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Abstract
Quantum computing offers the potential to solve complex problems beyond the reach

of classical systems, with applications in cryptography, optimization, and scientific

simulation. Photonic continuous-variable (CV) quantum computing harnesses light’s

properties to enable scalable, fault-tolerant quantum computation. This disserta-

tion contributes to this field through developing high performing optical parametric

oscillators (OPOs) and photon-number-resolving detectors (PNRDs). These efforts

improve the generation and detection of quantum states, providing practical tools for

quantum information processing.

I built two triply resonant optical parametric oscillators—a nondegenerate design

which demonstrated 6 dB gain and a degenerate one achieving 24 dB gain—demonstrating

strong potential for record quantum squeezing as the squeezing record is 15dB. These

OPOs are sources of two-mode squeezed states, entangled photon pairs, and CV clus-

ter states, supporting measurement-based quantum computing (MBQC) and related

applications. As for PNRDs, I significantly enhanced the photon number resolution

of the superconducting transition edge sensor (TES) system in our lab, increasing it

from 8 to 37 photons per channel, enabling the resolution of up to 100 photons setting

a new record up from the previous record of 16. I also modeled segmented detectors

using single avalanche photodiodes, offering additional design insights.

PNR detectors enable numerous applications, two of which I explore in this disserta-

tion: a quantum random number generator which I experimentally demonstrated and

Fock state interferometry, which I theoretically modeled including losses, validating

its use for phase discrimination.

Together, the high-gain OPOs and refined TES bolster photonic CV quantum com-

puting, by paving the way for cubic phase gate realization and by extension universal

CV quantum computing.
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Chapter 1

Introduction

Quantum computing, first proposed in 1982 by Richard Feynman [1], has undergone

rapid development, with major technology companies and startups racing to construct

practical quantum computers for real-world applications. The appeal of this technol-

ogy lies in its potential to address previously intractable problems through what is

termed the quantum advantage. This advantage arises from the unique quantum

properties of the qubit, in contrast to the classical bit. A classical bit is restricted

to a state of either 0 or 1, whereas a qubit can exist in a superposition of 0 and

1 states. This superposition enables a quantum computer to access a vast number

of possibilities simultaneously, offering exponential computational power for specific

problems [2]. Furthermore, qubits can be entangled, producing correlations that ex-

ceed classical bounds [3] and enable enhanced information processing across multiple

qubits [2]. It is worth noting that having superposition and entanglement alone does

not guarantee exponential speed up over classical computers. One needs to find the

right quantum algorithm, which is in general not an easy task[4].

Several quantum algorithms have been developed that demonstrate exponential speedup

over their classical counterparts. Notably, Shor’s algorithm factors large integers ex-

ponentially faster than any known classical method, posing a threat to RSA encryp-

tion [5]. Additionally, quantum simulation algorithms, as envisioned by Feynman,

provide exponential efficiency in modeling quantum systems [6]. These advancements

underscore the transformative potential of quantum computing in fields such as cryp-
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tography, optimization, and scientific simulation.

The early development of classical computers saw companies competing to perfect

the physical realization of the bit—the transistor—through various technologies, un-

til the metal-oxide-semiconductor field-effect transistor (MOSFET) emerged as the

dominant standard due to its scalability and efficiency [7]. A similar competition

exists today in quantum computing, with diverse physical implementations of the log-

ical qubit, including superconducting qubits [8], trapped ions[9], neutral atoms[10],

and photonics (light-based systems)[11]. The continuous-variable photonic approach

stands out because, unlike discrete-variable qubits limited to 0, 1, or their superpo-

sition, it leverages the continuous quadratures of quantized electromagnetic fields—

analogous to position and momentum—providing access to a continuous state space

[12]. Here, the fundamental unit is the qumode, distinguishing continuous-variable

(CV) quantum computing from its discrete-variable (DV) counterpart.

Quantum computing also varies by approach, with two primary paradigms: circuit-

based and measurement-based quantum computing (MBQC). Circuit-based quantum

computing applies quantum gates to a set of qubits, evolving their states through

unitary operations until a final measurement yields the computational result [2]. In

contrast, MBQC begins by preparing a highly entangled resource state, such as a

cluster state, and performs adaptive single-qubit(or qumode) measurements to im-

plement gate operations indirectly, a method well-suited to photonic systems due to

their natural entanglement capabilities [13].

Universal computation, whether classical or quantum, requires a complete set of log-

ical gates. In quantum computing, the Clifford gates (gates which transform Pauli

operators to other Pauli operators, e.g., Hadamard, CNOT, phase gates) can perform

all classical computations but offer no quantum speedup, as they are efficiently simu-

lable classically per the Gottesman-Knill theorem [14]. Achieving a quantum advan-
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tage necessitates non-Clifford gates, such as the T-gate [2]. In photonic CV quantum

computing, this translates to requiring both Gaussian gates (gates that transform

Gaussian wavefunctions to other Gaussian wavefunctions, e.g., squeezing, displace-

ment, beamsplitters) and non-Gaussian gates (e.g., cubic phase gate), as Gaussian

operations alone are classically simulable [15].

This dissertation focuses on the photonic, continuous-variable, measurement-based

approach to quantum computing. Gaussian gates have been successfully realized

with high fidelity using optical techniques [16, 17, 18]. However, the realization

of non-Gaussian gates, particularly the cubic phase gate essential for universal CV

quantum computing, remains a significant challenge. Proposals to implement the cu-

bic phase gate include adaptive non-Gaussian measurements [19], photon subtraction

techniques with sequential subtractions [20], and ancilla-assisted methods [21, 22], all

of which benefit from high squeezing levels (e.g., �10 dB as demonstrated or proposed

in some schemes) and/or require precise photon number resolution.

This work addresses these challenges through three main chapters:

In Chapter 2, I detail the design and construction of doubly and triply resonant

optical parametric oscillators (OPOs), achieving measured gains of 24 dB and 6 dB,

respectively — a necessary requirement for observing squeezing, with the current

record being 15 dB of squeezing[23]. OPOs serve as critical sources of squeezed states

[24], entangled photon pairs [25], and cluster states [26], underpinning numerous

quantum optics experiments.

In Chapter 3, I explore photon-number-resolving detectors (PNRDs). I discuss my

simulations of single avalanche photodiodes for PNR applications [27] and my group’s

work with transition-edge sensors (TES), where we resolved up to 100 photons[28],

surpassing the previous world record of 16 [29]. This advancement enhances the

precision of quantum measurements.
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In Chapter 4, I present applications of PNRDs. Leveraging the TES’s capabilities, we

implemented a quantum random number generator[28]. Additionally, I demonstrate

how PNRDs enable Fock state interferometry for phase discrimination with low error

rates, even under realistic lossy conditions, advancing quantum metrology[30].
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Chapter 2

Optical Parametric Oscillator

(OPO)

An optical parametric oscillator (OPO) consists of an optical cavity with a non-

linear medium inside. It has many use cases such as in spectroscopy [31], microscopy

[32], and in quantum optics where it is used as a source of entangled photon pairs,

squeezed states and cluster states. My goal here is to break the record of squeezing

and my work has been a series of successful steps towards that. The current record

in squeezing is 15 dB[23]. In this chapter I will discuss optical cavities, non-linear

media, and the doubly and triply resonant OPOs I built achieving 24 dB and 6 dB

of gain respectively, a necessary requirement for observing squeezing. The doubly

resonant OPO is a type-0 OPO, which means the pump, signal and idler fields are all

in the same polarization. This OPO can be used to generate single-mode squeezed

states, which are a necessary ingredient for cat state generation, which in turn can be

used to make GKP states (useful for error correction)[33]. The triply resonant OPO

is a type-II OPO, which means the signal and idler fields are cross polarized. This

can be used to generate two-mode squeezed states and separable (by polarization),

entangled photon pairs. Two-mode squeezed states can be used to generate cubic

phase states[22].
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2.1 Optical cavity

An optical cavity, or optical resonator, consists of two (or more) mirrors with the

purpose of trapping light between them allowing for the build up and constructive

interference of light waves over multiple round trips producing resonant modes. There

are multiple ways to go about building an optical cavity involving not just the number

of mirrors used but also their radius of curvature and their separation distance. We

are now going to discuss some essential cavity properties.

2.1.1 Stability

In this chapter, we are going to consider what is known as the hemispherical, near-

hemispherical or half-concentric stable resonator, compromised of one concave mirror

of radius of curvature R1 and one flat mirror of radius of curvature R2 = ∞ separated

by a distance L ≈ R1, also known as the cavity length. A schematic is shown in

Fig. 2.1.
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Figure 2.1: Hemispherical resonator schematic with R1 and R2 being the radius of
curvature of mirror 1 and 2 respectively.

For this cavity to form a stable periodic focusing system, it must satisfy the following

stability condition [34]:

0 ≤ g1g2 ≤ 1 (2.1)

where g1 = 1 + L
R1

, g2 = 1 + L
R2

and the sign convention is that for a concave mirror

R is negative. In our case, R2 = ∞, so this condition simplifies to:

0 ≤ L ≤ |R1| (2.2)

The cavity we are using has R1 = 0.1 m.

The beam widths are approximated, with ∆L≪ L and R1 = L+∆L, as follows:

For the small spot at the plane mirror:

w2
0 = w2

2 ≈
Lλ

π
×
√

∆L

L
(2.3)
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and for the large spot at the curved mirror:

w2
1 ≈

Lλ

π
×

√
L

∆L
(2.4)

2.1.2 Fields

Let us now consider the reflected, circulating and transmitted electric fields for such

a cavity as shown in Fig. 2.2 with electric field reflection and transmission coefficients

r1 and t1 for mirror 1 and r2 and t2 for mirror 2.

Figure 2.2: The electric fields associated with a two mirror cavity with electric field
reflection and transmission coefficients r1 and t1 for mirror 1 and r2 and t2 for mirror
2.

For a lossless cavity, the the expression for the total circulating field is:

Ecirc =
it1

1− r1r2e
−iω2L

c

Einc (2.5)

for the reflected field:

Erefl =
r1 − r2e

−iω2L
c

1− r1r2e
−iω2L

c

Einc (2.6)
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and for the transmitted field:

Etrans =
−t1t2e

−iω2L
c

1− r1r2e
−iω2L

c

Einc (2.7)

The electric field reflection and transmission coefficients are related to the intensity

reflectivities and transmissivities by:

|ri|2 = Ri, |ti|2 = Ti (2.8)

where Ri+T1=1 as we assume loss and scattering are negligible, as measured in pre-

vious experiments.

It is often more useful to have expressions relating the relative intensities of the

circulating, reflected and transmitted fields to the incident field. Starting from I ∝

|E|2, we begin by the circulating field intensity relative to the incident field, this is

given by:

Acirc =
|Ecirc|2

|Einc|2
=

T1

(1−
√
R1R2)2 + 4

√
R1R2 sin2(ωL

c
)

(2.9)

for the reflected field intensity:

Arefl =
|Erefl|2

|Einc|2
=

(
√
R1 −

√
R2)

2 + 4
√
R1R2 sin2(ωL

c
)

(1−
√
R1R2)2 + 4

√
R1R2 sin2(ωL

c
)

(2.10)

and the transmitted field intensity:

Atrans =
|Etrans|2

|Einc|2
=

T1T2

(1−
√
R1R2)2 + 4

√
R1R2 sin2(ωL

c
)

(2.11)

The cavity we are using has mirrors with R1 = 0.9 and R2 = 0.99998 at 532 nm and

R1 = 0.9999 and R2 = 0.83 at 1064 nm.

At resonance, the round-trip phase ω×2L
c

= 2π, which means ωL
c

= π and the sin
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term in the denominator vanishes. Using our mirror intensity reflectivities, we can

calculate from Eq. 2.9 that Icirc ≈ 38Iinc at 532 nm and Icirc ≈ 0.0126Iinc at 1064

nm.

We are using an Nd:YAG laser, widely used in optical systems for its high power

and stability, with a fundamental wavelength of 1064 nm. This is later doubled

in frequency in a doubling cavity to output our 532 nm pump laser. Using 1064 nm

light is also particularly useful since InGaAs photodiodes (used in balanced homodyne

detectors to example to measure squeezing) have the highest quantum efficiency at

1064 nm.

2.1.3 Resonant cavity properties

Let us now define some useful parameters used to describe optical cavities. We begin

by plotting Eq. 2.11 substituting ω with 2πν. This generates Fig. 2.3 given below.

Figure 2.3: Transmitted resonant cavity modes for an optical cavity with R1 = 0.9
and R2 = 0.99998 at 532 nm.

Suppose our incident beam had a continuous frequency distribution, the transmitted

output would still have the comb like structure of Fig. 2.3. The cavity acts as filter

and only allows light with certain frequencies through, those satisfying the resonance
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condition. The resonance condition is that the acquired phase after one round trip is

exactly 2πq, where q in an integer. In terms of frequency, this is:

νq = q
c

2L
, q integer (2.12)

Eq. 2.12 gives the allowed frequencies through the optical cavity. We will use q to

label these modes, also called longitudinal or axial modes. We can directly see that

the mode spacing, also known as the cavity’s free spectral range, is given by:

FSR =
c

2L
(2.13)

Each of the comb lines in Fig. 2.3 has a distribution in frequency, also known as the

linewidth or full width half maximum, labeled as νFWHM . To calculate that linewidth,

we set Atrans given by Eq. 2.11 equal to 1
2
Amax

trans which occurs at resonance, and solve

for the argument of the sine, which is the phase after traversing one length L, so

half a round trip. This gives us δ
2

where δ is the phase after one round trip. Recall

δ = ω×2L
c

= 2π. Solving for δ we now have an expression for the phase at which the

power is half the maximum. To get the linewidth we multiply that by 2. This is the

linewidth expression in phase space:

δFWHM = 4 sin−1

(
1−

√
R1R2

2(R1R2)
1
4

)
(2.14)

To get the νFWHM expression in frequency, we use δ = ω2L
c

and substitute 2πν for ω

then solve for ν. This gives us:

νFWHM =
c

πL
sin−1

(
1−

√
R1R2

2(R1R2)
1
4

)
(2.15)
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Next, the finesse is defined as the ratio of FSR over νFWHM . This is given by:

Finesse =
π

2 sin−1

(
1−

√
R1R2

2(R1R2)
1
4

) (2.16)

which can be approximated using sin δ ≃ δ ≃ sin−1 δ to:

Finesse ≈ π(R1R2)
1
4

1−
√
R1R2

(2.17)

For our cavity we have FSR ≈1.5 GHz, νFWHM ≈ 25 MHz at 532 nm and νFWHM ≈

45 MHz at 1064 nm. With finesse ≈ 60 at 532 nm and finesse ≈ 33 at 1064 nm.

A point of confusion that might arise is when scanning the length of an optical cavity

and viewing the output on an oscilloscope when inputting 532 nm and 1064 nm lasers.

What you will see is that the spacing between the IR (1064 nm) peaks is double that

of the green (532 nm) peaks and one might ask how is their spacing different when

the peak spacing we defined in Eq. 2.13 is independent of wavelength and should

be the same for both. The answer is yes the spacing of resonant frequencies is the

same whether you are in the IR or green regime. What we are viewing now on the

oscilloscope is not in the frequency domain but in time as we’re varying the cavity

length. In that case we can rearrange Eq. 2.12 and use ν = c/λ to write:

Lq = q
λ

2
, q integer (2.18)

where Lq are the cavity lengths that allow resonance. This means the spacing between

possible cavity lengths is ∆L = λ
2
. If the cavity is scanned at a constant rate vscan,

the time between peaks (which is what you directly see on the oscilloscope) is given

by:

∆t =
∆L

vscan
=

λ

2vscan
(2.19)
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For a constant vscan we can see that ∆tIR = 1064×10−9

2vscan
= 2× 532×10−9

2vscan
= 2∆tgreen which

is what we observe.

Finally, we recall that the Gaussian beam is not the only solution to the paraxial

Helmholtz equation defining a traveling wave with a slowly complex amplitude, but

is the lowest order member of a family of solutions called the Hermite-Gaussian beams.

These modes are characterized by two parameters, l and m, and are known as the

transverse modes. The Gaussian beam is thus the TEMq00 mode. The optical cavity

can also support these higher order modes. Odd modes (l+m odd) appear in the

optical cavity when it is not well aligned, and even modes (l+m even) appear when

the cavity is not well mode matched. The formula defining resonance frequencies of

the Hermite-Gaussian modes is:

νl,m,q =

[
q + (l +m+ 1)

∆ζ

π

]
c

2L
(2.20)

where ∆ζ is known as the Gouy phase shift defined as:

∆ζ = ζ(z2)− ζ(z1) (2.21)

= tan−1(
z2
z0
)− tan−1(

z1
z0
)

For the purposes of making the calculation easier, let us set the origin of the z axis on

the flat mirror in Fig. 2.1 and call it mirror 1 instead. In that case, z1 = 0, R1 = ∞,

z2 = R2−∆d (with ∆d≪ R2) and R2 = −|R2| substituting all that back in Eq. 2.21

and using the definition R = z+ z02

z
we get ∆ζ = π

2
and Eq. 2.20 for the hemispherical

cavity simplifies to:

νl,m,q =

[
q +

l +m+ 1

2

]
c

2L
(2.22)

Fig. 2.4 shows how the resonant modes are ordered for different types of cavities.
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Our semi-concentric case is identical to the concentric case in terms of the shape

of the Gaussian modes, and identical to the confocal case in terms of Gouy phase

and the resultant stability condition, where the g1g2 term in Eq. 2.1 is zero in both

the hemispherical and confocal cases. We can see how the odd and even modes get

separated at half the FSR. This is indeed what we observe with our cavity in the lab.

When we align the input beam well, we can make the odd modes disappear.

Figure 2.4: Figure from [35]. Transverse mode resonant frequencies in various stable
cavities
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2.2 Nonlinear media

Nonlinear media are media whose response to an applied optical field depends in

a nonlinear way on the field. This allows different optical fields to interact with

one another opening the door for numerous new phenomena that constitute the field

of nonlinear optics. Among these phenomena, we will primarily be concerned here

with parametric amplification and spontaneous parametric down conversion. There

are many different materials that exhibit nonlinear behavior that can be leveraged for

optical experiments, the material we chose for the two OPOs we built is a periodically

poled Potassium Titanyl Phosphate (KTiOPO4) crystal, also known as a PPKTP

crystal. An excellent resource on nonlinear optics can be found in Ref. [36].

We begin by recalling that in a linear dielectric medium, the dipole moment per unit

volume, or polarization, is given by:

P̃ (t) = ϵ0χ
(1)Ẽ(t) (2.23)

where ϵ0 is the permittivity of free space, χ(1) is the linear susceptibility of the medium

and E(t) is the input electric field. In a nonlinear dielectric medium, Eq. 2.23 can be

generalized to:

P̃ (t) = ϵ0[χ
(1)Ẽ(t) + χ(2)Ẽ2(t) + χ(3)Ẽ3(t) + ...] (2.24)

= P̃ (1)(t) + P̃ (2)(t) + P̃ (3)(t) + ...

where χ(2) and χ(3) are the second and third order nonlinear susceptibilities. In

general |χ(1)| ≫ |χ(2)| ≫ |χ(3)|, so when considering second-order nonlinear effects,

we can ignore third-order ones if the fields are not too intense.

Let us now look closer at second order interactions. Consider the case in which two
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electric fields with angular frequencies ω1 and ω2 are input into a nonlinear material.

The total electric field will be given by:

Ẽ(t) = E1e
−iω1t + E2e

−iω2t + c.c. (2.25)

The second order polarization is then:

P̃ (2)(t) = ϵ0χ
(2)E2(t) (2.26)

= ϵ0χ
(2)
[
E2

1e
−2iω1t + E2

2e
−2iω2t + 2E1E2e

−i(ω1+ω2)t

+ 2E1E
∗
2e

−i(ω1−ω2)t + c.c.
]
+ 2ϵ0χ

(2)[E1E
∗
1 + E2E

∗
2 ]

This can be expressed as:

P̃ (2)(t) =
∑
n

P (ωn)e
−iωnt, (2.27)

where the summation covers positive and negative ωn values. We can recognize the

complex amplitudes P(ωn) corresponding to different frequency components (and

processes) as:

P (2ω1) = ϵ0χ
(2)E2

1 (SHG), (2.28)

P (2ω2) = ϵ0χ
(2)E2

2 (SHG),

P (ω1 + ω2) = 2ϵ0χ
(2)E1E2 (SFG),

P (ω1 − ω2) = 2ϵ0χ
(2)E1E

∗
2 (DFG),

P (0) = 2ϵ0χ
(2)(E1E

∗
1 + E2E

∗
2) (OR)

where the underlying physical processes are: second harmonic generation (SHG),

sum frequency generation (SFG), difference frequency generation (DFG) and optical

rectification (OR).



17

2.2.1 Phase matching

Typically, the four frequency dependent components in Eq. 2.28 are not all simultane-

ously present with meaningful intensity because they require different phase matching

conditions. One is thus able to select which process to favor by satisfying the corre-

sponding phase matching conditions. To see what these are, let’s consider the DFG

term in Eq. 2.28, that is a function of the difference of the two input frequencies

ω1 and ω2. Let us call the new output field ω3. For energy to be conserved, the

frequencies must satisfy the condition:

ω3 = ω1 − ω2 (2.29)

and for momentum to be conserved, the wave vectors must satisfy:

∆k = k3 + k2 − k1 = 0 (2.30)

where ki = niωi

c
. These are called the phase matching conditions and can be satisfied

by tuning the crystal temperature and crystal orientation. That might still not be

enough and you end up with ∆k ̸= 0, which we would like to avoid since the intensity

of the produced field is proportional to sinc2(∆kl
2
) where l is the crystal length, as

shown in Fig. 2.5 . In this case, we can resort to quasi phase matching. Quasi phase

matching is achieved by designing the crystal in such a way to introduce a new term in

the wave vector equation compensating for the mismatch. That is done by periodically

poling a ferroelectric crystal because, when the polarization of a ferroelectric domain

flips, the sign of χ(2) flips as well, as shown in Fig. 2.6. This results in:

∆kQ = k3 + k2 − k1 −
2π

Λ
(2.31)

where Λ is the poling period, which can be controlled to get ∆kQ = 0. The periodic

polling introduces a square spatial wave, not just a sinusoidal one. The Fourier
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series of the square wave has the fundamental component Λ, used here, and odd

subharmonics of the wavelength which are normally weaker [37, 38, 39].

Figure 2.5: Effect of phase mismatch on efficiency

Figure 2.6: Figure from [36]. Schematic representations of a second-order nonlinear
optical material in the form of (a) a homogeneous, monodomain single crystal and
(b) a periodically poled material in which the positive c axis alternates in orientation
with period Λ, flipping the sign of χ(2).

As mentioned earlier, changing the crystal temperature can be used to achieve phase
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matching. This is because each ki in Eq. 2.30 and Eq. 2.31 depends on the refractive

index ni that the corresponding field experiences in the crystal. The index n, in

turn, depends on the wavelength λ and the crystal temperature T. For KTP, the

dependence is given by the Sellmeier equations for KTP[40, 41]:

ny(λ, T ) =

√
2.19229 +

0.83547

1− 0.04970
(λ×106)2

− 0.01621(λ× 106)2

+

(
6.2897 +

6.3061

λ× 106
− 6.0629

(λ× 106)2
+

2.6486

(λ× 106)3

)
× 10−6 × (T − 25)

+

(
−0.14445 +

2.2244

λ× 106
− 3.5770

(λ× 106)2
+

1.3470

(λ× 106)3

)
× 10−8 × (T − 25)2

(2.32)

nz(λ, T ) =

[(
2.12725 +

1.18431(λ× 106)2

(λ× 106)2 − 0.0514852

)
+(

0.6603(λ× 106)2

(λ× 106)2 − 100.00507
− 0.00968956(λ× 106)2

)] 1
2

+

(
9.9587 +

9.9228

λ× 106
− 8.9603

(λ× 106)2
+

4.1010

(λ× 106)3

)
× 10−6 × (T − 25)

+

(
−1.1882 +

10.459

λ× 106
− 9.8136

(λ× 106)2
+

3.1481

(λ× 106)3

)
× 10−8 × (T − 25)2

(2.33)

where ny and nz represent polarizations along crystal axes, λ is the wavelength in

meters and T is the temperature in degrees Celsius. These equations are useful to

model how the crystal temperature affects resonant modes, as we will see in the

following sections.
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2.2.2 Parametric amplification

Let us now assume phase matching conditions are satisfied and let’s take a closer look

at the DFG process, outlined in Fig. 2.7. We notice that the higher frequency pump

photon ω1 down converts to both ω2 (which we will call the signal) and ω3 (which

we will call the idler). From this we can expect that that the ω2 field experiences

amplification, which it does. This is called parametric amplification.

Figure 2.7: Difference-frequency generation. (a) Geometry of the interaction. (b)
Energy-level description.

Solving the coupled wave equations derived from Maxwell equations using the DFG

polarization term we get, for the degenerate ω2 = ω3 = ω case, a solution of the form:

E(z) = E2(0) cosh(κz) + eiϕE∗
2(0) sinh(κz) (2.34)

where E2(0) is the amplitude of the seed beam at z=0 of the crystal, ϕ is the pump

phase relative to the seed, and κ2 =
4d2effω

4|E1|2
k2c4

with deff =
1
2
χ(2). To get the power of

this output beam we calculate:

P = |E(z)|2 = |E2(0)|2[cosh(2κz) + sinh(2κz) cosϕ] (2.35)
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which for ϕ=0, set for maximum amplification, reduces to:

P = |E2(0)|2e2κz (2.36)

We define the gain as:

G =
Pamplified

Pinput
=

|E2(leff)|2

|E2(0)|2
= e2κleff (2.37)

where leff is the effective length of the crystal the light sees. In case of single pass

that is simply the length of the crystal l, in case of an optical cavity that would be

2nrtl where nrt is the effective number of round trips a light wave successfully makes

in the cavity before exiting. It is common to make the substitution r = κz such that

the gain is expressed as G=e2r where r is called the squeezing parameter. It is also

common to express the gain G in dB, which can be calculated as:

GdB = 10 log10(G) = 10 log10(e
2κleff) =

40leffdeffω
2

ln(10)kc2 |E1| (2.38)

where we can see that the gain in dB, GdB, is proportional to the square root of the

pump beam power since |E1| ∝
√
P1.

2.2.3 Spontaneous parametric down conversion

Spontaneous parametric down conversion (SPDC) is what happens when only the

pump field ω1 is sent into the the nonlinear medium, which then down converts

outputting ω2 and ω3. This process cannot be described classically as the generated

fields are the result of amplifying vacuum fluctuations in the ω2 and ω3 quantized

fields[42]. Instead, this process can be described by the following Hamiltonian in the

interaction picture:



22

HI = ih̄χ(2)(a1a
†
2a

†
3 − a†1a2a3) (2.39)

where a1 is the pump field and a2,3 are the signal and idler fields. In the undepleted

pump approximation, which is valid when operating below the OPO threshold, we

can treat the pump field as a classical field (coherent state) constant in time and

rewrite the Hamiltonian as:

HI = ih̄χ(2)β(a†2a
†
3 − a2a3) (2.40)

The evolution equations in the interaction picture for the creation and annihilation

operators are:
da2
dt

= κa†3 (2.41)
da3
dt

= κa†2

where κ here is defined as: κ = χ(2)β. Solving these equations we the get the

Bogoliubov transformation:
a2(t) = a2(0) cosh r + a†3(0) sinh r (2.42)

a3(t) = a3(0) cosh r + a†2(0) sinh r

which defines the two mode squeezed state. Here r = |κ|t is the squeezing parameter

and t is the nonlinear interaction time.

For the degenerate ω2 = ω3 case the Hamiltonian becomes:

HI = ih̄
χ(2)

2
β[(a†)2 − a2] (2.43)

where the factor 1/2 comes to account for over-counting. The corresponding evolution
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of the operator becomes:
a(t) = a(0) cosh r + a†(0) sinh r (2.44)

which is the single mode squeezed state.

2.2.4 Squeezing

In this subsection I briefly explain what is meant by squeezing. I will use definitions

from quantum optics that I will not fully flush out here can be easily found in any

quantum optics book [43, 44].

To see what is meant by squeezing, let us first recall that the quadrature operators

for a quantized field are defined as:

Q̂ =
â† + â√

2
(2.45)

P̂ =
â− â†

i
√
2

(2.46)

And let us replace the creation and annihilation operators in the quadratures by those

defined in Eq. 2.44. We get:

Q̂s = erQ̂ (2.47)

P̂s = e−rP̂ (2.48)

where r is the squeezing parameter defined in the previous section. We can see that

for a positive r, Q̂ gets ’stretched’, or anti-squeezed and P̂ gets squeezed.

Consider the simplest state, a vacuum state |0⟩ in the Fock basis. The uncertainty is

calculated using the quadratures in Eq. 2.45 to be ∆Q̂ =

√
⟨0| Q̂2 |0⟩ − ⟨0| Q̂ |0⟩2 =

1√
2
. Similarly, ∆P̂ = 1√

2
and the vacuum state saturates the Heisenberg uncertainty
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relation: ∆Q̂∆P̂ = 1
2
.

If instead we use the squeezed and anti-squeezed quadratures defined in Eq. 2.47,

we get ∆Q̂s = er√
2

and ∆P̂s = e−r
√
2

. We see that we still saturate the Heisenberg

uncertainty relation: ∆Q̂s∆P̂s =
1
2

but the uncertainties are no longer equal and the

state is no longer symmetric.

This squeezing effect can be seen visually if we look at the Wigner function of the

squeezed state in question. The Wigner function is a quasi-probability distribution

that is in general defined by:

W (q, p) =

∫ ∞

−∞
e2ipy ⟨q − y| ρ |q + y⟩q dy (2.49)

for a density matrix ρ representing a quantum state. Here, |s⟩q and |t⟩p are eigenstates

of the quadrature operators Q̂ and P̂ with eigenvalues s and t respectively. For the

vacuum state ρ = |0⟩ ⟨0|, but this is in the Fock basis. We need to rewrite it in the

quadrature basis to use in the Wigner function. In general, the Fock states written

in the quadrature basis are given by:

|n⟩ =
∫
dx

π−1/4

√
n!2n

e−x2/2Hn(x) |x⟩q (2.50)

where Hn(x) are the physicist’s Hermite polynomials. With this we can find and plot

the Wigner function for the vacuum state. But what about the squeezed vacuum?

For that we start by defining the squeezing operator and acting with it on the vacuum

state. The squeezing operator is a unitary operator and thus takes the form Û =

e−
it
h̄
Ĥ . The Hamiltonians we’ll use here are none other than those responsible for

SPDC that we saw in the previous subsection defined by Eq. 2.40 for the two-mode

case and Eq. 2.43 for the single-mode case. We evaluate the squeezing operators are
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follows:

Ŝ(r) = e
r
2
[(â†)2−â2] = e

−ir
2

(Q̂P̂+P̂ Q̂) (2.51)

Ŝab(r) = er(â
†b̂†−âb̂) = e−ir(Q̂aP̂b+P̂aQ̂b) (2.52)

where r = κχ(2)β is the squeezing parameter as defined in the previous subsection.

Acting by the single-mode squeezing operator on the vacuum state |0⟩ we get:

Ŝ(r) |0⟩ = e−
r
2π−1/4

∫
ds e−

e−2rs2

2 |s⟩q (2.53)

which we can use in the Wigner function formula. We now have everything we need

to plot the Wigner functions of vacuum and squeezed vacuum. The plots are shown

in Fig. 2.8.

Written in Fock basis, the single-mode squeezed vacuum state is given by:

Ŝ(r) |0⟩ = 1√
cosh(r)

∞∑
n=0

tanhn r

√
(2n)!

2nn!
|2n⟩ (2.54)

which shows how we will only have even numbered photons coming out of this process.

This makes sense as the SPDC process explained earlier emits in photon pairs. The

two-mode squeezed vacuum is given by:

Ŝab(r) |0⟩a |0⟩b =
1

cosh(r)

∞∑
n=0

tanhn r |n⟩a |n⟩b (2.55)

where the photons are still emitted in pairs, only in two separate modes this time.
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(a) Vacuum state (b) 6 dB squeezed vacuum

Figure 2.8: Wigner functions of vacuum and 6 dB squeezed vacuum.

2.3 Optical parametric oscillator

2.3.1 Properties
Stability
With the components now covered, we are now ready to build our optical parametric

oscillator by inserting our PPKTP crystal into the optical cavity as shown in Fig. 2.9.

Figure 2.9: Optical parametric oscillator schematic
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First, we want to get a sense of LOPO, will it remain ≈ R1 as in the case of the empty

cavity? To calculate that, we resort to ray transfer matrices. Recall that the ray

transfer matrix for reflecting off a mirror with radius of curvature R is

Mrefl =

 1 0

2
R 1

 , (2.56)

for propagating a distance ℓ through a medium with refractive index n is

Mprop =

1 ℓ
n

0 1

 , (2.57)

and for refracting from a medium with refractive index n1 into a medium with index

n2 is:

Mrefr =

1 0

0 n1

n2

 . (2.58)

The total matrix for one round trip, starting from the flat mirror, can be written as:

Mrt =Mrelf (∞).Mrefr(nKTP , nair).Mprop(ℓKTP ).Mrefr(nair, nKTP ).Mprop(ℓair)

(2.59)

.Mrelf (R1).Mprop(ℓair).Mrefr(nKTP , nair).Mprop(ℓKTP ).Mrefr(nair, nKTP )

which is to be read from right to left. The crystal length ℓKTP = 0.01 m, R1 = −0.1

m, nair = 1 and nKTP is given by Eqs. 2.32 and 2.33 depending on the crystal principal

axis in question. For λ= 1064 nm we have ny ≈ 1.74 and nz ≈ 1.83. Evaluating the

matrix elements of the 2×2 matrix Mrt, we have the following stability condition on

its elements [34]: 1
2
|A + D| ≤ 1. Where A is the element in the first row and first

column and D is the element in the second row and second column. Solving for ℓair

in the equality case in the stability condition to get the smallest possible waist, we
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find ℓair ≈ 0.0970 m. This gives LOPO ≤ 0.107 m which is larger than that of the

empty cavity case.

Resonance properties

We are now ready to recalculate the FSR, νFWHM and finesse of our OPO taking into

account the PPKTP crystal inside. For the Z polarization we have:

FSR =
c

2(ℓair + nzℓKTP )
(2.60)

where we substituted L in Eq. 2.13 with ℓair + nzℓKTP to account for the change in

the optical path length. We do the same for Eq. 2.15 to get the νFWHM . We note

that the finesse stays the same as it’s defined as their ratio of FSR to νFWHM and

thus the updated length term cancels out. We now have, for Z polarized 1064 nm,

FSR≈ 1.33 GHz and νFWHM ≈ 39 MHz. And for Z polarized 532 nm, FSR ≈ 1.32

GHz and νFWHM ≈ 22 MHz. Both the FSR and νFWHM are smaller than that of an

empty cavity.

Threshold

Next, we want to get an idea of the OPO pump threshold power, which is how

much pump power is needed such that round-trip gain of the fields equals round trip

loss. The loss here is primarily caused by light escaping from the mirrors since they

have non-zero transmissivity. As we saw earlier, the gain (in dB) is proportional to√
Ppump, so to get the most gain, we would want as much pump power as we can

get. On the other hand, if we operate above the OPO threshold it starts to lase

and that might hurt the crystal, and it would also not give more gain than what is

achieved at threshold. This is why we operate the OPO right below threshold. To
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calculate this threshold for a triply resonant (pump, signal and idler) OPO, we follow

the calculation in [45], in particular their Eq.(33) in chapter 24. I have to note that

they have an error in defining their ξ and that instead it should be:

ξcorrected = χ(2)

√
2h̄ω0ω1ω2

ϵ0c3n0n1n2

(2.61)

where they label the pump field by 0.

We then get the following formula for the input threshold intensity of the pump beam:

Ithreshold =
n1n2n3ϵ0cλ2λ3

128(2π)2|d|2l2KTP

T1T2T3 (2.62)

where T1, T2 and T3 are the transmissivities of the mirrors for the pump, signal and

idler respectively. Here we set T1=0.1 which is the transmissivity of mirror 1 at 532

nm and T2 = T3 = 0.17 which is the transmissivity of mirror 2 at 1064 nm. We pick

the bigger transmissivity of both mirrors for each field since that is used to account

for losses. For reference, if both mirrors for each field had the same transmissivity

the threshold intensity would roughly double as the losses are now doubled. Here d

accounts for the second order nonlinear susceptibility since d = χ(2)

2
. In Eq. 2.62 we

will use a deff in place of d since we’re working with a periodically polled non-linear

crystal given by deff = 2
π
d. For a KTP crystal, dZZZ=15.4 pm/V and dY ZY =3.75

pm/V where the labels indicate the polarization of the pump, signal and idler fields

respectively in the second order nonlinear process under investigation [46, 47].

To calculate the pump threshold power, recall that the total power in a Gaussian

beam is P = 1
2
πw2

0I0 where w0 is the beam radius. The threshold power is thus:

Pthreshold =
1

2
πw2

1Ithreshold (2.63)

where w1 is the pump beam radius incident on the OPO at mirror 1. We calculate that
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radius (width) assuming it perfectly mode-matches our OPO. We start by imposing

the condition that the q(z) parameter, defined from 1
q(z)

= 1
R(z)

− iλ
πW 2(z)

of the pump

beam equals itself after one roundtrip in the OPO, where the roundtrip is defined by

Eq. 2.59. Solving for the width w1 at mirror 1 we get w1 ≈ 330 µm in the ZZZ case

and w1 ≈ 350 µm in the YZY case. We give specific threshold calculation results in

the next section for the different OPO configurations that we present there.

Expected gain at threshold

At threshold pump power, round trip gain = round trip loss. This can be expressed,

following [48] Ch 9 Eq. (52), as:

(κ
2

)2

(2l)2 ≈ T 2 (2.64)

where we replaced Γ in [48] by κ
2
, l by 2l since the pump is also resonant in our

case and we get gain by going through the crystal twice in each round trip, and a by

T since light leaking from the mirror is the only source of losses in our case. Here

T is for the idler and pump fields and has a value of 0.17. From Eq. 2.64 we get

κl ≈ T . Substituting that in Eq. 2.38, with nrt ∼ 1
T
∼ 6, we get GdB ∼ 17.7 dB as

the maximum gain, at threshold, for OPO’s with our particular value of T.

Hardware

The OPO hardware, shown in Fig. 2.10, is made from super invar to bring thermal ex-

pansion to a minimum. The knobs on the back plate are threaded such that 40 turns

move the whole plate an inch, and 1 turn moves the plate 0.0635 cm. The back plate

houses mirror 2, which is mounted on a piezo to enable us to scan the cavity length.

The PPKTP crystal in housed in an oven that is used to control the crystal tempera-
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ture via an in-house made temperature controller. Inside the oven is a YSI Precision

thermistor of model number 44032 with the following specs: R0 = 30×103Ω, β = 3810

K and T0 = 298.15. The resistance of the thermistor at a temperature T is given by:

RT = R0e
β( 1

T
− 1

T0
). The thermistor is connected to temperature controller that out-

puts a monitor signal in Volts that tells the temperature up to 4 decimal places. To

convert the output voltage V to temperature in degrees Celsius we use Eq. 2.65 which

we get by using V = IRT with I=100 µA and solving for T, then subtracting 273.15

to convert from Kelvin to Celsius.

T (V ) =
1

1
3810

ln(V
3
) + 1

298.15

− 273.15 (2.65)

The oven with the crystal inside is mounted onto a configuration with a 3D stand

and two goniometers to control translations in x, y and z as well as tilts about the

y and z axes. For reference, the crystal axes are defined such that the crystal length

is along the x-axis, the horizontal direction (width) is the y-axis and the vertical

direction (height) is the z-axis as viewed from the entrance of the OPO. The whole

OPO is covered by a Plexiglas box to reduce phase fluctuations due to air currents

and temperature fluctuations, thus enhancing stability.

(a) OPO side view (b) OPO top view

Figure 2.10: Optical parametric oscillator hardware
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2.3.2 Triply resonant, type-II OPO

A type-II OPO is an OPO where the signal and idler are orthogonal to each other

in polarization. A triply resonant OPO is an OPO where all three distinct pump,

signal and idler fields are resonant simultaneously in the cavity. We can use such an

OPO as a source of two-mode squeezed states and to create a single photon source

in heralding experiments. This leverages the fact that the signal and idler are cross

polarized and can be easily separated on a polarizing beam splitter. For this OPO

we use a 10 mm long X-cut, Z-poled periodically poled KTiPO4 (PPKTP) crystal,

poled with a period of 465 µm to phasematch the Y ZY interaction. The threshold

pump power of this setup calculated from Eq. 2.63 is Pthreshold = 3.3 W.

Finding triple resonance was tricky and is in general not easy. To verify that it

is possible to find in our cavity, we employ a Python code to simulate the fields’

behavior. The results are shown in Fig. 2.11 and they show that it is indeed possible

to find a crystal temperature and laser frequency combination that supports triple

resonance in the cavity.

Figure 2.11: Triple resonance simulation
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The cavity length LOPO, crystal temperature and laser frequency were all scanned

to find the parameter combination producing the largest gain. LOPO was slightly

less than the stability limit of the OPO, to get smallest waist in the crystal and

thus the highest pump intensity. The crystal temperature and laser frequency were

varied to get the best overlap between the pump and seed beams while still within

the crystal’s phasematching bandwidth, which means getting all three fields resonant

simultaneously at the same cavity length to amplify and build up, achieving the best

possible gain.

Parametric gain was measured by a setup such as that outlined in Fig. 2.12. The

half wave plates (HWP) on each beam are used to control input beam’s polarization,

the dichroic mirror used transmit 99% at 532 nm while being highly reflective at

1064 nm and is used to combine the IR and green beams going into the OPO. The

prism is used to separate the green and IR beams while the polarizing beamsplitter

(PBS) is used to separate the two IR polarizations. Recall from Eq. 2.37 that gain is

defined as the ratio of amplified power over non-amplified power. To measure gain,

we thus measure the ratio of the IR transmission peak height in the amplification

case with the pump on, to the IR peak height with the pump blocked. This is done

while scanning the cavity length and pump phase. The cavity length is scanned by

the back OPO mirror which is mounted on a piezo-as mentioned earlier. The pump

phase is also scanned by a mirror mounted on a piezo which directs the input pump

into the OPO.
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Figure 2.12: Parametric gain experimental setup for YZY interaction.

At pump power = 231 mW and crystal temperature = 33.2932°C, we were able to

measure ≈ 6 dB of gain. This was calculated using the amplified IR peak value:

1.6875 V and no pump peak value: 420 mV as measured by the power meter and

viewed on the oscilloscope.

2.3.3 Doubly resonant, type-0 OPO

A type-0 OPO is an OPO where the polarization of the pump, signal and idler are

all the same. A doubly resonant OPO can be understood to be when the pump and

signal are resonant at the same time or when the signal and idler are resonant at the

same time. In this case, however, the signal and idler are the same field, Z-polarized

IR, and they are resonant at the same time as the pump. We can also call this a

triply resonant, degenerate OPO. For this OPO, we use a 10 mm long X-cut, Z-

poled periodically poled KTiPO4 (PPKTP) crystal, poled with a period of 9µm to

phasematch the ZZZ interaction. The ZZZ interaction typically has a larger deff

than the YZY and can therefore generate higher gain and squeezing. This might be

useful in generating highly squeezed states for uses in cluster states. The threshold

pump power of this setup calculated from Eq. 2.63 is Pthreshold = 194 mW. We were

able to experimentally observe OPO lasing at a threshold power of ∼ 150 mW.

Parametric gain was measured by a setup such as that outlined in Fig. 2.13. The last
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two dichroic mirrors are used to filter out the green (pump) beam, so that only the

IR is measured on the power meter. Again, this is done while scanning the cavity

length and pump phase as explained in the previous subsection. Results are shown in

Fig 2.14. We can see that we measured ≈ 24 dB of gain while we expected ∼ 18 dB as

explained in subsection 2.3.1. It is possible that some other phenomena is occurring

as well as parametric amplification to cause the observed gain. We would need to do

a squeezing measurement to confirm.

Figure 2.13: Parametric gain experimental setup for ZZZ interaction.



36

Figure 2.14: Data for measured ZZZ 24 dB gain. Maximum IR peak level with pump:
0.694 V. IR peak level with no pump: 2.67 mV. Gain = 10 log(0.694/0.00267) = 24.15
dB. The no pump IR level is marked in orange on the plot. The reason the amplified
peaks have different heights is because we’re scanning both cavity length and pump
phase, maximum height only occurs when pump is completely in phase with input
IR seed beam. These result were recorded at crystal temperature = 32.5729°C using
a Moku:Lab device by Liquid Instruments.

2.3.4 Summary and Discussion

In this section I presented my work on building a new OPO source and characterizing

it. My goal was to get a record of squeezing and my work has been a series of

successful steps towards that.

• I was able to successfully model, build and optimize OPO performance over a

range of different parameters.

• I was able to demonstrate triply resonant operation in the nondegenerate (YZY,

type-II) and degenerate (ZZZ, type-0) cases.

• I was able to observe phase-sensitive amplification at large gain, a necessary
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requirement for observing squeezing.

• I was able to observe lasing in the ZZZ OPO when getting it above threshold.

As mentioned in the chapter introduction, the type-0 OPO can be used to generate

single-mode squeezed states, which are a necessary ingredient for cat state generation,

which can in turn be used to make GKP states (useful for error correction)[33]. The

triply resonant type-II OPO can be used to generate two-mode squeezed states and

separable (by polarization), entangled photon pairs. Two-mode squeezed states can

be used to generate cubic phase states[22].

The gain in the doubly resonant case is higher than the triply resonant case because

the gain(in dB) is proportional to the nonlinear coupling coefficient d, which is greater

in the ZZZ case than the YZY.

Compared to the setup in [23] where they observed 15 dB of squeezing in a doubly

resonant OPO, our setup has a stand-alone back OPO mirror instead of being directly

on the back end of crystal. This added step could potentially add absorption or

scattering losses, but it was measured in previous experiments to be negligible. They

use a 9.3 mm long PPKTP crystal while we use a 10 mm long, which means we

could get even higher gain assuming the non-linear coupling coefficient d is the same

(which they do not mention). Otherwise, our setups are similar. This is why I

believe we could already have similar levels of squeezing since they measured ≈ 24 dB

anti-squeezing. Measuring the squeezing though would require a balanced-homodyne

detection (BHD) with precise control over the phase-lock between the local oscillator

and OPO signal. In the paper they say their main set-back for measuring higher

squeezing was photodetector efficiency in the BHD. We have a similar efficiency in our

lab photodetectors and so I also believe we could measure similar levels of squeezing.

I did not continue with that endeavor because our laser broke down. I am confident

future students can make use of the OPO I built and achieve this result in our lab.
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Chapter 3

Photon Number Resolving

Detection (PNRD)

The nature of quantum mechanics dictates a fundamental wave-particle duality for

physical systems, which was first recognized by Einstein through the understanding

that light is composed of individual energy quanta known as photons [49]. The ability

to accurately measure photons has led to checking the validity of the notion of ‘spooky

action at a distance’ [50] and tremendous technological advancement in quantum

communication [51], quantum metrology [52, 53, 54], and quantum computation [55,

56]. Much of this progress relies on the ability to measure single photons, such

as through the use of avalanche photodiodes (APDs)[57]; however, the ability to

resolve arbitrary numbers of photons beyond simply distinguishing vacuum from non-

vacuum is highly desirable for many quantum information applications [58, 59, 60,

56]. The process of projecting a subset of modes of an entangled state onto the Fock-

basis can allow for engineering non-Gaussian quantum states with negative Wigner

functions [61, 62, 63] — a requirement for any quantum speed-up in continuous-

variable quantum information [64].

In this chapter I will start with the theoretical description of photon number re-

solving detectors, positive-operator-valued-measures (POVMs). Next I will discuss

a segmented single-photon avalanche-photodiode (SPAD) detector and its use as a

PNRD. Finally I will discuss the transition-edge sensor (TES) and how my group and
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I managed to use it to resolve up to 100 photons, breaking the previous world record

of (∼ 16) [29].

3.1 Detector positive-operator-valued-measures

(POVMs)

If asked to write down a quantum operator describing a detector measuring the num-

ber of photons in a given pulse of light, the first thing that would come to mind is

writing down an operrator of the form: |n⟩ ⟨n|, a projection operator in the photon

number basis (Fock basis).

Now, let’s say our detector reports a single click for each photon it detects, and that

it reported k clicks. In that scenario, our detector would be exactly described by:

|k⟩ ⟨k| for that measurement. Explicitly saying: the state I was measuring was |k⟩

which has k photons.

But, what if the number of photons incident on the detector was actually n, where

n>k? This is entirely possible and very likely. Photons could be lost due to a number

of reasons such as losses along the beam path to the detector or imperfections in the

detector itself affecting its efficiency.

What if instead m photons where actually incident on the detector, where m<k?

Where could the extra counts come from? These are called dark counts, and are due

to the physics of the detector. We can clearly see now how it is incorrect to conclude

that our measurement operator is |k⟩ ⟨k| and that our incident quantum state was

|k⟩ when registering k clicks on the detector. Our initial guess is only valid in the

ideal case where there are no losses and dark counts. How then can we describe our

measurement/detector?



40

This is where the positive-operator-valued-measure (POVM) formalism comes into

play. It is a more general way to describe measurements, of which the projective

(also known as von Neumann) measurements are a subset [65]. Each measurement

outcome k is associated with a Hermitian operator, that is a POVM element, Π̂k.

These POVM elements are complete (
∑

k Π̂k = 1̂), and the complete set {Π̂k} is

known as a POVM.

For phase insensitive detectors, such as photon counting detectors, the POVM element

Π̂k can be written as:

Π̂k =
∞∑
n=0

P (k|n) |n⟩ ⟨n| . (3.1)

Where P(k|n) is the conditional probability of registering k clicks for n input photons.

We can quickly see that if our detector is ideal, meaning that it reports k clicks if and

only if k photons are input on the detector, we get:

Π̂k =
∞∑
n=0

δn,k |n⟩ ⟨n| = |k⟩ ⟨k| (3.2)

which agrees with our initial intuition.

Now, let us consider the case of photon loss due to detector inefficiency. For a detector

of efficiency η ≤ 1, the conditional probability P(k|n) is given by:

P (k|n) =
(
n

k

)
ηk(1− η)n−k. (3.3)

We can make sense of the above formula by considering that if we do measure k clicks

for n input photons where k<n, then for sure k photons made it through, and n-k

photons were lost. The probability to measure a photon successfully is η and to lose
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a photon is 1- η. Now we can understand the ηk and (1 − η)n−k terms. Finally,

because we have no way to tell which of the k photons out of n get registered by the

detector, we account for that by the binomial term. From now on we shall refer to

the conditional probability P(k|n) as Pl(k|n) where the l is for lossy.

Next, let us model the case of dark counts, on top of detector inefficiency, where m

extra photons from the environment are incident on our detector in addition to the

n photons from our input state, while registering k clicks. Assuming a probability of

Pd(m) for having m dark photon counts, we can modify Eq.( 3.3) as:

Pld(k|n) = Pl(k|n)Pd(0) + Pl(k − 1|n)Pd(1) + Pl(k − 2|n)Pd(2) + ...Pl(0|n)Pd(k)

=
k∑

j=0

Pl(k − j|n)Pd(j). (3.4)

where Pl(k-j|n) is given by Eq.( 3.3).

Thus, we can write the POVM elements for a lossy PNR detector as:

Π̂k =
∞∑
n=0

(
n

k

)
ηk(1− η)n−k |n⟩ ⟨n| (3.5)

and the POVM elements of a lossy PNR detector with dark counts as:

Π̂k =
∞∑
n=0

k∑
j=0

(
n

k − j

)
ηk−j(1− η)n−k+jPd(j) |n⟩ ⟨n| (3.6)

Depending on the detector we have, we can use the best suited POVM definition. In

the case of single-photon avalanche photodiodes (SPADs), we shall model all three

cases in the following section. As for the transition edge sensor (TES), it has a very

low dark count of less than 1 Hz, so we can neglect them and get away with using
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Eq.( 3.5).

Finally, we define the purity of a POVM element for outcome k as:

Purity(Πk) =
Tr(Π2

k)

Tr(Πk)2
(3.7)

The purity satisfies the following condition:

1

D
≤ Purity(Πk) ≤ 1 (3.8)

where D is the dimension of the Hilbert space associated with the POVM element Πk,

i.e. the number of projectors with non-zero probabilities in that element. Thus, the

closer the purity is to 1, the closer the POVM element is to a projection operator, the

better it is as a measurement operator (i.e. determining what was the corresponding

input state).



43

3.2 Single-photon avalanche-photodiodes (SPADs)

Single photon avalanche photodiodes (SPADs) are a type of avalanche photodiodes

(APDs) that are designed in such a way that the absorption of at least one photon

triggers an avalanche amplifying the output current pulse, which can then be easily

detected. This way, a SPAD is essentially a ’click’ detector, capable of distinguishing

between zero and non-zero input photon states. There are several approaches to

building a photon number resolving (PNR) detector out of SPADs like measuring the

initial current generated in the SPAD before the avalanche fully develops [66], or as

in the case we shall examine here, designing a segmented detector in such a away

that the input photons are distributed on all the available SPADs minimizing the

probability of a single SPAD ever seeing more than one photon[27].

In [27], the segmented detector is essentially a wave guide with SPADs attached along

its length. The material choices and dimensions are designed such that photons get

siphoned off the input light pulse one photon at a time. Such an arrangement is

outlined in Fig [ 3.1].

Figure 3.1: Figure taken from [27].Principle sketch of a segmented detector. Guided
photons are detected alongside propagation by SPADs which frustrate total internal
reflection. The quantum efficiency (QE) of SPAD #j is α2

j . The design goal is to avoid
detection losses, which are distinct from the nonunity of α2

j , and keep all undetected
photons in the waveguide for further detection.

Such a detector can be modeled, as done in [27], as a series of beamsplitters with

transmissivities and reflectivities chosen such that each SPAD sees only one photon.

This can be seen in Fig.[ 3.2]
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Figure 3.2: Figure taken from [27]. Model of a PNR segmented photodetector with
Rj + Tj≡ r2j + t2j = 1,∀j ∈ [1,m]. a′i are the annihilation operators for each detection
mode i.

It is worth noting that α2
j < 1, as shown in Fig. 3.1, is concerned with how much is

actually absorbed by each SPAD #j assuming nothing is lost, and is different from

one detector to the next. For α2
j < 1, any light not absorbed by the SPAD goes back

into the waveguide. As for η < 1, this is used to model lost photons in each ’beam

split’ and is the same on all detectors.

We would now like to assess our segmented SPAD detector and calculate the associ-

ated POVM purity for 3 cases: 1) lossless with no dark counts 2) lossy with no dark

counts 3) lossy with dark counts. We want to see how the purity changes for different

number of detectors, quantum efficiencies and dark counts.

Our initial approach could be to calculate the purities directly using the equations

in the previous sections, and that is what was done in [27]. The problem with this

approach is that it is computationally heavy and thus limits the number of SPADs

we can simulate in our model. To solve this problem, instead of using the POVM

element definition in the previous section, we use that defined in [67] which is exact

and not an approximation. The POVM element there is given by:

Πk =:
N !

k!(N − k)!
(e−(η n̂

N
+ν))N−k(1̂− e−(η n̂

N
+ν))k : (3.9)
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Here N is the total number of detectors, k is the number of clicks, η is the quantum

efficiency, ν represents the dark counts and : : is the normal ordering operator. We

can rearrange this equation to get:

Πk =:
N !

k!(N − k)!
e−νN(e(η

n̂
N
+ν) − 1̂)ke−ηn̂ : (3.10)

Next, we Taylor expand the exponential in the middle parenthesis, subtract the first

term (identity), and recognize that the parenthesis are repeated k times, for the k

different detectors that saw at least one photon. We get:

Πk =:
N !

k!(N − k)!
e−νN

∑
m1..mk≥1

(η n̂
N
+ ν)

∑
i mi

m1!...mk!
e−ηn̂ : (3.11)

3.2.1 POVM element Purity(Πk) for different cases

Case 1: Lossless with no dark counts ν = 0 , η = 1

Setting ν = 0 and η = 1 in Eq. 3.11 and following the procedure in the Appendix

[67], we get their Eq.(A10) for the POVM elements:

Πk =
N !

k!(N − k)!

∞∑
n=k

1

Nn

[
∂nx (e

x − 1)k|x=0

]
|n⟩ ⟨n| (3.12)

For convenience, we define the coefficient Dnk as

Dnk = ∂nx (e
x − 1)k|x=0 (3.13)

We calculate the trace as follows:
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Tr(Πk) =
∞∑
i=0

⟨i|Πk |i⟩

=
N !

k!(N − k)!

∞∑
i=0

∞∑
n=k

1

Nn
Dnk ⟨i| |n⟩ ⟨n| |i⟩

=
N !

k!(N − k)!

∞∑
i=0

∞∑
n=k

1

Nn
Dnk ⟨i| |n⟩ δn,i

=
N !

k!(N − k)!

∞∑
n=k

1

Nn
Dnk ⟨n| |n⟩

=
N !

k!(N − k)!

∞∑
n=k

1

Nn
Dnk (3.14)

and Tr(Π2
k) is given by:

Tr(Π2
k) =

∞∑
i=0

⟨i|ΠkΠk |i⟩

=
( N !

k!(N − k)!

)2
∞∑

n,m=k

∞∑
i=0

1

Nn+m
DmkDnk ⟨i| |m⟩ ⟨m| |n⟩ ⟨n| |i⟩

=
( N !

k!(N − k)!

)2
∞∑

n,m=k

∞∑
i=0

1

Nn+m
DmkDnkδi,mδm,nδn,i

=
( N !

k!(N − k)!

)2
∞∑
n=k

( 1

Nn
Dnk

)2

(3.15)

Plugging Eq. 3.14 and Eq. 3.15 into Eq. 3.7 we get:

Purity(Πk) =

∑∞
n=k

(
1

NnDnk

)2

(∑∞
n=k

1
NnDnk

)2 (3.16)

Using Eq. 3.16 we can generate the following plot:
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Figure 3.3: POVM element Purity(Πk) vs click number k for different number of
detectors N, with no losses or dark counts. This is a reproduction of Fig.[8] in [27].

Case 2: Lossy with no dark counts ν = 0, η ̸= 1

Setting ν = 0 but keeping η in Eq. 3.11 we get:

Πk =:
N !

k!(N − k)!

∑
m1..mk≥1

1

N
∑

i mi

(ηn̂)
∑

i mi

m1!...mk!
e−ηn̂ : (3.17)

We now make the substitution
∑

imi = n and add a sum over n while keeping the m

summations with the condition
∑

imi = n for every term in the n summation. The

n sum starts from k because each mi is at least 1.

Πk =
N !

k!(N − k)!

∞∑
n=k

∑
m1..mk≥1

1

Nn

1

m1!...mk!
: (ηn̂)ne−ηn̂ :

=
N !

k!(N − k)!

∞∑
n=k

ηn

Nnn!

[ ∑
m1..mk≥1

n!

m1!...mk!

]
: n̂ne−ηn̂ : (3.18)

where in the second line we multiplied and divided by n!.
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Let’s take a closer look at the operators inside the normal ordering, we have:

: n̂ne−ηn̂ : =: (n̂)n
∞∑
s=0

(−ηn̂)s

s!
:

=
∞∑
s=0

(−η)s

s!
: n̂s+n :

=
∞∑
s=0

(−η)s

s!
: (a†a)s+n :

=
∞∑
s=0

(−η)s

s!
(a†)s+nas+n

= (a†)n
[ ∞∑

s=0

(−η)s

s!
(a†)sas

]
an

= (a†)n
[
1̂− ηa†a+

η2

2
(a†)2a2 − ...

]
an

= (a†)n
[ ∞∑

s=0

(1− η)s |s⟩ ⟨s|
]
an

= (a†)nÔan

Where Ô is what we will call the sum in the bracket.

We can easily verify that Ô acts in the following way:

Ô |m⟩ = (1− η)m |m⟩

⟨m| Ô |m⟩ = (1− η)m

⟨k| Ô |m⟩ = (1− η)mδk,m

⟨m| (a†)nÔan |m⟩ = m!

(m− n)!
(1− η)m−n (3.19)
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As for the bracket in Eq. 3.18, it is exactly the same braket in the Appendix of [67].

And so we directly replace it with the following:

[ ∑
m1..mk≥1

n!

m1!...mk!

]
→

[
∂nx (e

x − 1)k|x=0

]
= Dnk (3.20)

We can now rewrite the POVM elements Πk as:

Πk =
N !

k!(N − k)!

∞∑
n=k

ηn

Nnn!
Dnk(a

†)nÔan (3.21)

Tr(Πk) is given by:

Tr(Πk) =
∞∑
i=0

⟨i|Πk |i⟩

=
N !

k!(N − k)!

∞∑
i=0

∞∑
n=k

ηn

Nnn!
Dnk ⟨i| (a†)nÔan |i⟩

=
N !

k!(N − k)!

∞∑
n,i=k

ηn

Nnn!
Dnk(1− η)i−n i!

(i− n)!
(3.22)

and Tr(Π2
k) is given by:
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Tr(Π2
k) =

∞∑
i=0

⟨i|ΠkΠk |i⟩

=
( N !

k!(N − k)!

)2
∞∑

n,m=k

∞∑
i=0

ηm+n

Nn+mm!n!
DmkDnk ⟨i| (a†)mÔam(a†)nÔan |i⟩

=
( N !

k!(N − k)!

)2
∞∑

n,m,i=k

ηm+n

Nn+mm!n!
DmkDnk

√
i!

(i−m)!

√
i!

(i− n)!

⟨i−m| (Ôam(a†)nÔ |i− n⟩

=
( N !

k!(N − k)!

)2
∞∑

n,m,i=k

ηm+n

Nn+mm!n!
DmkDnk

√
i!

(i−m)!

√
i!

(i− n)!
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Substituting Eq. 3.22 and Eq. 3.23 into Eq. 3.7 we get:

Purity(Πk) =

∑∞
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DmkDnk
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Plotting Eq. 3.24 we find:
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(a) N = 50

(b) N = 500

(c) N = 2000

Figure 3.4: POVM element Purity(Πk) vs click number at different quantum efficien-
cies η for different values of N . (a) N = 50, (b) N = 500, (c) N = 2000.
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Table 3.1: Number of SPADs N required to reach 90 and 99% POVM purities versus
loss per SPAD L = 1−η, for different click numbers. We take the maximum tolerable
loss per detector to be Lmax ∼ 1/N |L=0%. This corresponds to the probability of
losing 1 photon out of N, which we do not want to occur. We can see how for
high purity the number of SPADs needed is in the thousands. This would require
integrated optics, but that’s feasible.

Click number purity L N Lmax purity L N Lmax

3 90% 0% 113 1% 99% 0% 1193 0.1%
0.01% 113 0.01% 1295
0.1% 121 0.1% 5793
1% 433

5 90% 0% 279 0.36% 99% 0% 2980 0.03%
0.01% 283 0.01% 3382
0.1% 314

10 90% 0% 1050 0.1% 98% 0% 4000 0.025%
0.01% 1100 0.01% 5000

Case 3: Lossy with dark counts ν ̸= 0, η ̸= 1

Again, we start from Eq. 3.11. After multiplying by n!/n!, using the substitution in

Eq. 3.20, moving ν outside the parentheses and rearranging we get:

Πk =
N !

k!(N − k)!
e−νN

∞∑
n=k

νn

n!
Dnk : (

ηn̂

Nν
+ 1)ne−ηn̂ : (3.25)

Let’s take a closer look at the operators inside the normal ordering, we have:
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Substituting back in Eq. 3.25 we get:
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Taking the trace of this equation is very similar to what we did in Eq. 3.22, we now

have:
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where when going to the last line we used Eq. 3.19.
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Tr(Π2
k) is given by:
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where when going to last line we used the same process as in Eq. 3.23 to evaluate the

expectation value.

Finally, substituting Eq. 3.27 and Eq. 3.28 into Eq. 3.7 we get:
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(3.29)

Practically, when computing the results using Eq. 3.29 we would have to place an

upper limit instead of ∞ in the sums inside the equation. A value of 20 was used

in all following figures except figures 3.5(a) and 3.6(a) where greater accuracy was

needed to correctly describe the behavior. Below are the results.
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(a) N = 16

(b) N = 50

(c) N = 2000

Figure 3.5: POVM element Purity(Πk) vs click number at quantum efficiency η=0.9
for different values of ν and N. (a) N = 16, (b) N = 50, (c) N = 2000.
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(a) η = 0.9

(b) η = 0.99

(c) η = 0.999

Figure 3.6: POVM element Purity(Πk) vs click number at N=16 for different quantum
efficiencies η and different ν’s. (a) η = 0.9, (b) η = 0.99, (c) η = 0.999.
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(a) ν = 0.1

(b) ν = 0.01

Figure 3.7: POVM element Purity(Πk) vs click number at N=16 for different quantum
efficiencies η and different ν’s. (a) ν = 0.1, (b) ν = 0.01.
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3.2.2 Summary

In this section I presented my work on efficiently modeling a segmented PNR detector

based on SPADs. My goal was to produce new results previously unattainable due

to computational complexity and I was able to achieve that.

• I was able to successfully model a segmented PNR detector based on SPADs

using less computationally demanding mathematical functions (derivatives of

exponentials rather than factorials).

• I was able to generate new results guiding commercial applications, namely:

How many detectors are needed, for a given loss coefficient, to achieve a par-

ticular POVM purity. This will guide detector design by calculating how many

detectors will be needed on-chip for successful implementation for different ap-

plications.
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3.3 Transition-Edge Sensor (TES)

The transition-edge sensor (TES), which is based on a calorimeter formed from a

superconducting wafer held just below the critical temperature, has arisen as a vi-

able PNRD with quantum efficiency approaching unity and entirely negligible dark

counts [68, 69, 70]. Previous results with TES systems show the ability to measure

non-classical systems with high mean-photon numbers [71, 72]; however, these exper-

iments were based on methods requiring extensive post-processing that give generally

good estimates of photon-number measurements but relatively low distinguishability

between individual photon counts above 10 photons [73]. For demanding applications

requiring photon-number resolution, even a single photon discrepancy destroys quan-

tum correlations. Current methods demonstrate the potential to accurately count

photons in the low double-digits(∼ 16) [29], but certain proposals necessitate con-

siderably higher detection events for conditional state preparation. One particularly

salient example is the preparation of a cubic-phase state to complete a universal gate

set for continuous-variable quantum computation [21]. In order for the numerical

approximations used in this formalism to hold, one must detect a large number of

photons — simulations suggest 50 or more [22]. The detection scheme we demonstrate

here now easily surpasses this previously unreachable milestone.

The Transition Edge Sensor (TES) serves as a photon-number-resolving detector

(PNRD) by leveraging the highly temperature-sensitive resistance of a superconduc-

tor close to its phase transition point. In our setup, these TESs are constructed from

superconducting tungsten wafers, functioning at a critical temperature around 100

mK. When a photon hits the chip, its absorbed thermal energy disrupts the supercon-

ducting state in a localized area, creating a small region with measurable resistance.

Around this critical temperature, the superconductor’s resistivity goes almost linearly

with temperature, as shown in Fig. 3.8(a). Our detectors were optimized to maximize
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absorption at the specific wavelength we targeted, achieving quantum efficiencies ex-

ceeding 90% at 1064 nm. However, it’s worth noting that other TES systems have

recorded efficiencies as high as η = 0.98 [69], with indications that values beyond η

> 0.99 [74] might be attainable.

Each TES chip is wired to an induction loop, set up in parallel with a reference resis-

tor, and supplied with a biasing current, as depicted in Fig. 3.8(b). When a photon

gets absorbed by the detector, the chip’s resistivity linearly increases, which reduces

the current passing through the inductor. This change is detected and amplified by

the highly sensitive Superconducting Quantum Interference Device (SQUID) magne-

tometers, converting it into a classical voltage signal that we can measure. That signal

then gets an additional external amplification before being fed into an Ethernet-based

flash analog-to-digital converter (EFADC)—a device built on a field-programmable

gate array (FPGA)—which pulls out essential signal details in real time.

To ensure optimal performance, the SQUIDs require precise biasing to achieve max-

imum sensitivity. During sensitivity tests with an external input, the SQUID fringe

must be distinctly visible and attain its maximum amplitude, as illustrated in Fig. 3.8(c).

This is accomplished by carefully adjusting the SQUID bias setting on the cryostat.

Modifying the ‘flux bias’ (FB) enables us to establish the baseline position along the

SQUID fringe, which should be aligned with the steepest segment of the slope to

maximize responsivity. For more details on TES detectors, including their design

and various applications, information is available in Ref.[70]. The detectors utilized

in this study were provided by the Sae Woo Nam group at the National Institute of

Standards and Technology (NIST).
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Figure 3.8: Figure taken from [70]. (a) Resistivity of TES as temperature increases
near the superconducting phase transition. (b) Readout circuit with SQUID mag-
netometer for detecting changes in resistance. (c) SQUID fringe tuned such that all
SQUID signals (SQUID input coil signal and SQUID feedback coil signal) are in-phase
and constructively interfere.

3.3.1 Experimental Considerations

Pulsing

It is worth highlighting that the TES struggles to effectively handle continuous wave

(CW) laser input. Beyond its notably slow cool-down period (≥ 20 µs), the TES lacks

a defined ‘reset time,’ meaning it remains perpetually capable of registering additional

signals. When CW light strikes the detector, there’s a constant chance of detecting

an event at any moment, and if multiple events overlap within a specific time frame,

this can result in pile-ups that make distinguishing photon numbers challenging [54,

75]. Despite these challenges, low-flux CW light remains viable for use with the

TES, particularly in heralding experiments where pile-ups are infrequent [54, 76].

To circumvent the pile-up issue, we adopted a controllable pulsed method, enabling

us to adjust the interval between pulses so the TES can fully cool back to its base

temperature before the arrival of the next laser pulse.

In our 100 photon detection experiment, the coherent state sent to the TES is gener-

ated by pulsing a continuous-wave 1064 nm laser using an acousto-optical modulator

(AOM) as an optical switch. The pulse duration is set to be less than 100 ns, which
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is well-within the rising-edge time of the detection signal. The pulses are sent at a

repetition rate of 12.5 kHz to ensure that the detector has re-cooled and thermal noise

is at a minimum. This rate can be increased to 50 kHz without incurring substantial

ill-effects. Each split pulse -split by beamsplitters, as shown in Fig. 3.15(a)- is cou-

pled to a TES channel through standard single-mode optical fiber. Details on TES

operation within a cryostat can be found in Refs. [70, 54]. In this work, we addition-

ally filter the output signal to remove the DC component and implement a low-noise

external amplifier to bring the signal to within a 500 mV range, floor-to-peak, as will

be explained in the data acquisition subsection.

External amplification and filtering

This subsection (external amplification and filtering) discusses the external amplifier

circuit board after the TES and before the EFADC acquisition device. Miller Eaton,

my colleague at the time, designed the amplifier and I helped physically build it by

soldering the components on the board. The following is an excerpt from his PhD

dissertation included for completeness[33]:

The magnitude of the analog output signal from the TES is dependent on

several factors including bias and temperature in addition to the number

of photons actually absorbed. Even for large PNR signals, this voltage

remains on the order of 0-25 mV. Because the EFADC digitizes a 0-500

mV range with 12-bit accuracy, the best peak differentiation will occur if

the input signal is designed to occupy the majority of the available voltage

input range. In order to do this, we designed an amplifier circuit based

on the ultra-lownoise OPA818 op-amp.

In order to design the circuit to properly amplify the photon peaks and

reduce noise, it is useful to first examine the frequency-domain spectrum
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of the signal. This is shown in Fig. 3.9. From this plot, we see that

the signal drops off quickly beyond 1.4 MHz, but there is a substantial

contribution at low frequency, even down to 1 kHz. This contribution can

be attributed to the slow cooling tail that trails after each event. This

portion of the signal will be important to the area calculation so should

not be excluded. However, there is a DC offset that one would like to

suppress, so some highpass filtering would also be helpful.

Figure 3.9: FFT data of TES signal. Figure from [33].

To test possible filtering frequencies, low and high-pass filtering was ap-

plied to the data in post-processing at several test frequencies as shown

in Fig. 3.10. Both panels of this figure show the original data (blue) com-

pared to the data filtered by the given frequency (red). It can be seen

that the test high-pass filter at 40 kHz in Fig. 3.10(a) performs poorly

as several features are qualitatively quite different; this shows that the

low-frequency peaks in the power spectrum are components of the signal,

and important to be kept.

The high-pass filter in Fig. 3.10(b), however, seems to perform quite well.

The filtered data gives similar quality peaks but smooths the fast noise.
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This indicates that the 1.4 MHz peak on the power spectrum may be

noise unrelated to the signal. However, it was eventually decided that

this 1.4 MHz component may also relate to the initial peak height, as

the rise time can be quite fast depending on the bias, and 1 MHz Fourier

components are expected for a signal with a rise time of 1 µs.

Figure 3.10: TES signal (blue) compared to a filtered signal (red) for a highpass filter
applied at 40 kHz (a) and a low-pass filter applied at 800 kHz (b). The top panel
of each shows the comparison of the signal in time while the bottom compares the
power spectrum in the frequency domain. Figure from [33].
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The final circuit design is shown in Fig. 3.11, where the top panel shows

the simplified circuit diagram and the picture shows the modified demo

board for the op-amp use. First, an active high-pass filter with a cutoff

frequency of 145 Hz is used to remove the DC component of the signal

and provide a gain of 20. At the end of the circuit, a low-pass filter with

cutoff frequency of 3.2 MHz is used to clean any residual noise from the

op-amp or other high-frequency noise from the TES signal.

The demo board can be turned into the amplifier described by replacing

R2 with a 10 kW resistor, removing R3 entirely, replacing R4 with a 500

W resistor, adding a 1 nF capacitor at R7 (not shown in picture), and

replacing R9 with a 2.2 mF capacitor. After these modifications, the

frequency response was measured as shown in Fig. 3.12

Figure 3.11: Circuit used to amplify the TES output signal into the 0-500 mV range.
The circuit is an active high-pass filter with corner of 145 Hz, gain of 20, and low-pass
filter at 3.2 MHz. The modified OPA818 demo board is also shown. Figure from [33].
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Figure 3.12: Frequency response of the OPA818 amplifier circuit. Figure from [33].

Data acquisition

The amplified output signal is sent to a custom-built Ethernet-based flash analog-

to-digital converter (EFADC) capable of collecting and processing TES signals for

up to 8 channels. The device is based on a field-programmable gate array (FPGA)

which samples a signal with 12-bit resolution at a rate of 250 MHz. The internal

memory and processing speed allows the device to collect up to 32 µs worth of signal

points, perform rudimentary calculations on the data to determine key parameters,

and transfer the calculated parameters to a hard disk all before the next signal pulse

arrives.

The EFADC is triggered by an external pulse signal corresponding to the arrival

time of each coherent state pulse. If the incoming signal rises above a user-defined

noise threshold, the EFADC begins integrating waveform until the signal falls below a

second threshold that can be set to account for hysteresis. The integrated signal area,

maximum peak height, signal duration, timestamp of signal start, and timestamp of

signal maximum are all recorded. All parameters can be used for additional signal

characterization in post-processing, but we find that pulse area is sufficient to achieve

large photon-number resolution.
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The interface between the TES, the EFADC, and the lab computer is shown in

Fig. 3.13. Upon receiving a trigger signal within a voltage range of 2-4 V, the EFADC

starts data collection for each pulse. For this setup to work properly, the trigger should

be the same signal used to pulse the laser, switching the acousto-optic modulator on

and off. The EFADC 50 Ohm input impedance and it converts analog inputs in the

range 0-500 mV into digital signals. Should the input surpass 500 mV, the EFADC

reports the peak value until the input drops below this limit. This is useful in pho-

ton number resolution, as the peak amplitude minimally affects the total area, thus

occasionally allowing the input to exceed the saturation threshold may be beneficial.

This point will be further explained in the next section. Additionally, the EFADC

possesses a user-adjustable DAC offset that is set with trial and error for each channel

to maintain baseline noise near zero on the digital output. The DAC also inverts the

analog signal before digitization, thus the actual input should be peaks in the range

from 0 to -500 mV. The DAC offset provides a means to mitigate minor input signal

voltage offsets.

Figure 3.13: Diagram of data collection. An external trigger is synced to pulse
the laser and prepare the EFADC to look for TES output pulse data. Each pulse
is temporarily stored while calculations are performed on the hardware, then key
parameters are permanently stored.

Once it receives a signal, the EFADC’s internal firmware is configured to compute and

provide a range of key parameters, such as the peak height, area, trigger timestamp,

the timestamp of the peak relative to the trigger, and various other parameters. These
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computations rely on multiple user-defined input parameters. Comprehensive details

regarding the EFADC data acquisition system’s operation, including the structure of

the output data, are available in the firmware documentation on the QFQI group’s

Dropbox or in the Github repository of Miller’s dissertation[33]. The rest of this

section is based on that documentation. However, the core functionality can be

understood by referring to Fig. 3.14.

Figure 3.14: A basic depiction of the response of the EFADC firmware. For an
incoming trigger signal (red), the firmware decides whether to acquire the signal
(blue) based on user-defined controls. Further details can be found in the main text.

The user first programs trigger thresholds (TET) such that the device will only inte-

grate the signal if it first crosses the upper threshold, TETHI, and it will continue to

calculate the pulse parameters until either the signal drops below the lower threshold,

TETLO, or the signal continues beyond the maximum duration specified by the user.

After the device receives a trigger, if the signal rises above TETHI for a user-specified

number of ADC samples (NSAT), and if this occurs within a certain number of

samples from the trigger define by the lookup time (LUT), the device will behave as

follows:

• A Y user-programmable number of samples (PedNumOfAdcSamp) starting at the

Trigger time will be averaged to be reported as a Pedestal for this trigger. Y is

restricted to be 1,2,4, or 8. If any of these ADC samples is above TETHI, the
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Pedestal quality bit will set to TRUE. If an ADC sample within PedNumOfAdcSamp

is greater than the user-programmable value (MAXPED), MaxPedDetect bit is set

to TRUE.

• If a pulse started within PedNumOfAdcSamp, PulseInPed is set to TRUE

• The samples (including the Pedestal samples) in that channel will be summed until

a sample drops below TETLO (the final sample below TETLO). In other words, the

samples within the integration window (IW) will be summed. If an ADC sample is

either above or below the limits set by the input signal, then either an Overflow (Ov)

or underflow (Uv) bit will be set to TRUE and recorded in the output file. The sum

is terminated either when the EFADC receives a new trigger or if the value for Twin

is reached. Twin is a user-programmable quantity that determines how long, in ADC

samples, the sum should continue as measured from the start of the trigger.

• Twin must be less than the minimum time between pulses. If Twin is greater than

the time between pulses, the second pulse will not be recognized, i.e., if more than

one pulse occurs within Twin, only the parameters of the first pulse will be processed.

• The time that the 1st sample is above TETHI (Tr) and the time that the 1st sample

falls below TETLO (Tf) will be reported. This time is relative to the rising edge of

the trigger signal.

• The peak ADC sample (Vp) and the time (Tp) will be reported.

• If after a Trigger signal, no NSAT number of samples is larger than TETHI within

the specified LUT, only the time of the trigger is stored in the output file.

• The difference between TETHI and TETLO is essentially hysteresis. As such the

user should not set TETHI and TETLO to the same value. The difference should be

set to be equal to or greater than the baseline noise of the signals.

Of the three triggers shown in Fig. 3.14, only T#1 has data to report. T#2 does not
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have data to report because samples cross TETHI after LUT time. Similarly, T#3

does not have data to report because no or not enough sample(s) cross TETHI. It

should be noted that all quantities, whether it be a measure of voltage or time, are

stored in terms of ADC samples. For example, if one wishes to specify a time of 800

ns for LUT, the user would set LUT = 200 since the device performs one sample

every 4 ns.

Efficiency calibration

Transition-edge sensors have managed to reach up to 98% quantum efficiency (QE) [69],

but it is important to characterize the precise response of our detection system at 1064

nm. The power in a given pulse sent to each TES detector is on the order of several

pW, so care must be taken to accurately calibrate the QE. First, we constructed and

characterized a high-amplification photodetection circuit with a low-power sensitiv-

ity threshold at approximately 200 pW. Calibration for this detector was based on a

Scientech pyroelectric calorimeter and a series of precision attenuators. The home-

build photodetector was then used in conjunction with the attenuators to calibrate

each TES channel individually. Laser-light was split at a 95:5 beamsplitter where the

stronger portion was sent to the photodetector and the weaker portion was further

attenuated and sent to the TES. This calibrated attenuation included the effects of

imperfect fiber coupling so the TES quantum efficiency could be directly measured.

For each detector, 106 pulses were sent simultaneously to the photodetector and the

TES channel under test. The mean photon number was extracted from the PNRD

and compared with the classical signal power to determine the QE. We measured a

QE of 97(+3
−5)% for Channel 1, 93(±5)% for Channel 2, and 91(±5)% for Channel 3.

The 5% uncertainly originates from the absolute error on the Scientech pyroelectric

calorimeter, uncertainty on splitting ratio, and error on the attenuation calibration.
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All channels used were thus measured to have a QE above 90%.

3.3.2 Resolution of 100 Photons

In our published paper[77], we extend the resolving capabilities of individual TES

detectors to a maximum of 37 photons per detection channel with on-the-fly signal

processing. We then multiplex three detectors into a system capable of resolving 0-

100 photons with detector quantum efficiencies above 90%. Furthermore, we illustrate

the utility of our scheme toward quantum cryptography applications by creating a

quantum random number generator (QRNG). The need for random numbers arises in

many applications including cryptography, simulation, and games of chance. Pseudo-

random number generators (PRNG) are not truly random and can, for example,

lead to erroneous results in Monte Carlo simulations [78]. The stochastic nature of

quantum mechanics leads to true randomness, but many current implementations

sample random events from a non-uniform distribution which can lead to bias that

must be corrected classically [79, 80]. Our method to implement a QRNG is based

on sampling the photon statistics of a coherent state and is fundamentally unbiased,

robust to experimental and environmental noise, and invulnerable to eavesdropping.

Details on the quantum random number generation can be found in the next chapter.

The detection system used here is constructed by splitting a laser pulse equally across

three paths and sending each to a TES as shown in Fig. 3.15(a).

In order to resolve absorbed photon number, information to distinguish different out-

puts must be extracted from the signal received by the FPGA. An example signal is

depicted in Fig. 3.15(b). Traditionally, peak height has been used for an indicator as

the magnitude of the voltage is proportional to the energy absorbed for low-photon

numbers [70]. However, this technique limits individual detector resolution due to

the saturation of the peak magnitudes beyond several photons, so recently, alterna-
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Figure 3.15: (a) Experimental setup. A pulsed sources is evenly split into three
segments and each is coupled to a TES detector channel. (b) Example event (blue)
following the pulse trigger (green). Pulse parameters including area and height are
recorded if the signal passes a specified threshold. (c) Histogram of measured signal
areas of 108 events for a single TES channel where a sum of Gaussians (dashed red
line) is used to fit the data to determine binning for photon-number resolution. Bins
are set at the intersection of between the normalized Gaussians as shown in (d).
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tive methods have been explored for extracting useful information [29]. Although the

maximum voltage of the peak saturates, the electrical resistance of the TES continues

to change as it re-cools back to the superconducting state, suggesting useful informa-

tion is contained beyond the peak as the cooling time will also depend on the energy

absorbed. Integrating the signal in the region above a pre-defined noise threshold

yields information about both the maximum voltage and the time to cool the TES;

this peak area thus allows the resolution of many more photons than height alone.

For a single TES channel, the histogram of areas for 108 measurement events of

a pulsed coherent state is shown in Fig. 3.15(c). As the pulse area monotonically

increases with absorbed energy, the distinctly separated bins correspond exactly to

quanta of energy detected and can be used to inform the number of photons measured.

The location of these bins can be determined by fitting the obtained histogram to a

sum of Gaussian functions (red dotted line in the figure), where the intersection of each

normalized Gaussian gives the location of the bin edge. The reason for a Gaussian

distribution within each bin is due to variations in the peak areas resulting from

electronic and thermal noise on the cooling tail of signal peaks. The Gaussian fitting

breaks down for large areas beyond the black dashed line in Fig. 3.15(c) indicating the

photon-number can no longer be accurately determined for this detector. The number

of events beyond the detector resolution across all three TES channels accounts for

less than 0.3% of events.

The normalized Gaussian fits to the histogram are displayed in the bottom panel,

Fig. 3.15(d), where it can be seen that the overlap of neighboring Gaussian peaks

is quite small for the majority bins, indicating a high confidence in correctly deter-

mining the true photon number for a given area measurement. The confidence rate

decreases with photon number but remains above 90% for photon numbers from 0-20

in Fig. 3.15(d). A plot of the experimentally measured probability distribution for a

large coherent state with n̄ = 57, which allows use to make full use of our PNRD and



74

clearly resolve out to 100 photons is shown in Fig. 3.16.

Figure 3.16: Experimental photon number distribution obtained by splitting a coher-
ent state of mean photon number n̄ = 57 across three TES channels over 108 events.
The red dashed line indicates the theoretical Poissonian distribution with a mean
of 57. Error bars shown are of one SD and are obtained from finite sampling and
photon-number binning errors.

If one is willing to post-select and slightly reduced count rates, the accuracy of a

given photon-number assignment can be substantially increased by defining regions

of uncertainty near the bin edges. If an event area is recorded in this uncertainty

region, then the event is discarded and not considered in the statistics. Provided

the regions of uncertainty are scaled in terms of the fitted Gaussian widths, σn, then

the measured probability distribution will not deviate from the true distribution and

the accuracy of individual photon-number assignment will increase. If the regions

of uncertainty are defined beyond ±σn, then 32% of the data is discarded, but the

confidence rates increase to 99% or higher for the first 20 photons. If area events

are only kept within ±1
2
σn of each peak, then confidence rates further increases to

99% out to 31 photons. The area histograms, Gaussian fits, and quantitative overlap

errors for each of the three detection channels are given in the Extended Data section.

Extended Data

Further analyses of experimental data are shown in the figures below. The effect

of error-rate reduction through binning modifications is shown in Fig. 3.17 with the
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normalized Gaussian fitting for all three TES channels displayed in Fig. 3.18. Spe-

cific error rates for different photon-number measurements on each channel based on

different histogram binning is shown in Fig. 3.19.

Figure 3.17: Error-rate reduction on photon-number resolution through post-selection
of data. (a) By excluding data points with measured areas further from the center
of each bin, the portion of overlap from neighboring Gaussians can be substantially
reduced. The location of the new binning thresholds must be the same fraction of
the Gaussian peak width, σn, for each bin. Here, 2σn is chosen. (b) Error rate to
incorrectly characterize a true 25 photon event as a function of the proportion of
measurement data kept.
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Figure 3.18: Normalized Gaussian fits for the histogrammed areas measurements TES
channel 1 (a), 2 (b), and 3 (c). Note that for channels 1 and 3, the FPGA thresholds
are set above the electronics noise such that zero photon events have a measured
area of zero. For channel 2, electronics noise can drift slightly above the set voltage
threshold so that small, non-zero areas are recorded for zero photon events.
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Figure 3.19: Error rates for all detection channels depending on binning. Error
percentages indicate the probability to incorrectly count a measurement that was a
true n photon event. Errorall includes all areas and uses the Gaussian intersections
to place bins. Error2σ discards area events occurring outsides of a 2σ width centered
around each Gaussian in the histogram fit. The thrown-out events account for 32%
of all measurements. The Error1σ discards area events occurring outsides of a 1σ
width centered around each Gaussian in the histogram fit. This removes 62% of the
measured data but drastically reduces counting errors.
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3.3.3 Summary

In this section I presented my work on improving photon number resolving capability

by optimizing the use of our TES detector. My goal was to break the previous record

of resolving ≈ 16 photons and I have achieved that, successfully resolving up to 100

photons.

• I was able to successfully calibrate and operate the TES detector taking into

account different experimental considerations.

• In collaboration with my colleagues in the group and collaborators at Jeffer-

son Lab, I was able to successfully set up the new custom-made FPGA-based

EFADC data acquisition device allowing us to achieve the new record perfor-

mance.

A natural question that may arise is why did we not use the POVM treatment here

to assess confidence in our measured number of photons with the TES? While the

POVM treatment would be more rigorous, we believe that the error from the Gaussian

fit overlap is enough for the purposes we are seeking here.
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Chapter 4

PNRD Applications

In this chapter I will discuss two applications of photon number resolving detectors.

The first is quantum random number generation and the second is Fock state inter-

ferometry.

4.1 Quantum random number generation (QRNG)

The need for random numbers arises in many applications ranging from cryptography

to simulation. Typically, pseudo random number generators (PRNG) are used due to

their easy implementation and high generation rates. These are algorithmic methods

that take a small input string as the ’seed’ and produce outputs following a uniform

distribution, mimicking randomness, but the outputs are reproducible if the seed is

known. While that is sometimes useful, unpredictability is a prerequisite for most

applications. Alternatively, true random number generators (TRNGs) are devices

that rely on measuring some unpredictable or at least difficult to predict physical

processes as a source of randomness. Quantum random number generators (QRNG)

are considered a subset of TRNG whose source of randomness is truly stochastic

quantum phenomena.

The prototypical photonic QRNG is based on sending a single photon to a balanced

beamsplitter and placing detectors on the output to determine whether the photon

was transmitted or reflected [81, 82]. This is a truly random coin-flip in the ideal
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case, but it comes with limitations, such as the need for on-demand single photons,

a perfectly balanced beamsplitter, and ideal detectors. Other optical techniques,

such as homodyne measurements to detector random vacuum fluctuations [83] or a

variation on the first method where weak light is spread across a sensor array [84]

can also be used, but these methods also suffer from physical limitations and noise

that lead to randomness with bias. The randomness achieved is not sampled from

a uniform distribution and therefore systematic bias must be removed with classical

algorithms [85, 86]. Beyond reducing data and requiring vulnerable classical schemes,

systems with inherent bias are at risk to quantum hacking [87], where an adversary

can effectively change the calibrated bias and use this to their advanced to break

encryption.

Here, we implement a QRNG making use of the inherent randomness present in the

parity of the Poissonian distribution of a coherent state [88, 89]. When sampling the

parity of the photon-number distribution, the inherent bias vanishes exponentially

quickly with increasing coherent state intensity and asymptotically approaches a true

coin flip. To generate the random numbers we simply convert a photon number

detection to a binary output, where each even photon-number event is assigned an

outcome of ‘0’ and odd photon-numbers are assigned a ‘1’. This method is unaffected

by experimental imperfections such as photon loss, detector inefficiency, phase and

amplitude noise, and contamination by environmental noise, in the limit of large n̄

as will be shown below.

For the parity operator given by Π̂ = (−1)n̂ = eiπn̂ where n̂ = â†â is the photon-

number operator and the operators â† and â are the respective bosonic creation and

annihilation operators, we can examine the expectation value of parity for a coherent

state,

|α⟩ = e−
1
2
α2

∞∑
n=0

αn

√
n!

|n⟩ . (4.1)
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Figure 4.1: Experimental photon number distribution obtained by splitting a coherent
state of mean photon number n̄ = 57 across three TES channels over 108 events.
The red dashed line indicates the theoretical Poissonian distribution with a mean
of 57. Error bars shown are of one SD and are obtained from finite sampling and
photon-number binning errors. The plot inset shows the measured parity coherent
states begins near one (vacuum) but tends to zero as the amplitude increases. The
measured parity for the n̄ = 57 coherent state is ⟨Π̂⟩ = −0.7× 10−4 ± 1.0× 10−4.

If n̄ = ⟨n̂⟩ is the mean photon number of the coherent state, then the expectation of

parity is given by

⟨Π̂⟩ = Pe − Po = e−2n̄, (4.2)

where Pe and Po are the respective probabilities to detect either even or odd photon

numbers.

In Fig. 4.1, we show the experimentally measured probability distribution for a large

coherent state with n̄ = 57, which allows use to make full use of our PNRD and

clearly resolve out to 100 photons. Although the theoretical parity of this state is

e−114 ∼ 10−50, we cannot hope to reach this precision due to finite sampling. With

108 measurement events, we achieve a parity of zero to within uncertainty, with the

measured value of −0.7 × 10−4 ± 1.0 × 10−4. Additionally, we first verify the parity

of weaker coherent states as shown in the inset of Fig. 4.1. As expected, the parity

of vacuum is 1, and we are clearly able to match the trend of e−2n̄ for increasing n̄.

One unfortunate downside of a TES detection systems is the slow detector response

leading to lower generation rates (12.5 kHz using mod 2 binning). Recent advances

show that superconducting nanowire single-photon detectors (SNSPDs) have the po-
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tential to be used as PNRDs that are orders of magnitude faster than TESs [90],

but until this technology matures, we implement an alternative method to increasing

random bit generation rates. As opposed to binning the photon number result by

parity, a uniformly random distribution can also be obtained by taking the measure-

ment result and binning according to photon-number modulo 2d where d ∈ Z. In this

way, we can generate a bit string of size d for each measurement. As d increases, the

residual bias of the QRNG still asymptotes to zero with increasing n̄, but a larger

coherent state amplitude is needed to achieve a similarly negligible bias. In this work

with a maximum detection of 100 photons, we find that the residual bias for a coher-

ent state with n̄ = 57 is equivalent for d ∈ {1, 2, 3}, so we use modulo 8 binning to

generate random numbers.

We subject the ∼ 3 × 108 random bits generated by our protocol to a series of tests

taken from the NIST suite of randomness tests [91]. The proportion (i.e. the per-

centage of tests that pass a given test) is plotted in Fig. 4.2 for each test, given

a significance level of α = 0.01. In computing the confidence interval for Fig. 4.2

(dashed blue lines), we do not make the standard approximation that the distribu-

tion of error about the binomially-weighted observation is given by that of a normal

distribution, since our sample size is small enough that such an approximation will

be unreliable. Instead we use the Wilson score (confidence) interval [92], which has

been shown to be reliable for smaller sample sizes. The findings in Fig. 4.2 demon-

strates that our measurements indicate randomness across all tests considered (all

proportions lie above the lower confidence bound). We additionally show the results

of randomness measures for binning with d ∈ [1, 5] in the Extended Data.
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Figure 4.2: Randomness tests for the resultant bit strings from 108 events based
on assigning three bits of information to each event by taking the measured photon
number modulo 8. Data was broken into segments of 7.5 × 105 bits and each string
was tested for randomness. The proportion (red markers), i.e. the percentage of trials
that pass a test given a significance level of α=0.01, falls within the corresponding
confidence interval for all tests considered indicating evidence of true randomness.
The error bars for each proportion are computed from the Wilson score (confidence)
interval of Eq. 4.26 where n = 431 is the total number of trials and ns (nf ) are the
number of successful (failed) trials for a significance level of α = 0.01. Given repeated
testing of the bit generation method, the error bars denote the probability range for
which the proportion is likely to fall.
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4.1.1 Robust nature of proposed method

Upon closer examination we can see how our method here proves to be quite robust

against various sources of error. First, we can consider phase and amplitude fluctua-

tions originating either from the laser or any other experimental instability. This can

be modeled by assuming that a statistical mixture of coherent states impinges up the

detector. We find that phase fluctuations have absolutely no bearing on the random-

ness and still lead to the same residual bias of e−2n̄, which we experimentally verify

as shown in the Extended Data. Amplitude fluctuations similarly provide negligible

impact. Suppose the coherent state has mean photon number of n̄ and there is a small

intensity fluctuation of δ. The expectation of parity becomes e−2(n̄±δ) ≈ e−2n̄(1 ± δ)

which tends to zero for sufficiently large n̄.

Next, we can consider the effects of loss, detector inefficiency, and uneven split-

ting between the TES channels with imperfect beamsplitters. We can always model

an inefficient detector by inserting a loss channel in the form of a beamsplitter of

transmissivity η before a perfect detector and performing a partial trace over the

unmeasured output port (Methods). As the coherent state, |α⟩, maps to the smaller

coherent state, |√ηα⟩, after this loss, an imperfect detector still measures a Poissonian

photon-number distribution. Thus, in order to achieve quality randomness with low

residual bias, the coherent state used must be chosen such that n̄′ = ηn̄ is sufficiently

large. As for uneven splitting or differing detector efficiencies between channels, we

can equivalently model the process of measuring a single coherent state distribution

as the discrete convolution of three smaller coherent state distributions. As all beam-

splitter outputs are still detected, changing the beamsplitter reflectivities just acts to

redistribute the photons amongst the TES channels. Provided no single channel satu-

rates, which is easily recognizable through monitoring areas measurements, sampling

the summed output of all channels will still yield a Poissonian distribution.
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An additional concern of any quantum mechanical experiment is that of unintentional

coupling to the environment. One possible effect of such coupling is photon loss as

addressed in the previous paragraph. Another effect is the addition of photons, such

as coupling to an external thermal bath, or some malicious observer attempting to

inject light. In place of measuring a coherent state, suppose that the detector is sent

the density operator ρ = ρα ⊗ ρenv, where ρα = |α⟩ ⟨α| is the density operator for the

coherent state and ρenv is the density operator for some unknown quantum state, not

necessarily pure, originating from the environment. The expectation value of parity

for the whole system is given by ⟨eiπ
∑

n̂k⟩, where subscript k denotes the different

subsystems. This leads to an overall parity of

⟨Π̂⟩ = e−2n̄⟨Π̂⟩env, (4.3)

where ⟨Π̂⟩env is the parity of the environment alone and is bounded between 1 and

-1. Thus environmental mixing will not degrade the quality of the QRNG.

As a final concern, consider an eavesdropper attempting to determine information

about the random numbers. Suppose an eavesdropper uses a beamsplitter to sample

the coherent light in an attempt to predict the random number measured by the

user. Due to the nature of coherent states, the two beamsplitter outputs remain in

a product state, hence are not correlated. Thus no information about the results

at one output port can be used to determine the results at the other, preventing

the eavesdropper from attaining useful information. This could be demonstrated

by testing the random numbers generated by our three detection channels against

each other (now each would have a lower n̄ thus higher bias) for correlations. This

robustness against eavesdropping is an advantage over simply sampling a Poisson

noise distribution and splitting the classical signal afterwards, provided there is no

technical noise. Other side-channel attacks, such as the insertion of different quantum
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states by a nefarious party, can be readily mitigated as well. Although the QRNG

method only utilizes higher order parity measurements, we still have access to the

full photon-number distribution from the TES, which can be monitored to ensure

that Poissonian statistics are still obtained. This rules out any external manipulation

since replacing or interspersing the coherent state with a different state will yield a

different distribution. Additionally, the TES waveform response can be concurrently

monitored and frequently recalibrated to rule out signal manipulation. Finally, as

a coherent state is simply a laser output, the source and detector can be fabricated

in near proximity to one another and protected from any realistic attack through

appropriate shielding.

Recently, there has been some emphasis on the use of Bell inequality violations to

certify the quantum nature of a device and ensure private randomness [79, 93, 80].

Although this concept has merit, it requires closing all experimental loopholes to

eliminate a local hidden variable theory before it can truly validate a black box as a

quantum device. Furthermore, trust must be given at some point during any realistic

experiment as the classical signal used to enact Bell measurements may themselves

be spoofed. In our implementation, the quantum nature of the experiment is verified

by the area histograms shown in Fig. 3.15(c). The origin of the separation between

area measurements is the fundamental energy quantization of photons. An entirely

classical signal would yield a single broad Gaussian peak centered about the average

energy of the beam of light spanning a swath of areas due to classical noise fluctuations

as opposed to the multiple Gaussian fits for each TES channel.
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4.1.2 Theoretical background

Origin of randomness

The photon-number parity of a coherent state tends towards a uniform distribu-

tion as the energy of the state increases. For a coherent state given by |α⟩ =

e−
1
2
α2 ∑∞

n=0
αn
√
n!
|n⟩ and parity operator given by Π̂ = (−1)n̂ = eiπn̂ where n̂ = â†â is

the photon-number operator. We can derive

⟨α| Π̂ |α⟩ = ⟨α| eiπn̂ |α⟩

= e−|α|2
∞∑

n,n′=0

α∗n′
αn

√
n′!n!

⟨n′| eiπn̂ |n⟩

= e−|α|2
∞∑

n,n′=0

α∗n′
αn

√
n′!n!

eiπn ⟨n′| |n⟩

= e−|α|2
∞∑
n=0

(|α|2eiπ)n

n!

= e−2n̄

where n̄ = ⟨α| n̂ |α⟩ = α2.

From this we see that for large n̄, the parity expectation value can be arbitrarily close

to zero. To generate the random numbers we simply output ‘0’ whenever we measure

an even number or ‘1’ whenever we measure odd.

Phase and amplitude fluctuations

First, we consider phase fluctuations. Suppose we do not have a pure coherent state,

but a statistical mixture of coherent states with the same amplitude and a random

phase,

ρcoh =
1

2π

∫ 2π

0

dϕ |reiϕ⟩ ⟨reiϕ| , (4.4)
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where r = |α| =
√
n̄. This yields

⟨Π̂⟩ = Tr[ρcohΠ̂]

=
1

2π

∫ 2π

0

dϕ
∞∑
n=0

⟨n|reiϕ⟩ ⟨reiϕ| eiπn̂ |n⟩

=
1

2π

∫ 2π

0

dϕ

∞∑
n=0

eiπn| ⟨n|reiϕ⟩ |2

=
1

2π

∫ 2π

0

dϕ
∞∑
n=0

(−1)n

∣∣∣∣∣e− 1
2
n̄

∞∑
i=0

(
√
n̄eiϕ)i√
i!

∣∣∣∣∣
2

=
1

2π

∫ 2π

0

dϕ
∞∑
n=0

(−1)ne−n̄ n̄
n

n!

= e−2n̄

which shows that phase noise does not affect the parity expectation value. Second,

we consider amplitude fluctuations. Changes in the amplitude of the coherent state

amount to changes in the mean photon number n̄. For a change δ in the mean photon

number, the parity expectation value becomes e−2(n̄±δ) which is approximately e−2n̄

for small δ. This can be shown explicitly by following a calculation similar to the one

above but for amplitude. Here we start by using ρcoh =
∫ α0+δ

α0−δ
dα |α⟩ ⟨α|. Following

the derivation we end with
∫ α0+δ

α0−δ
dαe−2|α|2 which can be calculated numerically, and

goes to zero for δ ≪ α0.

Environmental noise

We now look at the expectation value of the parity operator on the whole system

where ρ = ρcoh ⊗ ρenv with ρcoh = |α⟩ ⟨α| . Deriving the expectation value of the

new parity operator, eiπ
∑

n̂i , where subscript i denotes the different subsystems, we
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obtain

⟨eiπ
∑

n̂i⟩ = Tr[eiπn̂1ρcoh ⊗ eiπn̂2ρenv]

= Tr[⟨α| eiπn̂1 |α⟩ ⊗ eiπn̂2ρenv]

= Tr[e−2n̄ ⊗ eiπn̂2ρenv]

= e−2n̄⟨Π̂⟩env,

where ⟨Π̂⟩env is bounded between 1 and -1. For large enough n̄, the whole expectation

value goes to zero regardless of the form of ρenv.

Loss and detector inefficiency

Consider an imperfect detector with quantum efficiency η < 1. This can be modeled

by placing a fictitious ‘loss beamsplitter’ with reflection coefficient r =
√
1− η and

transmission coefficient t = √
η such that r2 + t2 = 1 in front of a perfect detector

and performing a partial trace over the reflected mode. The beamsplitter operator

acting on bosonic modes a and b is given by

B̂ab = eθ(âb̂
†−â†b̂), (4.5)

where r = cos θ, t = sin θ. Sending a coherent state, |α⟩, to an imperfect detector is

then the same as sending the density operator

ρ = Trb
[
B̂ab (|α⟩ ⟨α|)a ⊗ (|0⟩ ⟨0|)b B̂

†
ab

]
(4.6)

= Trb
[
(|√ηα⟩ ⟨√ηα|)a ⊗

(
|
√
1− ηα⟩ ⟨

√
1− ηα|

)
b

]
(4.7)

= (|√ηα⟩ ⟨√ηα|)a (4.8)
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to a perfect detector. Thus, for coherent states, all measurements made with PNRDs

having η < 1 can instead be treated as ideal detectors where the measured state is

just a different coherent state.

Unbalanced splitting and efficiency

Suppose we send the coherent state |α⟩ to our three-detector system. Due to un-

balanced splitting between different paths or small variations in detector efficiency,

each TES may see a different signal. Together, the statistics of the photon num-

ber summed across all three channels will still be that of a coherent state but with

potentially different effective amplitude.

For an input coherent state and vacuum in the unused beamsplitter ports, |α⟩a |0⟩b |0⟩c,

the beamsplitter system shown in Fig. 3.15(a) transforms the state to

B̂acB̂ab |α⟩a |0⟩b |0⟩c = |t1t2α⟩a |r1α⟩b |t1r2α⟩c , (4.9)

where rk, tk are the beamsplitter coefficients for beamsplitter k. Suppose now that

the three detectors have quantum efficiencies ηa, ηb, and ηc. Using Eq. 4.6 for each

mode, the effective state sent to three perfect detectors is then

|ψ⟩ = |βa⟩a |βb⟩b |βc⟩c (4.10)

= e−
1
2
|βaβbβc|2

∞∑
na=0

∞∑
nb=0

∞∑
nc=0

βna
a βnb

b β
nc
c√

na!nb!nc!
|na⟩a |nb⟩b |nc⟩c (4.11)
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where

βa =
√
ηat1t2α, (4.12)

βb =
√
ηbr1α, (4.13)

βc =
√
ηct1r2α. (4.14)

The probability to measure the total photon number summed across all detectors,

m = na + nb + nc, is given by

P (m) = e−|βaβbβc|2
m∑

na=0

m−na∑
nb=0

|βa|2na |βb|2nb |βc|2(m−na−nb)

na!nb!(m− na − nb)!
(4.15)

= e−|βaβbβc|2 (|βa|
2 + |βb|2 + |βc|2)m

m!
, (4.16)

which is the same probability distribution that would be obtained by measuring a

coherent state of amplitude α′ =
√

|βa|2 + |βb|2 + |βc|2 with a single detector of effi-

ciency η = 1.

4.1.3 Experimental considerations

Randomness characterization

Here we will follow the work detailed in [89] on how the photon-number counts were

binned to generate multiplicatively longer bit sequences as well as how the bit se-

quence was tested for randomness. We start with the case of mod(2) binning, in

which each detection event corresponds to an outcome of even(0) or odd(1), the mea-

surement probabilities are given by

P
(2)
0(1) = ⟨P̂ (2)

0(1)⟩ =
1
2

(
1± e−2n̄

)
→ P

(2)
k = 1

2

(
1 + (−1)k e−2n̄

)
, (4.17)
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where n̄ is the average photon number of the coherent state and

P̂
(2)
k =

∞∑
m=0

|2m+ k⟩ ⟨2m+ k| , (4.18)

are the even (k=0) and odd (k=1) projection operators. For large average photon

numbers, the balancement between even/odd probabilities is maintained (i.e. e−2n̄ →

0). In terms of these projectors, the corresponding parity operator is given by Π̂ =

P̂
(2)
0 − P̂

(2)
1 . Similarly, we can define projectors for the case of mod(4) binning

P̂
(4)
k =

∞∑
m=0

|4m+ k⟩ ⟨4m+ k| , (4.19)

where each mod(2) bin is further broken down into bins containing every other

even/odd photon count. For example, the k = 0 bin is comprised of the photon

number counts {0, 4, 8, ...} while the k = 2 bins counts {2, 6, 10, ..} and likewise for

the odd counts. In this sense, mod(4) binning is akin to a higher order parity mea-

surement. It is clear then that the parity operator can be expressed as

Π̂ = P̂
(4)
0 + P̂

(4)
2 −

(
P̂

(4)
1 + P̂

(4)
3

)
≡ P̂

(2)
0 − P̂

(2)
1 , (4.20)

and the binning probabilities are in turn given by

P
(4)
k = ⟨P̂ (4)

k ⟩ = e−n̄

∞∑
n=0

n̄4n+k

(4n+ k)!

=
1

4

(
1 + 2e−n̄ cos

(
n̄− kπ

2

)
+ (−1)k e−2n̄

)
. (4.21)

The length of the bit sequence can then be made longer by taking the remainders and

mapping them to the dual-bit values according to {0, 1, 2, 3} → {00, 01, 10, 11}. This

same form of mapping holds for higher modulo binning. Note the largest biasing term

in Eq. 4.21 is larger than the mod(2) biasing term by a square root. This implies
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a trade-off when binning the data: larger bit sequence generation comes at the cost

of requiring a higher coherent state average photon number. This procedure can be

generalized for mod(Q) where the projectors are given by

P̂
(Q)
k =

∞∑
m=0

|Qm+ k⟩ ⟨Qm+ k| , (4.22)

and the corresponding parity operator can in turn be constructed as

Π̂ =

Q−1∑
k=0

(−1)kP̂
(Q)
k ≡ P̂

(2)
0 − P̂

(2)
1 . (4.23)

The tested data is based off of 107911769 photon-number counts from a coherent

source of average photon number n̄ ≈ 57. For a trial size of 7.5 × 105, this corre-

sponds to n = {143, 287, 431, 575, 719} trials for mod{2, 4, 8, 16, 32}, respectively. We

subject this data to a suite of randomness tests outlined by NIST SP800-22 [91] in

order to demonstrate that the generated bit sequence is truly random. We note that

our methodology for determining randomness is the same employed in testing the

randomness of bit sequences generated using the protocols of the NIST encryption

standard competition finalists, detailed in Soto et al. [94], utilized in the verifica-

tion of new randomness tests by Doğanaksoy et al. [95] and implemented in the

cryptographically-secure Intrinsic ID Zign software-based RNG [96]. In Fig. 4.4 we

plot the results of these tests for mod{2, 4, 16, 32}. Note the mod(8) result can be

found within the main body text. Due to the large number of tests available for

judging whether a sequence is random or not, there is no ‘complete’ or systematic

approach to proving randomness. Instead, one relies on providing sufficient evidence

that a given sequence is indeed random. For each trial, a series of tests are performed

and a P -value is obtained for each test corresponding to the probability that a perfect

random number generator would produce a sequence less random than the sequence

being tested. If this P -value is greater than the chosen significance level of α = 0.01
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(1%), the test is considered passed (successful) and the trial is accepted as random.

The proportion is then defined as the ratio of successful trials to the total number

of trials (i.e. the success rate). Included in our analysis is the confidence interval

(CI), i.e. the range of estimation for the success rate of a particular test given a 99%

confidence level. Typically, the CI for a set of Bernoulli trials with a success rate of

p̂ can be fairly approximated by that of the normal distribution

CI ≈ p̂± z

√
p̂ (1− p̂)

n
, (4.24)

where n is the total number of trials and z is the 1− α
2

quantile probit function (i.e.

the inverse cumulative distribution function for the normal distribution). However,

this approximation to the binomial distribution, which is more representative of a set

of Bernoulli trials, is only valid when the number of trials is on the order of n ≳ 104

and/or where the success rates are sufficiently far away from the boundary values of

0, 1. This proves to be an insufficient approximation for our data. We instead turn

to the asymmetric Wilson score approximation [92] to the normal distribution given

by

CIws =
n

n+ z2

(
p̂+

z2

2n

)
± zn

n+ z2

√
p̂ (1− p̂)

n
+

z2

4n2
. (4.25)

The Wilson score confidence interval, CIws, for a 99% confidence level are represented

by horizontal dashed blue lines in Figs. 4.2, 4.4 and 4.5. In addition, we plot for each

test the equivalent definition of the CIws

CIws =
ns +

1
2
z2

n+ z2
± z

n+ z2

√
nsnf

n
+
z2

4
, (4.26)

where ns, nf = n − ns are the number of successful and failed trials, respectively.

The success rate is then given by p̂ = ns/n. This measure provides a range for each

test in which the mean proportion is likely to fall given repeated testing of the bit
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generation method (i.e. more trials performed) and are represented by red error bars

in Figs. 4.2, 4.4 and 4.5. Sufficient evidence of randomness exists if the proportion

lies above the lower bound of the CIws for all tests considered. By this criterion, we

conclude that the generated bit sequence for the cases of mod{2, 4, 8} binning are

random while the generated bit sequence for mod{16, 32, ..} binning are not random.

To further validate our results, we reiterate that for the case of a coherent state with

average photon number n̄ ≈ 57, we expect the balancement of binning probabilities to

hold for up to mod(8) binning. Higher modulo binning will introduce larger degrees

of bias into the binning probabilities, as seen in Eq. 4.21. An approximate trend

is that the largest biasing term in the binning probabilities for the case of mod(Q)

binning is ∝ exp
(
−4n̄

Q

)
, such that if one wanted to maintain the same degree of

bias as the mod(2) binning case, one would need a coherent state with an average

photon number 1
2
Q times larger. For a static n̄, higher mod binning will subsequently

result in a generated bit sequence that does not display randomness as there will be a

significant amount of bias in the higher-modulo binning probabilities. For reference,

the impact of bias on the randomness of the bit sequence is reflected in Fig. 4.4,

where as predicted the mod(16) and mod(32) binning cases show evidence that the

generated bit sequence is not random since for both cases several test proportions fall

outside of the CIws. Even more specifically, only a few tests fail for the mod(16) case

and most fail for the mod(32), reflecting that more bias is introduced as a function

of the modulo binning size. Likewise, this also further strengthens the argument that

the mod{2, 4, 8} cases result in a random bit sequence, as our experimental data align

perfectly with theoretical predictions.
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Phase randomization

Fig. 4.5 in the Extended Data shows the randomness tests for data where phase noise

has been introduced to the coherent state. This is achieved by driving a mirror-

mounted piezoelectric actuator (PZT) to change the optical path length over a range

of one wavelength, or 1064 nm. The PZT was driven with a 100 Hz triangle-wave

function, which was chosen to be much slower than the pulse repetition rate to ensure

all phases over the range from 0 to 2π where equally represented amongst the entire

data set.

Extended Data

Further analyses of experimental data are shown in the figures below. Theoretical

residual bias for photon-number measurements modulo d with an upper limit of 100

resolveable photons are shown in Fig. 4.3, and full characterization of the randomness

tests on all data is shown in Figs. 4.4 and 4.5.
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Figure 4.3: Residual bias based on modulo binning of a photon number distribu-
tion for coherent state of mean photon number n̄. Markers indicate the theoretical
deviation from a uniformly random distribution if one had infinite photon-number
resolving capability while solid lines give the expected bias with a truncation of the
photon number distribution beyond 100 photons. The vertical dashed line indicates
a coherent state with n̄ = 57 such as used in this experiment where the residual bias
for mod 2, mod 4, and mod 8 binning are the same. The two plots are identical with
the plot at left showing log scale.
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Figure 4.4: Randomness tests for the resultant bit strings based on how the measured
data is binned (Mod 8 data shown in the main text). Mod 2, Mod 4, and Mod 8 tests
all indicate randomness, while some tests begin to fail for Mod 16 and Mod 32. This
is expected due to the non-zero residual biases for a coherent state distribution with
mean photon number n̄ = 57 and a PNRD limit of 100 photons. The error bars for
each proportion are computed from the Wilson score (confidence) interval of Eq. 4.26
where n = {143, 287, 575, 719} is the total number of trials for mod{2, 4, 16, 32} bin-
ning, respectively, and ns (nf ) are the number of successful (failed) trials for a
significance level of α = 0.01. Given repeated testing of the bit generation method,
the error bars denote the probability range for which the proportion is likely to fall.
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Figure 4.5: Randomness tests for bit strings obtained from modulo 2 binning the
sampled photon number from a mixture of coherent states with randomized phase.
All tests pass indicating phase stability has no bearing on the quality of QRNG.
The error bars for each proportion are computed from the Wilson score interval of
Eq. 4.26 where n = 143 is the total number of trials and ns (nf ) are the number of
successful (failed) trials for a significance level of α = 0.01. Given repeated testing of
the bit generation method, the error bars denote the probability range for which the
proportion is likely to fall.

4.1.4 Summary

In this section I have presented my work on implementing a quantum random number

generator. My goal was to demonstrate a use case of our newly achieved 100 photon

resolution capability and I have successfully achieved that.

• I was able to theoretically model the QRNG and show where the randomness

comes from and how it is robust to various potential impediments.

• I was able to successfully experimentally generate truly random numbers that

passed the NIST randomness tests.



100

4.2 Fock State Interferometry (FSI)

The ability to distinguish between apriori-known phase shifts has many applications

including M-ary Phase Shift Keying (MPSK), a digital modulation scheme that con-

veys M messages by modulating the optical phase of a probe signal [97] and quantum

reading with binary phase-encoded memory pixels [98, 99]. One technique to per-

form such a measurement is using Fock state interferometry (FSI), a Mach-Zehnder

interferometer whose inputs are Fock states and whose outputs are measured using

photon number resolving detection (PNRD).[30]. Such a setup is outlined in Fig. 4.6.

It is recommended that the reader reviews [30] for a more detailed explanation of the

FSI method. Below is a breif overview.

Figure 4.6: Figure from [30]. Phase discrimination by Fock-state interferometry. The
Fock state |na⟩a |nb⟩b is input into a Mach-Zehnder interferometer of phase difference
θ and the interferometer’s output is measured by photon-number- resolving detectors.

Classically, with coherent state inputs for instance, the phase measurement sensitivity

cannot exceed the beamsplitter shot-noise level ∆θcl ∼ ⟨N⟩− 1
2 [100], where θ is the
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phase difference between the arms of an interferometer and ⟨N⟩ is the total average

number of photons in the interferometer. The classical limit, however, doesn’t give the

ultimate phase precision, which is fixed by the Heisenberg number-phase Heisenberg

inequality [101] and bounded by the Heisenberg limit (HL): ∆θHl ∼ ⟨N⟩−1.

FSI can yield enhanced interferometry performance and break the classical limit in

cases less general than the estimation of an unknown phase, namely the discrimination

of two or more predetermined phase shifts [30]. In this section I will highlight the

results in [30] examining the ideal (lossless) case and provide an analysis of the lossy

situation.

4.2.1 Lossless FSI

Schwinger representation

Shahrokhshahi et al. in [30] use the Schwinger representation to model the interfer-

ometer setup, which was first demonstrated by Yurke et al in [102]. The analysis in

[30] goes as follows:

Any linear passive lossless optical device with two input and two output ports can be

described by a 2× 2 SU(2) matrix:

U =

 cos β
2
ei(α+γ)/2 sin β

2
ei(α−γ)/2

− sin β
2
e−i(α+γ)/2 cos β

2
e−i(α+γ)/2

 (4.27)

where α, β and γ are the Euler angles. U operates on the two-dimensional vector

(a, b)T , whose components are the annihilation operators for the two input fields at

each port of the system.

The homomorphism from SU(2) to the rotation group in three dimensions, SO(3),
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allows us to visualize the action of two-mode optical devices, such as beam splitters

and phase shifters, as rotations in 3D space. The general rotation in Eq. 4.27 is

mathematically equivalent to the rotation of the following tridimensional vector J⃗ in

3D space:

J =


Jx

Jy

Jz

 =
1

2


a†b+ b†a

−i(a†b− b†a)

a†a− b†b

 . (4.28)

Components Jx, Jy and Jz follow the canonical commutation relations for quantum

angular momentum operators

[Jk, Jl] = ih̄εklmJm (4.29)

where k, l,m ∈ {x, y, z}, and εklm is the Levi-Civita symbol. So J⃗ can be deemed a

quantum angular momentum, or effective spin.

The magnitude of the angular momentum J2 is

J2 = J2
x + J2

y + J2
z =

a†a+ b†b

2

(
a†a+ b†b

2
+ 1

)
(4.30)

J2 =
N

2

(
N

2
+ 1

)
(4.31)

where

N = Na +Nb = a†a+ b†b (4.32)

is the total photon number operator.

Fock states |na⟩ |nb⟩ are therefore also eigenstates of J2 and Jz,

|jµ⟩z = |na⟩a |nb⟩b (4.33)

with respective eigenvalues j(j +1) and µ given by the total photon number and the
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photon number difference

j =
na + nb

2
(4.34)

µ =
na − nb

2
(4.35)

As an example, input state of the interferometer with 2j photons in mode a and

vacuum in mode b is identical to, |2j⟩a |0⟩b = |jj⟩z and the twin Fock state input

which is required for Holland-Burnett interferometry [103] is |j⟩a |j⟩b = |j0⟩z.

A unitary operation on the quantum fields a and b can be viewed as the SO(3) rotation

of the corresponding spin J⃗ , Eq. 4.28. Any rotation of spin J⃗ can be described with

the 3 Euler rotations:

J⃗out = eiαJzeiβJyeiγJz J⃗ ine−iγJze−iβJye−iαJz (4.36)

|ψ⟩out = eiαJzeiβJyeiγJz |ψ⟩in (4.37)

respectively in the Heisenberg and Schrodinger pictures. In the Schwinger represen-

tation this arbitrary tridimensional rotation of the effective spin J⃗ in is equivalent to

the Euler angle parametrization of the SU(2) rotation of the two modes a and b basis,

Eq. 4.27. The SO(3) Euler matrix is


cαcβcγ − sαsγ −cγsα − cαcβsγ cαsβ

cαsγ + cβcγsα cαcγ − cβsαsγ sαsβ

−cγsβ sβsγ cβ

 (4.38)

where c(α/β,γ) = cos(α/β, γ), s(α/β,γ) = sin(α/β, γ). The Mach-Zehnder Interferome-

ter (MZI) consists of two 50/50 beam splitters, and a phase shifter. The effect of MZI

is equivalent to a (−π/2) rotation around x axis, a θ rotation around z, and another
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π/2 rotation around x, which yields a θ rotation around y

J⃗out = eiθJy J⃗ ine−iθJy (4.39)

|ψout⟩ = eiθJy |ψin⟩ (4.40)

So the effect of MZI is equivalent to a single rotation of effective spin by θ around

the y axis. We are interested on the effect of MZI on Fock states, the eigenstates of

effective spin J⃗ , |j, µ⟩. The probability function P (µ′, µ|θ, j) for the input spin |j, µ⟩

to be measured after the interferometer as |j, µ′⟩ for fixed θ and J (the total photon

number) can be described as a rotation matrix, which is a square matrix of dimension

2j + 1 with general element

P (µ′, µ|θ, j) = |⟨j, µ′|ψout⟩|2 (4.41)

= |⟨j, µ′|eiθJy |jµ⟩z|2 (4.42)

= djµ′,µ(θ)
2 (4.43)

These rotation matrix elements can be expressed in terms of Jacobi polynomials

djµ′,µ(θ) =

[
(j + µ)!(j − µ)!

(j + µ′)!(j − µ′)!

]1/2 (
sin β

2

)µ−µ′

×
(

cos β
2

)µ+µ′

P
(µ−µ′,µ+µ′)
j−µ (cos β) (4.44)

Phase discrimination

Let’s start with binary phase discrimination where the unknown fixed phase θ can

take one of two values: θ1 and θ2. We shall denote the estimated phase as θ̂. Four

different scenarios can occur during the phase discrimination process. If the initial

phase θ = θ1,2 and the estimated phase θ̂ = θ1,2, respectively, then we have success.
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Else θ̂ = θ2,1, and we have an error. A natural criterion to measure interferometer

performance in the phase discrimination problem will then be the error probability,

Pe, which we’ll define later.

We consider a MZI with a |jµ⟩ input and whose phase θ can be either of two predeter-

mined values θ1,2. We then perform a single Jz measurement of the photon number

difference at the output ports, of result µ′, and make a decision about the phase

shift based on maximum likelihood algorithm: knowing the probability distribution

P (µ′, µ|θ) of the interferometer (Table 4.1), we compare both cases θ = θ1 and θ = θ2

for a given measurement outcome and assign the estimated phase shift θ̂ to the phase

which is more likely to result in this specific outcome µ′. The algorithm is thus

if P (µ′, µ|θ1) ⩾ P (µ′, µ|θ2)

then


P (θ̂ = θ1|θ = θ1) = P (µ′, µ|θ1) −success

P (θ̂ = θ1|θ = θ2) = P (µ′, µ|θ2) −failure

else


P (θ̂ = θ2|θ = θ2) = P (µ′, µ|θ2) −success

P (θ̂ = θ2|θ = θ1) = P (µ′, µ|θ1) −failure

(4.45)

Table 4.1: Probability distribution P (µ′, µ|θ). The possible measurement outcomes
are denoted by µ′ (columns) and possible phases by θ1,2 (rows). Each element of this
array is the probability of measuring µ′ ∈ [−j, j], given phase θ.

θ µ′ −j · · · m · · · j

θ1 P (−j, µ|θ1) · · · P (m,µ|θ1) · · · P (j, µ|θ1)
θ2 P (−j, µ|θ2) · · · P (m,µ|θ2) · · · P (j, µ|θ2)

For this procedure to be error free, one would need:

P (θ̂ = θ1,2|θ = θ2,1) = 0. (4.46)

Of course, this is not the case in general, and the average error probability is given
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by:

Pe =
∑
i,j ̸=i

P (θi)P (θ̂ = θj|θ = θi). (4.47)

The analytic expressions of probabilities are given by rotation matrix elements in the

Schwinger representation, Eq. 4.43. Without loss of generality, we may elect to set

θ1 = 0 as this entails

P (µ′, µ|0) = djµ′,µ(0)
2 = δµ′,µ (4.48)

and simplifies the situation. The problem will then reduce to discriminating θ2 = θ

against θ1 = 0. Note that this is still different from general phase estimation – again

classically-limited for a FSI – as we’ll restrict θ to the values that will allow optimized

performance.

Next, let’s now turn to the extension of the previous problem to discriminating three

phases (0, θ1, θ2) – one of them being, again, set to zero for convenience and without

loss of generality. Again, the error probability (Pe), is a natural criterion to assess

the performance of the phase discrimination. For all phases equiprobable, the error

probability is, from Eq. 4.47,

Pe =
1

3
[P (0|θ1) + P (0|θ2) + P (θ1|0)

+P (θ1|θ2) + P (θ2|0) + P (θ2|θ1)] (4.49)

Information theory

A few definitions that will be used to benchmark our setup are:

The mutual information (MI), which is a measure of the amount of information that

one random variable X contains about another random variable Y , is equivalent to

the reduction in the uncertainty of one random variable due to the knowledge of the
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other. It is given in this case by:

I(θ; θ̂) = log2M +
∑
i,j

P (θ̂j | θi)
M

log2

P (θ̂j | θi)∑
k P (θ̂j | θk)

(4.50)

where M is the number of possible optical phases, and P (θ̂j | θi) is the conditional

probability of measuring θ̂j given that θi occurred. Please note that Eq. 4.50 is

different from Eq.(B16) in [30] by a sign difference. The error in [30] began starting

from Eq.(B13). Eq. 4.50 is correct.

Next, the classical capacity of optical reading is the amount of bits of information

that can be reliably encoded and read per pixel and is equivalent to the maximum

attainable mutual information between the applied phase shifts θ and the measured

phase shifts θ̂ for each pixel,

C(ns) = max I(θ; θ̂), (4.51)

where ns is the average number of signal photons in the reading probe, here the

interferometer arm that contains the phase shift.

Photon information efficiency (PIE) is then the number of bits read per signal pho-

tons:

PIE =
C(ns)

ns

. (4.52)

4.2.2 Lossy FSI

Our aim now is to derive a formula for the probability of measuring an output |j′, µ′⟩

on the other side of the FSI apparatus for an input state |j, µ⟩ taking into account

losses. This is ultimately deriving the lossy equivalent of Eq. 4.43.
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Adding beamsplitters before detectors vs using Krauss operators

There are two ways to go about modeling losses due to interaction with the environ-

ment in this case. The first seems conceptually straight forward: We assume that

interaction is modeled as going through two beamsplitters before the two detectors at

the end of our experiment with transmissivity η. The inputs at those beamsplitters

would be our output state from the regular lossless FSI and vacuum(the environ-

ment). What we do next is calculate the output (now 4-mode) state and construct

a density matrix from it. We then take the partial trace of the density matrix over

the environment modes. What is left is our sub-system’s density matrix after loss.

Finally, we take the expectation value of the resulting density matrix in whatever

state we like to get the probability of being in that particular state.

The other way to get the sub-system’s density matrix after loss is to say that whatever

the effect of loss is, it is modeled by some operator K that will transform our original

density matrix into the lossy version.

The Krauss operator

Let us forget about the FSI setup for now and consider the following: We send a

single-mode Fock state through some lossy region and want to get the output state.

It’s important to remember that losses come about because our state interacts with

its environment. We model this loss by some operator K that will transform our input

density matrix as:

ρout =
∑
k

KkρinK
†
k (4.53)

where Kk is called a Krauss operator[104].
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The summation index k here represents different possible final states of the ’environ-

ment’ that we interacted with. We model the environment here as a simple harmonic

oscillator in the number basis. Like the previous method, we start from vacuum, but

end in some state k. From this we understand that k is the number of photons lost

from our input state. The action of the operator K on the input mode is whatever

action that remains after we evolve the environment (initially in vacuum) and project

it onto its possible outcome state ⟨k| with our evolution operator. This can be written

as:

Kk = ⟨k|b e
itHI |0⟩b (4.54)

where HI is the interaction Hamiltonian of the input state with the environment.

Subtitle a denotes input mode and subtitle b denotes environment mode. One of the

simplest interactions that is sufficient to model loss in our case is a bilinear coupling,

a product of the elementary system and environment coordinate operators [104]. This

is given by:

HI = χ(a†b+ b†a) (4.55)

where χ is a coupling constant and a,b are the annihilation operators of the system

and environment respectively.

Substituting Eq. 4.55 back into Eq. 4.54 we get:

Kk = ⟨k|b e
iχt(a†b+b†a) |0⟩b (4.56)

This can be evaluated to give[104]:



110

Kk =
∑
n

√(
n

k

)√
(1− γ)n−kγk |n− k⟩ ⟨n| (4.57)

where γ = 1-cos2(χt) is the probability of losing a single photon from the system

during a time t. We can rewrite this in terms of transmissivity η using γ + η = 1 as:

Kk =
∑
n

√(
n

k

)√
(1− η)kηn−k |n− k⟩ ⟨n| (4.58)

We can directly use Eq. 4.58 as our Krauss operator, or we can work on it a bit more

to get it in the form used in [105] which we’ll do now.

Kk =
∑
n

√(
n

k

)√
(1− η)kηn−k |n− k⟩ ⟨n|

=
∑
n

√
n!

k!(n− k)!
η

n−k
2 (1− η)

k
2

(a†)n−k√
(n− k)!

|0⟩ ⟨0| a
n

√
n!

=
∑
n

1√
k!

1

(n− k)!
η

n−k
2 (1− η)

k
2 (a†)n−k |0⟩ ⟨0| an−kak

= (1− η)
k
2

(∑
n

η
n−k
2 |n− k⟩ ⟨n− k|

) ak√
k!

(4.59)

We can replace the sum in the parenthesis with η
a†a
2 . To see why, let’s expand and

compare the action of both operators on some state |m⟩.

η
a†a
2 = eln(η

a†a
2 )

= ea
†a ln(√η)

=
∞∑
i=0

(ln√
η)i

i!
(a†a)i (4.60)
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Now let’s act by this on |m⟩.

∞∑
i=0

(ln√
η)i

i!
(a†a)i |m⟩ =

∞∑
i=0

(ln√
η)i

i!
(m)i |m⟩

= η
m
2 |m⟩ (4.61)

Whereas :

∑
n

η
n−k
2 |n− k⟩ ⟨n− k| |m⟩ =

∑
n

η
n−k
2 |n− k⟩ δn−k,m

= η
m
2 |m⟩ (4.62)

Making the substitution, we get the following formula for the operator K:

Kk = (1− η)
k
2 η

a†a
2
ak√
k!

(4.63)

It’s important to note that the authors have a typo in Eq.(24) in [105] in the power

of the first term which we fixed here. To be sure, one can also look at Eq.(1) in [106].

Example: Beamsplitters vs Krauss operator

Let’s look at an example where we want to calculate the probability of measuring a

certain output |m⟩ after sending in a state |n⟩ through some lossy medium. We will

calculate the losses using the two approaches outlined above.



112

Beamsplitters

The output of a beamsplitter of transmissivity η with a Fock state and vaccuum

inputs is given by the well-known result [100]:

UBS|n⟩a|0⟩a′ =
n∑

k=0

(
n

k

) 1
2

η
k
2 (1− η)

n−k
2 |k⟩b|n− k⟩b′ (4.64)

To get the corresponding density matrix representing our output state we must take

the partial trace over mode b of the density matrix constructed by the previous

equation. Tgis gives us:

ρ =
n∑

k=0

(
n

k

)
ηk(1− η)n−k |k⟩ ⟨k| (4.65)

To get the probability of measuring state |m⟩ we just take the expectation value of ρ

in that state:

P = ⟨m| ρ |m⟩

= ⟨m|
n∑

k=0

(
n

k

)
ηk(1− η)n−k |k⟩ ⟨k| |m⟩

= ⟨m|
n∑

k=0

(
n

k

)
ηk(1− η)n−k |k⟩ δk,m

=

(
n

m

)
ηm(1− η)n−m (4.66)

Krauss operator

We begin by substituting Eq. 4.63 in Eq. 4.53 with ρin = |n⟩ ⟨n|:
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ρ =
∑
k

(1− η)k

k!
η

a†a
2 ak |n⟩ ⟨n| (a†)kη

a†a
2 (4.67)

Taking the expectation value we get:

P = ⟨m| ρ |m⟩

=
∑
k

(1− η)k

k!
⟨m| η

a†a
2 ak |n⟩ ⟨n| (a†)kη

a†a
2 |m⟩

=
∑
k

(1− η)k

k!
ηm

(m+ k)!

m!
δm+k,n

= (1− η)n−mηm
n!

m!(n−m)!

=

(
n

m

)
ηm(1− η)n−m (4.68)

which matches the result in Eq. 4.66.

Lossy FSI probability formula

We begin by writing down our state |ψlossless⟩ after coming out of the FSI apparatus

but before detection and before applying losses as:

|ψlossless⟩ = eiθJy |j, µ⟩

=

x=j∑
x=−j

Cx(θ) |j, x⟩ (4.69)

where :
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|j, µ⟩ = |n⟩a |m⟩b

j =
n+m

2

µ =
n−m

2
(4.70)

and

Cx(θ) = ⟨j, x| eiθJy |j, µ⟩ (4.71)

We can identify Cx(θ) as an element of what is known as Wigner’s (small) d-matrix.

The formula for that is given by:

Cx(θ) = djxµ(θ) =
√

(j + x)!(j − x)!(j + µ)!(j − µ)!×
min(j+µ,j−x)∑
s=max(0,µ−x)

[
(−1)x−µ+s(cos θ

2
)2j+µ−x−2s(sin θ

2
)x−µ+2s

(j + µ− s!)s!(x− µ+ s)!(j − x− s!)

]
(4.72)

To account for losses, we use the equivalent of Eq. 4.53 but for two input modes:

ρlossy =

2j∑
p,q=0

Kp.aKq,bρlosslessK
†
q,bK

†
p.a (4.73)

where

Kp.a = (1− ηa)
p
2 η

a†a
2

a
ap√
p!

(4.74)

Now we put everything together and evaluate the probability Pj′µ′,jµ of measuring
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the output state as |j′, µ′⟩ for an input state |j, µ⟩.

Pj′µ′,jµ(θ) = ⟨j′, µ′| ρlossy |j′, µ′⟩

=

2j∑
p,q=0

⟨j′, µ′|Kp.aKq,b |ψlossless⟩ ⟨ψlossless|K†
q,bK

†
p.a |j′, µ′⟩

=

2j∑
p,q=0

j∑
x,y=−j

Cx(θ)C
∗
y (θ)

(1− ηa)
p(1− ηb)

q

p!q!
⟨j′, µ′| η

a†a
2

a apη
b†b
2

b bq |j, x⟩×

⟨j, y| (b†)qη
b†b
2

b (a†)pη
a†a
2

a |j′, µ′⟩

=

2j∑
p,q=0

j∑
x,y=−j

Cx(θ)C
∗
y (θ)η

j′+µ′

a ηj
′−µ′

b

(1− ηa)
p(1− ηb)

q

p!q!
⟨j′, µ′| apbq |j, x⟩×

⟨j, y| (b†)q(a†)p |j′, µ′⟩

=

2j∑
p,q=0

j∑
x,y=−j

Cx(θ)C
∗
y (θ)η

j′+µ′

a ηj
′−µ′

b (1− ηa)
p(1− ηb)

q (j
′ − µ′ + q)!

q!(j′ − µ′)!

(j′ + µ′ + p)!

p!(j′ + µ′)!
×

⟨j′ + p+ q

2
, µ′ +

p− q

2
| |j, x⟩ ⟨j, y| |j′ + p+ q

2
, µ′ +

p− q

2
⟩

=

2j∑
p,q=0

j∑
x,y=−j

Cx(θ)C
∗
y (θ)η

j′+µ′

a ηj
′−µ′

b (1− ηa)
p(1− ηb)

q

(
j′ + µ′ + p

p

)(
j′ − µ′ + q

q

)
×

δj′+ p+q
2

,jδµ′+ p−q
2

,xδµ′+ p−q
2

,y

=

2j∑
p,q=0

|Cµ′+ p−q
2
(θ)|2ηj′+µ′

a ηj
′−µ′

b (1− ηa)
p(1− ηb)

q

(
j′ + µ′ + p

p

)(
j′ − µ′ + q

q

)
δj′+ p+q

2
,j

=

2j∑
p,q=0

δj′+ p+q
2

,j(1− ηa)
p(1− ηb)

q

(
j′ + µ′ + p

p

)(
j′ − µ′ + q

q

)
ηj

′+µ′

a ηj
′−µ′

b∣∣∣∣∣
√

(j + µ′ +
p− q

2
)!(j − µ′ − p− q

2
)!(j + µ)!(j − µ)!

min(j+µ,j−µ′−p−q
2 )∑

s=max(0,µ−µ′−p−q
2 )

[
(−1)µ

′+ p−q
2

−µ+s(cos θ
2
)2j+µ−µ′− p−q

2
−2s(sin θ

2
)µ

′+ p−q
2

−µ+2s

(j + µ− s!)s!(µ′ + p−q
2

− µ+ s)!(j − µ′ − p−q
2

− s!)

]∣∣∣∣∣
2

(4.75)
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For ηa = ηb we have:

Pj′µ′,jµ(θ) =

2j∑
p,q=0

δj′+ p+q
2

,jη
2j(1− η)p+q

(
j′ + µ′ + p

p

)(
j′ − µ′ + q

q

)
∣∣∣∣∣
√

(j + µ′ +
p− q

2
)!(j − µ′ − p− q

2
)!(j + µ)!(j − µ)!

min(j+µ,j−µ′−p−q
2 )∑

s=max(0,µ−µ′−p−q
2 )

[
(−1)µ

′+ p−q
2

−µ+s(cos θ
2
)2j+µ−µ′− p−q

2
−2s(sin θ

2
)µ

′+ p−q
2

−µ+2s

(j + µ− s!)s!(µ′ + p−q
2

− µ+ s)!(j − µ′ − p−q
2

− s!)

]∣∣∣∣∣
2

(4.76)

It is important to remember when summing over possible j′s and µ′s to calculate the

error probability - Eq. 4.47 - that 0 ⩽ j′ ⩽ j, −j′ ⩽ µ′ ⩽ j′ and that j′ moves in

half-integer steps. Eq. 4.76 shall serve as the foundation for the following results.

4.2.3 Results

Let us now compare the performance of the lossy and lossless FSI models. The figures

below are reproductions of the figures in [30] with different values of η accounting for

loss. Figures 4.7, 4.8 and 4.9 show the error probability Pe(θ) vs θ for binary phase

discrimination. Notice how Pe(θ) is zero at different values of θ depending on the

input state, and how η affects different input states differently. Figure 4.10 compares

Pe(θ) for discriminating between 0 and π radians, versus j (where 2j is the total

photon number) at different values of η. Figures 4.11, 4.12 and 4.13 show the error

probability Pe(θ) vs θ for ternary phase discrimination. Figure 4.14 is taken from [30]

and shows the mutual information vs θ for different input states. Figure 4.15 is the

lossy version of Fig. 4.14 with η = 0.9. Finally, figures 4.16 and 4.17 show the photon

information efficiency vs the average number of signal photons ns and the encoding
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efficiency C(ns) respectively, at different values of η.

(a) η=1

(b) η=0.99

(c) η=0.9 (d) η=0.85

Figure 4.7: Error probability Pe(θ) for binary phase discrimination with a total pho-
ton number 2j = 2 at different values of η. Subfigure (a) is taken from [30] for
reference. Notice how the input state |2⟩a |0⟩b = |1, 1⟩z is the most resilient to loss,
maintaining a low error probability as we increase losses, suggesting it would be the
best state to use experimentally.
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(a) η=1

(b) η=0.99

(c) η=0.9 (d) η=0.7

Figure 4.8: Error probability Pe(θ) for binary phase discrimination with a total pho-
ton number 2j = 4 at different values of η. Subfigure (a) is taken from [30] for
reference. Notice how the input state |4⟩a |0⟩b = |2, 2⟩z is the most resilient to loss,
maintaining a low error probability as we increase losses, suggesting it would be the
best state to use experimentally.
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(a) η=1

(b) η=0.99

(c) η=0.9 (d) η=0.55

Figure 4.9: Error probability Pe(θ) for binary phase discrimination with a total pho-
ton number 2j = 6 at different values of η. Subfigure (a) is taken from [30] for
reference. Notice how the input state |6⟩a |0⟩b = |3, 3⟩z is the most resilient to loss,
maintaining a low error probability as we increase losses, suggesting it would be the
best state to use experimentally.
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(a) η=1

(b) η=0.96

(c) η=0.88 (d) η=0.22

Figure 4.10: Error probability for discriminating between 0 and π radians, versus j
(where 2j is the total photon number) at different values of η. Subfigure (a) is taken
from [30] for reference. It compares FSI performance to other phase discrimination
methods. Notice how one η goes below 0.88 the Dolinar receiver method outperforms
FSI, and how below η = 0.22, the homodyne receiver method also outperforms FSI.
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(a) η=1 (b) η=0.99

(c) η=0.9 (d) η=0.7

Figure 4.11: Error probability vs phase shifts θ1 and θ1 (in radians) for optical phase
discrimination between three phase shifts (0; θ1; θ2). MZI input is |2⟩a |2⟩b = |2, 0⟩z.
This is calculated at different values of η. Subfigure (a) is taken from [30] for reference.
Notice how the dips -corresponding to lower error- flatten as we increase loss.
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(a) η=1 (b) η=0.99

(c) η=0.9 (d) η=0.7

Figure 4.12: Error probability vs phase shifts θ1 and θ1 (in radians) for optical phase
discrimination between three phase shifts (0; θ1; θ2). MZI input is |3⟩a |1⟩b = |2, 1⟩z.
This is calculated at different values of η. Subfigure (a) is taken from [30] for reference.
Notice how the dips -corresponding to lower error- flatten as we increase loss.
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(a) η=1 (b) η=0.99

(c) η=0.9 (d) η=0.7

Figure 4.13: Error probability vs phase shifts θ1 and θ1 (in radians) for optical phase
discrimination between three phase shifts (0; θ1; θ2). MZI input is |4⟩a |0⟩b = |2, 2⟩z.
This is calculated at different values of η. Subfigure (a) is taken from [30] for reference.
Notice how the dips -corresponding to lower error- flatten as we increase loss.
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Figure 4.14: Figure taken from [30] with η = 1. Mutual information of optical reading.
The binary information is encoded in optical phase shifts (0; θ); a), ns = j = 1; b),
ns = j = 2.

(a) (b)

Figure 4.15: Lossy version of Fig. 4.14 with η = 0.9. Notice how the input states
|2⟩a |0⟩b = |1, 1⟩z and |4⟩a |0⟩b = |2, 2⟩z are the most resilient to loss, maintaining a
high MI as we add losses, suggesting it would be the best state to use experimentally.



125

(a) η=1

(b) η=0.96

(c) η=0.88 (d) η=0.22

Figure 4.16: Photon information efficiency versus ns at different values of η. Sub-
figure (a) is taken from [30] for reference. It compares FSI performance to other
interferometry schemes.
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(a) η=1

(b) η=0.7

(c) η=0.5 (d) η=0.3

Figure 4.17: Photon information efficiency (bits per photon) vs the encoding efficiency
(bits encoded per pixel) at different values of η. Subfigure (a) is taken from [30] for
reference. It compares FSI performance to various input states and receivers. We are
only concerned with comparing lossy to lossless FSI performance here.
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4.2.4 Summary

In this section I presented my work on modeling a lossy Fock state interferometry

setup. My goal was to develop the theory for the lossy case and assess its performance,

and I have achieved that.

• I was able to successfully generalize the model to include losses, correctly re-

producing the lossless results in the limit of no losses.

• I was able to show the viability of the Fock state interferometry setup for phase

discrimination in the presence of losses with the right choice of input states.
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Chapter 5

Conclusion

The general goal of this dissertation was to contribute to the advancement of the

quantum computing endeavor. In particular, to contribute to completing the univer-

sal gate set for continuous variable quantum computing by implementing the cubic

phase gate. Several proposals for implementing the cubic phase gate require high

squeezing and/or high photon number resolving capability, two fronts on which sig-

nificant progress was made in this dissertation.

In Chapter 2 I presented the work I have done building two triply resonant, nonde-

generate (YZY) and degenerate (ZZZ), optical parametric oscillators achieving 6dB

and 24dB of gain respectively—a necessary requirement to observe squeezing. These

OPOs can be used as a source of two-mode squeezed states, entangled photon pairs,

or cluster states.

In Chapter 3 I efficiently modeled the use of single avalanche photodiodes for use in

a segmented photon number resolving detector unlocking new insights. I also detail

my work- together with my group- on improving the transition edge sensor’s photon

number resolving capability from around 8 photons per channel to 37, allowing us to

resolve up to 100 photons setting a new record up from the previous record of 16.

Finally, in Chapter 4 I outline two applications of PNRD. I began by showing how I

used the TES to create a quantum random number generator, formulating its theo-

retical framework and validating its performance experimentally. Next, I modeled a

lossy Fock state interferometry setup, analyzing its effectiveness for phase discrimi-
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nation under realistic conditions. The results affirm its viability as a robust tool for

quantum metrology, offering low error rates despite losses, and further highlight the

versatility of PNR detectors in advancing quantum information science.

Collectively, these contributions—high-gain OPOs for squeezing and resource gener-

ation, enhanced PNR detectors for high photon number resolution, and their prac-

tical applications—represent firm steps toward realizing the cubic phase gate and,

by extension, universal CV quantum computing. This work brings together both the

quantum states and measurement precision required for MBQC and non-Gaussian op-

erations. Future efforts could build on these foundations by integrating these OPOs

and detectors into a cohesive cubic phase gate demonstration, potentially unlocking

new computational paradigms and applications.
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