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Abstract

The human brain is a network system in which brain regions, as network nodes,

constantly interact with each other. The directional effect exerted by one brain

component on others is referred to as directional connectivity. Since the brain is also

a continuous-time dynamic system, it is natural to use ordinary differential equa-

tions (ODEs) to model directional connections among brain regions. We propose a

high-dimensional ODE model to explore directional connectivity among many small

brain regions recorded by intracranial EEG (iEEG). The new ODE model, moti-

vated by the physical mechanism of the damped harmonic oscillator, is effective for

approximating neural oscillation, a rhythmic or repetitive neural activity involved

in many important brain functions. To produce scientifically interpretable network

results, we assume the sparse structure for the ODE model parameters that quantify

directional connectivity among regions. We consider two types of sparse structure:

1. a modular network structure consisting of several functionally independent sub-

networks/clusters of lower dimensions which provides an intuitive interpretation

of functional specialization of brain regions in different clusters, 2. a small-world

network structure consisting of several subnetworks with dense connections within

the same cluster and sparse connections between different clusters which reflects

two principles of the brain’s functional organization: functional integration and

segregation, resulting in two ODE models. We develop two Bayesian methods to

estimate the model parameters of the proposed ODE models and to identify clusters

of strongly connected brain regions. We compare the two proposed ODE models

through simulation studies and analysis of iEEG data collected from a patient with

medically intractable epilepsy and examine the patient’s brain networks around the

seizure onset.
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1

Chapter 1

Introduction

1.1 Overview of the Problem

1.1.1 Effective Connectivity in Neuroscience

Functional Segregation and Functional Integration

The human brain is the control center of neural system, constantly performing vari-

ous functions to sustain life and maintain physical operation. As the most important

and the most complex organ of human body, the human brain is responsible for pro-

cessing information from the sense organs and sending signals to the rest of the body

through neuron cells. In the process, it has been discovered that different areas of

the brain are specialized to particular functions, such as temporal lobe for mem-

ory (Squire and Zola-Morgan, 1991), parietal lobe for motor (Fogassi and Luppino,

2005), parietal lobe and frontal lobe jointly for space perception (Rizzolatti et al.,

1997). As a matter of fact, this reveals the structural/anatomical network char-

acteristics of human brain, where the cortical areas at similar distance are densely

connected by synapses or fiber pathways to form a network hub and perform specific



functions, and those hubs interact globally in the network to complete a complex

task. This pattern of locally dense connection and globally coherent interaction in

the structural brain network reflects two fundamental principles of human brain or-

ganization, i.e. functional segregation and functional integration. Figure 1.1 shows

the partition of cerebral cortex.

Figure 1.1: The cerebrum is divided into four lobes: frontal, parietal, occip-
ital and temporal. Huntinton’s Outreach Project for Education at Stanford.
https://hopes.stanford.edu/the-hopes-brain-tutorial-text-version/

brain-lobes/

In the past decades, human brain mapping has focused on functional segregation

and the localization of function to a great extent. Functional segregation empha-

sizes that a cortical area is specialized for some aspects of information processing

and this specialization is anatomically segregated within the cortex (Friston, 2011).

And many studies has found the distinct functional roles of different cortex areas

(Dehaene-Lambertz et al., 2006; Molnar-Szakacs et al., 2004; Moutoussis and Zeki,

1997; Salmelin et al., 1995; Vaina, 1994; Yu et al., 2011). For example, the color

and the direction/orientation of lines are processed separately in the human visual

perceptive systems. The segregation of information process in distinct brain areas

enables specialized functions in localized brain areas, which motivates the modu-
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lar network structure consisting of densely interconnected subnetworks (clusters).

The clusters in the network corresponding to localized brain areas, provides intu-

itive interpretation of functional segregation mechanism in human brain systems,

which inspired us to build a modularity based model to characterize the functional

organization in human brain (Section 2.2.1).

While in recent years, the relationship between functional segregation and func-

tional integration has aroused great attention of people in many different disciplines,

with an emphasize on integration of segregated brain areas. In contrast to segre-

gation of function in local areas, functional integration means functions from segre-

gated areas are globally integrated, e.g., many distinct brain areas can be involved

during perception and behavior. Study of the balance of functional segregation and

integration in the distributed system, i.e. human brain, helps us better understand

how the different brain areas works together in multiple tasks (Tononi et al., 1994).

It also will advance our understanding of neuropsychiatric disorders, as well as their

diagnosis and treatment.

Functional Connectivity and Effective Connectivity

Functional connectivity and effective connectivity are two approaches to investigate

the integration of segregated functions in human brain. The temporal correlation

between spatially remote neurophysiological events (Friston et al., 1993a) is referred

to as functional connectivity in neuroscience, which can be measured in a variety

of ways such as cross-correlations, coherence and information-theory based meth-

ods (Pereda et al., 2005). However, the correlation-based functional connectivity

cannot distinguish causes from different sources. For example, in multiunit elec-

trode recordings, correlations can result from a common stimulus input or stimulus-

induced oscillations mediated by synaptic connections (Gerstein and Perkel, 1969)
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and effect of the two sources cannot be separated in correlations. Thus, to better

characterize the functional integration in such a distributed system, we move to

study of effective connectivity.

Effective connectivity is explicitly defined as the influence one neural system

exerts over another (Friston et al., 1993b). To make it more clear, the distinc-

tion between functional connectivity and effective connectivity lies principally in

the directionality of influence. Effective connectivity models the direct interaction

between neurons (with directionality) and thus can infer causality to some extent,

while functional connectivity is observable measurements of statistical dependencies

(undirected/symmetric).

1.1.2 Data Acquisition of Human Brain

With the development of technology in neuroscience, various techniques have been

applied to generate human brain data with different properties, which can char-

acterize different aspects of brain functions. In the literature, both neuroimaging

and electrophysiology are popular techniques to study the effective connectivity

among brain regions (Friston, 1994; Greenblatt et al., 2012; Grefkes and Fink, 2011;

He et al., 2011; Massimini et al., 2005; Rajapakse and Zhou, 2007; Sakkalis, 2011;

Valdes-Sosa et al., 2011; Wu et al., 2011).

Functional magnetic resonance imaging (fMRI) has stood out from numerous

neuroimaging techniques in neurophysiological research since 1990s because of its

noninvasiveness, which accelerates people’s cognition of functional segregation and

integration in human brain. fMRI measures brain activity indirectly through blood

oxygen level dependent (BOLD) contrast (Huettel et al., 2004), relying on the fact

that cerebral blood flow and neuronal activation are coupled (Logothetis et al.,
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2001). Despite its noninvasiveness, fMRI has serious limitations in studying the

effective connectivity network of human brain due to the data properties. Specifi-

cally, instead of directly measuring the neuronal activities, fMRI records the BOLD

signal with low temporal resolution (repetition time of two sequential scans at sec-

ond scale) and a low signal-to-noise ratio (SNR, Welvaert and Rosseel, 2013) due to

thermal and physiological (e.g., cardiac and respiratory pulsations, motion) noise.

In addition, the latency of BLOD signal relative to immediate neuronal activities

is significant and slice by slice scanning across the whole brain makes it difficult to

construct a simultaneous effective connectivity network of the brain. Considering

that the neuronal activities are instantaneous and the effective connectivity among

brain regions is dynamic, all these extra noises introduced cause fMRI data not

suitable for effective connectivity analysis.

Electroencephalogram (EEG) is also a noninvasive method, which records the

electrical activities of human brain to reflect neuronal activities. Although EEG

has excellent temporal resolution (256-512 Hz for clinical recording, up to 20k Hz in

some research applications; Wilson and Corlett, 2005), it has poor spatial resolution

and a low SNR due to the low conductivity of human skull. Each scalp electrode

collects a mixture of signal from the underlying brain sources (Burle et al., 2015)

and thus it is hard to locate the origin of neuronal activities.

Considering the limitations mentioned above, we use intracranial electrocorticog-

raphy (iEEG) data to study the effective connectivity among brain areas. iEEG uses

multiple electrodes placed on the exposed surface of the human brain (inside the

skull) to record neuronal activities of many small brain regions. Figure 1.2(a) shows

the placement of iEEG electrodes on the exposed brain of an epileptic patient under

study. The acronyms IF, SF, ST, AD, MD, PD, and G stand for inferior frontal,

superior frontal, superior temporal, anterior depth, medial depth, posterior depth,
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and grid electrodes. Figure 1.2(b) illustrates two iEEG time series recorded on two

regions, respectively. iEEG data have two unique properties. First, each iEEG elec-

trode directly records the neuronal electrical activity in one small region (about 10

mm in diameter) at millisecond scale (200-4k Hz). As such, iEEG data have high

spatial and temporal resolutions for brain activities within the recording field. Sec-

ond, iEEG produces highly reliable and reproducible measurements of brain activity

with a strong SNR. Therefore, iEEG data are ideal for examining the brain network.

(a) iEEG Electrode Placement (b) iEEG Time Series

Figure 1.2: (a) Spatial placement of a subdural grid and several strip electrodes
on the patient’s left hemisphere. The acronyms IF, SF, ST, AD, MD, PD, and G
stand for inferior frontal, superior frontal, superior temporal, anterior depth, medial
depth, posterior depth, and grid electrodes. The strips in black and white are
depth electrodes used to record activity from deeper brain structures close to the
hippocampus. (b) Illustration of a short segment of two iEEG time series of two
regions.

1.2 Existing Studies of Effective Connetivity

Many existing studies of the brain’s effective connectivity are model-based, and

popular models include but are not limited to dynamic causal modeling (DCM,

Daunizeau et al., 2011; David and Friston, 2003; David et al., 2006; Friston et al.,
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2003; Kiebel et al., 2006), Granger causality modeling (GCM, Roebroeck et al., 2005,

2011), and structural equation modeling (SEM, Protzner and McIntosh, 2006). The

first model uses ODEs to characterize effective connectivity among only a few large

regions of interest, and the latter two models are based on discretization of the brain

activity changes over time.

1.2.1 Dynamic Causal Model (DCM)

The dynamic causal model (DCM) is a system which describes the influence of com-

mon experimental inputs on d different brain regions and on the coupling/effective

connectivity among different brain regions. It models the neural mechanisms under-

lying the observed brain activity measures so as to explain the effective connectivity

changes under different experimental conditions. In the sense, the DCM is a causal

model (Pearl, 2000).

The dynamics of hidden states (including neuronal states and hemodynamic

states in fMRI, and neuronal states only in EEG, explained later), x(t) = (x1(t), . . . , xd(t))
′,

are described by ordinary differential equations (ODEs) in DCM:

dx(t)

dt
= F (x(t), u,θ), (1.1)

where F is a nonlinear function describing influences of hidden states x(t) of all d

brain regions and experimental inputs u(t) on changes in hidden states dx(t)
dt

. θ are

all the parameters in the hidden state model.

Since the hidden states are not observed directly, the DCM also maps x(t) to

the observed measurements y(t) by an observation equation:

y(t) = H(x(t), u,ϕ) + ε(t), (1.2)
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where ϕ denotes all observation parameters and ε(t) accounts for random error and

the other nuisance effect.

The DCM can be used to infer effective connectivity among a few large brain

regions for fMRI and EEG/MEG data. Typically, there will be no more than 10

brain regions under study (3 for fMRI, Friston et al., 2003, and 9 for EEG, David

et al., 2006, see Figure 1.3), and those regions are pre-selected by conventional anal-

ysis, which makes the results highly dependent on the prior knowledge of specialized

brain regions. And a Bayesian framework is imposed to incorporate constraints on

the large amount of parameters in DCM.

(a) Effective Connectivity Network
for fMRI

(b) Effective Connectivity Network for EEG

Figure 1.3: Illustration of the effective connectivity network by DCM for both fMRI
and EEG data, where the directionality of connection is denoted by arrows between
different brain regions: (a) fMRI – A1: primary auditory area, A2: secondary
auditory area, WA: Wernicke’s area. (b) EEG – V1: primary visual cortex, RS:
retrosplenial cortex, PPA: parahippocampal place area, IOG: inferior occipital gyrus,
STS: superior temporal sulcus, FFA: fusiform face area. V1, RS, PPA on the left in
on the left hemisphere

Specifically, the hidden state model for fMRI combines a simplified bilinear sys-

tem for neural states, whose parameters captures three aspects of the system: 1.

influence of experimental inputs on neuronal states (linear). 2. coupling/effective

connectivity among neuronal states (linear). 3. influence of experimental inputs on
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coupling (bilinear), and a complex nonlinear hemodynamic model (Friston et al.,

2000) linking neuronal states (neuronal activities) to hemodynamic states (hemo-

dynamic responses such as blood volume and deoxyhemoglobin content), which in-

troduces a large amount of free parameters and increases the complexity of the full

model. Because fMRI records the BOLD signal instead of neuronal activities di-

rectly, the hemodynamic model is necessary here to associate neuronal states with

observed measurements through hemodynamic states. As such, the DCM is com-

putationally intensive for high dimensional data.

Similarly, the DCM for EEG incorporates a rather sophisticated neural mass

model (David and Friston, 2003) into the hidden state model, which describes the

mechanism of membrane potential - current - synaptic firing rate interaction in great

detail. Thus, it is not computationally affordable for high dimensional data either.

In addition to the complex modeling, the analysis of brain network effective con-

nectivity in DCM is not straightforward, which is actually done through the Bayesian

model comparison and relies on the prior specification of the model parameters.

1.2.2 Granger Causality Model (GCM)

The Granger causality model (GCM) models the directional influence from one

brain region to the other in the context of Granger causality (Granger, 1969, 1980)

by a vector autoregressive (VAR) process, which does not require prior knowledge of

pre-selecting regions of interest. Instead of modeling the coupling per se through a

complicated biophysical model like hemodynamical model and neural mass model in

DCM, the GCM quantifies the influence that one brain region exerts on the others

by the time series’ predictive capability of that brain region on the future values in

time series of the other brain regions.
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The GCM also consists of state equations and observation equations in a state-

space formulation. Unlike DCM, the states in GCM may not have definite biophysi-

cal meanings because the effective connectivity in GCM is characterized by Granger

causality. This leads to a much simpler representation (in the matrix form):

x(t) =
P∑
p=1

Ap · x(t− p) + υ(t)

y(t) = C · x(t) + ε(t),

(1.3)

where t takes discrete values in 1, 2, · · · , T . The one above is the P -th order VAR

state equations, where x(t) = (x1(t), . . . , xd(t))
′ are state functions at d different

brain regions, υ(t) = (υ1(t), . . . , υd(t))
′ are intrinsic noise in the states, and pa-

rameter Ap capture the effective connectivity among all brain regions at time lag

p. The one below is the observation equations, where y(t) = (y1(t), . . . , yd(t))
′ are

observed measurements, ε(t) = (ε1(t), . . . , εd(t))
′ accounts for measurement errors,

and parameter C are unknown normalization constants.

Despite the concise form of GCM, study has found that the divergence between

Granger causality and true coupling increases with the sampling period (Friston,

2011), which may be relevant to the discretization process of VAR models. To

illustrate the problem of discretization process, let’s consider the GCM with first-

order VAR, then the predictive functions at time lag 2 becomes

x(t+ 2) = A2 · x(t) + A · υ(t+ 1) + υ(t+ 2), (see Figure 1.4)

where subscript 1 of matrix A is omitted for clarity. Suppose the data available is

at half frequency of the original data, then the effective connectivity is no longer

defined by A but A2. As is shown in Figure 1.4, the effective connectivity network

10



changes for data with different sampling frequencies, where region 2 Granger causes

region 1 for data with lower frequency (with a regression coefficient of 0.12). That

indicates the directional connections in the underlying GCM always exist with or

without true coupling, caused by directed influence between two regions at a finer

time-scale than that at which the data are observed. Such problem of discretization

is not well addressed in the GCM.

Figure 1.4: The effect of different sampling frequencies on the effective connectivity
network.

1.2.3 Structural Equation Model (SEM)

Structural equation modeling (SEM) avoids the problem of the estimated effective

connectivity dependent on sampling frequency in GCM by modeling the dynamic

brain system as a static one. Instead of considering state variables at different time

points, the SEM focuses on the analysis of the covariance structure of multivariate

time series (hidden or observed) since covariance reflects the association between

multiple brain regions, i.e., functional connectivity in brain network. More pre-

cisely, the SEM compares the observed covariance structure with the one implied

by a underlying structural model, where causal connection (effective connectivity)

among different brain regions is described by the model parameters. Figure 1.5 is

11



a graphical display of structural model in SEM, where x1, x2, x3 are state variables

(three univariate time series) and υ1, υ2, υ3 are independented random noise affect-

ing the state variables. And directional connections among the state variables, i.e.,

the effective connectivity, are denoted by the black arrows.

Figure 1.5: The structural model in SEM reveals the directional connection among
the hidden state variables, i.e., the effective connectivity network in SEM.

The equations for the structural model are:

x = A · x + υ. (1.4)

And thus,

x = inv(I −A) · υ,

xT · x = (inv(I −A) · υ)T · (inv(I −A) · υ)

= inv(I −A)T · S · inv(I −A),

(1.5)

where A captures the effective connectivity between the state variables and S =

υT · υ. A and S are model parameters to be estimated. The hidden state variables

x are even not needed to be estimated in SEM.

12



The parameters in SEM are estimated by minimizing a minus maximum likeli-

hood function (Büchel and Friston, 1997) of the observed covariance 1
T−1y

T ·y (T is

the number of time points), denoted as Σo, and the implied covariance 1
T−1x

T · x =

inv(I −A)T · S · inv(I −A), denoted as Σs:

log(|Σo|)− log(|Σs|)− tr(Σo · inv(Σs)) + p (1.6)

Although Protzner and McIntosh, 2006 claims that SEM can assess changes in

effective connectivity across tasks or between groups, it has serious limitations in

characterising the effective connectivity in brain networks. First, by assuming the

staticness of brain system, it requires the instantaneous neuronal activities can be

captured at multiple time points so that the estimated effective connectivity from

SEM is meaningful in interpreting the neural activities. However, even the up-to-

date techniques cannot do that, especially for fMRI, which has temporal resolution at

second scale. Second, analysis of covariance structure instead of the individual time

points may lead to information loss in a great deal while high-dimensional systems

actually need more data to be charaterized. As such, it is difficult to generalize SEM

into high-dimensional space directly. Third, the reciprocal and cyclic connections

cannot be captured efficiently because the conditional dependencies among different

brain regions are difficult to be separated in covariance (Friston, 2011).

1.2.4 Dynamic Directional Model (DDM)

Considering the problems mentioned above, the DCM, GCM and SEM cannot be

generialized to study the effective connectivity in iEEG data, a high-dimensional sys-

tem. Many existing high-dimensional network studies of iEEG data have focused on

network patterns of pairwise relationships (functional connectivity) between regions
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(Burns et al., 2014; Kramer et al., 2008, 2010, 2012; Mormann et al., 2005; Netoff

and Schiff, 2002; Schiff et al., 2005; Schindler et al., 2006, 2010, 2008; Wendling

et al., 1996; Wu and Gotman, 1998). To date, ODE models for the brain’s ef-

fective connectivity based on iEEG data have been very limited in the literature.

Zhang et al. (2015,2017) built high-dimensional ODE models, called Dynamic Di-

rectional Model (DDM), for iEEG data. The DDM, consisting of a large number of

first-order bilinear ODEs, has a much simpler mathematical formulation and higher

dimension than the DCM (David et al., 2006; Friston et al., 2003), does not suffer

the sampling frequency problem in GCM and the information loss problem in SEM

(Friston, 2011), and can be generally used to explore connectivity pattern among

many different regions.

In the DDM, the state equations are characterized by a bilinear approximation

of the nonlinear system:

dx(t)

dt
= A1 · x(t) · (1− u(t)) + A2 · x(t) · u(t) + B · u(t) + D, (1.7)

where A1 represents the directional connection among brain regions without stim-

ulus, A2 represents the stimulus-dependent directional connection among brain re-

gions, B represents the effect of the stimulus and D is the intercept. And the

observation equations are simply:

y(t) = x(t) + ε(t), (1.8)

where ε(t) accounts for measurement errors.

To estimate such a high-dimensional system (d is up to dozens or hundreds

for iEEG data) with extensive free parameters, a Potts model (Graner and Glazier,
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1992; Potts, 1952) has been used to regularize the DDM as well as to characterize the

modularity in brain networks (Zhang et al., 2015, 2017), the existence of which has

been commonly reported (Newman, 2006). But DDM is not without its limitations,

explained later in Section 1.3.1.

1.3 Motivation

The human brain is a continuous-time dynamic system, in which each component

(brain region) constantly exert effects over the others. It is biophysically natural to

use ordinary differential equations (ODEs) to describe the dynamic mechanism of

the brain and use model parameters to quantify the directional/effective connectivity

among brain regions. As mentioned earlier in Section 1.2.1, the most popular ODE

model for the brain’s effective connectivity is the DCM, which characterizes the

directional connectivity among only a few large regions (usually no more than 10)

based on fMRI and EEG data. The formulation of the DCM is highly complex and

relies on the prior knowledge of the existence and directionality of the connections

among the regions under study. Since iEEG typically records neuronal activities of

more than 50 small regions, among which the relationship is unknown, it is difficult

to scale the DCM to iEEG data in terms of both computation and model building.

1.3.1 Oscillatory Activities in iEEG

The DDM (see Section 1.2.4) has a much simpler formulation and can be used

to characterize the directional connectivity among many small brain regions. De-

spite the advantages of the DDM over other existing ODE models, the first-order

bilinear ODEs used in the DDM are inefficient to capture the brain’s oscillatory

activity— periodic or rhythmic up-and-down temporal behaviour of the neuronal
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activity, which has been reported to be involved in various important brain func-

tions (Fell and Axmacher, 2011; Fries, 2005; Schnitzler and Gross, 2005). Figure

1.2(b) shows two brain regions’ oscillatory activity recorded by iEEG. What the

oscillations tell us about the brain has been under intense scientific investigation for

almost a century in the neuroscience field. However, the DDM has a great limita-

tion in producing oscillatory time series, because it needs many strong restrictions

on its model parameters in order to fit the oscillatory dynamic system, resulting in

a serious computational difficulty especially for analyzing high-dimensional iEEG

data.

To address the limitations of existing ODE models for iEEG data, we propose

a new ODE model. Our model is motivated by damped harmonic oscillator (DHO,

Serway and Jewett, 2003), a well-established physical mechanism for oscillatory ac-

tivity. The DHO is a second-order ODE for one-dimensional oscillatory physical

system. Because of its physical implication, the DHO has been used extensively

in biophysics (Schuster, 1983) and neuroscience (Daunizeau et al., 2011; David and

Friston, 2003; David et al., 2006; Friston et al., 2003; Kiebel et al., 2006) to char-

acterize dynamic systems with oscillatory mechanisms. However, the DHO in these

applications are physical models, meaning that they are effective for describing spe-

cific systems, but difficult to apply to other systems. As mentioned above, the

DDM (Zhang et al., 2015, 2017) and several other ODE models developed (Chen

and Wu, 2008; Lu et al., 2011; Wu et al., 2014a,b) are statistical models and have

NO physical-based components suitable for characterizing oscillatory physical sys-

tems. The proposed new method incorporates the physical model DHO into the

statistical model. Accordingly, our model provides a substantially better fit to the

brain’s oscillatory time-series data than the previous statistical models. We refer to

this new ODE model as Oscillatory Dynamic Directional Model (ODDM) (details
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of the model construction are provided in Section 2).

1.3.2 Sparse Brain Network Structure — Modularity and

Small-worldness

As a high-dimensional ODE model, the ODDM contains many free parameters for

quantifying the directional connectivity among small brain regions recorded by iEEG

(more than 50 at least). In other words, the ODDM parameters imply a high di-

mensional brain network, where each network node corresponds to one region and

each network edge corresponds to a nonzero directional connection between a pair

of brain regions. To increase estimation efficiency of ODDM parameters, we use a

prior knowledge of brain networks. Specifically, we consider sparse network structure

among many possible network structures for high-dimensional brain system. While,

high-dimensional, sparse networks can take different forms. Figure 1.6 shows three

different sparse network structures, which may imply different functional organiza-

tions of the brain. We focus on two types of sparse network structure, the modu-

lar network structure and the small-world network structure, based on a scientific

ground.

(a) Sparse Connections at Each
Node

(b) Modularity (c) Small-worldness

Figure 1.6: Three different forms of sparse networks.
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Modular Network Structure

The modular network consists of several functionally independent subnetworks of

lower dimensions, as is shown in Figure 1.6(b). The modular structure is in line with

the functional specialization of human brain, where the brain areas specialized in

the same function tend to be in the same cluster. The modularity has been widely

reported in the literature on brain networks (Milo et al., 2002, 2004; Newman,

2006; Sporns, 2011), and has attracted much attention in researching the brain’s

functional organization. As such, we impose the modular structure on the ODDM

parameters that denote the brain’s effective connectivity, extending the ODDM to a

new ODE model, called modular oscillator dynamic directional model (MODDM).

The MODDM simultaneously describes the oscillatory activity of brain regions and

characterizes the modular structure of the brain network, which leads to scientifically

meaningful network results.

Small-world Network Structure

Unlike functionally independent subnetworks in the modular structure, where the

connections among network nodes within the same cluster are dense and between

different clusters are void, different clusters in small-world network (Figure 1.6(c))

can also be connected by a few connections. Further, in the small-world network,

nodes within the same cluster are densely connected, and between different clusters

are sparsely connected. Such small-world structure reflects two fundamental princi-

ples of the functional organization of the brain: functional integration and functional

segregation. The brain regions in different clusters are specialized for different brain

functions, while the connections among clusters ensure integration among these spe-

cialized regions. In addition, the small-world networks (Watts and Strogatz, 1998)
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are in an efficient functional organization, in which all the nodes are connected di-

rectly or indirectly through a few edges, and have been found in many real-world

phenomena, including brain networks (Sporns et al., 2004; Yu et al., 2008), human

social networks (Milgram, 1967), Internet networks, and many others. Thus, we pro-

pose a new high-dimensional ODE model, called small-world oscillatory dynamic

directional model (SWODDM), that characterizes the small-world network struc-

ture of the brain for iEEG data. Existing studies of effective connectivity mainly

focus on functional integration among a few large brain regions (low-dimensional),

or functional segregation among many small brain regions without considering their

integration. Whereas, the SWODDM, a high-dimensional model in the small-world

network structure, can characterize functional integration and functional segregation

of human brain simultaneously.

1.3.3 Model Estimation Consideration

We identify clusters, select connected brain regions, and evaluate the strength of

effective connectivity by estimating the ODDM (i.e., MODDM and SWODDM)

parameters based on the observed data. To address the difficult in specifying the

complex interactive relationship among many regions, we use a linear approximation

in ODDM to model the complex mechanism of the high-dimensional brain system,

an idea similar to the linear regression. Like many other statistical models, ODDM

has a discrepancy from the underlying true mechanism of the brain because of the

approximation. We develop a Bayesian framework to estimate the model parameters

of the ODDM while accounting for the discrepancy between the proposed models

and the underlying true brain. The quantification of the ODE model discrepancy has

rarely been addressed in the literature. In addition, the Bayesian approach offers an
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inference framework for evaluating the statistical significance of estimated effective

connectivity. As such, we not only address a pressing need for statistical modeling

of the biophysical mechanism of the brain but also introduce a new approach to

inferring high-dimensional ODE models with many free parameters.

The rest of the thesis is organized as follows. Section 2 introduces the ODDM

that simultaneously accommodates the systems’ oscillatory activity and character-

izes the directional connections among components of high-dimensional dynamic

systems in two types of network structures (Section 2.2.1 and 4.2 respectively). Sec-

tion 3 presents two Bayesian hierarchical methods to estimate the MODDM and

SWODDM parameters based on basis representation of brain regions’ state func-

tions and a parallel Markov chain Monte Carlo (MCMC) algorithm to make posterior

inference. Section 4 presents simulation studies of the proposed Bayesian method

in comparison with existing network methods. Section 5 applies the ODDM to an-

alyze a real iEEG study. Section 6 discusses analysis results and future research

directions.
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Chapter 2

ODE Models for iEEG Data

Let y(t) = (y1(t), . . . , yd(t))
′ be the observed iEEG measurements of d regions at

time t and x(t) = (x1(t), . . . , xd(t))
′ be the neuronal state functions of the d brain

regions at time t. Since each iEEG electrode directly records one brain region’s

neuronal electrical activity, we assume the following observation model that links

observed data y(t) to the underlying states x(t):

y(t) = x(t) + ε(t), (2.1)

where ε(t) = (ε1(t), . . . , εd(t))
′ is a d-dimensional vector of measurement errors with

mean zeroes. The observed data, y(t), are measured at discrete time points t =

1, 2, . . . , T .

Since brain regions interact with each other through neuron firing, the model

for the brain’s directional activity is constructed at the regions’ neuronal level, i.e.,

for x(t). Existing high-dimensional ODE models for a dynamic system with many

interactive components, including the first-order linear or bilinear ODEs (Zhang

et al., 2015, 2017) and several other first-order ODEs (Chen and Wu, 2008; Lu et al.,



2011; Wu et al., 2014a,b), do not accommodate oscillatory activity of the system.

To address this limitation, we propose to use the damped harmonic oscillator (DHO,

Serway and Jewett, 2003), a one-dimensional oscillatory physical system, to build

our model for x(t).

2.1 Oscillatory Dynamic Directional Model (ODDM)

The DHO is a one-dimensional second-order ODE given by

d2z(t)

dt2
= F (t) + A z(t) +G

dz(t)

dt
, (2.2)

where z(t) is the state of the spatial location of a one-dimensional space (called

oscillator) at time t, F (t) is an externally applied force, and the parameters A

and G determine the oscillator’s oscillation amplitude and period(see Chapter 2

in Fitzpatrick, 2013, for detailed explanation). Simple one-dimensional oscillatory

systems described by the DHO include a spring-mass system and pendulum. Figure

2.1 shows temporal activities of three DHOs with F (t) = 0 and different combines

of parameters A and G, which lead to different frequencies of the time series.

Figure 2.1: Time series of different DHOs
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We extend the one-dimensional DHO to the high-dimensional brain system

consisting of many interactive brain regions. Specifically, we model d brain re-

gions under study as a set of interactive oscillators—each corresponding to one

region—influenced by the effect exerted by others. For region i,

d2xi(t)

dt2
= Fi(x(t)) + Aii xi(t) +Gi

dxi(t)

dt
, (2.3)

where Fi(x(t)) is the directional effect exerted by other regions over region i, and

parameters Aii and Gi are associated with region i’s oscillation amplitude and pe-

riod.

The functions Fi(x(t)), i = 1, 2, . . . , d, represent the directional/effective connec-

tivity among d regions and are difficult to specify due to the limited understanding

of the brain’s biophysical mechanism. Moreover, for the proposed high-dimensional

ODE model, it is difficult to get around identifiability issue for nonlinear Fis, that is,

many different combinations of model parameters may lead to the same or similar

state functions x(t). To address this issue and also to reduce the model complex-

ity, we use a first-order Taylor expansion,
∑d

j 6=iAij · xj(t) +Di, to approximate the

complex function Fi(x(t)), which leads to the following model:

d2xi(t)

dt2
= Di +

d∑
j 6=i

Aij · xj(t) + Aii · xi(t) +Gi
dxi(t)

dt
. (2.4)

where Di is the intercept in the first order Taylor approximation of Fi(x(t)) and Aij

represents the directional effect exerted by xj(t) on xi(t).

The model formulation in (2.4) brings three benefits in practice. First, the

second-order ODEs with a physical foundation are more suitable for characterizing

the brain’s oscillatory activity. The amplitude and frequency of the oscillations

can be estimated from the model parameters associated with d damped harmonic
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oscillators. Second, this simple form provides a flexible way to model directional

interactions, i.e., effective connectivity, among different brain regions, because each

model parameter Aij denotes the directional effect exerted by region j on region i.

Third, the linear form facilitates fast computation for high-dimensional data with a

large d.

The state model (2.4) together with the observation model (2.1) is referred to

as the Oscillatory Dynamic Directional Model (ODDM). Model parameters A =

{Aij, i = 1, . . . , d, j = 1, . . . , d}, G = {Gi, i = 1, . . . , d} and D = {Di, i = 1, . . . , d}

are unknown and to be estimated based on the observed time series y(t), t =

1, . . . , T .

Note that the ODDM is NOT an extension of the first-order ODE model to

second-order ones despite their mathematical similarity. Second-order ODEs have

several different formulations. For example, a comprehensive second-order linear

ODE model should include all possible first-order derivatives,
dxj(t)

dt
, j = 1, . . . , d.

We do not include those terms because the ensuing model no longer has a direct

physical interpretation. In short, the formulation of the ODDM stems from its

integration of statistical modeling and scientific modeling rather than first-order

linear ODEs.

Under the ODDM, inference about effective connectivity among the d regions is

equivalent to estimating parameters A, and mapping the brain’s directional network

is equivalent to identifying statistically significant nonzero Aijs. Note that because

the two directional effects between each pair of regions i and j are characterized

by two separate parameters, Aij and Aji, the proposed method indeed produces

separate estimates of the directional effects in two directions. As such, the total

number of parameters for quantifying directional connections among d regions is

d2. This is different from many association studies (Kramer et al., 2008, 2010,
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2012; Mormann et al., 2005; Netoff and Schiff, 2002; Schiff et al., 2005; Schindler

et al., 2006, 2010, 2008; Wendling et al., 1996; Wu and Gotman, 1998) in which only

one parameter is used to characterize the association relationship, i.e., functional

connectivity, between each pair of regions.

2.2 Oscillatory Dynamic Directional Model for Sparse

Brain Networks

For a high-dimensional brain system with a large d, estimates of many ODDM pa-

rameters can be unstable and have large variances. To improve estimation efficiency

of the ODDM, we assume that many parameters Aijs are zero. A motivation for

sparsity lies in the established idea that directional connections are energy con-

suming (Anderson, 2005; Földiák and Young, 1995; Olshausen and Field, 2004),

and biological systems tend to minimize energy consuming activities (Bullmore and

Sporns, 2009; Micheloyannis, 2012).

Among different sparse network structures, we are particularly interested in two

types of network structures, the modular network structure and the small-world net-

work structure, both of which reflect the functional organization of brain networks.

The two network structures both rely on the existence of clusters with densely in-

terconnected nodes, corresponding to functionally specialized brain areas, with the

difference that the small-world one assumes sparse connections between clusters,

corresponding to the integration of segregated areas, while the other does not. Ei-

ther of the two network structures has been widely reported in the literature on

brain networks (Milo et al., 2002, 2004; Newman, 2006; Sporns, 2011 for modularity

and Sporns et al., 2004; Yu et al., 2008 for small-worldness).

25



For clarity, we refer to the densely connected part common in both network

structures as cluster, which may have or may not have connections with other parts

of the network.

2.2.1 Modular Oscillatory Dynamic Directional Model (MODDM)

To characterize modularity, we introduce cluster labels m = {m1,m2, . . . ,md},

which take integer values from 1 to d, to denote the clusters of the d brain regions.

As such, the brain network can have at most d clusters, each consisting of one region

only. We use indicator γij with a value of 1 to indicate the significant effective

connectivity from region j to region i and 0 otherwise. We propose the following

ODE model, as an extension of the ODDM (2.4), for the sparse brain network in

modularity:

d2xi(t)

dt2
=

d∑
j=1

δ(mi,mj) · γij · Aij · xj(t) +Di +Gi
dxi(t)

dt
, (2.5)

where the delta function, δ(mi,mj), equals 1 if mi = mj and 0 otherwise. Model

(2.5) implies that a directional effect from region j onto region i is nonzero, if and

only if the two regions fall into the same cluster and the associated indicator γij is

nonzero.

Model (2.5) with the observation model (2.1) is referred to as the Modular Os-

cillatory Dynamic Directional Model (MODDM). To illustrate the MODDM, we

generated x(t) from a dynamic system with two clusters. The regions in the same

cluster are all pairwise connected. Figure 2.2(a) shows x(t)s of three regions in one

cluster and Figure 2.2(b) for the other cluster. The MODDM produces oscillatory

state functions, and the state functions of the regions within the same cluster have
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the same or similar oscillation frequencies.

(a) x(t) in the First Cluster (b) x(t) in the Second Cluster

Figure 2.2: Simulated time series from MODDM.

2.2.2 Small-world Oscillatory Dynamic Directional Model

(SWODDM)

In order to characterize small-world network structure, we keep the cluster labels m

and indicators γijs introduced in MODDM, to characterize the significant effective

connectivity within clusters, and add another set of indicators γBij s, combined with

cluster labels m to characterize the significant effective connectivity between clus-

ters. For clarity, we replace γijs by γWij s to distinguish within-cluster connections

γWij s with between-cluster connections γBij s. The indicators γBij s have the same usage

as γijs in MODDM, with value of 1 to indicate the significant effective connectivity

from region j to region i and 0 otherwise. We propose the model for small-world
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brain network as follows:

d2xi(t)

dt2
=

d∑
j=1

[
δ(mi,mj) · γWij + (1− δ(mi,mj)) · γBij

]
· Aij · xj(t) +Di +Gi

dxi(t)

dt
.

(2.6)

Model (2.6) indicates that region j has a nonzero directional effect on region i either

if the two regions are in the same cluster, i.e., mi = mj , and γWij is nonzero, or if

mi 6= mj and γBij is nonzero.

The model (2.6) together with the observation model (2.1) is referred to as

the Small-world Oscillatory Dynamic Directional Model (SWODDM). To illustrate

the difference between SWODDM and MODDM, i.e., the effect of between-cluster

connections on the entire system, we generated x(t) from a dynamic system with two

clusters. The regions in the same cluster are pairwise connected and one region in

the first cluster has a directional effect on the other one region in the second cluster.

Figure 2.3(a) shows x(t)s of three regions in the first cluster and Figure 2.3(b) shows

(a) x(t) in the First Cluster (b) x(t) in the Second Cluster (c) x(t) in the Second Cluster
without between cluster con-
nections

Figure 2.3: Simulated time series from SWODDM.

x(t)s of three regions in the second cluster, in which the region corresponding to

the black curve in the first cluster (Figure 2.3(a)) has a a directional connection

with the the region corresponding to the black curve in the second cluster (Figure
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2.3(a)). As a comparison, Figure 2.3(c) shows the x(t)s of three regions in the

second cluster when the directional connection between the two clusters is taken

off. Since the direction of the between-cluster connection is from the first cluster

to the second cluster, the simulated time series in the first cluster do not change

with or without the between-cluster connection. While it is clear to see that, with

the directional connection between the two clusters, the time series in the second

cluster are affected by the first cluster, which tend to have a transition from a low

frequency to a higher frequency, as those have in the first cluster. Moreover, not

only the black curve, corresponding to the direct affected region, the other curves in

the second cluster have also changed (red and blue curves in Figure 2.3(b)) because

of the pairwise connection within the second cluster, but with a delay and slight

degree. That indicates the information flow from the first cluster has spread to the

entire second cluster through the directional connection between them. SWODDM

is expected to capture such pattern of information flow to illustrate the functional

integration of separated brain regions.
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Chapter 3

Bayesian Estimation Methods for

MODDM and SWODDM

Under the ODDM, the focus is on identifying clusters, selecting network edges

within clusters in MODDM, corresponding to nonzero δ(mi,mj) · γijs, or network

edges within clusters and between clusters in SWODDM, corresponding to nonzero

δ(mi,mj) ·γWij +(1−δ(mi,mj)) ·γBij s. We develop two Bayesian methods to estimate

these parameters.

3.1 Estimation Methods for ODE models

Two types of approaches are proposed for estimating ODE models in the literature:

discretization approaches which numerically x(t) based on the assumed ODE model

(Bard, 1974; Biegler et al., 1986; Campbell, 2007; Cao et al., 2012; Gelman et al.,

1996; Girolami, 2008; Hemker, 1972; Huang and Wu, 2006; Huang et al., 2006; Li

et al., 2005; Mattheij and Molenaar, 1996; Xue et al., 2010), and basis-function-

expansion approaches which represent x(t) with functional bases (Bhaumik and



Ghosal, 2014; Brunel et al., 2008; Deuflhard and Bornemann, 2012; Poyton et al.,

2006; Qi et al., 2010; Ramsay, 2004; Ramsay et al., 2007; Varah, 1982). The dis-

cretization approaches usually rely on the numerical methods to approximate the

solution of ODEs given parameters by linearization, such as Runge-Kutta algorithm,

where nonlinear systems are replaced by first-order Taylor expansions, so that they

are restricted to a short time period. Besides, the discretization approaches usu-

ally estimate parameters through optimization algorithms. Thus, we take the latter

approach as it accounts for the model error, as explained in detail below.

The authors (Ramsay et al., 2007) used third-order B-spline bases to represent

the state functions that follow first-order ODE models. In this article, since the

second-order derivatives of x(t) are smooth, we represent state functions x(t) with

fifth-order B-spline basis functions, b(t) = (b1(t), . . . , bL(t))′ defined on an equally

spaced partition {t1 = 1, t2, . . . , tq = T} (we use q = T ∗ 5) of the interval [1, T ]:

xi(t) = η̃′i b(t), (3.1)

where η̃i = (ηi1, . . . , ηiL)′ is the vector of the basis coefficients of xi(t).

3.2 Bayesian Estimation Methods for ODDM

As in Ramsay, 2004, we chose the number of basis functions L comparable to the

number of data points T for enough flexibility to fit functional curves. We have

tried three different numbers of L : L = [T ], L = [T/2], and L = [T/3] and found

that the three numbers lead to similar fitted x(t) and similar accuracy in selecting

connected regions by the proposed approach. Following Ruppert, 2002, we used the

generalized cross-validation to determine L and got L = [T/3].
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We assume the data measurement error εi(t) in (2.1) independent with a normal

distribution with mean zero and unknown variance σ2
i . As such,

yi(t) ∼ N(xi(t), σ
2
i ). (3.2)

We show in the simulation study that because of the strong SNR of the data, the

proposed method is robust to violations of the model assumptions for εi(t). Next,

we assign to basis coefficients a prior, also a prior distribution for x(t).

3.2.1 Model for Basis Coefficients/State Functions

For simplicity, we describe the basis coefficient model for MODDM only, which

can be easily generalized to SWODDM by denoting {γW ,γB} as γ and replacing

δ(mi,mj) · γij in model-fitting errors with δ(mi,mj) · γWij + (1− δ(mi,mj)) · γBij .

Let η = {η̃i, i = 1, . . . , d}, γ = {γij, i, j = 1, . . . , d} and θ = {A,D,G}.

Further, denote all the ODDM parameters by ΘI = {A,D,G,m,γ}. We propose

a model for basis coefficients η that is conditional on ΘI through the MODDM

model-fitting errors:

p(η|ΘI , τ )∝ exp

{
−

d∑
i=1

Ri(η,ΘI)

2τi

}
, (3.3)

where τ = (τ1, . . . , τd)
′ are positive hyperparameters. Ri(η,ΘI) is the model-fitting

error of region i’s state function with the form:

Ri(η,ΘI) =

∫ T

0

(
d2xi(t)

dt2
−

d∑
j=1

δ(mi,mj) · γij · Aij · xj(t)−Di −Gi ·
dxi(t)

dt

)2

dt.

In the above equation, all state functions and their derivatives are represented by
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basis functions: xi(t) = η̃′i b(t), dxi(t)/dt = η̃′i b
(1)(t), and d2xi(t)/dt

2 = η̃′i b
(2)(t).

The distribution (3.3) for η, with a form of the exponential of the negative

model-fitting errors, has an intuitive explanation. The hyperparameters τis are

the variances of the model-fitting errors for different regions’ temporal activities.

And this probability (3.3) provides a generating model for the basis coefficients

η and the state functions x(t) from the MODDM. It allows for the deviation of

the state functions from the assumed ODE model while suggesting a preference for

the state functions with small ODE fitting errors. Moreover, the formulation of the

distribution (3.3), equivalent to a normal distribution for η, as explained below, leads

to normal posterior conditional distributions of model parameters θ = {A,D,G},

which are easy to simulate.

With the linear basis representation for x(t) in (3.1),
∑d

i=1 Ri(η,ΘI)/τi given

ΘI and τ is quadratic of η:

d∑
i=1

Ri(η,ΘI)/τi = η′ ΩΘI ,τ η − 2Λ′ΘI ,τ
η + ΞΘI ,τ , (3.4)

where ΩΘI ,τ , ΛΘI ,τ , and ΞΘI ,τ , respectively, are a dL × dL matrix, a dL × 1 vec-

tor, and a scalar, and their formulas depending on ΘI and τ are provided in the

Appendix 7.2. Thus, the probability model (3.3) is multivariate normal distribution

η|ΘI , τ ∼ MN(Ω−1ΘI ,τ
ΛΘI ,τ ,Ω

−1
ΘI ,τ

), (3.5)

This means that the state functions follow a Gaussian process centered at the

MODDM with variability controlled by τ .
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3.2.2 Prior Specification for ODDM Parameters

We propose the following joint prior for MODDM parameters ΘI = {A,D,G,m,γ},

similar to the prior proposed for ODE model parameters by (Zhang et al., 2017):

p(ΘI |τ ) ∝det(ΩΘI ,τ )−1/2 · exp

{
1

2
(Λ′ΘI ,τ

Ω−1ΘI ,τ
ΛΘI ,τ − ΞΘI ,τ )

}
· exp

−µ
d∑

i,j=1

δ(mi,mj)


· p
∑

i,j γij
0 · (1− p0)d

2−
∑

i,j γij ·
d∏

i,j=1

φ

(
Aij
ξ0

)
·
d∏
i=1

φ

(
Gi
ξ0

)
·
d∏
i=1

φ

(
Di

ξ0

)
,

(3.6)

where φ(·) is the standard normal density, ξ0 is a large constant to given an almost

flat prior for A, G, and D, µ is a nonnegative constant and p0 is a given prior

probability. We let µ = 0 to give a non-informative prior for the modularity and

let p0 = 0.9 to impose the prior belief that within-cluster connections are dense.

We have tried different values for p0 and found that setting p0 = 0.9 produced the

highest true positive rate in selecting network edges. This is because a large value

of p0 effectively reflects the prior information that the connections within clusters

are dense and facilitates the cluster identification, while smaller p0 leads to lower

selection accuracy.

By minor changes to (3.6), we have the joint prior for SWODDM parameters

ΘI = {A,D,G,m,γ}, where γ = {γW ,γB} in this case:

p(ΘI |τ ) ∝det(ΩΘI ,τ )−1/2 · exp

{
1

2
(Λ′ΘI ,τ

Ω−1ΘI ,τ
ΛΘI ,τ − ΞΘI ,τ )

}
· exp

−µ
d∑

i,j=1

δ(mi,mj)


· p
∑

i,j γ
W
ij

w · (1− pw)d
2−
∑

i,j γ
W
ij · p

∑
i,j γ

B
ij

b · (1− pb)d
2−
∑

i,j γ
B
ij

·
d∏

i,j=1

φ

(
Aij
ξ0

)
·
d∏
i=1

φ

(
Gi
ξ0

)
·
d∏
i=1

φ

(
Di

ξ0

)
,

(3.7)
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where pw, pb reflects prior information on within-cluster connection probability and

between-cluster connection probability respectively. We set pw a large value close

to 1 to reflect dense connections within clusters and pb a small value close to 0 to

reflect sparse long-range connections between clusters.

3.2.3 Joint Posterior Distribution

Let Y = {y(t), t = 1, . . . , T} and σ = {σ1, . . . , σd}. The model (3.2) together with

priors in (3.3) and (3.6, MODDM)/(3.7, SWODDM) define a hierarchical Bayesian

model for the ODDM. The joint posterior distribution is

p(ΘI ,η,σ|Y, τ ) ∝ p(Y|η,σ) · p(σ) · p(η|ΘI , τ ) · p(ΘI |τ ), (3.8)

where p(σ) ∝
∏d

i=1 1/σ2
i , is an uninformative prior for σ2

i .

3.3 An Alternative Bayesian Estimation Method

Standard approaches simulate from the posterior distribution p(ΘI ,η,σ|Y, τ ) and

estimate the state functions x(t) and ODE parameters jointly within the Bayesian

framework (Zhang et al., 2017). However, in the problem under study, we focus on

the posterior inference of parameters ΘI only, while η contributes to most parame-

ters in the Bayesian model (3.8). In addition, since iEEG data are smooth with a

strong SNR (Cervenka et al., 2013), estimated xi(t)s by a nonparametric smoothing

method (Ramsay, 2004) are similar to those from the Bayesian model (3.8). Con-

sidering this, we propose to first fit x(t) based on the observed data Y, and use a

Bayesian method to estimate ODDM parameters based on the fitted x(t), i.e., the

estimated η. In this case, we leave out the posterior sampling of parameters η,σ
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to enable fast computation. We elaborate the details in the following.

We first estimate η by minimizing

∑
i=1

T∑
t=1

(yi(t)− xi(t))2 + λ

d∑
i=1

∫ T

1

(
x
(2)
i (t)

)2
dt, (3.9)

where xi(t) is given by (3.1), x
(2)
i (t) = η̃′ib

(2)(t), and the smoothing penalty param-

eter λ is chosen by the generalized cross-validation (Härdle, 1990).

Next, we treat estimated η as the observed data with the likelihood (3.3). As

such, the joint posterior distribution of ODDM parameters ΘI is simplified into

p(ΘI |η, τ ) ∝ p(η|ΘI , τ ) · p(ΘI |τ ). (3.10)

Since the hyperparameters τ for the variance of model-fitting error can also be

treated a variable within the Bayesian framework, we add a prior for it such that

τ can account for the variability of model fitting error variance (we didn’t add a

prior for τ in model (3.8) because it leads to an improper posterior). A commonly

used non-informative prior for variance parameters is p(τ ) ∝
∏d

i=1 1/τi (Gelman

et al., 2013). However, this prior leads to an improper posterior. Thus, we propose

the following prior for τ , which is close to the non-informative prior yet leads to a

proper posterior:

p(τ ) ∝
d∏
i=1

(
1

τi

) 3
2

(3.11)

As such, (3.3), (3.11) and (3.6) for MODDM or (3.7) for SWODDM define the

second hierarchical Bayesian model for the ODDM, and the ensuing joint posterior

distribution of ΘI is

p(ΘI , τ |η) ∝ p(η|ΘI , τ ) · p(ΘI |τ ) · p(τ ). (3.12)
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We refer to the Bayesian model with the posterior (3.8) as the full Bayeisian method,

and the model with the posterior (3.12) as the Bayesian smoothing method hereafter.

We use a partially collapsed Gibbs Sampler (PCGS, Van Dyk and Park, 2008)

to sample from the posterior distributions p(ΘI ,η,σ|Y, τ ) and p(ΘI , τ |η). The

posterior sampling steps of the two distributions are similar while the former takes

at least three times more computational time than the latter. We present the Markov

chain Monte Carlo (MCMC) steps of the latter in the Appendix 7.1.

3.4 Posterior Inference

Let ς(s) be the sth MCMC simulation of the ODDM parameter ς for s = 1, . . . , S,

where S is the total number of MCMC iterations excluding the burn-in time. We

use Gelman-Rubin statistics (Gelman et al., 2013) to examine the convergence of

the MCMC outputs.

Two posterior quantities of particular interest are the posterior clustering proba-

bility and the posterior network edge selection probability. The former is the poste-

rior probability that two regions, i and j, are in the same cluster, which is estimated

by P̂m
ij = 1

S

∑S
s=1 δ(m

(s)
i ,m

(s)
j ), i, j = 1, . . . , d. The latter is the posterior probability

that the directional connection from region i to region j is nonzero and is estimated

by P̂ γ
ij = 1

S

∑S
s=1 δ(m

(s)
i ,m

(s)
j ) · γ(s)ij in MODDM, or P̂ γW

ij = 1
S

∑S
s=1 δ(m

(s)
i ,m

(s)
j ) ·

γW
(s)

ij (within-cluster) and P̂ γB

ij = 1
S

∑S
s=1

[
1− δ(m(s)

i ,m
(s)
j )
]
·γB(s)

ij (between-cluster)

in SWODDM.

Given a threshold ~m for P̂m
ij , we put the pair of brain regions (i, j) with P̂m

ij > ~

in the same cluster and group brain regions into different clusters accordingly. Based

on the identified clusters, we use network edge selection probabilities, P̂ γ
ij or P̂ γW

ij

together with P̂ γB

ij , to select the directional network edge (from j to i) if P̂ γ
ij > ~γ
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for a given threshold ~γ for P̂ γ
ij, or P̂ γW

ij > ~γW for a given threshold ~γW for P̂ γW

ij

and P̂ γB

ij > ~γB for a given threshold ~γB for P̂ γB

ij .

3.4.1 Choice of thresholds

We propose to use the false discovery rate (FDR) to determine the thresholds for

posterior probabilities. To evaluate the FDR, we develop a method to approximate

the null distributions of P̂m
ij s and P̂ γ

ijs, P̂
γW

ij s, P̂ γB

ij s under the null hypothesis that

none of the regions are connected. We first generate the data, denoted by Y0,

that satisfies the null. Given long multivariate time-series data, we divide them into

short segments of the same length T . We randomly sample the time segment of each

region with the pairwise distance between any two regions’ segments greater than

10T . All the segments combined create Y0 (of the same size as Y). The posterior

probabilities {P̂m0
ij , i, j = 1, . . . , d} and {P̂ γ0

ij , i, j = 1, . . . , d}, {P̂ γW0
ij , i, j = 1, . . . , d},

{P̂ γB0
ij , i, j = 1, . . . , d} based on Y0 give the empirical null distributions of P̂m

ij and

P̂ γ
ij, P̂

γW

ij , P̂ γB

ij , respectively. Based on these null distributions, we evaluate the

significance levels of P̂m
ij and P̂ γ

ij, P̂
γW

ij , P̂ γB

ij for every pair of regions i and j and

determine the thresholds corresponding to 5% FDR using the method by (Benjamini

and Hochberg, 1995; Efron and Tibshirani, 2002).

3.4.2 Computational Time

The computational time of the ODE model estimation depends on the dimension of

the system d, the length of time points T , the number of clusters K and the number

of regions in the largest cluster. If the number of regions in each cluster is roughly

the same, the computational time of the proposed Bayesian method is O(T · d4
K2 ).

We reduce this computation time to O(T · d3
K

) by using parallel computing (Caffo
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et al., 2010; Suchard et al., 2010).
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Chapter 4

Simulation Study

4.1 MODDM

We consider a 50-dimensional dynamic system (d = 50) that has 3 clusters of size

15, 15, and 20. We first generated xi(t), i = 1, . . . , 50, from the MODDM (2.5) and

(2.1). For simplicity, we let the components within the same cluster be all pairwise

connected and let Di = 0 and xi(0) = 1 for all i. Within each cluster l, l = 1, 2, 3,

we let Aii = al, Ai i+1 = (−1)i · bl, and Gi = cl for region i in cluster l. The rest of

Aijs were simulated from a standard normal. We chose different values for al, bl and

cl in different clusters so that the three clusters have different oscillatory features.

Specifically, a1 = −3.6, b1 = 2.2, and c1 = −20 for the first cluster; a2 = −7.1,

b2 = 8.2, and c2 = −15 for the second cluster; and a3 = −4, b3 = 1.8, and c3 = −4

for the third cluster. We simulated 50 time series ε(t) from an AR(1) model with

lag-1 autocorrelation equalling 0.5 and median pairwise spatial correlations between

regions equalling 0.2 (the median spatial correlation of real data is no more than

0.2). We chose the variances of ε(t) such that the SNR of each time series—defined

as var(xi(t))/var(εi(t))—equals 20, which is far below SNRs of typical iEEG data



(Zhang et al., 2015) (the median SNR of real iEEG data is above 100). Finally, we

obtained yi(t) as the sum of xi(t) and εi(t). Figure 4.1(a) shows three representative

time series yi(t), each from one unique cluster.

(a) Simulated Time Series (b) Post. Prob. P̂mij (c) ROC Curve

(d) Brain Network (e) Absolute Correlations (f) Partial & Correlation ROC

Figure 4.1: 4.1(a) Simulated three time series from three different clusters. 4.1(b) Posterior

clustering probabilities P̂mij for i, j = 1, . . . , 50 of the Bayesian smoothing method. 4.1(c) The

ROC curve of network edge selection by the full Bayesian approach and the Bayesian smoothing

approach using the number of basis functions L = [T ] and L = [T/3]. 4.1(d) Network edges with

5% FDR for P̂mij and P̂ γij . Nodes in the same color correspond to components in the same cluster

identified by the Bayesian smoothing method. 4.1(e) The matrix of the absolute correlations of

the simulated data. 4.1(f) The ROC curves of the network edge selection based on the first-order

ODE model MIDDM, correlations and partial correlations of the simulated data.

After standardizing each time series yi(t), i = 1, . . . 50, to mean zero and norm 1,

we applied the developed two Bayesian approaches to the simulated data set. Fig-

ure 4.1(b) shows the posterior clustering probabilities P̂m
ij estimated by the Bayesian

smoothing method. From the figure, we see that P̂m
ij s for the regions truly in the

same clusters are consistently greater than P̂m
ij s for the regions in different clus-

ters. This also demonstrates that P̂m
ij is a good measure used for clustering regions.
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We calculated the true positive rates (TPR) and false positive rates (FPR) of the

proposed method using different thresholds for P̂ γ
ij. TPR is the percentage of the

network edges with P̂ γ
ij above the threshold among all true network edges; FPR is

the percentage of the network edges with P̂ γ
ij above the threshold among all void

network edges. Figure 4.1(c) shows the ROC curves (pairs of TPRs and FPRs for

different thresholds) for the full Bayesian method and the Bayesian smooth method

using the number of bases L = [T ] and L = [T/3]. The figure indicates that the

network estimation by the two Bayesian approaches with different numbers of basis

functions are similar and the proposed method is able to select network edges with a

high TPR and low FPR. Figure 4.1(d) shows the directional network edges selected

using 5% FDR thresholds for P̂m
ij s and P̂ γ

ijs estimated by the Bayesian smoothing

method. The nodes in the same color correspond to components identified to be in

the same cluster. The proposed method can identify three clusters.

For comparison, we applied the existing first-order ODE model, called the mod-

ular and indicator-based dynamic directional model (MIDDM) (Zhang et al., 2015,

2017), to the data. As shown in Figure 4.1(f), the MIDDM gave mediocre results

with an AUC of 0.58, indicating that the first-order ODEs are unable to capture the

connectivity among regions with oscillatory activities. Furthermore, we compared

with network methods based on correlations and partial correlations. Figure 4.1(e)

shows the matrix of the absolute correlations of the simulated data. The calculated

pairwise correlations of the regions truly in the same clusters are not consistently

large as expected despite their time series have similar oscillatory frequencies. Figure

4.1(f) shows the ROC curves of network edge selection by using different thresholds

for the correlations (with an AUC of 0.82) and partial correlations (with an AUC of

0.67). Despite similar oscillatory frequencies of the time series within the same clus-

ter, their correlations can still be small. Thus, the proposed method outperforms
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the correlation-based methods.

We also evaluated the mean estimation error for the estimated parameters:∑
ij(Aij − Âij)

2/d2, which is 1.46. For comparison, we evaluated the mean esti-

mation error by MIDDM, which is 1.48. We believe that the large estimation errors

are due to the short time series and the many parameters in the model for quan-

tifying directional connectivity. In practice, the network edge selection is of more

interest than model parameter estimation, because the proposed model is an approx-

imation of the underlying complex system and the detected network edges provide

valuable information of the existence of directional connections among regions. We

showed that the network edge selection by the proposed Bayesian method has high

accuracy.

To further demonstrate the efficiency of the proposed method for network edge

selection, we independently simulated 100 multivariate time series from the same

model and applied the proposed approach to each data set. Table 4.1 lists the

summaries of areas under the ROC curve (AUC) and indicates that the proposed

method is robust to violation of model assumptions and can consistently detect

connected regions with high accuracy.

min Q1 median Q3 max standard deviation
0.9244 0.9453 0.9531 0.9595 0.9658 0.0098

Table 4.1: Summary AUC for 100 Replicates.

4.2 SWODDM

We present several dynamic systems of different dimensions and different between-

cluster edge connections generated from the assumed model SWODDM ((2.6) and

(2.1)) with a SNR of 10, and compare the performance of SWODDM and MODDM
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on the simulated systems.

Network Edge Selection by FDR

We start from a low-dimensional dynamic system consisting of 2 clusters of size 5

and 5, where the components within the same cluster are all pairwise connected and

moreover, component 10 in the second cluster has a directional effect on component

2 in the first cluster. Figure 4.2(a) shows three time series of the simulated system,

two from the first cluster, component 1 and component 2, and one from the sec-

ond cluster, component 10. We applied both the SWODDM and MODDM to the

simulated data.

Figure 4.2(b) and 4.2(c) show the posterior clustering probabilities P̂m
ij and the

posterior between-cluster network edge selection probabilities P̂ γB

ij respectively, es-

timated by SWODDM using the full Bayesian method. It is clear to see that P̂m
ij s

for regions within the same cluster are generally higher than those for the regions

in different clusters, and the P̂ γB

2 10, which denotes the posterior probability of the

existence of the directional connection from component 10 to component 2, has the

highest value among P̂ γB

ij s for all pairs of components. Figure 4.2(d) shows the

directional network edges selected using 5% FDR thresholds for P̂m
ij s, P̂ γW

ij s and

P̂ γB

ij s estimated by the full Bayesian approach. The grey arrows correspond to di-

rectional connections within the same cluster while the green arrow corresponds to

the between-cluster connection from component 10 to component 2. Specifically, the

nodes of different colors, i.e., nodes in different clusters, are identified by the FDR

procedure on posterior clustering probabilities P̂m
ij ; the grey arrows, i.e., within-

cluster directional connections, are selected by the FDR procedure on posterior

within-cluster network edge selection probabilities P̂ γW

ij and the green arrow, i.e.,

between-cluster directional connections, are selected by the FDR procedure on pos-
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(a) Simulated Time Series (b) P̂mij from SWODDM (c) P̂ γ
B

ij from SWODDM

(d) SWODDM Brain Network (e) MODDM Brain Network (f) P̂mij from MODDM

Figure 4.2: 4.2(a) Simulated three time series from two different clusters. 4.2(b) Posterior

clustering probabilities P̂mij for i, j = 1, . . . , 10 from SWODDM by the full Bayesian method.

4.2(c) Posterior between-cluster network edge selection probabilities P̂ γ
B

ij for i, j = 1, . . . , 10 from

SWODDM by the full Bayesian method. 4.2(d) Network edges with 5% FDR for P̂mij , P̂ γ
W

ij and

P̂ γ
B

ij from SWODDM. Nodes in the same color correspond to components in the same cluster.

Grey arrows denote the directional connections in the same cluster and the green arrow denotes

the directional connection between the two clusters. 4.2(e) Network edges with 5% FDR for P̂mij s

and P̂ γijs from MODDM. 4.2(f) Posterior clustering probabilities P̂mij for i, j = 1, . . . , 10 from

MODDM by the full Bayesian method.

terior between-cluster network edge selection probabilities P̂ γB

ij . As a comparison,

Figure 4.2(e) shows the network edges selected by MODDM. We can see that the

MODDM isolates the component 2 from the other components in the first cluster,

that is to say, MODDM fails to detect the connections between component 2 and

the other components in the first cluster, and the connections from component 10

to component 2 denoted by the green arrow in Figure 4.2(d). Besides, the network

result indicates that the failure of MODDM to capture the significant directional

connections between clusters may lead to the misclassification of clusters. Figure
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4.2(f) shows the posterior clustering probabilities P̂m
ij estimated by MODDM using

the full Bayesian method.

Comparison on Systems with Different Dimensions

We also compare the performance of the SWODDM and MODDM on five dynamic

systems with different dimensions, from 10 to 50 with a step size of 10. Since the clus-

tering in the network and directional connections between the clusters correspond

to functional segregation and functional integration, the functional organization of

human brain, we are particularly interested in the posterior clustering probabilities

P̂m
ij and posterior between-cluster network edge selection probabilities P̂ γB

ij .

We generated five dynamic systems of different dimensions (d = 10, 20, . . . , 50)

from the assumed model SWODDM (2.6) and (2.1). For d = 10, . . . , 40, each of

the system consists 2 clusters of size d/2 and d/2 and for d = 50, the system

consists 3 clusters of size 15, 15 and 20. The components within the same cluster

are pairwise connected and some of components belonging to different clusters are

also connected. For the system with d = 10, there is a directional connection from

component 10 in the second cluster to component 2 in the first cluster. For the

system with d = 20, there is a directional connection from component 5 in the first

cluster to component 13 in the second cluster. For the system with d = 30, each of

the components in the first cluster has a directional effect on component 23 in the

second cluster, representing component 23 is affected by all components in the first

cluster together. For the system with d = 40, each of the components in the first

cluster has a directional effect on component 21 in the second cluster, representing

component 21 is affected by all components in the first cluster together. And for the

system with d = 50, component 36 in the third cluster has directional connections to

all components in the first and the second clusters, representing component 36 exerts
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effect on the other two clusters. We applied both the SWODDM and MODDM on

the five simulated systems.

SWODDM

(a) ROC Curves of Cluster Identification (b) ROC Curves of Between-cluster Network
Edge Selection

MODDM

(c) ROC Curves of Cluster Identification (d) ROC Curves of Between-cluster Network
Edge Selection

Figure 4.3: ROC curves of cluster identification and network edge selection between clusters for

SWODDM and MODDM on systems of different dimensions.

Figure 4.3(a) and 4.3(b) show the ROC curves of P̂m
ij s and P̂ γB

ij s (i, j = 1, . . . , d)

from the SWODDM on the five systems. The AUCs of posterior clustering prob-

abilities P̂m
ij are all above 0.97 for the five systems of different dimensions, which

indicates the SWODDM is able to identify the clusters in low-dimensional systems

as well as in high-dimensional systems. As the dimension of systems increases, the
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AUC of the posterior between-cluster network edge selection probabilities P̂ γB

ij de-

creases, from 1 for d = 10 to around 0.8 for d = 40, 50. Figrue 4.3(c) and 4.3(d)

show the ROC curves of P̂m
ij s and P̂ γ

ijs (i, j = 1, . . . , d) from MODDM on the five

systems. Figrue 4.3(c) indicates clustering in high-dimensional systems suffer more

from between-cluster directional connections than in low-dimensional systems. And

to make it comparable with posterior between-cluster network edge selection proba-

bilities P̂ γB

ij in SWODDM, we use the posterior network edge selection probabilities

P̂ γ
ij in MODDM to select the network edges between clusters as well. Originally, P̂ γ

ijs

are used to select the network edges within clusters identified by P̂m
ij s. Now we set

two different thresholds, ~γW and ~γB , for P̂ γ
ijs to select within-cluster connections

and between-cluster connections respectively. Specifically, if region i and region j

belong to the same cluster and P̂ γ
ij > ~γW , the directional edge from region j to

region i is selected, considered as a within-cluster connection. And if region i and

region j do not belong to the same cluster and P̂ γ
ij > ~γB , the directional edge from

region j to region i is also selected, considered as a between-cluster connection. The

ROC curves in Figure 4.3(d) correspond to P̂ γ
ijs constrained on region i and region

j not in the same cluster, which is equivalent to P̂ γB

ij s in SWODDM. Compared

with Figure 4.3(b), it indicates that without modeling on the connections between

clusters, the significant directional connections that reflect functional integration of

human brain will not be detected, especially in high-dimensional systems. The AUC

of P̂ γ
ijs, where region i and region j are not in the same cluster, drops to below 0.6

for d above 30, which is pretty much like a random guess.

• More on comparison of SWODDM and MODDM in cluster identification

To further illustrate how MODDM achieves worse clustering performance than

SWODDM due to lack of between-cluster connection modeling, we present several

examples of simulations in different dimensions and structures to compare, i.e., one
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in 10 dimension and three in 50 dimension considering the complexity of between-

cluster connections in high dimensions.

(a) P̂mij from SWODDM (b) P̂mij from MODDM

(c) ROC Curves of Cluster Identification (d) True Connection Structure

Figure 4.4: A 10-dimensional simulation example of 2 clusters with single connection between

the 2 clusters. 4.4(a) Posterior clustering probabilities P̂mij for i, j = 1, . . . , 10 from SWODDM.

4.4(b) Posterior clustering probabilities P̂mij for i, j = 1, . . . , 10 from MODDM. 4.4(c) A compari-

son of ROC curves of cluster identification from SWODDM and MODDM. 4.4(d) The underlying

connection structure with red grids corresponding to the existence of directional connection from

component #{column index} to component #{row index} and blue ones corresponding to nonex-

istence.

The example in Figure 4.4 is the first 10-dimensional simulation example we pre-

sented in section 4.2, in which there are 2 clusters of size 5 and size 5 (components

1-5 as one cluster and 6-10 as the other), pairwise connections within the same clus-

ter and a directional connection from component 10 to component 2 (as is shown
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in Figure 4.4(d) ). Compared with Figure 4.4(a), Figure 4.4(b) shows component

2 is identified as an isolated node in the network by MODDM since the MODDM

posterior clustering probabilities involved with component 2, the second row and/or

the second column, are low. We believe this is because MODDM assumes no con-

nection between different clusters, which contradicts with the fact that there is a

directional connection from the second cluster (component 10) to the first cluster

(component 2). The existence of 10-to-2 connection sometimes makes MODDM

cluster component 2 with components 6-10 while sometimes with components 1-5

in MCMC iterations, which leads to posterior clustering probabilities involved with

component 2 are low overall. This is typical for low dimensional systems with simple

between-cluster connection structure, i.e., single between-cluster connection.

Next, we present 3 simulation examples in 50 dimensions. All of them consist

of 3 pairwise connected clusters, 1-15, 16-30 and 31-50. The difference lies in the

between-cluster connection structure. The example in Figure 4.5 has one between-

cluster connection,from component 9 to component 46. The one in Figure 4.6 has

two between-cluster connections, from component 10 to component 24 and from

component 31 to component 19. And the one in Figure 4.7 has multiple between-

cluster connections, of which sparsity is 0.02. It is clear to see that in all three cases,

SWODDM identifies three clusters successfully while MODDM tends to cluster 2

clusters into one, unlike previous low-dimensional example which isolates compo-

nents that receive effect from other clusters. Specifically, in the example of single

between-cluster connection from the third cluster to the first cluster, MODDM iden-

tifies two clusters, the first and the third clusters as one large cluster and the second

as the other. We believe the different clustering result of this example compared

with the 10-dimensional example is because the individual underlying clusters in

this example has a larger size than those in the 10-dimensional example, which
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(a) P̂mij from SWODDM (b) P̂mij from MODDM

(c) ROC Curves of Cluster Identification (d) True Connection Structure

Figure 4.5: A 50-dimensional simulation example of 3 clusters with a single between-cluster con-

nection. 4.5(a) Posterior clustering probabilities P̂mij for i, j = 1, . . . , 10 from SWODDM. 4.5(b)

Posterior clustering probabilities P̂mij for i, j = 1, . . . , 10 from MODDM. 4.5(c) A comparison of

ROC curves of cluster identification from SWODDM and MODDM. 4.5(d) The underlying con-

nection structure with red grids corresponding to the existence of directional connection from

component #{column index} to component #{row index} and blue ones corresponding to nonex-

istence.
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(a) P̂mij from SWODDM (b) P̂mij from MODDM

(c) ROC Curves of Cluster Identification (d) True Connection Structure

Figure 4.6: A 50-dimensional simulation example of 3 clusters with two between-cluster connec-

tions. 4.6(a) Posterior clustering probabilities P̂mij for i, j = 1, . . . , 10 from SWODDM. 4.6(b) Pos-

terior clustering probabilities P̂mij for i, j = 1, . . . , 10 from MODDM. 4.6(c) A comparison of ROC

curves of cluster identification from SWODDM and MODDM. 4.6(d) The underlying connection

structure with red grids corresponding to the existence of directional connection from component

#{column index} to component #{row index} and blue ones corresponding to nonexistence.
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(a) P̂mij from SWODDM (b) P̂mij from MODDM

(c) ROC Curves of Cluster Identification (d) True Connection Structure

Figure 4.7: A 50-dimensional simulation example of 3 clusters with multiple between-cluster

connections of sparsity 0.02. 4.7(a) Posterior clustering probabilities P̂mij for i, j = 1, . . . , 10 from

SWODDM. 4.7(b) Posterior clustering probabilities P̂mij for i, j = 1, . . . , 10 from MODDM. 4.7(c)

A comparison of ROC curves of cluster identification from SWODDM and MODDM. 4.7(d) The

underlying connection structure with red grids corresponding to the existence of directional connec-

tion from component #{column index} to component #{row index} and blue ones corresponding

to nonexistence.
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leads to increased complexity of interactions within the clusters. In other words,

it is hard for MODDM to distinguish the interactions within the same underlying

cluster with the directional connections from other clusters (may or may not exist)

in a high-dimensional and highly interactive system so that MODDM creates many

false positive connections in MCMC iterations and has high posterior clustering

probabilities for the two connected clusters. The latter two simulation examples

are similar to the first one. But MODDM does not cluster the three underlying

clusters into one big cluster although they are connected directly or indirectly. The

clustering of MODDM should still depend on the strength of the connections and

size ratio of the clusters. We have reason to believe clusters in similar size are tend

to be clustered together by MODDM given a directional connection between them

than clusters in different sizes.

Network Edge Selection of One Single Between-Cluster Connection on

Systems with Different Dimensions

The specialized human brain functions can be integrated by only a few connections

between segregated brain areas, especially SINGLE significant connection. Thus,

we generated three dynamic systems of d = 20, 35, 50 with one single strong direc-

tional connection between clusters from the assumed model SWODDM (2.6) and

(2.1). Specifically, for d = 20, the system consist of two clusters of size 10 and 10,

where the components within the same cluster are pairwise connected and compo-

nent 13 in the second cluster has a directional connection to component 5 in the first

cluster. For d = 35, the system consist of two clusters of size 15 and 20, where the

components within the same cluster are pairwise connected and component 23 in

the second cluster has a directional connection to component 6 in the first cluster.

For d = 50, the system consist of three clusters of size 15, 15 and 20, where the
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components within the same cluster are pairwise connected and component 14 in

the first cluster has a directional connection to component 23 in the second cluster.

To illustrate the difficulty of selecting the single true between-cluster connection in

high-dimensional systems, we made ROC plots of P̂ γB

ij s, and network plots where

clusters and within-cluster network edges are selected with a 5% FDR threshold but

between-cluster network edges are selected by a threshold that just identifies the

true connection, explained in detail below.

Figure 4.8 compare the performance of SWODDM and MODDM on the three

dynamic systems with single between-cluster connections. Same as described in Sec-

tion 4.2, P̂ γ
ijs constrained on pairs of regions that are not in the same cluster are used

to select the connections between clusters for MODDM. Figure 4.8(a), 4.8(b) and

4.8(c), where the blue/cyan curves consistently have larger AUCs than the red/pink

curves, indicates that the SWODDM outperforms the MODDM for both low- and

high-dimensional systems in terms of the cluster identification and the network edge

selection between clusters. Especially for high-dimensional systems, the MODDM

can only detect the single between-cluster connection with a high value of false

positive rate, 0.8776, which is not acceptable considering the existence of a large

amount of void between-cluster connections. Although the between-cluster network

edge selection by SWODDM has a nearly perfect ROC curve, with AUC of 0.995,

0.9858 and 0.993 for d = 20, d = 35 and d = 50 respectively, it is hard to identify the

single true connection between clusters by the FDR procedure described in Section

3.4.1. Actually, the single between-cluster connection was identified in none of the

three systems (d = 20, 35, 50) at a 5% FDR threshold. To demonstrate why FDR

procedure does not work for the between-cluster network edge selection here, espe-

cially in high-dimensional systems, we set the threshold for between-cluster network

edge selection probabilities to ~γB∗ that can just identify the true single between-
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d = 20 d = 35 d = 50

ROC curves for SWODDM and MODDM

(a) (b) (c)

SWODDM Brain Network

(d) (e) (f)

MODDM Brain Network

(g) (h) (i)

Figure 4.8: 4.8(a), 4.8(b) and 4.8(c) The ROC curves of cluster identification and network

edge selection between clusters for SWODDM and MODDM on systems with d = 10, 35 and 50,

respectively. 4.8(d), 4.8(e) and 4.8(f) The networks by SWODDM at 5% FDR thresholds for P̂mij s

and P̂ γ
W

ij s and a deliberately chosen threshold for P̂ γ
B

ij s, for three systems with d = 10, 35 and

50, respectively. Solid green arrow corresponds to the true single connection between clusters and

hallow green arrows correspond to the false connections between clusters. 4.8(g), 4.8(h) and 4.8(i)

The networks of the three systems (d = 10, 35, 50) by MODDM at 5% FDR thresholds for P̂mij s and

P̂ γijs to identify clusters and select within-cluster connections, and a deliberately chosen threshold

for P̂ γijs select between-cluster connections.
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cluster connection from component j∗ to component i∗, which means P̂ γB

i∗j∗ > ~γB∗

but P̂ γB

ij ≤ ~γB∗ for any (i, j)s satisfying P̂ γB

ij < P̂ γB

i∗j∗ . In other words, a thresh-

old slightly higher than ~γB∗ will not select the true connections from j∗ to i∗ and

a threshold slightly lower than ~γB∗ will select more false positive between-cluster

network edges. Figure 4.8(d), 4.8(e) and 4.8(f) show the networks of the three dy-

namic systems, in which the green arrows correspond to between-cluster network

edges selected by SWODDM at threshold ~γB∗. And among all the green arrows,

the solid green arrow correspond to the true single connection between clusters and

the hollow green arrows correspond to the false connections between clusters. It

is noted that the proportion of true connections among all selected connections are

1/2 = 0.5 for d = 20, 1/9 = 0.1111 for d = 35 and 1/12 = 0.0833 for d = 50 and thus

the FDRs, i.e., 1 minus those probabilities, are 0.5 for d = 20, 0.8889 for d = 35 and

0.9167 for d = 50, which makes it impossible to select the true single between-cluster

connection by a conventional 5% FDR threshold. And as the dimension increases,

the FDR dramatically increases, leading to the true connection more difficult to

detect. However, the SWODDM still does much better than MODDM in detecting

the single true between-cluster connection. As the networks by MODDM shown in

Figure 4.8(g), 4.8(h) and 4.8(i) indicates, the proportion of true connections among

all selected connections are 1/12 = 0.0833 for d = 20, 1/144 = 0.0069 for d = 35

and 1/1450 = 0.0007 for d = 50. Correspondingly, the FDRs are 0.9167, 0.9931 and

0.9993 for systems with d = 20, d = 35 and d = 50 respectively. Therefore, the

SWODDM reduces the FDR but the problem to detect single directional connection

between clusters still remains.
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Comparison on High-dimensional Systems with Different Structures of

Between-cluster Connections

Although it is difficult to detect the single between-cluster connection, we see the

potential of SWODDM to select between-cluster network edges at a high TPR and a

low FPR as indicated by the ROC curves in Figure 4.3(b) and 4.8(a), 4.8(b), 4.8(c).

And the cluster identification of SWODDM is better than MODDM across different

dimensions of systems. Thus, we evaluate the cluster identification and between-

cluster network edge selection by SWODDM and MODDM on high-dimensional

systems with different structures of between-cluster connections, which may indicate

different ways of functional integration.

We consider three 50-dimensional systems generated from the assumed model

SWODDM (2.6) and (2.1), each of which consists three clusters of size 15, 15 and 20,

and has pairwise connections within the same cluster. The first system has a single

between-cluster connection from component 14 in the first cluster to component

23 in the second cluster. The second system has two between-cluster connections,

one from component 20 in the second cluster to component 4 in the first cluster

and the other from component 25 in the second cluster to component 2 in the first

cluster. The third system has multiple between-cluster connections, from each of

the components in the second and the third clusters to component 6 in the first

cluster.

Figure 4.9 shows the ROC curves of cluster identification and between-cluster

network edge selection on the three simulated systems by SWODDM and MODDM.

The SWODDM are consistently better than MODDM in identifying the clusters and

selecting the network edges between clusters for all three different between-cluster

connection structures in terms of the AUCs. Specifically, comparing Figure 4.9(a)
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SWODDM

(a) ROC Curves of Cluster Identification (b) ROC Curves of Between-cluster Network
Edge Selection

MODDM

(c) ROC Curves of Cluster Identification (d) ROC Curves of Between-cluster Network
Edge Selection

Figure 4.9: ROC curves of cluster identification and network edge selection between clusters

for SWODDM and MODDM on high-dimensional systems of different between-cluster connection

structures.
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and Figure 4.9(c), the SWODDM is able to identify the clusters with a high AUC

above 0.96 under all three different structures of connections between clusters while

the MODDM has a poor performance of cluster identification when the connections

between clusters get complicated e.g., a AUC of 0.8868 for the third system. That

indicates when there are indeed various connections between clusters, the MODDM

will not capture the true clusters well due to no modeling of the between-cluster

connections. In other words, the clusters identified by MODDM are vulnerable to the

existence of connections between clusters (which is common in brain networks) while

clusters identified by SWODDM are not. Figure 4.9(b) shows, as the complexity

of connections between clusters increases, the performance of SWODDM is worse,

indicated by a higher false positive rate when all the true edges are detected for the

third system (black line) compared with the first (blue line) and the second system

(red line). But the overall performance of SWODDM on between-cluster network

edge selection is good, with AUCs above 0.8 for all three different between-cluster

connection structures, while the MODDM has AUCs below 0.7 or even worse than

a random guess (see Figure 4.9(d)).

To demonstrate the performance of SWODDM on cluster identification for sys-

tems without connections between clusters, we generated a 50-dimensional system

of three clusters of size 15, 15 and 20 from the MODDM (2.5) and (2.1). The compo-

nents within the same cluster are pairwise connected and no connections are between

the clusters. Figure 4.10(a) shows the ROC curves of cluster identification for both

the SWODDM and MODDM, indicating the SWODDM is able to identify the true

clusters as well as the MODDM. And Figure 4.10(b) shows the network identified

by SWODDM at 5% FDR thresholds for P̂m
ij s, P̂ γW

ij s and P̂ γB

ij s. No between-cluster

connections selected are expected, consistent with the true cluster structure of the

simulated system.
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(a) ROC Curves of Cluster Identification (b) SWODDM Brain Network

Figure 4.10: 4.10(a) ROC curves of cluster identification for SWODDM and MODDM on a

high-dimensional system without connection between clusters. 4.10(b) The network identified by

SWODDM at 5% FDR thresholds for P̂mij s, P̂ γ
W

ij s and P̂ γ
B

ij s.

In summary, the SWODDM is able to identify the true clusters of high-dimensional

systems no matter the structures of connections between clusters are like while the

MODDM cannot. This is a great advantage of SWODDM over MODDM because

the existence of connections between different clusters, representing functional inte-

gration of segregated areas, are common not only in brain networks but many other

networks in life. In addition, the SWODDM is able to select connections between

clusters with a high TRP and a low FPR.
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Chapter 5

Real Data Study — An Epileptic

iEEG Study

5.1 Data Description

The iEEG data under study were collected from a right-handed female adult with

medically intractable epilepsy, prior to her brain surgery for seizure treatment. Use

of de-identified data was approved by the University of Virginia IRB.

The iEEG recordings of the subject were obtained from 18 chronically implanted

depth and 76 subdural electrodes with 10 mm inter-electrode spacing, over the pa-

tient’s left hemisphere, as shown in Figure 1.2. The acronyms IF, SF, ST, AD, MD,

PD, and G stand for inferior frontal, superior frontal, superior temporal, anterior

depth, medial depth, posterior depth, and grid electrodes. The iEEG signals were

sampled at 200 Hz filtered with a band pass range of 1-70Hz. An additional notch

filter was used to filter out 60 Hz interference. The electrodes G07 and G08 were

used as ground and reference electrodes, so they were excluded from the analysis.

We included in the analysis additional two voltage time series collected from elec-



trodes placed on the chest. These electrodes pick up the signals generated by cardiac

muscles, also known as electrocardiogram (EKG). As such, 94 time series were an-

alyzed. For convenience, we associate the two EKG time series with the electrodes

G07 and G08 when plotting brain networks.

The subject’ brain activity was recorded continuously for over 9 days. In total,

iEEG captured four seizures from a single seizure onset zone (SOZ, the brain region

where seizures start) G44, which is over supersylvian frontoparietal cortex. Because

epileptic activity originating from a single SOZ is the simplest case to study, and

G44 was a major SOZ, we evaluated the epileptic patient’s brain networks before

seizures onset at G44.

5.2 Data Analysis

We focus on iEEG data 20 seconds around seizure onset times (10 seconds before

and 10 seconds after seizure onset times) at the region G44. Following (Burns et al.,

2014), we divided iEEG time series into segments of 1-second length and applied

both the MODDM and SWODDM to each segment independently. We selected the

directional network edges using the FDR of 5% so that the ensuring networks have

sparse edges and are scientifically interpretable. To compare the clustering results

of MODDM and SWODDM, we present the summary results of the MODDM and

the SWODDM respectively.

Figure 5.1 and Figure 5.2 show brain networks around seizure onsets of the

2nd, 3rd, 4th and 6th recorded seizures from MODDM and SWODDM respec-

tively. Nodes in black correspond to brain regions that are disconnected from other

regions, and nodes in blue correspond to brain regions in the same cluster. Direc-

tional network edges in grey indicate directional connections among regions in the
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same cluster. Directional network edges in green indicate directional connections

among regions in different clusters. Based on the analysis results of 1-second seg-

ments around seizure onsets, we found that brain regions within the temporal lobe,

including electrodes G50-G54, G58-G62, AD03-AD06, MD03-MD06, ST03-ST04,

and PD03-PD06, are constantly connected with each other.

The brain network results based on 1-second segments have large variability, most

likely due to the limited data (200 time points for each segment) and the enormous

model parameters to be estimated. To get stable network results, we combine data

information across seizures by taking the average of posterior probabilities across 4

seizures and selecting network edges by using the FDR of 5% for average posterior

probabilities. As such, we obtained 20 average brain networks within -10 to 10

second window centered at seizure onset (one average for each 1-second segment).

As an illustration, Figures 5.3 and 5.4 show the average networks around seizure

onset from MODDM and SWODDM respectively.

Based on average network results, we found that (1) brain regions in the temporal

lobe had the strongest connections with each other, and (2) the SOZ G44 was dis-

connected from the rest of the regions, including its neighboring regions, around the

seizure onset times except 1 second before the seizure onset time (from SWODDM

only). The result of isolated SOZ from the rest of regions around seizure onset is in

line with the prior network research by (Burns et al., 2014; Nissen et al., 2016; Park

and Friston, 2013). And Figure 5.5 shows the change of SOZ G44 connection with

the rest of the regions along with time around the seizure onset zone. 0 indicates

G44 is disconnected with the rest of the regions while 1 indicates G44 is connected

with the rest of the regions. It is noted that based on the average network results

from SWODDM, G44 was disconnected from the rest of the regions until 1 second

before the seizure onset and connected with its neighbours at the seizure onset and
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Networks of 1 Second Data from MODDM

(a) 1 Second before Seizure 2 (b) 2 Seconds before Seizure 3

(c) 1 Second after Seizure 4 (d) 2 Seconds after Seizure 6

Figure 5.1: 5.1(a) The brain network at 1 second before the 2nd seizure onset. 5.1(b) The brain

network at 2 seconds before the 3rd seizure onset. 5.1(c) The brain network at 1 second after the

4th seizure onset. 5.1(d) The brain network at 2 seconds after the 6th seizure onset. Nodes in

black correspond to the regions that are isolated from the rest regions and form a cluster having

only one region. Nodes in blue correspond to the regions in the same cluster. The directional

network edges in grey are for the pairs of regions in the same cluster with their network edges

selected with the FDR of 5%.
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Networks of 1 Second Data from SWODDM

(a) 1 Second before Seizure 2 (b) 2 Seconds before Seizure 3

(c) 1 Second after Seizure 4 (d) 2 Seconds after Seizure 6

Figure 5.2: 5.2(a) The brain network at 1 second before the 2nd seizure onset. 5.2(b) The brain

network at 2 seconds before the 3rd seizure onset. 5.2(c) The brain network at 1 second after the

4th seizure onset. 5.1(d) The brain network at 2 seconds after the 6th seizure onset. Nodes in

black correspond to the regions that are isolated from the rest regions and form a cluster having

only one region. Nodes in blue correspond to the regions in the same cluster. The directional

network edges in grey are for the pairs of regions in the same cluster with their network edges

selected with the FDR of 5%. The directional network edges in green are for the pairs of regions

between different clusters with their network edges selected with the FDR of 5%.
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Average Networks before the Seizure Onset from MODDM

(a) 9 Seconds before (b) 5 Seconds before (c) 1 Second before

Average Networks after the Seizure Onset from MODDM

(d) 1 Second after (e) 5 Seconds after (f) 9 Seconds after

Figure 5.3: 5.3(a), 5.3(b) and 5.3(c): The average networks across 4 seizures at 9 seconds, 5

seconds and 1 second before seizure onset, respectively. 5.3(e), 5.3(f) and 5.3(c): The average

networks across 4 seizures at 1 second, 5 seconds and 9 seconds before seizure onset, respectively.

Nodes in black correspond to the regions that are isolated from the rest regions and form a cluster

having only one region. Nodes in blue correspond to the regions in the same cluster. The directional

network edges in grey are for the pairs of regions in the same cluster with their network edges

selected with the FDR of 5%.
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Average Networks before the Seizure Onset from SWODDM

(a) 9 Seconds before (b) 5 Seconds before (c) 1 Second before

Average Networks after the Seizure Onset from SWODDM

(d) 1 Second after (e) 5 Seconds after (f) 9 Seconds after

Figure 5.4: 5.4(a), 5.4(b) and 5.4(c): The average networks across 4 seizures at 9 seconds, 5

seconds and 1 second before seizure onset, respectively. 5.4(d), 5.4(e) and 5.4(f): The average

networks across 4 seizures at 1 second, 5 seconds and 9 seconds after seizure onset, respectively.

Nodes in black correspond to the regions that are isolated from the rest regions and form a cluster

having only one region. Nodes in blue correspond to the regions in the same cluster. The directional

network edges in grey are for the pairs of regions in the same cluster with their network edges

selected with the FDR of 5%. The directional network edges in green are for the pairs of regions

between different clusters with their network edges selected with the FDR of 5%.
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then disconnected again after the seizure onset. We can conclude that SWODDM

is able to identify the connection change of SOZ G44 at the seizure onset time

while MODDM cannot (20 consecutive average network results from MODDM and

SWODDM are attached in Appendix 7.3). We believe that the unique connectivity

property of the SOZ detected by the proposed method will be helpful for clinicians

to locate the SOZ in practice, which will be the focus of the future research.

Figure 5.5: SOZ G44 connection status change along with time. 0 indicates G44 is
disconnected with the rest of the regions while 1 indicates G44 is connected with
the rest of the regions. 0s is the seizure onset time.

To demonstrate that the proposed ODDM for iEEG data can better character-

ize the brain’s oscillatory activity than the existing first-order ODE model MIDDM

(Zhang et al., 2017), we used the posterior estimates (posterior medians) of the

model parameters to regenerate the state functions, which was the same approach

used in the simulation study. Figure 5.6 shows the regenerated x̂(t) by the MIDDM

and MODDM, in comparison to the observed data Y(t). The state functions from

the MIDDM are linear over time, thus, having zero oscillatory frequencies. In con-

trast, the MODDM provides a substantially better fit to the oscillatory patterns of

Y(t).
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(a) Regenerated x̂(t) of region
G1

(b) Regenerated x̂(t) of region
G42

(c) Regenerated x̂(t) of region
G44

Figure 5.6: Regenerated x̂(t) using the posterior estimates of MODDM and MIDDM
parameters for regions G1, G42 and G44.

A Little More on the Cluster Identification

We proposed the thresholding method to identify clusters for both the MODDM

and SWODDM in Section 3.4, i.e., region i and region j are classified into same the

cluster when P̂m
ij (= P̂m

ji ) is larger than the predetermined threshold, which is proved

to be successful in simulation studies. But it is not hard to see the thresholding is

a rigorous condition that might go wrong under certain circumstances.

Specifically, suppose region i and region j are in two different clusters, the thresh-

olding method will group the two clusters which region i and region j are in into one

when the posterior clustering probabilities P̂m
ij is overestimated, say larger than the

predetermined threshold. That means a single error in estimation of the posterior

clustering probabilities Pm
ij can distort the network results. Thus, we also applied

the community (cluster) extraction method proposed by (Zhao et al., 2011) on pos-

terior clustering probabilities to identify the clusters. The idea of this community

extraction method to identify clusters is based on maximizing the community ex-

traction criterion, which incorporates two principles of clustering, dense connections

within the same cluster and sparse connections between different clusters. Basically,

it calculates the extraction criterion on a given adjacency matrix which represents
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(a) 2 seconds (b) 3 seconds (c) 4 seconds

(d) 5 seconds (e) 6 seconds (f) 7 seconds

(g) 8 seconds (h) 9 seconds (i) 10 seconds

Figure 5.7: The SWODDM brain networks across 9 consecutive one-second seg-
ments before the 2nd seizure onset with the clusters identified by the community
extraction method. Nodes in blue/cyan correspond to the regions in two different
clusters, and nodes in black correspond to the isolated regions.
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(a) 2 seconds (b) 3 seconds (c) 4 seconds

(d) 5 seconds (e) 6 seconds (f) 7 seconds

(g) 8 seconds (h) 9 seconds (i) 10 seconds

Figure 5.8: The MODDM brain networks across 9 consecutive one-second segments
before the 2nd seizure onset with the clusters identified by the community extraction
method. Nodes in blue/cyan correspond to the regions in two different clusters, and
nodes in black correspond to the isolated regions.
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the effective connectivity among all components and then find the cluster scheme

that optimizes the extraction criterion. The adjacency matrix here could be pos-

terior network edge selection probabilities from the MODDM and SWODDM. The

problem of overestimation on posterior clustering probabilities of a few edges will

be mediated by the optimzation algorithm.

SWODDM is a better candidate than MODDM to identify the clusters by the

community extraction method because it characterizes both the within-cluster and

between-cluster connections, consistent with the optimization criterion in the com-

munity extraction method. Thus we use the posterior network edge selection proba-

bilities from SWODDM, i.e., P̂ γW

ij +P̂ γB

ij , as the adjacency matrix for the community

extraction method. Figure 5.7 shows the brain networks of 9 consecutive one-second

segments before the seizure onset of the 2nd recorded seizure (2-10 seconds before

the seizure onset respectively), identified by the community extraction method (for

clusters), the 5% FDR thresholding (for within-cluster connections, P̂ γW

ij s) and a

thresholding with a high value (for between-cluster connections, P̂ γB

ij s). Nodes in

blue/cyan correspond to the regions in two different clusters, and nodes in black cor-

respond to the isolated regions. Grey arrows correspond to connections within the

same cluster and green arrows correspond to connections between different clusters.

Based on the network results from SWODDM, we found that G44 is always

isolated from its surrounding brain regions for 9 consecutive seconds (except at 8

seconds before the seizure onset), either in a different cluster with its surrounding

brain regions or completely isolated from the other regions. It is consistent with pre-

vious findings from the MODDM network results but more robust. As a comparison,

Figure 5.8 shows the brain networks of the same 9 segments from MODDM. The

clusters are identified by the community extraction method with an adjacency ma-

trix of posterior network edge selection probabilities, i.e., P̂ γ
ij, and the within-cluster
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connections are selected with a 5% FDR threshold for P̂ γ
ijs. The network results

are similar with SWODDM (G44 isolated from the other surrounding brain regions

most of the time) but less consistent across 9 consecutive seconds — G44 connected

with its surrounding brain regions in 3 one-second segments (4, 5, 9 seconds before

the seizure onset respectively). That indicates the between-cluster connections not

captured by MODDM may disturb its clustering/network results.
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Chapter 6

Discussion

We have developed new ODE models, ODDM, for directional connectivity among

many brain regions recorded by iEEG. The ODDM incorporates a physical mecha-

nism (i.e., damped harmonic oscillator) to characterize the brain’s oscillation, and

uses a linear form to approximate the underlying directional interactions among

regions. As such, the ODDM combines the strengths of scientific modeling and

statistical modeling. We have shown through both simulation study and real data

analysis that the new model ODDM outperforms the existing ODE model by pro-

viding a substantially better fit to multivariate oscillatory iEEG data and detecting

connected regions with much higher accuracy. We applied the developed model and

Bayesian method to an epileptic patient’s iEEG data and examined the patient’s

brain network. The analysis results revealed that the SOZ tends to be disconnected

from other regions in the brain network around the time of seizure onset. This

unique connectivity property of the SOZ can be used to identify the SOZ among

many regions recorded by iEEG. Our method has a great potential to enhance un-

derstanding of epileptic brain networks, increase the accuracy in SOZ localization,

and ultimately improve epilepsy diagnosis and treatment.



Despite that ODDM provides a much better fit to the oscillatory time series

data than existing network models/methods, there remains data variation that the

ODDM cannot explain. There are possibly two reasons. First, the ODDM is a linear

approximation of the brain system whose dynamic mechanism is highly complex and

mostly unknown. In the literature, the existing ODE models that can fit the brain

data well all deal with low-dimensional data and usually use more ODEs than the

number of time series to fit the data. We here deal with a significantly more chal-

lenging problem: building an ODE model that is in the same high dimension as the

number of time series/regions to explain all the regions’ activities. Consequently,

there is a considerable discrepancy between the ODDM and the true underlying

system. Second, like linear regressions, the use of linear expansion in the ODDM to

approximate the underlying system is effective only for a short period. We, there-

fore, applied the ODDM to short data segments independently. With limited data

information, the model parameter estimates also have large variances. As shown in

Simulation Study, even if the assumed ODDM is a true model, the estimated model

parameters cannot reproduce exactly the underlying state functions. Because of

these reasons, the traditional evaluation of the model fitting to the data may not

be appropriate for the problem under study. Nonetheless, we have shown through

both simulation and real data analysis that the ODDM has much better efficiency in

detecting connected brain regions than the existing ODE model for iEEG data. Re-

search is greatly needed to develop highly efficiency statistical models and methods

to provide a better fit to high-dimensional brain data.

The ODDM combines the strength of physical modeling and statistical modeling,

expanded from one-dimensional oscillatory physical system to the high-dimensional

brain system through a linear approximation. The oscillatory brain activities of

each brain region are characterized by a one-dimensional DHO, which is a widely
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used physical model for describing one-dimensional oscillatoryphysical system. It

is based on a deterministic ODE model, in which no model errors are assumed

to account for the discrepancy between the brain’s underlying mechanism and the

DHO. This is mainly because the physical models are believed to be the golden truth

and there is no randomness in the golden truth. So to maintain the characteristics

of physical modeling, we assumed no model errors in ODDM. However, we estimate

the model parameters within a Bayesian framework so as to allow variabilities in

the parameters, which means we can still account for the model uncertainty even

if we didn’t assume model errors. In addition, the DHO with an error term is no

longer a ODE model but a stochastic differential equation (SDE) model, which is a

stochastic model instead of a deterministic one. In this setting, the external force or

say directional effect from other brain regions to one brain region will be considered

as a random force/effect and the underlying neuronal state at each brain region is

a random process. Considering the current understanding of nervous system, we

stick with ODE to describe the brain’s mechanism and characterize the directional

connectivities among different brain regions.

Furthermore, the MODDM assumes no connection between cluster and is focused

on within-cluster connections only. Thus, it is easier to detect dense connections

within the same cluster, and the MODDM is suitable for iEEG data that are usu-

ally collected from spatially close regions. We extend the MODDM to SWODDM

to accommodate long-range, sparse connections between clusters by introducing ad-

ditional indicators for between-cluster connections. Under this model, each network

edge can be either within-cluster or between-cluster connection. These two types of

connections may have different densities and play different functional roles in the

brain network. The within-cluster connections are those between the regions with a

similar function while the between-cluster connections ensure integration among re-
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gions specializing in different functions. We have demonstrated the advantage of the

SWODDM over MODDM by simulation studies on detecting the clusters in various

systems with different structures of between-cluster connections. The SWODDM is

able to detect the true clusters in high-dimensional systems regardless the existence

and the complexity of between-cluster connections. In addition, the SWODDM is

able to select significant between-cluster connections with a high TPR and a low

FPR. However, the FDR of between-cluster connections is hard to control due to

the sparsity of between-cluster connections. Even for a small FPR, the number of

false positives could be large because of a large amount of negatives. From this

perspective, the between-cluster connection selection is essentially a data imbalance

problem. How to borrow information from other sources, both internal and external,

to regulate the estimation of between-cluster connectivities is an important topic in

the future research.

A part of this work has been published in Computational Statistics &

Data Analysis (Zhang et al., 2020).
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Chapter 7

Appendix

7.1 Appendix A: Technical Details for PCGS Al-

gorithm to Sample from the Posterior Distri-

bution.

A.I Derive the joint posterior distribution p (m,γ, τ |η)

In the following, we use p (θ|−) to denote the full posterior conditional distribution

of θ. Based on the formulation of the joint distribution (3.12), given the rest of the

parameters, {Aij, Di, Gi, j = 1, . . . , d} are independent for i = 1, . . . , d, so we will

first derive the posterior conditional distribution of {Aij, Di, Gi, j = 1, . . . , d}.

We use M[, I] to denote the submatrix consisting of columns indexed by I of

M, and M[I, ] to denote the submatrix consisting of rows indexed by I of M. Let

Gi = {j, δ(mi,mj) · γij 6= 0 and j = 1, . . . , d} for MODDM or Gi = {j, δ(mi,mj) ·

γWij + (1− δ(mi,mj)) · γBij 6= 0 and j = 1, . . . , d} for SWODDM. Define a d × d

diagonal matrix Ii where diagonal entries corresponding to Gi equal 1, and the rest

diagonal entries equal 0. Let Zi(t) = Ii x(t), and Λi(t) = (Zi(t)
′, 1, dxi(t)/dt)

′ =



(
Zi(t)

′, 1, η̃′i b
(1)(t)

)′
, so Zi(t) and Λi(t) are vectors whose elements are functions of

time t. Also, we let θi = (A[i,Gi], Di, Gi)
′. Since

p (A[i, ], Di, Gi|−) ∝ exp

{
− 1

2τi

∫ T

0

(
Λi (t)θi −

d2xi (t)

dt2

)2

dt

}
·
d∏
j=1

φ

(
Aij
ξ0

)
·φ
(
Di

ξ0

)
·φ
(
Gi
ξ0

)
,

where d2xi (t) /dt
2 = η̃′ib

(2)(t). After integrating out Aij corresponding to zero

indicator values in the above equation, we have

p (θi|−) ∝ exp

{
−1

2
θ′i

(
1

τi

∫ T

0

Λi (t) Λ′i (t) dt+
1

ξ20
I
)
θi +

1

τi

∫ T

0

d2xi (t)

dt2
Λ′i (t) dt θi

}
·

· exp

{
− 1

2τi

∫ T

0

(
d2xi (t)

dt2

)2

dt

}
, (7.1)

where I denotes an identity matrix.

Let Mi = 1
τi

∫ T
0

Λ′i (t) Λi (t) dt+ 1
ξ20
I and Vi = 1

τi

∫ T
0

d2xi(t)
dt2
·Λ′i (t) dt. Based on the

equation (7.1), the posterior joint distribution after integrating out A, D, and G is

p (m,γ, τ |η) ∝
d∏
i=1

det (Mi)
−1/2 · exp

{
d∑
i=1

V′iM
−1
i Vi
2

}
· exp

{
−

d∑
i=1

∫ T

0

1

2τi

(
d2xi (t)

dt2

)2

dt

}

· exp

−µ
d∑

i,j=1

δ (mi,mj)


·p
∑

i,j γij
0 · (1− p0)d

2−
∑

i,j γij (MODDM),

p (m,γ, τ |η) ∝
d∏
i=1

det (Mi)
−1/2 · exp

{
d∑
i=1

V′iM
−1
i Vi
2

}
· exp

{
−

d∑
i=1

∫ T

0

1

2τi

(
d2xi (t)

dt2

)2

dt

}

· exp

−µ
d∑

i,j=1

δ (mi,mj)


·p
∑

i,j γ
W
ij

w · (1− pw)d
2−
∑

i,j γ
W
ij · p

∑
i,j γ

B
ij

b · (1− pb)d
2−
∑

i,j γ
B
ij (SWODDM).
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From the above equation, we have p (m,γ|τ ,η) ∝ J (m,γ, τ ,η), where

J (m,γ, τ ,η) =
d∏
i=1

det (Mi)
−1/2 · exp

{
d∑
i=1

V′iM−1i Vi

2
− µ

d∑
i,j=1

δ (mi,mj)

}
·p
∑

i,j γij
0 · (1− p0)d

2−
∑

i,j γij

for MODDM, and

J (m,γ, τ ,η) =
d∏
i=1

det (Mi)
−1/2 · exp

{
d∑
i=1

V′iM−1i Vi

2
− µ

d∑
i,j=1

δ (mi,mj)

}
·p
∑

i,j γ
W
ij

w · (1− pw)d
2−
∑

i,j γ
W
ij · p

∑
i,j γ

B
ij

b · (1− pb)d
2−
∑

i,j γ
B
ij

for SWODDM (γ = {γW ,γB}).

A.II Sequentially simulate mi from p (mi|m−i,γ, τ ,η) for i = 1, . . . , d.

Let V−i be the set of distinct values in m−i, and v−i be any positive integer smaller

than d+ 1 and not belonging to V−i. Then the posterior conditional distribution of

mi is discrete and has a support of {V−i, v−i}. In addition, for each z ∈ {V−i, v−i},

p (mi = z|m−i,γ, τ ,η) ∝ J (mi = z,m−i,γ, τ ,η) .

A.III Sequentially simulate γijs from p (γij |m,γ−ij , τ ,η) for i, j = 1, . . . , d (MODDM),

or Sequentially simulate γWij s from p
(
γWij |m,γW−ij ,γ

B, τ ,η
)

and γBij s from p
(
γBij |m,γW ,γB−ij , τ ,η

)
for i, j = 1, . . . , d (SWODDM).

For MODDM, given parameter values m,γ−ij, τ and η, γij for i, j = 1, . . . , d follows

a Bernoulli distribution with probability

J (m, γij = 1,γ−ij, τ ,η)

J (m, γij = 1,γ−ij, τ ,η) + J (m, γij = 0,γ−ij, τ ,η)
.
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That the above probability equals p0 if mi 6= mj. This is because if mi 6= mj,

δ(mi,mj) = 0, and the value of γij in the model (2.5) does not affect the model

fitting. Thus, in this case, the posterior distribution of γij is not affected by the

data and is the same as the prior distribution.

Similarly for SWODDM, given parameter values m,γW−ij,γ
B, τ and η, γWij for

i, j = 1, . . . , d follows a Bernoulli distribution with probability

J
(
m, γWij = 1,γW−ij,γ

B, τ ,η
)

J
(
m, γWij = 1,γW−ij,γ

B, τ ,η
)

+ J
(
m, γWij = 0,γW−ij,γ

B, τ ,η
) ,

which equals pw if δ(mi,mj) = 0; and given parameter values m,γW ,γB−ij, τ and η,

γBij for i, j = 1, . . . , d follows a Bernoulli distribution with probability

J
(
m,γW , γBij = 1,γB−ij, τ ,η

)
J
(
m,γW , γBij = 1,γB−ij, τ ,η

)
+ J

(
m,γW , γBij = 0,γB−ij, τ ,η

) ,
which equals pb if δ(mi,mj) = 0.

A.IV Simulate θ from p (θ|m,γ, τ ,η)

Based on the posterior conditional distribution of θi (7.1),

Aij |δ (mi,mj) · γij = 0
i.i.d.∼ N

(
0, ξ2

)
(MODDM)

or

Aij |δ(mi,mj) · γWij + (1− δ(mi,mj)) · γBij = 0
i.i.d.∼ N

(
0, ξ2

)
(SWODDM) for i, j = 1, . . . , d,

and

θi|m,γ, τ ,η
ind∼ MN

(
M−1i Vi,M−1i

)
(Both) for i = 1, . . . , d.
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A.V Simulate τ from p (τ |ΘI ,η)

From the joint posterior distribution (3.12), we have

τi|ΘI ,η
ind∼ Inv-Gamma

(
1

2
,
Ri(η,ΘI)

2

)
for i = 1, . . . , d.

7.2 Appendix B. Proof of the Normal Distribu-

tion of the Data p (η|ΘI , τ )

Based on the model on basis coefficients η, we have

p (η|ΘI , τ ) ∝ exp

{
−

d∑
i=1

Ri (η,ΘI)

2τi

}
∝ exp

{
−1

2

(
η′ ΩΘI ,τ η − 2Λ′ΘI ,τ

η + ΞΘI ,τ

)}
∝ exp

{
−1

2

(
η −Ω−1ΘI ,τ

ΛΘI ,τ

)′
ΩΘI ,τ

(
η −Ω−1ΘI ,τ

ΛΘI ,τ

)}
, (7.2)

Thus, from (7.2),

η|ΘI , τ ∼ MN
(
Ω−1ΘI ,τ

ΛΘI ,τ ,Ω
−1
ΘI ,τ

)
. (7.3)

Notations of ΩΘI ,τ ,ΛΘI ,τ , and ΞΘI ,τ are introduced in equation (3.4), and we

here derive their formulas conditioning on ΘI and τ in the following.

Define vectors with d · L elements:

∆i (t) =

(
Ai1 · δ (mi,m1) · γi1 · b1 (t) , . . . , Ai1 · δ (mi,m1) · γi1 · bL (t) ,

Ai2 · δ (mi,m2) · γi2 · b1 (t) , . . . , Aid · δ (mi,md) · γid · bL (t)

)
, (7.4)

Ei (t) =

(
0L, . . . ,

(
d2b (t)

dt2

)′
, . . . ,0L

)
, Ji (t) =

(
0L, . . . ,

(
db (t)

dt

)′
, . . . ,0L

)
,
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where 0L is a zero vector with L elements, and the (i− 1) · L + 1th to i · Lth

elements of Ei (t) and Ji (t) are nonzero. With the basis representation (3.1), the

MODDM (2.5) can be rewritten as Ei (t) η−∆i (t) η−Di−Gi ·Ji (t) η = 0. Let

Si (t) = Ei (t)−∆i (t)−Gi · Ji (t). We have

d∑
i=1

Ri(η,ΘI)/τi =
d∑
i=1

1

τi

(
η′
∫ T

0

S′i (t) Si (t) dt η − 2

∫ T

0

Di · Si (t) dt η +

∫ T

0

D2
i dt

)
.

Comparing the above to equation (3.4), we have

ΩΘI ,τ =
d∑
i=1

1

τi

∫ T

0

S′i (t) Si (t) dt, ΛΘI ,τ =
d∑
i=1

1

τi

∫ T

0

Di · S′i (t) dt,

ΞΘI ,τ =
d∑
i=1

1

τi

∫ T

0

D2
i dt.

Simply redefine ∆i (t) in (7.4) by:

∆i (t) =

(
Ai1 ·

[
δ (mi,m1) · γWi1 + (1− δ (mi,m1)) · γBi1

]
· b1 (t) , . . . , Ai1 ·

[
δ (mi,m1) · γWi1 + (1− δ (mi,m1)) · γBi1

]
· bL (t) ,

Ai2 ·
[
δ (mi,m2) · γWi2 + (1− δ (mi,m2)) · γBi2

]
· b1 (t) , . . . , Aid ·

[
δ (mi,md) · γWid + (1− δ (mi,md)) · γBid

]
· bL (t)

)
,

ΩΘI ,τ ,ΛΘI ,τ , and ΞΘI ,τ for SWODDM (2.6) will have the same representations as

those for MODDM (2.5), and thus (7.3) holds for both MODDM and SWODDM.

7.3 Appendix C: Additional Average Network Re-

sults of 20 Consecutive 1-second Segments around

Seizure Onset Times.
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Average Networks around the Seizure Onset from MODDM

(a) 10 Seconds before (b) 9 Seconds before (c) 8 Seconds before

(d) 7 Seconds before (e) 6 Seconds before (f) 5 Seconds before

(g) 4 Seconds before (h) 3 Seconds before (i) 2 Seconds before

(j) 1 Second before (k) 1 Second after (l) 2 Seconds after
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Average Networks around the Seizure Onset from MODDM

(m) 3 Seconds after (n) 4 Seconds after (o) 5 Seconds after

(p) 6 Seconds after (q) 7 Seconds after (r) 8 Seconds after

(s) 9 Seconds after (t) 10 Seconds after

Figure 7.13: The average networks across 4 seizures from -10 seconds to 10 seconds centered at

the seizure onset time. Nodes in black correspond to the regions that are isolated from the rest

regions and form a cluster having only one region. Nodes in blue correspond to the regions in the

same cluster. The directional network edges in grey are for the pairs of regions in the same cluster

with their network edges selected with the FDR of 5%.
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Average Networks around the Seizure Onset from SWODDM

(a) 10 Seconds before (b) 9 Seconds before (c) 8 Seconds before

(d) 7 Seconds before (e) 6 Seconds before (f) 5 Seconds before

(g) 4 Seconds before (h) 3 Seconds before (i) 2 Seconds before

(j) 1 Second before (k) 1 Second after (l) 2 Seconds after
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Average Networks around the Seizure Onset from SWODDM

(m) 3 Seconds after (n) 4 Seconds after (o) 5 Seconds after

(p) 6 Seconds after (q) 7 Seconds after (r) 8 Seconds after

(s) 9 Seconds after (t) 10 Seconds after

Figure 7.13: The average networks across 4 seizures from -10 seconds to 10 seconds centered at

the seizure onset time. Nodes in black correspond to the regions that are isolated from the rest

regions and form a cluster having only one region. Nodes in blue correspond to the regions in the

same cluster. The directional network edges in grey are for the pairs of regions in the same cluster

with their network edges selected with the FDR of 5%. The directional network edges in green are

for the pairs of regions between different clusters with their network edges selected with the FDR

of 5%.
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Figure 7.14: SOZ G44 connection status change along with time. 0 indicates G44
is disconnected with the rest of the regions while 1 indicates G44 is connected with
the rest of the regions. 0s is the seizure onset time.
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