

An Advanced Resource Retention System for Integration Testing

A Capstone Report
presented to the faculty of the

School of Engineering and Applied Science
University of Virginia

by

Nathan Snyder

May 12, 2023

On my honor as a University student, I have neither given nor received unauthorized aid
on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Nathan Snyder

Capstone advisor: Rosanne Vrugtman, Department of Computer Science

 1

An Advanced Resource Retention System for Integration Testing

CS4991 Capstone Report, 2022

Nathan Snyder
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
nbs9vy@virginia.edu

Abstract

Valkyrie, a team within Amazon Web
Services’ Aurora service, found that some
resources created during integration testing
were not getting deleted, costing the company
each second that they continued to run. The
monetary cost of integration testing became
unreasonably high due to all the resources that
were not being used but had not been deleted.
I designed and deployed an advanced resource
retention system that tracks every resource
used in integration testing and deletes them
when appropriate. I created a Resource
Metadata Table (RMT) to store metadata
about each integration testing resource. I then
made a sweeper tool that goes through the
entries in the RMT and makes changes, such
as deleting resources or removing them from
the table. I also made a command-line tool for
manually adjusting the expiration times of
specific resources. After implementing all
parts of the advanced resource retention
system, all the unused resources that had been
costing the company money had been deleted
and the costs of performing integration tests
decreased significantly. In the future, the
system can be generalized for use by other
teams within Amazon Web Services.

1. Introduction

In the previous integration testing
paradigm, if a test passed successfully, the
resources were deleted automatically. Should
the test fail, or should an error be thrown
during the test, the resources kept running

indefinitely. The rationale behind this
mechanism was rather simple: engineers need
to be able to review what went wrong with the
test. Only engineers could manually clean up
the resources. However, this quickly became a
nuisance, since in practice, most running
resources from failed tests did not get cleaned
up. Engineers who had other, more pressing
work to do did not want to take the time to
delete all the resources that their integration
tests created. Running resources costs money
and causes the clusters the resources are stored
on to become bloated. Having these resources
running posed a serious financial strain on the
team due to the cost of storage space on the
cloud. Instead of relying on manual clean-up,
it was cheaper to use an automated method of
cleaning up unused, still-running resources.
Doing so induced a significant reduction in the
financial losses incurred by the team as well
as in the work of the engineers themselves.

2. Related Works

Efficiency is highly desired throughout all
parts of computer science, and integration
testing is no exception. In most cases, the
optimization of integration testing is done
through modifying the number or order of
tests. There has been great research into this
kind of integration test optimization, such as
optimization by using automated UML
diagrams and graph algorithms (Le Hahn, et
al, 2001). Outside of integration testing, there
has also been considerable research into
automating the management of resources on

 2

the cloud, specifically on Amazon Web
Services. The goal of automated resource
management is to oversee maintaining,
monitoring, and cleansing large numbers of
resources (Sheikh, et al, 2019). There has been
little research into managing resources
specifically for integration testing. In this
project, I used ideas from automated resource
management and brought them into the
context of Valkyrie’s preexisting integration
testing system.

3. Project Design

The design of the resource retention
system was developed over several weeks
with input from my manager, my mentor, and
the greater Valkyrie team. I gathered the
requirements and considerations for the
design, and, in the end, I developed the system
by creating three components: the metadata
creation and storage library (section 3.3), the
sweeper tool (section 3.4), and the tool for
adjusting expiration times (section 3.5).

3.1 Design Considerations

Valkyrie’s resource retention system must
keep track of every resource in the system and
ensure that the resources get deleted when
they are no longer useful. The whole process
must run without human intervention, because
relying on engineers to delete resources
resulted in the resources not getting deleted. It
was also necessary that the system be able to
adjust in response to any special needs for
specific resources. For example, if an engineer
wants to ensure that a resource stay running
for at least two weeks, the system should
adjust accordingly and not delete it any earlier.
Also, the system needs to be flexible and be
able to accommodate every type of resource
that can be used in integration testing.

3.2 Resource Lifecycle

Valkyrie’s resource retention system must
track resources from before they are created to
after they are deleted. I created a lifecycle that

models the different stages of every resource:
NOT_CREATED, CREATING, CREATED,
DELETING, and DELETED. All resources
start with a status of NOT_CREATED, and
with each run of the Resource Sweeper Tool
(section 3.4), the status is advanced through
the other stages until the resource is removed
from the Resource Metadata Table.

Every resource has an expiration time for
its status. When that expiration time is
reached, the resource is moved to another
status depending on the state of the resource
and a new expiration time is given. The
algorithm for determining the new status of a
resource is discussed in section 3.4.

3.3. Metadata Creation and Storage
Library

The resource metadata library is a Java
library for creating metadata for a resource
and storing it in the Resource Metadata Table.
In the RMT, every row corresponds to a
different resource. The columns are resource
id, creation time, expiration time, location,
owner, resource name, resource object,
resource class, status, test id, and tags.

Each type of resource is modeled as a Java
class that implements the ValkyrieResource
interface. The ValkyrieResource interface
specifies certain methods that every resource
class must implement, including close() and
doesResourceExist() methods. Resource
classes implement those methods as well as
any additional fields or methods that are
needed to properly model that type of
resource. To represent a specific resource, an
object of the corresponding resource type
class is created.

Every resource created for an integration
test is added to the RMT by instantiating an
object of the ResourceMetadata class. The
constructor for this class takes in a resource
object, formats the resource’s metadata, and
inserts it into the RMT. The
ResourceMetadata class has additional
methods for updating and saving the metadata

 3

as well as for increasing, setting to an arbitrary
time, and resetting to zero a resource’s
expiration time.

The ResourceMetadata class contains a
static subclass called ResourceMetadataUtils,
which contains several methods that retrieve
or change a resource’s metadata in the RMT
given only the resource’s id. For example,
there are methods to get the resource’s entire
entry from the RMT; increase, set, and reset
the resource’s expiration time; delete the
resource; and change an arbitrary attribute of
the resource.

3.4. Resource Sweeper Tool

The Resource Sweeper Tool enforces the
resource lifecycle on the resources in the
Resource Metadata Table. It makes several
queries to the RMT and adjusts the metadata
depending on the state of the resources. I
scheduled a job using Amazon Web Services’
Distributed Job Scheduler (DJS) to
automatically run the sweeper tool script once
a day.

All resources are added to the table with a
creation time of -1 and an expiration time of
one week after the time the resource is added.
When the resource reaches the CREATED
status, the expiration time is reset to one week
after the current time or -1 if the engineer who
made the resource specified that this resource
should not be deleted. When the resource
reaches the DELETED status, the expiration
time is also reset to one week after the current
time.

On every run of the resource sweeper tool,
the following changes are made for each
resource:
1. If the resource’s status is NOT_CREATED

and it has passed its expiration time, the
resource’s metadata is removed from the
RMT.

2. If the resource’s status is CREATING and
it has passed its expiration time, the
existence of the resource is checked. If the
resource exists, it is deleted. If the resource

does not exist, the resource’s metadata is
removed from the RMT.

3. If the resource’s status is CREATED and it
has passed its expiration time, the resource
is deleted.

4. If the resource’s status is DELETING and
the resource does not exist, the status is
changed to DELETED. If the resource
does exist, the “deletion attempts” column
of the RMT is checked. If the number of
deletions is less than three, the resource is
deleted again. If the number of deletion
attempts is greater than or equal to three, a
ticket is created so that a human will
manually delete the resource.

5. If a resource’s status is DELETED and it
has passed its expiration time, the
resource’s metadata is removed from the
table.

3.5. Change Resource Expiration Time
Tool

The Change Resource Expiration Tool
script takes in several command-line
arguments that identify resources and specify
how to change those resources’ expiration
times. The script queries the Resource
Metadata Table for the resources matching the
given command-line arguments and modifies
the expiration times for each one according to
the inputs to the script.

The user can specify the resources they
want to change by using the following flags:
--resource-id, --resource-name, --resource-
class, --test-id, --tag, --location, and --owner.

The --change flag tells the script how the
user wants to change the resources’ expiration
times. The options are “increase,” “set” (to an
arbitrary time), and “reset” (set to time 0 so
that the resource gets deleted on the next run
of the sweeper tool).

If the user chooses “increase” or “set”,
time arguments should be specified using the
flags --weeks, --days, --hours, --minutes, and
--seconds. If no time arguments are specified,
the time will default to 0. If the user chooses

 4

“reset,” any non-zero time arguments will
cause an error to be thrown. The maximum the
expiration time can be increased or set is two
weeks after the current time. Any time later
than that causes an error to be thrown.

4. Results

Currently, the advanced resource retention
system I designed is in use by the Valkyrie
team. The software moves all the resources
created for integration tests through the life
cycle and ensures that all resources get
properly disposed of without the need for
human intervention. This has resulted in
considerable savings due to the problem first
presented in the introduction, where running
resources caused serious financial strain on
the team. These savings are estimated to be in
the thousands of dollars per year.

5. Conclusions

During my internship at Amazon Web
Services, I designed an advanced resource
retention system for the Valkyrie team. My
project was to build a system to efficiently and
automatedly delete integration testing
resources after they are no longer needed. In
building it, I designed a metadata creation and
storage library, a sweeper tool, and a tool for
adjusting resources’ expiration times. The
system is now currently in use by the Valkyrie
team, where is has resulted in significant
monetary savings.

6. Future Work
This advanced resource retention system

was designed for the Valkyrie team, but most
other software development teams would
likely benefit from a similar system. The next
step for this project is to generalize it for use
by any team in Amazon Web Services. Also,
there are many opportunities available for
increased efficiency in integration testing
apart from this system. One other avenue for
optimization is to use different models of the
systems that are being tested that optimize the
number and order of the integration tests being
run.

7. Acknowledgements

I would like to thank my manager, Bassu
Hiremath, my mentor, Kevin Liu, and the
entire Valkyrie team for their constant and
supportive help with this project during my
internship.

References
Le Hanh, V., Akif, K., Le Traon, Y., and

Jézéque, J.M. 2001. “Selecting an
Efficient OO Integration Testing Strategy:
An Experimental Comparison of Actual
Strategies,” Lecture Notes in Computer
Science, vol 2072, June 2001.
doi:10.1007/3-540-45337-7_20

Sheikh, S., Suganya, G., and Premalatha, M.
2019. “Automated Resource Management
on AWS Cloud Platform,” Smart
Innovation, Systems and Technologies,
vol 164, October 2019. doi:10.1007/978-
981-32-9889-7_11

