaded accelerometer data is passed to a non-linear 

least squares solver requiring an initial guess of sensor parameters, which was provided by 

manufacture’s specifications. The method was validated using five trials, each containing two 

calibration procedures spaced out by approximately two hours. Least squares methods, 

number of positions passed, and parameter models were varied and compared for an 

optimal solution. A nine parameter Levenberg-Marquardt model demonstrated 100% 

convergence for every procedure with a mean RMSE < 0.005 g for 12 passed positions, with 

a marginal decrease of RMSE at 13 and 14 positions. Calibration occurring at the beginning 

of each session produced lower RMSE than the end of session calibration, although the 

latter procedure for each session was still acceptable (RMSE < 0.01 g); this was likely due to 

accumulation of time and temperature related noise.  

 Given the effectiveness of the LM method on the accelerometer, a similar method 

was applied to constant angular velocities produced by the turntable. Given the known 

rotation magnitudes and using a 12 parameter model to correct for biaxial+uniaxial 

gyroscopes, the method was tested on individual 3.2f nodes, as well as the custom AFO. 

Accuracy and precision was not significantly affected by these different configurations, even 

with the individual nodes producing 4 less orientation-speed combinations than the AFO’s 

21. The AFO procedure was validated on both the shank and foot node which were aligned 
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in different orientations within the brace. This method produced RMSE less than 1°/s and 

negligible mean drift. In one instance, the RMSE approached 2°/s but was more than likely 

a result of vibrations that can be accounted for with a low-pass filter.  

Use of external equipment was minimized with all calibration techniques. 

Accelerometer calibration required no external equipment in the case of the rigid sensor 

array. For the individual nodes, a dodecahedron accelerometer rig prototype was created 

which could easily be manufactured with 3-d printers or even cardboard. Simply rotating the 

dodecahedron onto each numbered side provided all needed static periods. Gyroscope 

calibration of the individual nodes was performed simply by propping the shell surrounded 

nodes in 4 positions, although a well-made dodecahedron for the accelerometer portion 

could double for the gyroscope calibration. A small, non-specific cardboard box kept the 

AFO propped during turntable rotations but otherwise only required a turntable. A digital 

stopwatch saved annotated periods for direct import into the calibration algorithms. 

Similar approaches have been used in the literature to calibrate sensors but none 

have provided the comparative and subsequently optimized analysis shown here. This 

framework is directly applicable to any accelerometer and/or gyroscope array for calibration 

that need not be performed by an expert. For deployable instrumented AFOs in particular, 

field calibrations may need to be re-performed periodically and this approach is an ideal 

solution. 
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SENSOR ALIGNMENT AND REFERENCE FRAMES 

Identification of the proper reference frames is crucial in extracting relevant anatomical gait 

information. Given that foot and shank sensor coordinate frames orientations are different 

and unknown, sensor orientation must be determined through an alignment procedure. 

Previously described calibrations convert the voltages to the proper acceleration or angular 

velocity. Now this information must be correctly aligned with known coordinate systems. 

Gait analysis traditionally uses a body-centered reference frame corresponding to 

angular movements of flexion/extension, abduction/adduction, and internal/external 

rotation when dealing with limbs.
8
 Segment angles come from sensor frame rotations 

relative to an initial attitude, normally determined by standing. Relative motion or joint 

angles are determined by differencing angles in adjacent limbs. To adhere to this 

terminology, sensor frame axes (x, y, z) are in the body directions of anterior, superior and 

medial/lateral, respectively. Similarly, the pseudo global frame (X, Y, Z) is aligned in the 

direction of the aforementioned sensor frame axes when the AFO is oriented vertically. 

Figure 15 visualizes the coordinate frames utilized in this work. 
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Figure 15. Depiction of coordinate frames. The two positions shown are used to create the proper 
coordinate systems. The body directionality of the z axis (exiting the screen) is dependent on whether 

the right or left sided AFO is considered – z is lateral for left, medial for right. Frames designated a 
and b indicate the same sensor axes x, y, z evaluated at different positions. Position 3 corresponds to 

instance a, position 1 to instance b. 

SENSOR FRAME CONVENTION 

A simple algorithm is applied to two of the accelerometer calibration positions to achieve 

rotations from the original sensor frame (x0, y0, z0) to the desired sensor frame (x, y, z). 

Position a (standing AFO) and position b (lying AFO) (Figure 15) define a simple rotation 

(~90°) in flexion or the z direction. Additionally, since both of these positions are static, the 

magnitude of acceleration is well defined at 1 g. Using a method similar to Chen and Lach,
14

 

a rotation matrix R0 converting original sensor frame acceleration normalized mean of each 

position (position a: x0,a, y0,a, z0,a; position b:  x0,b, y0,b, z0,b) to the desired sensor frame 

accelerations (xa, ya, za, xb, yb, zb) was constructed as follows: 
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Following calculation of R0, each recorded sample of acceleration and gyroscope is 

rotated to the new sensor frame. This assumes that any non-orthogonal axes of the sensors 

have been accounted for during calibration such that the accelerometer and gyroscope axes 

are perfectly orthogonal. The corresponding Tait-Bryan angles will be referred to as roll φ 

(rotation about x), pitch θ (rotation about z), and yaw γ (rotation about y). 

One potential source of error is insufficient manufactured alignment between 

gyroscope and accelerometer units. If this occurred, the gyroscope sensor frame would not 

correspond to the accelerometer frame. Since many methods outlined in this work use both 

sensors complementarily, additional system error will be induced. Although this error will 

not be quantified, the effects of such misalignment would more than likely be negligible due 

the sensor attachment on a flat PCB board. However, bending of the board and sloppy 

manufacture could certainly result in errors in alignment between accelerometer and 

gyroscope. 

WALKING FRAME CONVENTION 

In order to convert accelerations to a global frame, accurate rotations at each sample must 

be obtained in three dimensions. Ideally, the gyroscope could provide this alone since 

perfect alignment with the accelerometer is assumed. However, as mentioned the gyroscope 
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has low-frequency noise components that are difficult to remove without losing valuable 

information. Given that the accelerometer can provide two angle corrections during static 

positions, gyroscope drift in all but one axis can be corrected periodically. Therefore, 

without a magnetometer or a perfect gyroscope, a pure global frame is impossible since one 

axis will have significant bias. If a pure global frame was approximated with bias 

accumulated yaw, results in the global frame would be inaccurate and unreliable from an 

axial (directional) point of view. Additionally, it is possible resultants could also be inaccurate 

given the computational methods used later in this work. 

The alternative to a pure global frame proposed in this work was a “walking frame.” 

Since the purpose of these methods is gait-specific observation, the sensor frame at mid-

stance or foot flat period became the new “walking frame.” Assuming such events can be 

observed and gait cycles are separable (which will be proved later), the walking frame will 

“reset” back to the mid-stance sensor frame at each foot flat. Even though the toe-out angle 

may be different at the start and end of each gait cycle, the walking frame will be aligned 

with the direction of the foot. The X direction will not necessarily be in the direction of 

walking, even though the norm of distances will still be accurate. Additionally, with this 

frame convention it is actually possible to estimate toe-out angle under the assumption that 

during a stride, the yaw angle at the beginning of the stride is equivalent to that at the end. 

As will be seen with the double integration technique, this approximate toe-out angle can be 

determined by the angle between the X and Y components of stride distance. 

TAIT-BRYAN ROTATIONS 

The rotation order used in this work is 132 or XZY for walking frame rotations, which will 

allow easy extraction of pitch and roll from static acceleration periods. 
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] 

Using this rotation matrix, initial orientation of the sensor unit relative to gravity can be 

related to a static acceleration reading (A0), as follows: 

[

    

    

    

]    [
 
 
 
] 

Solving this equation for accelerometer orientation yields the following Tait-Bryan angles. 

       (
    

    
)         (

     

√    
      

 

) 

These accelerometer orientations will be used later to correct gyroscope bias and improve 

rotations from the sensor frame to the walking frame. 
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EVENT DETECTION 

Event detection is important to allow for determination of stride length and walking velocity. 

The method described below was validated by comparison with data captured by the Vicon 

motion capture system.  While foot contact and foot off can be detected, foot flat detection 

and segmentation allows for a reset of the integration constants as described in an upcoming 

section, Tracking Stride Motion. 

A simple and highly accurate method for event detection was developed using only 

the foot pitch rate (z sensor frame gyroscope data) for recognition of foot strikes, foot flats, 

and foot offs during walking or running. No discrimination between walking and running 

was required. No errors in peak detection were found for event detection of any stride cycle 

in level or inclined strides. This method’s simplicity and congruence with activity recognition 

methods for walking and running periods yield an effective solution for an independent gait 

analysis system.  

Walking and running periods were provided through manual annotations, although 

the method will ultimately be used in conjunction with an activity recognition method that 

determines walking and running periods. Furthermore, measures were included to remove 

false positives that may be results of errors in walking or running periods passed from an 

activity recognition method. Validation was performed at three walking speeds of 3, 4, and 5 

km/h at 0° and 15° incline, and two running speeds for five healthy subjects. Additional 

exclusion conditions could be created to further minimize potential false positives, but were 

not found to be unnecessary. This method is as accurate as any previously provided in the 

literature, with a much simpler implementation and smaller computational load than 

machine learning techniques. Related methods have even been shown to work with children 
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with CP.
32

 Further testing of this algorithm in more varied walking may require adjustments 

for removal of false positives. 

Recent research has found acceleration to be most consistently 1 g during foot flat as 

opposed to heel strike during walking. Despite this fact, many studies have used heel strike 

as a static period. Acceleration during running at foot flat is not as close to static as walking 

but acceleration normalization can still produce reasonable orientation estimates.  

Shank detection methods were ignored in favor of the foot since the instep is an 

instantaneous center of velocity at mid-stance, unless there is slipping. Pitch (sagittal) rate in 

the sensor coordinate frame was the only data used. Accelerometer input was deemed 

unnecessary, as well as yaw and roll of the foot, since most significant translational and 

rotational motion occurs in the y-x plane.  

Figure 16 shows sample data for walking and running angular velocities using a foot 

sensor. Despite the different mechanics of walking and running, angular velocities trends are 

similar, particularly in pitch rate. Note, positive pitch rate indicates extension, while flexion 

occurs with negative pitch rate.  
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a) 

 

b) 

 

Figure 16. Sample sensor frame angular velocities showing the similarity of walking (a) and running 
(b). 
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Figure 16 shows foot pitch rate and acceleration norm during a representative 

walking strides and its relationship to foot strike, foot flat, and foot off. Angular velocity was 

filtered with a 3rd order Butterworth, zero-phase at 0.1 Hz (high-pass) and 20 Hz (low-pass). 

Acceleration data was low-passed only with a zero-phase, 3rd order 32 Hz Butterworth.  

 

Figure 17. IMU outputs during a stride cycle. The cycle was segmented by foot flats, indicating the 
presence of foot flat at the beginning and end of the time series. 

The large positive peaks in angular velocity indicate the foot has finished swinging 

through and is returning to the make contact with the ground. Furthermore, the following 

minimum coincides with foot strike. As the foot approaches a flat position, pitch rate 

approaches a maximum near zero before changing direction and pushing off. Foot off is the 

minimum preceding the large increase in pitch rate during swing-through. Historically, the 

specific peaks are used as absolute indicators of heel strike and toe off. However, validation 

that these events occur precisely at the peaks is very hard to produce, due to the difficulty of 

matching motion capture to the IMU data exactly. For further support of these claims refer 



78 

 

 

7
8

 

to Pappas et al
33

 and Pappas et al
34

. The most important part of event detection is ensuring 

that foot period identification is consistent and meaningful in the context of future 

algorithms and interpretation. With this said, quantitative validation of event detection via 

motion capture will not be provided. Instead, proper identification of peaks will be used as 

the validation tool, i.e., the peak relationships shown in Figure 17. 

Acceleration data during the stride cycle is also meaningful for future analyses. Use 

of foot flat or foot strike as integration boundaries has varied in the literature. Foot strike 

acceleration at foot flat and subsequent time stamps leading up to toe-off produce both foot 

and shank accelerations very near 1 g with little deviation. However, acceleration during heel 

strike is not consistently 1 g for the foot or shank accelerometers. Given the additional room 

for error and precision, foot flat is a far better boundary condition for updating sensor 

orientation to remove gyro bias. Additionally, foot flat is more attractive as a zero-velocity 

update for acceleration integration (see Tracking Stride Motion) for stride length than heel 

strike, given that much less motion occurs during mid-stance. 

FOOT PHASE METHOD 

The implementation of the determination of foot flat from foot gyroscope data was as 

follows: 

1. Groups of continuous walking and running periods are passed to this method under 

one of the two conditions 

a. Activity recognition methods for walking and running content 

b. Annotated periods via data syncing and stopwatch, etc. 

2. Filter pitch rate with a 3rd order 5 Hz low-passed Butterworth filter to remove minor 

peaks. (For this algorithm only) 
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3. A peak detection algorithm in MATLAB (peakdet) finds minimums preceded by a 

pitch rate greater than 5 deg/s. 

4. To segment the trajectory by large peaks, peaks with less than 50 deg/s magnitudes 

are removed required. 

5. An additional condition was added to reduce the possibility of false positives that 

could be a result of improper walking and running periods passed to this method by 

machine learning or annotations. All periods within minimums had to have at least 5 

°/s standard deviation or those minimums were removed. 

6. Given the relationships between angular velocity and gait events described by Pappas 

et al,  foot strike, foot flat, and foot off could be determined: 

if (max between min i and min i+1 > max of Walking Period *.5) 

 Min i corresponds to foot off, Min i+1 to foot strike 

else  

 Min i corresponds to foot strike, Min i+1 to foot off 

7. If sequential foot off, foot strikes, or foot flats are found within half a second apart 

from the same event, the redundant event is removed. 

8. Foot flats were classified within each foot strike to foot off sequence as the 

maximum only if the magnitude was less than 75°/s. 

9. Finally, filtering at peaks was not completely zero-phase, despite the use of zero-

phase filters. Since upcoming methods only utilized the 16 Hz low-passed gyroscope 

signal, the peaks identified with the 5 Hz cut-off exhibit a significant phase shift at 

higher speeds. To remove this shift, toe offs and heel strikes were refined by 

searching around the 5 Hz predicted peak. A 30 and 15 sample radius to the left and 

right, respectively, were used and if a peak value smaller than that produced from the 
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5 Hz predicted peak was found, the toe off/heel strike position was corrected. This 

refinement was deemed unnecessary for foot flat given that mid-stance lasts long 

enough for variations from phase shift to be negligible. 

 

DETECTION VALIDATION 

Five subjects walked and ran on a treadmill for approximately thirty seconds per speed. 

Walking speeds of 3, 4 and 5 km/h were performed on a level and inclined surface. 

Additional speeds of 7 and 8 km/h were tested with all subjects self-selecting running on 

level ground only. The foot phase method was tested on all annotated periods recorded from 

a digital time keeper. A total of 891 level foot flats and 359 incline foot flats were observable, 

with the breakdown shown in Table 6.  

 

 

 

Table 6. Breakdown of observable foot flats for all normal subjects. Note incline treadmill feature was 
broken during NOA03 collection. 

Foot Flats Analyzed 

 
Level Treadmill Walking 

~15° Incline Treadmill 
Walking 

Subject 
Totals 

  level3 level4 level5 level7 level8 incline3 incline4 incline5 

NOA01 14 20 30 43 31 17 28 31 214 

NOA02 25 32 32 52 43 47 27 30 288 

NOA03 35 35 52 65 42  N/A N/A   N/A 229 

NOA04 31 34 37 47 41 36 29 34 289 

NOA05 21 24 27 38 40 26 25 29 230 

NOA Totals 126 145 178 245 197 126 109 124 1250 

         
All Total 
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Toe-off events that occurred first during walking periods were ignored. Manual 

inspection of the peaks for every cycle resulted in 100% sensitivity for foot flats and heel 

strikes. The only errors found in toe offs were for NOA05 during 5 km/h incline. In four 

instances during this period the toe offs were misidentified due to unexpected peak detection 

function, as shown in Figure 18. However, over such a large dataset, errors in a threshold 

based peak detection method are to be expected. Further conditions could be added to 

remedy this issue but due to the already high sensitivity and relative unimportance for toe off 

in coming algorithms, no adjustments were made.  Specificity experiments were not carried 

out, given walking and running periods should be directly accessible with high specificity 

through Archer et al.’s work. Figure 19(a-e) and Figure 20(a-c) demonstrate representative 

effectiveness of this method on level treadmill and incline treadmill locomotion, respectively, 

by subject one (NOA01).  

 

Figure 18. Depiction of toe-off errors found during 5 km/h incline walking for NOA05. Enlarged red 
circles indicate the incorrectly identified toe-offs.

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000
-200

-150

-100

-50

0

P
it
c
h
 R

a
te

 (
d
e
g
/s

)

 

 

16 Hz

5 Hz

FF

TO

HS



82 

 

 

8
2

 

a) 

 

b) 

 

-100

0

100

200

P
it
c
h
 R

a
te

 (
d
e
g
/s

)

Left Foot Event Detection, 3 km/h

 

 

Foot Pitch Rate

FF

TO

HS

0 100 200 300 400 500 600 700 800 900 1000
0.5

1

1.5

2

2.5

A
c
c
e
le

ra
ti
o
n
 N

o
rm

 (
g
's

)

Samples

 

 

Foot Accel Norm

FF

TO

HS

-200

-100

0

100

200

300

P
it
c
h
 R

a
te

 (
d
e
g
/s

)

Left Foot Event Detection, 4 km/h

 

 

Foot Pitch Rate

FF

TO

HS

0 100 200 300 400 500 600 700 800 900 1000

1

2

3

4

A
c
c
e
le

ra
ti
o
n
 N

o
rm

 (
g
's

)

Samples

 

 

Foot Accel Norm

FF

TO

HS



83 

 

 

8
3

 

c)
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e)

 
Figure 19(a-e). An example progression of level treadmill speeds for a subject and its effect on 

acceleration and pitch rate.  
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c) 

 

Figure 20(a-c). Sample periods of data during 3, 4, and 5 km/h incline treadmill walking, with foot 
strike, foot flat, foot off periods. 

 Acceleration norm tracked 1 g very closely during foot flat events for level walking 

and incline walking. On the other hand, acceleration during foot flat of running did not yield 

accelerations as close to 1 g but was still near the minimum acceleration for each stride cycle. 

For walking, level or incline, varying speed showed no noticeable differences in acceleration 

proximity to 1 g during foot flat. This further supports the use of foot flat as an update time 

for both orientation via the accelerometer and instantaneous velocities. 

CONCLUSION 

The method presented here is accurate over a very large dataset and rivals the best event 

detection methods presented in the literature, given widely accepted association of certain 

peaks to foot strike, foot flat, and foot off throughout the literature. Approximate foot flat 
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and heel strike events were identified flawlessly in over 1200 varied cycles of level running, 

level walking, and uphill walking on a treadmill. Unlike many machine learning approaches, 

ground truth knowledge and pre-determined thresholds were all that was required for 

execution. This work has proved that to some extent these thresholds can be generalized for 

inter-subject use on healthy subjects. Pathological gait could conceivably require the use of 

intra-subject thresholds and is grounds for additional work. 

Further work needs to be done to test such a method against atypical gait such as 

cerebral palsy. This technique was optimized for five control subjects so errors may occur 

with the analysis of more varied gait. In general, significant peak ordering in the sagittal plane 

should remain unchanged given that all events of interest still occur in pathological gait. The 

addition of spastic motion may remove some clarity from the repetitive nature of pitch rate 

examined in this work. More aggressive filtering could combat this, as well as other sensor 

input from the accelerometer. Additionally, slower walking individuals may add challenges to 

the algorithm presented due to the thresholds used. However, adaptive thresholds could be 

implemented relative to the max swing-through angular velocity, which has been 

demonstrated to increase with walking speed.  
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GENERAL AND GAIT-SPECIFIC SPECTRUM ANALYSIS  

The majority of this thesis deals with time-domain observation and analysis, although 

knowledge of the frequency domain can further improve the effectiveness of time-domain 

orientated methods. Spectrum analysis can provide magnitude information for distinguishing 

frequencies of interest for gait sensing with accelerometers and gyroscopes. The following 

sections analyze static and dynamic frequency spectra for the sensors used in the AFO 

platform. From this information, filtering thresholds will be set for upcoming methods. 

Additionally, insight is gained about the repeatability and variation between pre-defined 

walking and running speeds on a treadmill. In particular, angular velocity is highly repeatable 

for all speeds, whether running or walking. Frequency peak magnitude and location scales 

with increasing speed. However, walking acceleration is more variable without a clear 

relationship to walking speed.  

Matlab’s fast fourier transform algorithm (fft) was used to determine the N-point 

discrete Fourier transform (DFT) for two scenarios - a long static period and each stride 

cycle for a normal subject (NOA01). The N value was chosen empirically as 10*number of 

samples passed to fft (L) for high resolution. Since DFTs are only reliable at the Nyquist 

frequency and below, a single-sided amplitude (SSA) measure was calculated up to the 

Nyquist frequency as follows: 
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  ⌋

|

 
 



89 

 

 

8
9

 

STATIC NOISE ASSESSMENT (LOW FREQUENCY) 

A static data collection was performed with the AFO for approximately 17 hours to examine 

noise characteristics and validity of long data collections. The first five minutes of data was 

ignored in order to remove any sort of startup drift or external vibrations. DFTs were 

performed on mean removed digital time series for each of axis of each sensor to obtain 

SSAs. Noise characteristics were similar between the two accelerometers, as well as between 

the gyroscopes. Additionally, no significant differences were noticed axially for each sensor. 

Furthermore, subsequent analysis will deal with one axis each for the accelerometer and 

gyroscope of the shank sensor.  

Accelerometer low-frequency noise started to increase slightly below 0.4 Hz but was 

very negligible (see Figure 21). Past 0.1 Hz, noise was generally uniformly small in 

magnitude. Given the importance of low-frequency accelerometer components in 

determination of gravity direction, a high-pass filter was not initially used for the 

accelerometer. Eventually, high-pass filtering will be necessary but will not be addressed until 

the Tracking Stride Motion section. 
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Figure 21. Single sided amplitude spectrum of a representative demeaned axial accelerometer output. 
Noise is consistently small in magnitude with a negligible increase starting about 0.1 Hz. Noise was 

similarly negligible above 6 Hz. 

Low-frequency noise in the gyroscope was much more prevalent than in the 

accelerometer. In particular, the 0-0.4 Hz showed a significant increase in noise relative to 

the rest of the frequency range, with a peak occurring at 0.1 Hz.  Similar to the gyroscope, 

noise past 0.4 Hz is uniform and small. Since the accelerometer will be used to provide 

updates for the drift in the gyroscope, high-pass filtering is possible without significant loss 

of information. Based on this analysis, a 3rd order, zero-phase, 0.4 Hz high-pass Butterworth 

filter seemed to remove this low frequency noise. Data was reliable for the entire collection 

period and displayed no inconsistencies over the long data collection. Removal of drift 

resulting from low-frequency noise will produce consistent outputs over long data 
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collections. 

 

Figure 22. Single sided amplitude spectrum of a representative demeaned axial gyroscope output. 
Unlike the accelerometer, low-frequency noise occurs, starting around 0.4 Hz. At its highest spectral 
contribution, noise is more than 10 times what is observed commonly above 0.4 Hz. Like the 
accelerometer, noise past 6 Hz is small and uniform. 

 Noise was found to be consistent throughout frequency ranges above 0.4 Hz for 

both the accelerometer and gyroscope axes during a static trial. Low-frequency noise in the 

accelerometer was significantly large compared to higher frequency ranges. The gyroscope, 

however, produced very significant low-frequency noise below 0.4. To address this, only the 

gyroscope will be corrected for low-frequency error, by using a high-pass filter. 

FREQUENCY OF WALKING AND RUNNING (MID-HIGH 

FREQUENCY) 

A spectrum analysis was performed on pitch rate and accelerometer magnitude for a normal 

functioning subject to estimate spectrum content of normal walking and running. Previous 

knowledge of gyroscope noise allowed pre-filtering with a 3rd order, zero-phase, 32 Hz low-
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pass Butterworth. Accelerometer data was left unfiltered. Cycle DFTs were then splined (640 

point) and meaned for each constant speed period to compare variations in frequency 

spectra with increasing speed. Figure 23 demonstrates the results. Number of cycles included 

for each speed can be found in Table 6 for NOA01. 

 

Figure 23. Single sided amplitude of foot sensor's outputs. Mean pitch rate of FF periods within 
each treadmill speed were passed through FFT. Data was pre-filtered by 3rd order, zero-phase, 32 Hz 

Butterworth. 

These plots provide a number of interesting observations that can improve upcoming 

methods. In general, pitch rate appeared to be fairly consistent between walking and running 

speed variations. The large amplitude location of the spectrum only shifted from 1 to 2 Hz 

during the progression of 3 km/h walking to 8 km/h running. This observation is consistent 

with increases in gait speed being more a result of increased stride speed than decreased 

cadence. Running and walking both appeared to be highly repeatable at all the speeds tested.  
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All pitch rate activity above 5 Hz in frequency appeared to be comparable in magnitude 

to random noise artifacts which validates the pre-filtering of gyro data used in foot phase 

determination. Considering pathological gait data was not analyzed, further techniques will 

pre-filter gyro data with a high and low-pass, zero-phase, 3rd order Butterworth filters. A 16 

Hz low-pass cut-off was chosen to allow for tracking of more spastic motions which are 

common and critical observations in CP gait analysis. Although a 0.4 Hz high-pass was 

optimal for removing low-frequency noise in static periods, this cutoff empirically 

demonstrated loss of important dynamic components when tested with upcoming methods. 

Therefore, a 3rd order, zero-phase, 0.1 Hz high-pass Butterworth filter was found to be an 

optimal trade-off between removal of biases and drift and conservation of low-frequency 

dynamics.   

Accelerometer spectra showed a much stronger response than pitch rate to increasing 

speed. Repeatability in the higher frequency components of running seemed to be lower 

than walking; the ringing effect in the 10 – 25 Hz range may indicate the meaned periods 

demonstrated varying peak locations in this range. This is indicative of the more variable 

nature of running that has previously been observed in the literature, particularly at pre-

defined speeds.
60,61

 Spectral range also increases from 7 to 8 km/h, with some ringing past 

20 Hz at small magnitudes higher than the noise ceiling. An aggressive pre-filter cut-off 

frequency of 20-25 Hz could be used. However, to improve generality at a small potential 

expense of precision, accelerometer data will be low-passed at 32 Hz for integration 

methods. Additionally, filtering distinctions could be made separately for running and 

walking but the goal of this work was to optimize generality. 
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Figure 24. Magnified single sided amplitude of foot sensor acceleration magnitude. 

Upon close examination (Figure 24), accelerometer spectral content varied 

considerably between each of the walking speeds. Magnitude contribution was consistently 

minimized at all frequencies for the fastest walking speed. Moreover, 3 km/h produced the 

maximum magnitude contribution at nearly all frequencies when compared with the other 

walking speeds. Previous work has suggested optimal self-selected walking speeds exist 

based on the criteria of energy consumption rate
62

 and  stride length deviations,
63

 which this 

spectral analysis may suggest under a different criterion. Further investigation would be 

required to assess the significance of these results in terms of walking efficiency. 
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SEGMENT AND JOINT ANGLES  

Joint angles, particularly ankle angle, are of great importance in clinical gait analysis. For CP 

in particular, sagittal ankle angle can often provide insight into osteopathic and muscular 

pathologies, as it both provides most of the power for walking and is the joint typically most 

effected by CP. This information can help physical therapists and doctors make decisions 

about treatment. Additionally, any global information desired from the sensors will require 

sample-by-sample rotations via sensor frame angle observations. Acceptable error in gait 

metrics such as joint angle has not been well defined by clinicians. The following section will 

assess motion capture’s precision capabilities, as well as how sensor angle calculations 

compare. 

Motion capture angle comparisons were performed using a custom made algorithm. 

The bombadil4 and PlugInGait Vicon models provide accurate joint angle estimation but do 

not calculate reliable segment angles relative to a standing position. Instead of assessing 

relative ankle angle accuracy between Vicon and the AFO, each segment angle was 

compared for further insight. Three markers were placed on the rigid segment 

corresponding to each sensor in the AFO. A static standing period was used as the reference 

for the local coordinate frame. Due to difficulties in obtaining angles from Vicon, a rigorous 

comparative analysis could not be provided. 

First, the Vicon sensor frame was rotated to the AFO frame X,Y,Z as previously 

described using a XZY convention. Via the three marker locations for each sensor, a plane 

was defined at each sample. Rotation angles were determined from each sample relative to 

the static reference plane using axis-angle representation. Given the relationship between 

axis-angle representation and XZY Tait-Bryan rotations, the roll, pitch, and yaw were 
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determined at each sample. Both Vicon angles and sensor angles were demeaned and passed 

through a cross-correlation algorithm (MATLAB’s xcorr) to determine necessary shifting to 

align the data. 

SEGMENT ANGLE ESTIMATION 

Three methods for estimating segment angle were compared, all performed during each foot 

flat cycle lasting N samples. The first method (GO) determined segment angle purely by 

gyroscope strap-down integration, with zero angle resets at foot flat. Strap-down integration 

used angular velocity ( ) and Simpson’s integration rule to produce roll ( ), pitch ( ), and 

yaw ( ): 

        
                    

   
  

         
                    

   
  

         
                    

   
  

             

                     

The second method (GwA0) used the same gyroscope strap-down integration as method 

one but used accelerometer derived orientation at foot flat to update boundary conditions 

for pitch and roll. As addressed in Sensor Alignment and Reference Frames, boundary conditions 

for yaw were chosen to be 0°. 
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Lastly, a complementary filter (CF) was created based on Colton and Mentor’s 

“balance filter”64 to provide additional weighting from the accelerometer signal to improve 

drifting characteristics of the gyroscope. Specifically, this complementary filter balances 

observations from low-passed gyroscope angle from strap-down integration with orientation 

provided by the low-passed accelerometer data. Similar to the previous method, the 

accelerometer provides the boundary conditions for a cycle. In the absence of a 

magnetometer, complementary filters are known to be as accurate as Kalman filters but with 

less complexity. Kalman filters were tested, although they will not be presented here as it 

produced similar results as the complementary filter. A time constant τ chosen empirically to 

be two dictated how much weight would be distributed between the gyroscope and 

accelerometer. A larger value tending towards one indicated more accelerometer input as 

opposed to gyroscope, and vice a versa. In essence, this filter provides a pseudo low-pass 

and high-pass filter for accelerometers and gyroscopes, respectively, in order to extract the 

best information from each sensor. Estimates of orientation from the accelerometer roll (α) 
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and pitch (β) were fused with gyroscope estimates. Since accelerometer could not provide 

yaw, estimates for yaw were calculated the same as in GwA0. 
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RESULTS 

Despite efforts to provide a comparative analysis of these methods to ground truth data 

provided by Vicon, consistent problems arose with determination segment angle calculation 

from markers. Sagittal ground truth angles were recovered from the markers fairly well but 

measures of the transverse and frontal planes were not believed to be accurate. Furthermore, 

comparisons between the methods were not particularly insightful, except for confirmation 

that estimations of sagittal angle (flexion/extension) are accurate when demeaned to remove 

for any bias relating to initial conditions. 

 The alignment technique used was found to be highly effective and could be 

translated to other methods of validation if desired. Figure 25 shows the correlation for a 

representative period during level walking using the left shank sensor. 
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Figure 25. Vicon and sensor based pitch angle estimate aligned using a cross-correlation algorithm. 

The figures below demonstrate representative results of attempted angle validation 

on subject NOB01. The validation method used for the shank (Figure 26) seemed to work 

slightly better than for the foot (Figure 27). Tests performed on other walking and running 

speeds are not shown. Little difference was observed between the methods when compared. 

Initial biases were removed from all signals. Gyroscope only method was nearly identical to 

gyroscope with acceleration initial conditions. After removing initial bias, GO and GwA0 

were nearly identical as expected, with no noticeable drift between the two over time. The 

complementary filter was also not drastically different than GwA0, although discontinuities 

were sometimes observed due to accelerometer updating. From this analysis, temporary 1 g 

samples within areas of high frequency change were not reliable for orientation updating. 
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For these reasons along with the lack of a comparative analysis, GwA0 was used for 

orientation tracking. 

 

Figure 26. Vicon comparison results for the left shank during level walking at 3 km/h. Note many 
methods are overlapping. 
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Figure 27. Vicon comparison results for the left foot during level walking at 3 km/h. Note many 
methods are overlapping. 

Although care must be taken in considering quantitative results of this analysis, level 

walking produced total pitch RMSE less than 5° for level walking and running for the shank 

sensor. Total RMSE for each tested period is shown below in Table 7.The foot data 

contained was plagued by obscured markers although, similar sagittal errors were expected. 

Table 7. Total RMSE errors for pitch angle in the left shank. 
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Validation of the segment angles ultimately produced results which were 

untrustworthy. Although the sensor calculations seemed trustworthy, Tait-Bryan angles of 

roll and yaw determined from marker position were not and the reason could not be 

identified. Given that the gyroscope only angles should track transient movements well, the 

trends observed by the sensor with gyroscope only methods should follow ground truth data 

but with some additional bias. This was not the case for the most part, which indicated error 

with the Vicon angle calculations. The other possibility is that the gyroscope and 

accelerometer sensors on each board were not properly aligned, contrary to this work’s 

assumption. Still, pitch comparisons were reasonable with small error between Vicon and the 

sensor, which is of the most significance clinically among the three angles. 
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TRACKING STRIDE MOTION 

Given the interest in locomotion in athletes and clinical settings, tracking gait metrics on a 

stride-by-stride basis in the field could provide never before observed information about 

environmental effects and fatigue. This section will present an extension of previous 

methods toward accurate tracking of linear motions during a stride.  

INTEGRATION SCHEME 

With the effectiveness of event detection and angle estimation established, 

accelerometers can provide changes in global distance during a gait cycle when integrated. A 

simple first principle model was constructed using Zok et al’s forward and reverse 

integration with arctan weighting function
54

 and Yang et al’s solution to non-zero velocity 

updates
53

. Zok et al’s preferred model was implemented using an empirically chosen high-

pass cut-off frequency of 0.001 Hz to remove gravity induced bias. After formulation of a 

132 rotation matrix R from roll, pitch, and yaw estimates, stride information was determined 

during each foot flat cycle by the following procedure 

1. Global frame acceleration in 
 

   ( ̅) from high-passed sensor frame acceleration ( ) in 

g’s  

 ̅  [
  

  

  

]      [

  

  

  

]             
 

  
   

2. Forward and reverse integration to instantaneous global velocity ( ̅). Angular 

velocities ( ) and distance from sensor to instantaneous center in the walking frame 

( ) were used to update initial ( ⃗ ) and final velocities ( ⃗ ) for the shank sensor. An 
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arc-tan weighting function was created using the index for the final sample (P) and 

constant B was set to 0.1, consistent with Zok et al.
54
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3. Integration of instantaneous velocity ( ̅) to instantaneous position ( ̅). 
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4. Stride length (SL), stride time (t) and stride velocity (SV) 
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VALIDATION PROCEDURE 

Annotated periods of level walking, level running, and incline walking data were used for the 

validation of stride speed for the NOA group. Subjects walked and ran for periods upward 
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of 30 seconds while wearing the AFO. A marker was attached to the belt of the treadmill to 

track its speed for duration of each period. Mean stride velocity over each entire annotated 

period for a constant speed was compared to the mean treadmill velocity for each subject.  

Ground truth was obtained from a custom made MATLAB algorithm which 

extracted mean and standard deviation for the resultant treadmill speed. This method first 

found the largest positional range the treadmill marker in sight of the cameras for each belt 

cycle. The linearized slope of these periods was then calculated and averaged to produce a 

resultant treadmill speed.  An example visualization of this technique is shown in Figure 28. 

 

Figure 28. Treadmill velocity determination for a 3 km/h (1.11 m/s) level walking trial. Top - 
Determination of spatial range to be included for slope calculation during each belt cycle. Ceilings 

and floors are calculated on the X (approximate direction of motion) data. Bottom - Results following 
calculation of resultant belt cycle velocities. 

The sensor data for the AFO in all periods was segmented into walking periods by 

foot flat as previously presented in Event Detection. Each of these periods was treated with the 

integration scheme for tracking stride motion to calculate stride length, cadence, and speed. 
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The mean and standard deviation over an entire annotated period was calculated and 

compared to the ground truth information deduced from the treadmill marker.  

RESULTS 

Vicon validation speed was not possible for subject NOA04 due to the marker being worn 

down and obscured. Some of the results for this subject will be displayed in reference to 

estimated treadmill speed but will not be discussed. Additionally, activities for each subject 

unable to be analyzed due to treadmill malfunction included: incline 3 km/h for NOA05 and 

all incline speeds for NOA03. Speed RMSE for each activity is shown in Figure 31. Foot 

based estimations were the most accurate and precise, only once surpassing 0.3 m/s RMSE 

for running trials. On the other-hand, shank estimations produced considerably more error. 

Estimation of running speed seemed to produce slightly more error than level walking, but 

was similar to the accuracy of incline walking. To further assess the effects of speed on error, 

the absolute error for each trial within an activity group was compared for each sensor. In 

the case of the foot sensor, error seemed to increase with increasing speed only for incline 

walking and level running as shown in Figure 29. 
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Figure 29. Absolute errors shown in each foot sensor trial. 

 

Figure 30. Absolute errors shown in each shank sensor trial. 
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Figure 31. Average RMSE for walking and running speed, broken down by subject and sensor. 

 The error percentage analysis demonstrated similar results and is depicted in Figure 

32. The foot produced considerably less error than the shank in all activities. Error of the 

shank was primarily related to accuracy, as variations from the mean were small similar to 

the case of the foot. 

 

 

Figure 32. Percent error measures shank (top) and foot (bottom) treadmill speed estimation. 

Shank Foot Shank Foot Shank Foot

NOA01 0.04 0.02 0.09 0.07 0.42 0.05

NOA02 0.05 0.07 0.05 0.07 0.44 0.04

NOA03 0.12 0.04 N/A N/A 0.28 0.07

NOA04 0.21 0.05 0.17 0.03 0.59 0.15

NOA05 0.10 0.01 0.13 0.07 0.70 0.09

Average Activity RMSE (m/s)

Walking (3, 4, 5 km/h) Incline (3, 4, 5 km/h) Running (7, 8 km/h)

Mean      

(%)

Std from 

Mean (%)

RMSE    

(%)

Mean      

(%)

Std from 

Mean (%)

RMSE    

(%)

Mean      

(%)

Std from 

Mean (%)

RMSE    

(%)

NOA01 -0.97 1.74 2.11 4.69 3.02 6.49 -13.87 0.60 13.87

NOA02 -2.47 1.45 3.36 2.12 0.83 2.73 -14.64 0.59 14.65

NOA03 -6.00 0.64 7.38 N/A N/A N/A -8.93 2.91 9.17

NOA04 -9.37 3.55 12.01 -5.52 6.39 9.30 -19.69 1.45 19.72

NOA05 -4.66 0.48 5.73 -4.28 4.87 7.15 -23.20 0.39 23.20

Shank Sensor: Error Between Trials for Each Activity Type 

Walking (3, 4, 5 km/h) Incline (3, 4, 5 km/h) Running (7, 8 km/h)

Mean      

(%)

Std from 

Mean (%)

RMSE    

(%)

Mean      

(%)

Std from 

Mean (%)

RMSE    

(%)

Mean      

(%)

Std from 

Mean (%)

RMSE    

(%)

NOA01 0.52 0.73 0.97 2.56 1.84 3.63 1.70 0.51 1.74

NOA02 -3.33 1.41 4.32 3.09 1.11 3.94 -0.84 1.13 1.16

NOA03 -1.98 1.08 2.66 N/A N/A N/A 2.19 0.66 2.24

NOA04 -2.70 0.21 3.32 0.48 2.60 2.67 -4.92 0.37 4.93

NOA05 0.45 0.46 0.72 4.03 0.98 4.09 -2.72 1.00 2.81

Foot Sensor:  Error Between Trials for Each Activity Type 

Walking (3, 4, 5 km/h) Incline (3, 4, 5 km/h) Running (7, 8 km/h)
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CONCLUSION  

For the foot sensor in particular, the method described consistently produced percent mean 

error less than 4% for level activities, save for subject NOA02 producing error around 4.5% 

for one trial. Running percent error was actually even lower than for level walking due to the 

small increase in absolute error seen going from running to walking. Speed estimation of 

incline walking was slightly less accurate than in level walking with mean error congregated 

around 4% of the treadmill marker speed. Shank estimations were much less effective and 

unsuitable for clinical gait analysis without further modifications. Level walking speed via the 

shank sensor approached those provided by the foot but the computation of incline walking 

and running was inaccurate. The interplay between increasing speed during walking and/or 

running was not clear for either the foot or the shank. 

The foot based running results presented here produce smaller errors than the only 

validated spatio-temporal method by Yang et al.
57

  Their work used a 2-d hinge model with 

initial velocity updates via angular velocity relationships with the shank. Considering only the 

shank, their method was superior as it used a different identifier for a reset condition and 

segmentation point for integration. However, the in-step sensor considerably surpassed the 

accuracy presented in their work for a shank sensor. Using comparable metrics but with five 

speeds and six subjects, they achieved %RMSE errors ranging from 2.87% to 5.85%. The 

foot method presented here achieved a %RMSE ranging from 1.16% to 2.81%. In terms of 

absolute error, their method produced between 0.09 m/s to 0.11 m/s absolute error. The 

absolute error for the foot sensor, as shown in Figure 30, ranged in absolute error from less 

than 0.04 m/s to a maximum of 0.078 m/s over all the trials tested. Although this foot based 

method was more accurate, Yang et al used more speeds, in addition to them being faster. 



111 

 

 

1
1

1
 

On the other hand, the method presented considers all 3 dimensions which could introduce 

error that would otherwise be lost in a 2-d model.  

 Additional analysis determined shank inaccuracies were most likely a result of non-

zero velocity and non-zero acceleration of the shank during mid-stance period. Since the 

methods used here were intended for the foot sensor and its pivotal nature in gait, these 

inaccuracies were to be expected. Future studies incorporating new methods to provide 

angular updates via the accelerometer and different integration segmentations could solve 

the problems noted here. 

 A general source of error for the validation provided stems from the treadmill and 

motion capture. Any changes in ideal treadmill speed (acceleration) will find its way into the 

treadmill data. Deflection of the belt during heel strike and toe-off could cause such 

accelerations to occur, however small. Since no corrections are included in any algorithm to 

remove treadmill interactions with the sensor, these artifacts could introduce error. 

Additionally, the method for determining treadmill speed often had to omit treadmill belt 

cycles due to treadmill marker exclusion. Treadmill speed was also not calculated over 

instantaneous velocities but instead approximated linear periods. 

 The potential sources of error for the sensor based estimation are many despite best 

efforts to minimize them. For one, 6 parameter gyroscope calibrations using principal axis 

alignment were used, instead of the optimal 12 parameter LM method. The zero-velocity 

assumption for the foot during foot flat is supported by literature but may vary from person 

to person. Similarly, detected foot flat peaks are not entirely consistent due to filtering of the 

original data and small variations in peak shape as shown in Event Detection. Small initial 

velocities are sure to be present during mid-stance, especially on a treadmill. The assumption 
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here is that the velocities are small enough to ignore but eventually at some precision this 

assumption could introduce noticeable error; it is possible this method and others have 

reached that level of detail. Further studies would need to be undertaken to assess 

instantaneous velocities of the foot across large subject pools using an instep mounted 

sensor such as ours. 

 A stride by stride speed comparison based on Vicon heel strikes was also tested and 

considered but not presented. When obtaining stride velocity, a correction must be included 

to remove relative motion of the treadmill from the heel data. Therefore, any stride by stride 

comparison will produce the same mean velocity over the course of an annotated period but 

with slight variations on a stride per stride basis. Although this may be helpful in 

understanding how accurate this method is for a single stride, the validation data will not be 

ideal since the treadmill is not moving at a constant speed and its instantaneous speed over 

an entire period is very difficult to obtain. Additionally, the goal of this work is to produce 

long-term data collection indicative of everyday gait so extremely precise stride by stride 

tracking may be unnecessary.  
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LONGITUDINAL GAIT ANALYSIS 

In order to assess the feasibility of previous activity recognition in determining subject 

activity months later, one subject from the NOA group returned to repeat annotated 

activities, as well as unannotated activity. For this session (NOB01), a variation of Archer et 

al’s kNN approach was used to automatically identify periods of interest, e.g., walking, 

running and sitting. The first visit (NOA04) was used as training data for recognition of 

activities during the second visit (NOB01). 

K-NEAREST NEIGHBOR ACTIVITY RECOGNITION 

As already outlined in the background, Archer et al. employed a hierarchical kNN activity 

recognition method. In the original method, training and test data was partitioned from a 

single session of gyroscope and accelerometer data. Based on a single, pre-defined 

hierarchical tree, annotated labels were attached to a particular classification. A total of 12 

final activity classifications were possible: unknown, level run, uphill run, downhill run, 

upstairs, downstairs, level walk, uphill walk, downhill walk, sitting, standing, and lying. 

Following training on a randomized subset of the annotated labels corresponding to the 

percent of training data, the rest of the data (testing subset) was classified using the kNN 

algorithm. Sensitivity and specificity levels were produced for both annotated and 

unannotated labels. 

A number of modifications were made to this original method to allow for and 

improve use of the method for unsupervised data collection. Instead of choosing training 

data from the same file to be tested, the option to use training data from a separate session 

was included to allow for supervised in-lab training and out-of-lab recognition. Partitioning 

changes were also implemented to provide the most comprehensive activities possible. In 
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Archer’s method, all annotated data corresponding to a final classification was lumped 

together prior to randomization. Formulation this way could cause certain annotations to be 

more or less weighted in the training data, or even non-existent if a certain annotation did 

not have much contribution. To avoid this situation, the lengths of each unique annotation 

within each classification group were compared. For a given classification group, an identical 

amount of training data was extracted from each unique annotation. This uniform and 

distributed amount was chosen by finding the unique annotation with the least data and 

finding how much of that data corresponded to the training percent specified. The purpose 

of this addition was to decrease the chance that a classification label became saturated with 

training data from a single annotation, as opposed to an even distribution. 

Additionally, the hierarchical tree was modified to allow more unique classification 

subsets and versatility for final classifications without significant changes to the code. 

Intermediate classifications were minimized and final classifications were changed to an 

input for the method. Final classification categories were formed by matching expected 

annotation label names with a corresponding activity letter, similar to the pairings used in the 

original kNN approach. Figure 33 demonstrates the new approach. 
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Figure 33. New hierarchical tree for kNN method 

DATA COLLECTION  

For the first collection (NOA03), the subject performed a number of activities that were 

recorded and annotated using a stop-watch synchronized with the sensor data. Variations of 

walking periods annotated consisted of: straight-line over-ground walking; circle over-

ground walking; level and inclined treadmill walking at 3, 4, and 5 km/h; and stair climbing 

and descent. Running was only performed during the annotated periods and at speeds of 7 



116 

 

 

1
1

6
 

and 8 km/h on a level treadmill. Additional static activities of sitting and standing were 

annotated.  

 The follow-up collection occurred 72 days after the initial and lasted 2 hours and 36 

minutes. A reduced number of annotated activities were performed at the beginning and end 

of the session. Straight-line over ground, stair, and treadmill walking trials were performed at 

the beginning of the session and identically to the first collection. Running was only 

performed at 7 km/h at the beginning of the collection and was not performed during any 

unannotated periods. The subject performed normal everyday activities following the initial 

activities for a couple of hours, which included over ground walking, stair walking, standing 

and sitting. Prior to disabling the AFO, the subject walked on a level treadmill at 3, 4, and 5 

km/h for additional validation information. 

USER DEFINED CLASSIFICATIONS 

Two user-defined hierarchies, called activity configurations, were tested towards the purpose 

of long-term out-of-lab activity recognition with pre-recorded training data. If a final 

classification could not be reached, a label of unknown was always given. Static posture, stair 

walking and running classifications were identical between the two hierarchies. Final static 

classifications included standing or sitting; running intermediate classification always 

translated to a final classification of level running since incline running was not included in 

this test. Stair climbing and descending were the two separate final classifications possible for 

the stair identified trials. 

 The variations in user-defined hierarchies only occurred past the intermediate 

classification of walking, no stairs. Activity configuration 1 yielded distinct final 

classifications for inclined walking and level walking. Incline walking was only represented by 
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the various walking speeds during incline. Level walking included annotations of straight-line 

over ground walking, treadmill walking at various speeds, and circle walking. Note only 

treadmill walking was included in the training data; the rest of the level walking activities 

were validated in the test data. Activity configuration 2 did not differentiate between the 

grade of walking, producing a general walking activity prediction encompassing level and 

incline walking annotations. Since spatio-temporal methods may be capable of determining 

grade and the kinematics of level walking and everyday inclines would be similar, 

distinguishing grade with kNN could add unnecessary complexities and error to the 

recognition process. Additionally, unlike stair climbing and walking, there is not a discrete 

difference between incline and level walking. Other variations in the hierarchy are 

conceivable but these two choices seemed the most logical, given the activities passed. In the 

event that more activities became of interest, this system would make it simple to 

incorporate them. 

DATA ANALYSIS 

Prior to analysis of the follow-up trial, 50% and 75% partitioning of training data was used 

on the first collection and then tested on the remaining data for sensitivity and specificity of 

annotated activities. Declassification was also tested by varying the declassification constant 

used with the original method. Next, the training data from NOA04 was used to recognize 

activities during the NOB01 collection. Both the testing data for the initial and follow-up 

collection were performed in the context of activity configuration 1 and 2. All 23 features 

were used toward classification. 
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Initial Collection Recognition 

Figure 34and Figure 35 demonstrate the sensitivity, specificity, and combined sensitivity and 

specificity for 50 and 75% training on the initial collection. In a practical setting, 100% of the 

data could be used for training but the interest here is to gauge the effectiveness of the 

method on untrained data. The declassification scaling constant presented in the original 

work was also decreased for the intention increasing specificity at the expense of sensitivity. 

This scaling constant decreases the allowable variation in classifiable parameters so that a 

lower constant increases declassifications, which can lead to higher specificity. 

 

Figure 34. Activity identification results for NOA04 with activity configuration 1. 
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Figure 35. Activity identification results for NOA04 with activity configuration 2.  

Activity configuration 1 yielded slightly better results in specificity and sensitivity, as 

well as improving more with increased training as compared to activity configuration 2. 

Configuration 1 followed the expected trend of decreasing sensitivity and increasing 

specificity as the scaling constant decreased. However, the second configuration did not 

follow this pattern and actually peaked in mean sensitivity and specificity. The superiority of 

activity configuration 1 is more than likely due to the separation of incline and level walking 

activities, since lumping them together as in activity configuration 2 would cause a larger 

spread within features resulting in more false positives.   

 Since the methods of this work are most related to walking and running activities, 

the individual results of each configuration with varying sensitivity and specificity were also 

analyzed. Activity configuration was clearly superior in terms of sensitivity and specificity for 

this comparison as well, as shown in sensitivity and specificity for running were nearly 
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identical between the configurations since the only modifications made were related to 

walking. Sensitivity and specificity were both perfect for running, except for the final 

declassification scaling, in which mean sensitivity and specificity combined was slightly over 

70%. These results indicate the majority of errors with this classification scheme come from 

activities other than running and walking. 

Table 8. Accuracy of activity configuration on walking recognition with varied training and  training 
percentage and declassification. 

Declass 
Scaling 

Constant 

Act Config 2 Act Config 1 

Walking Walking (Level and Inclined Lumped) 

Mean Specificity Mean Sensitivity Mean Specificity Mean Sensitivity 

50% TR 75% TR 50% TR 75% TR 50% TR 75% TR 50% TR 75% TR 

None 75.41% 77.09% 100.00% 100.00% 92.50% 91.97% 100.00% 100.00% 

1000 76.19% 76.88% 99.48% 100.00% 92.49% 92.30% 100.00% 100.00% 

100 79.57% 78.77% 100.00% 100.00% 92.15% 93.70% 100.00% 100.00% 

10 86.80% 83.77% 39.58% 65.79% 94.65% 94.92% 33.64% 39.44% 

 

 From this analysis, activity configuration with a scaling constant of 100 and 75% 

partitioning of training data from NOA04 was chosen as the parameters for the follow-up 

recognition. Although a scaling constant of 1000 produced slightly better results than 100 for 

annotated activities, specificity of unannotated activities would be higher with a smaller 

scaling constant. Since true specificity of unannotated activities is difficult to determine, 

these parameters were chosen on the side of caution. Additionally, walking variations are 

probably not well defined in the data collected so lower sensitivity are to be expected with 

normal walking data. 
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Follow-up Collection Activity Recognition 

Due to the modifications to the original method, the ability to provide training data from 

separate files allowed identification of activities in the follow-up collection occurring months 

later. A 75% partitioning of test data and a declassification constant of 100 were used in the 

calculation of activities. All other parameters were left as the defaults originally defined by 

Archer.  

 The methodology was successful in identifying all annotated activities as shown in 

Table 9. Incorrect classifications of level walking were all attributed to upstairs or downstairs 

walking. Similarly, downstairs sensitivity errors resulted from incorrect classifications to 

upstairs walking. Although the annotated data was not particularly long, the results 

demonstrate the extensibility of training data from previous collections to new collections.  

Table 9. Classification results for follow-up collection, using initial collection as training 

 
Final Activity Classifications 

 

Standing Level Walking Level Running Upstairs Downstairs 

Sensitivity 100.00% 97.66% 100.00% 100.00% 85.71% 

Specificity 100.00% 94.13% 100.00% 91.72% 97.51% 

Length (s) 4 256 44 15 12 

 To examine the unannotated everyday activities performed by the subject, activity 

predictions were manually examined during the period between annotated collection at the 

beginning and end of the session. This period lasted approximately an hour and 24 minutes. 

Walking predictions were filtered by removing any periods shorter than 10 consecutive 

identified sections of walking. All predictions followed the general consistency expected of z 

angular velocity trends previously described. These walking periods were much more 

transient in signal magnitude than treadmill walking but no issues with identification was 
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observed. The minimum length of walking period found was 10 s and the maximum was 

three minutes and 50 seconds. The maximum seems to coincide with the subject walking 

from the lab location to a coffee shop. Another long walking period within 30 minutes of 

the maximum occurrence was found possibly accounting for returning back to the lab. A 

total of 19 minutes of walking periods greater than 10 seconds were found over a total of 21 

periods.The z frame angular velocity filtered for peak detection (5 Hz low-pass, 0.1 Hz high-

pass) during the 10s period is shown below in Figure 36. The trends and associated gait 

events observed are similar to those seen and identified successfully in Detection Validation.  

 

Figure 36. Lateral (z) angular velocity 10 second period (minimum length allowed)

0 1 2 3 4 5 6 7 8 9 10
-300

-200

-100

0

100

200

300

400

Time of Recognized Walking Activities (s)

Z
 S

e
n
s
o
r 

F
ra

m
e
 A

n
g
u
la

r 
V

e
lo

c
it
y
 (

d
e
g
/s

)

Recognized Unannotated 10s Walking Period

 

 

Foot Sensor Filtered



123 

 

 

1
2

3
 

Spatio-Temporal Analysis 

To prove the effectiveness of the methods in this work toward analyzed unannotated, 

automatically recognized periods of natural motion, the aforementioned period of 10s will be 

analyzed. Longer periods of identified walking were generally less transient and more normal 

which is the motivation behind using the shorter period; longer periods were also tested 

effectively but will not be presented. 

 Peak detection properly identified all foot phases during the walking period, except 

for the first stride. This is an inconsequential result as that stride was ignored due to 

technicalities in the algorithm; if initial strides are desired, additional measures could be 

added to include them. Figure 37 below demonstrates the results. 

 

Figure 37. Peak detection results for an unannotated 10s walking period. Note a couple strides are 
omitted to increase clarity of the plot 
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 Gait metrics of interest were also calculated as previously developed and defined. 

Table 10 shows these parameters for each stride, as well as averages over the period. The 

self-selected speed observed in this period fell between 2.5 and 3.8 km/h. The last two 

strides demonstrated a decrease in stride speed and length. Cadence was fairly consistent as 

expected, although it is important to note its derivation was based on foot flat. 

Table 10. Gait parameters calculated for each identified stride of the 10 s unannotated period. 

Stride 
Number 

Conventional Foot Flat Based 

Swing 
Phase 

Stance 
Phase 

Stride 
Length 

Stride 
Duration 

Speed 

(s) (s) (m) (s) (m/s) 

Stride 1 0.52 0.85 1.31 1.31 1.00 

Stride 2 0.61 0.80 1.42 1.38 1.03 

Stride 3 0.56 0.88 1.43 1.43 1.00 

Stride 4 0.52 0.87 1.36 1.30 1.05 

Stride 5 0.60 0.84 1.23 1.53 0.80 

Stride 6 0.66 0.92 1.12 1.56 0.72 

averages 0.58 0.86 1.31 1.42 0.93 

 
40.22% 59.78% 

   
 The methods of this work in conjunction with a modified version of Archer’s kNN 

method were proven to produce at least reasonable estimates of activities, especially walking. 

Peak detection and gait metric identification methods performed well and produced 

reasonable values for unannotated data. This section provides some evidence that this body 

of work may produce reasonable estimates of naturally occurring everyday activity. 
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CONCLUSION 

The framework presented in this paper provides a foundation for an embeddable remote gait 

analysis system. Solutions have been proposed to all major levels of design required to 

observe common everyday activities with a detailed biomechanical perspective. First, an 

ankle-foot-orthosis instrumented with accelerometers and gyroscopes embedded proximal to 

the shank and foot was successfully created with the help of UVA’s Inertia Team and UVA 

Health’s Prosthetics and Orthotics. Sensor processing algorithms were validated from the 

bottom-up, starting with sensor calibration and ending with a trainable activity recognition 

system. Issues were encountered in validating segment orientation which should be 

addressed by future work. The results demonstrated at each level of validation were 

comparable, if not superior to current related literature. Additionally, the detailed description 

of the methodology used allows the same analysis to be applied generally to embeddable 

sensor systems. 

 Spatio-temporal methods of stride speed estimation were validated with errors below 

5% for all tested conditions on the foot sensor. Inclined walking error was consistently 

higher than walking and running with errors around 4%. The shank sensor estimates were 

not nearly as accurate, ranging from 5-10% error in speed estimation. This was expected 

considering boundary conditions were chosen and validated specifically for the foot sensor, 

Future work should address more optimal modeling of the shank sensor, as well as fusion 

algorithms to combine sensor estimations. Work proposed by Prateek et al.65 and Skog et 

al.66 has successfully demonstrated error reduction when using multiple sensor systems and 

Kalman filters. Extrapolation of these methods to body attached sensor arrays could result 

in even more accurate gait estimations. Running estimation produced significantly reduced 
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error as compared to the only validated running method provided in the literature which 

used a shank mounted sensor. More studies should be conducted on a larger number of 

speeds and at higher speeds to provide a more accurate comparison to Yang et al.’s 

method.57 

 To test the comprehensive use of the system, a subject performed activities a couple 

months prior to returning for a second session in which similar activities were performed. 

The k-Nearest-Neighbor based activity recognition provided high accuracy and sensitivity 

results for activities during both collections. Annotated walking in particular was identified 

with over 90% specificity and sensitivity in the first trial and 98% specificity and 94% 

specificity for the second trial. Recognized walking periods greater than 10 seconds during 

the follow-up collection produced recognizable walking data with no visual errors. Longer 

periods of walking were found to produce more consistent stride information than short 

periods. Furthermore, measure of cadence, stride length, stride speed, swing phase, and 

stance phase were extracted for one 10s walking period using spatio-temporal methodology.  

Although one long-term simulation was performed using an initial and follow-up 

collection with unannotated data analysis, the effectiveness of the hardware and methods 

have not been assessed during intended use exceeding 5 hours. A static trial of 17 hours was 

performed and data quality was not adversely affected but the consequences of heavy use 

could affect the durability or reliability of hardware. Similarly, changes in sensor properties 

over long collections could provide problems for signal processing techniques.   

Data was also recorded on a number of cerebral palsy (CP) patients but could not be 

processed in time to present for this work. This is a considerable limitation of the work 

given the ultimate goal of use with CP. However, preliminary investigations into sensor 
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outputs during walking in functional CP suggest extensibility of spatio-temporal methods. 

Since the pivotal nature of the foot at mid-stance should not change even in severe cases of 

equinus gait, the most expected challenge with extension of this work to CP is identification 

of gait events and boundary conditions. Foot flat in control groups was an ideal boundary 

condition due to the smooth transition occurring from heel strike to foot flat, as well as the 

large range by which foot flat can be inconsequentially chosen. For CP, particularly level III 

and higher GMFCS, the margin for error in foot flat identification or some other ideal 

boundary condition may be smaller. The foot flat term may also no longer be representative 

since spastic plantar-flexion may physically limit the ability to flatten the foot throughout a 

stride. 

FUTURE WORK 

A new platform is currently being tested by the Inertia Team specifically for use in children’s 

AFOs. With help from Prosthetics and Orthotics, children affected by cerebral palsy will be 

fitted for AFOs similar to what they would normally wear but with very small form factor 

sensors embedded in the instep and shank. Following molding of an everyday AFO with the 

sensor platform inside, children will be able to visit our gait lab following doctor visits to 

calibrate and train the sensors for activity recognition prior to returning home. Once home, 

data will be collected continuously over the course of an entire day while they walk, run, 

stand, sit and perform many other activities. This procedure will allow both validation of the 

methods used, as well as clinically relevant observations never before available. Future work 

for this platform will also develop an interface for the children or their parent to plug in the 

AFO at night and automatically offload their daily data to a cloud. Cloud storage will allow 

for direct access of the files to be processed by the methods demonstrated, at which point 

remote gait analysis will finally be available for clinical analysis. 
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 The spatio-temporal methods presented could also be refined, particularly with the 

addition of a magnetometer to the current sensor combination of an accelerometer and 

gyroscope. This will allow more accurate determination of segment and joint angles, as well 

as directionality of linear motion. Work implementing magnetometers with accelerometers 

and gyroscopes is well established and more accurate than accelerometer/gyroscope systems. 

Some such systems utilizing Kalman filters are even capable of providing angle boundary 

condition updates without the need of a specific, repeatable reset condition (foot flat) as 

used here. As presented here, directionality of stride length was not validated or tested 

directly given the inability to explicitly determine toe-out angle and relative insignificance of 

directional components of a stride in clinical analysis. With a magnetometer and more 

advanced orientation tracking, numerous works have already demonstrated the ability to 

track directionality of long distance walking. The addition of such capabilities would be 

particularly useful in extension of these methods to hiking, competitive running, or other 

athletics. 
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LIST OF COMMONLY USED TERMS 

AFO  ankle-foot-orthosis 

Master  TEMPO node placed in the shank of the AFO 

Slave  TEMPO node placed in the instep of the AFO 

CP  cerebral palsy 

IMU  inertial measurement unit 

MEMS  microelectromechanical sensor/system 

LM  Levenberg-Marquardt least squares method 

GN  Gauss-Newton least squares method 

GN-MRP Gauss-Newton least squares method with matrix rank partitioning 

FF  IMU determined foot flat during gait cycle, commonly mid-stance 

FO  IMU determined foot off during gait cycle, commonly toe-off 

FS  IMU determined foot strike during gait cycle, commonly heel strike 

TEMPO “Technology Enabled Medical Precision Observation” technology developed 

by University of Virginia’s Inertia Team 

ADC  digital output of analog sensor 
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