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Abstract
The total volume of enterprise data generated each year is
expected to reach 175.8 zettabytes (ZB, equivalent to one
trillion gigabytes) by 2025, up from 18.2 ZB in 2015 [1]. Sea-
gate’s survey also found that only 32% of this data is available
in a state ready to be analyzed. With data volume growing
faster than companies can keep up with, it is important to
find efficient ways to store, manage, and analyze data. One
approach is the application of machine learning (ML) to as-
pects of database design and query optimization. To this end,
a literature review of the use of ML to address the problems
of managing data at scale is completed. These problems in-
clude creating an efficient index of the data, the expense of
joining tables, and the computational cost of copying data
into another repository for analysis. We contribute a taxon-
omy of different methods to solving these problems as well
as present open challenges in this area. This taxonomy will
describe the benefits and drawbacks of each method.

1 Introduction
The technical project takes focus from two upper-level CS
courses: CS 4750 Database Systems and CS 4774 Machine
Learning. The goal of the project is to understand how ML
can inform good database design strategies, as well as opti-
mize database operations. Understanding the current state of
the art in these areas provides insight into the best ways for
companies to manage and extract useful information from
the data they collect. The project addresses three problems
endemic to database systems: building an efficient index,
inefficient join queries, and being able to perform modeling
and analysis within the database instead of having to pay
the cost of pipelining the data to an external tool.

2 Related work
In a 2000 paper, Wu [15] identified future challenges in com-
bining machine learning and database technology to create
Intelligent Learning Database (ILDB) systems. Wu identified
two main areas focusing on efficient representation of the
data and machine learning techniques capable of handling
enterprise-scale database systems. He also noted that real-
world databases are typically noisy and contain missing or
incorrect data, anticipated to be a challenge for learning sys-
tems. While Wu’s paper is not contemporary, it provided a
foundational view of likely problems for the future.

In a 2015 literature review, Najafabadi et al. [12] identified
challenges in adapting current machine learning methods

to modern database scenarios. The areas the authors identi-
fied are streaming data, high-dimensional data, scalability
of models, and distributed computing. These areas relate
to problems in the ML algorithms themselves rather than
problems in using ML to create better database systems.

3 Literature review
To find relevant publications for our literature review we
searched Google Scholar for works that included both ma-
chine learning and database systems. As we read, we synthe-
sized a taxonomy of problems facing database systems that
were being addressed by machine learning. The problems
we identified were indexing the database, optimizing join
queries, and performing modeling and analysis within the
database system.

3.1 Indexing
To perform queries efficiently, database designers create a
data structure called an index to order data so that it can be
quickly accessed. The type of index used depends both on
the structure of the data and the types of queries that will be
performed most often. The most common types of indices
used are the BTree-Index for searching ranges, Hash-Index
for single lookup, and BitMap-index to check key existence.
All these types of indices are built using fixed data structures
that do not change in response to underlying data patterns.
Beutel et al. [2] argued that these indices fail to exploit

patterns in the data to further optimize database operation.
Using indices created using neural networks, Beutel et al.
demonstrated a 44% improvement in the speed of queries
and a 75% reduction in the memory required to store the
index compared to a BTree-Index on a read-only database.
The choice of ML-based indices also has drawbacks, such
as planning to handle false negatives (i.e. the ML index re-
ports that the key does not exist when it does) which do
not occur with traditional indices, and ML indices return-
ing approximate locations of data rather than exact record
locations. To address these, Beutel et al. combine learned
indices with traditional indices, allowing the faster ML index
to perform the bulk of the search and the traditional index to
provide guarantees that the search is correct. This work only
examined read-only databases, but the authors argue that an
online learning ML index could handle writable databases.
Database management systems (DBMS) workloads typi-

cally vary over time. For example, a bus tracking app may
experience high workload during the day when buses oper-
ate and few queries at night when buses don’t operate. Ma
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et al. [10] argue that a DBMS capable of forecasting its work-
load can optimize its indices to perform better as the work-
load changes and operate autonomously. In current DBMS,
human administrators are responsible for manually tuning
the optimizations. Ma et al. present a workload forecasting
framework called QueryBot 5000 which uses an ensemble
model of linear regression, recurrent neural network, and
clustering to predict future workload patterns. Clustering
queries is important to reduce the complexity of the work-
load modeling and allow efficient prediction. Ma et al. found
that 95% of the workload on the experimental systems could
be modeled using the five largest clusters. This framework
provides both short- and long-term predictions of workload,
allowing the automated DBMS to choose the best optimiza-
tions. Unlike Beutel et al.’s index optimizing framework, the
QueryBot 5000 framework uses online ML models that adapt
to live changes in incoming workloads. One limitation of
this framework is that some manual tuning of the thresh-
old at which the workload has changed enough to trigger a
recluster is still required.
Licks and Meneguzzi [8] also explores the design space

of developing machine learning algorithms to tackle the
problem of creating efficient indices for a database, a job
typically carried out by database administrators (DBA). The
goal was to remove the DBMS’s dependence on domain ex-
perts for index selection, and to instead design indices based
on the database schema and workload that it receives. The
architecture, named SmartIX, abstracts away the task of ana-
lyzing and deciding whether candidate columns for the index
are going to improve performance, a task that is normally
done by humans. Instead, SmartIX contains a reinforcement
learning agent whose purpose is to explore possible candi-
date columns for the index. It also contains an environment
where the agent receives rewards for its decisions and has its
next actions transferred to the third component, the DBMS
interface which writes the commands which change the data-
base and also reads in statistics about the current indices
performance. Agent training was done using a two-layer
perceptron neural network over 64,000 time steps, where
training statistics were gathered every 128 steps and used
to give a graphical representation of the results. When the
performance of the index configuration created by SmartIX
was compared to configurations made by genetic algorithms
and other reinforcement models, it was found to have higher
queries per hour than its competitors, while still maintaining
a comparable index size in MB. However, SmartIX cannot
deal with composite indices (those that use two or more
columns). Licks and Meneguzzi say that in future work that
they plan to “(1) investigate techniques that allow us to deal
with composite indices; (2) improve the reward function to
provide feedback in case of write-intensive workloads; (3)
investigate pattern recognition techniques to predict incom-
ing queries to index ahead of time; and (4) evaluate SmartIX
on big data ecosystems (e.g. Hadoop).”

The first self-driving DBMS, Peloton, was developed by
Pavlo et al. [13]. Peloton is distinct from previously men-
tioned architectures as it doesn’t focus on a single aspect
of the database, like how SmartIX focuses exclusively on
indexing of the database. Pavlo et al. claim that these ar-
chitectures are “insufficient for a completely autonomous
system because they are (1) external to the DBMS, (2) reac-
tionary, or (3) not able to take a holistic view that considers
more than one problem at a time. That is, they observe the
DBMS’s behavior from outside of the system and advise the
DBA on how to make corrections to fix only one aspect of
the problem after it occurs.” Existing DBMS like Postgres
or MySQL were ill-suited to being made self-driving, which
further pushed for the creation of a new architecture. The
first component of Peloton is the Workload Classifier, which
uses unsupervised learning methods to cluster queries by
type, which makes them easier to analyze later on. Then
the Workload Forecaster predicts the query arrival rate for
each cluster and creates forecast models for them utilizing
Recurrent Neural Networks (RNNs). Using these forecasts
Peloton populates a catalog of actions it could take to po-
tentially improve database performance. Actions are stored
along with their cost, which is measured by the number
of CPUs they will use. Peloton implements actions during
times of low demand when more CPUs are available. Peloton
chooses which action to deploy using a receding-horizon
control model (RHCM). Finally Peloton tries to update the
database while minimizing impact to users trying to query
the database. Results from testing Peloton were promising,
the authors concluded that “(1) RNNs accurately predict the
expected arrival rate of queries, (2) hardware-accelerated
training has a minor impact on the DBMS’s CPU and mem-
ory resources, and (3) the system deploys actions without
slowing down the application.”

3.2 Optimizing join Queries
One of the most expensive database operations is that of
joining multiple tables together to construct the result of a
query. Join operations are expensive partly because the data-
base must determine the most efficient ordering of the tables
in the join. This decision is typically done using heuristics
to reduce the search space.
Markl et al. [11] created LEO (LEarning Optimizer) in

2003, the first example of a query optimizer that uses ML
to improve performance by learning from historical data.
LEO incrementally adjusts cardinality and selectivity esti-
mates for predicates to correct modeling mistakes made in
old query execution plans. LEO can detect estimation er-
rors during a query execution and automatically trigger a
reoptimization. LEO works by recording actual cardinalities
and learning to minimize the error between actual and pre-
dicted cardinalities. One challenge faced by Markl et al. that
is still common in modern ML is the convergence problem
in which the learning rate of a model is highly dependent
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on the data and assumptions about the data. The authors ad-
dressed this issue by allowing LEO to operate in two modes:
an exploratory mode which chooses risky but low-cost plans
based on assumptions and a more concrete mode that favors
plans based on experience and ground truth. LEO also ad-
dresses the issue of correlated joins because it can detect
the discrepancy between the predicted and actual cardinal-
ity. Another concern raised by the authors is the problem
of deciding when it is worthwhile to reoptimize a query
mid-execution because of non-linearity in the cost model, a
problem worked on by Krishnan et al. [6] later.

Liu et al. [9] utilized a 3-layer neural network to approach
optimizing join queries. They created their own algorithm to
generate the initial training queries for their neural network.
The neural network can only read non-strict range opera-
tors from queries, operators like “<=” or “>=” , but they
devised ways of rewriting all other relational operators like
“=” and “<” or “>.” They compared the neural network to
the query optimizer built into DB2, a DBMS from IBM. The
results showed that neural networks better estimated the car-
dinality of queries than statistics-based estimation methods.
However, Liu et al. noted that there was further work they
wished to achieve, including being able to compare columns
with relational operators since, as of the moment, one can
only compare column values to constants (𝑐1 >= 3 but not
𝑐1 >= 𝑐2). Secondly, they wanted to try implementing other
types of neural networks such as RNNs and deep neural
networks. Later developments in this area have used more
complex models.
Kipf et al. [5] apply supervised learning to predict the

cardinality of intermediate steps in a plan generated by a
classical join optimizer. One of the biggest challenges for an
optimizer selecting between plan alternatives is to have an
accurate estimation of the cardinality of the intermediate
steps, which can be complicated by cross-join correlations.
A new ML model created by the authors called multi-set
convolutional network (MSCN) allows the already known
structure of the data to be encoded before training the model,
avoiding the need to serialize the data which is required by
other convolutional models. When MSCN was tested on a
real-world IMDB dataset, it was competitive with state-of-
the-art sampling-based join optimizers in the median case
and greatly outperformed them in the presence of correlated
joins. In addition to good performance, MSCN required less
space than traditional optimizers. One limitation is that the
training data contained at most two joins per query and the
testing data included queries with more joins, requiring the
model to extrapolate. Another limitation, similar to Beutel
et al., is that the paper assumes a read-only database.

In contrast with the work by Kipf et al., Krishnan et al. [6]
attempted to solve the problem of optimizing execution plans
for join queries with reinforcement learning. The authors
showed that heuristics tend to fail to find the most efficient
join ordering when there is non-linearity in the database

cost model, a problem that can be caused by correlation. To
correct this, Krishnan et al. created a reinforcement learning
ML model capable of outperforming existing heuristics by
learning and accounting for non-linearity. The reason for the
improved performance is that heuristics tend to be greedy,
meaning they will take short-term benefit potentially at the
cost of greater long-term benefit. In contrast, Krishnan et
al.’s ML model is capable of learning to optimize for the long-
term. In addition to producing better optimization plans, the
RL join optimizer was also shown to generate plans more
than ten times faster than traditional optimization methods
such as left-deep heuristic. A limitation of this work is that
the authors only consider one type of join operation that
composed the bulk of the benchmarks tested.

3.3 In-database modeling
Another interesting area of research is the creation of new
programming languages that create in-database ML models.
These models can exploit the locality of the data and avoid
lengthy pipelines to move data into another repository to be
analyzed.
MADlib is an analytics library for Greenplum and SQL

developed by Hellerstein et al. [4]. MADlib supports the
implementation of traditional machine learning algorithms
such as SVM and K-means. It also supports myriad super-
vised and unsupervised machine learning algorithms, and
is open-source. Its codebase receives contributions from in-
dustry and academia alike. The authors’ goal was that it
would “accelerate innovation and technology transfer in the
Data Science community via a shared library of scalable in-
database analytics.” Machine learning and other advanced
analysis techniques with MADlib are implemented using
simple SQL scripts. To run a sequence of these SQL state-
ments or do iterative runs of analysis, one can also use a
python-based driver file to run MADlib. Users also have ac-
cess to templated queries which assist when the schema for
input tables to a module are not necessarily fixed. MADlib
has seen use in collaborations with researchers at the Univer-
sity of Wisconsin, and also at the University of Florida, and
at Berkeley. MADlib has not yet seen any use commercially.
Another similar language is MLog, developed by Li et

al. [7], a declarative programming language that interfaces
directly with the database. MLog improves on MADlib by
allowing users to create more complicated models. MLog al-
lows users to create complex deep learningmodels within the
database in the same manner that users can open a SQL ses-
sion and run simple queries against the data in-place. Deep
learning models typically require a large amount of training
data to be accurate. MLog allows the model to be created
where the data is, saving time and simplifying the model-
building process. The software operates by viewing the data
as tensors, and includes functionality to automatically opti-
mize the model-building process. ML models created with
MLog’s declarative query language can be compiled into
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native TensorFlow programs with comparable performance
to hand-optimized models. The authors found that, in some
cases, TensorFlow programs created with MLog can still be
up to two times slower than hand-tuned code. Another lim-
itation is that the MLog language was not fully integrated
with SciDB.

3.4 Open challenges
Wang et al. [14] discusses how both deep learning systems
could possibly be improved from a database perspective and
how database applications can be improved by deep learning
techniques. They found that deep learning could take advan-
tage of the optimization techniques used in the database field
in the training of its models. Techniques such as operation
scheduling, memory management, parallelism, and concur-
rency/consistency. Likewise, the database field could utilize
natural language processing, a hallmark of deep learning, to
interpret informal queries to a database and translate them to
formal requests. Additionally, query planning, traditionally
done using complex cost models in database, could instead be
done more efficiently by an RNN model. Finally, deep learn-
ing can be used to help in the analysis of spatial/temporal
data stored in databases by mapping the problem into an
image-like structure and then using a convolution neural
network to exploit the spatial locality of the data. In all, an
exchange of techniques and representations between the
database and deep learning communities would greatly ben-
efit both fields.

Guo and Daudjee [3] describe limitations of recent uses of
deep learning for join query optimization. They found that, in
the worst case, thesemodels produce execution plans that are
orders of magnitude more expensive than the cheapest plan
and can even crash the DBMS by requiring toomuchmemory.
They argue that the extra time required to execute the worst
plans that the model outputs may outweigh the time saved
by using deep learning. This indicates the need to balance
high performance with consistency. The authors believe that
more research is needed to improve model robustness for
this application. The authors also argue that better feature
encoding is necessary to extend deep learning join query
optimizers to enterprise databases with many tables that may
change often, requiring retraining the model. They argue
that feature encoding that is robust to table changes should
be a requirement for future research.

4 Conclusions
We presented a literature review about the use of machine
learning in database systems. In our research we did not
come across any prior literature review that covered this
topic. We also contribute a taxonomy of research in this area.
It is apparent that machine learning has the capability to
greatly improve database efficiency and autonomy, but there

are still challenges in making these hybrid systems viable
for commercial applications.

5 Future work
The use of machine learning to improve database design and
operation is a relatively new and fast-moving area of study.
We recommend that further literature reviews be completed
to track the progress of this field.
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