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ABSTRACT  

As an intern for Amazon Web Services 

(AWS), I designed previously nonexistent 

simple and reliable comparative benchmarks 

for AWS’s s2n-tls and other common 

Transport Layer Security (TLS) libraries, 

identifying areas for optimization and 

ensuring that s2n-tls is performant. s2n-tls 

handles hundreds of millions of connections 

per second, making any small optimization 

result in massive cost savings. The 

benchmarking harness adapts each library 

(s2n-tls, OpenSSL, and Rustls) to a common 

interface and measures handshake latency, 

throughput, and memory usage. s2n-tls was 

found to be more performant than Rustls and 

OpenSSL but at the cost of a higher memory 

usage than Rustls, making memory a possible 

target for optimization. Future work includes 

incorporating benchmarks in testing to 

prevent performance regressions before 

deployment, more granular testing to get 

more specific insights, and testing with more 

parameters.  

 

1. INTRODUCTION 

TLS is a network protocol that ensures two 

endpoints (ex. your computer and a web 

server) communicate securely. TLS has two 

main goals: authentication and encryption. 

Authentication is the verification of an 

endpoint’s identity, which prevents a bad 

actor from pretending to be the server a client 

might want to talk to. Encryption protects the 

security of data in transit, which prevents 

man-in-the-middle attacks, where a bad actor 

would read but not necessarily alter data 

transferred between a client and a server. 

Computers use implementations of TLS 

to establish connections using this protocol. 

Each implementation might do this a little bit 

differently and thus have different 

performances, security risks, etc. For 

example, an implementation could decide to 

handle incoming data in series or in parallel. 

The terms “TLS implementation” and “TLS 

library” are generally interchangeable and 

used as such in this report. One of the most 

common TLS implementations is OpenSSL, 

which is the de-facto open source TLS 

implementation that comes with almost all 

distributions of Linux. AWS also has their 

own open source implementation of TLS, 

s2n-tls, in part due to past security 

vulnerabilities in OpenSSL.  

TLS powers most of the Internet, 

encrypting around 80% of general Internet 

traffic and more than 95% of web traffic 

(Zvik & Null, 2023). Cloud services, such as 

AWS, especially rely on TLS, since their 

services must be accessed via networking 

through the Internet. s2n-tls itself powers 

hundreds of millions of connections per 

second. Any change in performance to a TLS 

library such as s2n-tls thus has a broad impact 

on cloud performance in general. 

My internship project was to benchmark 

s2n-tls against two other common TLS 

implementations, namely OpenSSL and 

Rustls, to ensure s2n-tls was performant and 



 

to identify possible areas of optimization 

where other libraries might be doing better.  

 

2. RELATED WORKS 

There are benchmarks that show that Rustls is 

more performant than OpenSSL on 

essentially all metrics (Biff-Pixton, 2019). 

These benchmarks used a similar 

methodology to mine but are not as well-

documented or extensible. They also do not 

benchmark s2n-tls, which was important to 

my team.  

My team also has custom benchmarks that 

simulate real network conditions, changing 

latency, packet loss, and other parameters 

(AWS, 2023). It uses the whole networking 

stack with OS sockets, etc., so the numbers 

from those benchmarks are representative of 

what a user of the library might see. These 

benchmarks are thorough, but they are 

relatively hard to configure, slow to iterate 

on, and have a lot of external factors. Because 

of this, there was a gap in benchmarks that 

were simple, fast, and easy to use, which this 

project aimed to fill. 

A sister team at AWS has benchmarks 

comparing the performance of different 

cryptography libraries, which all TLS 

libraries call and use. Since most TLS 

computation occurs during the calls to 

underlying cryptography libraries, I expected 

the performance of each TLS library to 

correlate with the performance of their 

respective underlying cryptography libraries. 

 

3. PROJECT DESIGN 

I was tasked with benchmarking s2n-tls 

against OpenSSL and Rustls specifically. 

OpenSSL is the main alternative to s2n-tls 

internally at AWS; Rustls, on the other hand, 

is not as widely used (ex. it has <25% of 

GitHub stars that OpenSSL has), but as 

mentioned above, there are benchmarks that 

show it is more performant than OpenSSL in 

almost every way. 

The three main metrics benchmarked 

were handshake latency, how fast a TLS 

connection could be established; throughput, 

how much data can be encrypted and 

decrypted over a TLS connection in a given 

amount of time; and memory, how much 

space the data associated with a connection 

takes in RAM. These are all important, since 

a reduction in any one of these could translate 

to massive cost savings for the company.  

The application programming interfaces 

(APIs) for s2n-tls, OpenSSL, and Rustls are 

all very different. My first task was to create a 

wrapper around each of the libraries that has a 

common API for ease of use and testing. s2n-

tls and OpenSSL have mainly APIs in C, a 

low-level programming language, while 

Rustls only has an API in Rust, another low-

level programming language. Since s2n-tls 

and OpenSSL also have Rust APIs (albeit 

much less frequently used), the benchmarking 

suite also used Rust. 

The benchmarking framework used for 

measuring handshake latency and throughput 

was Criterion.rs. Criterion.rs is the de-facto 

standard for benchmarking in Rust and 

provides useful functionality for collecting, 

analyzing, and visualizing data. For memory 

benchmarking, I used Valgrind and its 

subtool Massif, which profiles memory usage 

throughout the runtime of a program, and 

visualized the data myself with Plotters, a 

plotting library written in Rust. 

All benchmarks were run in a single CPU 

thread with no concurrency, which is very 

different from how a typical user would use 

the s2n-tls library (which would be 

asynchronously with concurrency). All data 

was also sent between a mock client and 

server over local buffers (not over an actual 

connection) and thus sent much faster than it 

would typically be. Because of this, the 

absolute numbers from the benchmarks are 

not accurate, but external factors were 

reduced, and relative performance between 

libraries was more accurate. 



 

During preliminary testing, I found that a 

large factor of TLS performance is which 

cryptography library is being used. For 

example, s2n-tls could use either OpenSSL’s 

cryptography library or AWS’s own library, 

AWS-LC, which was 3-4x faster for some 

sets of parameters. Cryptography library 

performance optimizations were out of the 

scope of my project, so I decided to mainly 

analyze the performance of each TLS library 

as most commonly used: OpenSSL with its 

native cryptography library, s2n-tls with 

AWS-LC, and Rustls with ring, its default.  

OpenSSL also has many different 

versions that are still widely used. OpenSSL 

1.1.1 is the main alternative to s2n-tls used 

internally in AWS; OpenSSL 3.0.0 is the 

default on Ubuntu, which is the operating 

system I was using; and OpenSSL 3.1 is the 

newest (and fastest) version. To align with the 

goal of comparing these libraries as most 

commonly used, I decided to focus on 

OpenSSL 1.1.1, since it was the most 

common version at AWS. 

Finally, I also created historical 

benchmarks, where older versions of s2n-tls 

are benchmarked against the newer versions 

to identify performance optimizations or 

regressions. Due to design limitations, I only 

made historical benchmarks for handshake 

latency and throughput (and not memory). I 

also could only benchmark versions after 

about a year ago, since any versions before 

that had a different API that was incompatible 

with the benchmarking suite I made.  

 

4. RESULTS 

All benchmarking results were consistent, 

reproducible, and easy to run, needing only a 

few commands (if not only one command) to 

generate effective visualizations in minutes. I 

tested many different CPU architectures and 

cloud instance types, with the benchmarks 

working successfully on all of them. 

I found that the signature algorithm 

(ECDSA or RSA) used for authentication was 

the most important factor in performance. 

s2n-tls was 3-4x faster than both Rustls and 

OpenSSL with ECDSA, while performance 

was similar between the libraries with RSA. 

ECDSA was also faster than RSA for all 

libraries when similar parameters were 

chosen for both. Other factors (like 

handshake type and key share algorithm) had 

no interesting impacts on handshake 

performance or differences in performance 

between the libraries. 

For throughput, the results were a little 

less drastic but still a win for s2n-tls. s2n-tls 

was measured to have 15-20% higher 

throughput than either Rustls or OpenSSL. 

This was true for all parameters tested. 

Memory was the only metric where s2n-

tls was not dominant. OpenSSL used over 

twice the memory of s2n-tls, which in turn 

used over twice the memory of Rustls. This 

means that memory usage is a prime target 

for optimization. However, after analyzing 

which parts of s2n-tls and Rustls were using 

the most memory and talking with the rest of 

the team, we concluded that there were no 

low-hanging fruit for memory optimizations. 

Finally, with historical benchmarking, I 

only found one significant change in 

performance over the past year, which was an 

around 15% speedup in throughput; 

otherwise, handshake and throughput 

performance was relatively consistent. The 

version where this speedup occurred had 

enabled a compile-time optimization for only 

the Rust API of s2n-tls and left the core C 

library untouched, meaning that for most 

users of s2n-tls, there was no speedup from 

that version. However, it shows us that the 

historical benchmarks can successfully catch 

performance changes. 

 

5. CONCLUSION 

Overall, my project filled a gap in s2n-tls 

benchmarks, being simple, fast, and reliable. 

The API I designed for the s2n-tls library for 

the benchmarks was elegant, with my team 



 

planning to replace all existing Rust tests with 

ones that use the API I designed. I also 

produced useful and actionable results that 

my team did not have before: s2n-tls 

generally outperforms Rustls and OpenSSL, 

with only memory not being so, where Rustls 

uses less memory than s2n-tls. 

I also personally learned a lot over the 

course of working on this project. This being 

my first time in industry, I experienced the 

software design process, working with a 

team, and writing code at a very high 

standard. I realized why I enjoyed software 

engineering: its fast pace, continual learning, 

and immediate results.  

 

6. FUTURE WORK 

As with a lot of benchmarking projects, there 

are many things that could be extended to 

improve this project. The most impactful few 

things would be to incorporate the 

benchmarks into testing to catch performance 

regressions earlier, to test more libraries, and 

to test more parameters.  

Some smaller but still meaningful 

extensions to the project could include: 

separating the client and server halves of a 

TLS connection and benchmarking each 

separately; reducing external factors and 

noise in the results; testing the performance 

of a resumed TLS connection, where a lot of 

the cryptographic computation has already 

happened in a prior terminated connection; 

varying the amount of data sent during 

throughput testing; and varying the certificate 

chain length used for TLS authentication. 

These possible improvements and more are 

all tracked in GitHub issue #4157 in the s2n-

tls GitHub repository (Zhang, 2023). 
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