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ABSTRACT 

 

 

The goal of this study is to examine the phenology of queen bumblebee (genus Bombus) 

emergence times and its connection to temperature and precipitation across the states of Virginia, 

West Virginia, Maryland, Delaware, and Pennsylvania. Growing degree days (GDD), cumulative 

precipitation (∑ppt) and days accumulated (∑day) were the metrics used to study connections 

between climate and emergence times. It was hypothesized the GDD for queen bee emergence 

times will vary between species yet remain constant within a species across latitudinal and 

elevational gradients, and the number of days it takes to reach this threshold will increase with 

elevation, latitude, and precipitation. Observations were gathered from a citizen science database 

and a museum database to gather current and historical trends. Data were split between high and 

low elevations and latitudes to compare the geographic difference in GDD and ∑day values. 

Results suggest that queen bee emergences currently occur most frequently in the week of March 

29th-April 4th; B. bimaculatus emerges first, B. impatiens emerges second, and B. griseocollis 

emerges third. However, as GDD varied significantly across elevational and latitudinal gradients, 

temperature was not determined to be the primary factor in queen bumblebee emergence times. 

Phenology differences at high elevations and latitudes are not very pronounced, as emergence 

times only differ a couple of days between species. This suggests that day accumulation, 

especially at high elevations and latitudes, drives Bombus emergence times more than 

temperature accumulation. 
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INTRODUCTION 

 

The genus Bombus includes about 250 species, with 46 species found in temperate 

regions of North America. Bumblebees follow annual life histories, meaning their colony begins 

anew each year with the emergence of a solitary queen bee. The mated queen bee emerges from 

diapause in the spring (around March or April) after overwintering and begins gathering 

resources, such as nectar and pollen, to support her future colony. This time is the most 

vulnerable for a fledgling colony. After determining a suitable nest site and acquiring the 

necessary resources, eggs hatch after approximately 4 days (Colla et al., 2011).  

 Since insects are poikilothermic and do not have a well-developed homeostatic thermal 

regulating mechanism, a certain amount of heat accumulation is required before they can reach 

certain life stages, such as birth and flight (Sridhar & Reddy 2013). Therefore, bumblebee 

development is inherently dependent on temperature and climatic conditions. The emergence 

time of a queen bumblebee (i.e. the beginning of a new colony) is one of the species’ most 

important life history traits, as the timing of this event ideally should align with the presence of 

partner flora to ensure that the queen bee can gather enough resources to support her colony.  

The emergence time of a queen bee is an example of phenology, or the timing of 

recurrent events in an organism’s life cycle in relation to seasonal and interannual variations in 

climate (Stemkovski et al., 2020). As this event is understood to be dependent on temperature, 

climate change will likely have a profound impact on bee phenology. As a result of warming 

temperatures, phenological changes in the emergence times of queen bumblebees have been 

observed to occur (Bartomeus et al., 2011, Belitz et al., 2021, & Hegland et al., 2009, 

Pawlikowski et al., 2020). Since queen bee emergence times determine the timing of the entire 
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colony, shifts in these dates can be consequential, especially in regard to mismatches between 

flora that bees depend on for resources (Kehrberger et al., 2019).  

For species that provide critical ecological functions, such as bumblebees, understanding 

their response to climate change is especially important (Bartomeus et al., 2011). Bumblebees 

are vital pollinators and a keystone species in most terrestrial ecosystems, necessary for the 

reproduction of countless plants that many animals (including us) depend on for survival 

(Goulson et al., 2008). Bumblebees are found to be superior in their pollination abilities, because 

they have been observed to forage faster and pollinate a larger number of flowers than honeybees 

(Nayak et al., 2020). Additionally, bumblebees are more effective at low temperatures and have a 

stronger ability to regulate their body temperature than most insects (protected by their fuzzy 

exteriors and the ability to generate heat through muscle contractions), making them valuable 

assets in colder areas that deter other pollinating insects (Keaveny et al., 2022). As temperatures 

increase and become higher at the beginning of the year, this heat accumulation may lead to 

early emergence times of queen bumblebees, which could occur prior to the flowering of host 

plants and lead to the starvation and death of the queen. If not fatal, rising temperatures are 

certainly not advantageous; higher temperatures reduce the foraging range of bumblebees due to 

reduced energy distribution and wing beat frequency during heat stress, reducing the ability to 

collect pollen and resources (Kuo et al., 2023).    

Fortunately, there is a mathematical metric used to predict the impact of temperature on 

insect life stages. Degree days can be used to measure the timing of biological events in 

bumblebees and are a measurement of heat accumulation over time, calculated from daily 

minimum temperatures, daily maximum temperatures, and a critical minimum temperature 

threshold (CTmin) (McMaster & Wilhelm, 1997). CTmin represents the minimum temperature in 
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which bees regain muscle control; a previous study by Oyen & Dillon (2018) determined this 

threshold to be 3.7±1.6℃ for B. impatiens, and is the value used in this study. Degree days are a 

common metric used to evaluate and estimate the timing of events in an insect’s life cycle and 

have been used to study Bombus species previously (Marshall et al., 2018, Miller‐Struttmann & 

Galen, 2022).  

Growing degree days (GDD) are the cumulative measure of degree days since the first 

day of the year (January 1st). GDD can be used to retrospectively calculate the current growth 

state of an insect or to help predict the date at which an insect will reach a predetermined growth 

stage (McMaster & Wilhelm, 1997). Insects have a predictable pattern of development based on 

heat accumulation; therefore, calculating their GDD may shed insight into how much heat 

accumulation is necessary for queen bees to become active after diapause. The time it takes to 

reach this threshold of temperature accumulation is subject to change as climate changes, leading 

to shifts in phenology.  
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Figure 1: Average annual number of growing degree days from historic observations (top row) and future 

predictions using global climate model data (bottom row). Historic observations of GDD spanning 30 

years are shown on the top row, with the years 1981-1990 on the left and 2011-2020 on the right. Future 

predictions of GDD between the years 2081-2099 based on RCP emission scenarios 4.5 (left) and 8.5 

(right) are shown on the bottom row. Dark purple indicates fewer GDD, while dark green indicates more 

GDD. All maps were generated with gridded temperature estimates from the Parameter-Elevation 

Regressions on Independent Slopes Model (PRISM) Climate group at Oregon State University, the same 

source used to pull climate data for this study. Source: Mid-Atlantic Regional Integrated Sciences and 

Assessments (MARISA) climate data tools.  
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Figure 2: Percent difference in annual growing degree days between 1981-1990 and historic time period 

by decade in Charlottesville, Virginia. Source: Mid-Atlantic Regional Integrated Sciences and 

Assessments (MARISA) climate data tool “Average Annual Number of Growing Degree Days from 

Historic Observations.”  

 

 

As climate change progresses, maximum and minimum daily temperatures can be 

expected to rise across the Mid-Atlantic United States. This will have a direct impact on growing 

degree days, as the calculation depends on these temperatures. Fig. 1 shows changes in GDD in 

the Mid-Atlantic region based on both historic observations from 1981-2020 and projected future 

changes based on a low emissions (RCP 4.5) and high emissions (RCP 8.5) scenario. In all cases, 

GDD are increasing with time, which could lead to more rapid heat accumulation and emergence 

times for queen bees. GDD have increased from 1981-2020, with eastern Maryland and central 

and eastern Virginia experiencing the largest GDD for the observed historic observations. 

Additionally, portions of eastern Virginia and coastal Maryland may be expected to experience 

annual average GDD increases of over 40% in a high emissions future (RCP 8.5) (MARISA, 

2021).  

Fig. 2 describes the percent difference in growing degree days between 1981-1990 and 

historic time period by decade in a sample region of Charlottesville, Virginia. The years 1991-

2000 yielded a 0.079% increase in GDD since 1981, 2001-2010 yielded a 2.988% increase in 
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GDD since 1981, and 2011-2020 yielded a 4.765% increase in GDD since 1981. It is clear that 

GDD is increasing and will likely continue to increase as temperatures increase over time.  

As queen bees overwinter near or in the ground, other environmental factors that can 

affect their emergence time must be taken into account. Precipitation affects moisture availability 

and temperature near the surface, and therefore may have an impact on queen bee development. 

A study by Sanderson et al. (2015) looked at the short-term effects of meteorological conditions 

on bumblebees and found a positive correlation between air temperature and foraging activity, 

suggesting that bees are more active during warmer weather. The same study also revealed that 

foraging activity was negatively linked to rainfall, humidity, and wind-speed. However, another 

study by Karbassioon et al. (2023) found that bumblebees were more resilient to changes in 

weather conditions than honeybees, making them more predisposed to future changes in day-to-

day weather. Both studies show that bumblebees are both reliant yet resilient to weather 

conditions. Given these studies, it is predicted that bumblebees will face a negative correlation 

between emergence time and precipitation, though not dramatically due to their observed 

adaptability.  

 This study collects observations from a citizen science database, meaning the data were 

collected by the general public and backed by scientists. iNaturalist, a popular citizen science 

database, produced the bulk of observations for this study (the other observations are pulled from 

a museum database). Citizen science is a useful tool for environmental researchers, as it allows 

data collection to span temporal and spatial scales far beyond the capacities of a research team, 

allowing for more comprehensive studies. The databases are free and easily accessible, making 

them a logical choice if one doesn’t have the means or funding for a research team. These 

databases encourage the public to become invested and actively involved in projects, raising 
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awareness and general interest in environmental studies. However, data biases are inevitable due 

to human error and inconsistencies in collection; it is beyond the control of the scientist to 

determine the volume of data within a certain temporal and spatial range, making citizen science 

inherently variable. Additionally, the observations are “presence-only” observations, meaning 

that corresponding absence data are absent. Nevertheless, citizen science databases are a valuable 

asset for environmental researchers and have been used in countless scientific inquiries and 

publications.  

Research examining the trends between bumblebee and plant phenology is extensive, yet 

there is limited research examining the phenological impact of climatic and geographic variables 

on queen bumblebee emergence times. The goal of this study is to examine the phenology of 

queen bumblebee emergence times and its connection to temperature (GDD) and precipitation 

across the states of Virginia, West Virginia, Maryland, Delaware, and Pennsylvania. I 

hypothesize that the GDD for queen bee emergences will vary between species yet remain 

constant within a species across latitudinal and elevational gradients. Additionally, I hypothesize 

that the number of days it takes to reach this threshold will increase with elevation and latitude 

(as well as with increased precipitation) and will differ between species.  

This study is important because it determines the GDD at which common queen Bombus 

species emerge in this geographic region (novel research within this field), allowing for more 

accurate emergence predictions to occur in the future. This study also examines a relationship 

not previously studied between temperature, precipitation, elevation, latitude, and the emergence 

time of queen bumblebees, a crucial pollinator in temperate ecosystems. 
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METHODS 

 

 

Data Collection 

 

The study covers a geographic region of the Mid and South Atlantic U.S. and takes 

observations from the states of Virginia, West Virginia, Maryland, Delaware, and Pennsylvania. 

This was to ensure a variety of elevations and latitudes in addition to a relatively wide range of 

climate histories and environments. Bee data are presence-only points, meaning species data is 

presented as a list of presence locations without corresponding absence data. This becomes 

relevant in the analysis phase, as this factor is accounted for to accurately calculate emergence 

times. Bee data were obtained using the citizen science database iNaturalist and the Global 

Biodiversity Information Facility (GBIF); this is to ensure the data reflect both current and 

historical trends, respectively.  

iNaturalist, a citizen science database with observations from the general public, was 

used to gather more current bumblebee data. To ensure only queen bees were being studied, the 

results were filtered to only show results from the months of March through April, which are the 

estimated emergence times of queen bees (Pawlikowski et al., 2020). Results were also restricted 

to the geographic range of the study. iNaturalist produced 2,304 observations within these 

parameters using the keyword Bombus, the genus name for bumblebees. Within these 

observations, 12 species, 284 identifiers, and 1,318 observers were found with dates ranging 

from 2010-2023 (a majority of them more recent). The data were cleaned and narrowed down by 

restricting the dataset to “research grade” only (meaning the identification was agreed upon by a 

member of the community) and by restricting the positional accuracy to 1km to ensure a more 

accurate geographical location. With these restrictions, 1,550 observations remained. Each entry 

included the date of the observation, the user who observed it, the quality grade, the number of 
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identification agreements and disagreements, the latitude and longitude, the positional accuracy, 

the state and county, and the scientific name.  

GBIF (Global Biodiversity Information Facility) data were used to gather historical data 

on Bombus species. Founded in 2001, GBIF is an international museum database and online 

organization that hosts a plethora of scientific data, geared towards research in biodiversity. 

Using the same search criteria as iNaturalist (keeping geographic boundaries, observance 

windows, positional accuracy, and genus the same), a general search was made and data were 

downloaded within these parameters. GBIF produced 378 observations, with the earliest 

observation occurring in 2002. Each entry included the date of the observation, the user who 

identified it, the latitude and longitude, the positional accuracy, and the institution where it was 

recorded (USGS for all observations).  

Out of the 1,928 bee observations produced by both iNaturalist and GBIF, only three 

species had more than 200 total observations. A high number of observations per species is 

necessary to draw accurate conclusions in the analysis phase. The three species were B. 

bimaculatus (843 observations), B. griseocollis (264 observations), and B. impatiens (579 

observations), leaving a total of 1,686 observations to conduct an analysis. Fig. 3 spatially 

represents each observation point generated by iNaturalist and GBIF on a mapframe, produced in 

ArcGIS Pro 3.1.4. 
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Figure 3: Species distribution of Bombus species within the spatial resolution of this study. Point data 

were generated in ArcGIS Pro 3.1.4 and pulled from iNaturalist and GBIF. B. impatiens observations are 

in blue, B. griseocollis observations are in green, and B. bimaculatus observations are in yellow.  

 

 

Weather data was obtained using the Parameter-Elevation Regressions on Independent 

Slopes Model (PRISM) developed by the Northwest Alliance for Computational Science & 

Engineering (NACSE), based at Oregon State University. PRISM is a climate database that 

gathers weather data from a wide range of monitoring networks and applies sophisticated quality 

control measures to produce climate datasets that show short and long-term climate trends. Using 

https://prism.oregonstate.edu/explorer/bulk.php
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a spatial resolution of 4km, PRISM calculates a climate-elevation regression, assigning weights 

based on physiographic similarity of the station to each cell. Location, elevation, coastal 

proximity, and other related variables are considered in the interpolation of the weather data 

(Daly et al., 2008).  

Weather data were downloaded for each observation within the three species chosen. 

Using their data explorer, a time series containing daily values for maximum and minimum 

temperatures, mean temperatures, and precipitation were downloaded for each bee observation 

using the corresponding latitude and longitude values provided by iNaturalist and GBIF. Daily 

values beginning on January 1st and ending on April 30th were downloaded for the years 2000-

2023 for each individual location in order to calculate the accumulation of temperature and 

precipitation for each observation and to observe long-term trends in climate patterns. As a 

result, over 4.8 million rows of weather data were generated.  

Elevation data for each observation were obtained using ArcGIS Pro 3.1.4. Elevation 

values were pulled from a raster dataset provided by ESRI. XY point data for each observation 

within the three main species were downloaded into a map frame, allowing each observation to 

be represented by a point on a map. An elevation source layer called Terrain 3D was added to the 

map and allowed each point to pull the corresponding elevation to five decimal places.  

 

 

Data Analysis 

 

 Microsoft Excel was used to organize and analyze bumblebee data; iNaturalist data, 

GBIF data, and PRISM datasets were all stored in Excel files. The PRISM datasets for each 

species first underwent three distinct calculations in Excel, as detailed below:

 



12 

1) Growing degree days (GDD): Growing degree days (eq. 1) can be used to 

retrospectively calculate the current growth state of an insect, or to help predict the date 

at which an insect will reach a predetermined growth stage. First, degree days were 

calculated for each observation by taking the average daily temperature of that day 

((maxTemp - minTemp)/2) and subtracting the critical minimum temperature (CTmin), or 

the temperature bumblebees regain motor control (McMaster & Wilhelm, 1997). B. 

impatiens have a critical minimum temperature of 3.7±1.6 ℃ (Oyen & Dillon, 2018), so 

this value was used in calculations. If the degree day was negative, it was omitted from 

the final summation. Daily degree day values starting on January 1st were added 

sequentially until the date of the observation. GDD represents the total cumulative 

number of degree days from January 1st up until the date of an observation; this value 

represents the total heat the insect has accumulated. This formula was applied to each bee 

observation across the years of 2000-2023 to gain both short term and long-term 

perspective. Units are in days.  

 

𝐺𝐷𝐷 = ∑
(𝑚𝑎𝑥𝑇𝑒𝑚𝑝 − 𝑚𝑖𝑛𝑇𝑒𝑚𝑝 )

2
 − 𝐶𝑇𝑚𝑖𝑛  (eq. 1) 

 

 

2) Cumulative precipitation (∑ppt): Daily precipitation values starting on January 1st 

were added sequentially until the date of the observation, providing insight into each 

location’s cumulative near-ground moisture content and availability at the time of the 

sighting. This process was repeated for each bee observation. Units are in millimeters.  

3) Days Accumulated (∑day): A simple calculation determining how many days had 

passed since January 1st until the date of the observation was conducted. This provides 

insight as to how far in the year an observation was recorded, which has the ability to 
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affect GDD and ∑ppt values. This value will be used to estimate when bumblebee 

emergences occur for each species, as well as provide an explanation for varying values 

of GDD and ∑ppt values. Units are in days.  

 

 Other values, such as mean temperature dew point and vapor pressure deficit, were also 

calculated. However, they were not as relevant to this study and were later omitted. As there was 

no way to automate the summation of GDD and ∑ppt variables until a particular date in Excel, 

this had to be done manually. This was completed by highlighting each row that contained the 

date of each observation; with it came the corresponding GDD and ∑ppt value. The observations 

were checked in Excel against a unique number called a reference ID to ensure the data pulled 

was accurate. With these calculations, each individual observation in Excel contained a 

corresponding GDD, ∑ppt, and ∑day value, as well as its original latitude, longitude, and 

elevation.  

Analyses of these data were conducted in both Excel and RStudio. In Excel, the 

cumulative percentage of observations per week was calculated for each species. This was to see 

how observations accumulated on a weekly basis, and to provide insight as to when the most 

observations were occurring and where they were accelerating. The interval of week 0-1 

indicates the days March 1st-7th, and each following interval denotes the subsequent week. The 

percent difference between intervals denotes how the observations were changing from week to 

week (i.e. growing or declining from the previous week), and the percent slope of each interval 

denotes the quantity of observations per weekly interval as compared to the total number of 

observations (i.e. how many observations were made during that week).  

The cumulative percentage of GDD for each species was calculated in Excel using 

similar metrics. This analysis demonstrates the distribution of GDD across observations and 
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provides insight into which GDD values were more common than others. A larger slope between 

GDD values indicates more GDD observations falling within this range, indicating a common 

GDD. The percent difference between intervals denotes how GDD was changing between 

intervals (i.e. growing or declining in number from the previous interval), and the percent slope 

of each interval denotes the volume of observations within that GDD range as compared to the 

total number of observations (i.e. how many observations were made with that GDD range). 

Both metrics are used to describe emergence trends and are discussed in greater detail in the 

following sections. 

The data were then analyzed in RStudio to run statistical tests. A Pearson correlation 

analysis (eq. 2) was run for each of the three variables (GDD, ∑ppt, and ∑day). This test was to 

determine the strength of the linear relationship between the variables with values ranging 

between -1 to 1. A negative value indicates a negative correlation, 0 denotes no correlation, and 

1 indicates a perfect positive correlation. r represents the correlation coefficient, Xi and Yi 

represent individual data points, where X̂ and Ŷ represent their respective means. The R 

packages Hmisc and readxl were used to conduct this analysis. Table 3 displays the results from 

the Pearson correlation analysis using the collective 1,686 observations. 

 

   (eq. 2) 

 

RStudio was then used to estimate phenological metrics; the R package phenesse was 

designed to generate parameterized estimates of phenology for presence only data such as this 

for any percentile of a distribution (Belitz et al., 2020). Within this package, the 

“weib_percentile_ci” component was used to calculate a percentile estimate within a 95% 
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confidence interval (5% uncertainty) using non-parametric bootstrapping. For this study, this 

package was used to estimate when the first 10% (percentile = 0.1) of individuals within each 

Bombus species were present. This percentile was chosen to generate an estimate of the 

emergence time for the three species, as the first 10% of sightings are likely closer to the actual 

emergence time of the species. For each species, this code was run to generate the estimated 

GDD, ∑ppt, and ∑day (as well as the low and high confidence intervals) corresponding to the 

10th percentile of emergences. This analysis tests the hypothesis by mathematically 

demonstrating the relationship between temperature (GDD), ∑ppt, and ∑day. The results are 

displayed in Table 4.  

 

 

Figure 4: Workflow showing the calculation of a percentile estimate from observation dates using the 

Weibull-parameterized point estimator. Source: Figure 1, Belitz et al., 2020.
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Since the phenesse package is designed specifically for presence-only data, adjustments 

within this package can properly account for biases in the dataset. Belitz et al. (2020) details this 

process, visualized in Fig. 4. The package uses a Weibull-parameterized point estimator to 

determine a percentile estimate and account for biases. First, the program calculated a 

cumulative frequency curve, similar to the cumulative percentage curves generated in Excel for 

observation and GDD data. The software fits a curve to the point data based on the Weibull 

distribution, a continuous probability distribution function that has both a shape (k) and scale (λ) 

parameter. From this Wiebull curve, a GDD value corresponding to the percentile of interest 

(10th percentile) was calculated.  

But since this curve represents presence-only data, this base estimate is assumed to be 

biased. The program calculates bias estimates by randomly resampling points along the Weibull 

curve and calculating new estimates of the percentile date. This was done 25 times by setting the 

“iterations” variable to 25. The program generates 95% confidence intervals by generating a new 

dataset using random resampling with replacement and repeating the Weibull cumulative 

distribution function estimate and bias estimate procedures (see equations to the right of Fig. 4). 

This was done 500 times by setting the “bootstraps” variable to 500. From these iterative and 

bootstrapped estimations, a distribution of 500 bias-corrected estimates of the 10th percentile 

date was generated and normally distributed to generate the 95% confidence interval. The 95% 

confidence limits are the 2.5 and 97.5 percentiles along this distribution.  

To test the hypothesis that GDD remains constant for queen emergence times across 

latitudinal and elevational gradients, a comparison between low and high latitudes as well as low 

and high elevations was conducted. The 100 lowest and highest values for both latitude and 

elevation were tested independently and then directly compared against each other to see if these 



17 

geographic variables affected queen bee emergence times. Appendices D, E, F, and G show the 

geographic distributions for each species in their respective tests. Each latitude and elevation 

value were run through the phenesse code to calculate GDD and ∑day values for the first 10th 

percentile of observations. ∑ppt values were excluded, as precipitation is relatively independent 

of latitude and elevation. These analyses also provided insight into the number of days it takes to 

reach this threshold, testing the second part of the hypothesis that predicts that the number of 

days it takes to reach this threshold will increase with elevation and latitude. 

 
 

RESULTS 
 

Fig. 5 displays the results from the Excel analysis; Table 1 and Table 2 provide 

corresponding numerical information. The left-hand side of Fig. 5 describes the cumulative 

percentage of observations per week for each species. Lines of best fit were generated for each 

curve; the positive trend of the curves is explained by the fact that the percentage is cumulative 

and compounded every week to generate a new percentage of the total amount of observations. 

Results from the Excel analysis show that B. bimaculatus emerges first, B. impatiens follows, 

and B. griseocollis emerges last. As shown in Table 1, the percent difference between intervals 

denotes how the observations were changing from week to week (i.e. growing or declining from 

the previous week). The largest percent difference between intervals for each species all occur 

during the 5th week, or between March 29-April 4th. This suggests that queen bee emergences 

currently occur most frequently in the week of March 29th-April 4th for this dataset. The R 

analyses look into these emergence times in more detail. The percent slope of each interval 

denotes the quantity of observations per weekly interval as compared to the total number of 

observations (i.e. how many observations were made during that week). As the largest 
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percentages of observations occur later in the year, this likely corresponds to more observations 

occurring as time progresses and as more and more queen bees emerge.   

 

 

 

 

 
 
Figure 5: Cumulative Percentage of Observations per week and GDD for each of the three species. Generated using 

Excel.  
 

 

The right hand of Fig. 5 describes the cumulative percentage of GDD for each species. 

The S-shaped nature of the curves is explained by the fact that few species are found with low 

and high values of GDD, while many species are found to have GDD in the mid-range. The 

slope between intervals denotes the volume of observations made within that GDD range. As 

shown in Table 2, the percent difference between intervals denotes how GDD was changing 
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between intervals (i.e. growing or declining in number from the previous interval). The interval 

of 201-300 GDD contains the largest percent increase from the previous week for B. bimaculatus 

and B. griseocollis, indicating that this GDD range is common for queen bee emergences for 

those species. The percent slope of each interval denotes the volume of observations within that 

GDD range as compared to the total number of observations (i.e. how many observations were 

made with that GDD range). The interval of 201-300 GDD also contained the largest percent 

slope (volume) of observations for B. bimaculatus and B. impatiens, further supporting the 

conclusion that 201-300 GDD is a common GDD range for Bombus species to emerge. Fig. 5 

shows general patterns between emergence times and GDD, and later R analyses will look into 

these trends in greater detail.   

 

 

Table 1: Cumulative Percentage of Observations per week  
 

 Percent difference between intervals Percent slope of each interval 

Week  B. bimaculatus B. griseocollis B. impatiens B. bimaculatus B. griseocollis B. impatiens 

1 (March 1-7) 0.12% 0.38% 0.52% 0.83% 0.38% 0.86% 

2 (March 8-12) 2.97% 1.14% 2.07% 3.80% 1.52% 2.94% 

3 (March 15-21) 2.73% 0.76% -0.86% 6.52% 2.27% 2.07% 

4 (March 22-28) 4.63% 4.17% 6.04% 11.15% 6.44% 8.12% 

5 (March 29-

April 4) 

6.64% 9.85% 8.29% 17.79% 16.29% 16.41% 

6 (April 5-11) 1.66% 9.47% 4.49% 19.45% 25.76% 20.90% 

7 (April 12-18) -2.61% -4.92% 3.45% 16.84% 20.83% 24.35% 

8 (April 19-25) 6.05% 5.68% -0.35% 22.89% 26.52% 24.01% 

 
Note: The percent difference between intervals denotes how the observations were changing from week to week (i.e. 

growing or declining from the previous week), and the percent slope of each interval denotes the quantity of 

observations per weekly interval as compared to the total number of observations (i.e. how many observations were 

made during that week compared to the overall total).  
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Table 2: Cumulative Percentage of GDD for Each Species 
 

 Percent difference between intervals Percent slope of each interval 

GDD B. bimaculatus B. griseocollis B. impatiens B. bimaculatus B.griseocollis B. impatiens 

0-100 1.54% 2.27% 2.59% 1.54% 2.27% 2.59% 

101-200 11.74% 4.55% 16.23% 13.29% 6.82% 18.83% 

201-300 14.83% 13.64% 7.43% 28.11% 20.45% 26.25% 

301-400 -0.83% 9.85% -2.94% 27.28% 30.30% 23.32% 

401-500 -10.44% -3.03% -4.66% 16.84% 27.27% 18.65% 

501-600 -6.52% -17.42% -11.40% 10.32% 9.85% 7.25% 

601-700 -9.02% -6.82% -5.53% 1.30% 3.03% 1.73% 

701-800 -0.71% -3.03% -0.86% 0.59% -100.00% 0.86% 

801-900 0.12% NA -0.52% 0.71% NA 0.35% 

901-1000 -0.71% NA -0.17% -100.00% NA 0.17% 

 

Note: The percent difference between intervals denotes how GDD was changing between intervals (i.e. growing or 

declining in number from the previous interval), and the percent slope of each interval denotes the volume of 

observations within that GDD range as compared to the total number of observations (i.e. how many observations 

were made with that GDD range). 

 

 

Table 3: Results of the Pearson correlation analysis 
 

  GDD ∑ppt ∑day 

GDD 1.00 0.18 <.0001  0.54 <.0001 

∑ppt 0.18 <.0001 1.00 0.59 <.0001 

∑day 0.54 <.0001 0.59 <.0001 1.00 

 
Note: This test was to determine collinearity and the strength of the linear relationship between the variables with 

values ranging between -1 to 1. A negative value indicates a negative correlation, 0 denotes no correlation, and 1 

indicates a perfect positive correlation.  

 

 
 

The results of the Pearson correlation analysis are shown in Table 3; they demonstrate 

strong significance given the large volume of data (1,686 points) included in the analysis. A 

negative value indicates a negative correlation, 0 denotes no correlation, and 1 indicates a perfect 

positive correlation. Table 3 shows that GDD and ∑ppt are very loosely yet positively correlated 

with a value of 0.18; thus, temperature accumulation and precipitation share a weak positive 
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relationship, just as predicted. This is not surprising, as there is likely to be a lot of year-to-year 

variation in precipitation. As GDD increases, there is more of an opportunity for precipitation to 

increase as well, explaining the positive correlation. GDD and ∑day have a value of 0.54, 

indicating a stronger positive correlation, also just as expected. As the date progresses farther 

into the year, there is more opportunity for heat (GDD) to accumulate. The correlation is 

intermediate due to year-to-year variation in temperature, as well as the effects of latitude and 

elevation on the relationship between date and temperature.  

 

 
 

Figure 6: 10th percentile estimates for GDD, ∑ppt, and ∑day at a 95% confidence interval for each 

species across all elevations and latitudes.  
 

 

Fig. 6 displays the results from the phenological analysis conducted in RStudio using the 

R package phenesse to determine the estimated GDD, ∑ppt, and ∑day (as well as the low and 
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high confidence intervals) corresponding to the 10th percentile of emergences at a 95% 

confidence interval for each species across all elevations and latitudes. B. bimaculatus emerges 

first, B. impatiens second, and B. griseocollis third. This finding is consistent with the Excel 

analysis as well as with previous research and field observations by T’ai Roulston, an ecological 

researcher at Blandy Experimental Farm, the University of Virginia’s research facility. For the 

purpose of this study, estimates were regarded as being significantly different if neither estimate 

was contained within the 95% confidence interval (i.e. if the bounds of the error bar did not 

overlap with the mean) of the other estimate.  

The GDD difference between all species at the 10th percentile of emergence was 

statistically significant, which aligns with the hypothesis. B. impatiens was observed to 

accumulate the least GDD by the 10th percentile at about 143 days, while B. griseocollis was 

observed to have the most GDD at about 199 days, suggesting that B. griseocollis requires more 

heat accumulation than the other two species to emerge. ∑ppt values, having a weak yet positive 

correlation with GDD as demonstrated by the results of the Pearson correlation analysis, 

demonstrate a similar trend to GDD; ∑ppt was the highest for B. griseocollis, which was also the 

last species to emerge. However, the ∑day values for all three species are curiously close given 

the large differences in GDD seen for each species, especially since the two variables have a 

Pearson correlation coefficient of 0.54. GDD inevitably increases in weight as it gets warmer 

into the year, as both maximum and minimum temperatures increase; however, the earliest and 

latest emergence dates are separated only by about a week (between March 29th-April 5th), 

which is shorter than expected given the difference in GDD. The confidence intervals are very 

small for ∑day, suggesting low uncertainty and more accurate values. An analysis looking more 
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closely into the differences in ∑day values between species and across different elevations and 

latitudes was conducted; the results are displayed in Fig. 7.  

 

 

Figure 7: 10th percentile estimates for ∑day at a 95% confidence interval for each species at high and low 

elevation ranges and latitudes. 

 

 

Fig. 7 displays the 10th percentile estimates for ∑day at a 95% confidence interval for 

each species at high and low elevations and latitudes. Appendix B and C specify low and high 

elevation and latitude ranges, respectively, while Appendices D, E, F, and G show the 

geographic ranges of the observations tested. High elevations resulted in more ∑day values than 

at low elevations within a species for all three species, with B. bimaculatus and B. impatiens 

demonstrating statistical significance. Between high and low elevation emergence times within a 

species, B. bimaculatus has a difference of about 9 days, B. griseocollis with about 3 days, and 

B. impatiens with about 8 days. This supports the hypothesis, which states that the number of 

days it takes to reach the emergence time will increase with elevation. However, between all 



24 

 

three species the emergence times for high and low elevation are notably close to each other and 

do not differ in a statistically significant manner, which was unexpected. At high elevations, the 

three species only differ in one or two days at most (April 7-8th). At low elevations, the days 

differ a bit more, with about 2-5 days separating the species (March 29-April 4th). This goes 

against the hypothesis that ∑day values will differ between species at both high and low 

elevations and latitudes.  

High latitudes resulted in more ∑day values than low latitudes within a species for all 

three species, with all three species demonstrating statistical significance. Between high and low 

latitude emergence times within a species, B. bimaculatus has a difference of about 19 days, B. 

griseocollis with about 5 days, and B. impatiens with about 5 days. This supports the hypothesis, 

which states that the number of days it takes to reach the emergence time will increase with 

latitude. However, emergence days are very close for all three species at high latitudes, and the 

differences are not statistically significant. At high latitudes, the three species differ only in a few 

days, one or two days at most (April 6-8th). This goes against the hypothesis that ∑day values 

will differ between species. At low latitudes, the days differ a bit more (March 21st-April 3rd) 

and significant differences are seen between B. bimaculatus and both B. griseocollis and B. 

impatiens, though not between B. griseocollis and B. impatiens. This suggests that the three 

species at high latitudes do not experience a significant difference in ∑day, while at low latitudes 

there is more a bit more interspecies variation.  

 As the geographic range and sample size for this study were relatively large, this finding 

is puzzling, as only half of the hypothesis was supported. High elevations and latitudes resulted 

in later emergence times than low elevations and latitudes, just as expected. But between species, 

the emergence times at high elevations and latitudes are very close and do not differ 
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significantly, going against the hypothesis. As variation in GDD values are dependent on 

location and ∑day values are not, tests were run to determine if a relationship between 

geographic location and GDD is present; results are displayed in Fig. 7 and Fig. 8.  

 

 

Figure 8: 10th percentile estimates for GDD at a 95% confidence interval for each species at high and low 

elevation ranges and latitudes. 

 

 

Fig. 8 displays the 10th percentile estimates for GDD at a 95% confidence interval for 

each species at high and low elevation ranges and latitudes. Appendix B and C specify low and 

high elevation and latitude ranges, respectively, while Appendices D, E, F, and G show the 

geographic ranges of the observations tested. Within a species, high elevations resulted in fewer 

GDD than low elevations across all three species, with B. bimaculatus and B. impatiens showing 

significantly lower GDD at high elevations. Between high and low elevation observations within 

a species, B. bimaculatus has a difference of about 59 days, B. griseocollis with about 22 days, 

and B. impatiens with about 60 days. This goes against the hypothesis, as it shows GDD 

variation within a species across elevations despite the prediction that GDD would remain 
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constant across latitudinal and elevational gradients. What’s additionally puzzling is that GDD 

values at low elevations between species are not statistically significant between B. bimaculatus 

and B. griseocollis; rather, they are a mere day apart in GDD. However, at high elevations, the 

difference in GDD between the three species is statistically significant, suggesting interspecies 

variation at high elevations. At low elevations the results go against the hypothesis that GDD 

will vary significantly between species, while at high elevations the results support this 

hypothesis.  

Similarly, high latitudes resulted in fewer GDD than low latitudes within each species, 

with all three species demonstrating statistical significance. Between high and low latitude 

observations within a species, B. bimaculatus has a difference of about 57 days, B. griseocollis 

with about 53 days, and B. impatiens with about 96 days. This also goes against the hypothesis, 

as this finding demonstrates a variation in the temperature accumulation necessary for queen 

bees to emerge across different environments, despite the prediction that species emerged at the 

same measure of heat accumulation. Between species, the difference in low latitudes is not 

statistically significant for all three species, while high latitudes are. This suggests that the three 

species at low latitudes do not experience a significant difference in GDD, while at high latitudes 

there is more interspecies variation. 

 

 

DISCUSSION  
 

 The results show that the cumulative percentage of observations for all species were 

accelerating the most in week 5, suggesting that queen bee emergences currently occur most 

frequently in the week of March 29th-April 4th. B. bimaculatus emerges first, B. impatiens 

emerges second, and B. griseocollis emerges third. Emergence dates occur later at high latitudes 
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and elevations, aligning with the hypothesis. Interestingly, species differences in emergence 

dates are seen to be much less pronounced at higher elevations and latitudes. GDD responds 

similarly to high elevation and latitude within a species; higher elevations and latitudes result in 

fewer GDD while lower elevations and latitude result in more GDD. This goes against the 

hypothesis that the GDD for queen bee emergences remain constant within a species across 

latitudinal and elevational gradients.  

The finding that B. bimaculatus emerges first, B. impatiens emerges second, and B. 

griseocollis emerges third is consistent with previous field studies by T’ai Roulston, an 

ecological researcher at Blandy Experimental Farm, the University of Virginia’s research 

facility. Confirming this trend increases the validity of the other findings. The predicted date of 

emergence times (March 29th-April 4th) is a novel contribution in this field and can be used in 

future estimates to predict emergence times. 

Emergence times occur later at high elevations and latitudes across all three species, 

aligning with the hypothesis (as these areas are historically colder and therefore hypothesized to 

slow emergence time). However, curiously enough, species differences in emergence dates are 

much less pronounced at higher elevations and latitudes, only differing in their ∑day value by 

one or two days. Additionally, at lower elevations, the emergence date between species was not 

found to be significantly different. This finding, combined with the significant variation in GDD 

across all elevations and latitudes, suggests that temperature is not the driving factor of queen 

bee emergence times, as previously believed (Bartomeus et al., 2011, Belitz et al., 2021, & 

Hegland et al., 2009, Pawlikowski et al., 2020). However, since emergence times still occur later 

at high elevations and latitudes, temperature still likely plays a role, though a less relevant one 

than previously believed. This finding suggests that perhaps bumblebees have an internal 
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regulating mechanism to determine emergence time based on day length and year progression as 

opposed to heat accumulation. This combined with a predetermined minimum threshold 

temperature for emergence is a likely explanation.  

GDD is shown to vary considerably between species across all latitudes and elevations. 

This result was expected, but was unexpected in conjunction with the ∑day values being very 

close (4-6 days apart) between species. As GDD and ∑day have a Pearson correlation coefficient 

of 0.54, the trends for these variables were expected to be more similar. As temperature 

accumulation is somewhat dependent on the number of days passed, the fact that these values are 

so close suggests that location played a role in emergence times, going against the hypothesis.  

GDD varies considerably within a species for high and low elevations and latitudes. This 

disproves the hypothesis that GDD will remain constant for a species, regardless of the elevation 

and latitude. This suggests that temperature accumulation is not the driving factor of emergence 

times, as was widely believed (Bartomeus et al., 2011, Belitz et al., 2021, & Hegland et al., 2009, 

Pawlikowski et al., 2020). GDD was considerably lower at higher elevations and latitudes, which 

is likely due to the colder average temperatures at these locations. Logically, this makes sense as 

to why the GDD accumulation was so different in different locations. However, this does not 

explain the difference in emergence times. Since it was believed that bumblebees are reliant on a 

certain amount of heat accumulation to emerge, the statistically significant results proving 

otherwise disproves this hypothesis.  

It is only logical to assume that GDD would drive queen bee emergence, as temperature 

is widely known to determine the completion of many insect life stages (Damos & Savopoulou-

Soultani 2012). However, since queen bees overwinter as fully mature and fertile adults, perhaps 

GDD are not a suitable metric for measuring emergence time. This will require further studies; 
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however, an interesting paper by Keaveny et al. (2022) found that pre-wintering queen bees are 

the most freeze tolerant, freezing at significantly lower temperatures than queen bees lacking 

ovary development. This suggests that queen bumblebees are resilient to extreme temperatures. 

This idea is supported by a 2021 study by Maebe et al., which states that bumblebees exhibit 

plastic and adaptive responses to climate change. Bees are surprisingly resilient to thermal stress, 

so this may also be a contributing factor (Quinlan et al., 2023) 

Nevertheless, these findings are an interesting contribution to the literature surrounding 

Bombus phenology and emergence times of queen bees. Previous studies surrounding shifts in 

phenology for pollinators point to temperature as a driving factor (Bartomeus et al., 2011, Belitz 

et al., 2021, & Hegland et al., 2009, Pawlikowski et al., 2020). However, this study reveals that 

day accumulation, especially at high elevations and latitudes, drives Bombus emergence times 

more than temperature accumulation. Temperature accumulation may still play a role, though a 

less significant one than previously believed. As queen bees overwinter in the ground, perhaps a 

future study could examine soil degree days (or heat accumulation in soil) as opposed to GDD. 

The relationship between air temperature and soil temperature is very complex and would 

require a new study.  

However, this research is not without error. A variety of factors could have contributed to 

biases in the data. The most notable example is geographic bias; as observation data for 

iNaturalist and GBIF are reliant on outside observers, observations were clustered in areas with 

lots of people, such as major cities. Notable examples include DC, Philadelphia, Pittsburgh, 

Richmond, and Norfolk. This means that observations were pulled disproportionately across the 

geographic extent of this study. For example, there were hardly any observations in northwest 

Pennsylvania, which may have affected the results. When splitting the points into high and low
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 elevation, Appendix E shows a large concentration of observations on the coast for low 

elevation observations; while extending almost the full latitudinal gradient, the observations are 

all on one side of the geographic range. The methodology attempted to account for these biases 

by running multiple iterations and randomly sampling the data with replacement, though whether 

it was sufficient or not is hard to say. Additionally, as observers are also impacted by climatic 

variables, it’s safe to assume that not many observations were taken when the weather was 

unpleasant, leading to inconsistencies in the dataset. Observers are subject to personal error and 

differing objectives. Or perhaps an observer may have tried to observe a bee but could not get the 

necessary support to obtain the “research grade” status.  

Another important factor to consider is the distribution of the observations throughout 

time. Although this study focused on the ∑day variable (the number of days that had passed from 

January 1st until the date of the observation), observations were taken at different years, which 

has the ability to affect this variable. As observations span the years 2002-2023, climate change 

within this window was not taken into account, as it was assumed to be relatively minor. 

However, this undeniably increases heterogeneity into the dataset, and its effect on the results 

remains uncertain. It’s also important to note that a large majority of the dataset occurred more 

recently, in the last 10 years (93.12% of B. bimaculatus observations, 89.02% of B. griseocollis 

observations, and 94.99% of B. impatiens observations). Additionally, the ratio between 

iNaturalist and GBIF data was not evenly distributed, with iNaturalist observations taking up the 

bulk of the dataset (84.10% of B. bimaculatus observations, 76.52% of B. griseocollis 

observations, and 82.73% of B. impatiens observations). Both of these factors may have 

contributed to unintentional bias within the dataset.
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Lastly, an additional source of bias could be related to the time constraints on the 

analyses. As the initial 100 iterations took upwards of 30 hours to complete just one analysis, it 

had to be reduced to 25, which may have impacted the accuracy of the results. Additionally, as 

observation dates likely occur a bit after the actual emergence time of a queen bee, the 

estimations of GDD and ∑day are likely slight overestimates.  

Despite these challenges, this research was conducted with the highest level of academic 

integrity and precision. By using citizen science data (as other professional researchers do), this 

study was able to span a large spatial and temporal extent, increasing the sample size. Not only 

did this improve the accuracy of the results, but it also allowed for a more comprehensive study. 

Additionally, as bumblebees are a charismatic and keystone species, data was readily available. 

Using the phenesse package (specifically designed for presence only data) eliminated much bias 

from the results and allowed the study to be more plausible.  

 

 

CONCLUSION 

 

It was expected that GDD would remain constant across varying climatic conditions, as 

GDD was predicted to be the driver of queen bee emergences. However, as GDD varied 

significantly across elevational and latitudinal gradients, temperature was determined to have 

less influence on queen bumblebee emergence times. Curiously, phenology differences at high 

elevations and latitudes are not very pronounced, as emergence times only differ by a couple of 

days between species. This suggests that day accumulation in these environments plays a larger 

role than temperature in determining emergence times. Future research examining the 

mechanism that triggers queen bee emergence, the amount of time queen bees overwinter, or the 

impact on soil degree days on queen bee emergence times would supplement this study. 
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APPENDIX 

 
 

Appendix A: Table of the 10th percentile estimates for GDD, ∑ppt, and ∑day at a 95% confidence 

interval for each species across all elevations and latitudes. 
 

 B. bimaculatus B. griseocollis B. impatiens 

GDD (days) 164.1554 199.1916 142.6865 

     Low confidence interval 153.4666 182.0855 131.1762 

     High confidence interval 173.7045 221.3157 157.2267 

∑ppt (mm) 194.0294 212.5128 196.2503 

     Low confidence interval      187.5793 199.2048 188.672 

     High confidence interval 200.2988 222.3053 205.1232 

∑day 87.71646 94.82543 92.53571 

     Low confidence interval 86.1187 92.76699 90.66567 

     High confidence interval 89.07981 97.10491 94.16812 

 
 

Appendix B: Table of the 10th percentile estimates for GDD and ∑day at a 95% confidence interval for 

each species at high and low elevation ranges.  
 

  B. bimaculatus B. griseocollis B. impatiens 

 

 

 

 

GDD 

Low elevations 209.127 208.1409 164.5073 

     Low confidence interval 182.8072 179.6795 133.2312 

     High confidence interval 243.9211 243.6296 200.0405 

High elevations 149.9673 185.7798 104.8676 

     Low confidence interval 132.7204 157.8529 91.22399 

     High confidence interval 173.2256 211.9742 122.1987 

 

 

 

 

 

∑day 

Low elevations 88.69827 93.68974 87.93089 

     Low confidence interval 85.98963 88.85495 83.63153 

     High confidence interval 93.21745 97.08884 93.54455 

High elevations 98.12851 97.30212 96.06624 

     Low confidence interval 94.87101 93.45352 92.90968 

     High confidence interval 101.3413 100.1102 99.27751 

 

Elevation 

ranges (m) 

Low elevations lower bound -0.600000024 -0.5930 -0.7490 

Low elevations upper bound 5.8256187 37.5125 10.1269 

High elevations lower bound 283.5260522 81.7268 361.0634 

High elevations upper bound 941.9396182 739.4696 856.9349 
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Appendix C: Table of the 10th percentile estimates for GDD and ∑day at a 95% confidence interval for 

each species at high and low latitudes. 
 

  B. bimaculatus B. griseocollis G. impatiens 

 

 

 

 

GDD 

Low latitudes 213.4749 238.1061 220.4954 

     Low confidence interval 181.5946 214.2847  191.0432 

     High confidence interval 242.8334 274.2964 250.6205 

High latitudes 155.8141 184.9444 123.6322 

     Low confidence interval 135.3451 156.9333 106.0799 

     High confidence interval 173.9335 215.1187 141.8712 

 

 

 

 

 

∑day 

Low latitudes 80.1395 92.52928 89.56875 

     Low confidence interval 74.77131 90.04596 85.93245 

     High confidence interval 84.32757 96.72432 93.04042 

High latitudes 98.86223 98.25564 95.98346 

     Low confidence interval 94.9104 95.36361 91.80174 

     High confidence interval 102.7416 100.8022 99.9454 

 

Latitude Ranges 

(decimal degrees) 

Low latitudes lower bound 36.6072 36.7611 36.6996 

Low latitudes upper bound 37.7411 38.8916 38.3376 

High latitudes lower bound 40.1899 39.2677 40.2541 

High latitudes upper bound 42.0612 40.8001 42.2109 
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Appendix D: Species distribution of the highest 100 elevations for each Bombus species within the spatial 

resolution of this study. Point data was generated in ArcGIS Pro 3.1.4 and pulled from iNaturalist and 

GBIF. B. impatiens observations are in blue, B. griseocollis observations are in green, and B. bimaculatus 

observations are in yellow.  

 

 



39 

 
 
Appendix E: Species distribution of the lowest 100 elevations for each Bombus species within the spatial 

resolution of this study. Point data was generated in ArcGIS Pro 3.1.4 and pulled from iNaturalist and 

GBIF. B. impatiens observations are in blue, B. griseocollis observations are in green, and B. bimaculatus 

observations are in yellow.  
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Appendix F: Species distribution of the highest 100 latitudes for each Bombus species within the spatial 

resolution of this study. Point data was generated in ArcGIS Pro 3.1.4 and pulled from iNaturalist and 

GBIF. B. impatiens observations are in blue, B. griseocollis observations are in green, and B. bimaculatus 

observations are in yellow.  
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Appendix G: Species distribution of the lowest 100 latitudes for each Bombus species within the spatial 

resolution of this study. Point data was generated in ArcGIS Pro 3.1.4 and pulled from iNaturalist and 

GBIF. B. impatiens observations are in blue, B. griseocollis observations are in green, and B. bimaculatus 

observations are in yellow. 


