
April 2022, Charlottesville, Virginia USA   P. Raut 

Legacy Code: Two Changes Needed to Redistribute 18-Year-Old Software 
 

CS 4991 Capstone Report, 2022 

 

Parth Raut 

Computer Science 

The University of Virginia 

School of Engineering and Applied Science 

Charlottesville, Virginia USA 

plr6uqx@virginia.edu 

ABSTRACT 

Eritek Inc., a tech company based in Leesburg, 

Virginia, wanted to begin redistributing software they 

had originally written in 2004. However, that plan 

faced some issues because the company that helped 

with licensing the software went bankrupt and part of 

the software was written for 32-bit systems. To solve 

these issues, I had to write my own licensing algorithm 

for the software as well as rewrite the 32-bit pieces of 

code using a more modern library. For the licensing 

algorithm, I utilized RSA encryption to generate and 

verify the license keys for the software. I also used the 

Qt library to update the GUI code from 32-bit to 64-bit. 

In the end, I was able to produce a licensing algorithm 

that effectively verified the validity of the software and 

a GUI with functionality that fit modern 64-bit 

standards. In the future, this software will be ready to 

be distributed again in its updated version. 

 

1 INTRODUCTION 

What happens when the software you want to distribute 

was written over 15 years ago and the company helping 

with licensing that software goes bankrupt? It is time 

to rewrite parts of that software. This was the task that 

I was given as an intern at Eritek Inc., a tech company 

based in Leesburg Virginia, during the summer of 

2021. 

 

Software licensing is a way to ensure that a user has 

legitimately obtained the rights to use that software. 

This is especially important for commercial software, 

which often requires users to pay a fee to use it. 

However, this fee often leads to piracy, which 

financially hurts the companies that develop the 

software financially. Because the company I was 

working for no longer had a way to license their 

software, I had to write my own licensing algorithm. 

The algorithm utilized RSA encryption which was used 

to generate and verify the license keys that was 

distributed to the users. 

 

Additionally, the software that I was working with was 

originally written in 2004, so parts of the code were 

written for 32-bit systems. This meant that the software 

was not up-to-date with modern 64-bit standards. 

While a 32-bit software can run easily on a 64-bit 

system, the discrepancy limits its capabilities by not 

meeting the modern standard. The part of the code I 

needed to update was the GUI. I used the Qt library, a 

C++ library that provides GUI functionality to desktop 

applications, to update the GUI from 32-bit to 64 bit. 

 

2 RELATED WORKS 

The RSA algorithm is an asymmetric cryptographic 

algorithm [1]. This means that the algorithm uses two 

keys, a public key and a private key, in order to encrypt 

and decrypt data. In general, the public key is used to 

encrypt data and the private key is used to decrypt it. 

Because of this, the RSA algorithm assumes the use of 

a one-way function for encryption and decryption. The 

formula for encrypting plain text is 

𝐶 = 𝑃𝑒 % 𝑛 

 

where C is the encrypted cipher, P is the plain text, e is 

the public key, and n is the product of two coprime 

numbers. P is calculated using the ASCII decimal 

values of each character in the plain text. The formula 

for decryption is 

 

𝑃 = 𝐶𝑑 % 𝑛 

 

where P is the plain text, C is the encrypted cipher text, 

d is the private key, and n is the product of the same 

coprime numbers [1]. 

This information was vital to writing the licensing 

algorithm since I was going to be using RSA 



April 2022, Charlottesville, Virginia USA   P. Raut 

encryption/decryption to accomplish it. While I ended 

up using a library to compute most of the RSA 

functionality such as generating keys and 

encrypting/decrypting text, understanding the 

background and math behind the algorithm was 

important for me to successfully implement it into my 

solution. 

 

3 SYSTEM DESIGN 

The design of the system included three parts: 

generation of the license file, validation of the license 

file, and updating the GUI. 

 

3.1  License File Generation 

At the heart of the licensing algorithm, RSA encryption 

was used to generate and verify the license keys for the 

software using the OpenSSL library. These license 

keys were strings of encrypted text that consisted of the 

contents of the license file. The license file was a JSON 

file that contained the attributes of the license such as 

start date, end date, product number, software version, 

MAC address of the system that the software will run 

on, and the license key. In addition, there is a cookie 

attribute that has a value of an encrypted string 

containing the date and time of the last time the 

software was opened. A typical license file could look 

like Figure 1: 

 

 
Figure 1: Example License File 

 

The reason that the MAC address is part of the license 

file is because it is the main identifier for whether the 

computer running the software is allowed to use it. The 

MAC address value is generated through a simple 

routine that checks for ethernet MAC addresses on the 

machine that will be running the software. Once all 

ethernet MAC addresses have been found, the routine 

displays them to the user as well as a company email 

that the user can send them to. 

 

Once the company receives the MAC address(es) of 

the user, they can be inputted into a GUI that generates 

the license file. This GUI contains fields that can set 

the start date, end date, software version, and MAC 

address attributes of the license file. The license key 

attribute is also filled by encrypting the other attributes 

in the format 

 

"𝑀𝐴𝐶 𝑎𝑑𝑑𝑟𝑒𝑠𝑠, 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑛𝑢𝑚𝑏𝑒𝑟, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 
𝑠𝑡𝑎𝑟𝑡 𝑑𝑎𝑡𝑒, 𝑒𝑛𝑑 𝑑𝑎𝑡𝑒" 

 

using RSA encryption. The cookie attribute is left 

blank because the user has not opened the software yet. 

The newly generated license file is then sent back to 

the user to be used by the software.  

 

3.2  License File Validation 

In the license file validation routine, the first thing it 

does is decrypt the license key attribute value to get the 

values of the license file when it was generated. These 

values are then checked against the values that are 

present in the license file. If there are any 

discrepancies, the license file is considered invalid and 

the software is not allowed to run. This is to ensure that 

the license file was not tampered with in an attempt to 

gain unlicensed access to the software. The license key 

essentially serves as a validation key for the license 

file. 

 

The next part of the validation process involves 

checking the MAC address attribute. The routine gets 

the MAC address from the computer and compares the 

value returned to the one in the license file. If the MAC 

address values do not match, the license file is 

considered invalid. 

 

Once the MAC address validation is complete, the 

routine checks the validity of the cookie. The cookie 

attribute is decrypted to get the date and time of the last 

time the software was opened. The purpose of the 

cookie is to ensure that the user does not attempt to 

change the date and time of the computer in order to 

bypass the license file. The routine checks whether the 

computer’s date and time comes after the date and time 

stored in the cookie. If it passes this check, the current 



April 2022, Charlottesville, Virginia USA   P. Raut 

 

date and time is compared to the start and end dates in 

the license file. If the current date is not within this 

range of dates, the license file is considered invalid. 

 

If the license file validation routine determines that the 

license file is valid, the user is allowed to run the 

software. When the user closes the software, the date 

and time stored in the cookie attribute in the license file 

is updated and re-encrypted. 

 

3.3  Updated GUI 

Because the previous GUI of the software was written 

using a 32-bit library, I needed to find a new 64-bit 

library. Additionally, because the rest of the software 

was written in C, I needed to find a library that was 

compatible. The library that I chose was the Qt library 

in C++, a derivative language of C. 

 

C++ contains classes, which help organize data and 

their modifiers and accessors. Each class can take on 

the properties of other classes by extending other 

classes. The Qt library contains a Widget class that I 

could extend. A Widget is any GUI element that that 

can be displayed. For example, a Widget could be a 

window, button, or drop-down box. For this reason, for 

every window the software had, a new class was 

created as a Widget. Widgets can also be added to each 

other, so buttons, drop-down boxes, and text fields can 

be added to a window to create a full GUI. Because I 

was using a new library, I had to rewrite the GUI from 

scratch using the Qt library. This method of 

organization is the design I used to implement the GUI. 

 

4 RESULTS 

Currently, my code is being implemented into the rest 

of the software. Because my code was written almost 

externally from the rest of the software, the proper 

functions calls need to be made in the software to run 

my code. Additionally, the existing functions that were 

written in the software need to be called in the updated 

GUI to provide proper functionality to the GUI. 

 

Once everything is properly implemented, the software 

will be ready to be redistributed. Due to the previous 

licensing issues and outdated code, the software could 

not be given to clients who wanted to use it. The 

company had to turn down those clients because of 

these issues and most likely lost them to competitors. 

However, now that the software has the necessary 

updates and features, it can be distributed to clients. 

 

Additionally, the project was left untouched for years 

because the company was busy working on other 

projects. Through my efforts, I was able to revitalize 

the project and offer the company a way to redistribute 

the software, even though it is over 18 years old.  

 

5 CONCLUSION 

This project’s end goal was to update and redistribute 

software that was originally written in 2004. There 

were two main parts of this project that needed to be 

done to reach this goal: writing a licensing algorithm 

for the software and updating the GUI to 64-bit 

standards. The licensing algorithm utilized RSA 

encryption/decryption to generate and validate the 

license keys. Additionally, the GUI was completely 

rewritten using the Qt library. While the software isn’t 

completely ready for redistribution because my code is 

being implemented into the rest of the software, all the 

components necessary have been completed. After 

years of being outdated, the software will finally be 

updated to meet today’s standards. 

 

6 FUTURE WORK 

As of now, most of the hard work of updating the 

software has been done. The only aspect that is left is 

integrating the code that I wrote into the rest of the 

software. This would require making the proper 

function calls in both the software and my code. In 

addition to this, testing the software to make sure the 

integration does not cause any problems will also need 

to be done. While I am not the one doing this 

integration, others at the company are. The project is 

expected to be completely done by the end of April 

2022. 

 

REFERENCES 

[1] Hengki Tamando Sihotang et al 2020 J. Phys.: 

Conf. Ser. 1641 012042 

[2] OpenSSL. 2021. OpenSSL Cryptography and 

SSL/TLS Toolkit. [online]: https://www.openssl.org/ 

 
 

https://www.openssl.org/

