
s2n-tls Benchmarking and Comparative Analysis

CS4991 Capstone Report, 2023

Justin Zhang

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

jmz8rm@virginia.edu

ABSTRACT

As an intern for Amazon Web Services

(AWS), I designed previously nonexistent

simple and reliable comparative benchmarks

for AWS’s s2n-tls and other common

Transport Layer Security (TLS) libraries,

identifying areas for optimization and

ensuring that s2n-tls is performant. s2n-tls

handles hundreds of millions of connections

per second, making any small optimization

result in massive cost savings. The

benchmarking harness adapts each library

(s2n-tls, OpenSSL, and Rustls) to a common

interface and measures handshake latency,

throughput, and memory usage. s2n-tls was

found to be more performant than Rustls and

OpenSSL but at the cost of a higher memory

usage than Rustls, making memory a possible

target for optimization. Future work includes

incorporating benchmarks in testing to

prevent performance regressions before

deployment, more granular testing to get

more specific insights, and testing with more

parameters.

1. INTRODUCTION

TLS is a network protocol that ensures two

endpoints (ex. your computer and a web

server) communicate securely. TLS has two

main goals: authentication and encryption.

Authentication is the verification of an

endpoint’s identity, which prevents a bad

actor from pretending to be the server a client

might want to talk to. Encryption protects the

security of data in transit, which prevents

man-in-the-middle attacks, where a bad actor

would read but not necessarily alter data

transferred between a client and a server.

Computers use implementations of TLS

to establish connections using this protocol.

Each implementation might do this a little bit

differently and thus have different

performances, security risks, etc. For

example, an implementation could decide to

handle incoming data in series or in parallel.

The terms “TLS implementation” and “TLS

library” are generally interchangeable and

used as such in this report. One of the most

common TLS implementations is OpenSSL,

which is the de-facto open source TLS

implementation that comes with almost all

distributions of Linux. AWS also has their

own open source implementation of TLS,

s2n-tls, in part due to past security

vulnerabilities in OpenSSL.

TLS powers most of the Internet,

encrypting around 80% of general Internet

traffic and more than 95% of web traffic

(Zvik & Null, 2023). Cloud services, such as

AWS, especially rely on TLS, since their

services must be accessed via networking

through the Internet. s2n-tls itself powers

hundreds of millions of connections per

second. Any change in performance to a TLS

library such as s2n-tls thus has a broad impact

on cloud performance in general.

My internship project was to benchmark

s2n-tls against two other common TLS

implementations, namely OpenSSL and

Rustls, to ensure s2n-tls was performant and

to identify possible areas of optimization

where other libraries might be doing better.

2. RELATED WORKS

There are benchmarks that show that Rustls is

more performant than OpenSSL on

essentially all metrics (Biff-Pixton, 2019).

These benchmarks used a similar

methodology to mine but are not as well-

documented or extensible. They also do not

benchmark s2n-tls, which was important to

my team.

My team also has custom benchmarks that

simulate real network conditions, changing

latency, packet loss, and other parameters

(AWS, 2023). It uses the whole networking

stack with OS sockets, etc., so the numbers

from those benchmarks are representative of

what a user of the library might see. These

benchmarks are thorough, but they are

relatively hard to configure, slow to iterate

on, and have a lot of external factors. Because

of this, there was a gap in benchmarks that

were simple, fast, and easy to use, which this

project aimed to fill.

A sister team at AWS has benchmarks

comparing the performance of different

cryptography libraries, which all TLS

libraries call and use. Since most TLS

computation occurs during the calls to

underlying cryptography libraries, I expected

the performance of each TLS library to

correlate with the performance of their

respective underlying cryptography libraries.

3. PROJECT DESIGN

I was tasked with benchmarking s2n-tls

against OpenSSL and Rustls specifically.

OpenSSL is the main alternative to s2n-tls

internally at AWS; Rustls, on the other hand,

is not as widely used (ex. it has <25% of

GitHub stars that OpenSSL has), but as

mentioned above, there are benchmarks that

show it is more performant than OpenSSL in

almost every way.

The three main metrics benchmarked

were handshake latency, how fast a TLS

connection could be established; throughput,

how much data can be encrypted and

decrypted over a TLS connection in a given

amount of time; and memory, how much

space the data associated with a connection

takes in RAM. These are all important, since

a reduction in any one of these could translate

to massive cost savings for the company.

The application programming interfaces

(APIs) for s2n-tls, OpenSSL, and Rustls are

all very different. My first task was to create a

wrapper around each of the libraries that has a

common API for ease of use and testing. s2n-

tls and OpenSSL have mainly APIs in C, a

low-level programming language, while

Rustls only has an API in Rust, another low-

level programming language. Since s2n-tls

and OpenSSL also have Rust APIs (albeit

much less frequently used), the benchmarking

suite also used Rust.

The benchmarking framework used for

measuring handshake latency and throughput

was Criterion.rs. Criterion.rs is the de-facto

standard for benchmarking in Rust and

provides useful functionality for collecting,

analyzing, and visualizing data. For memory

benchmarking, I used Valgrind and its

subtool Massif, which profiles memory usage

throughout the runtime of a program, and

visualized the data myself with Plotters, a

plotting library written in Rust.

All benchmarks were run in a single CPU

thread with no concurrency, which is very

different from how a typical user would use

the s2n-tls library (which would be

asynchronously with concurrency). All data

was also sent between a mock client and

server over local buffers (not over an actual

connection) and thus sent much faster than it

would typically be. Because of this, the

absolute numbers from the benchmarks are

not accurate, but external factors were

reduced, and relative performance between

libraries was more accurate.

During preliminary testing, I found that a

large factor of TLS performance is which

cryptography library is being used. For

example, s2n-tls could use either OpenSSL’s

cryptography library or AWS’s own library,

AWS-LC, which was 3-4x faster for some

sets of parameters. Cryptography library

performance optimizations were out of the

scope of my project, so I decided to mainly

analyze the performance of each TLS library

as most commonly used: OpenSSL with its

native cryptography library, s2n-tls with

AWS-LC, and Rustls with ring, its default.

OpenSSL also has many different

versions that are still widely used. OpenSSL

1.1.1 is the main alternative to s2n-tls used

internally in AWS; OpenSSL 3.0.0 is the

default on Ubuntu, which is the operating

system I was using; and OpenSSL 3.1 is the

newest (and fastest) version. To align with the

goal of comparing these libraries as most

commonly used, I decided to focus on

OpenSSL 1.1.1, since it was the most

common version at AWS.

Finally, I also created historical

benchmarks, where older versions of s2n-tls

are benchmarked against the newer versions

to identify performance optimizations or

regressions. Due to design limitations, I only

made historical benchmarks for handshake

latency and throughput (and not memory). I

also could only benchmark versions after

about a year ago, since any versions before

that had a different API that was incompatible

with the benchmarking suite I made.

4. RESULTS

All benchmarking results were consistent,

reproducible, and easy to run, needing only a

few commands (if not only one command) to

generate effective visualizations in minutes. I

tested many different CPU architectures and

cloud instance types, with the benchmarks

working successfully on all of them.

I found that the signature algorithm

(ECDSA or RSA) used for authentication was

the most important factor in performance.

s2n-tls was 3-4x faster than both Rustls and

OpenSSL with ECDSA, while performance

was similar between the libraries with RSA.

ECDSA was also faster than RSA for all

libraries when similar parameters were

chosen for both. Other factors (like

handshake type and key share algorithm) had

no interesting impacts on handshake

performance or differences in performance

between the libraries.

For throughput, the results were a little

less drastic but still a win for s2n-tls. s2n-tls

was measured to have 15-20% higher

throughput than either Rustls or OpenSSL.

This was true for all parameters tested.

Memory was the only metric where s2n-

tls was not dominant. OpenSSL used over

twice the memory of s2n-tls, which in turn

used over twice the memory of Rustls. This

means that memory usage is a prime target

for optimization. However, after analyzing

which parts of s2n-tls and Rustls were using

the most memory and talking with the rest of

the team, we concluded that there were no

low-hanging fruit for memory optimizations.

Finally, with historical benchmarking, I

only found one significant change in

performance over the past year, which was an

around 15% speedup in throughput;

otherwise, handshake and throughput

performance was relatively consistent. The

version where this speedup occurred had

enabled a compile-time optimization for only

the Rust API of s2n-tls and left the core C

library untouched, meaning that for most

users of s2n-tls, there was no speedup from

that version. However, it shows us that the

historical benchmarks can successfully catch

performance changes.

5. CONCLUSION

Overall, my project filled a gap in s2n-tls

benchmarks, being simple, fast, and reliable.

The API I designed for the s2n-tls library for

the benchmarks was elegant, with my team

planning to replace all existing Rust tests with

ones that use the API I designed. I also

produced useful and actionable results that

my team did not have before: s2n-tls

generally outperforms Rustls and OpenSSL,

with only memory not being so, where Rustls

uses less memory than s2n-tls.

I also personally learned a lot over the

course of working on this project. This being

my first time in industry, I experienced the

software design process, working with a

team, and writing code at a very high

standard. I realized why I enjoyed software

engineering: its fast pace, continual learning,

and immediate results.

6. FUTURE WORK

As with a lot of benchmarking projects, there

are many things that could be extended to

improve this project. The most impactful few

things would be to incorporate the

benchmarks into testing to catch performance

regressions earlier, to test more libraries, and

to test more parameters.

Some smaller but still meaningful

extensions to the project could include:

separating the client and server halves of a

TLS connection and benchmarking each

separately; reducing external factors and

noise in the results; testing the performance

of a resumed TLS connection, where a lot of

the cryptographic computation has already

happened in a prior terminated connection;

varying the amount of data sent during

throughput testing; and varying the certificate

chain length used for TLS authentication.

These possible improvements and more are

all tracked in GitHub issue #4157 in the s2n-

tls GitHub repository (Zhang, 2023).

7. ACKNOWLEDGMENTS

First and foremost, I would like to thank my

mentor during my internship, James Mayclin,

for thoughtfully and patiently answering

every question I had. I attribute most of deep

understanding of and passion for my project

to him.

Next, I would like to thank my manager,

Wesley Rosenblum, for always being

understanding and flexible, as well as being a

great resource and role model. He handled

most of the logistics and paperwork during

my internship and enabled me to have such a

fulfilling summer experience.

Finally, I would like to thank the whole

Transport Libraries team that I had the honor

of being a part of. I had the pleasure of

collaborating with everyone on the team at

some point. They were always excited to see

my new results, and I felt as if what I was

doing mattered.

Since s2n-tls is open source, we can see

all the code online; it is fulfilling to see my

team still building on my project to this day! I

could not have asked for a better internship,

and I hope our paths cross in the future.

REFERENCES

AWS. (2023, March 3). s2n-quic/netbench at

main · aws/s2n-quic. GitHub.

https://github.com/aws/s2n-

quic/tree/main/netbench

Birr-Pixton, J. (2019, July 1). TLS

performance: Rustls versus OpenSSL.

jbp.io. https://jbp.io/2019/07/01/rustls-vs-

openssl-performance.html

Synopsys. (2020, June 3). The heartbleed

bug. The Heartbleed Bug.

https://heartbleed.com/

Zhang, J. (2023, August 18). Possible

improvements to the benchmarking suite ·

Issue #4157 · aws/s2n-tls. GitHub.

https://github.com/aws/s2n-

tls/issues/4157

Zvik, E. W., & Null. (2023). Traditional

Firewalls Can’t Keep Up with the Growth

of Encrypted Traffic. Cato Networks.

https://www.catonetworks.com/blog/tradit

ional-firewalls-cant-keep-up-with-the-

growth-of-encrypted-traffic/

https://www.catonetworks.com/blog/traditional-firewalls-cant-keep-up-with-the-growth-of-encrypted-traffic/
https://www.catonetworks.com/blog/traditional-firewalls-cant-keep-up-with-the-growth-of-encrypted-traffic/
https://www.catonetworks.com/blog/traditional-firewalls-cant-keep-up-with-the-growth-of-encrypted-traffic/

