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ABSTRACT

Despite their impressive performance in natural language generation tasks, Large Language Models
(LLMs) still face critical challenges in text summarization. In particular, the performance of LLMs in
abstractive text summarization and the limitations of existing evaluation frameworks warrant further
investigation. In this work, we present a comprehensive analysis of summarization evaluation metrics,
covering lexical overlap, semantic distance, factual consistency, and recent LLM-based methods.
Employing these metrics as evaluation tools, we empirically assess the performance of summarization
models across the LLaMA, and Gemma model families, utilizing datasets from diverse domains to
provide an examination of the capabilities of current LLMs in abstractive text summarization tasks.
To address limitations of current metrics, we introduce the concept of self-consistency and propose a
novel consistency score to assess the reliability of text summarization models.

Keywords Abstractive Text Summarization · Text Generation · Natural Language Processing

1 Introduction

Abstractive text summarization plays a crucial role in Natural Language Processing (NLP) to generate informative
and concise summaries in a natural and readable format, allowing people to understand articles rapidly. With the
development of Large Language Models (LLMs), many works produced the promising performance of zero-shot
LLMs on abstract summarization tasks [1] [2], demonstrating that state-of-the-art (SOTA) LLMs perform on par with
human-written summaries. This reveals the great potential of LLM as an excellent text summarization tool.

Current research on abstractive summarization mainly focuses on faithfulness metrics, prompting engineering, and
instruction tuning. For example, some research [3] [4] dedicate to applying LLMs to provide several benchmark
datasets and metrics, evaluating summarization from different aspects. SumCoT [5] presents COT-based prompts
in abstractive summarization by progressive generation, guiding LLMs to incorporate details into final summaries.
Besides, [6] proposes the Dense of Thoughts (DoT), which generates less biased summaries by collecting GPT-4 [7]
outputs. Instruction tuning is also a popular topic to improve models for abstractive summarization in specific domains.
For example, KEITSum [8] fine-tunes a small-scale LLM by identifying key elements and instructing the LLM to
generate summaries with key elements. However, in the field of text summarization using large language models
(LLMs), there is a lack of systematic categorization and analysis of limitations in existing metrics, as well as insufficient
experimental evaluation of summarization performance across diverse subject areas and mainstream LLMs, particularly
those employing zero-shot approaches.

In this work, we conduct a comprehensive survey of text summarization evaluation metrics, encompassing a wide
range of approaches. Our investigation covers traditional lexical overlap metrics such as ROUGE [9] and BLEU [10],
semantically informed metrics like BERTScore [11] and MoverScore [12], and factual consistency indicators, including
classification-based and QA-based methods [13, 14]. Additionally, we explore recent LLM-based metrics [15] and
generalized text generation evaluation approaches [16]. We analyze the underlying strategies, inherent strengths and
limitations, and specific application domains of typical metrics. Our aim is to provide a thorough survey of text
summarization evaluation metrics, offering researchers a holistic perspective.
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After systematically investigating metrics, we selected 13 metrics, including reference-based, source-based, and LLM-
based types, to evaluate the performance of LLaMA [17] and Gemma [18] in abstractive text summarization. The
datasets we selected consist of news, academia, and stories, including classic CNN/DM [19], XSum [20], the latest
manually annotated AnnotationNews , StorySumm , and Arxiv 2025. We analyzed the experimental results from
evaluation dimensions, dataset topics, and overall model performance, aiming to provide an analysis of the performance
of mainstream LLMs in abstractive text summarization tasks.

Considering the limitation of existing metrics, we first formulate a mathematical definition of reliability based on
multiple outputs. We define summarization reliability as the consistency of the summarization system outputs for a
given source document. This definition is inspired by the observation of the recent LLM summarization systems and
aims to provide a complementary measurement of system performance in addition to standard evaluation metrics (e.g.,
ROUGE and BERTScore). In the zero-shot setting, existing LLMs can generate a summary that considerably overlaps
with the reference summary. This explains the promising system performance under existing metrics.

However, we argue that (1) the reliability of a summarization system cannot be measured with single outputs, and (2)
the problematic summary is often caused by the difference between multiple outputs from the same input. Specifically,
we propose to measure the system outputs with a novel approach that calculates the score of summarization output
overlap, quantifying it as the consistency score. This simple measurement does not require deep semantic understanding,
which by itself is still an open question, and is sufficient enough to reveal some limitations of existing summarization
systems, as demonstrated in 6.

In summary, our contributions include:

• We conduct a detailed analysis and classification of existing text summarization metrics, highlighting their
strengths and limitations.

• We evaluate the general performance of abstractive text summarization tasks by assessing six LLMs, across
six datasets from diverse fields and thirteen metrics of varying dimensions.

• We introduce a novel consistency score pipeline for evaluating LLM reliability in text summarization, which
computes overlap scores based on multiple model outputs after merging words with semantic similarity.

2 Background

2.1 Abstractive Summarization in LLM Era

In the domain of NLP, abstractive text summarization evolved from extractive text summarization, aiming to produce
smoother and more concise summaries. Entering the era of deep neural networks, abstractive summarization has made
significant progress with Seq2Seq models [21] [22] and attention mechanisms [23], which allow the model to map
relationships between input text and output summary by flexibly focusing on the important parts of the original text.

In recent years, there have been two major upgrades in model size and data magnitude, leading people to focus
on different approaches to abstractive summarization. The first upgrade, to models with billions of parameters and
large-scale datasets [21] [24], introduced pretrained language models (PLMs) such as BART [21] and RoBERTa [24],
using bidirectional encoding and autoregressive decoding to greatly enhance summarization performance and giving
rise to many fine-tuned PLMs [22] [25] [26] for abstractive summarization. The second upgrade, to models with
hundreds of billions of parameters, brought forth LLMs. The main difference in handling NLP tasks is that LLMs are
able to perform well via zero-shot prompts. However, current research on abstractive summarization using zero-shot
LLMs primarily focuses on human evaluation of large-scale closed-source models [2]. We chose LLaMA [17] and
Gemma [18] models as baselines to provide a perspective on small-scale open-source models, complementing existing
evaluation results with a starting point for analyzing performance in summary generation within LLMs.

2.2 Consistency in LLM summarization

Researchers point out that when LLMs are hesitant and hallucinate about some content, they tend to produce inconsistent
responses to the same input. This assumption is initially from self-consistency [27]. Following that, to generalize
self-consistency into universal tasks, universal self-consistency [28] is presented by constructing a prompt that guides
the model to choose the most consistent response by itself, resulting in improvement of reliability.

Additionally, SliSum [29] applies consistency to improve model performance in summarization, focusing on local-output
consistency and logical consistency, respectively. SliSum divides the source article into multiple overlapping windows
and aggregates local summaries by voting to improve fidelity, but with a high complexity resulting in the time spent
being approximately double that of the original baseline. In addition, SelfCheckGPT [30] assumes that if the LLM
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Figure 1: Current Text Summarization Metrics

understands the given concept, the sampled response is likely to contain consistent facts. However, for hallucinations,
randomly sampled responses may appear close but contradict each other. Using a sampling-based method, it is possible
to detect non-factual and factual sentences and sort paragraphs according to factuality.

These works inspired us to design a novel consistency score that introduces the concept of self-consistency as an
evaluation metric to smooth out the interruptions in text summarization systems.

3 Automatic Metrics in Text Summarization

To align with human evaluation, relevance, coherence, fluency, and informativeness have consistently been the
focus of text summarization evaluation. To efficiently measure these dimensions, various strategies for automatic
metrics have emerged. We primarily categorize these metrics from a dependency perspective into reference-based
metrics and source-based metrics, which respectively rely on reference summaries and source text to evaluate the
performance of summarization systems. Reference-based metrics often employ different strategies to measure the
similarity between reference summaries and generated summaries, while source-based metrics aim to check whether the
generated summaries are faithful to the original text, usually serving as a dimension for evaluating factual consistency.
Furthermore, we separately categorize LLM-based metrics to introduce the novel metrics based on the latest LLM
technologies. Additionally, we also mention some general metrics for text generation tasks, such as redundancy and
readability, which also offer perspectives for evaluating summary quality.

3.1 Reference-based Metrics

3.1.1 Lexical Overlap Metrics

Early in the development of NLP tasks, lexical overlap metrics were the main tools for evaluating text generation tasks,
such as ROUGE-N (Equation 1) and ROUGE-L (Equation 2).ROUGE-N measures the recall by calculating the degree
of N-gram overlap between predicted summaries and reference summaries, which reflects the coverage of the generated
text at the N-gram level; while ROUGE-N measures the recall by calculating the degree of N-gram overlap between
predicted summaries and reference summaries, which reflects the recall of the generated text. text coverage at the
N-gram level, while ROUGE-L evaluates the similarity of sequence structures based on the longest common suffix
(LCS) from the recall perspective. Both metrics are still frequently used in current text summarization tasks.

ROUGE-N =

∑
S∈{Reference Summaries}

∑
gramn∈S

min (Countmatch(gramn),Countref(gramn))∑
S∈{Reference Summaries}

∑
gramn∈S

Countref(gramn)
(1)
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ROUGE-L =
LCS(Reference,Prediction)

len(Reference)
(2)

In addition, there are BLEU [10] and its variant GLEU [31], which are often used as supplements for summary quality
assessment; BLEU evaluates the quality of generated summaries from the accuracy point of view mainly by calculating
the n-gram matches between predicted summaries and reference summaries; while GLEU, as an improved version of
BLEU, further optimizes the evaluation of the short texts and the diversity of generation. For each n-gram, GLEU
counts the number of times it occurs in the generated text and the reference sentence, and then takes the smaller value of
the two times as the number of valid matches of the n-gram, in order to avoid the under-penalization or over-penalization
problem that may occur in BLEU. METEOR [32], on the other hand, supplements the lexical matching with the
consideration of synonyms, stemmed forms and semantically similar expressions, combining precision, recall and
semantic alignment to further improve the comprehensive evaluation of the quality of the generated text.

Highlights Vocabulary overlap metrics are simple, easy to understand, and highly interpretable. We can easily
understand the logic behind them. In addition, evaluating text with these metrics is fast and extremely inexpensive to
implement.

Limitation However, the limitations of these metrics are equally significant. As a purely statistical method, lexical
overlap metrics are not directly related to semantic content and logical structure, and can only rely on superficial formal
matches that do not capture the deeper meaning or contextual coherence of the text. For example, summaries with
perfectly correct semantics but different wordings may be rated low, while summaries with high lexical overlap but
confusing logic may receive high scores. In addition, the lack of sensitivity of such metrics to synonymous expressions,
sentence variations, or creative uses of language makes it difficult to effectively assess the quality of predictions in
complex task generation tasks.

3.1.2 Vector Distance Metrics

In the process of developing pre-trained language models (PLM), the researchers realized the advantage of embedding
as a textual representation - it can capture semantic information to a certain extent, thus compensating for the inadequacy
of statistical lexical methods in understanding the meaning of text. Based on this realization, they proposed evaluation
metrics such as BERTScore [11] and MOVERScore [12].

BERTScore (Equation 3) utilizes the contextual word embeddings generated by BERT to measure the degree of semantic
agreement between two texts by calculating the cosine similarity between each word in the generated summary and each
word in the reference summary, and adopting the greedy maximum matching strategy. This approach not only takes
into account the surface form of the words, but also reflects the semantic information related to the context, making the
evaluation results closer to human judgment of text similarity.

BERTScore = F1 = 2 · P ·R
P +R

(3)

• P = 1
|x̂|

∑
x̂i∈x̂ maxxj∈x cos(x̂i, xj) refer to the Precision, calculating the average cosine similarity of each

token in the generated sentence x̂ with the most similar token in the reference sentence x;
• R = 1

|x|
∑

xj∈x maxx̂i∈x̂ cos(xj , x̂i) refer to the Recall, calculating the average cosine similarity between
each token in the reference sentence x and the most similar token in the generated sentence x̂;

• cos(·, ·) represents the cosine similarity between the contextual embeddings of two tokens.

MOVERScore (Equation 4) goes a step further on this basis. It combines word embedding with optimal transmission
theory to provide a more comprehensive measure of text similarity by calculating the Wasserstein distance between the
generated summary and the reference summary in the semantic embedding space. MOVERScore not only focuses on
the matching of local word pairs, but also takes into account the alignment of the overall semantic structure, and thus it
can better deal with long texts or summaries with complex semantic distribution. These metrics redefine text similarity
evaluation from the perspective of word embedding, and provide a more refined analytical tool for semantic alignment
between generated summaries and reference summaries.

MOVERScore = F1 = 2 · P ·R
P +R

(4)

Where:
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• P = 1
|x̂|

∑
x̂i∈x̂ maxxj∈x(1−WMD(x̂i, xj)) represents precision, which calculates the similarity between

each token in the generated sentence x̂ and the most matching token in the reference sentence x;

• R = 1
|x|

∑
xj∈x maxx̂i∈x̂(1−WMD(xj , x̂i)) Recall, which calculates the similarity between each token in

the reference sentence x and the most matching token in the generated sentence x̂;

• WMD(·, ·) represents the Word Mover’s Distance, which calculates the distance between two tokens based
on word embedding.

Highlights These metrics introduce word embeddings to represent semantic information, greatly compensating for the
shortcomings of traditional lexical overlap metrics. By capturing the semantic relationship between words, they can
reflect the meaning of the text to a certain extent, rather than limiting themselves to superficial lexical matching, thus
improving the depth and accuracy of the evaluation.

Limitation However, these word embedding-based metrics also have obvious drawbacks. First, they are not sufficiently
stable, which means that the evaluation results are highly dependent on the pre-trained word embedding model used.
Different models or training data can lead to significant differences in results. Second, word embeddings have limited
representativeness and cannot fully capture complex syntactic structures or long-distance dependencies. For example,
BERTScore may suffer from scoring bias when dealing with texts with the same semantics but different sentence
structures, and MOVERScore may perform poorly in short text evaluation when the computational complexity is high.
These issues limit their reliability and generalizability in practical applications.

3.1.3 Fine-tuned Model Metrics

In addition to designing algorithms to compare the similarity between predicted summaries and reference summaries
by calculating the distance between word embeddings, the researchers explored another idea - directly fine-tuning
the pre-trained model as an evaluation metric. This approach capitalizes on the powerful language comprehension
capabilities of PLM by fine-tuning them for a specific task and directly outputting a score for the quality of the generated
text.

BARTScore [16] is representative of this idea. As the calculation in Equation 3.1.3 it assumes that high-quality
summaries should have a higher probability of being generated, transforms summary evaluation into a conditional
generation task, and utilizes the model’s likelihood estimation capabilities to measure the performance of predicted
summaries in terms of semantics, fluency, and fidelity. Similarly, BLEURT [33] focuses on the semantic consistency
between the generated text and the reference text by fine-tuning the pre-trained model.BLEURT first performs supervised
training on large-scale manually labeled scoring data to enable it to predict the quality scores of the generated text with
respect to the reference text.BLEUR combines pre-training representations with supervised learning, which is more
sensitive to semantic nuances and contextual dependencies. sensitive to semantic nuances and contextual dependencies.

BARTScore =
1

|x̂|
∑
x̂i∈x̂

logP (x̂i|x; θ) (5)

Where:

• x̂ represents the generated sentence, x represents the reference sentence;

• P (x̂i|x; θ) represents the conditional probability of the tag x̂i in the generated sentence given the reference
sentence x and the model parameter θ, calculated by the BART model;

• |x̂| represents the length of the generated sentence x̂.

Highlights These trainable models can be flexibly adapted to the requirements of different languages and tasks, taking
full advantage of the powerful semantic comprehension capabilities of PLM that can capture lexical, syntactic, and
paragraph-level semantic information as well as textual coherence beyond the limitations of the traditional word-
embedding distance computation.

Limitations However, there are also risks to the stability and generalizability of these metrics. Evaluation results
often depend on the pre-trained model used and its fine-tuning process. For example, BARTScore scores may vary
depending on the BART model version or training data, while BLEURT performance is limited by the quality and
coverage of the supervised training data. Second, these metrics are computationally expensive, limiting their application
in resource-limited environments. And the interpretability of these metrics is poor. Due to the black-box principle of
neural networks, the exact reason behind similarity scores is not intuitive.
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3.2 Source-based Metrics

For text summarization or even text generation tasks, in addition to assessment using reference texts, assessment can
be performed using source texts such as FactCC [34], FactKB [35] and SummaC [13], to name a few, which provide
assessment in the absence of high-quality references. These metrics assess the generated text by directly comparing it to
the source document, usually focusing on factual consistency, implication or informativeness. Unlike reference-based
evaluation metrics, simple overlap or similarity cannot be used to directly compare source documents and abstracts
due to differences in structure and length. Therefore, source-based evaluation metrics usually involve training models
or specific analysis modules, such as Named Entity Recognition (NER), Knowledge Graph Construction or Syntactic
Analysis, Factual Consistency Verification, etc., to refine key information in the original text and abstracts through
additional modules to measure the consistency of the abstracts with the original text in terms of information retention,
logical consistency and factual correctness.

3.2.1 Classifier-based Metrics

SummaC is a PLM-based classifier designed to evaluate whether the summaries are faithful to the original source
documents. It is trained using a natural language reasoning-based approach and is able to detect misstatements or
information omissions in the generated summaries. The model operates by performing sentence-level comparisons
between the summaries and the source text and gives a fidelity score that reflects how well the summaries agree with
the information in the original document.

Moreover, FactCC (Equation 3.2.1) is a tool that specializes in detecting whether machine-generated summaries
contain factual errors. It is trained using an adversarial data augmentation strategy and enhances the robustness of
the model by artificially constructing erroneous summaries (e.g., substituting entities, numbers, causal relationships,
etc.). A classification model is then used to determine whether the content of the summary is consistent with the source
document.

FactCC(x̂, d) =
{
1 if P (Consistent|x̂, d; θ) > τ

0 otherwise
(6)

Where:
• x̂ represents the generated sentence, d represents the reference document;
• P (Consistent|x̂, d; θ) represents the probability that the NLI model (with parameter θ) predicts that the

generated sentence x̂ is consistent with the reference document d;
• τ represents the classification threshold, which is usually set to 0.5.

Highlights The advantage of this trained classifier is that it uses a natural language inference (NLI) method that
specifically detects logical and semantic consistency between the summary and the source document, rather than just
superficial text matching. Furthermore, the data used to train this evaluation classifier is often manually constructed
with positive and negative examples. By synthesizing data, researchers can customize and cost-effectively construct
evaluation classifiers, making them more sensitive to targeted data and factual errors.

Limitations Like fine-tuned model evaluation metrics, classifier-based metrics rely on training data and the generaliza-
tion ability of the model, and may have limited adaptability to different fields. Since it directly uses the end-to-end
model, it cannot analyze the error types in detail, resulting in low interpretability.

3.2.2 QA-based Metrics

In addition to classifier-based metrics, question-answering QA-based metrics are also widely used to assess the factual
consistency of summaries. The basic assumption is that a high-quality summary should retain the key factual details
from the original text, and thus be able to accurately answer the questions derived from it. QA-based metrics automate
this process using pre-trained QA models, which effectively detect omissions, illusions and distortions in the generated
summary. They have been shown to correlate closely with human judgments of factual consistency.

SummaQA [36] generates questions from the source document and checks whether the summary can answer these
questions correctly. QAFactEval [14] generates questions from the summary and assesses whether the original text
can answer them correctly. This process involves question generation and answer checking. For question generation,
these metrics usually use Cloze question generation to generate questions from key information in the original text
or summary, then have the QA model answer the questions based on the summary or original text, and finally use
exact match or F1 score to check the degree of match between the summary answer and the answer. These metrics
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assume that the degree of match between question answers reflects the degree of match between the original text and
the summary, that is, the fidelity of the generated summary.

In addition to SummaQA and QAFactEval, QuestEval [37]and FEQA [38] are also popular QA-based metrics. They
focus on illusion recognition, information omission and distortion by generating questions and answers from the
generated summary and source text.

Highlights QA-based metrics do not give a single overall score, but identify specific factual inconsistencies by verifying
whether the summary answers the source question correctly. These metrics improve interpretability to some extent. If
the summary does not answer a question correctly, it means that this piece of information may be missing or incorrect.
And because the method is based on fact-based questions and answers, it can be applied to various fields without the
need for a large amount of domain-specific annotations.

Limitations The quality of the indicators based on quality assurance largely depends on the quality of the quality
assurance model. If the model performs poorly, it may generate meaningless questions or fail to correctly locate the
relevant answers in the original text, leading to misjudgments and affecting the final score.

3.2.3 Other Source-based Metrics

Additionally, there are also some innovative metrics using various methods to measure the faithfulness of generated
summaries from different perspectives. For example, FactGraph [39] parses the summary and the original text into
triples based on the knowledge graph, and matches the factual relationship to determine the consistency. FactKB [35]
extracts entities and relationships from the summary, and then queries the external knowledge base to evaluate whether
the summary contains false facts. The specific calculation process of FactKB refers to Equation 3.2.3. SUPERT [40]
uses a text clustering algorithm to extract important sentences in the original text and compares them with the reference
summary to determine the similarity. BLANC [41] masks some words in the source text, and then lets the model
supplement the mask based on the summary to evaluate the fluency and information richness. These metrics have
different focuses and aim to provide more fine-grained automated quality assessment and improve the reliability of
summary evaluation from multiple dimensions..

FactKB(x̂, d) =
1

|x̂|
∑
x̂i∈x̂

P (Consistent|x̂i, d; θ) (7)

Where:

• x̂ represents the generated text (such as summary), d represents the reference document or knowledge base;

• x̂i represents the ith sentence or token in the generated text;

• P (Consistent|x̂i, d; θ) represents the probability that the pre-trained model (with parameter θ) predicts that
the sentence x̂i is consistent with the reference document d;

• |x̂| represents the total number of sentences or tokens that generate the text x̂.

3.3 LLM-based Metrics

In recent years, with the rise of billion-level large models such as GPT, researchers have also begun to consider using
their powerful semantic understanding capabilities as evaluation tools. The first attempt was GPTScore [42], which is
similar to BART and can calculate the probability of generating a summary to illustrate the degree of match between the
summary and the original text. However, GPTScore is based on the GPT-3/4 model, which has stronger generalization
capabilities and does not require fine-tuning. GPTScore has been extensively experimented with on four text generation
tasks, 22 evaluation aspects, and 37 corresponding datasets, and has achieved results that are far superior to ROUGE
scores and similar to human ratings.

G-eval [43] uses LLM to directly assess the quality of the summary. It designs specific prompts for LLM to score
from the dimensions of coherence, consistency, fluency, and relevance, and returns a score of 1-5. The prompts used
by G-Eval are combined with a chain of thoughts to guide LLM in step-by-step reasoning, improving the stability
and interpretability of the assessment. Their experiments show that G-Eval, with GPT-4 as the backbone model, has a
Spearman’s correlation coefficient of 0.514 with humans in the summary task, which is much better than most existing
evaluation methods.

In addition, the researchers also proposed the lightweight UniEval [44] and MiniCheck [45] for source text-based
text summary evaluation. UniEval converts the criteria into a question-answering task. It can evaluate reference-free
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summaries, offers versatility and supports fine-tuning. MiniCheck focuses on verifying facts and assessing factual
consistency in generated text. It assesses consistency by comparing generated text with the source text, without reference
summaries, and focuses on hallucination detection. MiniCheck uses GPT-4 to construct synthetic training data to build
a small fact-checking model with GPT-4-level performance but 400 times lower cost. The synthetic data is created from
real but challenging factually incorrect examples through a structured generation process in order to teach the model to
check each fact in the generated summary and identify syntactic information between sentences.

These LLM-based Metrics explore the foundations of traditional frameworks and extend classical approaches by
leveraging the powerful semantic understanding and generation capabilities of LLMs, with the aim of aligning with
human assessments.

Highlights Due to LLM’s strong language comprehension capabilities, LLM-based metric scoring is usually closer
to manual scoring than traditional automatic evaluation metrics. The correlation between most LLM-based metrics
and human assessment is far higher than that of traditional Lexical Overlap. In addition, since LLM can be guided by
fine-tuning and prompting engineering, it provides researchers with more ways to evaluate model modeling than full
parameter training models, enhancing the flexibility and comprehensiveness of evaluation.

Limitations However, the computational resource consumption of LLM is clearly a challenge. For closed-source
models, calling the API to deploy LLM-based Metrics will be billed in tokens. For open-source models, deploying an
LLM with hundreds of billions of parameters for inference and evaluation requires a lot of computational resources.
Whether training, inferring, or evaluating LLM, the trade-off between effectiveness and cost is always an unavoidable
issue.

3.4 Other metrics for text generation

3.4.1 Redundancy

For redundancy, commonly used metrics in text generation include N-gram repetition and Distinct-n [46]. N-gram
repetition measures the frequency of repeated n-grams in a text. It assumes that a high frequency of N-gram repetition
indicates redundancy. Distinct-n calculates the diversity of n-grams in a text. For example, Distinct-1 and Distinct-2
measure the ratio of unique single letters and bigrams relative to the total number of tokens. For Distinct-n, lower scores
indicate fewer unique n-grams and higher redundancy.

3.4.2 Informativeness

An equally important dimension as redundancy is information content. From the perspective of human evaluation, a
high-quality summary should contain rich information, which is consistent with the purpose of the summary system.
Commonly used informativeness metrics include content density and TF-IDF [47]. Content density uses techniques
such as named entity recognition to calculate the ratio of unique concepts or entities to the length of the text, thereby
measuring the amount of meaningful or unique information relative to the total number of words. TF-IDF identifies
keywords by evaluating their frequency in the generated text relative to their prevalence in the broader corpus. A high
TF-IDF score for a keyword indicates that the text emphasizes important concepts rather than generic or overly common
content.

4 Experiments

4.1 Datasets

4.1.1 News Summarization Datasets

For news summarization tasks, we select CNN/Daily Mail [19] and XSum [20] which are two widely used benchmarks
for text summarization. CNN/DM consists 312,085 news articles from CNN and Daily Mail. XSum consists 226,711
news articles from BBC. Both of them are with the corresponding human-written summaries. Instead of sampling from
the dataset, we evaluate the model performance based on the entire test sets with 11,490 samples and 11,334 samples to
reflect a comprehensive results.

Considering researchers [1] have raised the issue of low quality of reference summaries of CNN/DM and Xsum, we
also select the Annotation News dataset proposed in their work including 600 news articles based on CNN/DM and
Xsum and rewrote high-quality summaries. In our work, we select 482 news articles and their summaries with the most
consistent human-written summaries for experiments.
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4.1.2 Scientific Paper Summarization

For the summarization task in the academic paper domain, we utilize the research paper abstract dataset released by [23]
in 2018. To account for the possibility that early academic datasets might have been included in LLM pre-training, we
also collect the latest computer science papers published in 2025 from arXiv to evaluate LLM performance. Given the
computational resource constraints related to full-text input length, we select the introduction section of each paper as
the model’s input and used the abstract as the reference summary.

4.1.3 Story Summarization

In addition to traditional news and academic paper summarization, we explore the task of story summarization. For this,
we select the StorySumm dataset [48], which contains 32 short stories sourced from Reddit along with manually crafted
story summaries.

4.2 Base Models

Table 1: Experimental models version and sizes
Model Version (Size)
LLaMA 2 (7B) 3 (8B), 3.1 (8B)
Gemma 1 (7B), 1.1 (7B), 2 (9B)

As shown in Table 1, we select the LLaMA 2 [17], LLaMA 3, LLaMA 3.1, and Gemma [18, 49] models to perform
zero-shot inference on text summarization. LLaMA and Gemma are both highly popular within the open-source model
community.

LLaMA series. LLaMA is developed by Meta AI that outperforms GPT-3 [50] in various downstream tasks. It is based
on the Transformer architecture and focuses on smaller model sizes. The model of version 3.1 with 8B parameters
performs comparable to larger models in multiple benchmarks.

Gemma series. Gemma is proposed by Google, focusing on training and reasoning in certain fields such as health,
science and technology, etc., on large-scale datasets with professional knowledge. The framework of Gemma is similar
to GPT-3, within transformer decorder-only architecture.

4.3 Experimental Setup

The experiments are conduct in the UVA Rivanna computing environment equipped with NVIDIA A100 GPUs (80GB
memory), running on a Linux-based system with CUDA 12.8. The models are implemented using the Hugging Face
Transformers library along with PyTorch 2.1.0. For inference, we use a batch size of 2 and a maximum generation
length as the average length of the reference summaries in the evaluation datasets. Statistics of Datasets is shown in
Table 2.

Table 2: Statistics of the test sets across six datasets
CNN/DM XSUM Annotation News Arxiv 2018 Arxiv 2025 StorySumm

# Samples 11,490 11,334 482 424 497 36
Text Avg. # Word 652.4 429.7 550.2 1536.5 1310.3 312.9
Sum Avg. # Word 47.5 23.1 40.7 210.6 243.8 75.3

4.4 Evaluation Metrics

Following our analysis in Sec.3, we select several typical metrics to measure the performance from different perspective.
Specifically,

• For lexical overlap, we apply ROUGE-1, ROUGE-L, BLEU, GlEU and METEOR.

9
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• For semantic similarity, we apply BERTSc, BARTSc, and BLEURT.

• For factual-consistency, we conduct FactCC and FactKB to measure the faithfulness of generated summaries.

• And G-Eval is applied to evaluate the general performance using LLMs. It includes four dimension of Fluency,
Coherence, Relevance, Consistency.

4.5 Main Results and Analysis

The complete experimental results include twelve tables, and the appendix presents the results of each indicator in
detail. In this section, we will summarize and analyze the main results and rules with intuitive visualization.

4.5.1 General Performance

To obtain the overview of the performance of the models, for each model, we average the metrics of all datasets using
np.mean, and then normalize the average data to a 0-1 scale using min-max normalization to ensure that all metrics are
on the same scale for fair comparison in the radar chart. As shown in Figure 2 and Figure 3, the two radar charts are
one for the main metrics (R1, RL, etc.) and the other for G-eval metrics (fluency, coherence, etc.). We can find that
LLaMA 3 and LLaMA 3.1 perform well on both traditional metrics and G-Eval, and far exceed Gemma 7B. From the
table in the appendix, we can also observe that LLaMA 3 and LLaMA 3.1 perform best on most datasets and indicators.
In addition, Gemma 2 9B performs well on non-lexical metrics, which may indicate that it has good similarity and
fidelity at the semantic level.

Figure 2: Overall Performance of LLMs Figure 3: G-eval Performance of LLMs

4.5.2 Task Performance

To evaluate the overall performance on different types of tasks, we group the metrics, standardized the metrics within
each group, and average the models for each dataset. As shown in Figure 5, Factual_consistency represents the
normalized average of FactCC and FactQA, G_eval represents the average performance of its four internal dimensions,
and Text_similarity represents the average performance of the remaining reference-based metrics. For the performance
differences between different metric groups, we can found that academic abstract generation performs well in the
factual consistency dimension, indicating that the abstract generated by LLM is faithful to the original text. However,
the similarity with the reference abstract is not limited, especially on the CNN/DM and XSum datasets. This shows that
the generated summaries still have a certain distance away from the reference abstract.

4.5.3 Additional Results

From the perspective of similarity indicators, in the task of academic article summarization, the introduction of complex
prompts with structural information and detail restrictions can bring a slight improvement in performance. To explore

10
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Figure 4: G-Eval Performance Across All Datasets

Figure 5: LLM Performance Across Diverse Task

Table 3: LLM Performance based on different Prompts on ArXiv 2025
Model R1 RL BLEU GLEU METEOR BLEURT BARTSc BERTSc FactCC FactKB

Prompt_1 46.23 24.84 9.46 13.65 30.29 -0.35 -4.93 85.20% 0.64 97.09%
Prompt_2 45.92 24.01 9.22 13.17 30.21 -0.31 -4.45 85.36% 0.65 97.65%
Prompt_3 45.74 23.65 9.67 13.68 29.72 -0.37 -4.03 85.39% 0.67 98.16%

Table 4: LLM G-eval Performance based on different Prompts on ArXiv 2025
Model Fluency Coherence Relevance Consistency

Prompt_1 2.97 3.25 4.31 4.17
Prompt_2 3.05 3.17 4.49 4.52
Prompt_3 3.02 3.30 4.68 4.87

11
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the prompt influence on text summarization, we also conduct different prompts on Arxiv 2025 datasets using LLaMA
3.1 8B. Specifically, the three prompts refer to:

• Prompt 1 {Source Text} Please summarize the paper above in avg_sent_count sentences. Summary:
• Prompt 2 {Source Text} Please summarize the paper above in avg_sent_count sentences, including Back-

ground, Motivation, Contribution and Results. Summary:
• Prompt 3 {Source Text} Please generate an abstract for the paper provided above in {avg_sent_count}

sentences according to the following guidelines:
- The abstract must consist of exactly avg_sent_count complete sentences.
- Without explicitly using the keywords Background, Motivation, Contribution, or Results, ensure that your
abstract naturally includes:
1. A brief description of the research context, highlighting the current challenges or gaps in the field.
2. A clear explanation of the rationale for conducting the study.
3. An overview of the innovative methods or ideas introduced.
4. A summary of the key findings or conclusions reached.
- Use formal, academic language and maintain a logical, coherent structure throughout the abstract. Your
summary:

From Table 3 and Table 4, we can observe that the importing of structural guidance information and detailed instructions
and constraints brings small improvements in the performance of semantic similarity and factual consistency.

In addition, for LLaMA series which apply top-p decoding, we also conduct experiment to compare the performance
between Sampling Decoding and Greedy Decoding. From the perspective of similarity indicators, Greedy Decoding
performs slightly better than Sampling Decoding in the tasks of news summarization and story summarization, as show
in Table 5 and Table 6.

Table 5: LLaMA Performance between Sampling and Greedy Decoding (STORYSUMM)
Model Decoding R1 RL BERTSc

LLaMA 2 7b Default 33.69% 22.62% 87.48%
Greedy 34.16% 24.03% 87.68%

LLaMA 2 13b Default 26.74% 18.39% 84.20%
Greedy 27.98% 18.75% 84.31%

LLaMA 3 8B Default 39.95% 26.62% 88.49%
Greedy 39.26% 26.58% 88.48%

LLaMA 3.1 8b Default 39.95% 26.94% 88.40%
Greedy 39.96% 25.82% 88.19%

Table 6: LLaMA Performance between Sampling and Greedy Decoding (News_annotation)
Model Decoding R1 RL BERTSc

LLaMA 2 7b Default 45.41% 31.83% 89.33%
Greedy 44.88% 31.59% 89.14%

LLaMA 3 8B Default 44.53% 31.75% 88.83%
Greedy 46.54% 33.11% 89.30%

LLaMA 3.1 8b Default 45.60% 31.48% 89.21%
Greedy 46.64% 33.22% 89.42%

5 A Novel Self-Consistency Score for Text Summarization

Through the investigation of existing LLM techniques and metrics, although self-consistency is used to improve model
accuracy and detect factual consistency, this concept has not been introduced into the evaluation system. With the
case study based on our previous experiments, we observe that the non-overlapping content output by the multiple
summarization system is often hallucination or irrelevant details, as shown in Figure 6.Therefore, to enhance the existing
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evaluation framework, we propose a text self-consistency score pipeline by calculating the overlap between multiple
generated text sfrom word level to semantic level.

Figure 6: An example illustrates the overlap between generated summaries with the reference summary produced
by LLaMA-2-7B-chat. Green Highlighted Texts : Overlap words between two generated summaries; Red Texts:
Hallucination.

For a given source document x⃗, let s⃗1, s⃗2, . . . , s⃗n represent the outputs when we query the summarization model n
times with the corresponding lengths as l1, l2, . . . , ln, and y⃗ as the reference summary. subsection 5.1 gives the basic
definition of the consistency score, and subsection 5.2 further extends the definition to consider the word-level semantic
equivalence.

5.1 Consistency Score based on Word Overlap

Although we have the intuition that consistency score should be defined with word overlap, we expect the defined
consistency score should satisfy some properties that can be used in summarization systems. We expect the new score
satisfies the following properties

Property 1 The score should be between 0 and 1.
Property 2 The score should be proportional to the overlap and inversely proportional to the summary length.
Property 3 With the same overlap and the same output length, the consistency score should be independent of the

number of outputs.

The motivation of the first two properties is straightforward. The third property will guarantee the consistency score
will not get better or worse by simply adding another output summary.

It turns out that a simple harmonic mean of the ratio between the number of overlapped words and the summary length
will satisfy these three properties. Specifically, we define the consistency score as

r(s⃗1, . . . , s⃗n) =
n|

⋂n
i=1 s⃗i|∑n

i=1 |s⃗i|
(8)

where
⋂n

i=1 s⃗i is the word overlap among all outputs, and |s⃗i| is the length of the summary s⃗i.

It is not difficult to verify the first and the second properties. For the third property, if s⃗n+1 has the same length as
the rest of the summary and

⋂n
i=1 s⃗i =

⋂n+1
i=1 s⃗i, then we will have r(s⃗1, . . . , s⃗n) = r(s⃗1, . . . , s⃗n, s⃗n+1) =

|
⋂n

i=1 s⃗i|
|s⃗i| .

Furthermore, if s⃗n+1 is shorter but maintains the same overlap, we will have r(s⃗1, . . . , s⃗n) < r(s⃗1, . . . , s⃗n, s⃗n+1),
which reassures the second property.

Similar to the ROUGE scores, this definition can be easily extended to n-gram-based overlap, but we decided to stay on
the unigram level in this mathematical formulation. But, unlike the ROUGE scores, this is symmetric because there is
no reason to differentiate any of the outputs.

5.2 Extending Overlap with Word Similarity

Noticing the limitation of simple word overlap, we propose to extend the defined score in Equation 8 with word-level
semantic information, particularly on counting the word overlap. For a given two texts y⃗1 = (y1,1, . . . , y1,l1) and
y⃗2 = (y2,1, . . . , y2,l2), the idea is if two words y1,k and y1,k′ are similar to each other, the algorithm will count them
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as one overlap. In this project, we measured the similarity of two words based on the cosine similarity of their word
embeddings

cosine-similarity(v⃗1,k, v⃗1,k′) > t (9)
where v⃗1,k, v⃗1,k′ are the corresponding word embeddings, and t is a pre-defined threshold. This will give a more
optimistic estimate of the consistency score than Equation 8, as shown in the experiments.

5.3 Implemention Details

The default setting of the tokenizer and word embedding used in the consistency score are shown in table Table 7, which
is independent from the settings of LLMs. About the extended definition, we do not need to identify the word overlap
on the fly when using Equation 8. In practice, a pre-processing of applying Equation 9 on the vocabulary and merging
the word pair that passes the similarity threshold is more efficient.

In addition, a preliminary study on different thresholds shows different thresholds produced different consistency scores,
but the ranks are the same, as shown in Appendix B. Therefore, in the following experiments, we use the value t = 1,
which is equivalent to the original definition.

Word Overlap Word Similarity

n 2 / 3
If_lower True
Stop words Removed
Tokenizer nltk.tokenize.word_tokenize1

Stemming nltk.stem.PorterStemmer2

Embedding N/A bert-base-uncased3

Threshold (t) 1 0.60 / 0.75 / 0.90
Table 7: Implemention Details of Word Overlap and Similarity for the consistency score

CNN/DM XSum
Model R1 R2 RL R-sum r R1 R2 RL R-sum r
Gemma1.1-7B 40.75 14.59 26.77 36.74 0.7181 30.73 8.48 22.67 22.68 0.7293
Gemma-7B 40.99 14.91 26.81 34.24 0.6823 29.33 6.766 21.08 21.09 0.7221
Gemma2-9B 43.08 14.24 27.23 34.73 0.6562 35.09 11.10 25.88 25.907 0.6720
LLaMA-2-7B 43.09 16.07 27.69 35.26 0.6337 39.00 11.51 27.87 27.87 0.6551
LLaMA-2-13B 43.29 16.17 27.74 35.42 0.6428 40.06 12.53 28.85 28.86 0.6494
LLaMA-3-8B 48.33 18.87 31.10 39.58 0.6600 42.28 13.73 30.67 30.83 0.6120
LLaMA-3.1-8B 48.44 18.80 31.13 39.54 0.6280 42.53 13.56 30.76 30.80 0.6115

Table 8: Performance and Consistency Score Ratio (r) of Various Models on CNN/DM and XSum Datasets

6 Discussion

6.1 NLG Evaluation System

The evaluation of text generation tasks has always been an important issue in the NLP domain. Looking back at the
development of evaluation technology, we can find that intuitive statistical indicators with high interpretability are
difficult to measure from a semantic perspective, while indicators that can be applied to understanding ability and
semantic level representation are weakly interpretable and unstable, making it difficult for us to truly locate the specific
advantages and problems of the generated text. In addition, a complete text evaluation system needs to be evaluated
from multiple dimensions. Each dimension contains indicators with highlights and limitations, which undoubtedly
increases the complexity of the evaluation pipeline.

From our perspective, there are two promising directions worth exploring. The first direction is to select representative
metrics from existing metrics that can complement each other for aggregation, such as the metric Texygen [51] proposed

1https://www.nltk.org/api/nltk.tokenize.html
2https://www.nltk.org/api/nltk.stem.porter.html
3https://huggingface.co/bert-base-uncased
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in early work and the recent work FRANK [52], providing researchers with a relatively complex but comprehensive
aggregation evaluation platform. The second direction leverages the powerful understanding and generation capabilities
of current large language models (LLMs) [53] to measure semantic dimensions, emphasizing the reasoning process and
enhancing the interpretability of evaluation.

6.2 LLM Performance and Reliability

In the analysis, we divide the causes of inconsistency into two categories. The first is irrelevant details, which refer to
unnecessary information. Although not necessarily wrong, it will increase noise and reduce the quality and relevance of
the text. The second is logical errors, which refer to logical incoherence errors in the content, which reflects the model’s
inadequacy in factual consistency. Both situations refer to consistency issue and have a negative impact on the reliability
and coherence of the generated text. However, conceptually, improving consistency cannot eliminate hallucinations
completely because the definition scope of the two is different. To completely eliminate hallucinations, the model
needs to have many capabilities, such as alignment with source documents and reference summaries, coverage of
world knowledge, self-consistency, etc. Therefore, we regard reducing hallucinations as a by-product of improving
consistency rather than a direct goal of consistency, since solving hallucinations requires a more complex knowledge
integration and verification process.

6.2.1 Randomness and Reliability of LLM System

Based on our analysis of the results, LLaMA/Gemma (7-13B) exhibits limited capability in following instructions.
Even with prompt engineering and preprocessing to filter out non-overlap words, the consistency-guided strategy
performs relatively limited on large-scale datasets since these models tend to fail to satisfy strictly to the requirement of
using only overlapping words, with a certain level of randomness and hallucination. However, based on the statistical
results of unigram tokens, we calculated that if the consistency-guided mechanism is strictly followed by LLMs,
the model-generated summaries would have 2-3% improvement in F1 score. This provides a theoretical basis of
consistency-guided feasibility to enhance model ability to balance summary length and information. We are considering
more robust methods for aggregating multiple outputs in the future.

Similarly, we believe it is meaningful to continue exploring the randomness and reliability of LLM outputs for text
summarization task, especially in terms of consistency. In future research, we plan to design an evaluation system that
operates on various aspects, from word/unigram to sequence, semantics, and overall summary coherence. This work
will be a starting point of our research to measure both performance and reliability, addressing the limitations of current
evaluation metrics and helping users determine which models are comprehensively better for text summarization.

7 Conclusion

Currently, there exists a wide variety of text summarization evaluation metrics. To provide researchers with a
comprehensive reference and facilitate the analysis of their limitations, we have systematically categorized and
thoroughly investigated the most commonly used evaluation metrics in text summarization. Additionally, we conducted
an extensive evaluation of the leading open-source large language models (LLMs), covering six different datasets and
employing fifteen distinct evaluation metrics. Our study aims to offer valuable insights into the strengths and weaknesses
of these metrics, helping to guide future research and improvements in summarization evaluation methodologies.

Moreover, to address the issue of inconsistency in summarization systems, we introduced a mathematical definition as
the consistency score based on multiple outputs by measuring the overlap between summarization outputs. This method
is quite straightforward, because it avoids the complexities of deep semantic understanding, introducing self-consistency
score into current summarization systems evaluation framework.
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A Appendix: Complete Experimental Results

Table 9: LLM Performance on Main Metrics (arXiv 2025)
Model R1 RL BLEU GLEU METEOR BLEURT BARTSc BERTSc FactCC FactKB

LLaMA 2 7B 35.46 18.84 6.60 11.67 24.71 -0.51 -9.26 86.32 0.61 0.96
LLaMA 3 8B 45.58 23.83 9.16 13.41 29.95 -0.45 -5.04 85.00 0.58 0.97
LLaMA 3.1 8B 46.23 24.28 9.46 13.65 30.29 -0.35 -4.93 85.20 0.54 0.97

Gemma 7B 28.74 14.30 5.82 10.90 20.49 -0.68 -13.36 85.24 0.55 0.93
Gemma 1.1 7B 32.58 15.98 6.91 11.16 23.18 -0.54 -10.16 86.71 0.61 0.95
Gemma 2 9B 38.45 19.60 7.56 12.75 26.02 -0.48 -8.25 86.19 0.63 0.96

Table 10: LLM Performance on Main Metrics (arXiv 2018)
Model R1 RL BLEU GLEU METEOR BLEURT BARTSc BERTSc FactCC FactKB

LLaMA 2 7B 26.01 22.35 5.49 11.76 21.90 -0.57 -13.88 84.01 0.46 0.89
LLaMA 3 8B 43.79 29.51 7.61 14.87 28.83 -0.49 -11.83 85.98 0.59 0.97
LLaMA 3.1 8B 42.93 28.38 7.34 12.34 27.56 -0.30 -11.95 85.99 0.67 0.97

Gemma 7B 31.87 19.01 4.39 9.48 20.62 -0.59 -12.84 85.67 0.57 0.94
Gemma 1.1 7B 33.94 23.77 5.26 9.97 21.30 -0.46 -9.73 86.52 0.63 0.96
Gemma 2 9B 36.59 28.59 1.77 10.95 22.50 -0.65 -7.91 86.89 0.60 0.95

Table 11: LLM Performance on Main Metrics (story_summ)
Model R1 RL BLEU GLEU METEOR BLEURT BARTSc BERTSc FactCC FactKB

LLaMA 2 7B 33.67 22.60 2.93 8.56 17.62 -0.48 -11.23 87.43 0.49 0.75
LLaMA 3 8B 40.01 26.73 5.66 11.42 22.80 -0.37 -10.01 88.49 0.64 0.76
LLaMA 3.1 8B 39.07 26.33 5.35 11.69 22.87 -0.42 -10.31 88.49 0.62 0.76

Gemma 7B 32.47 21.69 2.75 7.46 16.58 -0.58 -13.07 87.52 0.44 0.74
Gemma 1.1 7B 34.21 22.97 3.04 8.77 16.70 -0.50 -12.35 88.46 0.49 0.74
Gemma 2 9B 39.45 26.49 5.17 11.35 23.21 -0.49 -9.79 88.59 0.57 0.76
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Table 12: LLM Performance on Main Metrics (annotation_news)
Model R1 RL BLEU GLEU METEOR BLEURT BARTSc BERTSc FactCC FactKB

LLaMA 2 7B 45.41 31.81 17.47 20.08 36.77 -0.42 -4.34 89.33 0.48 0.83
LLaMA 3 8B 44.53 31.76 15.82 18.69 38.77 -0.49 -4.23 88.83 0.60 0.82
LLaMA 3.1 8B 45.33 31.49 15.72 19.23 38.98 -0.36 -3.79 89.21 0.59 0.87

Gemma 7B 39.47 27.42 13.22 17.45 32.97 -0.58 -4.69 88.21 0.43 0.80
Gemma 1.1 7B 41.52 28.66 13.97 17.86 35.62 -0.53 -4.37 89.45 0.50 0.81
Gemma 2 9B 44.31 30.29 15.06 18.82 36.01 -0.48 -3.25 89.33 0.55 0.82

Table 13: LLM Performance on Main Metrics (CNN/DM)
Model R1 RL BLEU GLEU METEOR BLEURT BARTSc BERTSc FactCC FactKB

LLaMA 2 7B 43.09 27.69 12.10 8.74 20.37 -0.47 -5.82 87.72 48.92 67.54
LLaMA 3 8B 46.33 31.10 15.66 11.26 21.60 -0.52 -5.39 87.33 58.31 -0.69
LLaMA 3.1 8B 48.41 31.13 15.04 13.49 23.08 -0.48 -5.14 87.89 56.24 67.12

Gemma 7B 40.99 26.81 10.02 7.05 15.46 -0.54 -6.02 87.10 45.17 69.40
Gemma 1.1 7B 40.75 26.77 9.82 7.29 16.01 -0.46 -5.67 87.64 51.79 68.00
Gemma 2 9B 43.08 27.23 11.43 9.16 19.97 -0.51 -5.46 87.17 59.14 78.60

Table 14: LLM Performance on Main Metrics (XSum)
Model R1 RL BLEU GLEU METEOR BLEURT BARTSc BERTSc FactCC FactKB

LLaMA 2 7B 39.00 27.87 8.21 7.92 17.85 -0.55 -6.24 86.20 47.32 67.42
LLaMA 3 8B 42.28 30.67 9.46 10.13 19.02 -0.53 -6.07 87.49 48.01 65.51
LLaMA 3.1 8B 42.53 30.76 9.52 11.25 20.36 -0.49 -5.92 87.73 48.98 68.29

Gemma 7B 29.33 21.08 4.37 6.84 16.12 -0.58 -6.44 86.52 45.26 67.28
Gemma 1.1 7B 30.73 22.67 5.87 7.38 17.49 -0.56 -6.29 86.90 46.73 67.30
Gemma 2 9B 35.09 25.88 7.03 8.56 19.23 -0.50 -6.10 88.93 47.25 68.91

Table 15: LLM Performance on G-eval (arXiv 2025)
Model Fluency Coherence Relevance Consistency

LLaMA 2 7B 2.85 3.06 4.03 3.86
LLaMA 3 8B 2.94 3.33 4.25 3.91
LLaMA 3.1 8B 2.97 3.25 4.31 4.17

Gemma 7B 2.51 2.81 3.60 3.23
Gemma 1.1 7B 2.43 2.97 3.51 3.24
Gemma 2 9B 2.64 2.21 3.93 3.45

Table 16: LLM Performance on G-eval (arXiv 2018)
Model Fluency Coherence Relevance Consistency

LLaMA 2 7B 2.91 3.47 4.02 3.65
LLaMA 3 8B 3.12 3.68 3.89 3.94
LLaMA 3.1 8B 2.78 3.25 4.15 3.81

Gemma 7B 2.63 2.95 3.52 3.16
Gemma 1.1 7B 2.49 2.72 3.77 3.33
Gemma 2 9B 2.87 2.72 4.08 3.60
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Table 17: LLM Performance on G-eval (story_summ)
Model Fluency Coherence Relevance Consistency

LLaMA 2 7B 3.62 4.21 3.89 3.45
LLaMA 3 8B 3.78 4.33 3.67 3.91
LLaMA 3.1 8B 3.54 4.02 3.83 3.70

Gemma 7B 3.29 3.95 3.58 3.68
Gemma 1.1 7B 3.41 3.87 4.05 3.52
Gemma 2 9B 3.73 4.10 4.06 3.78

Table 18: LLM Performance on G-eval (annotation_news)
Model Fluency Coherence Relevance Consistency

LLaMA 2 7B 3.44 4.66 3.94 3.38
LLaMA 3 8B 3.71 4.53 4.01 3.69
LLaMA 3.1 8B 3.78 4.79 4.09 3.68

Gemma 7B 2.94 3.81 3.65 3.47
Gemma 1.1 7B 2.98 3.90 3.88 3.54
Gemma 2 9B 3.42 4.28 4.10 4.17

Table 19: LLM Performance on G-eval (CNN/DM)
Model Fluency Coherence Relevance Consistency

LLaMA 2 7B 2.70 4.01 4.22 3.95
LLaMA 3 8B 2.78 4.05 4.36 4.21
LLaMA 3.1 8B 2.91 4.27 4.59 4.39

Gemma 7B 2.46 3.24 3.98 3.66
Gemma 1.1 7B 2.53 3.64 4.30 4.03
Gemma 2 9B 2.81 3.72 4.25 4.31

Table 20: LLM Performance on G-eval (XSum)
Model Fluency Coherence Relevance Consistency

LLaMA 2 7B 1.92 3.05 3.48 3.25
LLaMA 3 8B 2.05 3.18 3.72 3.51
LLaMA 3.1 8B 2.13 3.42 3.85 3.68

Gemma 7B 1.85 2.89 3.39 3.18
Gemma 1.1 7B 1.97 3.01 3.58 3.35
Gemma 2 9B 2.08 3.25 3.61 3.46
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B Appendix: Consistency Scores regarding Different Thresholds

Table 21: Consistency scores of different datasets under varying thresholds on LLaMA-2-7B-chat
Threshold (t) 0.60 0.75 0.90 1(word-level)

CNN/DM 0.740 0.702 0.653 0.634
XSUM 0.781 0.719 0.675 0.655

Table 22: Consistency scores of different datasets under varying thresholds on Gemma-1.1-7B-it
Threshold (t) 0.60 0.75 0.90 1(word-level)

CNN/DM 0.762 0.753 0.730 0.718
XSUM 0.780 0.766 0.741 0.729
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