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A B S T R A C T

There is an increasing number of datasets with many participants,
many variables, or both, found in education and other areas that com-
monly have complex, multilevel data structures. Once initial confir-
matory hypotheses are exhausted, it can be difficult to determine how
best to explore these datasets to discover hidden relationships that
could help to inform future research. Typically, exploratory data anal-
ysis in these areas are performed with the very same statistical tools
as confirmatory data analysis, leading to potential methodological
issues such as increased rates of false positive findings. In this disser-
tation, I argue that the utilization of a data mining framework known
as recursive partitioning offers a more efficient means to perform ex-
ploratory data analysis to identify variables that may have been over-
looked initially in the confirmatory data analysis phase. By adopting
such a non-parametric approach, researchers can easily identify the
extent to which all variables are related to an outcome, rather than
rely on null hypothesis significance tests as a strict dichotomization
of whether a given variable is “important” or “unimportant.” This
dissertation evaluates the feasibility of using these methods in mul-
tilevel contexts commonly found in social science research by using
both Monte Carlo simulations and three applied datasets. Based on
these results, a set of best practices was constructed and disseminated
via a small workshop given to applied researchers. Feedback from
these researchers helped lead to a publicly available tutorial and R
package to assist others interested in adding this technique to their
own statistical toolbox.
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1
I N T R O D U C T I O N

Once upon a time statisticians only explored. Then they learned to
confirm exactly - to confirm a few things exactly, each under very
specific circumstances. As they emphasized exact confirmation, their
techniques inevitably became less flexible. The connection of the most
used techniques with past insights was weakened. Anything to which
a confirmatory procedure was not explicitly attached was decried as
’mere descriptive statistics’, no matter how much we had learned from it.

— Tukey (1977)

Consider the following scenario: An educational researcher just fin-
ished collecting data for a large grant examining how teacher-student
interactions are related to student outcomes. When originally writing
up the grant, the researcher had some specific hypotheses grounded
in theory that the grant was designed to test. The dataset was cleaned
and prepped, and the hypotheses were empirically tested. These tests
yielded results providing support for some of the original hypotheses,
while others were a little less clear. Naturally, the researcher had col-
lected additional variables that may or may not be relevant to the out-
come (e.g., teacher and student demographics), and is now interested
in performing exploratory data analysis to examine these variables
further. However, unlike the original hypotheses, theory does not
have strong predictions for these additional variables. Interested in
performing a more exploratory study with these data, the researcher
now has to make decisions regarding which variables to include, how
these variables might be related (linearly, quadratically, etc.), and if
potential interactions might be necessary in these exploratory mod-
els. How does the researcher proceed?

This situation is becoming more common as there is an increasing
number of datasets with a large number of participants, variables,
or both, in education and other fields that often deal with multi-
level data structures. With this increase of available information, it
becomes necessary to be able to efficiently search a large parameter
space to identify variables that might have been overlooked to un-
cover insights and help inform future research. Currently, this prac-
tice is typically accomplished in the social sciences “by hand.” That is,
the researcher in question will run multiple tests from a hypothesis
testing framework with different model specifications and combina-
tions of variables in order to determine which are the most important
(Strobl, Malley, & Tutz, 2009).
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2 introduction

While some argue that exploratory approaches do not need any
type of correction as the results are preliminary (Schochet, 2008), per-
forming exploratory data analysis solely with a hypothesis testing
framework is still rife with statistical issues regarding the general-
izability of such findings. For example, it is easy to blur the lines
between what is confirmatory and what is exploratory when con-
fronted with a large dataset with many possible quantitative deci-
sions (Wagenmakers, Wetzels, Borsboom, van der Maas, & Kievit,
2012). In such situations, there is an increased chance of detecting
spurious findings due to the large number of potential researcher de-
grees of freedom (Gelman & Loken, 2014; Ioannidis, 2005; Simmons,
Nelson, & Simonsohn, 2011). Even seemingly simple choices of what
covariates to include or which distribution to specify for the outcome
is enough to make researchers come to different conclusions regard-
ing the statistical significance of a given variable when confronted
with the same research question (Silberzahn et al., in prep).

To address this concern, more emphasis is being placed on repli-
cation (Open Science Collaboration, 2014, in press). Although many
participating in this movement stem from social psychology in par-
ticular, this movement has also been echoed in other areas where
complex multilevel data are commonplace, such as developmental
psychology (Duncan, Engel, Claessens, & Dowsett, 2012) and edu-
cation (Makel & Plucker, 2014). While replicability is a hallmark of
good scientific practice (Nosek, Spies, & Motyl, 2012), it is more feasi-
ble to implement as a means to control for potential spurious effects
caused by a large number of researcher degrees of freedom in some
domains more than others (Finkel, Eastwick, & Reis, 2015). In many
social psychology lab studies, for example, the preliminary nature of
exploratory data analysis can simply be confirmed with the running
of additional studies at relatively minimal cost. Studies that are run
in settings as complex as a school system unfortunately do not have
this luxury.

What is needed, then, is a more efficient means of exploratory data
analysis that can help uncover insight while simultaneously control-
ling for spurious findings, have the ability to be implemented when
theory might not dictate how the model should be specified, han-
dle situations where complex, multilevel data structures are com-
monplace, and, arguably most important, be something that can be
adopted by the average, applied researcher. Given that previous re-
search has focused solely on performing confirmatory and exploratory
research from a null hypothesis significance testing perspective (Berk,
2008; Finkel et al., 2015), identifying a potential solution to this prob-
lem seems almost infeasible. However, solutions are readily available
with a simple, two-step shift in statistical perspective.

First, focus needs to be placed on predictive modeling (i.e., pre-
dicting new observations based on patterns found in previous obser-
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vations) rather than explanatory modeling (i.e., providing evidence
for a hypothesis with significant effects in a given direction). This re-
moves the burden of using existing theory (which may or may not
exist) to dictate what should or should not be specified in a given sta-
tistical model (Shmueli, 2010). The second step involves utilizing al-
gorithmic methods that assume the data generative mechanism is un-
known, rather than adopting a method that relies on the assumption
that the data were generated from a given stochastic model (Breiman,
2001b). In other words, instead of assuming that the relation between
an outcome and a predictor is a specific function of the given predic-
tor value, its estimated parameter, and random noise, an algorithm
treats the functional relation between the predictor and the outcome
as unknown and something to be estimated. Algorithmic methods
remove the burden of specifying complex function forms, such as
nonlinear relations or higher order interactions, when attempting to
build predictive data models.

Through this shift of perspective, it becomes possible to understand
and adopt a popular data mining algorithm known as recursive parti-
tioning to identify subsets of variables that are most related to a given
outcome, and what kind of statistical relation it might be. This frame-
work produces a set of binary decision rules based on covariate values
in an attempt to create a set of subgroups, or nodes, which are homo-
geneous with respect to a given outcome (McArdle, 2013). This is
particularly relevant in the context of multilevel data, where cases or
observations are nested (e.g., children nested within classrooms). In
these situations, using traditional methods, such as linear regression,
can result in an increased chance of detecting significant effects due to
the broken statistical assumption of independence (Peugh, 2010). The
general recursive partitioning framework, on the other hand, makes
no such assumptions, indicating that this method could extend to
multilevel data structures with little added complications. And yet
despite its potential utility in the social sciences, the implementation
of these algorithms in the face of complex, multilevel data structures,
is not well understood (McArdle, 2013).

The purpose of this dissertation is to determine whether recursive
partitioning is a feasible tool to conduct exploratory data analysis
in the presence of multilevel data, and, if so, which underlying al-
gorithm yields the best results. This dissertation is structured into
seven chapters. Chapter 2 provides a foundational overview of the
two popular algorithms under investigation, classification and regres-
sion trees (CART) and conditional inference trees (CTREE), as well
as their ensemble method (i.e., forest) counterparts. This section also
includes a brief overview of statistical terminology relevant to under-
standing the application of predictive models, such as bias, variance,
and model validation. Chapter 3 covers previous research extending
recursive partitioning frameworks to more advanced applications rel-
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evant to complex, multilevel data structures. Additionally, this chap-
ter provides a set of unanswered questions when considering the ap-
plication of both CART and CTREE to multilevel data and includes a
set of hypotheses based on previous research and statistical theory.

The next three chapters provide the results for the three main phases
of this dissertation: the simulation phase, the application phase, and
the dissemination phase. Chapter 4, the simulation phase, provides
an overview of the simulation design and discusses the results in the
context of creating a set of best practices for researchers interested in
using these techniques on multilevel data. Chapter 5, the application
phase, uses these best practices to analyze three applied datasets in
order to gain a better understanding for how the simulation results
might generalize to real data. Chapter 6, the dissemination phase,
gives an overview of an R package created to house code for re-
searchers to use in order to extract meaningful information from these
recursive partitioning models. Additionally, this chapter will include
feedback received during a workshop given on these techniques, and
include a discussion on how applied researchers felt these methods
could be useful in their own work. Finally, Chapter 7 will be a gen-
eral discussion tying together the overarching themes of this project
to discuss the answers to the original research questions, as well as
the limitations and future directions of this dissertation project.



2
R E C U R S I V E PA RT I T I O N I N G A N D E N S E M B L E
M E T H O D S

Recursive partitioning is a non-parametric, data-driven statistical al-
gorithm that iteratively searches a given predictor space to identify
potential splits, thus segmenting the space into distinct, rectangular
subsections. Then, a simple model, most often a constant, is fit in each
one (Hastie, Tibshirani, & Friedman, 2009). In the case of a continu-
ous outcome, this recursive partitioning procedure is referred to as a
regression tree, and the constant reflects the mean value of all observa-
tions in a given subsection. Otherwise, if the outcome is categorical,
it is referred to as a classification tree, and the constant is assigned to
be the specific category with the highest frequency over all observa-
tions in the particular subsection. As such, recursive partitioning is
not limited to a binary outcome, but can actually model an outcome
with K potential classes.

This framework was initially formulated through the seminal work
of Morgan and Sonquist (1963), who proposed focusing on predic-
tive accuracy in large survey data as a means to relax additive as-
sumptions commonly made at that time in order to detect complex
relations among predictor variables; a process they referred to as Au-
tomatic Interaction Detection. This framework was further solidified
by both Breiman, Friedman, Stone, and Olshen (1984) and Quinlan
(1986), who created algorithms seeking to improve on this original
idea. Initially, recursive partitioning was met with much disdain by
the statistics community due to its poor generalizability, especially
when inappropriately applied to small datasets with large noise-to-
signal ratios (Hastie & Tibshirani, 2013). However, this recently changed
in the past decade or two, when the work of Breiman et al. (1984)
started to become widely adopted as a useful tool in predictive mod-
eling. Still, this method is relatively unknown to those in the social
sciences (McArdle, 2013).

Given the immense popularity of the recursive partitioning frame-
work, it is no surprise that many algorithms exist, each with their
own advantages and disadvantages. This dissertation focuses on two
of the most widely used recursive partitioning algorithms: classifica-
tion and regression trees (CART; Breiman et al., 1984) and conditional
inference trees (CTREE; Hothorn, Hornik, & Zeileis, 2006). These two
algorithms, in addition to other important concepts inherent to pre-
dictive modeling, are described below. To assist in this overview and
to highlight how the methods are used in practice, a dataset examin-
ing the relation between graduation rates and various statistics for US

5



6 recursive partitioning and ensemble methods

Colleges (N = 777) from the 1995 issue of US News and World Report
will be used. This dataset is freely available from the ISLR package
(James, Witten, Hastie, & Tibshirani, 2013b) in the R software envi-
ronment (R Core Team, 2014), and contains 17 variables that can be
used as predictors for graduation rate, such as whether a university
is private or public, the acceptance rate, and the out-of-state tuition
cost.

2.1 classification and regression trees

Originally proposed by Breiman et al. (1984), CART is easily the
most popular and widely used recursive partitioning algorithm, be-
ing cited almost 28,000 times according to Google Scholar1. When
initially creating a decision tree, the algorithm consists of essentially
four steps (James, Witten, Hastie, & Tibshirani, 2013a). First, all pre-
dictor variables are initially considered for potential splits in a greedy,
top-down manner. The splitting process is greedy, because each step
searches for the best possible split at that time, rather than consider-
ing previous or future steps. It is top-down, because it begins with all
observations belonging to the same group, or node, and then subse-
quently conducts splits further down the tree after initial splits have
been made. Second, the best potential split is identified by some cri-
terion, which is taken to be the residual sums of squares (RSS) in
the case of a continuous outcome. Following the notation of Hastie et
al. (2009), suppose we have a predictor variable xj with a given split
point s, which splits the predictor space into two regions: R1(j, s) ={
x
∣∣ xj < s} and R2(j, s) =

{
x
∣∣ xj > s}. The algorithm searches for a

particular j and s that minimizes the following equation:

∑
i:xi∈R1(j,s)

(yi − ŷR1)
2 +

∑
i:xi∈R2(j,s)

(yi − ŷR2)
2 (1)

where ŷRk is the mean of the outcome within the kth subsection and∑
i:xi∈Rk(j,s)(yi − ŷRk)

2 is the RSS over all participants in the kth
subsection.

Once the best split is identified, the data is split on this threshold,
creating two new subsections, or child nodes. The same procedure out-
lined above is then performed separately on each of these nodes, and
this process is repeated until some stopping criterion is reached. For
example, the algorithm might require a minimum number of obser-
vations to belong to a given node, regardless of whether another split
will result in a reduction of the RSS. Finally, the given node becomes
a terminal node once no further splits can be made within that node.
When all nodes can no longer be split any further due to these stop-
ping criteria, the algorithm terminates.

1 As of May, 2015



2.1 classification and regression trees 7

See Figure 1 for an example decision tree might look in the college
graduation rate dataset. The corresponding decision tree first splits
on the out-of-state tuition variable, which is a variable reflecting the
annual tuition cost a student has to pay to attend the institution when
they live in a different state (range: $2340 - $21700). This decision cre-
ates a vertical line in two-dimensional space, splitting the data into
two subsections at approximately $10,000. Both of these nodes are
again split by the out-of-state tuition variable, resulting in two more
lines being drawn and creating four subsections in total. Finally, one
node is further split by the percentage of students at an institution
who were in the top ten percent of their high school class, resulting
in a horizontal line creating a fifth subsection. Note that only two
variables were used in the splitting process to maintain interpretabil-
ity with the corresponding visualization.

2.1.1 Understanding the bias-variance tradeoff

In the previous example, we see the last split results in a subsection
with a small sample size (N = 32). When growing a decision tree
on an initial dataset, referred to as the training set, creating a tree
with more depth and complexity will yield excellent performance.
However, because of the subtleties in the data at hand, the tree is
likely to have poor performance generalizing to independent data. In
other words, the tree algorithm is overfitting the data. This highlights
the importance of validating a decision tree (or any predictive model
for that matter) on a separate dataset, referred to as the test set, to get
a more accurate estimation of its generalizability.

The underlying reason overfitting occurs is due to the bias-variance
tradeoff. Conceptually, bias refers to the difference between a true
value and the average prediction of said value over many sample
datasets drawn from the same population. Variance, on the other
hand, refers to how much variability exists in your predictions for a
given data point. Models of low complexity typically have high bias
and lower variance, while models of high complexity typically have
low bias and high variance. Overfitting occurs when your model has
too much variance due to being overly complex, resulting in predic-
tions that generalize poorly to new data (Hastie et al., 2009). Thus,
this bias-variance tradeoff is a balance between trying to identify a
model with low bias that is still parsimonious enough to perform
well on new data. Refer to Figure 2 to see how predictive performance
varies as a function of model complexity between a training set and a
test set in the graduation rate data. As the predictive model becomes
more complex (i.e., more splits in the case of a decision tree), the es-
timated error always improves in the training set, but only improves
to a certain extent in the test set. In this case, there is evidence for
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Figure 1: (a) shows how college graduation rates vary as a function of out-of-state
tuition and percentage of students in the top 10% of their high school
class. These partitions are created by a set of binary decision rules, shown
in (b).
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overfitting when the decision tree contains more than three or four
splits.
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Figure 2: The bias-variance tradeoff found in the graduate rate data, depicting how
the error changes as a function of model complexity. The data was split
into training and test sets 100 times to estimate precision, and the bars
represent 1 standard error. Note that this figure was inspired by (James
et al., 2013a).

The bias-variance tradeoff can also be understood mathematically
as a decomposition of the residual term in a given statistical model.
Given a training set consisting of data points xi, . . . , xn, each with a
corresponding yi, we can assume there exists some true functional
relationship, yi = f(xi) + ε, where ε is a noise term with a mean of
zero and variance σ2. By choosing some statistical method, say linear
regression, we get an estimate of f(x), namely, f̂(x). The total squared
error of this estimated function relation is

E[(y− f̂(x))2] =
(
E[f̂(x)] − f(x)

)2
+ E[(f̂(x) − E[f̂(x)])2] + E[ε2]

= Bias(f̂(x))2 + Variance(f̂(x)) + σ2
(2)

2.1.2 Pruning decision trees with cross-validation

Because decision trees that are too complex typically yield poor gen-
eralization performance, an additional step must be introduced into
the process of building and evaluating a decision tree. How this issue
is typically handled is with a procedure known as pruning. That is,
trees are initially grown out to their maximum depth (i.e., maximum
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complexity) with the algorithm outlined above. Then, the depth of
the tree is reduced based on a given cost function. For any subtree
T that is a subset of a decision tree grown to full length, define |T |

as the number of terminal nodes in T , and α > 0 as the complexity
parameter. The updated cost-complexity measure, RSSα(T), is

RSSα(T) = RSS+α|T | (3)

Here, the complexity parameter can be tuned to control how complex
the resulting tree is. If α = 0, no pruning will be done. When this
value increases, however, the depth of the tree will get smaller.

The cost complexity parameter only has a finite number of values,
because there is only a finite number of subtrees within a given tree.
Once all the alpha values corresponding to unique subtrees have been
collected, the value correponding to the best performance is selected
with a procedure known as k-fold cross-validation. This procedure first
divides the training set into K equal-size partitions, or folds. First, a
full tree is grown on all but the kth fold. The mean squared error is
then extracted from the left-out kth fold as a function of the complex-
ity parameter. This procedure is repeated K times, so every partition
has an opportunity to act as a test set. The complexity parameter
value that leads to the lowest average error across the K estimates is
chosen for the creation of the final tree to be used for future predic-
tions. Note that setting K as five or ten yields a good approximation
to the true test error in many applications, so these values for K are
typically chosen (Hastie et al., 2009). Another rule of thumb for se-
lecting the value of the complexity parameter is known as the 1-SE
rule (Breiman et al., 1984). Because the cross-validation estimate of the
complexity parameter results in a distribution of error estimates, the
value of the complexity parameter is selected such that the simplest
tree within one standard error of the best tree is chosen.

Figure 3 shows how the 1-SE rule is applied in practice for the
college graduation rate dataset. Recall that Figure 2 indicated that
three or four splits should be made, while the 1-SE rule indicates only
one split should be made. This highlights a feature of the 1-SE rule,
in that it typically selects more parsimonious models, which may or
may not yield better generalization performance. Thus, the result of
the 1-SE rule should be compared with other evidence, like Figure 2,
to help determine how best to prune a decision tree.

2.1.3 CART with a categorical outcome

While not discussed in the introduction to CART above, the algo-
rithm can easily be extended to a categorical outcome with K poten-
tial classes by simply modifying the RSS criteria for both the splitting
and pruning. More specifically, three methods exist as a measure of
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Figure 3: How the 10-fold cross-validation error changes as a function of model
complexity in the college graduation rate dataset. The 1-SE rule is set
with the dotted line, indicating that this rule of thumb would select one
split. Just selecting the tree that yields the minimum cross-validated error
would select a tree with two splits.

node purity in the case of a categorical outcome: classification error,
the Gini index, and cross-entropy. Classification error is the simplest
of the three, and is the fraction of observations in the training set that
do not belong to the most common class

Classification error = 1− max
k

(p̂jk) (4)

where p̂jk corresponds to the proportion of observations in the train-
ing set in the jth subsection that are from the kth class. While the
classification error rate only includes the most common class, the Gini
index reflects a measure of total variance across all possible classes

Gini =

K∑
k=1

p̂jk(1− p̂jk) (5)

Finally, cross-entropy is numerically similar to the Gini index, and is
defined as

Entropy = −

K∑
k=1

p̂jklog(p̂jk) (6)
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The relation between these three measures can be seen in Figure 4.
When the probability of belonging to a class in a given node becomes
more certain (i.e., closer to 0 or 1), the values of all three measures get
closer to zero. Otherwise, when the probability of an observation be-
longing to a specific class gets more uncertain (i.e., closer to 0.5), the
value of these measures increase. In other words, these measures cal-
culate how homogenous a given node is, and the goal of the recursive
partitioning algorithm is to minimize this value over all nodes in the
splitting process. Note that either the Gini index or cross-entropy are
typically favored in the splitting process, as they are more sensitive to
node purity when compared with the misclassification rate (James et
al., 2013a). If the probabilities of a given class are small, cross-entropy
is likely a better choice compared with the Gini index, because of the
log in the calculation. However, research has found no conclusive evi-
dence regarding whether the Gini index or cross-entropy yields better
performance in a general sense (Raileanu & Stoffel, 2004).
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Figure 4: The relation between classification error, the Gini index, and cross-
entropy at different probability values for belonging to a given class when
two classes are present. Image adapted from (Hastie et al., 2009).

2.1.4 Pros and cons of CART

CART is a method that can efficiently search a parameter space, cap-
turing potential nonlinear relations as well as higher-order interac-
tions without explicit model specification by the researcher. It can
also handle both continuous or categorical variables as outcomes by
simply changing the underlying measure of node purity. Finally, and
perhaps the most relevant to this dissertation, is that the resulting
pruned tree is fairly easy to understand and explain to others, even if
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those individuals are not familiar with the technique or lack a formal
statistical background.

Despite all these advantages, CART is not without drawbacks. First,
like all simple decision trees, they generally do not yield good pre-
dictive performance when compared to other regression-based tech-
niques (James et al., 2013a). Pruning can also add a layer of researcher
subjectivity in deciding how complex or simple a given tree is. Finally,
because the splitting procedure considers all possible splits within all
possible variables simultaneously, variables with more potential splits
are more likely to be chosen to have a potential split point purely due
to chance when compared with variables with less potential splits
(Loh & Shih, 1997; Quinlan & Cameron-Jones, 1995). For example,
there are N− 1 potential splits for a continuous variable (assuming
no identical values among observations) and 2K−1− 1 potential splits
for categorical variables with K categories. Assuming a sample size of
100, a continuous variable with no repetitive numbers or a categorical
variable with eight classes will have 99 and 127 potential splits respec-
tively, while a 5-point Likert scale item or a dichotomous variable will
have substantially less (4 and 1, respectively).

2.2 conditional inference trees

To mitigate the issue of pruning and the biased splitting procedure
found in many recursive partitioning algorithms, Hothorn, Hornik,
and Zeileis (2006) proposed conditional inference trees (CTREE). While
conceptually similar to CART, CTREE is based on a well-defined the-
ory of permutation tests developed by Strasser and Weber (1999). Like
CART, CTREE also consists of four main steps, which will first be ex-
plained conceptually. First, a global null hypothesis of independence
between Y and all covariates Xj is tested. For a common example, if all
covariates and the outcome are continuous, a Pearson’s correlation co-
efficient with a corresponding p-value is calculated for each variable’s
association with the outcome. If no p-value is below the pre-selected
alpha level after accounting for multiple significance tests, the global
null hypothesis is not rejected and the algorithm terminates. Other-
wise, the covariate with the stongest association (i.e., p-value) with
the outcome is selected for splitting. The best split within this covari-
ate is selected, and the training set is partitioned on this value. Finally,
these steps are iteratively repeated until the global null hypothesis
can no longer be rejected in all subsections.

These four steps can also be explained mathematically following
notation from Hothorn, Hornik, and Zeileis (2006) and Molnar (2013).
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Step 1: The Global Null Hypothesis Test

First, in a given sample, assume there exists a response Y and a co-
variate vector X = (X1, . . . ,Xp). Let D(Y|X) represent the conditional
distribution of response Y given the covariates X, and Ln represent the
training set, such that Ln = [Y,X1, . . . ,Xp]. The global null hypothesis
is then defined as H0 =

⋂p
j=1H

j
0, where Hj0 : D(Y|Xj) = D(Y). This is

tested with the following test statistic.
Let gj be a transformation of the covariate Xj, such that gj : Xj →

Rpj , where pj is the number of dimensions of covariate Xj. The in-
fluence function, h, performs a similar transformation on the outcome,
such that h : y→ Rq. Also, let w correspond to a set of weights indi-
cating whether a given observation is in a node or not (i.e., set at 1 or
0). The test statistic for every covariate j can be defined as2

Tj(Ln,w) = vec

(
n∑
i=1

wigj(Xj,i)h(Yi)
T

)
∈ Rpjq (7)

where the resulting pj × q matrix is converted into a pjq column
vector using the vec operator. Note that this final conversion is not a
necessity, but is done for computational simplicity.

Both the transformation and influence function are chosen depend-
ing on the scales of Xj and Y, respectively. An outline for selecting
both g and h can be found in Hothorn, Hornik, and Zeileis (2006).
In the frequent case of a numeric variable for both covariate and out-
come, both functions can be the identity, indicating that no transfor-
mation is made. In the case of a categorical variable, the transforma-
tion for said variable can map the covariate into a variable with the
number of dimensions equal to the number of categories (i.e., two di-
mensions in the binary case, with (1, 0)T for one condition and (0, 1)T

for the other).
Because the distribution of Tj under the null hypothesis is un-

known for most instances, it must be estimated via a permutation test
framework. That is, a null distribution is contructed by fixing the co-
variate values and permuting the outcome to destroy the relationship
between the covariates and the outcome. The derivation of the condi-
tional expectation µj and covariance Σj under the null can be found
in Hothorn, Hornik, and Zeileis (2006), and are not included here for
brevity.

With the conditional expectation and covariance, T ∈ Rpq can be
standardized. Let t be the value of T , µ be the expected value of T
and Σkk is the kth diagonal entry of the covariance matrix under the

2 Note that this notation differs slightly from Hothorn, Hornik, and Zeileis (2006),
where h(Yi) is written as h(Yi, (Y1, . . . , Yn))T . This was removed for simplicity.



2.2 conditional inference trees 15

null distribution. Using these, the maximal entry of T after standard-
ization is chosen for a test statistic c:

c(t,µ,Σ) = max
k=1,...,pq

∣∣∣∣(t− µ)k√
Σkk

∣∣∣∣ (8)

The test statistic for each variable, c(Tj(Ln,w),µj,Σj), is then con-
verted to a p-value scale in order to test the global null hypothesis
and for the purpose of variable selection. To reiterate the most re-
cent steps incorporating the permutation test, all observations in a
given subsection are randomly permuted, and c is calculated for each
covariate. The resulting permuted distribution for a given variable
then corresponds to the null distribution assuming no relationship
between that variable and the outcome, and a p-value can be calcu-
lated as the proportion of the null test statistic distribution that is
larger in magnitude than the observed test statistic. The p-values for
each variable are corrected for a global test using a multiple compar-
isons procedure (e.g., Bonferroni), and then compared to the preset
α level which is typically (and arbitrarily) defined to be 0.05. If the
global test is not rejected, the algorithm makes this node a terminal
node.

Step 2: Variable Selection

If the global test is rejected, then the variable with the lowest p-
value calculated in Step 1 is selected for splitting.

Step 3: Split Point Selection

Once the variable has been selected, splits are determined using a
special case of the test statistic formula defined in Equation 7. For a
selected variable, Xj∗ , the equation is

TAj∗ (Ln,w) = vec

(
n∑
i=1

wiI(Xj∗,i ∈ A)h(Yi)T
)
∈ Rq (9)

where A is a possible partition of the current observations and

I(Xj,i ∈ A) =

{
1 : Xj,i ∈ A

−1 : Xj,i /∈ A
(10)

Note that the values are coded as 1 and -1 so if a given covariate is
independent of the outcome, the corresponding values will typically
cancel and yield a value for TAj∗ that is close to zero.

As defined, this sequence will test all possible subsets of A. To
reduce the amount of computation, possible subsets for continuous
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and ordinal variables are restricted to maintain their order among
observations. An additional contraint can be made by requiring a
minimum node size for all groups within a given subset. Finally, a
partition, A∗, is identified as the one which maximizes the standard-
ized test statistic using Equation 8 with the proposed new split A.
That is,

A∗ = argmax
A

c(tAj∗ ,µ
A
j∗ ,Σ

A
j∗) (11)

Step 4: Repeat

The weights within each node are re-normalized, and these steps
are repeated until the global null hypothesis is no longer rejected in
each subsection.

Clearly, this algorithm is very similar to CART in its basic itera-
tive partitioning structure. Similarly, conditional inference trees can
be pruned by altering the significance level required in the split-
ting process, which can be estimated via a cross-validation proce-
dure (Hothorn, Hornik, & Zeileis, 2006). Refer to Figure 5 for a vi-
sual comparison between the final CTREE and CART models using
the graduation rate. These two methods often yield similar predictive
performance despite having different tree structures.

2.2.1 Pros and cons of conditional inference trees

Conditional inference trees house all the benefits of decision trees
while simultaneously alleviating the issues of both pruning and bi-
ased variable selection found in CART. And yet, despite this lack
of bias in the splitting procedure, CTREE and CART typically per-
form similarly with regard to predictive accuracy (Hothorn, Hornik,
& Zeileis, 2006; Strobl, Boulesteix, Zeileis, & Hothorn, 2007). One
downside to this method is that, because it incorporates a permu-
tation framework, the algorithm is much more computationally ex-
pensive compared to CART. Thus, if the goal is to simply achieve
good predictive accuracy in a tree framework, CART is typically a
much better choice. Another major con with the conditional infer-
ence framework is that it assumes the data adhere to the traditional
assumptions of independence. This potential issue with regard to
multilevel data will be discussed further in Chapter 3. Finally, like
all decision trees, CTREE is a predictive method that is often outper-
formed by regression techniques. There are two main reasons for this.
First, trees are predictive methods that possess high variance. Often-
times, a small shift in the training set (e.g., sampling the training set
more than once) will result in a completely different tree structure
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Figure 5: A comparison of a conditional inference tree (a) and a pruned CART tree
(b). Note that the conditional inference tree contains p-values refering to
the significance of each split. Despite a different tree structure, both trees
yield similar predictive performance.
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being detected (Hastie et al., 2009). Second, smooth relationships of-
ten naturally occur in datasets, and can be better captured with the
underlying additive structure found in regression methods compared
to the binary, piecewise splits underlying decision trees.

2.3 random forests

As mentioned previously, while trees provide intuitive split criteria
for a given dataset, these decision rules suffer in generalizability per-
formance due to having high variance. Breiman (1996) proposed a
solution to this issue by repeatedly taking a bootstrap sample of the
training set to create many decision trees, and then aggregating the re-
sults of all the trees together to create the final predictions. This tech-
nique, referred to as bagging (short for bootstrap aggregating), leads
to better predictive performance due to the fact that trees grown to
full length are predictors that have low bias and high variance. Es-
sentially, by aggregating their predictions into an ensemble, this new
method maintains the low bias found in single decision trees, but also
has reduced variance by replacing the hard, piecewise fits found in
decision trees with smoothed relations (Breiman, 1996; Bühlmann &
Yu, 2002; Strobl et al., 2009).

One more improvement to this idea was made by Breiman (2001a).
Due to the greediness of the recursive partitioning algorithm, a bagged
ensemble of trees is typically dominated by one or two variables that
are always used in the first split. This ignores the possibility of the
existence of a tree with better predictive performance that contains
a first split that is suboptimal. To give these lesser predictors a bet-
ter chance to be incorporated into the splitting procedure, Breiman
(2001a) introduced random forests, which first grew decision trees us-
ing a random subset of possible predictor variables, and then used
bootstrap aggregation to create an ensemble. In this method, both the
number of variables to select for each tree and the number of trees to
grow in total are parameters that can be tuned to yield better predic-
tions. Many statistical software packages have sensible defaults for
these values that typically yield good performance, suggesting that a
random forest is a good “off-the-shelf” method that does not require
as much tuning when compared to other predictive models (Strobl et
al., 2009).

2.3.1 Out-of-bag samples

In a bootstrap sample, the probability of an observation being se-
lected is 1− (1− 1

n)
n. As n → ∞, this value converges to approxi-

mately 0.632. Thus, by nature of the bootstrap process, approximately
63% of the dataset will be used for training in each decision tree. This
highlights a nice feature of random forests, in that about 37% of the
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data, referred to as the out-of-bag (OOB) sample, are not used to
train any given tree. Using the OOB samples to evaluate performance
has been shown to be a good approximation of the error found in
a separate test set (Hastie et al., 2009), and are typically used as a
replacement for the cross-validation step found in training predictive
models.

2.3.2 Variable importance

Because random forests include many trees, each with their own dis-
tinct set of decision rules, they inevitably become harder to interpret.
However, both numerical and graphical methods do exist. One such
method is known as variable importance, and is typically measured in a
permutation framework. More specifically, once an ensemble method
has been created, the OOB samples are used to estimate predictive
performance. Then, the same data is permuted with respect to a given
variable in order to break that variable’s link with the outcome, and
the predictive accuracy of the overall forest is measured again. Finally,
variables are assigned a value that corresponds to the difference in the
original prediction accuracy and the permuted prediction accuracy. If
the difference is large, then this indicates that the particular variable
plays a more important role in predicting the outcome. Otherwise, if
the predictive accuracy does not change very much, then this variable
does not play a large role in predicting the outcome. See Figure 6 for
the variable importance plot for the college graduation rate example.
This plot confirms what was found in the single decision tree: out-
of-state tuition is the most important variable for predicting college
graduation rate.

2.3.3 Partial dependence plots

While variable importance metrics are useful, the functional relations
between the variables and the outcome remain hidden from view.
One way to further investigate these relations is with partial depen-
dence plots. These plots are graphical visualizations of the marginal
effect of a given variable (or multiple variables) on an outcome. Typi-
cally, these are restricted to only one or two variables due to the lim-
its of human perception, and thus may be misleading due to hidden
higher-order interactions. Despite this, partial dependence plots can
still be extremely useful for knowledge discovery in large datasets,
especially when the random forest is dominated by lower-order inter-
actions and main effects.

Following the notation of Hastie et al. (2009), partial dependence
plots can be mathematically defined as follows. Suppose S is a subset
of p predictor variables, such that S ⊂ {X1,X2, . . . ,Xp}. Let C be a com-
plement to S, such that S ∪ C = {X1,X2, . . . ,Xp}. The random forest
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Figure 6: Variable importance for a CART random forest, indicating the out-of-
state tuition has the largest role in predicting graduation rate.

predictor function, f(X), will depend upon all p predictor variables.
Thus, f(X) = f(XS,XC). The partial dependence of the S predictors
on the predictive function f(X) is

fS(XS) = EXC [f(XS,XC)] (12)

and can be estimated by

f̄S(XS) =
1

N

N∑
i=1

[f(XS,XCi)] (13)

where {xC1, xC2, . . . , xCN} are the values of XC ocurring over all obser-
vations in the training data. In other words, in order to calculate the
partial dependence of a given variable (or variables), the entire train-
ing set must be utilized for every set of joint values in XS. As one can
image, this can be quite computationally expensive when the dataset
becomes large. See Figure 7 for examples of partial dependence plots
for the college graduation rate dataset.

Because partial dependence plots are computationally inefficient
for even moderate sample sizes (> 1000), they can be time-consuming
tools to extract information from a forest model. This is especially
problematic here, given that the focus of this dissertation is on ex-
ploratory data analysis. Thus, researchers will be interested in exam-
ining and comparing predicted functional relations for many individ-
ual variables simultaneously. Luckily, a simplification can be made in
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Figure 7: (a) shows the partial dependence plot for out-of-state tuition, revealing
a somewhat linear relation with graduation rate. (b) shows the partial
dependence plot between both out-of-state tuition and percent of alumni
donating to the institution, resulting in a three-dimensional plot. Note
that because both variables have consistent relations with graduation rate
across the values of the other variable, there is no substantial evidence for
a potential interaction.
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the calculation of a partial dependence plot that results in vastly im-
proved computation time with minimal loss of statistical information.
Rather than calculating predicted values by repeating the training set
across all joint values in XS, simply create a new dataset of one obser-
vation that consists of a measure of central tendency for continuous
variables and the most-endorsed level for either categorical or ordinal
variables. Then, repeat this observation across all joint values in XS. In
addition to being much faster, these predicted values are still easy to
interpret as the change in a given variable while holding all other vari-
ables fixed at values that represent an “average” observation in the
dataset. While these plots are typically referred to as a “poor-man’s”
partial dependence plot (Milborrow, 2014), they will be referred to
as predicted value plots in this dissertation for clarity. See Figure 8 for
an example of a predicted value plot for the college graduation rate
dataset.
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Figure 8: Predicted value plot for out-of-state tuition variable predicting gradua-
tion rate. Despite being simpler and more computationally efficient to
calculate, this plot shows a similar trend, although a higher intercept, to
the true partial dependence plot in Figure 7.

2.3.4 Conditional inference forests

In this overview so far, only a random forest with CART as the
underlying partitioning algorithm has been used. In fact, random
forests are easily generalizable to any recursive partitioning frame-
work. In the case of conditional inference, for example, creating an
ensemble of conditional inference trees is known as a conditional in-
ference forest (CFOREST; Hothorn, Bühlmann, Dudoit, Molinaro, &
Van Der Laan, 2006), and can be readily adapted with one slight al-
teration to the original forest algorithm. Because the framework of
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Table 1: Estimated prediction performance for the four methods.

Method Mean Performance (MSE) SD Performance

CART 208.41 19.22

CTREE 205.28 17.44

CART forest 168.61 14.55

CFOREST 169.27 14.63

conditional inference assumes independence, taking a bootstrap sam-
ple results in a new dataset with repeated observations, thus breaking
this assumption. In order to maintain an unbiased splitting procedure,
this issue can solved by sampling 63.2% of the data without replace-
ment instead of bootstrapping (i.e., subsampling). This improvement
has shown to yield an unbiased splitting procedure with predictive
performance on par with CART forests (Strobl et al., 2007). While
the graphical results of the conditional inference forest will not be
given for brevity, see Table 1 to compare the predictive performance
of CART, CTREE, CART forests, and CFOREST applied to the col-
lege graduation rate data in 100 runs. Given the results of CART in
Figure 2, the tuning parameter was selected via the minimum cross-
validated error rather than the 1-SE rule. Note that the performance
for both trees and forests are similar between the two methods of
CART and conditional inference. While this is generally true, the un-
derlying decision tree structure will be somewhat different given the
biased nature of the CART algorithm (Hothorn, Hornik, & Zeileis,
2006; Strobl et al., 2007). In this specific example, the top 5 predictors
and their relative order (with the exception of one variable) between
both random forest methods were identical.

2.3.5 Pros and cons of random forests

As was just shown, the major benefit to creating an ensemble of deci-
sion trees with a random forest algorithm is being able to efficiently
search a large parameter space and create a predictive model that is
vastly superior to a single decision tree. Another added benefit is that
forests are created on unpruned trees, removing the subjectivity inher-
ently found in pruning decisions. However, this benefit of improved
performance does come at the cost of reduced interpretability. While
both variable importance and partial dependence plots offer ways to
view the underlying structure of decision trees, these methods still
mask the potential higher-order interactions underlying a given for-
est that are impossible to visualize. Additionally, forest methods are
more computationally expensive to perform when compared to a sin-
gle decision tree. This is especially true of CFOREST, which requires
a more expensive permutation test framework. For example, a recent
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application of random forests on 876 observations with 44 variables
reported 4.82 seconds for CFOREST, while CART forests only took
0.24 seconds (Strobl et al., 2007). While this effect can be somewhat
mitigated on larger datasets by the fact that forests are trivially par-
allelizable, this characteristic of longer computation time can be per-
ceived as a nuisance, especially with extremely large datasets.

2.4 handling missing data

Missing data are an all-too-common occurrence in many areas of the
social sciences, especially in education. Fortunately, recursive parti-
tioning has a few different ways to elegantly handle missing data.
The first, surrogate splits, are typically used for decision trees and
are handled internally in the algorithm itself. Every time a split is
made in the procedure, the algorithm automatically searches for ad-
ditional variables that mimic the behavior of this main split, thus
acting as a surrogate to the original variable in the case of a missing
observation. These splits are derived in the exact same way as the
original partitioning algorithm (Hothorn, Hornik, & Zeileis, 2006; Th-
erneau & Atkinson, 2014). More specifically, the algorithm searches
for splits in other variables that best predicts membership into the
two new classes created by the split in the original variable. A list
of ranked variables is then created for each split in the final deci-
sion tree in case data are missing on multiple variables. While this
approach seems simple, surrogate splits have been shown to yield
performance similar to multiple imputation when applied to both
CART and CTREE under missingness conditions that are completely
at random (Hapfelmeier, Hothorn, & Ulm, 2012).

Unfortunately, while the application of the methodology of surro-
gate splits can extend directly to ensembles of trees for the purpose
to calculating predictions, there is no clear way to estimate permuted
variable importance in the traditional way. This is one reason as to
why surrogate splits are not employed in many CART forest algo-
rithms (e.g., Liaw & Wiener, 2002; Pedregosa et al., 2011). Instead,
random forests often use imputation methods. For example, the orig-
inal random forest algorithm employs an imputation method that
iteratively builds random forests in order to impute missing values
(Breiman, 2001a). To do this, missing values are first replaced by the
median of that variable (in the continuous case) or the category with
the highest prevalence (in the categorical case) of that particular vari-
able. Then, a random forest is run, and the missing values are re-
placed based on their proximity to other observations. That is, when a
missing value is present, observations are identified that typically ap-
pear in the same nodes as this missing value in many of the trees cre-
ated during the random forests process. These observations are then
used to impute the missing values. This procedure is repeated a few
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times to iteratively improve on the final imputations. This method has
also been shown to yield good performance even with higher rates
of missingness (i.e., > 50%), though it has been noted that the OOB
error estimate tends to be slightly optimistic with imputed values
(Breiman, 2003). Note that both surrogate splits and this imputation
method only work when covariates are missing. Observations with
the outcome missing must be either removed or imputed with a sep-
arate process.

CFOREST utilizes surrogate splits and employs a new variable im-
portance measure to allow the estimation of variable importance in
the presence of missing data (Hapfelmeier, Hothorn, Ulm, & Strobl,
2014). This new measure is essentially identical to permuted variable
importance, with one exception. Rather than randomly permuting
a variable to break its link with the outcome, observations are ran-
domly sent to either the left of the right child node of any split that
includes the variable of interest. This still breaks a variable’s link with
the outcome, but now the calculation of variable importance can be
accomplished as before. This new technique shows a number of de-
sirable properties over MCAR, MAR, and NMAR data, such as not
yielding artificially inflated variable importance values for variables
with high rates of missingness, which can occur with complete case
analysis (Hapfelmeier et al., 2014). This new variable importance met-
ric is also used for CFOREST even if no missingness occurs, because
it is more computationally efficient for the conditional inference algo-
rithm. It is important to note that, by definition, these methods can
only handle missingness in the predictors. To the author’s best knowl-
edge, there is no non-parametric way to handle missingness in both
the predictors and the outcome at this time.
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R E C U R S I V E PA RT I T I O N I N G A N D M U LT I L E V E L
D ATA

3.1 previous research

There is a small, but growing body of research that examines the
application of decision trees to complex, multilevel data structures.
Segal (1992) provides an initial foray into this topic by attempting to
extend the logic of decision trees and covariate splits to longitudinal
data. In this method, split functions for trajectories can be directed to-
ward either the mean vector (e.g., an intercept and a slope term) or the
covariance matrix. One large difficulty in this procedure is the han-
dling of time-varying covariates. Because changes in the covariance
structure are considered in the splitting function, potential splits can
only be done at the participant level and not the observation level.
Thus, time-varying covariates can only be included if they are aggre-
gated to the participant-level of analysis as a low-order polynomial
term. That is, using an intercept and slope to approximate the trajec-
tory of the time-varying covariate, and then using these new variables
as potential variables to split on (Segal, 1992). This is an important
methodological consideration that will manifest itself throughout this
discussion of previous research.

This method can also be utilized to identify representative curves
for the purpose of exploratory data analysis (Segal, 1994). While just
sampling curves can be problematic in a sense that potential non-
representative trajectories are selected (i.e., outliers), this method can
detect homogeneous sub-populations of trajectories in regard to both
the outcome and a set of covariates. A similar approach can be made
from an unsupervised perspective, where representative groups are
selected based on trajectories only and not the covariates themselves
(Martin & von Oertzen, 2015; Tucker, 1966).

Other methods focusing on applying recursive partitioning to lon-
gitudinal data employ improved algorithms that do not exhibit the
selection bias commonly found in some recursive partitioning algo-
rithms, such as CART. For example, Eo and Cho (2013) proposed a
recursive partitioning algorithm based on GUIDE (Loh, 2002), which
utilizes residual analysis to avoid selection bias in its splitting proce-
dure and a cost-complexity stopping rule instead of cross-validation
to save on computation time. Similar to Segal (1992), this method can
only identify trends, not predict future responses. As such, it is lim-
ited in only being able to split on variables at the cluster level, not
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the observation level. A similar method proposed by Loh, Zheng, et
al. (2013) also utilized GUIDE for this purpose.

Note that these aforementioned methods are focusing on exploratory
data analyses in a multilevel framework that is longitudinal in nature
(i.e., repeated observations nested within participants). Emphasis is
also being placed on predictive accuracy in a multilevel framework
that is typically cross-sectional in nature. For example, Karpievitch,
Hill, Leclerc, Dabney, and Almeida (2009) examined the classification
performance of random forests in mass spectrometry-based studies,
which often produces cluster-correlated data. Via simulation, they
found that traditional random forest algorithms yielded good clas-
sification performance despite the presence of cluster-correlated data,
except that the OOB error rate typically underestimated the actual
error rate calculated on a separate test dataset. By extending the orig-
inal random forest algorithm to instead re-sample at the cluster level
rather than the observation level led to near identical median classi-
fication rates and variable selection accuracy when compared to the
original random forest algorithm, but without the bias found in the
OOB error rate. The conceptual background for why this occurs will
be addressed later in this chapter.

Additional examples investigating the performance of resampling
methods for random forests in cluster-correlated data are typically
found in medical research. In one example, Adler, Brenning, Potapov,
Schmid, and Lausen (2011) compared different resampling methods
for random forests in the presence of paired organ data, and found
that the decrease in performance at high correlations between organs
can be reduced if a paired bootstrap is performed. It has also been
reported that sampling one observation rather than resampling all ob-
servations within an individual can lead to better performance when
classifying future observations of patients in a longitudinal frame-
work (Adler, Potapov, & Lausen, 2011).

More recently, researchers are starting to use a random effects struc-
ture in tandem with decision trees to improve predictions. For ex-
ample, both Sela and Simonoff (2012) and Hajjem, Bellavance, and
Larocque (2011) independently proposed the same method to incor-
porate a given random effects structure in a recursive partitioning
algorithm, called RE-EM trees and mixed-effects regression trees, re-
spectively. Both approaches operate on the same algorithm, namely
one that uses a variant of the EM algorithm to estimate a set of ran-
dom effects (most commonly just random intercepts) to encompass
an entire tree. While any underlying decision tree algorithm can be
used, both authors adopted an approach using CART. Because these
random effects can be used to alter predictions for each individual ob-
servation in the sample after filtering through the tree structure, both
methods show increased in-sample predictive accuracy compared to
both a traditional multilevel model with main effects or a decision
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tree without this random effect structure. However, the predictive per-
formance for observations nested within unobserved clusters were
similar between a decision tree with and without a random effects
structure, because random effects have a mean of zero (Hajjem et al.,
2011; Sela & Simonoff, 2012).

Given the bias inherent in the splitting procedure of the CART al-
gorithm, these methods are being built around conditional inference
trees, resulting in unbiased variable selection with the added benefit
of having a random effects structure to improve predictive accuracy.
Despite the unbiased variable selection, the conditional inference tree
with random effects still yields similar predictive accuracy when com-
pared to a CART tree with random effects (Fu & Simonoff, 2015); a
similar scenario to how these methods perform without a random ef-
fects structure (Strobl et al., 2007). Hajjem, Bellavance, and Larocque
(2014) have also extended these trees to create an ensemble method re-
ferred to as mixed-effects random forests. This method first removes
the estimated random effects in the model before performing boot-
strapping to avoid employing a cluster bootstrap. It has substantial
improvements over single decision trees both with or without ran-
dom effects in terms of prediction accuracy.

Additional research is investigating decision trees in multilevel con-
texts from a model-based perspective. That is, rather than focus on
prediction with a basic tree approach where each node just represents
a different mean value (in the case of a regression tree) or class (in
the case of a classification tree), an alternative is to have a statistical
model in each node (Zeileis, Hothorn, & Hornik, 2008). For example,
a linear regression tree searches the covariate space for potential splits
that maximizes the difference in model parameters in an already spec-
ified model. Thus, it becomes possible to unite confirmatory and ex-
ploratory research and examine potential model misspecification in
more detail (Kopf, Augustin, & Strobl, 2013). Recently, model-based
decision trees have been extended to a structural equation model-
ing (SEM) framework, called SEM trees (Brandmaier, von Oertzen,
McArdle, & Lindenberger, 2013). In this method, decision trees are
combined with the flexibility of SEM, where SEMs are split based on
a set of covariates, effectively creating a series of more homogenous
multi-group models. This model-based recursive partitioning method
also avoids selection bias with a two stage procedure found in Loh
and Shih (1997), which first selects the best cut point for each variable
and then selects the best split among these candidates. Like many tree
methods, creating an ensemble (i.e., a SEM forest) helps to reduce bias
and increase the stability of estimated relationships among variables
(Prindle, Brandmaier, McArdle, & Lindenberger, 2014). Because this
framework also estimates variance components, it is limited to only
splitting on cluster level variables in the presence of clustered data.
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3.2 current problems

As shown in the previous section, extending the recursive partition-
ing framework to a variety of multilevel contexts has received much
research attention, especially in the last few years. However, many
questions remain unanswered with regard to the application of these
methods in the social sciences. For one, this previous research is
typically focused solely on predictive accuracy, rather than the data-
driven identification of potential variables of interest in an exploratory
context. Additionally, many of these previous examples attempt to ex-
tend recursive partitioning methods to very situational circumstances,
inevitably making them less flexible. Moreover, the simulation stud-
ies typically mimic the data generating process found in scientific
areas where these methods are common (e.g., genomics), which are
often quite different than what is found in the social sciences more
generally, and education specifically. For example, these studies typ-
ically involve predictor variables that have all been measured at the
lowest level of analysis (i.e., level-1) and account for the cluster level
(i.e., level-2) variation as more of a nuisance parameter. In the so-
cial sciences, however, it is common to include variables measured
at different levels of the analysis. Finally, not one of the studies that
was previously mentioned have actually examined the original non-
parametric methods outlined in Chapter 2 in multilevel contexts com-
monly found in the social sciences. Because of this, the performance
of these methods with regard to variable selection bias, variable im-
portance accuracy, and missing data handling are not well under-
stood. Below, an outline is given for potential issues that manifest
themselves conceptually when considering the application of CART,
CTREE, and forest methods to multilevel contexts commonly found
in education research.

3.2.1 Multilevel issues with CART

Given the non-parametric nature of the CART algorithm, it would
seem as though CART can be applied to multilevel contexts with-
out much additional consideration. While this is mainly true, recall
that the algorithm is inherently biased toward selecting variables with
many potential split points. This effect could be compounded when
considering whether the variable under consideration appears at the
first level or the second level of analysis. With N observations nested
within K clusters, the number of potential split points for a numeric
variable (with no repeated values) at the first level will beN−1, while
the number of splits for the same variable at the second level will be
K− 1. It is clear that if both of these variables have no relationship
with the outcome, the variable measured at the lowest level will be
selected more often purely due to chance.
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The categorical case, however, will not be as affected by this method-
ological issue assuming the clusters have the same number of obser-
vations. For a simple example, assume we are interested in measuring
the entropy of a node that has a sample size of 16 (four observations
nested within four clusters), along with a variable that is dichoto-
mous. Suppose there exists a 50 percent chance of belonging into one
outcome group versus the other. Because the observations are bal-
anced within each cluster, the entropy of both situations is identical,
regardless of whether the group was assigned at the cluster level or
the observation level.

3.2.2 Multilevel issues with conditional inference

As mentioned in Chapter 2, the conditional inference algorithm as-
sumes that the data are independent. Thus, the splitting procedure
will be more likely to select a split in the presence of cluster-correlated
data (i.e., an increased chance of a false positive for splitting), result-
ing in a tree that is more likely to overfit due to being too complex. It
is likely that while varying the level of the variation in the outcome
due to the cluster-level (i.e., the intra-class correlation coefficient, or
ICC) can result in some bias, the conditional inference procedure
would be most affected by the presence of non-independence due to
the inclusion of level-2 variables in the splitting procedure. This fol-
lows conceptually from traditional regression techniques, where stan-
dard error inflation most often occurs due to the presence of level-2
variables incorporated at the first level of analysis (Luke, 2004).

Despite this methodological issue, conditional inference trees may
still be useful in certain situations. For example, the rate of alpha
inflation on datasets with only level-1 variables may result in trees
that are still unbiased with respect to their splitting criteria, but just
overfit the data due to non-independence. Simply altering the com-
plexity parameter with cross-validation could be a potential solution
to this issue. Additionally, trees are typically grown to maximum
depth when creating a random forest. Conditional inference forests
might still yield good predictive performance in the presence of non-
independence, because conditional inference trees will have much
more complexity in this case which is then removed in the aggre-
gation step found in random forests. Regardless, many researchers
might not realize the assumptions inherent to conditional inference
trees, and inappropriately apply these methods in multilevel contexts
without considering the potential consequences. Thus, it is important
to identify situations where conditional inference is completely unre-
liable and where it might still be useful.
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3.2.3 Multilevel issues with forests

In the random forest methodology, recall that approximately 37% of
all observations in a sample will not be chosen in each bootstrap, re-
ferred to as the OOB sample. In a cluster-correlated sample, however,
observations within a given cluster are more related to other observa-
tions within that cluster compared with observations in other clusters.
Thus, exposing a tree to a given observation within a cluster actually
informs the tree about other observations within that same cluster.
This results in trees that are correlated with one another, yielding
an OOB error estimate that is overly optimistic (Karpievitch et al.,
2009). This is most problematic when the intra-class correlation (ICC)
is high, something not commonly found in cross-sectional multilevel
models in the social sciences. Previous research (i.e., Karpievitch et
al., 2009) suggests that this methodological artifact should not be too
problematic with smaller ICC values. In other areas where higher
ICCs are common (e.g., mass spectrometry), other non-parametric
bootstrap methods might provide a more reliable OOB error estimate.
An alternative solution for a more accurate estimate of the test error
without altering the re-sampling process underlying the algorithm
would be to use cross-validation on the clusters rather than the obser-
vations, which has been shown to provide approximately unbiased
estimates of test error in the presence of dependent data (Rice & Sil-
verman, 1991; Segal, 1992).

However, note that the OOB samples are not only used as an es-
timate of test error, but also used to create the permuted variable
importance measures. Thus, an overly optimistic OOB error estimate
could lead to additional bias being introduced to variable importance
measures. Again, because this issue is not substantial when ICC val-
ues are low, it only expected to lead to negligible bias. Regardless,
this issue remains an open question, and will be investigated more
thoroughly in this dissertation.
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With the quantitative issues outlined in Chapter 3, the behavior of
CART, CTREE, CART forests and CFOREST all need to be better un-
derstood in multilevel contexts before they can be used as exploratory
data analytic tools in education research. The goal of the simulation
phase is to evaluate the performance of recursive partitioning meth-
ods in situations commonly found in education research and iden-
tify where these techniques may or may not be reliable. Naturally,
given the inherent complexities of multilevel data and the many unan-
swered questions outlined in the previous section, these techniques
will not be perfect. However, this does not mean that they will not be
useful.

The structure of this chapter is as follows. First, more explicit de-
tails regarding the implementation of these analytic methods used in
this comparative simulation are outlined. After that, the simulation
conditions and evaluation criteria of proportion variation explained
and variable importance will be explained. Finally, the results of the
simulation will be presented and discussed.

4.1 statistical techniques and implementation

Each dataset in this simulation was subjected to an automated imple-
mentation of four recursive partitioning methods and two multilevel
regression methods described next. All simulations were conducted
with R, version 3.1.1 (R Core Team, 2014).

4.1.1 Classification and regression trees (CART)

Decision trees using the CART algorithm were run using rpart, ver-
sion 4.1-8 (Therneau & Atkinson, 2014) using cost-complexity prun-
ing and choosing a tree depth based on the minimum error rather
than the 1-SE rule. Missing data was handled internally by way of
surrogate splits. Variable importance was extracted from the fitted
rpart object, which follows Breiman et al. (1984) to calculate total im-
portance of a given variable as the sum of its improvement in node
purity in the case of a primary split and improvement multiplied by
agreement with the primary splitting variable in the case of a surro-
gate split.
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4.1.2 Conditional inference trees (CTREE)

Decision trees using conditional inference were run using party, ver-
sion 1.0-20 (Hothorn, Hornik, & Zeileis, 2006) with no pruning, which
is generally the approach taken for conditional inference methods
on independent data structures (Hothorn, Hornik, & Zeileis, 2006).
While conditional inference trees can handle missingness internally
via surrogate splits, they do not do so by default. Additionally, it was
of interest to see how a conditional inference tree would perform on
missing data if the imputation was inappropriately based on a CART
forest. Thus, missingness was handled using a single imputation pro-
cedure based on the proximity matrix extracted from a CART forest.
Finally, no variable importance function exists for conditional infer-
ence trees, so one was manually created that calculates permuted
importance for each variable.

4.1.3 Random forests using classification and regression trees (CART for-
est)

CART forests were run using randomForest, version 4.6-10 (Liaw &
Wiener, 2002) with the traditional defaults of 500 trees grown to max-
imal depth and the square root of the total number of predictors
(rounded down) as the number of variables in each tree. Missingness
was handled using a single imputation procedure based on the prox-
imity matrix extracted from a CART forest. Variable importance was
extracted from the fitted model object, which is based in a standard
permutation framework.

4.1.4 Random forests using conditional inference trees (CFOREST)

Conditional inference forests were run using party, version 1.0-20

(Strobl et al., 2007; Strobl, Boulesteix, Kneib, Augustin, & Zeileis, 2008),
with the defaults of 500 trees grown to a given depth decided by a
minimum criterion of 0.05 and the number of predictors used in each
tree set to be five. Each tree was built using sub-sampling rather than
bootstrap re-sampling as suggested by Strobl et al. (2007) for unbi-
ased variable importance. Missingness was handled using a single
imputation procedure based on the proximity matrix extracted from
a CART forest, in line with the secondary research question outlined
in the conditional inference trees section above. Variable importance
was extracted from the fitted model object, which is based in a per-
mutation framework as described by Hapfelmeier et al. (2014).
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4.1.5 Multilevel regression

Multilevel regression models were run using lme4, version 1.1-7 (Bates,
Maechler, Bolker, & Walker, 2013). These models were run twice: once
correctly specified given the simulation design, and once with a main
effects only model. The model that was correctly specified is meant to
serve as the true model, while the main effects only model is meant
to serve as a naive implementation that approximates how an actual
researcher might approach a dataset for the purposes of exploratory
data analysis. Missingness was handled using a single imputation us-
ing chained equations, and was calculated using mice, version 2.22

(van Buuren & Groothuis-Oudshoorn, 2011). The missingness model
matched the respective statistical model, and thus was correctly spec-
ified for the true model and mis-specified for the naive model. Vari-
able importance was only calculated for the main-effects only model,
and was simply taken to be the p-value for each respective variable
(calculated using a Satterthwaite approximation for the denominator
degrees of freedom).

4.2 simulation conditions

In total, six parameters were of primary interest to be manipulated
in the simulation study. The first two, number of levels in the data
generation process and nature of the outcome, were fixed to keep
this simulation from becoming too unwieldy. The number of levels
was fixed to two for simplicity, while the nature of the outcome was
fixed to be continuous. Simulation research regarding recursive parti-
tioning methods often do this as a simplifying step, finding that the
results of continuous (or categorical) outcomes often generalize to the
other condition (e.g., Strobl et al., 2007).

The first parameter of interest is sample size, which can systemat-
ically vary at two possible levels of analysis in the context of a two-
level design. Common values can also be quite different depending
upon the nature of the sample and research questions. For example, a
limiting factor for sample size in some education research is the num-
ber of units at the first level of analysis (e.g., children in a classroom,
or teachers in a school). In the same vein, however, it might be easier
to collect units at the first level (e.g., students in a school). To reflect
this potential variability, four categories were chosen: 15/20, 15/50,
15/100, 50/100, where the first value corresponds to the level-1 sam-
ple size, and the second value corresponds to the level- 2 sample size.
Note that level-1 samples within each category were simulated to be
unbalanced by sampling from a uniform distribution with a range
of 10-20 for the first three categories and 35-65 for the last category.
Thus, the total sample size for each condition is approximately the
product of the sample size at each level. These values were chosen
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to range from a small scale study with a limited sample size at both
levels, to a larger scale study with a large sample size for both levels.

The second parameter that was varied was the intraclass correla-
tion coefficient (ICC), which reflects the proportion of variance in the
outcome that is attributable to the second level of the analysis. Peugh
(2010) reports that education research typically reports ICCs ranging
from 0.05 to 0.20. To reflect these common values, three categories
were selected for this parameter: 0.0, 0.15, and 0.30. An ICC of 0.0
corresponds to data that are independent, an ICC of 0.15 is meant to
represent an average ICC level found in educational research, while
an ICC of 0.30 is meant to represent a large ICC level found in educa-
tional research.

The third parameter that was varied was the amount of missing-
ness in the covariates. While the mechanism behind missing data
can be complex (e.g., Rubin, 1976), this study will only implement
data that are missing completely at random. Because of the non-
parametric nature of these algorithms and their built-in methods to
handle missing data, recent research has found that simulation results
for data that are missing completely at random are very similar to re-
sults with more complicated missingness mechanisms (Hapfelmeier
et al., 2012; Rieger, Hothorn, & Strobl, 2010). Missingness was set
at three possible categories for all covariate values: 0%, 10%, and
30%. These values were meant to represent missingness percentages
that are small, moderate, and large in the context of educational
datasets. Note that missingness in the outcome was not simulated,
as there is no straightforward way to handle such missingness in a
non-parametric way.

Finally, the level at which the covariates are measured was also
manipulated. Given that preliminary simulations showed potential
issues with level-2 variables, the variables were simulated to be either
level-1 only, or both level-1 and level-2. A condition with only level-2
variables is not needed here, as such an analysis typically aggregates
the outcome to the second level, creating a new dataset that is no
longer multilevel in nature. Thus, with a fully crossed simulation de-
sign, there are 72 (4× 3× 3× 2) simulation conditions. See Table 2

for a summary of the main parameters that were manipulated in this
study.

Three additional parameters of minor interest were also investi-
gated, but using only one simulation cell each (namely, the cell with a
sample size of 15/100, an ICC of 0.15, no missingness, and covariates
all at level-1). The first condition was implemented to examine the ef-
fect of a balanced hierarchical design. Typically, multilevel datasets
are comprised of unbalanced sample sizes nested within clusters,
which can negatively impact some models (e.g., repeated measures
ANOVAs) more so than others (e.g., growth curve models). This con-
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Table 2: The parameters manipulated in the simulation study.

Simulation Parameter
Number of

Categories
Category Values

Number of levels 1 2

Nature of outcome 1 continuous

Sample size (L1/L2) 4 15/20, 15/50, 15/100, 50/100

Intra-class correlation 3 0, 0.15, 0.30

Missingness (MCAR) 3 0, 10%, 30%

Covariate level 2 level-1 only, both levels

dition was of interest to see how the results may differ between a
balanced and an unbalanced design for forest models.

The second condition was implemented to examine to effect of
correlations among predictor variables. For simplicity, the relations
among the predictor variables were simulated to be independent (more
detail regarding data generation can be found in the next section).
However, assuming independence among predictors, especially when
the number of predictors is high, is often not tenable. One major bene-
fit of forest methods that is often cited is their ability to handle highly
correlated predictor variables (Strobl et al., 2008). This condition was
of interest to see how the performance of forest methods compared
to a multilevel regression model when predictors were no longer in-
dependent.

Finally, the third condition was implemented to examine the effect
of having a predictor variable that was measured with more mea-
surement error than the others. Theoretical constructs in the social
sciences are typically measured with error, and some constructs have
more measurement error than others (Novick, 1966). This condition
was of interest to determine how the performance of forest models
change when more measurement error is introduced.

Results for these special conditions will be displayed separately in
the results section below. In total, this resulted in 75 unique condi-
tions, each of which were run 200 times resulting in 15,000 datasets.
With six predictive models (CART, CTREE, CART forest, CFOREST,
and two multilevel regression models), a total of 90,000 models were
run for the simulation phase of this dissertation.

4.3 data generation

While the implementation for the data generation varied slightly de-
pending upon which condition was being used, the logic essentially
remained the same. In total, 10 variables were simulated of various
types. Four variables were continuous, four variables were binary,
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and two were Likert type items (one on a 4-point scale and one on a
5-point scale). For all conditions, only two variables were simulated
to have a true relationship with the outcome: a continuous variable
and a categorical variable (these two variables are hereby referred to
as meaningful variables). Thus, any detectable relationship between a
non-meaningful variable and the outcome will only be due to sam-
pling error (these eight variables are hereby referred to as meaningless
variables).

The meaningful categorical variable was either a level-1 variable or
a level-2 variable depending on the condition, while the meaningful
continuous variable was always at level-1. In addition to the main
effects for these two variables, a quadratic trend for the meaningful
continuous variable as well as an interaction between the meaningful
continuous variable and meaningful categorical variable were simu-
lated. The model equations can be seen below in their mixed-effects
form, with the model for the “level-1 only” covariate level manip-
ulation presented first followed by the “both levels” manipulation.
Note that while the other eight variables are not depicted in these
equations for brevity (and because they had no relationship with the
outcome), three of these eight were simulated to be either a level-1
variable or a level-2 variable depending on the condition.

Level-1 Only:

Yij = γ00 + γ10X1ij + γ20X1
2
ij + γ30X2ij + γ40X1ijX2ij+

µ0j + µ1jX1ij + rij

(14)

Both levels:

Yij = γ00 + γ10X1ij + γ20X1
2
ij + γ01X2j + γ11X1ijX2j+

µ0j + µ1jX1ij + rij

(15)

The main effect for X1 (continuous) was fixed to be 0.3, the main ef-
fect for X2 (categorical) was fixed to be 0.1, the effect for the quadratic
term for X1 was fixed to be 0.2, and the interaction effect between X1

and X2 was fixed to be 0.3. Because all predictors and the outcome
were z-transformed, these effect sizes can be interpreted as standard-
ized estimates. The values were selected to represent a moderate de-
viation from a main-effects only model, with all effects ranging be-
tween small and medium according the arbitrary cutoffs of Cohen
(1988). Additionally, both the intercept and the slope for X1 were al-
lowed to vary across clusters. For simplicity, these were fixed to be
equivalent and have no covariation. Note that because the variance
of the outcome and predictors were fixed to be 1, this allowed for an
easier calculation of the ICC conditional on the fixed effects estimates.
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In previous simulation research that manipulated the ICC (e.g., Maas
& Hox, 2005; Moineddin, Matheson, & Glazier, 2007), the ICC was
set by ignoring the fixed effects estimates. This results in generating
data with a smaller ICC as its typically defined for the intercept-only
model than what was desired in the simulation. Because the ICC has
such a large impact regarding statistical power, failing to simulate the
ICC properly can result in misleading recommendations for applied
researchers. See Section A.1 for more information regarding how the
ICC was properly calculated in this simulation.

Adjustments were made to the approach outlined above to han-
dle the three special conditions. Recall that the first condition was
implemented to examine the effect of the balanced design, and so
all clusters were simulated to have the same number of observations.
The second condition was implemented to examine the effect of a cor-
relation between two predictors, and so the meaningful continuous
variable was simulated to have a correlation of 0.3 with a meaningless
continuous variable. Finally, the third condition was implemented to
examine the effect of having a meaningful variable measured with
more measurement error, and so the meaningful continuous variable
was simulated from a standardized uniform distribution rather than
a standard normal distribution.

4.4 evaluation criteria

Two criteria were chosen to evaluate the statistical performance of
each method.

4.4.1 Proportion variation explained

This metric is based on mean-squared error, which is a common met-
ric when comparing predictive models with a continuous outcome. It
can be calculated by first computing the mean-squared error, dividing
this value by the variance of the outcome, and then subtracting this
value from one (i.e., 1− MSE

var(y) ). Note that if the predictions are very
bad, it is possible to have negative values. Because the true multilevel
model will yield the highest value for this metric, the best-performing
methods will be identified by having a similar, albeit smaller, value.

Recall that in random forest methodology, approximately 37% of
all observations in a sample will not be chosen in each bootstrap,
which is referred to as the OOB sample. Commonly, this metric is
used to approximate MSE on a test set without actually needing to
split the sample. In a cluster-correlated sample, however, observations
within a given cluster are more related to other observations within
that cluster compared to observations in other clusters. Because of
this, exposing a tree to a given observation within a cluster actually
informs the tree about other observations within that same cluster.
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This results in trees that are correlated and an OOB error estimate that
is overly optimistic (Karpievitch et al., 2009). For this reason, the MSE
for proportion variation explained was calculated using a simulated
hold out test set.

4.4.2 Variable importance

This metric reflects how each method correctly identifies the variables
that were actually simulated to have a relationship with the outcome
and ranked in the proper order. Given the approach for data genera-
tion, variable importance should identify variable 1 as being the most
important, followed by variable 2, followed by an eight-way tie for the
remaining variables. As mentioned previously, variable importances
were calculated via the built-in permutation-based procedure for both
forest models and by the corresponding p-values for each variable for
the main-effects only multilevel model. Note that because the denom-
inator degrees of freedom are not trivial to compute for multilevel
regression models, a Satterthwaite approximation is used in order to
estimate the p-values (Goodnight, 1980).

4.5 simulation results

First, simulation results will be presented for the proportion of vari-
ation explained metric. Because a possible confound in these results
could be how the methods handled missingness in different ways, re-
sults for this metric will only involve conditions with full data. Next,
simulation results for variable importance will be presented, aggre-
gated by each condition manipulation. Finally, the results for the three
special conditions will be given, first for the proportion of variation
metric, followed by the variable importance metric.

4.5.1 Proportion variation results

As expected, the naive main-effects only multilevel model performed
the worst with respect to predictive ability, followed by the two deci-
sion tree models, and then by the two random forest models. A larger
discrepancy between the predictive performance of the true model
compared to the other models became apparent when the ICC value
was high and covariates were included at both levels of the analysis.
Sample size also played a large role in prediction, where estimates of
the proportion of variation metric became more stable in conditions
with larger sample sizes. In fact, negative values for proportion of
variation explained are exhibited in the condition with the smallest
sample size, largest ICC, and covariates at both levels of the analysis.
At least for this simulation study, this indicates that predictive mod-
els built on smaller samples of multilevel data are unlikely to yield
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predictions that are generalizable to a future sample. Finally, CART
yields the poorest performance in the high ICC condition with covari-
ates at both levels for the two smallest sample size conditions. See
Figure 9 for the results of the proportion variation explained metric
by method, ICC, covariate level, and sample size.
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Figure 9: Proportion variation explained metric by statistical method (x-axis), ICC
value (columns), and covariate level (rows). Each plot in the matrix de-
picts the same thing, but with different sample sizes. Error bars depict
the standard deviation of 200 simulations within each condition.

4.5.2 Variable importance results

4.5.2.1 Sample size

Recall that for variable importance, the ideal pattern would show vari-
able 1 in first place, variable 2 in second place, and the remaining
eight variables in an eight-way tie for third place (and thus earning
a rank of 6.5). Despite being miss-specified, the naive model is most
indicative of this trend. Both conditional inference trees (ctree) and
forests (cf) are close to this desired pattern, which is expected given
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they are based on an unbiased algorithm. These conditional inference
methods do show some bias, however, for the variables that were
sometimes placed at the second level of the analysis depending upon
what simulation condition it was (variables 5, 8, and 10). The CART-
based methods showed their well-documented bias toward variables
that were continuous (variables 1, 3, 4, and 5) or non-binary (9 and 10).
Overall, sample size did not seem to play a large role for the variable
importance metric like it did with the proportion variation explained
metric. See Figure 10 for the results of the variable importance metric
by variable, statistical method, and sample size.
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Figure 10: Variable importance metric by variable (x-axis), statistical method (col-
umn) and sample size (row). Ranks were created and averaged across
the 200 simulations within each condition.

4.5.2.2 Missingness

Again, despite being miss-specified, the naive model is most indica-
tive of the desired trend. The general pattern among most methods is
also consistent across missingness conditions. CART, which was the
only method to use surrogate splits, becomes more uniform as the
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missingness increases, suggesting the surrogate splits may not work
very well with multilevel data and a large percentage of missingness.
Conditional inference trees were consistent across missingness con-
ditions, with one very large exception: the power to detect variable
1 as being important completely disappears once missingness is in-
troduced. This suggests that using a CART forest-based imputation
procedure is not appropriate to impute data for a conditional infer-
ence tree. Both forest methods were consistent across missingness
conditions, which suggests that using a CART forest-based imputa-
tion procedure for these methods does not result in any problematic
behavior for these simulation conditions. See Figure 11 for the results
of the variable importance metric by variable, statistical method, and
missingness.
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Figure 11: Variable importance metric by variable (x-axis), statistical method (col-
umn) and missingness (row). Ranks were created and averaged across
the 200 simulations within each condition.
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4.5.2.3 ICC and covariate level

Given the results of the proportion variation explained metric, vari-
able importance results will be discussed for both ICC and covariate
level together. Again, despite being miss-specified, the naive model
is most indicative of the desired trend. This pattern is also consistent
across both ICC and covariate level conditions. All methods show
consistent performance across the ICC condition when the covariate
level is level-1 only. Additionally, conditional inference methods yield
unbiased variable importance measures when the covariate level is
level-1 only, regardless of ICC. Bias is introduced to conditional infer-
ence methods when covariates are included at both levels of analysis,
and this bias is apparent even when the ICC is negligible. Somewhat
surprisingly, CART trees and forests show an artificial preference for
variables included at the second level of analysis under high ICC con-
ditions, and like conditional inference methods, this bias increases as
the ICC increases. See Figure 12 for the results of the variable impor-
tance metric by variable, statistical method, ICC, and covariate level.
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Figure 12: Variable importance metric by variable (x-axis), statistical method (col-
umn), ICC (row), and covariate level (facet). Ranks were created and
averaged across the 200 simulations within each condition.

4.5.3 Special conditions results

4.5.3.1 Proportion variation

Results regarding the proportion variation explained metric were sim-
ilar across the condition included in the original simulation and the
three special conditions of balanced clusters, a meaningful variable as-
sessed with more measurement error, and a moderate correlation be-
tween a meaningful variable and a meaningless variable. Both the bal-
anced clusters condition and the correlation condition yielded no dif-
ference compared to the original condition results. The extra measure-
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ment error condition yielded a decrease in predictive performance for
the true model, as well as a slight decrease for the two forest models.
This decrease is to be expected, because when a variable is measured
with more error, its relationship with the outcome becomes less re-
liable and so the effect detected in a training sample will be less
generalizable to a test sample. See Figure 13 for the results of the
proportion variation explained metric for the three special conditions
by method and special condition.
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Figure 13: Proportion variation explained metric by statistical method (x-axis), and
special simulation condition (column). ICC value, missingness, covari-
ate level, and sample size (L1/L2) were all fixed to be 0.15, 0% missing,
level-1 only, and 15/100, respectively. Error bars depict the standard
deviation of 200 simulations within each condition.

4.5.3.2 Variable importance

Much like the proportion variation explained metric, the results re-
garding the variable importance metric were also similar across the
conditions included in the original simulation and the three special
conditions. Both the balanced clusters condition and the measure-
ment error condition yielded no discernable difference compared to
the original condition results. The correlation condition yielded a
slight preference for the meaningless variable (number 3) that was
correlated with a meaningful variable (number 1), despite having no
simulated relationship with the outcome itself. See Figure 14 for the
results of the variable importance metric by variable, special condi-
tion, and statistical method.

4.6 discussion

The goal of this simulation study was to examine the performance
of recursive partitioning methods in multilevel data that have similar
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Figure 14: Variable importance metric by variable (x-axis), statistical method (row),
and special simulation condition (column). ICC value, missingness, co-
variate level, and sample size (L1/L2) were all fixed to be 0.15, 0% miss-
ing, level-1 only, and 15/100, respectively.

characteristics to what is found in traditional educational research.
In total, there were three main findings and one minor finding of
note. First, with regard to conditional inference methods, results indi-
cated that bias in variable importance is introduced when both level-1
and level-2 variables are included in the splitting procedure, and this
bias is exacerbated when the ICC increases. This follows conceptually
from traditional regression techniques, where standard error inflation
most often occurs due to the presence of level-2 variables incorpo-
rated at the first level of the analysis (Luke, 2004). Despite this bias,
conditional inference techniques can be expected to yield unbiased
variable importance in multilevel data structures where only level-1
variables are of interest, regardless of ICC. As mentioned previously
in Chapter 3, research is now beginning to focus on extending the
RE-EM algorithm to conditional inference trees (e.g., Fu & Simonoff,
2015). Removing the variation in the outcome due to the cluster level
in an iterative way in order to estimate the fixed-effects decision tree
structure may help to mitigate this substantial bias when the ICC is
high and covariates are included at both levels of the analysis. While
this is true for trees, this simulation showed that simply having an
ICC of zero is not enough to remove all the bias in variable impor-
tance when covariates are at both levels for conditional inference
forests. Incorporating the nesting into the permutation framework
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through some sort of multilevel permutation procedure or post-hoc
correction of standard errors in the conditional inference algorithm
could be a potential solution to be investigated for a conditional in-
ference forests.

Second, and most surprising, was the bias found in variable im-
portance for CART-based algorithms. Despite having a simulated re-
lationship with the outcome via a small main effect and a medium
interaction effect, variable 2 was not detected as being related to the
outcome given it was binary in nature. This indicates that variable
importance measures for CART-based methods can be unreliable for
small to medium effects, which are effect sizes commonly found in
the social sciences. Additionally, these algorithms showed a biased
preference for level-2 variables when the ICC was high and covari-
ates were included at both levels, despite theoretical reasons to be-
lieve that splits for continuous level-2 variables would be less likely
to be selected.

Third, the forest methods showed good predictive performance
across all conditions, with the exception of the condition with the
highest ICC and covariates included at both levels of the analysis.
This is especially true when the sample sizes were large. This finding
indicates that these methods could serve as effective analysis tools
in multilevel designs when the focus is purely on prediction rather
than variable selection. This is especially true when theory might not
be able to dictate how variables are related with respect to poten-
tial nonlinearities or higher order interactions and the ICC values are
negligible.

Finally, a bias in variable importance was detected for variables that
were correlated with a meaningful variable, but had no relationship
with the outcome. For this simulation, all variables were simulated
to be independent for simplicity, which is certainly not realistic for
applied datasets. This bias has been well-documented in the litera-
ture, and is the exact issue that Strobl et al. (2008) sought to solve
with their proposal of conditional variable importance. This condi-
tional importance metric does reduce the bias found in importance
measures due to correlated predictor variables, but was not investi-
gated here given that it is much more computationally expensive to
calculate and is only available for recursive partitioning methods that
use conditional inference. Future research needs to be performed to
better understand the impact of complex relationships among predic-
tor variables, and their impact on variable importance metrics in the
context of multilevel designs.

Based on the results of this simulation, I propose the following
recommendations for applied researchers interested in using these
techniques for either exploration or prediction. As a preliminary step,
impute missing data if necessary. Then, use the ICC from an intercept-
only model in conjunction with the levels at which the study variables
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were measured to determine any potential biases that may arise when
running a forest model. After that, run both a CART forest and a
conditional inference forest to estimate the proportion of variation ex-
plained (in the case of a continuous variable) or classification error
(in the case of a categorical variable). If the dataset is very large, this
can be estimated with a hold out test set. Otherwise, if the dataset is
small, k-fold cross-validation at the cluster level can be used, which
has been shown to provide approximately unbiased estimates of test
error in the presence of dependent data (Rice & Silverman, 1991; Se-
gal, 1992). Finally, if the forest methods perform consistently better,
then some evidence exists to warrant the belief that a main-effects
only model may be missing some potential nonlinear relationships
or interactions that are likely to generalize to a future sample. Other-
wise, if the main-effects only model performs similarly or better than
the forest models, it is likely that any nonlinear relationships or inter-
actions would either be due to an extremely small effect or statistical
noise.



5
A P P L I C AT I O N P H A S E

The purpose of this chapter is to evaluate how the recommendations
created using the simulation results from Chapter 4 perform in prac-
tice. In total, three datasets were chosen that represent a variety of
potential datasets that are typically collected in the field of educa-
tion. The general approach for all three analyses will follow what
was outlined as best practices in the previous chapter. That is, after
missing data are handled adequately, the ICC and the levels at which
the predictors occur will be considered and compared to the simula-
tion results. Next, the proportion of variation metric for a conditional
inference forest and a random forest will be compared to a naive
main-effects only model. Finally, based on these results, both variable
importance and predicted value plots will be examined for potential
nonlinearities and interactions, and subsequent conclusions will be
drawn.

5.1 high school and beyond survey

High School & Beyond is a nationally representative survey of U.S.
public and Catholic high schools conducted by the National Center
for Education Statistics (NCES). The data are a subsample of the 1982

survey, with 7,185 students (level-1) from 160 schools (level-2). On av-
erage, 45 students from each school were surveyed (Range = 14 - 67).
This dataset is publicly available in the nlme package in R (Pinheiro,
Bates, DebRoy, Sarkar, & R Core Team, 2015), and is often used for tu-
torials for two-level multilevel models, most notably in Raudenbush
and Bryk (2002). This dataset was chosen for the first application
given its simplicity, large sample size, no missing data, and because
it is publicly available.

The outcome of interest in this dataset is student math achievement.
Possible variables of interest include student race (1 = minority, 0 =
other), student sex (1 = female, 0 = male), school size (number of
students per school), school sector (1 = Catholic, 0 = public), and the
following measures:

SES. A standardized scale of socio-economic status was constructed
from variables measuring father’s education and occupation, mother’s
education, family income, and the material possessions of the house-
hold. Higher values correspond to higher levels of socio-economic
status.

School-level SES. A measure that corresponds to the aggregated
SES value of a particular school.

49
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Academic track. A measure that corresponds to the proportion of
students in a particular school who are on the highest academic track.

Positive disciplinary climate. A measure indicating the disciplinary
climate of the school was based on aggregated student feelings of
safety, aggregated student perceptions of fairness and effectiveness
of discipline at the school, and the number of discipline incidents
among students (e.g., students talking back to teachers, refusal to
obey instructions, etc.). Higher values correspond to higher levels of
positive disciplinary climate.

High minority status. A measure that corresponds to the propor-
tion of minority students in a particular school, dichotomized such
that schools with more than 40% minority enrollment are labeled as
having high levels of minority enrollment, while schools with less
than 40% minority enrollment are labeled as having low levels.

5.1.1 Step 1: ICC

Running an intercept-only model with students nested within schools
yields an ICC of 0.18, which indicates that 18% of the variance in math
achievement is attributable to the school. Looking at the simulation
results, this value is slightly larger than the medium ICC condition
of 0.15. Because covariates are included at both levels of the analysis,
a potential bias toward level-2 variables could exist in both CART
forests and CFOREST.

5.1.2 Step 2: Estimate proportion of variation explained

Given the large sample size, the data were split into a training and a
testing set rather than performing k-fold cross-validation in order to
calculate the proportion of variation in the outcome explained by the
statistical model. Refer to Table 5 for the estimates of the proportion
of variation metric for the naive model and both forest models. The
results indicate that the forest models perform similarly to the naive
main-effects only model, with the main-effects only model explaining
about 1% more variation in the outcome. This implies that potential
nonlinearity or interaction effects are either extremely small or unable
to generalize to a future sample.

5.1.3 Step 3: Examine variable importance and predicted value plots

Despite the similar performance between methods, both variable im-
portance plots and predicted value plots were examined. Variable im-
portance can be seen in Figure 15. Averaged across the three models,
SES and student minority status were found to be the most predictive
of student math achievement, while school minority status was found
to be the least predictive. This means that despite a bias for level-2
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Table 3: Proportion of variation explained for each method in the High School and
Beyond Survey

Method Proportion of variation explained

(hold out test set)

Naive model 0.20

CART forest 0.19

CFOREST 0.19

variables, both forest methods actually chose level-1 variables as be-
ing the most predictive of the outcome. Additionally, both forest mod-
els followed similar trends with the exception of the student minority
status, which is to be expected given that CART-based methods have
a preference toward variables with many potential split points (i.e.,
not binary). The naive main-effects only model did not have much
discriminatory power between variables, which is most likely due to
the fact that variable importance was based on p-values, and the sam-
ple size for this study was fairly large.
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Figure 15: Variable importance for a naive main-effects only model, a cart forest,
and cforest for the High School and Beyond Survey. Note that impor-
tance were standardized to allow for easier comparisons. The x-axis is
ordered such that the most important variable (averaged across all mod-
els) is the furthest left.

Based on variable importance, predicted value plots were investi-
gated further for SES and student minority status. Plots for these two
main effects and their corresponding interaction from the CFOREST
model can be seen in Figure 16. The predicted value plot depicts a
positive, fairly linear relationship between SES and achievement. Ad-
ditionally, a negative relationship appears for student minority sta-
tus, such that minority students tend to have lower achievement lev-
els compared to non-minority students. Finally, there appears to be
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an interaction between these two variables, such that non-minority
students appear to benefit more from having high SES compared to
minority students, who appear to benefit less. However, given the
similar performance between the forest models and the naive model,
this effect is either very small or unlikely to generalize to a future
sample.

0

5

10

15

20

25

−4 −2 0 2
SES

P
re

di
ct

ed
 M

at
hA

ch
SES − Predicted

0

5

10

15

20

25

No Yes
Minority

P
re

di
ct

ed
 M

at
hA

ch

Minority − Predicted

0

5

10

15

20

25

−4 −2 0 2
SES

P
re

di
ct

ed
 M

at
hA

ch

Minority

No

Yes

SES x Minority Interaction − Predicted

Figure 16: Predicted value plots for SES and student minority status from a CFOR-
EST model. For SES, the actual prediction is shown with the solid line,
while a smoothed loess approximation to this prediction is displayed
with the dashed line. The interaction plot just depicts the smoothed ap-
proximation for simplicity. Each gray dot seen in both main effects plots
represents an observation in the dataset.

Recall that these plots are simplified versions of partial dependence
plots that vary one or two variables while holding the remaining vari-
ables constant (see Chapter 2), and that this simplification is made
to save on computation time1. In this case, the variables were held
constant at their median value (in the case of a continuous variable),
or most endorsed category (in the case of a categorical value). The
values used were from a hypothetical individual who was a female
non-minority with an SES of 0, who went to a public school with 1016

students and had 53% of its students on an academic track, a school-
level SES of 0.038, and was less than 40% minority. However, it is im-
portant to confirm that these results match well with the results from
a true partial dependence plot as well as what the raw data might
suggest. The predicted value plot using a CFOREST model seen in
Figure 16 looks to be a good approximation to both a true partial de-
pendence plot using the same statistical model (seen in Figure 17) and
the trends found in the raw data (seen in Figure 18). Additional plots
based on a CART forest model which show a similar result can be

1 Indeed this was the case for this dataset, which took over 2 hours to compute the par-
tial dependence data for Figure 17, while the predicted value plot seen in Figure 16

took about 1 second.
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found in Section A.2 along with predicted value plots examining the
relation between the school-level SES and academic track variables.
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Figure 17: A true partial dependence plot for SES and student minority status
from a CFOREST model. The interaction plot just depicts the smoothed
approximation for simplicity. Each gray dot seen in both main effects
plots represents an observation in the dataset.

5.1.4 Conclusion

Overall, the main-effects only model performed slightly better (i.e.,
1% more variation explained) with respect to predictive performance
compared to the two forest models, which performed similarly. This
implies that any nonlinearity or interactions that are discovered are
most likely very small effects or unlikely to generalize to a future
sample. By inspecting variable importance plots, it was determined
that both SES and student minority status were potential predictors of
interest. Predicted value plots showed that SES appeared to be well
approximated by a linear trend. They also showed some evidence
for a potential interaction between the SES and student minority sta-
tus variables, such that non-minority students appear to benefit more
from having high SES compared to minority students, who appear to
benefit less. Based on the predictive performance comparison, how-
ever, this interaction is either extremely small or unlikely to gener-
alize to a future sample. Sure enough, testing such an interaction
model on the hold-out test set yields a statistically significant effect
(p = 0.0003), and the amount of variation explained at level-1 by
this interaction is very low (R2level−1 = 0.003). In total, there was not
much evidence for specifying more complex functional forms beyond
a main-effects only model for this dataset. This is not entirely surpris-
ing, given that this subset of the High School and Beyond survey is
quite popular to use in tutorials, and one of the reasons for this is be-
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Figure 18: Raw data for SES and student minority status using a loess smoother.
The interaction plot just depicts the smoothed approximation for simplic-
ity. Each gray dot seen in both main effects plots represents an observa-
tion in the dataset. Note that the trend predicted low-SES scores is due
to the smoother being more affected by an outlying observation than the
corresponding forest models.

cause it is “well-behaved” with respect to being adequately specified
by a main-effects only model.

5.2 responsive classroom efficacy study

The Responsive Classroom Efficacy Study was a longitudinal, ran-
domized controlled trial examining the impact of a social and emo-
tional learning intervention in upper elementary school grades (Rimm-
Kaufman et al., 2014). Schools were randomized into either a treat-
ment group or control group. Third, fourth, and fifth grade teachers
in each school either took part in the training program (if in a treat-
ment school), or conducted business as usual (if in a control school).
Results examining the efficacy of the Responsive Classroom approach
found no statistically significant direct effect of training. However,
teacher fidelity of implementation (i.e., the degree to which the train-
ing is utilized as intended) was found to be an important mediator
of this direct effect, such that treatment assignment predicted teacher
fidelity of implementation, which in turn predicted student achieve-
ment outcomes.

Various studies have been conducted with the teachers enrolled in
this study to further examine the impact of both the Responsive Class-
room approach and fidelity of implementation on other outcomes,
such as teacher-student interaction quality and the use of standards-
based math teaching practices (Abry, Rimm-Kaufman, Larsen, & Brewer,
2013; Ottmar, Rimm-Kaufman, Berry, & Larsen, 2013). These findings
suggest that fidelity of implementation is critical to understanding
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the contribution of the Responsive Classroom approach on a variety
of outcomes. Thus, there is a need for research that examines baseline
factors that predict higher or lower levels of fidelity of implementa-
tion. In other words, are there signs and signals that can be identified
before schools even receive training that may forecast a teacher’s up-
take of the intervention?

In this current study, recursive partitioning methods are used to
explore possible baseline teacher characteristics that might be related
to how these teachers implemented their training (if received). The
data used for this study are a subsample from the original sample
(original N = 350), given that some teachers did not have enough
covariate data to perform an imputation. In total, 288 teachers (level-
1) from 24 schools (level-2; 13 treatment, 11 control) were included in
the sample, with an average sample of 12 teachers per school (Range
= 6 - 20). This dataset offers unique methodological challenges with a
small sample size, moderate rates of missingness (13% missingness in
variables on average), and the majority of predictors being measured
at level-1.

The outcome of interest in this dataset is fidelity of implementation
of the training program. An important challenge emerged in measur-
ing fidelity of implementation of the Responsive Classroom approach.
As the intervention was based on various educational and develop-
mental theories, the training program shares common qualities with
what is considered to be typical elementary school practices (Rimm-
Kaufman et al., 2014). Because of this, fidelity of the training program
was assessed in both intervention and control schools using measures
that were free of terminology specific to the training program. Thus,
the outcome represents the fidelity of implementation of the training
program in intervention schools and teachers’ use of practices that
resemble Responsive Classroom practices in the control schools.

Fidelity of implementation was created as a factor score via confir-
matory factor analysis using three different fidelity measures (sam-
ple alpha = .94). The first measure, the Classroom Practices Obser-
vation Measure, was an observationally-based measure of teachers’
use of Responsive Classroom practices. Research assistants observed
and rated teachers and classrooms on 16 items during a one-hour
morning observation (sample alpha = .87) and 10 items during a one-
hour math lesson (sample alpha = .65). Items were written without
training-specific language, so the same assessment was used in both
intervention and control schools. Items were rated on a scale rang-
ing from one (not at all characteristic) to three (very characteristic).
The second measure, the Classroom Practices Teacher Survey, was
a teacher-reported measure of adherence to Responsive Classroom
practices consisting of 46 items rated on a 5-point scale, with one
indicating not at all characteristic and five indicating extremely char-
acteristics. Items were averaged to create a composite rating (sample
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alpha = .91). The last measure, the Classroom Practices Frequency
Scale, was also a teacher-reported measure and assessed perceived
frequency of the use of Responsive Classroom practices over the course
of a school year, consisting of 11 items rated on an 8-point scale with
one indicating they almost never used this practice and eight indicat-
ing they used this practice more than once a day. Items were averaged
to create a composite rating (sample alpha = .88). A factor score was
created based on these three measures and used as an outcome in the
subsequent analysis.

Three broad categories were identified as potential predictors of
interest for this fidelity measure: demographic characteristics, study-
specific attributes, and teaching practices and beliefs. The demographic
predictors of interest are teacher gender, if the teacher had their Mas-
ter’s degree, years of teaching experience, teacher grade, and treat-
ment assignment.

The study-specific attributes are:

General teacher-student interactions. Teachers rated two items such
as “I use hand signals to gain the attention of my class (e.g., raise
hand, chime, clapping pattern)” and “I greet each student individu-
ally as he/she enters the classroom for the day (e.g., welcome them
by name, talk to them)” on a scale ranging from one (not at all charac-
ter characteristic) to five (extremely characteristic). These items were
averaged to create a composite rating, where higher values indicate a
higher tendency for these interactions to occur (sample alpha = .29).
Note that these two items were among the 46 used to calculate the
Classroom Practices Teacher Survey, which was used in the construc-
tion of the fidelity factor score.

Use of class meetings. Teachers rated three items such as “In the
morning, we have a class meeting where we sit in a circle facing one
another” and “I have a predetermined routine in place to structure
class meetings (e.g., to determine out greeting, who has an announce-
ment to make, or in what activities we engage)” on a scale ranging
from one (not at all characteristic) to five (extremely characteristic).
These items were averaged to create a composite rating, where higher
values correspond to a higher tendency for these meetings to occur
(sample alpha = .71). Note that these three items were also among the
46 used to calculate the Classroom Practices Teacher Survey, which
was used in the construction of the fidelity factor score.

The teaching practices and beliefs are:

Teachers’ efficacy about their influence in school decision-making.
Teachers rated three items such as “How much can you influence the
decisions that are made in your school?” and “How freely can you
express your views on important school matters?” on a scale ranging
from one (not at all) to five (a great deal). These items were averaged
to create a composite rating, where higher values correspond to a
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stronger belief that they play a role in the school’s decisions (sample
alpha = .84).

Teacher self-efficacy in relation to instructional strategies. Teach-
ers rated four items such as “To what extent can you craft good ques-
tions for your students?” and “How well can you implement a vari-
ety of instructional strategies in your classroom?” on a scale ranging
from one (not at all) to five (a great deal). These items were averaged
to create a composite rating, where higher values correspond to more
confidence regarding instructional strategies (sample alpha = .84)

Teacher self-efficacy in relation to classroom management. Teach-
ers rated four items such as “How much can you control disruptive
behavior in the classroom?” and “How much can you get students to
follow classroom rules?” on a scale ranging from one (not at all) to
five (a great deal). These items were averaged to create a composite
rating, where higher values correspond to higher levels of classroom
management (sample alpha = .92).

Teacher self-efficacy to create a positive school climate. Teachers
rated five items such as “How much can you do to make the school
a safe place?” and “How much can you do to get students to trust
teachers?” on a scale ranging from one (not at all) to five (a great
deal). These items were averaged to create a composite rating, where
higher values correspond to stronger beliefs in being able to create a
positive school climate (sample alpha = .75).

Teachers’ attitude toward teaching as a career. Teachers rated eight
items such as “I feel I receive the appropriate recognition for my ef-
forts and hard work” and “I feel that I have freedom to make impor-
tant decisions about my work” on a scale ranging from one (strongly
disagree) to four (strongly agree). These items were averaged to create
a composite rating, where higher values correspond to more positive
feelings toward teaching as a career (sample alpha = .82).

Teachers’ perception of principal involvement. Teachers rated 10

items such as “The principal at my school makes clear to the staff his
or her expectations for meeting instructional goals” and “The princi-
pal at my school sets high teaching standards for teaching” on a scale
ranging from one (strongly disagree) to four (strongly agree). These
items were averaged to create a composite rating, where higher val-
ues correspond to a more positive perception of the principal (sample
alpha = .82).

Teacher attitudes toward school programs. Teachers rated five items
such as “In my school, you can see real continuity from one program
to another” and “In my school, curriculum, instruction, and learning
materials are well-coordinated across the different grade levels” on
a scale ranging from one (strongly disagree) to four (strongly agree).
These items were averaged to create a composite rating, where higher
values correspond to more positive attitudes toward school programs
(sample alpha = .74).
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Teacher attitudes toward Standards of Learning. Teachers rated
items about their attitude toward the Virginia state test, the Standards
of Learning. The four items included: “In my school, the standards
of learning limit the range of instructional practices that I use” and
“The standards of learning provide me with instructional targets that
inform my instructional focus” on a scale ranging from one (strongly
disagree) to four (strongly agree). These items were averaged to create
a composite rating, where higher values correspond to more positive
attitudes toward standards of learning (sample alpha = .63).

Teacher attitudes toward other teachers. Teachers rated 11 items
such as “How many teachers at your school maintain discipline in
the entire school, not just their classroom?” and “How many teachers
at your school set high standards for themselves?” on a scale ranging
from one (almost none) to five (nearly all). These items were averaged
to create a composite rating, where higher values correspond to a
more positive perception of other teachers at the school (sample alpha
= .93).

5.2.1 Initial missingness step

The first step to be conducted is to perform data imputation, because
this dataset has substantial missingness between teachers who com-
pleted baseline measures and those who were still involved with the
study one to two years later. Because this is a longitudinal study, at-
trition is a common occurrence as teachers leave to take new posi-
tions, leave the teaching profession altogether, etc. Additionally, the
third grade teachers had baseline data and fidelity measured one year
apart, while the fourth and fifth grade teachers had baseline data and
fidelity measured two years apart. In total, 32% of the sample with
baseline data were no longer involved in the study when fidelity was
assessed.

Recall that single imputation by the means of a CART forest prox-
imity matrix can only impute values for predictor variables. Thus, im-
puting data when there is missingness for both the predictors and the
outcome requires a two-step process. First, the outcome (32% missing)
is imputed via a single imputation using chained equations that takes
the cluster level into account via a random intercept of school. Then,
with complete data for the outcome, the non-parametric imputation
based on the CART forest can impute the predictor values (12% miss-
ing on average), resulting in a complete dataset.

5.2.2 Step 1: ICC

Running an intercept-only model yields an ICC of 0.65, which in-
dicates that 65% of the variance in fidelity of implementation is at-
tributable to the school. While this value is much higher than what
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Table 4: Proportion of variation explained for each method in the Responsive Class-
room Efficacy Study

Method Proportion of variation explained

(hold out test set)

Naive model 0.39

CART forest 0.35

CFOREST 0.35

is typically encountered in cross-sectional multilevel research (Peugh,
2010), it is not surprising given the context of the research design.
Because the fidelity measures were designed to assess teaching prac-
tices related to the training program, it is to be expected that teachers
who are exposed to training will have higher fidelity. This causes the
outcome distribution to be severely bimodal because of an important
predictor at the second level (i.e., treatment assignment), thus result-
ing in a large ICC detected in an intercept-only model. This large ICC
should not be problematic with respect to potential variable bias in
the forest models, because all but one variable (treatment assignment)
was measured at the teacher-level (i.e., level-1).

5.2.3 Step 2: Estimate proportion of variation explained

Given the smaller sample size, proportion of variation explained was
estimated by using 5-fold cross-validation at the second level of the
analysis (i.e., school). Refer to Table 5 for the estimates for the naive
model and both forest models. The results indicate that the forest
models actually perform worse compared to the naive main-effects
only model. This implies that more complex model specifications that
involve nonlinearity or interactions either have very small effects or
are unlikely to generalize to a future sample.

5.2.4 Step 3: Examine variable importance and predicted value plots

Variable importance and predicted value plots were investigated, fo-
cusing solely on main effects given that the naive main effects model
outperformed the two forest models. Variable importance for each of
the 16 predictors can be seen in Figure 19. Averaged across all three
models, treatment assignment and the general teacher-student inter-
action variable consisting of only two items were by far the most pre-
dictive, while teachers’ attitudes toward school-based programs and
whether they have a Master’s degree were the least predictive. Both
forest models followed similar trends with the exception of grade-
level and teacher gender, which is to be expected given that CART-
based methods have a preference toward variables that have many po-
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tential split points (grade-level and teacher gender had three and two,
respectively). The CFOREST model showed no preference among the
vast majority of the teacher self-report variables, further solidifying
simulation study results that found no variable bias for CFOREST
when all variables are measured at level-1.
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Figure 19: Variable importance for a naive main-effects only model, a cart forest,
and cforest for the Responsive Classroom Efficacy Study. Note that im-
portance were standardized to allow for easier comparisons. The x-axis
is ordered such that the most important variable (averaged across all
models) is the furthest left.

Based on variable importance, predicted value plots were investi-
gated further for treatment assignment and general teacher-student
interaction. Given the lack of evidence for nonlinearity and interac-
tions, predicted values plots will only show main effects. Plots for
these two main effects from a main-effects only multilevel model
can be seen in Figure 20, while the same plot using raw data and
a loess smoother can be seen in Figure 21. The predicted value plot
depicts a large, positive relationship for treatment assignment, such
that teachers in intervention schools have higher intervention fidelity
than those in control schools. Additionally, the predicted value plot
depicts a positive relationship for general teacher-student interaction,
such that those teachers who report using hand signals to gain the at-
tention of their class and greeting students individually everyday at
baseline tend to have higher levels of implementation fidelity one to
two years later. Because this composite had poor reliability indicating
these two practices were moderately unrelated in this sample, follow-
up correlations were conducted to determine which practice had the
stronger relationship with fidelity of implementation. Greeting stu-
dents at the door (r = .24) was found to have a stronger relationship
with fidelity compared to using hand signals (r = .13).

When compared to the raw data plot in Figure 21, the predicted
value plot looks to be a good approximation for treatment, but under-
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Figure 20: Predicted value plot for treatment assignment and general teacher-
student interaction from a multilevel model. Because treatment was as-
signed at the school-level, results are aggregated and shown with error
bars that represent the standard error of the mean for that particular
school. Each gray dot for the general teacher-student interaction plot on
the right represents a teacher in the dataset.

estimates the relation for general teacher-student interaction. Again,
recall that predicted value plots are simplified versions of partial de-
pendence plots, where variables are held constant at their median
value (in the case of a continuous variable), or most endorsed cate-
gory (in the case of a categorical variable). Thus, it is important to be
wary of the potential bias that can be introduced by this simplifica-
tion by comparing the result to the true predicted main effect, seen
in Figure 22. As evident from the plot, the statistical model is not the
source of the bias found in Figure 20; rather, it is the loss of statistical
information in the predicted value plotting procedure. This highlights
the importance of confirming the result of a predicted value plot with
partial dependence plots and raw data plots.

5.2.5 Conclusion

Overall, both forest models performed worse than the naive model
with respect to predictive accuracy, indicating that there is not much
evidence for potential nonlinearity or interactions that are likely to
generalize to a future sample. By inspecting variable importance plots,
it was determined that both treatment assignment and general teacher-
student interactions were potential predictors of interest. Predicted
value plots for treatment assignment showed a large, positive rela-
tionship with fidelity, such that teachers in intervention schools have
higher intervention fidelity than those in control schools. General
teacher-student interaction also showed a positive relationship with
fidelity, such that those teachers who report using hand signals to
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Figure 21: Raw data plots for treatment assignment and general teacher-student
interaction from a loess smoother. Because treatment was assigned at
the school-level, results are aggregated and shown with error bars that
represent the standard error of the mean for that particular school. Each
gray dot for the general teacher-student interaction plot on the right
represents a teacher in the dataset.

gain the attention of their class and greet students individually every-
day at baseline tend to have higher levels of implementation fidelity
one to two years later.

The first finding indicates the impact of the training program. Teach-
ers randomized to the intervention group showed higher levels of
use of the practices. The second finding is somewhat more nuanced
and surprising. The Responsive Classroom approach has two hall-
mark qualities—it is designed to create a caring classroom commu-
nity and to support teachers’ ability to manage behavior effectively.
Each of these items in the general teacher-student interaction compos-
ite variable corresponds to one aspect of the Responsive Classroom
approach. Greeting students as they come into the classroom pro-
vides teachers with a way of creating a warm, caring environment.
Teachers demonstrate caring toward their students and teachers can
observe the students’ attitude so that they are able to respond sensi-
tively to the challenges that might emerge during the day (e.g., if the
students did not get enough sleep or had a rough time on the bus).
Using hand signals is a very effective way of managing the classroom
and preventing misbehavior. Hand signals are efficient and proac-
tive and create a channel of communication between teachers and
students that help teachers and students shift from one activity to
the next and to move efficiently through the managerial tasks in the
classroom.

Compared to the first study, both forest models performed much
worse in comparison to the main effects only model. There are two
main reasons for this. First, treatment assignment played such a large
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Figure 22: The true predicted main effects for general teacher-student interaction
from a multilevel model. Note that this fit is much more accurate than
the corresponding fit from the predicted value plotting procedure seen
in Figure 20, indicating that predicted value plots occasionally contain
a loss of statistical information and results must be confirmed with true
partial dependence plots and raw data plots.

role in predicting fidelity of implementation, and as a result, there
was little systematic variation left to explain. The second reason is
the small sample size. As evident in the simulation study, even if
nonlinearity and/or interactions exist in the data generating process,
forest models have a hard time detecting it in small sample sizes.

5.3 my teaching partner-secondary study

The My Teaching Partner-Secondary Study examined the impact of a
Web-mediated intervention focused on improving teacher-student in-
teractions in the classrooms (Allen, Pianta, Gregory, Mikami, & Lun,
2011). Results from a randomized controlled trial indicated that the
intervention resulted in student achievement gains in the year follow-



64 application phase

ing completion of the intervention, and this effect was mediated by
changes in teacher-student interaction qualities targeted by the train-
ing program. In this current study, recursive partitioning methods
are used to explore the relation between various student and teacher
demographics and psychological constructs measured in the fall and
student achievement on a standardized test in the spring. The data
used for this study are a subsample from the original study (original
N = 2237), using only data collected for students in traditional class-
rooms (rather than block-scheduled classrooms) in the first year of
the project. A total of 1,084 students and 68 different teachers partic-
ipated in the first year, with classes split across Math (33%), English
(32%), History (21%), and Science (14%). On average, there were 15

students per teacher (range = 1 - 28).
The outcome of interest in this dataset is student achievement as-

sessed at the end of the year by the Virginia state standards assess-
ment instrument. Possible variables of interest include prior achieve-
ment, student free/reduced price lunch status, student race, student
sex, teacher race, teacher sex, teacher age, teacher years of experience,
teacher degree, if the class is a high school class, if the class is a math-
/science class, if the teacher was in the training or control condition,
and the following self-report measures:

Teacher-report of school environment. Teachers rated 18 items
such as, “School administrators are knowledgeable and competent,”
and “Teachers help make decisions about things that directly affect
them” on a scale ranging from one (never) to six (always). These items
were averaged to create a composite rating, where higher values indi-
cate a more positive work environment (sample alpha = .97).

Teacher stress. Teachers rated 12 items such as, “Having little time
to prepare” and “Too much paperwork” on a scale ranging from one
(no stress/not noticeable) to five (high stress/extremely noticeable).
These items were averaged to create a composite rating, where higher
values indicate higher levels of work-related stress (sample alpha =
.87).

Defiant behavior in class. Students’ defiance was assessed using
a subscale of the Patterns of Adaptive Learning Scale (Midgley et
al., 2000). Students rated four items such as, “I sometimes annoy my
teacher during class” and “I sometimes disturb the lesson that is go-
ing on in class” on a scale ranging from one (not at all true) to five
(very true). These items were averaged to create a composite rating,
where higher values indicate higher levels of defiance (sample alpha
= .79).

Mastery of achievement goals. Students’ mastery of achievement
goals was assessed using a subscale of the Patterns of Adaptive Learn-
ing Scale (Midgley et al., 2000). Students rated three items such as,
“It’s important to me that I improve my skills this year” and “One of
my goals in class is to learn as much as I can” on a scale ranging from
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one (not at all true) to five (very true). These items were averaged to
create a composite rating, where higher values indicate higher levels
of mastery (sample alpha = .73).

Academic competence. Students’ academic competence was assessed
using a subscale of the Patterns of Adaptive Learning Scale (Midgley
et al., 2000). Students rated three items such as, “I’m certain I can
master the skills taught in class this year” and “Even if the work is
hard, I can learn it” on a scale ranging from one (not at all true) to
five (very true). These items were averaged to create a composite rat-
ing, where higher values indicate higher competence (sample alpha
= .65).

Peer relationships. Students’ ratings of their peer relationships was
assessed using a scale developed by Mikami, Boucher, and Humphreys
(2005). Students rated four items such as, “How many students in this
class do you get along with?” and “How many students in this class
respect you and listen to what you have to say?” on a scale ranging
from one (I don’t get along with anyone in this class/nobody) to five
(I get along with everybody in this class/all of them). These items
were averaged to create a composite rating, where higher values indi-
cate more positive peer relationships (sample alpha = .67).

Teacher respect. Students rated three items such as, “This teacher
interrupts me when I have something to say” and “This teacher never
listens to my side” on a scale ranging from one (not at all true) to
four (very true). These items were averaged to create a composite
rating, where higher values indicate higher levels of perceived respect
(sample alpha = .77).

Teacher caring. Students rated three items such as, “This teacher
likes me” and “This teacher doesn’t seem to enjoy having me in class”
on a scale ranging from one (not at all true) to four (very true). These
items were averaged to create a composite rating, where higher values
indicate higher levels of perceived teacher caring (sample alpha = .66).

Teacher control. Students rated six items such as, “Everyone knows
what the classroom rules are” and “The classroom rules are strictly
enforced” on a scale ranging from one (strongly disagree) to four
(strongly agree). These items were averaged to create a composite
rating, where higher values indicate higher levels of rule enforcement
(sample alpha = 0.77).

Educational relevance. Students rated four items such as “It’s easy
to see what we’re learning really matters” and “What I learn will
probably help me in the future” on a scale ranging from one (not
at all true) to five (very true). These items were averaged to create a
composite rating, where higher values indicate a higher perception
of educational relevance.

Autonomy support. Teachers’ ratings of cognitive autonomy sup-
port for students was assessed using items created for the MTP-S
study (Ruzek et al., under review). Teachers rated six items such as
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“Students often get to make decisions about how the class is run” and
“Students often feel like they get to help lead the class” on a scale
ranging from one (not at all true) to five (very true). These items were
averaged to create a composite rating, where higher values indicate
higher levels of cognitive autonomy support.

Academic pressure. Students’ rated their perceived academic pres-
sure from their teacher using items taken from the Patterns of Adap-
tive Learning Scale (Midgley et al., 2000). Students rated five items
such as “This teacher doesn’t let me do just easy work, but makes
me think” and “This teacher accepts nothing less than my full effort”
on a scale ranging from one (not at all true) to five (very true). These
items were averaged to create a composite rating, where higher val-
ues indicate higher levels of academic pressure.

This dataset offers unique methodological challenges with a mod-
erate sample size of approximately 1000 students, moderate rates of
missingness, and a large number of self-report measures at both levels
of the analysis with a wide range in the reliability of these measures.

5.3.1 Initial missingness step

The first step to be conducted is to perform data imputation, because
this dataset has missingness in both the outcome and predictors. As
with the second applied dataset, imputation is performed with a two-
step process. First, the outcome (19% missing) is imputed via a single
imputation using chained equations that takes the cluster level into
account via a random intercept of classroom. Then, with complete
data for the outcome, the non-parametric imputation based on the
CART forest can impute the predictor values (7% missing on average)
resulting in a complete dataset.

5.3.2 Step 1: ICC

The hierarchical structure of the dataset in this study actually con-
sists of three-levels: students, teachers, and schools. Because Allen et
al. (2011) found no difference between their reported two-level model
and a three-level model taking school into account, and the school-
level for this study only has an ICC of 0.05, the school-level will be
ignored. Running an intercept-only model with two-levels (i.e., chil-
dren nested within teacher) yields an ICC of 0.47, which indicates
that 47% of the variance in student achievement is attributable to
the teacher level. Again, this value is much higher than what is typ-
ically encountered in cross-sectional multilevel educational research
(Peugh, 2010), and is much higher than the large ICC condition in
the simulation study. Because the variables of interest were measured
at both the student-level and the teacher-level, one can expect bias
toward the teacher-level variables to occur.
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Table 5: Proportion of variation explained for each method in the My Teaching
Partner-Secondary Study

Method Proportion of variation explained

(hold out test set)

Naive model 0.16

CART forest 0.24

CFOREST 0.24

5.3.3 Step 2: Estimate proportion of variation explained

Given the moderate sample size, proportion of variation explained
was estimated by using 5-fold cross-validation at the second level
of the analysis (i.e., teacher). Refer to Table 5 for the estimates for
the naive model, and both forest models. The results indicate that
the forest models explain about 8% more variation in the outcome
compared the naive main-effects only model. This implies that more
complex model specifications that involve nonlinearity or interactions
may be present in the data and are likely to generalize to a future
sample.

5.3.4 Step 3: Examine variable importance and predicted value plots

Variable importance and predicted value plots were investigated fur-
ther to identify the source of the additional variation found in the
forest models. Variable importance for each of the 25 predictors can
be seen in Figure 23. Averaged across all three models, prior achieve-
ment of the student by far is the most predictive of student achieve-
ment in the following year, while whether the class was a math or sci-
ence class and the race of the teacher were the least predictive. Both
forest models followed similar trends, deviating where expected due
to the inherent preference of CART-based methods for variables with
many split points. The multilevel model was less discriminating with
respect to the prior achievement variable, determining that both prior
achievement and free/reduced price lunch status had similar levels
of predictive power. Additionally, the forest methods showed a prefer-
ence for teacher-level variables compared to the multilevel model, fur-
ther solidifying the findings of the simulation study regarding when
the ICC is high and the variables are measured at both levels of the
analysis.

Based on variable importance, predicted value plots were investi-
gated further for student prior achievement, free/reduced price lunch
status, and teacher-reported school environment. No interactions were
detected among these variables, and so the plots will show main ef-
fects only in search of potential nonlinearity. Plots from a CART forest
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Figure 23: Variable importance for a naive main-effects only model, a cart forest,
and cforest for the My Teaching Partner-Secondary Study. Note that
importance were standardized to allow for easier comparisons. The x-
axis is ordered such that the most important variable (averaged across
all models) is the furthest left.

model for these three main effects can be seen in Figure 24, while the
same plot using raw data and a loess smoother can be seen in Fig-
ure 25. The predicted value plot depicts a positive, slightly nonlinear
relation for prior achievement, such that students with higher student
achievement in the previous year tend to have higher achievement in
the subsequent year, and a substantial increase occurs around a prior
achievement value of 450. Despite being the second and third most
important variables, both free/reduced price lunch status and teacher
self-reported rating of the school environment have very little predic-
tive power. A small, negative relation exists for free/reduced price
lunch, such that those who are eligible tend to have lower achieve-
ment levels. School environment rating has very little if any evidence
for predicted relation, though the predicted value plot may be sup-
pressing a curvilinear relation.

When compared to the raw data plot in Figure 25, the predicted
value plot looks to be a good approximation for prior achievement,
but underestimates the relation for both free/reduced price lunch and
teacher-reported ranking of school environment. Again, recall that
predicted value plots are simplified versions of partial dependence
plots, where variables are held constant at their median value (in
the case of a continuous variable), or most endorsed category (in the
case of a categorical variable). It is thus important to be wary of the
potential bias that can be introduced by comparing the result to a
true partial dependence plot, seen in Figure 26. As evident in the
partial dependence plot, the predicted value plot serves as a good
approximation, but is underestimating a slight curvilinear relation
between teacher-reported rating of the school environment, such that
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Figure 24: Predicted value plots for prior achievement, free/reduced price lunch
status, and teacher-reported ratings of the school environment from a
CART forest model. For prior achievement and school environment, the
actual prediction is shown with the solid line, while a smoothed loess
approximation to this prediction is displayed with the dashed line. Each
gray dot seen in the two leftmost main effects plots represents an ob-
servation in the dataset, while results for school environment ratings
were aggregated up to the teacher level with error bars that represent
the standard error of the mean for that particular teacher.

a positive relation exists for teachers with low ratings, but then this
relation becomes flat for teachers with medium and high ratings.

5.3.5 Conclusion

Overall, both forest models outperformed the naive model with re-
spect to predictive accuracy, initially indicating that there is evidence
for potential nonlinearity or interactions that are likely to generalize
to a future sample. After inspecting variable importance plots, it was
determined that prior achievement, student free/reduced price lunch
status, and teacher-reported rating of the school environment were
potential predictors of interest. Predicted value plots showed a large,
positive relation for prior achievement that was also slightly nonlin-
ear. The plots for the other two variables, however, showed almost
no relation with the outcome. Additionally, no interactions between
these three models were apparent.

This brought up the question: if there was not much evidence for
nonlinearity or interactions in the forest models, then why do these
models account for 8% more variation in the outcome? This occurs
for two reasons. First, prior achievement is such a strong predictor
for future achievement. In fact, this variable had the highest stan-
dardized variable importance rating for all three datasets examined
in this dissertation. Thus, even slight deviations from a linear trend
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Figure 25: Raw data plots for prior achievement, free/reduced price lunch status,
and teacher-reported ratings of the school environment using a loess
smoother. For prior achievement and school environment, the actual pre-
diction is shown with the solid line, while a smoothed loess approxima-
tion to this prediction is displayed with the dashed line. Each gray dot
seen in the two leftmost main effects plots represents an observation
in the dataset, while results for school environment ratings were aggre-
gated up to the teacher level with error bars that represent the standard
error of the mean for that particular teacher.

that are both picked up by a forest model and found to be generaliz-
able to a future sample are likely to account for some of the difference,
which is evident in the previous figures. Second, this applied exam-
ple had a large number of predictors (25), and so this might cause the
main effects only multilevel model to overfit, resulting in a poorer
cross-validated estimate of variation explained. Sure enough, remov-
ing the five least important predictors and refitting the main-effects
only multilevel model resulted in a proportion of variation estimate
of 22%; now only 2% lower than the forest models. This indicates that
while the nonlinearity of prior achievement does improve predictive
performance, the effect is likely to be much smaller than the original
variation estimates indicate.
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Figure 26: A true partial dependence plot for prior achievement, free/reduced price
lunch status, and teacher-reported ratings of the school environment
from a CART forest model. Each gray dot seen in the two leftmost main
effects plots represents an observation in the dataset, while results for
school environment ratings were aggregated up to the teacher level with
error bars that represent the standard error of the mean for that particu-
lar teacher.





6
D I S S E M I N AT I O N P H A S E

Despite the previous findings showing that recursive partitioning
techniques, particularly random forests, have the potential to be use-
ful for multilevel exploration in the social sciences, widespread adop-
tion of these techniques will likely be hindered due to a lack of fa-
miliarity with (and stigma surrounding) predictive algorithms and
“data mining.” A dissemination phase was built into this dissertation
project in an effort to mitigate this issue, consisting of two main parts:
creating an R package and giving a workshop.

6.1 r package

An R package, mleda (for Multi-Level Exploratory Data Analysis),
was created to bundle useful functions assisting in both the explo-
ration of two-level data structures in general, and the application of
random forests to such data. Note that decision trees were not in-
cluded in this package, given that simulation results showed poor
prediction performance for tree methods and the application results
showed a need to model smoothed functional forms rather than hard,
piecewise constants. The code is publicly available for download and
installation into R from my GitHub profile (instructions available at
http://github.com/dpmartin42/mleda). Here, interested users will
find helpful introductory R scripts to recursive partitioning methods
for both single and multilevel designs, as well as a forum to list po-
tential issues with my code.

This package containes three main functions. The first, validate_ml,
helps to perform model validation to estimate how well the perfor-
mance of a given model might generalize to a future sample. This is
done in two ways. The first way is with split-half validation. This
procedure randomly partitions the dataset into a training set and
a test set. The desired model is then built using the training data
and performance is calculated on the test dataset. The second way is
with k-fold cross-validation. This procedure randomly partitions the
dataset in k parts, or folds. The model is then trained on k− 1 folds,
and then tested using the left out kth fold. This step is repeated k

times so all folds act as a test dataset, and performance is taken to be
the mean performance across the k values. K-fold cross-validation is
recommended for smaller datasets (i.e., N < 1000), while split-half val-
idation is recommended for larger datasets to reduce the amount of
total computation time. For this function, models can either be a ran-
dom forest (built using the CART or conditional inference algorithm)
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or a multilevel model. The models are evaluated using proportion
of variation explained (i.e., 1 − MSE

var(y) ) in the case of a continuous

outcome, and classification accuracy (i.e., (TP+TN)
(TP+TN+FP+FN) , where TP

is the number of true positives, TN is the number of true negatives,
FP is the number of false positives, and FN is the number of false
negatives) in the case of a categorical outcome.

The second, importance_ml, creates the variable importance com-
parison plots seen in Figure 15, Figure 19, or Figure 23 in Chapter 5.
This function can plot and compare variable importance values for an
arbitrary number of random forest (built using the CART or condi-
tional inference algorithm) or multilevel models. As mentioned pre-
viously, variable importance for forest models are calculated using
built-in procedures based on permutation tests to break each vari-
able’s relationship with the outcome to determine their predictive
strength (refer to Section 2.3.2, for a review). Importances for mul-
tilevel models are naively defined as the p-value for the respective
parameter. Note that because the denominator degrees of freedom
are not trivial to compute for multilevel regression models, a Sat-
terthwaite approximation is used in order to estimate the p-values
(Goodnight, 1980). These values are then standardized to allow for
easier comparisons, and the resulting plots are ordered such that the
most important variable (averaged across all models) is the furthest
left on the x-axis.

The third, plot_ml, plots the relations between a set of variables
and a given outcome, limited to main effects and two-way interac-
tions. These relations can either be based on the raw data itself, or by
using predictions calculated from either a random forest (built using
the CART or conditional inference algorithm) or multilevel model. In
the case of plotting the smoothed relations based on the data itself, a
locally weighted scatterplot smoothing procedure is used (i.e., loess),
which is a non-parametric way to approximate trends in data by fit-
ting regression models to localized subsets of the data rather than
the entire dataset (Cleveland, 1979). Predictions from forest models
are typically calculated with partial dependence plots, as outlined in
Section 2.3.3. As was previously mentioned, these methods can be
quite time consuming to calculate, which is problematic given they
are being applied for the purposes of performing efficient exploratory
analysis. This function takes advantage of a simplification in the par-
tial dependence procedure originally proposed by Milborrow (2014).
Rather than repeating the entire training set for all joint values of
the predictor(s) of interest, a new dataset is created that consists of
only one observation: the median value for all continuous variables
and the most-endorsed level for either categorical or ordinal variables.
This new observation is then varied across all the joint values of the
predictor(s) of interest. While not a true partial dependence plot, it
will typically yield similar results and has the same computation time
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regardless of the sample size of the training set. For an example of
how much time could be saved by using this simplified procedure, re-
fer to Section 5.1.3. The true partial dependence plot in this example
(N > 7, 000) took over two hours to calculate, while the simplified pre-
dicted value plot took less than one second. Both plots are virtually
identical.

Finally, two-way interaction plots between two continuous vari-
ables were initially created using 3-dimensional graphs, much like
Figure 7 in Chapter 2. However, feedback from applied researchers in-
dicated that these plots were difficult to interpret. Additionally, there
is no easy way to combine the 3-dimensional object created in R with
the other plotting procedures for main effects seen in this disserta-
tion in a well-organized matrix. Because of this, a simplification was
made in the plotting procedure for continuous by continuous inter-
actions. This simplification follows the procedures for graphing sim-
ple slopes found in Bauer and Curran (2005), by treating one vari-
able as the “moderator” and calculating predictions for values of the
moderator at -1SD, 0, and +1SD. While this procedure results in a
slight loss of statistical information given the non-parametric nature
of the predicted values for two continuous variables in forest mod-
els, it creates a plot that is both more familiar and easier to inter-
pret for applied researchers. For readers interested in creating the
three-dimensional plots in R, a tutorial can be found on my website
(http://dpmartin42.github.io/posts/partial-dependence-1/).

6.2 workshop

In addition to this R package, a small workshop was given on the
morning of May 26, 2015 to seven substantive researchers in the Curry
School of Education interested in learning more about using recur-
sive partitioning for exploratory data mining. The seven participants
who attended consisted of four graduate students, one postdoctoral
researcher, and two research scientists, all with varying levels of ex-
pertise in both quantitative methods and R.

The teaching plan for the workshop proceeds in three parts. The
first part, given in a lecture style, begins with a discussion of ex-
ploratory data analysis, focusing on how the workshop attendees use
it personally in their own research and perceive it being used by so-
cial scientists as a whole. I expect, and found this to be the case in
the specific workshop given, that there is general agreement that ex-
ploratory data analysis can be extremely useful, but also dangerous
due to the fact that most use the same technique for both confirma-
tory and exploratory research (i.e., null hypothesis significance test-
ing). Using this as a transition, the focus is then shifted on giving
an overview of recursive partitioning methods and an outline of best

http://dpmartin42.github.io/posts/partial-dependence-1/
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practices to keep in mind when applying these methods to multilevel
data structures.

The second part of the workshop introduces implementing recur-
sive partitioning methods on single-level data for continuous and cat-
egorical outcomes in R. This essentially is a guided, line-by-line walk-
through of a well-commented R script, explaining results and graphs
while the attendees follow along on their own computers. The ex-
amples should be chosen to appeal to the applied researcher to help
maintain interest. For this workshop, three datasets were used. The
first had a continuous outcome and was the graduation rate dataset
used in Chapter 2, where the goal was to predict the graduation rate
of colleges based on various college characteristics. The second had
a categorical outcome with two categories, and the goal was to pre-
dict an individual’s acceptance into graduate school based on their
undergraduate GPA, undergraduate school ranking, and GRE score.
The final dataset had a categorical outcome with three categories, and
the goal was to predict the species of a flower using various physical
measurements of the flower. In this last example, artificial missing-
ness was induced in order to provide guidelines for how to handle
missingness with these methods. To match the simulation study, miss-
ingness was only induced in the predictors, and the mechanism un-
derlying the missingness pattern was completely at random.

The last part of the workshop extends recursive partitioning meth-
ods to multilevel data in R. Like the previous part, this part is also a
guided, line-by-line walkthrough of an R script. Only one dataset was
used for this section, which was the High School and Beyond Survey
found in Chapter 5. For this example, most of the script was based
around the mleda package, and so questions and comments were
taken regarding the package in an effort to improve it. No problems
were reported installing the package from GitHub, with attendees
using a wide range of Mac, PC, and Linux operating systems.

After the conclusion of the workshop, open-ended feedback was
collected via email so attendees could comment on what they found
helpful, what they found confusing, and how these methods might be
useful in their own work. The responses from all seven participants
can be seen below.

I had the opportunity to attend the first portion of the pre-
sentation, and I was excited to learn about these innova-
tive and useful data analytic methods! You very effectively
relayed new and complex information while consistently
checking to see if your audience had questions/comments.
I also felt you nicely balanced text with visuals (figures/ta-
bles) to help convey the meaning of the information and
analyses. Overall, great work!
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I enjoyed the workshop a lot. I have little experience with
R beyond the quant sequence but the way the informa-
tion was presented was not only logical but also easier to
understand than what I’ve gotten in the past. Having the
script (rather than having to recreate it myself) was very
helpful– I could follow along and understand the process
but not get held back by code problems. The difficult piece
was just imagining its application to my own work, but
that’s something I can sit down with on my own time and
is also probably due to my being newer to dealing with
big data. I looked back at the R script later and it still
seemed clear, and it looks like I could apply it to my own
data without huge issues.

Thanks to you for offering the workshop! The CART forests
approach is something that we might use in selecting the
optimal set of covariates in the estimation of propensity
scores or in our exploratory analyses of variables associ-
ated with implementation fidelity, and it was presented in
a very accessible way. I got a little behind when I was try-
ing to load the various R programs during the workshop,
but everything was so clearly labelled in the code that it
was really easy for me to go back and use it after the work-
shop was over. I think I would have benefited from doing
some reading prior to the workshop - maybe the Breiman
article - but I also know you can’t reliably expect work-
shop participants to do prework.

I enjoyed the hands-on nature of the workshop. It allowed
me to follow-along more easily as we worked through the
examples. I appreciated how responsive you were to ques-
tions and how you were quick to help us troubleshoot
if anything went wrong. I think one of the more confus-
ing issues around this work relates to handling missing
data, and in particular when you need to do multiple im-
putation (i.e., when you are missing on the dependent
variable?) and how best to do that. Forest methods are
something I could see using in my own work when I
have a data source with a lot of different measures. Specif-
ically, I would use it when I have exhausted theoretically-
informed analyses, but still want to know if there are other
predictors that have a direct association with my outcome
of interest or interact with other theoretically expected pre-
dictors.
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Overall I found the workshop to be very useful. I liked
that most of the time was spent hand-on, and that you
had the code ready for us. I also found your R package
to be very useful, not only for random forests, but the
plotting functions will also be useful for other multilevel
applications. There was a lot of information during the
workshop, and it will help to have the code to go back to.
You might consider incorporating your code into tutorials
that walk people through the steps again if you plan to
continue giving this workshop.

I really enjoyed Dan’s workshop. His R package was su-
per easy to use, and really intuitive. I don’t know much
about random forests, but Dan explained it so well that
I think I can already begin to use his package in R. The
workshop was particularly relevant for me because I do a
lot of education research, so I’m excited to use his pack-
age to explore relationships I haven’t yet looked at in the
datasets that I work on.

I found the workshop to be very helpful! It was great expo-
sure to a topic that I was previously unfamiliar with. You
did a nice job thoroughly explaining the recursive parti-
tioning method in a very accessible way. Although I don’t
have immediate plans to use the method, it is definitely
something I will keep in mind going forward. I imagine
that it will be especially relevant for exploratory analyses.
As you know, I am not an R user, but I appreciated you for
providing the syntax and walking us through the process
of running the models step-by-step. The R package you
created is very impressive and will prove helpful when I
use this technique in the future.

Overall, this feedback indicates that the workshop was well-received,
and the important concepts were understood. More importantly, many
participants explicitly expressed confidence that they could run these
models in the future and intended on doing so. The only critique was
with regard to best practices for handling missingness for multilevel
data. While I discussed this, I had to do so briefly to fit everything
in the allotted time frame of three hours. As will be discussed in
the next chapter, best practices to handle missingness in multilevel
designs, especially with respect to recursive partitioning methods, re-
mains an open area of research.
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With respect to the R package, mleda, all attendees reported pos-
itive feedback with respect to the easy-to-use code and quality of
the corresponding plots. One participant even mentioned that this
R package is also great option for traditional exploratory data anal-
ysis in general, without even needing to use forest models. One of
the goals I kept in mind when building this package was to create
a product that had a low barrier of entry, so researchers did not
even need to know recursive partitioning methods to be able to find
it useful. Based on this initial feedback, it looks like this goal has
been accomplished. For interested readers, all workshop materials
including slides and R scripts are publicly available on GitHub (at
http://github.com/dpmartin42/mleda_workshop). The multilevel tu-
torial R script was also incorporated as supplemental information for
a manuscript submitted for widespread dissemination in a special
issue of Psychological Methods on Big Data in the social sciences.

http://github.com/dpmartin42/mleda_workshop




7
G E N E R A L D I S C U S S I O N

The main goal of this dissertation was to evaluate the feasibility of us-
ing recursive partitioning methods as an efficient means to perform
exploratory data analysis for multilevel data structures commonly
found in the social sciences, and if so, help applied researchers incor-
porate these methods into their own statistical toolbox. This central
question was investigated with three distinct phases: a simulation
phase, an application phase, and a dissemination phase. After briefly
restating the main findings from each section, limitations and future
directions of this work will be discussed.

7.1 simulation phase

The goal of the simulation phase was to examine when recursive par-
titioning methods perform as expected and when they begin to break
down in the presence of multilevel data. This dissertation focused on
decision trees and forests that used one of two popular recursive parti-
tioning algorithms: CART and conditional inference trees. Both CART
and conditional inference methods showed decreased performance in
predictive accuracy and the identification of relevant variables when
the ICC was moderate to large and predictors were measured at both
levels of the analysis. In particular, both methods had a biased prefer-
ence for level-2 variables, despite these variables having no simulated
relationship with the outcome. While this is to be expected with con-
ditional inference methods that utilize a permutation test framework
built on independence assumptions, this finding is unexpected for
CART methods. If all variables are measured at the first level of anal-
ysis, however, both CART and conditional inference methods perform
as expected, regardless of ICC values.

7.2 application phase

The main goal of the application phase was to examine how the find-
ings from the simulation phase would generalize to real data. Results
from three separate applications indicated that forest methods did
not massively outperform a main-effects only model in any applica-
tion, but it did aid in the potential identification of small effects that
deviated from linearity. In the first application, a very small inter-
action effect was discovered between the SES and student minority
status variables, such that non-minority students appeared to bene-
fit more from having high SES compared to minority students, who
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appeared to benefit less. The second dataset had no evidence for any-
thing more complex than a main effect, which is not surprising given
the fact that the dataset was small (N < 200), making it more diffi-
cult to identify more complex model specifications that were likely to
generalize to a future sample. The third dataset found a small non-
linearity in student prior achievement predicting future achievement.
While the deviation from nonlinearity was small, it contributed to the
forest models outperforming the main effects only model due to the
fact that the impact of prior achievement on future achievement was
large. However, because prior achievement explained so much varia-
tion in future achievement, it left very little systematic variation to be
explained by other measures.

7.3 dissemination phase

The main goal of the dissemination phase was to examine what ap-
plied researchers think about data mining methods in general and re-
cursive partitioning methods specifically. Overall, the feedback from
the small subset of researchers I have discussed this research with has
been positive with regard to adopting these methods in their own re-
search. An R package and tutorial scripts have been created and are
publicly available to help further reduce the barrier of entry for re-
searchers interested in learning more about these methods. Given the
relative success of the workshop, I am more than confident that any
researcher interested in these methods can learn the basics with only
a few hours of reading, regardless of statistical expertise.

7.4 limitations and future directions

Like with any simulation research, the findings from Chapter 4 are
limited in generalizability to the parameter manipulations in this
study. While an attempt was made to make conditions as realistic as
possible, various parameters of interest were left out to keep the sim-
ulation from becoming too unwieldy. For example, parameter values
were selected in order to mimic what is traditionally found in cross-
sectional education research. Other areas in the social sciences or in
longitudinal research, for example, would require different parameter
values. A simulation based on longitudinal research would need to
have a much larger ICC than what was simulated here, as more varia-
tion is typically due to the second level (i.e., between persons) in such
studies. Applying these methods to longitudinal studies would make
for an interesting future direction, as nonlinear growth patterns are
often of substantive interest to developmental researchers (Grimm,
Ram, & Hamagami, 2011), and are easy to detect in an exploratory
way with recursive partitioning methods.
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An additional limitation is the way missingness was simulated.
In this study, missingness was restricted to be both missing com-
pletely at random and missing only in the predictors and not the
outcome. Despite the fact that previous research has found both sur-
rogate splits and imputation by proximity matrix perform admirably
across various missingness mechanisms (Breiman, 2003; Hapfelmeier
et al., 2012), it is important to replicate that finding for the multilevel
contexts investigated here. As for limiting the missingness to only
impact the predictors, this was done because the built-in methods to
handle missingness for recursive partitioning are limited to missing-
ness in the predictors. This is also why missingness in Chapter 5 was
handled via a two step process, using a single, main-effects only mul-
tilevel imputation using chained equations for the outcome, followed
by a non-parametric imputation based on a proximity matrix for the
predictors. Surely this is not an ideal solution, because it combines
non-parametric imputation with a potentially miss-specified paramet-
ric imputation model. This approach likely suppresses many non-
parametric relations between predictors and the outcome, resulting
in a higher rate of false negatives. Unfortunately, however, to the au-
thor’s best knowledge there is no non-parametric way to handle miss-
ingness in both the predictors and the outcome at this time. Future
research in this direction would be highly valuable; handling miss-
ingness both quickly and correctly for exploring either single-level
or multilevel data structures using recursive partitioning methods re-
mains an open area of inquiry.

Finally, the last limitation to be discussed is the datasets used in
Chapter 5, all of which had potential reasons as to why there was
only minimal evidence supporting a departure from linearity. The
first sample, the High School and Beyond Survey, is a publicly avail-
able subsample from a larger study that is often used in tutorials
due to the fact that it is so “well-behaved” with respect to being ad-
equately specified by a main effects only model. The second sample,
the Responsive Classroom Efficacy Study, has a small sample size
with only two variables accounting for the majority of systematic
variation in the outcome. Lastly, the third sample, the My Teaching
Partner-Secondary Study, used future achievement as the outcome
with prior achievement as a potential predictor. When it comes to
predicting achievement, prior achievement will always be the best. In
fact, research has found that growth mixture models based solely on
trajectories of prior student achievement yields the best performance
for predicting future student achievement and dropout in early warn-
ing systems. (Knowles, in press).

Note that recursive partitioning was specifically chosen as the fo-
cus of this dissertation given that it is nonparametric in nature, rela-
tively easy and intuitive to understand, and their ensemble method
counterparts (i.e., forests) consistently show good performance in pre-
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dictive tasks when compared to other popular methods (Caruana &
Niculescu-Mizil, 2006). However, these methods are certainly not a
“silver bullet” for exploratory data analysis or predictive modeling in
general. As evidenced by the three applications shown here, linearity
is often a valid assumption to make in many statistical applications.
Regularized regression methods that include a penalty term in its es-
timation procedure, such as the L2 norm (i.e., the sum of the squared,
standardized parameter estimates) in the case of ridge regression or
the L1 norm (i.e., the sum of the absolute value of the standardized
parameter estimates) in the case of the LASSO, can be attractive op-
tions to reduce overfitting in linear models at the small cost of in-
creased bias (Hastie et al., 2009). While some research has extended
these methods into a mixed-effects framework (e.g., Eliot, Ferguson,
Reilly, & Foulkes, 2011; Schelldorfer, Bühlmann, & van de Geer, 2011),
such a model is quite complex and unlikely to be adopted by applied
researchers for the sole purpose of exploratory data analysis. How-
ever, if the focus is on prediction, such multilevel extensions may not
be necessary. Because the hierarchical nature of the dataset affects
the standard errors rather than the regression weights, predictions
are likely to remain unchanged regardless of whether the models
account for the nested structure of the data or not. Future research
should examine this idea more carefully, and compare the predictive
performance of forests, regularized regression methods, and a naive
main effects only model at various deviations from linearity to see
which methods perform the best.

7.5 conclusion

This dissertation examined new ways to conduct exploratory research
on multilevel datasets in the social sciences using recursive partition-
ing. Using both simulation and applied datasets, I have shown that
these methods provide a cost-effective way to revisit old datasets
to discover something new in a data-driven way, without the has-
sle of relying theoretical justification (which may or may not exist)
to decide what model specifications to try. Taking such an approach
for purely exploratory research has the potential to help researchers
make new discoveries and inform future research in an efficient man-
ner, all while controlling for potential false positives through the use
of validation techniques.
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A P P E N D I X

a.1 proper calculation of the icc for a multilevel sim-
ulation

When the ICC is a parameter of interest in a multilevel simulation
study, it is important generate the data to yield the desired ICC as it
is typically defined. That is, the variation in the outcome due to the
clustering variable in an intercept-only model. Previous multilevel
simulation research (e.g., Maas & Hox, 2005; Moineddin et al., 2007)
set the ICC by ignoring the fixed effects estimates. In other words,
the ICC is a value not defined as above, but rather one which corre-
sponds to the variation in the outcome due to the clustering variable
in a statistical model with all the predictors included. This results
in a smaller ICC value for the intercept-only model, which can be
misleading when it comes to practical recommendations.

Below are guidelines to follow in order to properly calculate the
ICC for a multilevel simulation study when the ICC is defined for the
intercept-only model. For brevity, these instructions will apply to the
level-1 only model used in this dissertation, but the logic can easily
be extended to apply to any multilevel model. First, recall the level-1
only multilevel model that was used. This model includes an inter-
cept, a main effect for X1, a quadratic term for X1, a main effect for
X2, and an interaction between X1 and X2. Both X1 and X2 were z-
transformed in order to yield standardized effect size estimates. Ad-
ditionally, both the intercept and the slope for X1 were allowed to
vary across clusters. For simplicity, these were fixed to be equivalent
and have no covariation. The mixed-effects model equation for the
level-1 only covariate level condition can be seen below:

Level-1 Only:

Yij = γ00 + γ10X1ij + γ20X1
2
ij + γ30X2ij + γ40X1ijX2ij+

µ0j + µ1jX1ij + rij

(16)

Because X1 and X2 were standardized, the outcome, Y, also needs
to be standardized in order to allow the regression weights to be
interpreted as standardized effects. Thus, the total variance of both
sides of the equation are equal to one. Because the ICC is defined
as the variance in the outcome due to the clustering variable over the
total variance of the outcome, and the total variance of the outcome is
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1 by definition, then the variance in the outcome due to the clustering
variable can be fixed to the desired ICC value itself. Now, the only
remaining unknown is the variance of the residual term. That is,

1 = Var(γ00 + γ10X1ij + γ20X1
2
ij + γ30X2ij + γ40X1ijX2ij+

µ0j + µ1jX1ij + rij)

(17)

Because all predictors were simulated to be uncorrelated,

Var(rij) = 1− Var(γ10X1ij) − Var(γ20X1
2
ij) − Var(γ30X2ij)−

Var(γ40X1ijX2ij) − Var(µ0j) − Var(µ1jX1ij)

(18)

Now, two facts can be used to further reduce the equation above.
First, the regression weights for all slopes (i.e., all gammas except γ00)
are scalar values, and so the variance rule of Var(aX) = a2Var(X)

can be applied. Second, a squared standard normal distribution is
chi-square distributed with 1 df, and so it has a variance of two. So,
knowing that the variance of both X1 and X2 were simulated to be
one (i.e., standardized), the equation above becomes

Var(rij) = 1− γ
2
10 − 2γ

2
20 − γ

2
30 − γ

2
40 − 2ICC (19)

Assuming a desired ICC of 0.3 along with an effect of 0.3 for X1,
0.2 for X12, 0.1 for X2, and 0.3 for X1X2 with the above level-1 only
model, the between-level variance would be set to the ICC value of
0.3 and the within-level variance would be calculated as 0.13. As long
as the intercept is fixed to −γ20, using the above values for the ICC
would result in both the parameter values being simulated correctly
as well as the ICC for the intercept-only model.

a.2 extra plots for the high school and beyond survey

First, both the CART forest and multilevel model analogous to Fig-
ure 16 are shown. Both the CART forest (seen in Figure 27) and mul-
tilevel model (seen in Figure 28) are similar to what was displayed in
Figure 16 with respect to the main effects. Because of the lack of ev-
idence for an interaction, it appears that the interaction plot (or lack
thereof) for the multilevel model provides a better model for predic-
tion.

Next, both school-level SES and proportion of students on the aca-
demic track were investigated in a similar fashion, because they were
the third and fourth most important variables, respectively. Results
for a CART forest can be seen in Figure 29, results for a CFOREST can
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Figure 27: Predicted value plots for SES and student minority status from a CART
forest model. For SES, the actual prediction is shown with the solid line,
while a smoothed loess approximation to this prediction is displayed
with the dashed line. The interaction plot just depicts the smoothed ap-
proximation for simplicity. Each gray dot seen in both main effects plots
represents an observation in the dataset.

be seen in Figure 30, and results for a multilevel model can be seen in
Figure 31. All three models show a small, positive relationship with
math achievement that seems to be well-approximated by a linear
trend, with no evidence for an interaction. However, these trends do
not seem to be as strong as the raw data with a loess smoother might
suggest (seen in Figure 32). There are two reasons for this. First, there
are very few observations for the lower values of both predictors,
and the loess is more susceptible to being affected by outlying obser-
vations with high leverage compared to a forest or multilevel model.
Second, it is because these plots are predicted value plots, and thus
sacrifice a loss of statistical information for computational efficiency.

This can be confirmed without the hassle of computing partial de-
pendence plots for the forest models by comparing the predicted
value plots of the multilevel model to what would be predicted us-
ing the training set. These results can be seen in Figure 33, which
show the true predicted relationship of both main effects. As evident
from the plot, the statistical model is not the source of the bias shown
in the previous plots, it is the loss of statistical information in the pre-
dicted value plots. This highlights the importance of confirming the
result of predicted value plots with true partial dependence plots and
raw data plots.
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Figure 28: Predicted value plots for SES and student minority status from a multi-
level model. For SES, the actual prediction is shown with the solid line,
while a smoothed loess approximation to this prediction is displayed
with the dashed line. The interaction plot just depicts the smoothed ap-
proximation for simplicity, and shows no interaction because it was not
specified. Each gray dot seen in both main effects plots represents an
observation in the dataset.
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Figure 29: Predicted value plots for the main effects and interaction between
MEANSES and proportion of students on an academic track from a
CART forest model. Note that because both measures are level-2 vari-
ables, results are aggregated and shown with error bars that represent
the standard error of the mean for that particular school. The actual
predictions for both variables are shown with the solid line, while a
smoothed loess approximation to these predictions are displayed with
the dashed line. The interaction plot just depicts the smoothed approxi-
mation for simplicity.
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Figure 30: Predicted value plots for the main effects and interaction between
MEANSES and proportion of students on an academic track from a
CFOREST model. Note that because both measures are level-2 variables,
results are aggregated and shown with error bars that represent the stan-
dard error of the mean for that particular school. The actual predictions
for both variables are shown with the solid line, while a smoothed loess
approximation to these predictions are displayed with the dashed line.
The interaction plot just depicts the smoothed approximation for sim-
plicity.
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Figure 31: Predicted value plots for the main effects and interaction between
MEANSES and proportion of students on an academic track from a
multilevel model. Note that because both measures are level-2 variables,
results are aggregated and shown with error bars that represent the stan-
dard error of the mean for that particular school. The actual predictions
for both variables are shown with the solid line, while a smoothed loess
approximation to these predictions are displayed with the dashed line.
The interaction plot shows no interaction because it was not specified.
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Figure 32: Raw data for the main effects and interaction between MEANSES and
proportion of students on an academic track using a loess smoother. Note
that because both measures are level-2 variables, results are aggregated
and shown with error bars that represent the standard error of the mean
for that particular school. The actual predictions for both variables are
shown with the solid line, while a smoothed loess approximation to these
predictions are displayed with the dashed line. The interaction plot just
depicts the smoothed approximation for simplicity.
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Figure 33: The true predicted main effects for MEANSES and proportion of stu-
dents on an academic track from a multilevel model. Note that these
fits are much more accurate than the corresponding fits from the pre-
dicted value plotting procedure seen in Figure E, indicating that pre-
dicted value plots occasionally contain a loss of statistical information
and results must be confirmed with true partial dependence plots and
raw data plots.



references 91

references

Abry, T., Rimm-Kaufman, S. E., Larsen, R. A., & Brewer, A. J. (2013).
The influence of fidelity of implementation on teacher–student
interaction quality in the context of a randomized controlled
trial of the responsive classroom approach. Journal of School Psy-
chology, 51(4), 437–453.

Adler, W., Brenning, A., Potapov, S., Schmid, M., & Lausen, B. (2011).
Ensemble classification of paired data. Computational Statistics
& Data Analysis, 55(5), 1933–1941.

Adler, W., Potapov, S., & Lausen, B. (2011). Classification of repeated
measurements data using tree-based ensemble methods. Com-
putational Statistics, 26(2), 355–369.

Allen, J. P., Pianta, R. C., Gregory, A., Mikami, A. Y., & Lun, J. (2011).
An interaction-based approach to enhancing secondary school
instruction and student achievement. Science, 333(6045), 1034–
1037.

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2013). lme4: Lin-
ear mixed-effects models using eigen and s4 [Computer soft-
ware manual]. Retrieved from http://CRAN.R-project.org/

package=lme4 (R package version 1.0-5)
Bauer, D. J., & Curran, P. J. (2005). Probing interactions in fixed

and multilevel regression: Inferential and graphical techniques.
Multivariate Behavioral Research, 40(3), 373–400.

Berk, R. A. (2008). Statistical learning from a regression perspective. New
York, NY: Springer.

Brandmaier, A. M., von Oertzen, T., McArdle, J. J., & Lindenberger, U.
(2013). Structural equation model trees. Psychological Methods,
18(1), 71–86.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–
140.

Breiman, L. (2001a). Random forests. Machine Learning, 45(1), 5–32.
Breiman, L. (2001b). Statistical modeling: The two cultures. Statistical

Science, 16(3), 199–231.
Breiman, L. (2003). Manual–setting up, using and understanding

random forests v4.0. Retrieved from http://oz.berkeley.edu/

users/breiman

Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classi-
fication and regression trees. CRC press.

Bühlmann, P., & Yu, B. (2002). Analyzing bagging. Annals of Statistics,
927–961.

Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison
of supervised learning algorithms. In Proceedings of the 23rd
international conference on machine learning (pp. 161–168).

Cleveland, W. S. (1979). Robust locally weighted regression and
smoothing scatterplots. Journal of the American Statistical Asso-

http://CRAN.R-project.org/package=lme4
http://CRAN.R-project.org/package=lme4
http://oz.berkeley.edu/users/breiman
http://oz.berkeley.edu/users/breiman


92 references

ciation, 74(368), 829–836.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences.

Hillsdale, N.J: L. Erlbaum Associates.
Duncan, G. J., Engel, M., Claessens, A., & Dowsett, C. J. (2012). The

value of replication for research on child development. Develop-
ments: Newsletter of the Society for Research on Child Development,
55, 4–5.

Eliot, M., Ferguson, J., Reilly, M. P., & Foulkes, A. S. (2011). Ridge re-
gression for longitudinal biomarker data. The International Jour-
nal of Biostatistics, 7(1), 1–11.

Eo, S.-H., & Cho, H. (2013). Tree-structured mixed-effects regres-
sion modeling for longitudinal data. Journal of Computational
and Graphical Statistics, 23(3), 740–760.

Finkel, E. J., Eastwick, P. W., & Reis, H. T. (2015). Best research prac-
tices in psychology: Illustrating epistemological and pragmatic
considerations with the case of relationship science. Journal of
Personality and Social Psychology, 108(2), 275–297.

Fu, W., & Simonoff, J. S. (2015). Unbiased regression trees for longi-
tudinal data. Computational Statistics & Data Analysis, 88, 53–74.

Gelman, A., & Loken, E. (2014). The statistical crisis in science. Amer-
ican Scientist, 1–5.

Goodnight, J. H. (1980). Tests of hypotheses in fixed effects linear
models. Communications in Statistics: Theory and Methods, 9(2),
167–180.

Grimm, K. J., Ram, N., & Hamagami, F. (2011). Nonlinear growth
curves in developmental research. Child Development, 82(5),
1357–1371.

Hajjem, A., Bellavance, F., & Larocque, D. (2011). Mixed effects re-
gression trees for clustered data. Statistics & Probability Letters,
81(4), 451–459.

Hajjem, A., Bellavance, F., & Larocque, D. (2014). Mixed-effects ran-
dom forest for clustered data. Journal of Statistical Computation
and Simulation, 84(6), 1313–1328.

Hapfelmeier, A., Hothorn, T., & Ulm, K. (2012). Recursive partition-
ing on incomplete data using surrogate decisions and multiple
imputation. Computational Statistics & Data Analysis, 56(6), 1552–
1565.

Hapfelmeier, A., Hothorn, T., Ulm, K., & Strobl, C. (2014). A new
variable importance measure for random forests with missing
data. Statistics and Computing, 24(1), 21–34.

Hastie, T., & Tibshirani, R. (2013, December). An interview with jerome
friedman. Retrieved from https://www.youtube.com/watch?v=

79tR7BvYE6w

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statis-
tical learning (2nd ed.). Springer.

Hothorn, T., Bühlmann, P., Dudoit, S., Molinaro, A., & Van Der Laan,

https://www.youtube.com/watch?v=79tR7BvYE6w
https://www.youtube.com/watch?v=79tR7BvYE6w


References 93

M. J. (2006). Survival ensembles. Biostatistics, 7(3), 355–373.
Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive

partitioning: A conditional inference framework. Journal of Com-
putational and Graphical statistics, 15(3), 651–674.

Ioannidis, J. P. (2005). Why most published research findings are false.
PLoS medicine, 2(8), e124.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013a). An introduc-
tion to statistical learning. Springer.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013b). ISLR: Data
for an introduction to statistical learning with applications in
r [Computer software manual]. Retrieved from http://CRAN.R

-project.org/package=ISLR (R package version 1.0)
Karpievitch, Y. V., Hill, E. G., Leclerc, A. P., Dabney, A. R., & Almeida,

J. S. (2009). An introspective comparison of random forest-based
classifiers for the analysis of cluster-correlated data by way of
RF++. PloS One, 4(9), e7087.

Knowles, J. E. (in press). Of needles and haystacks: Building an
accurate statewide dropout early warning system in Wisconsin.
Journal of Educational Data Mining.

Kopf, J., Augustin, T., & Strobl, C. (2013). The potential of model-
based recursive partitioning in the social sciences: Revisiting
ockham’s razor. In J. J. McArdle & G. Ritschard (Eds.), Contem-
porary issues in exploratory data mining in the behavioral sciences
(p. 75-95). New York, NY: Routledge.

Liaw, A., & Wiener, M. (2002). Classification and regression by ran-
domforest. R News, 2(3), 18–22.

Loh, W.-Y. (2002). Regression trees with unbiased variable selection
and interaction detection. Statistica Sinica, 12(2), 361–386.

Loh, W.-Y., & Shih, Y.-S. (1997). Split selection methods for classifica-
tion trees. Statistica Sinica, 7(4), 815–840.

Loh, W.-Y., Zheng, W., et al. (2013). Regression trees for longitudinal
and multiresponse data. The Annals of Applied Statistics, 7(1),
495–522.

Luke, D. A. (2004). Multilevel modeling. Sage.
Maas, C. J., & Hox, J. J. (2005). Sufficient sample sizes for multilevel

modeling. Methodology: European Journal of Research Methods for
the Behavioral and Social Sciences, 1(3), 86–92.

Makel, M. C., & Plucker, J. A. (2014). Facts are more important than
novelty: Replication in the education sciences. Educational Re-
searcher, 43, 304–316.

Martin, D. P., & von Oertzen, T. (2015). Growth mixture models out-
perform simpler clustering algorithms when detecting longitu-
dinal heterogeneity, even with small sample sizes. Structural
Equation Modeling, 22(2), 264–275.

McArdle, J. J. (2013). Exploratory data mining using decision trees in
the behavioral sciences. In J. J. McArdle & G. Ritschard (Eds.),

http://CRAN.R-project.org/package=ISLR
http://CRAN.R-project.org/package=ISLR


94 references

Contemporary issues in exploratory data mining in the behavioral sci-
ences (p. 3-47). New York, NY: Routledge.

Midgley, C., Maehr, M. L., Hruda, L. A., Anderman, E., Anderman,
L., & Freeman, K. E. (2000). Manual for the Patterns of Adaptive
Learning Scale. Ann Arbor: University of Michigan.

Mikami, A. Y., Boucher, M. A., & Humphreys, K. (2005). Prevention of
peer rejection through a classroom-level intervention in middle
school. Journal of Primary Prevention, 26(1), 5–23.

Milborrow, S. (2014). plotmo: Plot a model’s response while varying
the values of the predictors [Computer software manual]. Re-
trieved from http://CRAN.R-project.org/package=plotmo (R
package version 1.3-3)

Moineddin, R., Matheson, F. I., & Glazier, R. H. (2007). A simulation
study of sample size for multilevel logistic regression models.
BMC Medical Research Methodology, 7(1), 34.

Molnar, C. (2013). Recursive partitioning by conditional inference (Semi-
nar Paper). LMU: Department of Statistics.

Morgan, J. N., & Sonquist, J. A. (1963). Problems in the analysis of
survey data, and a proposal. Journal of the American Statistical
Association, 58(302), 415–434.

Nosek, B. A., Spies, J. R., & Motyl, M. (2012). Scientific utopia II: Re-
structuring incentives and practices to promote truth over pub-
lishability. Perspectives on Psychological Science, 7(6), 615–631.

Novick, M. R. (1966). The axioms and principal results of classical
test theory. Journal of Mathematical Psychology, 3(1), 1–18.

Open Science Collaboration. (2014). The reproducibility project: A
model of large-scale collaboration for empirical research on re-
producibility. In V. Stodden, F. Leisch, & R. Peng (Eds.), Im-
plementing reproducible computational research (p. 299-323). New
York, NY: Taylor & Francis.

Open Science Collaboration. (in press). Maximizing the reproducibil-
ity of your research. In S. O. Lilienfeld & I. D. Waldman (Eds.),
Psychological science under scrutiny: Recent challenges and proposed
solutions. New York, NY: Wiley.

Ottmar, E. R., Rimm-Kaufman, S. E., Berry, R. Q., & Larsen, R. A. A.
(2013). Results from a randomized controlled trial: Does the
responsive classroom approach impact the use of standards-
based mathematics teaching practices? Elementary School Journal,
113(3), 434–457.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., . . . Dubourg, V. (2011). Scikit-learn: Machine learning
in python. The Journal of Machine Learning Research, 12, 2825–
2830.

Peugh, J. L. (2010). A practical guide to multilevel modeling. Journal
of School Psychology, 48(1), 85–112.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2015).

http://CRAN.R-project.org/package=plotmo


References 95

nlme: Linear and nonlinear mixed effects models [Computer
software manual]. Retrieved from http://CRAN.R-project

.org/package=nlme (R package version 3.1-120)
Prindle, J. J., Brandmaier, A. M., McArdle, J. J., & Lindenberger, U.

(2014). Exploratory modeling with structural equation model forests.
(Poster presented at the 16th annual meeting of the Association
for Psychological Science, San Francisco, CA.)

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning,
1(1), 81–106.

Quinlan, J. R., & Cameron-Jones, R. M. (1995). Oversearching and
layered search in empirical learning. In Proceesings of the 14th in-
ternational joint conference on artificial intelligence (Vol. 2, pp. 1019–
1024).

R Core Team. (2014). R: A language and environment for statisti-
cal computing [Computer software manual]. Vienna, Austria.
Retrieved from http://www.R-project.org/

Raileanu, L. E., & Stoffel, K. (2004). Theoretical comparison between
the gini index and information gain criteria. Annals of Mathemat-
ics and Artificial Intelligence, 41(1), 77–93.

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models:
Applications and data analysis methods (Vol. 1). Sage.

Rice, J. A., & Silverman, B. W. (1991). Estimating the mean and covari-
ance structure nonparametrically when the data are curves. Jour-
nal of the Royal Statistical Society. Series B (Methodological), 53(1),
233–243.

Rieger, A., Hothorn, T., & Strobl, C. (2010). Random forests with miss-
ing values in the covariates. (Department of Statistics: Technical
Reports, No. 79)

Rimm-Kaufman, S. E., Larsen, R., Baroody, A., Curby, T., Merritt, E.,
Abry, T., . . . Ko, M. (2014). Efficacy of the responsive classroom
approach: Results from a three year, longitudinal randomized
control trial. American Educational Research Journal, 51(3), 567-
603.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3),
581–592.

Ruzek, E., Hafen, C., Allen, J., Gregory, A., Mikami, A. Y., & Pianta,
R. (under review). How teacher emotional support motivates
students: The mediating roles of peer relatedness and autonomy
support.

Schelldorfer, J., Bühlmann, P., & van de Geer, S. (2011). Estima-
tion for high-dimensional linear mixed-effects models using L1-
penalization. Scandinavian Journal of Statistics, 38(2), 197–214.

Schochet, P. Z. (2008). Technical methods report: Guidelines for multiple
testing in impact evaluations. (Tech. Rep. No. NCEE 2008-4018).
National Center for Education Evaluation and Regional Assis-
tance.

http://CRAN.R-project.org/package=nlme
http://CRAN.R-project.org/package=nlme
http://www.R-project.org/


96 references

Segal, M. R. (1992). Tree-structured methods for longitudinal data.
Journal of the American Statistical Association, 87(418), 407–418.

Segal, M. R. (1994). Representative curves for longitudinal data via
regression trees. Journal of Computational and Graphical Statistics,
3(2), 214–233.

Sela, R. J., & Simonoff, J. S. (2012). RE-EM trees: A data mining
approach for longitudinal and clustered data. Machine Learning,
86(2), 169–207.

Shmueli, G. (2010). To explain or to predict? Statistical Science, 25(3),
289–310.

Silberzahn, R. S., Uhlmann, E. L., Martin, D. P., Anselmi, P., Aust,
F., Awtrey, E., . . . Nosek, B. A. (in prep). Many analysts, one
dataset: Making transparent how variations in analytical choices
affect results.

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive
psychology: Undisclosed flexibility in data collection and anal-
ysis allows presenting anything as significant. Psychological Sci-
ence, 22(11), 1359–1366.

Strasser, H., & Weber, C. (1999). On the asymptotic theory of permu-
tation statistics. Mathematical Methods of Statistics, 8, 220-250.

Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., & Zeileis, A.
(2008). Conditional variable importance for random forests.
BMC Bioinformatics, 9(1), 307.

Strobl, C., Boulesteix, A.-L., Zeileis, A., & Hothorn, T. (2007). Bias
in random forest variable importance measures: Illustrations,
sources and a solution. BMC Bioinformatics, 8(1), 25.

Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recur-
sive partitioning: Rationale, application, and characteristics of
classification and regression trees, bagging, and random forests.
Psychological Methods, 14(4), 323–348.

Therneau, T. M., & Atkinson, E. J. (2014). An intro-
duction to recursive partitioning using the rpart routines.
Retrieved from http://cran.r-project.org/web/packages/

rpart/vignettes/longintro.pdf

Tucker, L. R. (1966). Learning theory and multivariate experiment:
Illustration by determination of generalized learning curves. In
R. B. Cattell (Ed.), Handbook of multivariate experimental psychol-
ogy. Rand McNally.

Tukey, J. W. (1977). Exploratory data analysis. Reading, Mass.: Addison-
Wesley.

van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate
imputation by chained equations in R. Journal of Statistical Soft-
ware, 45(3), 1–67. Retrieved from http://www.jstatsoft.org/

v45/i03/

Wagenmakers, E.-J., Wetzels, R., Borsboom, D., van der Maas, H. L., &
Kievit, R. A. (2012). An agenda for purely confirmatory research.

http://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf
http://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf
http://www.jstatsoft.org/v45/i03/
http://www.jstatsoft.org/v45/i03/


References 97

Perspectives on Psychological Science, 7(6), 632–638.
Zeileis, A., Hothorn, T., & Hornik, K. (2008). Model-based recur-

sive partitioning. Journal of Computational and Graphical Statistics,
17(2), 492–514.


	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Recursive partitioning and ensemble methods
	2.1 Classification and Regression Trees
	2.1.1 Understanding the bias-variance tradeoff
	2.1.2 Pruning decision trees with cross-validation
	2.1.3 CART with a categorical outcome
	2.1.4 Pros and cons of CART

	2.2 Conditional Inference Trees
	2.2.1 Pros and cons of conditional inference trees

	2.3 Random Forests
	2.3.1 Out-of-bag samples
	2.3.2 Variable importance
	2.3.3 Partial dependence plots
	2.3.4 Conditional inference forests
	2.3.5 Pros and cons of random forests

	2.4 Handling Missing Data

	3 Recursive Partitioning and Multilevel Data
	3.1 Previous Research
	3.2 Current Problems
	3.2.1 Multilevel issues with CART
	3.2.2 Multilevel issues with conditional inference
	3.2.3 Multilevel issues with forests


	4 Simulation Phase
	4.1 Statistical Techniques and Implementation
	4.1.1 Classification and regression trees (CART)
	4.1.2 Conditional inference trees (CTREE)
	4.1.3 Random forests using classification and regression trees (CART forest)
	4.1.4 Random forests using conditional inference trees (CFOREST)
	4.1.5 Multilevel regression

	4.2 Simulation Conditions
	4.3 Data Generation
	4.4 Evaluation Criteria
	4.4.1 Proportion variation explained
	4.4.2 Variable importance

	4.5 Simulation Results
	4.5.1 Proportion variation results
	4.5.2 Variable importance results
	4.5.3 Special conditions results

	4.6 Discussion

	5 Application Phase
	5.1 High School and Beyond Survey
	5.1.1 Step 1: ICC
	5.1.2 Step 2: Estimate proportion of variation explained
	5.1.3 Step 3: Examine variable importance and predicted value plots
	5.1.4 Conclusion

	5.2 Responsive Classroom Efficacy Study
	5.2.1 Initial missingness step
	5.2.2 Step 1: ICC
	5.2.3 Step 2: Estimate proportion of variation explained
	5.2.4 Step 3: Examine variable importance and predicted value plots
	5.2.5 Conclusion

	5.3 My Teaching Partner-Secondary Study
	5.3.1 Initial missingness step
	5.3.2 Step 1: ICC
	5.3.3 Step 2: Estimate proportion of variation explained
	5.3.4 Step 3: Examine variable importance and predicted value plots
	5.3.5 Conclusion


	6 Dissemination Phase
	6.1 R Package
	6.2 Workshop

	7 General Discussion
	7.1 Simulation Phase
	7.2 Application Phase
	7.3 Dissemination Phase
	7.4 Limitations and Future Directions
	7.5 Conclusion

	A Appendix
	A.1 Proper Calculation of the ICC for a Multilevel Simulation
	A.2 Extra Plots for the High School and Beyond Survey
	References


