
Strategies for Optimal Performance: Advanced Techniques in
Entity Framework for High-Volume Query Optimization

CS4991 Capstone Report, 2024

Ahyush Kaul
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
Sdx6cq@virginia.edu

ABSTRACT

Navigating billions of database records
presents significant challenges and costs,
even with refined search parameters tailored
to meet imposed runtime limitations.
Implementing sophisticated optimization
techniques appeared as a viable solution to
address the challenges associated with
querying larger amounts of records during my
time at CoStar Group. To optimize the
process, I employed sophisticated techniques,
utilizing C# .NET’s Entity Framework to
strategically limit the retrieval of records
from the database. Complementing this, I
implemented a continuous cache emptying
technique, facilitating the seamless
integration of new records. The optimization
strategies netted an efficiency increase of
180x, drastically improving the query
runtime. While optimizing runtime is crucial
for efficiency, advancing query optimizations
to include the pagination of data can help
make query searches more accurate for
CoStar’s data needs.

1. INTRODUCTION

Databases are crucial in modern
information management systems, as they
offer a structured and organized repository to
store and retrieve data efficiently. The
significance of databases lies in their ability to
facilitate the quick retrieval of data, allowing
an organization to access/manipulate
information rapidly. Compared to a traditional
file based system, a database uses queries to

sort through records to efficiently store and
return data. The rapid access databases provide
is pivotal for meeting the demands of fast-
paced data-driven businesses.

CoStar collects billions of real estate
records(data points) and houses all
information in a database. When developers
require information, they can write a query to
access specific records in the database.
However, with such a vast quantity of data
entries, narrowing down the exact data
required can pose a challenge. Even after
creating targeted queries, accessing the data
can take longer than allowed by front-end
services. This issue arose when an in-house
API route ran for more than 30 minutes,
causing a time-out error on the front-end for an
internal tool. The time-out limitation allowed
for five seconds before returning an error, and
solving this issue was crucial to fix a bug that
prevented hundreds of developers from
accessing crucial business information.

2. RELATED WORKS

According to Balliauw (2023), one of the
main components for slow EF (Entity
Framework) queries is returning too many
records. When creating queries to access
records, we must consider the total number of
available records to retrieve. From there, we
must select certain attributes to filter from in
order to limit the number of records selected.
There is a caveat however. When writing
queries that require access to another table in
the database, we risk cartesian explosion,

which happens when more data than necessary
is loaded, causing worse performance
(Nguyen, 2023). The command
AsSplitQuery() helps to solve this issue, as it
will separate the larger query into smaller
components. These smaller portions are then
run separately to retrieve specific entries from
the database. This solution dramatically
improves runtime and reduces the risk of
selecting the same record multiple times.

When a user interface needs to show
results for a query from a larger dataset,
pagination may be required (Microsoft, 2023).
Pagination occurs when data is received in
pages instead of one bulk return. To
implement pagination the query must have a
Take() command. This restricts the amount of
records that the query will return, which can
improve performance since a smaller amount
of data is retrieved from the database. The
solution, while intuitive, is limited in scope, as
it requires a Filter() command to sort the data
in a manner where the most effective values
are returned. This poses an additional issue:
how to determine which records are most
valuable.

3. PROJECT DESIGN

This project required multiple stages
which necessitated learning about query
optimization techniques, front-end service
limitations, and API route constraints.
Additionally, other developers and I had to
conduct vigorous testing to ensure its success.

3.1 Background
The query in question was part of an
API route to receive a collection of data
processed by researchers at CoStar.
This query had been written months
prior to my arrival and was a high
priority task. Due to the inefficiency of
the query, not all CoStar employees
could see the results of processed data
on the internal tool to which the data
was returned.

3.2 API Route Debugging
The initial step involved tracing the
issue on the front-end aspect to the API
route call. To accomplish this, I
examined the failing console
statements associated with the error on
the website. After tracing the error to
the API call in the repository associated
with the front-end code, I transitioned
to the repository housing the API
routes. Examining the specific API
route connected to the error revealed a
complex EF query. This query resulted
in cartesian explosion as it included
multiple sub tables associated with the
main table. The collection of this data
resulted in an inefficient query that
could not process the vast amount of
data quickly.

3.3 EF Query Improvements
Solving this issue required research
into EF query structure. The nature of
the problem was multi-faceted;
including issues with pagination, data
overload, and poor filtering. To
improve the query I broke each issue
up, focusing first on pagination.
Utilizing a Take() command at the end
of the query helped limit the data
collected and returned, shortening
runtime.

This then presented an issue
with filtering the data to gather the
most relevant records. Incorporating a
filter by date in the query allowed me
to gather the most recent records
preserving the relevance of the data.
This also fit with corporate business
decisions to showcase the most
relevant data points from researchers.

Another issue was data
persistence in the cache. As data was
being received from the database and
stored in the API route to be returned,
it took up space in the cache. With the

quantity of data being searched and
gathered by the query, cache space
became scarce. When data matched the
query, it had a higher likelihood of
becoming a cache miss and evict. This
process, while quick, aggregated to
take more time than allotted,
contributing to poor performance. To
solve this, we added the commands
AsNoTracking() and AsSplitQuery()
after the Take() command. These
methods resulted in data not being
cached and separating larger queries to
become more manageable,
respectively.

4. RESULTS

After all optimization were added,
testing had to be conducted to ensure the
API route no longer timed out. Since the
API route has automated search
parameters, we automated testing to run
the API route through Postman and a
Swagger page. Loading the API route
through its Swagger page allowed us to see
the automated search parameters, output
format, and actual output. This is a crucial
part in determining the accuracy and
efficiency of the route.
 To verify the information returned
through the API was accurate, we ran the
query directly in the database using
PostgreSQL. The API route query and
SQL query returned the same information,
validating the response expected.
Additionally, the API route returned much
faster compared to its non-optimized form.
Through optimizations the route improved
its runtime by 180,000% and produced a
memory optimization of 20%.

The drastic improvement in runtime
was associated with the limitation of
returned data, lack of caching required,
and separation of queries. The memory
optimization was a non-intentional effect
of the caching optimization, as data from

the query was able to be placed in the
cache without needing to evict other data.
This meant that evicted data did not need
to be stored elsewhere, such as on the disk.

5. CONCLUSION

This project was significant to CoStar
as it expands its business and allowed all
employees to have efficient access to
crucial business information. The query
optimizations utilized will ensure quick
and easy data retrieval as the database
grows. With the expansion of their
business, CoStar’s database will also grow
and having this scalable code in place will
help maintain the operationality of an
internal tool used by all employees.
 The query had been problematic for
CoStar but was backlogged in tasks due to
heavy demand from CoStar consumers. By
working on the optimization of this query,
I was able to tackle a task that otherwise
would not have been completed for
months. This project increased my
knowledge of database interactions and
how data is collected through querying. It
also taught me a great deal about database
management and research techniques
towards real-world niche problems that I
can apply in future works with CoStar.

6. FUTURE WORK

Next steps for the query optimizations
would be to apply them to other API search
routes. CoStar has various API’s they
develop, with most of them querying the
same larger database. Adding optimization
like AsNoTracking and AsSplitQuery can
help drastically improve runtime across all
API search routes.
 Additionally, it would be beneficial to
research better methods for pagination.
Currently we are limited in the scope of
data the API route can access with the Take
command. Finding a better alternative to
remove the necessity of filtering may

reduce runtime even more. Optimizing the
routes further can help reduce time spent
waiting for values to be returned, creating
a better user experience.

REFERENCES

Balliauw, M. (2023, March 2). Optimizing
entity framework core database queries
with Dynamic Program Analysis: The
.net tools blog. The JetBrains Blog.
https://blog.jetbrains.com/dotnet/2023/0
3/02/optimizing-entity-framework-core-
database-queries-with-dynamic-
program-
analysis/#:~:text=Slow%20queries%20i
n%20Entity%20Framework,defaults%2
0to%20500%20ms)%3A

Nguyen, F. (2023, February 27).
Understanding the cartesian explosion
issue in EF Core. Medium.
https://medium.com/knowledge-
pills/understanding-the-cartesian-
explosion-issue-in-ef-core-
1e6091483a43

Microsoft. (2023, January 12). Efficient
querying - EF core. EF Core |
Microsoft Learn.
https://learn.microsoft.com/en-
us/ef/core/performance/efficient-
querying

