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Abstract

The internet-of-things (IoT) is playing a role in revolutionizing human life

by providing a network of devices with smart sensors, actuators, and network

connectivity. Reliable systems with diverse functionality are in demand for a

wide variety of IoT applications, for instance, healthcare, smart building, and

computer vision. As billions of IoT devices are emerging in every corner of

the world, there is a need for low-cost systems capable of sensing, processing,

storing, and transmitting data. Ultra-low power (ULP) is a necessary feature

for such systems because it is too costly and impractical to frequently replace

or recharge the vast number of batteries to power these devices. In the quickly

evolving battery-less systems, the power from energy harvesters also cannot

reliably sustain high-power-consumption solutions. To address the dilemma

between the growing need for greater functionality and lower power consump-

tion, we propose to develop a full series of cutting-edge ULP integrated circuit

(IC) components, such as subthreshold embedded static random access memory

(SRAM), wake-up receivers (WURX), clock references, and deep neural net-

work (DNN) hardware accelerators, to enable low-cost and ULP IoT systems.

These four IC components are studied because they are critical circuit blocks

for achieving the ULP operations of IoT system-on-chip (SoCs), and they can

employ different low-power techniques to effectively reduce the system power

consumption.

Circuit modeling plays a vital role in guaranteeing reliable operations in

the subthreshold region, speeding up the design period, predicting the circuit

and system performance, and guiding the direction for design improvements.

The challenges of designing reliable and ULP IC components are dramatically

different from the traditional performance-driven IC designs because the per-

formance of CMOS devices is more sensitive to the process variation in the near
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or subthreshold region.

SRAM could consume up to 50% of the power consumed by an IoT system,

so it is desirable to operate in the subthreshold region to suppress the active and

the standby power, where it also faces read and write reliability issues. The

SRAM yield analysis model utilizes the normal distribution feature and the

importance sampling of SRAM metrics to estimate the bit error rate (BER) of

different failure types by speeding up the simulation time by 10,000x compared

to the conventional Monte Carlo simulation. An SRAM bitcell auto-generation

flow and an SRAM macro design exploration tool are proposed to smartly make

design decisions for a 2 KB SRAM testchip in the 65 nm technology while

satisfying user requirements and guaranteeing reliability in the subthreshold

region.

WURXs could relieve the burden of milli-watt level power dissipation of

the radio system by waking up the primary receiver from the idle mode rather

than being active all the time. The challenges of designing a nano-watt level

WURX are improving the sensitivity for remote wake-up signals and rejecting

the false alarms. We propose a correlator wake-up code model to guide the

WURX’s baseband circuit design and improve the sensitivity by choosing ap-

propriate comparator threshold voltages and correlator wake-up codes. Assisted

by the robust baseband circuit, our WURX taped-out in the 130 nm technology

achieves a -76 dBm sensitivity and less than one false wake-up (FWU) per hour

at 10 nW of power consumption.

Commercial radio systems such as the Bluetooth low-energy (BLE) system

require an off-chip crystal as the super-stable clock reference, which increases

the cost and bulkiness of IoT devices. On-chip clock references design is ex-

tremely challenging because the requirement of frequency stability needs to be

less than 150 ppm across the process, voltage, and temperature (PVT) cor-

ners. We propose two circuit models to improve the temperature and supply

iii



voltage stability of RC relaxation oscillators (ROSC). An on-chip ROSC with

both analog and digital frequency compensation is taped-out in the 65 nm tech-

nology, and it achieves a temperature coefficient (TC) of 2.5 ppm/oC and an

absolute variation of 100 ppm over the body-compatible range of 0 to 40oC.

The supply voltage stability is also improved by 30% with a simple outside

capacitor. Power consumption of the ROSC is reduced from 69 µW to 100 nW

by supporting the power gating technique.

DNN hardware accelerators as the artificial intelligence (AI) inference com-

puting engine are appealing for supporting computer vision applications in IoT

systems. In-memory computing (IMC) is a new DNN computing architec-

ture that can relieve the data movement issue of von Neumann architectures,

thus potentially achieving energy-efficient computation. However, the process

variation of the on-chip memory bitcells and the noise in the mixed-signal com-

putation introduce precision degradation of DNN inference. We propose an

IMC accuracy model to guide the direction for choosing appropriate memory

micro-architectures and to predict the impact of IMC accuracy loss on the

DNN inference precision. A 30 fJ per multiplication and accumulation (MAC)

SRAM-based IMC architecture with binary weights and 2-bit activations is pre-

dicted by the proposed accuracy loss model to achieve 97.7% precision in the

hand-written digit recognition.
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1 Introduction

1.1 Motivation for ULP IC Components Design and Model-

ing

The concept of the internet of things (IoT) is promising because it provides a new

picture of everyday life in the future, with ubiquitous IoT nodes with smart sensing,

data processing, and wireless connectivity to monitor the human body, the home, and

the environment. However, due to the limited energy available from batteries and

energy harvesters, the trend of sub-µW system-on-chip (SoC) design is compromising

the performance and functionality for power reduction, for example, the embedded

SRAM capacity is reduced to a few KB, and the clock frequency is scaled to 32 KHz [1].

For some simple applications like ECG signal monitoring and fall detection, the ULP

SoC with the above specifications is sufficient, but more memory and processing

performance is necessary for more complex tasks, for instance, object recognition

applications. There is a trend towards designing IoT SoCs with more functionalities

within the affordable power budget. Assuming the SoCs active power rises to 50

µW, it can be sustainable with a thermoelectric generator (TEG) or a piezo energy

harvester [2], and it can also work for 1,000 hours with a 50 mAh button cell battery.

The battery recharge cycle can be further prolonged by dynamic voltage and frequency

scaling (DVFS), duty-cycling, and power gating techniques.

Circuit modeling plays an essential role in modern circuit design. The most com-

monly used circuit model is the SPICE model, which provides a comprehensive char-

acterization of all the necessary components. The computation for large circuit sim-

ulations based on the SPICE model could be expensive because all the features are

considered in the simulation, regardless of their impact on the critical metrics. More

specific models based on a particular type of circuit can potentially be useful. For
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developing a well-researched circuit, a model for speeding up the critical metric eval-

uation is helpful in reducing the design period. For exploring a new design field, an

analytic model can guide the direction for improvement. For circuit blocks to be used

in a more extensive system, a black box model can be used to predict the yield and

performance of the system.

Static random access memories (SRAMs) are commonly used as on-chip memories

for the IoT SoCs, and they contribute to a large proportion of the chip area and power

consumption. The power gating technique does not usually apply to SRAM for data

retention, and duty-cycling cannot deal with SRAMs high leakage power problem.

To suppress both the active and leakage power, we aim to design SRAMs capable of

operating at the subthreshold region with only the necessary assist techniques and

other peripheral circuits. In the subthreshold region, SRAM faces serious read and

write stability issues due to the random process variation, so bit error rate (BER)

estimation is necessary for guaranteeing reliable operations. The BER obtained with

the conventional Monte Carlo simulation usually requires millions of iterations, so a

fast, accurate, and cost-efficient SRAM yield analysis model is in demand. Another

reason for the long SRAM design period is the need to satisfy different user require-

ments, so we propose an SRAM bitcell auto-generation flow and an SRAM macro

design space exploration tool to effectively reduce the engineering hours during the

design period.

The near-zero power consumption wake-up receiver (WURX) is a potential game-

changer in the field of IoT nodes communication because it has negligible power

overhead and can eliminate the mW-level idle power of the primary receiver by waking

up the main radio from the power gating mode [3]. The sensitivity of WURXs is

defined by the minimal detectable radio frequency signal magnitude with a certain

missed detection (MD) rate and false wake-up (FWU) rate. These two metrics affect
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the WURX’s reliability and SoC’s unnecessary active power dissipation, which are

both closely related to the WURX’s baseband circuit design. We propose a wake-up

code analysis model to deal with the challenges of finding appropriate comparator

trip voltage, correlator code length, code weight, and error tolerance in the multi-

dimensional design space.

To implement low cost IoT SoCs, on-chip RC relaxation oscillators (ROSC) are

desired to replace the off-chip crystal oscillator (XO) as the stable clock references.

The main challenge is to maintain the clock stability comparable to the XOs across

the PVT corners. The power gating technique can suppress the active power of

ROSCs, but it also deteriorates the clock stability because the added power gates in

the oscillation loop introduce additional sources of variations. Two ROSC stability

analysis models are employed to guide the direction for improving the temperature

and supply sensitivity.

Deep neural networks (DNNs) have attracted a lot of attention due to their suc-

cess in artificial intelligence (AI)-related field. In today’s DNN computing systems

based on the von Neumann architecture, the large volume of multiplication and accu-

mulation (MAC) computations require a significant amount of data movements be-

tween the memory and processing units, resulting in high energy consumption and a

degradation of throughput. The classical von Neumann computing architecture faces

serious challenges regarding energy efficiency and chip area for enabling DNN in edge

devices. In-memory computing (IMC) provides a new DNN computing architecture

that potentially avoids the data movement issue, thus achieving energy-efficient MAC

computations. However, the process variation of the on-chip memory bitcell and the

noise of the mixed-signal calculation introduce DNN inference precision degradation.

We propose an IMC accuracy loss model to guide the direction for choosing appro-

priate memory micro-architectures for certain DNN precision and predict the impact
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of IMC accuracy loss on DNN performance.

1.2 Thesis Statement

To address the dilemma between the growing need for greater functionality and

lower power consumption, a wide variety of cutting-edge ULP IC components, such as

subthreshold embedded SRAMs, WURX, ULP and stable clock references, and DNN

accelerators, are critical to enable low-cost and ULP IoT systems. The methodologies

for designing reliable and ULP IC components are dramatically different from the tra-

ditional performance-driven IC designs because the behavior of CMOS devices is more

sensitive to the process variation in the near or subthreshold region. We propose to

use techniques, such as DVFS, duty-cycling, power gating, and several block-specified

approaches to both lower the power consumption and maintain the functionality of

IC components. Circuit modeling should be intensively utilized in making design

decisions and guaranteeing reliable operations for all the IC components.

1.3 Goals

The major research goals of this dissertation include:

• Build a fast, accurate, and cost-efficient SRAM yield analysis model to guaran-

tee the robustness of ULP subthreshold SRAM designs.

• Develop an SRAM bitcell auto-generate flow and an SRAM macro design ex-

ploration tool to make SRAM design decisions for a 0.5V 2 KB SRAM testchip

in the 65 nm technology.

• Build the temperature and supply stability analysis models to guide on-chip

ROSC designs.
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• Design an on-chip ROSC with a stability comparable to XO-based clock refer-

ences in the 65 nm technology.

• Model the impact of the correlator wake-up code and the comparator trip volt-

age on the sensitivity of WURXs.

• Design the WURX’s baseband circuit in the 130 nm technology with appropriate

wake-up code length, code weight, and error tolerance for 0.1% MD rate and

less than one FWU per hour.

• Build an accuracy loss model for IMC micro-architectures and predict the DNN

precision using the model.

• Design an IMC micro-architecture capable of recognizing hand-written digits

with more than 97.5% precision.

1.4 Dissertation Organization

Chapter 2 demonstrates the SRAM bitcell auto-generation flow with the yield

analysis model and the SRAM macro design space exploration tool (ViPro). Mea-

surement results of a 2KB SRAM testchip designed using the proposed tools are also

included in this section. Chapter 3 demonstrates the methodologies for designing good

temperature and supply voltage stable ROSC as well as the measurement results of

an ROSC taped-out in the 65 nm technology. Chapter 4 introduces the wake-up code

analysis model for improving the sensitivity of WURXs. Measurement results of a

WURX tape-out in the 130nm technology are presented at the end of the chapter.

Chapter 5 demonstrates implementations of the IMC accuracy loss model and the

impact of IMC accuracy loss on the DNN performance. Chapter 6 summarizes the

dissertation.
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2 ULP SRAM Design and Memory Design Explo-

ration Tool Development

2.1 Motivations

Customized-memory macro designs are usually necessary and challenging for ultra-

low power (ULP) internet of things (IoT) applications because the design decisions

should be made based on specific process technologies and application scenarios. The

long design period results from the complex design decisions on the multi-dimensional

knob space, so tools for efficient memory design can enable the deployment of more

IoT nodes by reducing the development cost and speeding up the time to market.

2.1.1 Motivation of the Subthreshold SRAM Bitcell Auto-Generation

Flow

In the recently published IoT platforms, static random access memory (SRAM) is

still the most commonly used instruction memory and data memory [1] [4] [5]. The

demand for extended capabilities of the IoT nodes requires larger-capacity SRAMs,

which easily take more than 30% of the total SoC chip area [5] [6]. SRAMs become

one of the major contributors to the static power dissipation of the power-hungry IoT

system-on-chip (SoCs) [4] [5]. As a part of the system, the SRAM should adapt to

the system clock frequency and operating supply voltage (VDD). In the circumstance

of data transmission, the SoC and the radio module operate at a high frequency

for fast communication, and the VDD should also be high enough for high-speed

operations. When the SoC enters the idle mode, the digital logic is usually switched

to the subthreshold region for suppressing the leakage power. The SRAM minimum

operating voltage (VMIN) is limited by the yield, so it cannot be as low as the digital
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circuit VMIN [6]. As a consequence, both the digital circuit and SRAM have to work

at the higher SRAM VDD, which sacrifices part of the leakage reduction benefit.

Subthreshold SRAM designs are desired for achieving sub-micro watt operation

in the power-hungry IoT SoCs [1]. The subthreshold design is challenging because

the transistor turn-on current (Ion) is exponentially related to the transistor thresh-

old voltage (Vth), and the random process variation of Vth can have a substantial

adverse impact on the performance of SRAM [7]. As a result, SRAMs designed for

superthreshold operations might not work in the subthreshold region without various

assist techniques [8] [9]. The transistor size is regarded as a less effective knob in the

subthreshold region due to the linear relationship between the Ion and the transistors

channel width (W) and channel length (L). However, we find that resizing transistors

can still significantly influence the SRAM yield because the Vth random variation is

proportional to WL−0.5. Also, the SRAM bitcell-size knob is also closely related to

other important SRAM metrics, for example, the leakage power and the area. To

design a subthreshold SRAM that satisfies user requirements for the capacity, the

yield, the leakage power, the energy per operation, and the area, it is complicated to

make decisions on all the available SRAM knobs, such as the bitcell type, the bitcell

size, the assist techniques, and the micro-architecture. A tool that automatically

generates the SRAM bitcell and selects the appropriate assist techniques based on a

target specification can significantly improve the efficiency of the multi-dimensional

design space exploration.

2.1.2 Motivation of the Memory Design Exploration Tool

A lot of emerging process technologies aiming at the IoT market enable low power

circuit design by providing energy efficient devices, and the design effort spent on

new technology is substantial. The device variability, leakage, and interconnect de-
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lay make memory design even more labor-demanding than digital circuits. Another

adverse fact is some of the useful assist techniques might not be effective anymore

in different process technology. Previous work about the technology agnostic SRAM

virtual prototyping tool can facilitate memory designers to make the design choice

efficiently [10]. A Virtual Prototyping (ViPro) tool has been developed for memory

systems, which enables early design space exploration by creating virtual prototypes

of a complete 6T SRAM macro. Register files are multi-port SRAM bitcells capable

of simultaneous read and write operations, and they are preferred in applications need

high data throughput. One deficiency of the base version of ViPro is not supporting

different memory bitcell types, which significantly limits ViPro for broader usages.

In addition, ViPro only facilitates design space exploration, but it is not capable as a

memory compiler. ViPro will be more useful if it can automatically make design de-

cisions about the memory bitcell and assist techniques for satisfying different system

requirements.

2.2 Prior Arts

SRAMs have attracted a lot of attention during the past 20 years, and previous

research on the SRAM acts as the concrete foundation of appealing design automa-

tion. In addition, rapidly upgrading computing cluster speed and multi-threading

technology also empower the automatic design and exploration of SRAM.

In this section, various metrics are presented as candidates for the SRAM yield

analysis. The Monte Carlo simulation results quantitatively demonstrate deficiencies

of the static metrics compared to transient simulation results of the SRAM read and

write stability. As a result, dynamic metrics should be used to predict the SRAM yield

in fulfilling the SRAM design space exploration, although it increases the simulation

time.
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Figure 1: (a) A 6T SRAM bitcell schematic diagram (b) SRAM butter fly curves,
and SNM for read and hold

Figure 2: (a) A 6T SRAM bitcell schematic during WL sweeping (b) SRAM WM
defined by the difference between the WL voltage and VDD at the crossing point of
Q and QB.

2.2.1 SRAM Static Metrics

The static noise margin (SNM) is introduced by [11] to represent the read and

hold stability of an SRAM bitcell. The definition of SNM is the maximum window in

the two voltage transfer curves (VTC) as demonstrated in Figure. 1. In an SRAM

hold status, the WL is driven to ground, and the bitline (BL) voltage does not affect

the two VTCs. During a SRAM read operation, the wordline (WL) voltage changes
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to VDD, and the high voltage on BLs increase the voltage of the internal nodes, Q and

QB. The fact that the read SNM (RSNM) is smaller than the hold SNM (HSNM)

can be intuitively demonstrated by the butterfly curve in Figure 1 (b), so the SRAM

bitcell is more susceptible to be disturbed during the read operation. The remainder

of the discussion focuses on the RSNM because it is the bottleneck in SRAM stability.

There are multiple methods to define the static write margin (WM), and Figure

2 illustrates the one determined by the difference between the WL voltage and VDD

at the crossing point of Q and QB. During a write operation, BL is driven to a low

voltage, and BLB is driven to a high voltage. Internal nodes Q and QB will eventually

flip during as the WL voltage increases. If the flip occurs when WL is lower than

or equal to the VDD, the SRAM bitcell is believed to be write-able; otherwise, the

WM value is negative, and the write operation fails. This WM definition represents

dynamic write-ability very well because it closely mimics an actual dynamic write

operation. The research in [12] also indicates a similar observation.

The two static metrics RSNM and WM can reflect the impact of random process

variations on the SRAM read and write stability. Due to the randomness of variation,

Figure 3: (a) RSNM under the impact of random process variations. RSNM is the
minimum between RSNM0 and RSNM1. (b) WM under the impact of random process
variations. WM is the minimum between WM0 and WM1.
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the six transistors of an SRAM bitcell can deviate in different directions, so that

RSNM windows of the butterfly curve are no longer symmetric as illustrated in Figure.

3 (a). The RSNM value should be the smaller one between RSNM0 and RSNM1,

which reveals the significant read stability degradation that results from the random

variation [13]. Similarly, the WM value is the smaller one between WM0 and WM1.

2.2.2 SRAM Dynamic Metrics

The static metrics have some limitations. For example, static metrics cannot

reveal the timing information during transient read and write operations, and they

Figure 4: (a) Readable bitcell timing waveform, and read critical time (RTcrit) defined
by the offset voltage between BL and BLB. (b) Read failure waveform due to read
data disturbance. (c) Write-able bitcell timing waveform, and write critical time
(WRcrit) defined by the crossing point of Q and QB. (d) Write failure waveform due
to non-write-able bitcell.
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cannot reflect the impact of parasitics on the read and write stability. Figure. 4

introduces a few dynamic metrics for SRAM characterization.

• Read critical time (RTcrit). The RTcrit metric represents the timing require-

ment of a successful read operation. It is defined by the interval between the

time of WL rising and the time of an offset voltage developing between the BL

and BLB. If the SRAM uses a differential sense amplifier (SA) during the read

operation, the offset voltage is decided by the minimum voltage that can be

amplified by the SA. If an SA is not included, the offset voltage is decided by

the trip voltage of the BL buffer.

• Read stability and half-select (HS) stability. The read stability stands for the

probability of data disturbance of the selected bitcell during a read operation.

The HS stability defines the probability of data disturbance in bitcells shar-

ing the same WL with the selected bitcell. The HS stability is usually better

than the read stability because the parasitic capacitance is different in the two

cases. It should be mentioned that the static metric RSNM cannot differentiate

between the two types of stability.

• Readability. This is the overall probability of a successful read operation, and

it considers the read failures resulting from both the timing violation and the

read data disturbance.

• Write critical time (WTcrit). The WTcrit is a dynamic metric representing the

dynamic timing requirement for a successful write operation.

• Write-ability. This is the overall probability of a successful write operation, and

it considers the write failures resulting from both the timing violation and the

non-write-able bitcells.
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Figure 5: 16K points Monte Carlo simulations of (a) the BERs calculated from the
RSNM, the transient readability, the transient read stability, and the transient half-
select (HS) stability, and (b) the BERs calculated from the WM and the transient
write-ability. The clock period is 15 µs for the transient simulations.

These dynamic metrics are useful for understanding different failure mechanisms

and for predicting the SRAM’s bit error rate (BER). Studies on the random process

variations indicate that they follow the Gaussian distribution [7] [13]. To quantita-

tively explore to what extent the dopant fluctuation of transistors degrades the SRAM

read and write stability, Monte Carlo simulation [14] can be employed to mimic the

random threshold variation with a large number of iterations. Readability and write-

ability are overall failures during dynamic SRAM read and write access, so they can

be regarded as the golden reference of BER. Figure. 5 presents the Monte Carlo

simulation results of 16,000 iterations. It illustrates that the BER calculated from

RSNM is higher than that from the dynamic read stability, and that the HS stability

BER is lower than the read stability BER because the BL parasitic capacitance seen

by an HS bitcell is smaller than that seen by a selected bitcell. Below 400mV, the

overall readability BERs are 100x larger than the RSNM BERs because the RTcrit
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metric fails to meet the timing requirement of less than 15 µS. Figure. 5(b) illustrates

that the WM BER is slightly smaller than the write-ability BER in the lower voltage

range because of the timing violation, but they are very close to each other.

2.2.3 SRAM Yield Analysis Modeling Methods

To avoid stability problems in the subthreshold SRAMs, yield analysis should be

employed to make design decisions on the bitcell sizing and assist techniques. For a

small-capacity 2KB SRAM, the BER should be less than 6 · 10−6 to guarantee 90%

of yield, and 1.6 ·107 iterations of Monte Carlo simulation are required to obtain 90%

confidence and 90% accuracy of the BER [15]. Static metrics have a low simulation

time cost, but they cannot represent the SRAM failures due to timing violations.

Dynamic metrics consider the timing violations, but the simulation time can be 10

times longer compared to the static simulations because of the extra circuits for

simulating the real working condition of the SRAM.

Researchers in [16] employ RTcrit and WTcrit to predict the SRAM yield and

VMIN, and they use sensitivity analysis to improve the simulation speed by 112x

compared to the recursive statistical blockade [17] with only 3% average loss in accu-

racy. However, the RTcrit is not able to catch the readability failures resulting from

read data disturbance, and the WTcrit also fails to predict the BER of non-write-able

bitcells. Importance sampling [18] [19] offers the capability of directly using dynamic

readability and write-ability as the metrics for calculating BER, but it requires a com-

plicated algorithm to search for the most probable failure point (MPFP), which still

requires nearly 104 simulations. The simulation speedup is encouraging for evaluating

the BER of one SRAM operating condition, but it is not enough for our purpose of

SRAM bitcell auto-generation and design space exploration.
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2.3 SRAM Bitcell Auto-Generation Flow

Figure 6: SRAM bitcell auto-generation flow
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The goal of the SRAM bitcell auto-generation flow is to decide the bitcell level

design knobs based on the user requirements. The user is expected to regard the

SRAM as a black box and to provide only high-level design specifications. The flow

should follow a predefined logic and use simulation results to make design decisions

without human intervention. With the assistance of the auto-generation flow, the

human engineer hours can be replaced by the machine computing time to obtain a

pool of available SRAM bitcells. The auto-generated bitcells act as the input of the

design space exploration tools like ViPro [20] [21], which makes design decisions on

the SRAM-macro level knobs. The SRAM design knobs are provided in the below

bullets.

• Bitcell sizing. SRAM comprises six different devices: two pull-down (PD) de-

vices, two pull-up (PU) devices, and two pass-gate (PG) devices. The ratio of

PD/PG determines the read reliability, and the ratio of PU/PG determines the

write reliability. The three devices can be intentionally re-sized for reliable read

or write operations. When auto-generated, the bitcell sizes are adjusted in the

first N (i.e., 10) iterations.

• Peripheral assist techniques. Peripheral assist techniques are used to ensure

reliable operation. Popular read assist techniques include VDD boosting, VSS

lowering, and WL under-drive. Write assist techniques include VDD lowering,

Negative BL, and WL boosting. The read or write assist techniques are chosen

based on the SRAM failure reason.

• Bitcell type. The most commonly used bitcell types are 6T with a shared read

and write port and 8T with another single-ended decoupled read port to manage

the half-select issue during a read operation. In the auto-generation flow, the

default bitcell type is 6T because of less leakage current and area. The 8T
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bitcell is considered only when the read data disturbance BER fails to meet the

target, while the HS data disturbance BER happens to meet the target.

• Memory micro-architecture. With a given memory capacity, design knobs such

as the number of rows, columns, and banks can affect the delay and energy of

an SRAM macro. The array structure knobs impact the read and write delay,

so they are used during the dynamic metric simulations.

Spec Description Example

VDD The bitcell VDD is the same with the SRAM macro VDD 0.5V
BER The BER is calculated from the capacity and yield with

equation BER=(1-yield)/capacity
6 · 10−6

Pleak Assume the total bitcell leakage power accounts for a
half of the maximum SRAM macro leakage power

2 pW

Pact Assume the total bitcell active power accounts for a half
of the maximum SRAM macro active power

200 nW

Tdly Assume half of the clock period is for read and write
operation, and the other half is for pre-charging

7.5 µS

Table 1: SRAM bitcell metrics interpreted from the user inputs

2.3.1 Technology Characterization and User Input Interpretation

Figure 6 demonstrates the SRAM bitcell auto-generation flowchart. The user

inputs are anticipated to be SRAM Macro level specifications, for example, the ca-

pacity, the yield, the operating VDD, the maximum leakage power, the maximum

active power, and the clock period. Since the flow is developed for the SRAM bitcell

auto-generation, the SRAM macro level specifications should be interpreted as bitcell

level metrics as illustrated in Table 1. For example, if an user requires a 90% yield 2

KB SRAM with 64 nW leakage power and 400 nW active power at 0.5 V, the SRAM

bitcell specification should be 6 · 10−6 BER, 2 pW leakage power per bit, 200 nW
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total active power, and 7.5 µS operation delay. All these specifications are used as

the passing or failing criteria in the static or dynamic simulations.

The technology characterization is implemented by sweeping the on and off current

of the available device types like HVT, RVT, and LVT, across different channel width

Figure 7: Normalized NMOS turned-off current of HVT, RVT, and LVT type vs.
channel width at 0.5V

Figure 8: Normalized NMOS and PMOS turned-on current of HVT, RVT, and LVT
type vs. channel width at 0.5V
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and length. Figure 7 reveals the leakage current of LVT device is about 100 times

more than the leakage of HVT device, so the HVT device is the first choice in building

ULP SRAM bitcells. The RVT and LVT devices can also be an option if the flow

could not find a valid HVT SRAM bitcell that meets the bitcell specifications defined

in Table 1. The initial sizes of PD, PG and PU are calculated based on the ratio of

2:1.5:1, as provided in Table 2.

PD PG PU

Width (nm) 200 120 120
Length (nm) 60 70 60

Table 2: Initial bitcell sizes

2.3.2 BER Estimation with Normally Distributed Metrics

According to the flow in Figure 6, static simulations are still used due to the

quick simulation speed compared to dynamic metric simulations. The research in [13]

found that the two RSNMs in the butterfly curve are identically distributed random

variables that follow the same normal distribution, and the BER of SRAM can be

Figure 9: Monte carlo simulation results on the initial bitcell size. (a) Normally
distributed RSNM; (b) Normally distributed WM
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Figure 10: Monte carlo simulation results on the adjusted bitcell size. (a) Normally
distributed RSNM; (b) Normally distributed WM; (c) Normally distributed WM with
20% of negative BL assist

estimated by the Cumulative Distribution Function (CDF). Figure 9 (a) demonstrates

one of the RSNM distribution of the initial-size-bitcell at 0.5 V and the estimated

BER of 1.76 · 10−4. Figure 9 (b) illustrates the WM of initial-size-bitcell, which also

follows a normal distribution. Similarly, the estimated BER is 2.2 · 10−3.

Since the initial-size-bitcell cannot meet the BER requirement of less than 6 ·10−6,

the auto-generation flow will adjust the bitcell sizes in the first ten iterations. Based

on knowledge about the process variation, increasing the channel width of transistors

can effectively reduce the Vth random variation and produce more compact distribu-
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tions of RSNM and WM. In the experiment, larger PD and PG widths are helpful in

improving the RSNM, and larger PG and PU widths are useful in enhancing the WM.

After 10 iterations of bitcell-size adjustment, SRAM assist techniques are explored

to further lower the BER if necessary. For subthreshold SRAMs, VDD boosting and

negative BL are proved to be very effective in improving the read and write stability.

Figure 10 (a) illustrates the RSNM distribution with updated bitcell sizes in Table

3. The BER is reduced to 1.87 · 10−5 due to the 10% smaller standard deviation. No

read assist is employed because the RSNM BER is usually a pessimistic estimation

of the read disturbance compared to the read and HS BER, as presented in Figure 5.

Figure 10 (b) and (c) illustrate that the WM BER of the adjusted bitcell is 2.52 ·10−4,

and the BER is drastically reduced to 4.5 · 10−11 with 20 % of negative BL assist.

PD PG PU

Width (nm) 230 180 150
Length (nm) 60 70 60

Table 3: Adjusted bitcell sizes for dynamic simulation

The updated bitcell sizes in Table 3 pass the initial screening for the BER of the

static metric WM. Dynamic metrics like the RTcrit and WTcrit are not normally

distributed, so we cannot use the CDF to estimate their BERs, as plotted in Figure

11 (a) and (c). Fortunately, Figure 11 (b) and (d) demonstrate the inverse of RTcrit

and WTcrit both follow normal distributions, which can be explained in [22]. To

meet the requirement of less than 7.5 µS delay, the worst case inverse delay should

be larger than 1.3 · 105Hz. Following the same approach used for calculating BERs

of the RSNM and the WM, BERs of the RTcrit and the WTcrit are 2.4 · 10−6 and

2.9 · 10−10. It should be mentioned that, the write delay in Figure 11 (c) is simulated

without the negative BL as a write assist technique, and the non-write-able bitcell

BER counted from the dynamic simulation result is 1.2 · 10−4, which is very close to
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Figure 11: Monte carlo simulation results on the (a) RTcrit, (b) 1/RTcrit, (c) WTcrit,
and (d) 1/WTcrit. The RTcrit and WTcrit distributions have a long tail on the larger
delay side. The 1/RTcrit and 1/WTcrit distributions are normal.

the WM BER in Figure 10 (b). In addition, no read disturbance failure is observed

in the 16,000 iterations of Monte Carlo simulations.

The overall SRAM readability BER consists of two parts, the data disturbance

BER and the timing violation BER. The overall SRAM write-ability BER also has

two sources, the BER of non-write-able bitcells and the BER resulting from write

timing violations. The BER analysis of the above normally distributed metrics can

be summarized in the below bullets.

• The RSNM BER is a pessimistic estimation of the actual read data disturbance,

and the dynamic read disturbance metric is useful to get an accurate BER

estimation.

22



• The inverse RTcrit and WTcrit both fit normal distributions, so their CDF can

be used to calculate the BERs resulting from read and write timing failures.

• The static WM BER agrees with the BER of non-write-able bitcells counted

from the 16,000-point dynamic simulation, so it is not necessary to use the more

expensive dynamic metrics for estimating the BER of non-write-able bitcells.

2.3.3 Rethinking the Importance Sampling

Importance sampling is proposed to speed up the simulation time for obtaining

a rarely happening event by shifting the sampling region of parameters to a place

where the event is not rare, which is called the most probable failure point (MPFP).

Previous works employing the importance sampling consider multiple parameters

during searching the MPFP [15] [18] [19], even not all the parameters are strongly

Figure 12: (a) Illustration of the two-dimension parameter space and the boundary
between the pass region and failure region. P1 is the MPFP by only considering the
dominating parameter x. P2 is the MPFP by considering both parameters x and y.
(b) The sensitivity analysis of f(x, y) on x and y.
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Figure 13: Evolutions of the failure probability using one-dimensional importance
sampling (IS1) based on P1, two-dimensional importance sampling (IS2) based on
P2, and Monte Carlo simulations.

related to the target event. One thought that could simplify the time-consuming

searching procedure is to reduce the number of parameters to be searched.

To justify the above thought, we assume a simple function with two parameters

f(x, y) = x + 0.1 ∗ y, where both x and y follow the standard normal distribution.

The goal is to find the failure probability of satisfying f(x, y) <= 4. Figure 12 (a)

illustrates the pass and failure regions separated by a line defined by an equation

x + 0.1 ∗ y = 4. Definition of the MPFP is the failure point closest to the origin,

so its coordinates are (3.96,0.396). Figure 12 (b) presents the sensitivity analysis of

the parameters x and y, and it is obvious that x dominates the effect on f(x, y). If

we only consider the dominating parameter x, the MPFP will be P1; if we consider

both x and y, the MPFP is P2, as illustrated in Figure 12 (a). After locating the two

MPFPs, the importance sampling is implemented in the x dimension around P1 and

in two dimensions around P2.

Figure 13 demonstrates evolutions of the failure probability obtained by the one-

dimensional importance sampling (IS1), the two-dimensional importance sampling
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(IS2), and the Monte Carlo simulation. The convergence value of the IS1 failure

probability is closer to that of the Monte Carlo estimated value compared to the IS2,

which means importance sampling on the dominating parameter is a better estimator

of the actual failure probability. The convergence value of IS2 tends to be an estimator

biased to a smaller failure probability because the deviation of parameter y increases

the distance to the origin but not effectively changes the value of f(x, y), so the

impact of the sampled failure points is diluted.

The takeaway point is that importance sampling on the dominating parameters of

a failure event not only reduces the searching time for the MPFP but also improves

the accuracy of the estimated failure probability.

2.3.4 Importance Sampling for Yield Analysis

To prove that the read disturbance BER is less than the target BER of 6 ·10−6, at

least 1.6 · 107 Monte Carlo sample points should be simulated for 90% accuracy and

90% confidence [15], which takes roughly 4,500 hours with the dynamic simulation

Figure 14: (a) Internal node Q is disturbed during the read operation. (b) Sensitivity
analysis on the maximum voltage of Q with simulations.The maximum voltage of Q
is sensitive to Vth variations in PDL and PGL.
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setup using 30 threads of Intel Xeon Gold 6150 CPU. Importance sampling can speed

up the simulation time by finding the MPFP, which works well for metrics that have

a continuous change of value during the spherical searching for the MPFP. However,

the dynamic read disturbance is a binary metric giving either a pass or a fail. This

problem can be partially solved by running a small 100-point Monte Carlo simulation

during the spherical searching, but the overhead is a 100x longer simulation time [19].

The read disturbance failure can be studied with two parameters. The first param-

eter is the maximum voltage of node Q, as illustrated in Figure 14 (a). It represents

the severity of disturbance on the internal node during a read access. The other

parameter is the trip voltage (Vtrip) of the right inverter of an SRAM bitcell, which

can be defined by the point that Q equals QB in Figure 15. Vtrip reveals if the

disturbance on Q can flip the other node QB and cause a read data disturbance.

Sensitivity analysis results presented in Figure 14 (b) illustrate that both a positive

PDL Vth shift and a negative PGL Vth shift increase the maximum Q voltage, while

it is not sensitive to the Vth shift of the other transistors.

Figure 15: (a) A read disturbance is related to the trip voltage of the right inverter in
the bitcell. (b) Sensitivity analysis on the trip voltage with static simulations shows
it is sensitive to Vth variations in PDR.
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Figure 15 (b) demonstrates that a negative PDR Vth shift can decrease Vtrip.

We are only interested in the Vth shifts that increase the Q voltage and lower the

Vtrip, where a read disturbance is more likely to occur. Because the two parameters

are continuous value, their sensitivities on the Vth shift can also be used in finding

the MPFP. During the spherical searching, only PDL, PGL, and PDR are considered

because the impact of the other three devices is small. Table 4 illustrates that the

MPFP is within 5 (σ) of distance from the origin, and a 1,500-point Monte Carlo

simulation with the shifted Vth demonstrates that the BER of the importance sample

is 0.72. Following the approach defined in [17], the estimated BER of read disturbance

is about 2.1 · 10−6.

The number of simulations to find the MPFP using the sensitivity analysis is 54,

and the importance sampling requires 1,500 iterations. The total simulation time

for estimating the BER of read disturbance is about 30 minutes, which is more than

10000 times faster than the conventional Monte Carlo simulation.

PDL shift
(σ)

PGL shift
(σ)

PDR shift
(σ)

Distance
(σ)

IS BER Est. read
dist. BER

3.2137 -3.0643 -2.2983 5 0.72 2.1 · 10−6

Table 4: The most probable read disturbance failure point of Vth shifts

2.3.5 Summary of The Auto-Generated Bitcell

Table 5 summarizes the BER results of read delay timing failure, read data dis-

turbance failure, write delay timing failure, and non-write-able bitcell failure, using

the adjusted bitcell sizes in Table 3, with and without 20 % of negative bitline as

a write assist technique. The worst-case BER is less than 4.6 · 10−6, assuming that

different types of failures are happening in different SRAM bits, which still meets the

required BER of 6 · 10−6. The total simulation time for estimating all four BERs is
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1.5 hours using 30 threads of Intel Xeon Gold 6150 CPU.

To verify the accuracy of the BER estimates, 4.2 · 105 iterations of Monte Carlo

simulation on the dynamic metrics are provided in Table 6. The non-write-able BERs

without negative BL have less than 5% difference in both cases. The read disturbance

BERs are within the same order of magnitude, but a larger number of Monte Carlo

simulations is needed because the BER is not very accurate with this sample size.

No timing-related failure is observed in the large Monte Carlo simulation, which also

agrees with the estimated small RTcrit BER and WTcrit BER. The total simulation

time for the Monte Carlo simulation is 117 hours using 30 threads of Intel Xeon Gold

6150 CPU, and the simulation time will increase to 4,500 hours for 90% of confidence

and 90% accuracy [15].

Other metrics, like the leakage power and the active power, are also simulated

along with the dynamic simulation setup. The average leakage power per bit is 1

pW, the average read active power is 123 nW, and the average write active power is

157 nW. These metrics all satisfy the requirements in Table 1.

Target
BER

RTcrit
BER

Read dist.
BER

WTcrit
BER

non-write-able BER
w/ and w/o NegBL

Sim. time
(hrs)

6 · 10−6 2.4 · 10−6 2.1 · 10−6 4.5 · 10−11 2.9 · 10−10, 2.52 · 10−4 1.5

Table 5: BERs of the auto-generated bitcell estimated by the proposed methods

Target
BER

RTcrit
BER

Read dist.
BER

WTcrit
BER

non-write-able BER
w/o NegBL

Sim. time
(hrs)

6 · 10−6 0 4.76 · 10−6 0 2.62 · 10−4 117

Table 6: BERs of the auto-generated bitcell calculated from 4.2 · 105 iterations of
Monte Carlo simulation

28



2.3.6 2KB SRAM Chip Design and Measurement Results

A 2 KB 6T SRAM test chip is designed and taped-out based on the above BER

analysis results. No read assist techniques are used because both the RTcrit BER and

the read disturbance BER meet the target. Negative BL is utilized as the write assist

technique. The SRAM consists of two 64x128 subarrays which are the same structure

used in the RTcrit and WTcrit dynamic simulation setup. No sense amplifier is

included in the design to reduce the leakage power because the RTcrit is simulated

to be working at 15 µS clock period.

The simulation result is displayed in Figure 16. The 2KB SRAM works at 0.5 V

and 100 KHz. Two out of four measured chips have a read disturbance failure only

during reading ’0’. The leakage power per bit is 1.4 pW.

Figure 16: Chip measurement results of the 2KB SRAM
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2.4 Multi-Port Register File Design Space Explorations

The bitcell auto-generation flow only accurately evaluates the SRAM bitcell met-

rics while ignoring other critical SRAM macro metrics such as the read and write

access time and the energy per operation. Also, a lot of macro-level design knobs,

like the array structure, the memory hierarchy, and the number of memory ports, also

have a significant impact on the performance. The auto-generated bitcells can act as

the input of ViPro for comprehensive SRAM macro design space explorations.

A register file is one of the widely used memories in processors that is usually

implemented with a multiple port SRAM for fast and compact operation [23]. Register

files take up a significant fraction of the power budget of processors [24], and they

are also the critical path that constraints the clock cycle in processors [25]. Thus, a

delicate Register file design for low power and high performance is necessary, which

requires a significant design effort. Furthermore, it is common that more than 30

unique custom register files are employed in a single CPU or SoC [26] [27]. Different

specifications of register files lead to a huge amount of effort in full custom circuit

design. Register files are required instead of conventional 6T SRAM by the need

for simultaneous read and write operations in high-performance processors [23]. The

conventional 6T SRAM bitcell has one shared port for both read and write operations,

so each operation has to occupy one separate clock cycle. A bitcell with multiple

read and write ports can realize higher data throughput by allowing several accesses

in one clock cycle. However, the benefit of a multi-port bitcell is accompanied by

area overhead, which could eventually limit data throughput because of increasing

interconnect delay, and we discuss details about this trade-off in the experimental

results section.
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Figure 17: Delay and energy of CACTI, a commercial technology and the predictive
technology model (PTM) of a gate chain using high performance (HP) and low power
(LP) transistors [21]

2.4.1 Comparison between ViPro and CACTI

ViPro [28] is a virtual prototyping memory design tool that provides a good oppor-

tunity to assist register file design optimization, since it can rapidly evaluate different

register file prototypes with built-in sub-circuits. The previous version of ViPro only

supports 6T SRAM design, and it basically runs brute force simulation by enumer-

ating design knobs like the number of rows, number of columns, and number of

banks [28] [20].The outputs of ViPro are delay and energy of all of the evaluated

prototypes which can inform the designer of the structures that satisfy the require-

ments. Similar tool likes CACTI developed by HP Laboratories also evaluates delay

and energy of memories, but the results are extremely inaccurate due to using a

mathematical circuit model [29]. Figure 17 illustrates the delay and energy of a gate

chain which is a fundamental element of circuits, and results of CACTI using high
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Figure 18: 8T 1R/1W port bitcell with (a) differential BL sensing scheme, (b) single-
ended BL sensing scheme [21]

performance and low power transistors are both substantially different from SPICE

simulation results of the commercial technology and the predictive technology model

for the same gate chain. Fortunately, ViPro can overcome this issue by easily adapting

to any selected technology.

2.4.2 New Features in ViPro

Two types of bitcell read port topology are commonly used in register files as

shown in Figure 18. One employs the pass gate structure of conventional 6T SRAM

which enables differential BL reading; the other utilizes a decoupled read buffer for

single-ended BL sensing. The differential BLs is concerned to be more competitive

than the single-ended BL in performance, since a sense amplifier (SA) is used to ac-

celerate the differential voltage development. SA can further reduce the total read

energy because BLs do not have to be discharged below inverters threshold voltage.

However, the cost of SA includes area overhead and design effort for setting dedi-

cated timing constraints. The benefits of differential BL reading are becoming more

trivial with the shrinking of supply VDD for two reasons. First, a non-scaling voltage

difference VBL should be built on the two BLs to meet the resolution requirement
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of the SA, so the reduction of delay is becoming less effective when VBL occupies a

larger proportion of VDD. Also, dynamic power consumed by SRAM reading can be

calculated as 1/2 ∗ V BL ∗CBL ∗ VDD, which is linearly reduced with VDD shrinking

but not quadratic as in digital circuits. The second reason is variability in recent

technologies. In the research of [30], variation degrades the access time dramatically

at low voltage, because the delay distribution of the BL is much wider. Consequently,

faster BLs should wait for the worst case BL so that the whole array can function

properly, and extra energy is consumed while the slowest BL pair develops its dif-

ferential. Based on the above reasons, the single-ended BL sensing scheme reduces

design complexity in low VDD applications, while the differential BL sensing scheme

is better for high performance design.

Figure 19: Hierarchical BL structures of both read and write operations. Global BL is
divided into N local BLs, and each local is constituted with given number of bitcells.
Global RBL is for read operation, and it is realized by AND of an upper global RBL
and a lower global RBL to further reduce BL parasitic [21]
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Hierarchical BL sensing [31] [32] with local BLs can potentially achieve lower

energy consumption as well as faster read and write speed because BL parasitic

capacitance CBL is lower for reduced BL length. Number of bitcells on one local

BL also affects energy and performance, because hierarchical BL involves overhead.

Each of the above three BL sensing schemes can dominate the others for certain

applications, so comprehensive analysis of them is critical in designing register file

circuit. Several types of multi-port register file bitcell and configurable BL structures

have been incorporated into ViPro as new simulation templates.

Figure 19 shows the mechanisms of realizing a hierarchical BL structure for both

read and write operations. The register file array has NRow rows and NColumn

columns, and rows are divided into N LBLs, thus the number of bitcells in each LBL

is NRow/N. Local BLs and global BLs are all precharged to VDD. For read operations,

the local RBL will be discharged to ground if the selected row is located in this LBL,

and then the upper or lower global RBL will also be discharged by the local RBL

based on the location of the selected bitcell. At last, the global RBL is driven to

low voltage by AND of the upper global RBL and the lower global RBL. For write

operation, the global BL or global BLB will be discharged to ground in accordance

with the input data from write driver. LBL SEL chooses which local BL or local

BLB is to be discharged, and then data can be written into the selected bitcell. With

the hierarchical BL structure, only a small fraction of total NRow bitcells contribute

to the local BL parasitic capacitance, so that the speed of discharging local BLs is

significantly improved.

2.4.3 Design Explorations in the Maximum Data Throughput

An example of register file design optimization with ViPro is implemented in the

45 nm technology. A set of simulation results are generated across all combination
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of design knobs, different types of multi-ports bitcell, three BL sensing schemes, and

memory capacity from 0.5 KB to 512 KB. Data throughput is calculated by the total

amount of bytes can be read and write in one clock cycle, and energy is calculated

by weighting the energy consumption of read and write operations. For 8T bitcell,

we separately measure the read energy as EREAD and write energy as EWRITE, so

the energy consumption per operation is 1/2*(EREAD + EWRITE).

As multi-port register file bitcells can realize read and write operations in one

single clock cycle, they tend to have higher data throughput than 6T single port

bitcells. For example, read and write operations share one port in 6T bitcell, so the

data throughput is one half of a two port 8T 1R/1W bitcell if we assume the clock

cycle to be the same.

Figure 20: Trends of maximum data throughput under various memory capacities
for 6T differential BL, 8T 1R/1W single-ended BL, 8T 1R/1W differential BL, 8T
1R/1W single-ended BL with local BL (16 bits/LBL and 32 bits/LBL), 10T 2R/1W
single-ended BL and 10T 2R/1W differential BL schemes [21]
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In Figure 20, each data point stands for the maximum data throughput of a bitcell

type with certain BL sensing scheme under a given memory capacity, and it is chosen

from brute force simulations of all possible combinations of design knobs such as

number of rows, columns and banks. ViPro makes this comprehensive analysis easy

to implement and fast to produce. Additionally, the tool allows the analysis to be

redone in any new PDK very rapidly.

The results imply that the hierarchical BL structure is superior to the single-ended

BL sensing scheme for throughput, and the improvement is more significant at larger

memory capacity. At 0.5 KB capacity, the maximum data throughput of 8T 1R/1W

bitcell is improved by 31% from 2.68 GB/s to 3.5 GB/s with using the hierarchical BL

(16 bits/LBL) sensing scheme rather than the single-ended sensing scheme. At 128

KB capacity, the maximum data throughput of 8T 1R/1W bitcell is improved by 72%

from 0.75 GB/s to 1.29 GB/s with the local BL structure. This is because hierarchical

BL scheme with local BL structure can effectively reduce the bitline data building

delay which constitutes a substantial portion of total delay when more bitcells are in

one column. ViPro reveals how the best implementation for the 8T cells changes with

capacity, which would be costly to discern through manual design and simulation.

With the increasing of memory capacity, the benefit of multiple ports for data

throughput becomes more trivial. As Figure 20 shows, the data throughput of 10T

2R/1W ports bitcell with differential BL sensing scheme is about 2.75 times than

6T bitcell at 0.5 KB, while the ratio is only 2.33 times at 512 KB. Although data

throughput is degraded with larger memory capacity for all bitcell types, but the

decreasing speed of bitcell with more read and write ports is much faster than bitcell

with fewer ports. The fact that degradation of performance is more severe in multi-

ports bitcell can be explained by greater interconnect parasitic capacitance due to

larger dimensions.
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Figure 21: Trends of minimum energy consumption per operation under various mem-
ory capacities for 6T differential BL, 8T 1R/1W single-ended BL, 8T 1R/1W differ-
ential BL, 8T 1R/1W single-ended BL with local BL (16 bits/LBL and 32 bits/LBL),
10T 2R/1W single-ended BL and 10T 2R/1W differential BL schemes. [21]

2.4.4 Design Explorations in the Minimum Energy Consumption

In Figure 21, each point stands for the minimum energy consumption of a certain

bitcell type under given memory capacity, and the minimum energy per operation is

chosen from sweeping across all possible combinations of design knobs in ViPro. The

take away points are below.

The optimum energy consumption is achieved by different BL sensing schemes as

the memory capacity varies. At 0.5 KB, the lowest energy per operation of 8T 1R/1W

bitcell is realized by single-ended BL sensing scheme, which is 7.5% lower than energy

consumption per operation of differential BL sensing scheme. At 512 KB capacity,

the 8T 1R/1W bitcell with the hierarchical BL sensing technique (16bits/LBL) out-

performs the single-ended BL sensing scheme about 45% in minimum energy per

operation. With ViPro, the most energy efficient register file prototype can be

37



Figure 22: Pareto curves of 8T 1R/1W bitcells with four different BL sensing scheme
and one combined at 0.5 KB capacity. [21]

Figure 23: Pareto curves of 8T 1R/1W bitcells with four different BL sensing scheme
and one combined at 8 KB capacity. [21]

quickly determined for every memory capacity.

The minimum energy consumption per operation increases with memory capacity,

and the effect is increased for bitcell with more ports. At 0.5 KB, the 10T 2R/1W

bitcell with the single-ended BL sensing scheme is 1.7X and 3.6X larger than the 8T
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1R/1W differential BL and 6T bitcell respectively, while the ratios are 3.4X and 6X

at 512KB. The energy consumption is related to interconnect parasitic capacitance,

which is more significant in multi-port bitcells.

2.4.5 Trade-offs between the Energy and Delay

Figure 22 shows the Pareto curves of the 8T 1R/1W bitcell with single-ended BL

sensing, differential BL sensing, and two hierarchical BL (16 bits/LBL 32 bits/LBL)

sensing schemes at 0.5KB capacity. A combined Pareto curve with either lower en-

ergy consumption at certain delay or lower delay at certain energy consumption level

is plotted as the dotted line, and it shows the design space limit for register files with

existing design techniques. Points of the combined Pareto curve originate from differ-

ent BL sensing schemes. At 0.5 KB capacitance, single-ended BL sensing, differential

BL sensing, and hierarchical BL (16bits/LBL) sensing schemes all contribute to the

combined Pareto curve; at 8KB capacity, two hierarchical BL sensing schemes con-

tribute to the combined Pareto curve, as shown in Figure 23. Again, ViPro enables

this thorough design space exploration that combines circuit level and architecture

level knobs for controlling the design.

2.5 Conclusions

2.5.1 Roles of Circuit Models

The SRAM yield analysis model employs features of the normal distribution and

the importance sampling to estimate the BER of different SRAM failure types. The

simulation time of obtaining the BERs can be reduced by 10,000x compared to mil-

lions of iterations of the conventional Monte Carlo simulation. Based on the estimated

BERs, the SRAM is guaranteed to have 90% yield in the subthreshold region with
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90% confidence. The measurement results for the 2KB SRAM chip agree with the

SRAM yield model.

The energy and delay models are defined using simulation results of all the nec-

essary circuit blocks of a memory macro. The models enable accurate estimations of

the energy per operation, the read and write delay, and the data throughput, which

are the critical metrics used for design explorations in ViPro.

2.5.2 Summary of The Bitcell Auto-Generation Flow

The SRAM bitcell auto-generation flow is a perfect example to demonstrate how

circuit modeling can be used to predict the performance of design and to choose

appropriate techniques for satisfying various user requirements. Prior research has

provided almost all the fundamental knowledge and advanced SRAM design tech-

niques, which are significant advantages for designing ULP and reliable SRAMs. At

the same time, it is time-consuming to choose the most effective design knobs and the

best performance evaluation metrics from all the available options. For quick yield

analysis, the SRAM bitcell auto-generation flow evaluates the BERs with CDFs of

the known normally distributed metrics and employs the importance sampling for

BERs without knowing the distribution of metrics.

The contributions of this work include:

• Proposes a technology-agnostic subthreshold SRAM bitcell auto-generation flow

that explores design knobs in the hyperdimensional design space, for example,

the bitcell sizes, bitcell types, and assist techniques.

• Categorizes the SRAM failure mechanisms into read data disturbance, HS data

disturbance, read timing failure, write timing failure, and non-write-able bit-

cells.
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• Utilizes appropriate metrics to evaluate the different failures accurately and

efficiently. The inverse RTcrit and WTcrit can be used to calculate the BER

of read and write timing failures. The static WM can be used to calculate the

BER of non-write-able failures. The dynamic read disturbance with importance

sampling can be used to calculate the BER of read data disturbance.

• Improves the importance sampling technique to estimate the read data distur-

bance BER by considering only the dominating parameters, with a simulation

time reduction of 10,000x compared to the conventional Monte Carlo simula-

tions.

2.5.3 Summary of The Register File Design Exploration Tool

The ViPro for register file expands the ViPro tool [28] to support fast design

optimization for multi-port register files, and it also explored the methodologies of

multi-port register file design with the built-in models of memory macro delay and

energy. Besides the design effort reduction in building the register file schematics, the

simulation time is also accelerated by 5 to 10 times. To improve the accuracy of

Figure 24: Simulation results comparison between ViPro and full register file
schematic. (a)Read energy, (b) Read delay, (c) Write energy, (d) Write delay. [21]
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the ViPro tool, several layouts of multi-port bitcells are designed and used to calculate

interconnect parasitic capacitance. Comparisons of simulation results between ViPro

and full register file schematics verify the accuracy of ViPro as shown in 24. Average

errors of read energy, read delay, write energy, and write delay compared to the SPICE

simulation are 7.4%, 6.5%, 8.6%, and 1.7% respectively.

In the example of register file design optimization based on a 45 nm technology,

ViPro achieves 31% and 72% improvements on the maximum data throughput with

a hierarchical BL sensing scheme at 0.5 KB and 512 KB capacities, respectively.

The minimum energy consumption per operation decreases by 7.5% with a single-

ended BL sensing scheme at 0.5 KB and 45% with a hierarchical BL sensing scheme

at 512 KB. The two combined Pareto curves indicate that the optimized register

file design technique should be adapted based on the specification, as points of the

Pareto curves are from different BL sensing schemes. ViPro supports the analysis

of the best option for a given memory capacity and specification requirement by

rapidly sweeping through the full design space. Furthermore, the choice of design

technique varies at different memory capacities, as the differential BL sensing scheme

achieves the optimum balance between delay and energy at 0.5 KB capacity, while

the hierarchical BL structure with 16 bits/LBL achieves the balance point at 8 KB.

In conclusion, the expanded version of ViPro for register file not only fills the

blank of optimizing multi-port register file optimization, it also employs an additional

hierarchical BL sensing technique which brings significant performance improvement

and energy reduction to meet required specifications. Following the same method of

this work, templates for cache memory have been included by adding a tag array and

a comparator circuit, which enhances ViPro to be capable of optimizing the most

commonly used SRAM-based scratchpad memory and cache design.

Part of the work in this chapter has been published in [21].
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3 Temperature and Supply Variation Stable Clock

Reference Design

This chapter presents a 1.05 MHz, on-chip RC relaxation oscillator (ROSC) with

a temperature coefficient (TC) of 2.5 ppm/oC and an absolute variation of 100 ppm

over the body-compatible range of 0 to 40oC. The TC increases to 4.3 ppm/oC over

the range from -15 to 55oC. The high temperature stability is achieved using a PTAT

current reference and a TC-tunable resistor bank for first-order frequency error com-

pensation along with a digital frequency compensation (DFC) block using a single-bit

temperature sensor for second-order compensation. A measured RMS period jitter

of 160 ps is achieved with a high-speed comparator. The active power consumption

of the ROSC is 69 µW with a 1 V supply, and the leakage power consumption is 110

nW while power-gated. The ROSC achieves a fast startup time of 8 µs by employing

a voltage buffer to quickly stabilize the voltage reference.

3.1 Motivation & Prior Arts

Radio modules used for wireless networking in internet of things (IoT) systems-

on-chip (SoCs) require a high clock stability, and the nature of IoT applications places

increasing pressure to limit total radio system active power below 1 mW while also

providing rapid on/off and low leakage power for duty cycled operation. For the clock

implementation, off-chip components such as crystal oscillators are undesirable due

to cost, physical volume, and a long start-up time. As a result, there are a growing

number of works targeting stable on-chip clock generation. Among the on-chip clock

reference solutions, RC relaxation oscillators (ROSC) are better than ring oscillators

(RO) in supply stability and temperature stability. In the field of low-power MHz

range clock reference designs, ROSCs are more attractive compared to LC oscillators
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by avoiding the integration challenge of high-quality large inductances [33].

In on-chip ROSCs, frequency-locked loops (FLL) are employed with a digitally

controlled oscillator (DCO) [34] or voltage-controlled oscillator (VCO) [35] to achieve

a clock temperature coefficient (TC) close to that of a crystal oscillator. The FLL ar-

chitecture provides a good TC by locking the clock frequency to the time constant of

an RC filter, but the large power overhead [34] [35], complex start-up sequence [36],

and non-negligible start-up time [37] of the FLL architecture prevent this oscilla-

tor structure from being used in rapidly duty-cycled ultra-low-power (ULP) radios.

ROSCs without FLLs have much lower power consumption, but their frequency stabil-

ity is limited by the offset and delay of the comparator. Techniques such as chopping

and comparator offset cancellation have been used [38] - [41] to alleviate the frequency

inaccuracy introduced by the comparator offset, however these techniques become less

effective in the MHz range, where the comparator delay becomes a relatively large por-

tion of the clock period and consequently begins to dominate the overall temperature

stability. To deal with the frequency error induced by the comparator delay, digital

delay compensation is proposed in [42] with a temperature insensitive reference pulse

generation, a pulse width detector, and a loop delay tuning circuit, but the TC of the

additional circuits and the granularity of the reference pulse limit the frequency error

to be about 8000ppm. A wake-up timer [43] implements a constant charge subtrac-

tion technique to eliminate the temperature-dependent comparator delay from the

clock period, whereas the accuracy of charge subtraction is affected by the amplifier

gain. This oscillator consumes nano-watt power, but the frequency error is 4500ppm

across temperature at 11 Hz. Other open-loop frequency-error compensation ROSC

architectures like the feed-forward period control scheme [44] and the replica inverter

switching point tracking technique [45] are also unable to achieve overall temperature

stability close to that of a crystal oscillator (< 150 ppm) [46].
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To maintain the clock stability comparable to the XOs across the PVT corners, two

ROSC stability analysis models are developed to guide the direction for improving the

temperature and supply voltage sensitivity. This section also presents a frequency-

error compensated ROSC design with a TC of 2.5 ppm/oC from 0 to 40oC [47],

targeting a wearable, body-compatible range. A high-speed comparator biased by

a PTAT current reference reduces the first-order frequency error by stabilizing the

comparator delay. A digital frequency compensation (DFC) block automatically tunes

a capacitor bank and a TC-configurable resistor bank based on a sub-nW, single-bit

temperature sensor to minimize the second-order frequency inaccuracy. To achieve an

RMS period jitter of 160 ps, the flicker noise is alleviated by using large size transistors

in the first stage of the comparator, and the thermal noise is suppressed with a large

bias current obtained from the PTAT current reference. The oscillator consumes a

total active power of 69 µW, which is compatible with mW-level radios, and can

be power-gated to reduce the power by 627x to only 110 nW. The clock leverages

a specially-designed power gating technique to enable quick start-up (within 9 clock

cycles), allowing a system to take full advantage of power savings acquired from

power-gating during rapidly duty-cycled operation for IoT applications without any

significant impact on start-up latency.

3.2 Conventional Relaxation Oscillator Structures

3.2.1 Oscillator Structure with Two Comparators

Figure 25 shows the block diagram and timing diagram of a conventional relaxation

oscillator with two sets of comparators and RC components for oscillation. A constant

reference voltage Vref is generated by a reference current IB through a resistor R.

Capacitor C1 and C2 are alternately charged from 0 to Vref by the current source
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Figure 25: (a) Conventional on-chip RC relaxation oscillator with two sets of com-
parators and RC components. (b) Timing waveforms. [42]

IB in every half clock period. The discharging process of C1/C2 is hidden in the

charging half clock period of C2/C1, so the loop delay elements mainly consist of the

comparator delay td1 and td2, and the comparator offset voltage induced delay toffset1

and toffset2.

A key advantage of this scheme is that it doesnt rely on the absolute accuracy

of the current source, thus nominally eliminating a major source of uncertainty from

the system. The clock period can be expressed as

(1)

46



, where Voffset1 and Voffset2 are the offset voltage of the two comparators. According

to 1, the oscillation period is not sensitive to the supply variation, but it is sensitive to

the temperature coefficients of R, the loop delay, and the comparator offset. In reality,

the temperature coefficient of the clock period is even more complicated considering

the mismatch effect between the two comparators.

3.2.2 Oscillator Structure with One Comparator

To eliminate the mismatch effect of comparators on the temperature stability of

the clock period, another ROSC structure with a single comparator and RC compo-

nents is shown in Figure 26. In this oscillator structure, capacitor C is charged from

0 to Vref by a constant current reference IB, which is the major part of the clock

period,

(2)

Figure 26: (a) Conventional on-chip RC relaxation oscillator with a single comparator
and RC components. (b) Timing waveforms [41].
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In equation 2, except for the comparator delay td and the comparator offset Voffset

related delay toffset, the capacitor discharging time treset also contributes to the clock

period, and it must be long enough for discharging C to ground. To generate treset,

an extra number of inverters are used in addition to the switching logic. For a MHz

oscillator, assuming R=250KOhm, C=4pF, IB=2µA, and the average discharging

current of capacitor is 200µA, treset should be at least 1% (10000ppm) of the clock

period, and it can be a large source of frequency variation at different temperatures,

because the inverter chain usually has a large temperature coefficient.

3.3 Temperature Stability Analysis

In Figure 27, we propose a ROSC architecture without using two sets of compara-

tors and RC components for decreased clock period variation. To enable oscillation,

the upper and bottom plates (CAP PL+/-) of the capacitor bank are periodically

swapped by control signals SW and SWB when node VN reaches the reference

Figure 27: Concept of the proposed RC relaxation oscillator with one comparator
and inverted capacitor bank.
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Figure 28: Change in the clock period TOSC vs. temperature with different first order
and 2nd order TC subcomponents of td, toffset, and tRC in (a) and (b). The flattest
region of the TOSC occurs at different temperatures for (a) and (b), indicating that
selecting between the two different tRC can improve the TC of TOSC across the full
range.

voltage Vref , and Vneg is the negative plate voltage during swapping. The inverting

capacitor structure avoids the extra loop delay of the conventional ROSC in Figure

26 by eliminating the capacitor discharging time. The clock period TOSC and its sub-

components, the RC charging time tRC , the comparator delay td, and the comparator

offset related delay toffset, are provided in 3. The output stage of the comparator is

biased with a PTAT current source to provide controllability over the temperature

sensitivity of tRC as shown in 4, where R is the resistance in the oscillation loop,

R0 is the output impedance of the comparator, and C is the value of the tunable

metal-oxide-metal capacitor bank. The comparator offset voltage Voffset ranges from

0.3mV at -20oC to 0.7mV at 60oC in simulation, which accounts for less than 0.1%

of TOSC according to 5, but its impact on temperature stability of the clock period is
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not negligible for a targeted specification of 150ppm of total frequency change.

(3)

(4)

(5)

Studies in [35] use a polynomial with temperature coefficients (TCs) to represent the

clock frequency. Similarly, if we ignore higher orders of TC larger than 2, TOSC can

be expressed as

(6)

(7)

(8)

, where TC1s and TC2s with their names in the subscripts are the first and second

order TC of all the specific clock period subcomponents, the TOSC0 is the clock period

at the reference temperature T0, and T is the temperature difference T-T0. According

to 6, we can get the first order temperature coefficient TC1 and the second-order

temperature coefficient TC2 of the clock period with weighted additions of all the

sub-component TC1s and TC2s as demonstrated in 7 and 8. TC1 of TOSC can be
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compensated by carefully choosing the TC1RC which is decided by the temperature

coefficient of the resistance R and the PTAT current source IPTAT in 4. TC2 is

relatively hard to be negated, but the temperature stable region of TOSC shifts to a

different temperature during tuning the TC1RC , as shown in Figure 28. Instead of

burning a huge amount of power in the analog blocks to decrease TC2 of the clock

period, we can employ the digital compensation technique described in Section III to

improve the overall temperature stability of the ROSC.

3.4 Supply Stability Analysis

If we assume the on-chip voltage reference always generates Vref = VDD/2, Equa-

tion (4) can be represented as

(9)

Figure 29: Supply voltage sensitivity with different values of COUT .
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If IPTAT*R0 = 0, then tRC is not sensitive to the supply variation because Vneg is lin-

early related to VDD. To cancel the positive supply coefficient induced by IPTAT*R0,

we can add a capacitor COUT in Figure 29 outside of the inverting capacitor bank to

slightly adjust the value of Vneg at different voltages. Simulation results in Figure 29

illustrate the impact of varying the COUT value. The frequency error between 0.98V

and 1.02V can be reduced to less than 100ppm by carefully tuning COUT .

3.5 Circuit Implementation for the Proposed Relaxation Os-

cillator

3.5.1 System Overview

The proposed ROSC system, shown in Figure 30 , consists of a high-speed com-

parator, a PTAT current reference, a DFC block with a ring oscillator as the on-

chip temperature sensor, a resistor bank with 6-bit tunable p-type diffusion resistors

(Rpdiff [5:0]), a tunable capacitor bank with 8-bit coarse capacitors and 12-bit fine

capacitors, and a VDD/2 voltage reference.

Figure 30: The relaxation oscillator system circuit diagram. [47]
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Equation 6 shows that the overall TC of the clock period is determined by the

temperature variation of R, Voffset, and td (the TC of C is negligible). To achieve

first-order error cancellation, we bias the comparator with a PTAT current source

to compensate for the increasing of td and toffset with temperature. This results in

higher overall frequency stability than when biasing the comparator with a constant

current source, as shown in Fig. 7. Finely tuning Rpdiff [5:0] allows the TC of the

clock period to be dramatically reduced over the temperature range, as illustrated

in Fig. 8. Because the first-order compensation already provides high temperature

stability, only a small amount of second-order tuning is required for Rpdiff compen-

sation across the target temperature range. As a result, we can implement a simple

single-bit temperature sensor with only one calibration point such that Rpdiff can

be switched between two configurations, corresponding to two different temperature

regions. Along with the Rpdiff bits, the DFC also tunes the capacitor bank con-

figuration bits Cap [19:0] to compensate for the potential oscillator frequency shift

resulting from adjusting the Rpdiff. To achieve this, a current-starved ring oscillator

(RO) is used to provide temperature information to the DFC.

3.5.2 PTAT Current Reference

Figure 30 illustrates the PTAT current reference circuit implemented with a

constant-gm bias structure. The current reference value IREF is proportional to 1/R2
S,

therefore the TC of the IREF is strongly dependent onRS. By carefully selecting RS

with a proper TC, the first-order ROSC frequency inaccuracy can be significantly

reduced. As Figure 31 shows, the clock frequency variation across temperature with

a constant current bias is 0.5%, which reduces to 0.2% when using the PTAT current

reference.
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Figure 31: Simulated relaxation oscillator frequency compensation with PTAT current
reference. [47]

Figure 32: Measured relaxation oscillator frequency with different Rpdiff configura-
tions. [47]
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3.5.3 Digital Frequency Compensation

The frequency error compensation obtained from tuning the Rpdiff provides an

additional temperature stability to the PTAT current reference, and it also offers the

flexibility of post-silicon trimming of the TC of the clock frequency. Measurement

results in Figure 32 demonstrate the fine control over the TC of the clock frequency via

the Rpdiff and capacitor bank tuning bits. The frequency is normalized to 1 to clearly

show the frequency slope change with temperature. Based on these measurements

of our ROSC, the frequency error is further reduced to 0.1% (1000 ppm) by finely

tuning Rpdiff.

Figure 33 shows the output frequency of the current-starved, leakage powered RO,

which is in the low kHz range. Since the ROSC has less than 0.5% raw frequency error

across temperature, it can double as a clock reference for temperature sensing. By

counting the number of ROSC clock cycles in one RO clock cycle, an RO counter value

is obtained that varies roughly linearly with temperature. A single-bit temperature

sensor can be easily realized by comparing this counter value with a calibration

Figure 33: Measured ring oscillator frequency and RO counter values. [47]
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value in order to distinguish between two temperature regions. Then, the Rpdiff bits

are set separately for each region to minimize the total frequency error across the en-

tire temperature range. For example, the Rpdiff configuration A provides the lowest

frequency error from -15 to 25oC, as illustrated in Figure 32 , while Rpdiff configura-

tion B provides the lowest frequency error from 25 to 55oC. If the temperature sensor

calibration value is set to 213, which corresponds to 25oC for this design (Figure 33

), the DFC will automatically adjust the Rpdiff configurations above and below 25oC

to apply the second-order error compensation.

3.5.4 Power-Gating for Rapid Duty Cycling

Since the ROSC design must achieve high temperature stability and minimal

period jitter, traditional power-gating header and footer transistors cannot be used

since they can introduce new sources of instability that deteriorate performance.

Figure 34: Simulated timing waveforms during start-up. [47]
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Instead, transistor M0 is employed to ground the gate of M1, and the high-speed

comparator is cut-off from the ground. Transistor M5 drives the gates of M6 M8 to

VDD, effectively power gating the PTAT current reference. In normal operation, M0

and M5 are off, so their effect on the frequency stability is negligible. M9 and M10

are a diode-connected stacked voltage reference, so no power-gate is added to them in

order to ensure high temperature stability. Long channel length IO devices are used

in the voltage reference structure to achieve low power consumption of 12.3 nW.

The start-up time of the proposed ROSC is limited by the time required to charge

the internal capacitive node, VP. A large decoupling capacitor and a voltage buffer

are added to the output of the voltage reference, as shown in Figure 30, to suppress

kickback noise from the oscillator. The high driving strength of the voltage buffer

allows the decoupling capacitor to quickly stabilize to Vref so that the ROSC can

reach steady state after only a few clock cycles. The start-up waveforms of the ROSC

are shown in Figure 34.

Figure 35: Measured ROSC frequency with DFC automatically tuning the capacitor
and resistor bank based on the temperature sensor output. [47]
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Figure 36: Measured RMS clock period jitter. [47]

Figure 37: Measured ROSC frequency of 3 chips at different supply voltages with two
different outside capacitor values.

3.6 Chip Measurement Results

The frequency output of the ROSC is shown in Figure 35, which demonstrates

the transition from the DFC block automatically applying Rpdiff configuration A

from -15 to 25oC and configuration B from 25 to 55oC. The frequency of each

Rpdiff configuration reduces at the edges of the target temperature range, which is
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reflected in Figure 32. The measured frequency variation is 300 ppm from -15 to 55oC,

equivalent to a TC of 4.3 ppm/oC. From 0 to 40oC, the frequency variation is just 100

ppm, corresponding to a TC of just 2.5 ppm/oC. Figure 36 shows the measured RMS

clock period jitter is 160 ps. Figure 37 demonstrates a consistent 30% improvement of

supply stability for three chips between using two different outside capacitor values.

The average frequency error with supply variation is 0.17% from 0.98 V to 1.02 V.

The measured active power is 69 µW, and the leakage power consumption is 110 nW

while power gated.

Figure 38: Performance comparison.

Figure 39: Die photo and design area. [47]
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Table 7: Comparison of recently proposed on-chip oscillator designs [47]

3.7 Conclusion

Table 7 and Figure 38 compare this work with state of the art on-chip clock refer-

ence designs, highlighting the excellent temperature stability, low active power, and

rapid start-up time. The FOM value, derived from the TC and the power consump-

tion, is 174 dB. This work successfully demonstrates single-digit TC performance in

a MHz-range ROSC architecture by employing multiple first and second order fre-

quency error compensation techniques. The advantages of our ROSC architecture

compared to FLL structures include lower power consumption [34] and a quick start-

up time [37] [49] thanks to the open-loop frequency control. The 10 times power

reduction compared to [34] really matters for sub-mW or power harvesting designs.

We also leverage the digital frequency compensation technique with traditional analog

approaches to make the frequency TC stands out from the ROSCs without FLL [38]-

[45], [47], [48]. The high temperature stability of this work within the body-worn

temperature range is comparable to the performance of crystal oscillators, indicating

that healthcare-related IoT SoCs can potentially operate without an off-chip crystal
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clock source, which is critical for reducing system volume in wearable applications.

The supply voltage stability is also improved by 30% with an outside capacitor as

indicated by the supply stability analysis model.

The main contributions of this chapter include:

• Achieves the XO comparable temperature stability of 100 ppm from 0 to 40oC

for IoT SoCs functioning in the temperature range of human body.

• Enables power gating for reducing the active power and 8 µS rapid start-up

time without degrading stability.

• The ROSC chip taped-out in the 65 nm technology achieves 69 µW active power

at 1.05 MHz and 1 V, and 110 nW leakage power in the power gating mode.

• Employes two circuit models to guide directions for improving the temperature

and supply sensitivity.

Part of the work in this chapter has been published in [47].
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4 ULP Wake-Up Receiver (WURX) Base-band De-

sign Exploration

This chapter presents explorations of WURX backend design, which has a signifi-

cant impact on the reliability and performance of WURXs. Mathematical models on

the false wake-up and the missed detection are built for analyzing the sensitivity of

the WURX under varying code-word structures. Base on the analysis, smaller length

wake-up codes can have up to 6dB sensitivity improvement than longer codes without

error tolerance, and error tolerance algorithms can reduce the sensitivity degradation

of the longer codes with respect to the smaller codes to about 1dB, which significantly

enhances the number of wake-up codes available for large-scale WSNs. An analysis

of the radio frequency (RF) transmission energy per wake-up indicates higher power

and higher bandwidth signal transmissions are more energy efficient than the lower

power and lower bandwidth transmissions for quadratic receivers. Silicon measure-

ment results demonstrate similar trends in the analysis by varying the comparator

threshold voltages and correlator error tolerance numbers.

4.1 Motivation

The introduction of ultra-low power (ULP) wake-up receivers (WURX) can sup-

press the standby power of Wireless Sensor Network (WSN) nodes by duty cycling

power hungry main radios [50]. The mesh network topology is promising for reliable

and efficient data transmission because nodes are directly connected to each other.

To wake up a node in the mesh network, other nodes should broadcast signal packets

to be detectable by the target WURX. Unlike base stations in star networks which

can afford high power transmitting, nodes in the mesh network are usually energy

constrained on both transmission and reception. A higher sensitivity WURX allows
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the nodes to expend less energy for a given signal transmission, which improves the

battery life-time of WSN nodes or improves maximum transmission distance [50].

The lowest power WURXs demonstrated in literature have employed a detector

first front end which has an inherent quadratic dependency between input signal power

and output signal power. This work is primarily applied towards the optimization of

such ULP receivers [51]. Most of the efforts towards improving WURX sensitivity

in the prior arts are dedicated to the RF frontend designs, however, the receiver

backend circuits including the comparator and correlator also have significant effects

on the sensitivity [52]. In [53], the comparator threshold is automatically controlled

to suppress interference and maintain the sensitivity. In [54], optimizing the number

of tolerated errors in the correlator shows an enhancement of 5dB in sensitivity.

However, none of these works has thoroughly explored the backend design knobs for

improving the WURX sensitivity. This work focuses on exploring RF backend designs

by evaluating the impact of backend design on WURXs system performance.

Figure 40: WURXs block diagram, and two types of RF input signal.
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4.2 Background

Since the RF backend design is closely correlated to the frontend design, two

assumptions are made for clarification. The first assumption is that RF transmission

turn-on duration per wake up is fixed to a reference time of 20ms by default for fair

comparisons. As shown in Figure 40, a total 20ms RF turn-one time can be used as

four 5ms signal pulses or two 10ms pulses in an OOK scheme. The other assumption

is that an ideal low pass filter exists at the output of RF frontend, which limits the

bandwidth of the signals to the bandwidth required for the desired data rate. The

frontend voltage noise levels follow the Gaussian distribution, whose variance varies

with the square root of the signal bandwidth. In Figure 40, the integrated noise power

of case 1 is about 1.41x higher than case 2.

Three metrics employed to evaluate the WURX baseband design are:

• The sensitivity improvement in dB.

• False wake-ups (FWU) per hour.

• Missed detection (MD) rate.

The sensitivity improvement is relative to a reference sensitivity, which is defined

as the minimum input RF power level where a target MD rate of less than 2% and

FWU rate of less than 0.5 per hour are achieved utilizing an 8-bit length wake-up

code with 50% code weight.

Three knobs explored for baseband circuit design are:

• The comparator threshold voltage (Vtrip).

• The wake-up code length and code weight.

• The correlator error tolerance.
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Figure 41: Relation between false positive/negative rate and the comparator Vtrip
(normalized to 0-1V) at the comparator output.

4.3 WURX Baseband Design Explorations

In this section, we derive mathematical equations representing the number of false

wake-ups and missed detection rate for baseband design analysis. Since noise at the

RF frontend output typically follows a Gaussian distribution, the probability density

functions (PDF) with RF signal on and off are shown in Figure 41. RF signal power is

linearly related to the shift between the baseband analog output level in the presence

of an RF input signal and without an RF input signal, and the noise power equals to

the sigma of distributions. The bit level false positive rate (Pfp) when RF signal is

off and the false negative rate (Pfn) when RF signal is on can be calculated by the

blue and red area respectively, relative to a specific comparator threshold voltage and

a frontend noise level.

Equation 10 calculates the number of FWUs in an hour using the wake-up code
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length (N), the number of 1s (M), bandwidth (BW = M/RF transmission time), and

Pfp. The equation doesnt count the false wake-ups resulting from the RF interference,

and it assumes the RF signals are independent events. Equation 11 calculates the

MD rate.

(10)

(11)

(12)

(13)

Correlator error tolerance is not shown in equation 10 and 11 for simplicity, and its

effect on FWU and MD is considered in equation 12 and 13 by summing up all the

possible error tolerance conditions.

Figure 42: False wake-ups per hour at different Vtrip.
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Figure 43: Missed detection rate at different Vtrip.

4.3.1 Impact of Threshold Voltage on False Wake-up and Missed Detec-

tion Rate

The comparator Vtrip affects FWU and MD by changing the bit level Pfp and

Pfn. In Figure 42 and Figure 43, FWU rate and MD rate are plotted by sweeping the

Vtrip at the reference sensitivity according to equation 10 and 11. Results indicate

that both the FWU and MD number can vary orders of magnitude by setting different

Vtrip. In addition, the range of Vtrip which obtains the target MD rate is important

for the WURXs robustness, which also changes for different wake-up codes.

4.3.2 Impact of the Wake-Up Code on the Sensitivity Improvements

In section 4.3.1, the optimal threshold voltage that meets the given requirements

on FWU and MD can always be found by looking at Figure 42 and Figure 43. In the

sensitivity analysis, the optimal Vtrip is chosen by default to guarantee the anticipa-

tion of FWU in an hour is less than 0.5 and the MD rate is less than 2 percent.
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Figure 44: The sensitivity improvements with different code selections.

As equation 10 and 11 show, the wake-up code length N and the code weight of 1s

M both affect the FWU and MD value. In addition, M is related to the RF bandwidth

since the RF turn-on time is kept constant, thus a larger M requires the RF frontend

to work in a higher bandwidth, which results in an increase in the frontend noise

power. This relationship results from the fact that the transmitted RF zeros are

lower energy compared to RF ones due to the OOKed nature of the code. Figure

44 reveals similar trends that the sensitivity decreases with a larger code weight. An

improvement of 6dB in sensitivity is observed by using smaller length codes with less

code weight than longer length code with larger code weight.

4.3.3 Impact of the Correlator Error Tolerance on the Sensitivity Im-

provements

In Figure 44, smaller length codes have better bit-wise SNR than larger ones

because the bit-wise error probability rises with a larger number of independent events
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due to an increased baseband bandwidth. The baseband correlator can deal with the

errors by post-processing the comparator output with error tolerance. Conventional

error tolerance algorithm treats the false positives (comparator output is 1 when it

should be 0) and false negatives indifferently. As equation 12 and 13 shows, the FWU

with error tolerance degrades, however, the MD rate is improved by employing error

tolerance.

Figure 45: The sensitivity improvements with error tolerance.

Figure 46: Improvement of available code space with the correlator error tolerance
algorithm.
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Wake-up codes with a balanced 1s and 0s are favorable because available code

space is larger than extreme cases. With a larger code space, its much easier to find a

set of wake-up codes with better cross-correlations. In Figure 45, three wake-up codes

with different code length and about 50 percent code weight are selected to present

the sensitivity improvements with error tolerance. The sensitivity of 31-bit code is

still worse than the 8-bit code, but the difference decreases to 1 dB with proper error

tolerance. Another observation is that a higher level of the error tolerance is not

always better because it harms the FWU.

Figure 46 demonstrates significant improvements in the sensitivity of the 31-bit

length codes with optimized error threshold. Given a target sensitivity is set to the

reference sensitivity, the full code weight range of the 31-bit codes can successfully

detect wake-ups using correlator error tolerance algorithms, while only a small range

of code weight can successfully wake-up without the error tolerance at the reference

sensitivity. The performance deviations of different code weight are also reduced to

about 0.5dB with error tolerance.

4.3.4 Trade-off between the RF Transmission Time and the Energy Con-

sumption per Wake-Up

The previous analysis assumes the RF transmission turn-on time is constant per

wake-up event. With a longer RF transmission time, the WURXs sensitivity is im-

proved, however, the transmission energy per wake-up also increases as shown in

Figure 47. When keeping transmitted energy constant, it can be shown that shorter

transmission times with higher transmission powers perform better than a lower power

and longer transmission. This is due to the inherent quadratic nature of the receiver

which favors higher power lower duration detection when compared to traditional

linear receivers. For energy efficient wake-up, the signal should be transmitted at a
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higher bandwidth with a larger broadcasting power.

Figure 47: The minimal RF transmission energy per wake-up and the sensitivity
improvements at different RF turn-on time.

Figure 48: A 63-bit correlator with 4x oversampling of the comparator output and
error tolerance.
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4.4 Wake Up Code Correlator Circuit Implementations

Several different versions of wake-up code correlator are implemented for the de-

sign space exploration. Figure 48 shows a shift register based correlator with 63-bit

of reference wake up code, and it enables 4x oversampling of the comparator output.

It gives a wake-up high signal when the any of the four received codes has an error

less than the error threshold. The reference code and the error threshold are both

re-configurable. The other correlators differ from the one in Figure 48 by having

different wake-up code length or different oversampling rates.

4.5 Measurement Results

To verify the proposed model of WURXs baseband, measurement results on false

wake-ups and missed detections are collected from a ULP passive WURXs chip taped-

out in the 130 nm technology similar to the block diagram in Figure 40. Measurement

results are available for 4 different comparator threshold voltages and error tolerance

number from 0 to 3 at the RF bandwidth of 200 Hz. The correlator error tolerance

Figure 49: Simulation versus measurement results on the number of false wake-ups
in an hour.
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Figure 50: Simulation versus measurement results on the MD rate.

algorithm only tolerates false positive errors. The simulation results are all calcu-

lated using equation 10 to 13, and the parameters are set according to the measure-

ment setup. The measurement threshold voltages are post-processed to fit with the

simulation threshold voltages. Figure 49 and Figure 50 both demonstrate the mea-

surement results follow the same trend with the simulation by varying two baseband

design knobs, the comparator Vtrip and correlator error tolerance. The WURX chip

achieves a -76 dBm sensitivity, less than 0.1% missed detection, and less than 1 FWU

per hour using a baseband correlator circuit with 8-bit wake-up code and 1-bit error

tolerance.

4.6 Conclusion

Near-zero power consumption WURXs can be integrated into IoT nodes to elim-

inate the mW-level idle power of the primary receiver by waking up the main radio

from the power gating mode [3] with a negligible power overhead. The challenge of

WURX design is to maintain a good sensitivity while satisfying requirements on the

MD rate and FWU rate. This work explores the WURX baseband design by tuning
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knobs such as the comparator Vtrip, the wake-up code selection, and the correlator

error tolerance. These three knobs are observed to have significant effects on the

WURX sensitivity and robustness. The mathematical equations for analyzing the

FWU rate and the MD rate are proved to match with the silicon measurement re-

sults. According to the analysis, smaller wake-up codes have better sensitivity than

the longer codes for a fixed RF transmission turn-on time. The error tolerance signifi-

cantly increases the available code space by improving the sensitivity of longer codes.

For energy efficient wake-up, the signal should be transmitted at a higher bandwidth

with a larger broadcasting power.

The main contributions of this chapter include:

• The 7.4 nW WURX system [55] taped-out in the 130nm technology achieves

a -76 dBm sensitivity, less than 0.1% missed detection, and less than 1 FWU

per hour using a baseband correlator circuit with 8-bit wake-up code and 1-bit

error tolerance.

• The wake-up code analysis model helps choosing the appropriate correlator code

length, the code weight, and the error tolerance.

• The wake-up code analysis model predicts that a longer wake-up code (longer

RF transmission time) improves the sensitivity and consumes more RF energy

under the assumption of the same RF power.

• The available wake-up code set is larger with a longer wake-up code length,

but it degrades the sensitivity with the same RF energy. Error tolerance of

the correlator can restore the sensitivity of 31-bit codes to be less than 1 dB

compared to 8-bit codes.

Part of the work in this chapter has been published in [55].
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5 Design Explorations of In-Memory Computing

for Deep Neural Networks

5.1 Motivation

5.1.1 Introduction of Deep Neural Networks

Deep neural network (DNN), or deep learning (DL), is an essential technology

in the field of artificial intelligence (AI). In recent years, multiple breaking through

projects, like the AlphaGo and the autonomous driving, are all developed with DNNs.

However, the 2010s is not the first era when the DNN becomes a hot research topic.

Back to the 1990s, the AI research community started paying attention to the DNN

because of the success in hand-written digit recognition [56]. Limited by the perfor-

mance of computers, researchers found DNN algorithms could not be adapted to solve

larger scale problems. Thanks to Moore’s law [57] [58], the fact that, the transistor’s

speed and the number of transistor per chip both double for every 18 months, empow-

ers a new wave of today’s AI research in fields like computer vision, natural language

processing, and robotics. Several computing platforms other than the conventional

CPU are emerging for high-performance DNN processing, for example, the graphics

processing unit (GPU) and the tensor processing unit (TPU). Performance of these

new processing units can be 1,000 petaFLOPS with an energy efficiency of 10s gi-

gaFLOPS per watt [59]. The large power consumption prevents DNNs to be widely

used in the energy-deficient edge computing devices. The upcoming ULP revolution

in the computer hardware can potentially be another game changer for DNNs and AI

applications.

Figure 51 illustrates the structure of a simple four-layer DNN [60]. The two

hidden layers are the reason of deep for DNNs, in contrast to the shallow neural
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networks which only have an input layer and an output layer. The input layer of a

DNN has an activation vector X or the so-called neuron with a size of three, and it

is fully connected (FC) to the first hidden layer with an activation Y by a weight

matrix W4x3. Equation 14 demonstrates the multiplication and accumulation (MAC)

operations, or the matrix multiplication operation between the activation X and Y.

In this case, 24 MAC operations are required for calculating the dot product, where

one multiplication and one accumulation are defined as two MAC operations.

(14)

Figure 51: A simple four layer DNN with an input layer, an output layer, and two
hidden layers [60].
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Figure 52: The architecture of LeNet-5. Both convolutional layers and FC layer are
used. [56]

Unlike the simple network presented in Figure 51, the input of an actual DNN can

be two or three dimensional. For the small hand-written digits database MNIST [56],

the input image size is 32x32, so the total number of weights for a FC layer would be

32x32xN, where N is the size of output activations. The activation size does not scale

in the FC structure, so convolutional layers are commonly used for the first few hidden

layers as demonstrated in Figure 52. For a convolutional layer, the input activations

are only connected to a local region of the output activations, so the weights behave

like small filters for the input layer. Usually, multiple filters are employed to extract

different features, which makes the convolutional layer outperforms the FC structure.

Figure 53 demonstrates a convolutional layer with three-dimensional (3D) shapes.

The input activations are organized in width (W), height (H), and depth (C). The

output activations are organized in width (Q), height (P), and depth (K). The calcu-

lation of one output activation can be described by equation 15 by integrating across

all the dimensions of a filter. The computation complexity of the convolutional layer

for one input frame is 6-dimension and it consists of P·Q·K·R·S·C MAC operations.

(15)
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Figure 53: The structure of a convolutional layer with a 3D input H·W·C, and a 3D
output P·Q·K

5.1.2 Motivation of In-Memory Computing

The most popular high-performance DNN hardware platforms are GPUs and

TPUs, and both of them belong to the classical von Neumann computing architec-

ture. In the architecture, the memory hierarchy and the processing element (PE) are

separated. The energy breakdown of the AlexNet in [61] reveals that more than 60%

of energy is consumed by on-chip SRAMs in convolutional layers, while the algorith-

mic logic unit (ALU) only consumes less than 20% of the total energy. The limited

on-chip SRAM capacity requires frequent access to off-chip dynamic random access

memories (DRAMs) for the FC layers because the high volume of weights could not

always be cached on-chip. To make things worse, the energy per bit of the DRAM is

more expensive than that of the SRAM.

In summary, issues of the classical von Neumann computing architecture include:

• Data movements between the memory and the processing unit result in high

energy consumption and throughput degradation.

• The energy efficiency and the area efficiency are not good enough for supporting

78



DNNs in edge computing devices.

In-memory computing (IMC) provides a new DNN computing architecture for

avoiding the data movement issue and achieving energy efficient computation. This

chapter only evaluates the IMC for DNN inference with offline network retraining

because online DNN training requires more complicated algorithms, which are not

compatible with our interest in the ULP edge computing scenario.

5.1.3 Motivation of IMC Modeling and Top Down Design Methodology

The concept of IMC circuits is to implement MAC operations inside a memory

array. The weights are stored in the memory, and the input activations are provided

Figure 54: The bottom-up design methodology of IMC circuit [56]

Figure 55: The top-down design methodology of IMC circuit [56]
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from the last layer. Digital to analog converters (DACs) are usually required to con-

vert the digital inputs to analog values for IMC. After the finish of MAC operations,

the calculated analog dot product should be converted to digital values by analog to

digital converters (ADCs) because reliable analog-value storage method is not avail-

able. The random process variation of the on-chip memory bitcells and errors of

the mixed-signal DACs and ADCs inevitably introduce accuracy losses during the

computation.

Figure 54 demonstrates the most commonly used bottom-up design methodology

for IMC circuit designs. Designers usually come up with an IMC micro-architecture

and use simulations to estimate the error of the IMC circuit. The DNN-level precision

loss can also be estimated using the error model to be described in section 5.3. The

bottom-up methodology is a passive design approach which could not guarantee to

pick an appropriate IMC micro-architecture for better NN performance and energy

efficiency.

The top-down design methodology is presented in Figure 55, which provides an

interactive design approach between DNNs and IMC circuits. An IMC error model is

developed with the effective number of bits (ENOB) as an important metric, which is

derived from the signal to noise ratio (SNR) of different IMC circuits. DNNs can also

be retrained to tolerate the unbiased random error of IMC circuits. The retraining

is critical in maintain the DNN performance because ULP circuit design techniques

are likely to introduce more noise during computations. Benefited by the IMC error

model, designers can easily make design decisions by evaluating trade-offs between

the DNN precision and energy efficiency.

This chapter mainly focuses on building the IMC error model considering the

random process variation of memory bitcells and the ADC quantization error, and

evaluating impact of the IMC errors on precision of an actual DNN. The off-line DNN
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retraining is also studied by including the IMC error during forward propagation of

the DNNs, and an example of retraining the LeNet [56] significantly improves the

error-tolerance capability of low power IMC circuits.

5.2 Background & Prior Art

Among the recent publications about IMC, a great variety of memory types have

been researched for overcoming the data movement issue of the classic computer

architectures. The memory types include data non-volatile memories (NVM), such

as the phase change RAM (PCRAM) [62], the memristive crossbar [63] - [69], and the

floating gate storage [70], and data volatile memories, like the SRAM [71] - [73] and

the dynamic RAM (DRAM) [74]. In this section, we focus on modeling IMC circuits

based on the memristors (or RRAMs) and SRAMs, because they are compatible with

the regular CMOS process technology and can be easily integrated on-chip.

Figure 56: (a) Weight value vs. the cell current of an memristor bitcell [67] (b)
Memristor conductance vs. programming pulses [68]
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5.2.1 IMC with the Memristor

Several advantages of the memristor are promising for IMC:

• Dense weight storage. Figure 56 (a) presents that the stored weight value of

a memristor bitcell can be 3-bit to 4-bit with a monotonic cell current [67].

The multi-level memristor enables more weights to be stored on-chip which

potentially reduces the weight movement. The linearity of memristors can be

improved by post-silicon calibration for storing even a larger number of bits in

one bitcell.

• Small bitcell read current. Figure 56 illustrates the conductance of a memristor

bitcell with different programming pulses [68]. The bitcell current is less than

100 nA at a 1 V supply, and it is promising for energy efficient MAC calculations.

• Data retention. The non-volatile feature enables complete shut down of mem-

ristor arrays during the idle mode, which is beneficial for the ULP IoT devices.

Even though the reported memristor bitcell levels differ a lot in the linearity and

the cell current, we could roughly estimate the energy efficiency per MAC operation

for IMC. Assume a situation that, all the memristor bitcells are calibrated to hold

4-bit weights, the input activations are also 4-bit, the average cell current is 1 µA,

the VDD is 1V, and the current integration time is 10 ns. The energy consumption

per MAC can be estimated by

(16)

, where N is the volume of vector multiplication, and EADC is about 2 pJ according

to the ADC survey [75]. N is usually limited by the number of bitcells on a mem-
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ory bitline and a nominal value is 128. An estimation of the EMAC is less than 30

fJ regardless of the computation inaccuracy, and the ADC energy consumption is

dominating compared to the memristor bitcell.

5.2.2 IMC with SRAMs

Unlike memristors, SRAMs are available on every CMOS process technology.

However, an SRAM bitcell can only store 1 bit of weight value, so the IMC based

on SRAMs is limited to DNNs with binary or ternary weights. Fortunately, the

XNOR-Net proves that the performance of binary weighted networks is comparable

to networks using larger weights [76]. A recent work utilizing SRAMs for IMC also

demonstrated a good energy efficiency of 72 fJ/MAC [72].

5.2.3 Other Types of Analog Computing

IMC is one type of analog computing techniques. Other innovated analog comput-

ing techniques, i.e., computing in the switched capacitor arrays [77] and computing

in ring oscillators [78], have shown good energy efficiency with chip measurement

results.

Figure 57: Map a convolutional layer to memory
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5.3 IMC Architecture

Figure 57 illustrates the method to map a convolutional layer to memory arrays

for IMC. The weights are stored in the memory arrays, the input activations are

provided from the last layer, and the output activations are fed to the next layer.

The weights are mapped with the following methods:

• Map the weight dimension C to different rows. The channel depth C is usually

a large number, and the nominal number of rows of a memory array is likely to

be smaller than C, so C needs to be mapped to multiple memory arrays. In this

case, the vector dot product is divided into several partial dot products, and

each of them is calculated on one of the memory bitlines. These analog partial

products are quantized with ADCs and stored digitally in registers, and they

are summed together outside of the memory arrays.

• Map the weight dimension K to different columns.

• Map the weight dimensions R and S to different arrays or different rows. In the

case that C is not large enough to fill up all the rows, R*S can also be mapped

to different rows.

5.3.1 Discussion of the Input DAC

Input activations are multiple-bit digital values for most of the DNNs, and they

usually requires digital to analog conversion for computing the vector dot products

on the memory bitlines (BLs) in an analog manner. The digital input activations

can be converted to the amplitude or the slope of memory wordlines (WLs), which

influence the bitcell current [74]. They can also be converted to the WL pulse width

or the bitcell current integration time [72].
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An alternative approach without using DACs is feeding the input activations se-

rially in the binary form [79]. The serial binary inputs decide that if the WLs to

be turned on or not, and IMC calculates the partial dot products with analog MAC

computations and digital shift additions. The main benefit of using the serial input

approach is that, no extra non-linearity and noise are introduced by DACs. Also

a smaller ADC resolution is needed for quantizing the analog partial dot products

because the input activations only contribute to 1-bit more required resolution in-

stead of multiple bits. The detailed implements of the serial input approach will be

described in section 5.3.2.

Advantages and disadvantages of both approaches are summarized in Table 8.

This work only evaluates the serial input approach because it alleviates the resolution

requirement on ADCs which can reduce the energy consumption as demonstrated in

equation 16. Reasons of not using the input DACs are larger IMC error and higher

energy consumption.

Advantages Disadvantages

Input bit serial Ideal input activation, low
ADC resolution required

Extra memory access
energy

Input DAC Less memory access times Extra source of input
activation error

Table 8: Pros and Cons of input DAC and input bit serial

5.3.2 Memristor IMC Micro-Architecture

Figure 58 (a) illustrates the IMC micro-architecture based on memristors. As-

sume that memristor bitcells have enough resolution to hold multi-level weights, the

complementary bitcell structure is used to represent the sign of weights. If the weight

is a positive value, it will be stored as the conductance of the left memristor bitcell.

The right memristor bitcell will be programmed to the high resistance state (or ’0’
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state), so that it won’t affect the BLB discharging during the analog computation. If

the weight is a negative value, it will be stored as the conductance of the right bitcell

while the left bitcell is in the high resistance state.

Input activations are fed in the bit-serial manner to different rows of the memristor

array. Assume that the activations are four-bit values, they are assigned to the WLs

of different rows in four continuous clock cycles. If the incoming serial bit is ’0’, the

corresponding WL will stay at the turned-off state, and no discharging current

Figure 58: (a) The serial input activation IMC architecture with complementary
memristors. The left column stores all the positive weights, and the right column
stores all the negative weights. (b) BL and BLB discharge during analog computing.
The partial dot product value equals to the voltage difference between the BL and
BLB.
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is contributed by memristor bitcells from this row. If the incoming serial bit is ’1’,

the corresponding WL will be turned on, and one of the complementary memristor

bitcell starts to discharge the BL or BLB based on the sign bit of the stored weight.

Given that the discharging current is proportional to the bitcell conductance GBCL

or GBCR and the WL acts like the turn on or turn off switch, the amount of charge

discharged by a memristor pair is described in equation 17 and 18.

(17)

(18)

The WL chunk size is defined as the number of WLs being turned-on at the same

clock cycle, and it means bitcells in multiple rows can discharge the BLs at the same

time. The WL chunk size can range from one to the channel depth C. This feature

should be mentioned because it affects the computation noise and the required ADC

resolution. In an extreme case that only one WL is turned on during the analog

computation, the ADC resolution can be low because it only needs to differentiate

different voltage levels resulting from one memristor bitcell. However, a larger WL

chunk size is helpful to amortize the ADC energy consumption while introducing a

larger quantization error.

Figure 58 (b) demonstrates the timing diagram of BL and BLB during discharging.

The amount of voltage drop is decided by QBL and QBLB in equation 17 and 18. The

voltage difference between BL and BLB is equivalent to the vector partial dot product

P[i] of the input activations and the weights. The last step is shift additions of all the
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partial dot products corresponding to the serial input bits, as illustrated in equation

20.

(19)

(20)

In summary, dot products of the input activation vectors and the weight vectors

can be calculated by the serial input memristor IMC micro-architecture presented

in Figure 58. The analog computing happens on the BLs and BLBs by discharging

charge proportional to the dot product of the inputs and the weights. Analog partial

dot products are quantized by ADCs and stored in the digital format. Shift additions

of the digital partial dot products generate the final dot product value.

5.3.3 SRAM IMC Micro-Architecture

The SRAM IMC micro-architecture is very similar to that of the memristor, and

the differences include:

• SRAM bitcells can only store binary or ternary weights.

• SRAM bitcells are organized using the complementary structure. If the weight

is ’+1’, the node Q is in the high voltage state and QB is in the low voltage

state. If the weight is ’-1’, the node QB is in the high voltage state and Q is in

the low voltage state. In one extreme case that all the weights are ’+1’ in one

column, only the BLB will be discharged, and the positive partial dot product

can be represented by the voltage difference between the BL and the BLB.
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5.4 IMC Accuracy Loss Modeling

Goals of IMC modeling are predicting the IMC accuracy loss and estimating the

energy efficiency of IMC micro-architectures for both memristors and SRAMs. As

described in section 5.3, two main sources of IMC noise are the memory bitcell vari-

ation which affects the accuracy of weights, and the ADC quantization error which

affects the accuracy of the digitized partial dot products. The input activations do

not contribute to the accuracy loss benefited from the serial input structure.

5.4.1 Bitcell Variations in IMC

Before introducing the details of IMC modeling, the following assumptions should

be made:

• All memristor bitcells are monotonic with post-silicon calibration. The Ran-

dom variation of memristor bitcells follows an uniform distribution with two

parameters representing the lower and the upper boundaries.

• The random variation of SRAM bitcells follows a normal distribution.

Figure 59 (a) illustrates the approach of inserting errors into the memory bitcells.

An array of randomly generated error values following the predefined distribution are

added to the stored weights. Figure 59 (b) presents that the discharging traces of

the BL and the BLB fall into a range defined by the two red dotted line because of

the uncertainty introduced by the randomly generated errors. The final partial dot

product deviates from the correct value by value of the accumulated random errors.

For a larger WL chunk size, the analog MAC operation is affected by more bitcell

variations, which results in a noisier partial dot product output.
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Figure 59: (a) The weight errors resulting from the random variation are added to
the stored weight values. The memristor bitcell error follows an uniform distribution,
and the SRAM bitcell error follows a normal distribution. (b) The BL and BLB
discharging slopes are affected by the added errors. The partial dot product value
includes an error item.

5.4.2 ADC Quantization Error in IMC

The ADCs are used to convert the analog partial dot products to digital values.

Assume that the non-linearity of ADCs can be eliminated by calibration, the digitized

partial dot product values cannot be the same as the analog values due to the limited

resolution of ADCs. An ADC quantization error is added to the partial product by

rounding the digitized value to the closest ADC reading, as presented in Figure 60.

For the serial input scheme, the minimum ADC resolution for no quantization error

can be described by log2(WLchunk size) + Weight bit length − 1, and a larger WL

chunk size tends to require higher resolution ADCs.
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Figure 60: The ADC quantization error is introduced by rounding the partial dot
products to the closest ADC readings.

5.4.3 Numerical Modeling for IMC

This work employs numerical models to learn the statistic behavior of the IMC

accuracy loss. The key steps are:

• Use mathematical models to represent the input activations, the weights, and

the IMC circuit related features.

• Randomly generate the input activations, the weights, and the bitcell errors

with values sampled from the mathematical models.

• Calculate two dot products with the values generated in the previous step. One

represents the ideal case without any non-ideal circuit behavior, and the other

represents the actual situation considering effects of the bitcell error and the

ADC quantization error.

• Repeat the previous steps for a large sample of the dot products and learn the

statistical behavior.
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Figure 61: IMC model with a dot product volume of 2048 and a WL chunk size of
4. (a) The histogram of the dot product (the standard deviation is 747 LSB). (b)
The histogram of the dot product error (the standard deviation is 9.1 LSB), (c) the
intuitive explanation of ENOB (6.1b) calculated from the two distributions

For an actual DNN, the input activations usually follow a normal distribution

before the rectified linear unit (ReLu) layer. Based on the observations of input

activations, a good estimation is a normal distribution with the mean of 0 and the

standard deviation of 2N−1/3, where N is the bit length of input activations. A ReLu

filter is applied to replace all the negative values with zeros for the input activations.

The weights are sampled from the same normal distribution, then a certain percent

of weights are randomly replaced with zeros.

Figure 61 (a) and (b) demonstrate distributions of the dot products and the dot

product error. Both of them are generated with the following assumption on the IMC

micro-architecture:

• Input: 8-bit, normally distributed with the standard deviation of 128/3
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• Weight: 8-bit, normally distributed with the standard deviation of 128/3

• Sparsity: 0.4

• WL chunk size: 4

• Bitcell error: +/-0.5 LSB with calibration

• ADC precision: 10b

• Dot product volume: 2048

The dot products and the dot product errors are both normally distributed, and

the SNR can be calculated with their standard deviation as presented in equation

21. The ENOB is borrowed from the ADC design to represent that how much of

information is left in the distribution of dot products. According to equation 22, the

ENOB is 6.1 bit given that the standard deviation of dot products is 736 and the

standard deviation of dot product errors is 7.9. Figure 61 (c) provides an intuitive

approach to understand the ENOB of IMC circuits. The first row standards for the

total dynamic range of the dot product, which is the maximum possible value. The

yellow squares in the second row are the standard deviation of dot products in the

binary format, which is roughly 9 to 10 bits. The yellow squares in the third row are

the standard deviation of dot product errors in the binary format, which is roughly 3

to 4 bits. The valid information left in the dot product distribution is approximately

the difference between the two yellow squares, which agrees with the ENOB of 6.1

bits.

(21)

(22)
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Figure 62: IMC model with a dot product volume of 2048 and a WL chunk size of
128. (a) The histogram of the dot product (the standard deviation is 736 LSB). (b)
The histogram of the dot product error (the standard deviation is 297 LSB), (c) The
intuitive explanation of ENOB (1b) calculated from the two distributions.

Figure 62 presents another example of the IMC model by changing the WL chunk

size to be 128. As discussed before, an increase of the WL chunk size results in the

accumulation of bitcell random variations and requires a higher ADC resolution. The

standard deviation of dot products remains similar compared to that in Figure 62,

but the standard deviation of errors dramatically increases to 297. The ENOB is 1b,

which means only 1 bit of information in the dot product distribution is valid.

In summary, the ENOB is employed as a statistical metric to represent the accu-

racy loss of IMC. For one DNN layer, the dot products and the dot product errors

are usually normal distributed, and the ENOB can be calculated from their standard

deviations.

94



5.4.4 IMC Modeling with SRAM Bitcell Variations

As discussed in section 5.4.1, the SRAM bitcell current (Iread) follows a normal

distribution, and the simulated means and standard deviations of Iread are provided

in Table 9. The ratio of mean and sigma is utilized to randomly generate the weight

errors in the SRAM bitcells. The same numerical modeling method in section 5.4.3

is employed for modeling the accuracy loss of SRAMs.

WL voltage (V) Mean of Iread
(µA)

Sigma of Iread
(µA)

Mean/Sigma

0.72 43.6 2.0 21.8
0.62 30.6 2.0 15.3
0.52 17.4 1.8 9.7
0.42 6.6 1.2 5.5
0.32 1 0.4 2.5

Table 9: Iread mean and sigma of a SRAM bitcell at different voltages

5.4.5 Parameter Sweeping for IMC Modeling

Figure 63 demonstrates the ENOBs calculated from the accuracy loss model with

sweeping the WL chunk size and the weight bit length. The ENOB of the 8-bit weight

is larger than that of the 2-bit weight because more information is stored in a larger

Figure 63: IMC ENOB model with varied WL chunk size and varied weight bit length
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weight bit length. It is interesting that the ENOB degradation is not significant when

the WL chunk size is larger than 64. The reason is that the accuracy loss is dominated

by the accumulated bitcell variations of the entire dot product volume. Based on the

ADC survey in [75], resolutions of the most energy efficient ADCs are between 8 bits

and 10 bits, so a WL chunk size of 64 and above is desired for amortizing the ADC

energy because the bitcell variation still dominates the accuracy loss compared to the

ADC quantization error. The IMC parameters, like the bitcell variation value, the

input activation length, the ADC resolution, and the dot product volume are swept

to obtain the ENOB of each case. These ENOB values are stored in a look-up table

for error injections in the following DNN experiments.

5.5 IMC Experiments on Deep Neural Networks

5.5.1 Error Injection in DNN layers

LeNet-5 and the MNIST database for hand-written digits recognition are the most

frequently studied DNN in the previous IMC publications, so this work utilizes the

same network for the apple to apple comparison.

In the DNN experiments, a lumped error is sampled from different distributions

for each DNN layer, and it is injected into each of the output activations as Figure

64 presents. The error is sampled from a normal distribution with a mean of 0 and

a standard deviation of the dot product errors. The standard deviation of errors

equals to the standard deviation of the dot products divided by the SNR of the IMC

micro-architecture. The method of deciding the error distribution is valid because

the dot product errors are not correlated with the dot products, which is supported

by the fact that their correlation coefficients are close to 0, as Figure 65 reveals.
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Figure 64: The injected error is sampled from a normal distribution decided by the
SNR of the IMC micro-architecture

Figure 65: Histogram of the correlation coefficient between the dot products and the
dot product errors.

5.5.2 MNIST Precision without DNN Retraining

In Figure 66, the weights are trained with the 32-bit floating point (FP32) res-

olution, and the recognition precision of hand-written digits is 98.65%. The output
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activations are quantized to 4-bit during the DNN inference. The conclusion of the

experiment without retraining is that 3-bit weight with error injection equivalent to

an ENOB of 3-bit can guarantee less than 1% precision loss compared to the FP32

precision for the hand-written digits recognition on the MNIST dataset. The accuracy

drops dramatically with weight less than 3-bit.

Figure 66: MNIST experiment results of the FP32 pre-trained LeNet-5 with noise
injection and quantization

Figure 67: MNIST experiment results of the LeNet-5 retrained with quantization
errors
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5.5.3 DNN Retraining with Quantization Errors

In Figure 67, the DNN is retrained with 4-bit activations and 4-bit weights, but

without noise injections. During inference, the output activations are quantized to

4 bit. The inference precision degradation is less than 1% with 1-bit weights, 4-bit

activations with error injection equivalent to an ENOB of 3 bit. Compared to the

experiment results without DNN retraining in section 5.5.2, the requirement on the

weights is relaxed from 3-bit to 1-bit, which means IMC using SRAMs can meet the

requirement.

5.5.4 DNN Retraining with Quantization Errors and Noise Injections

Figure 68 presents that the precision of inference is improved with noise injections

during retraining, compared to the DNN retrained with only quantization errors. The

requirement on the ENOB of IMC circuit is relaxed from 3-bit to 2-bit in achieving

more than 97.5% of recognition precision. It means the IMC circuit can employ more

low power techniques.

Figure 68: MNIST experiment results of the LeNet-5 retrained with quantization and
noise injection
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Figure 69: The ENOB of SRAM evaluated by the IMC error model by sweeping the
WL chunk size

5.5.5 An SRAM Micro-Architecture for LeNet-5

Network retraining on LeNet demonstrates that the hand-written-digit recognition

precision can be 97.7% using binary weights, 2-bit activations, and error injection

equivalent to a 2-bit ENOB. According to the IMC error model in Figure 69, an

SRAM working at 0.42 V with Iread of 6.2µA, an 8-bit ADC, and a WL chunk size

of 256 meets the ENOB requirement of 2 bit. The estimated IMC energy per MAC

using this SRAM is about EADC*4/256 + 0.42V*6.2A*1ns = EADC/64 + 2.5fJ. Based

on the ADC survey in [75], the most energy efficient ADCs consumes 2 pJ per sample

with the resolution between 8-bit and 10-bit, so the energy per MAC is roughly 30 fJ.

In comparison, a recently published work [72] reports a lower recognition precision of

96% and a higher energy per MAC of 72 fJ using the same DNN LeNet on the same

MNIST dataset.
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5.6 Conclusions

DNNs are proved to be successful in many AI applications, but their computation

power in the von Nuemann architectures are too high to be applicable in the energy

deficient IoT SoCs. IMC provides an opportunity for ULP DNN computation by

dramatically reducing the amount of data movements and by enabling energy efficient

analog MAC computations. The challenge of IMC is to manage the DNN precision

degradation resulting from the noise introduced by the memory bitcell variations

and the ADC quantization errors. Fortunately, DNN is an error-tolerable algorithm

which can minimize the impact of unbiased random noise by retraining the weights

of neural networks. Design decisions, such as operating voltage and WL chunk size,

provides possibilities to further lower the power consumption of IMC circuits, but

their impact on the DNN performance is unclear. The IMC accuracy loss model

fills the gap between the IMC circuit and the DNN performance. For IMC circuit

designers, the model answers the question that to what extent the noise in IMC

micro-architectures can be tolerated by the DNN with retraining. The model can

also evaluate the available IMC circuits using ENOB, so that the DNN architects are

able to choose an appropriate IMC micro-architecture for the required DNN precision.

The main contributions of this work include:

• Builds the IMC accuracy loss model to predict the ENOB of a given IMC micro-

architecture, which considers the memory bitcell random noise and the ADC

quantization error.

• Employs the top-down methodology to find the most relaxed requirement on

memory. To guarantee a hand-written digit recognition precision of 97.7% for

the MNIST dataset, a 16 nm SRAM working at 0.42 V with binary weights,

8-bit ADCs, and 2-bit input activations is required. The estimated energy per
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MAC is EADC/64 + 2.5fJ.

• Proves DNN retraining with error injection and quantization in dot products

can alleviate the impact of noise introduced by IMC.

• Separates the analysis of memory and the evaluation of DNN, so that the circuit

designers and the DNN system architects can optimize the IMC circuits and

architectures separately with considering the impacts between each other.
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6 Conclusion

IoT devices capable of sensing, processing, storing, and transmitting data are ap-

pearing in every corner of our world. ULP and fully-integrated are appealing features

to lower the cost of deploying billions of IoT devices. Greater functionality, such as

larger on-chip storage capacity, shorter response latency, faster processing speed, and

application specific accelerators are desired within the limited power budget of ULP

IoT SoCs.

Chip description (V) Technology node Chapter

2 KB subthreshold SRAM 65 nm Chapter 2
32 KB wide voltage range SRAM 130 nm Chapter 2
1.05 MHz ROSC 65 nm Chapter 3
-76 dBm 7.4 nW WURX 130 nm Chapter 4
-106 dBm 33 nW WURX 65 nm Chapter 4

Table 10: Chips taped-out in each chapters

This dissertation shows a broad interests in the field of ULP IC components design.

Four IC components are studied because they are critical circuit blocks for achieving

ULP operations of IoT SoCs and they can employ different low power techniques

to effectively reduce the system power consumption. The chips taped-out related

to this dissertation are listed in Table 10. SRAM is a significant source of leakage

power, so subthreshold operation is useful. WURX is helpful to enable duty cycling

of the IoT devices and wakes up the IoT node only when necessary. High-speed clock

reference for radio block with a quick start-up time can be power-gated to reduce the

idle current. DNN hardware accelerator implemented by IMC with proper DVFS can

effectively reduce the active power consumption. Low power techniques like DVFS,

power gating, and duty cycling are widely used in circuit designs, but they also

possibly cause reliability issues.

To guarantee reliable operations, we intensively involve circuit modeling tech-
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niques in this dissertation. The SRAM failure modeling enables the efficient BER

analysis of all kinds of SRAM failures by reducing the simulation time by 10,000

times. The on-chip relaxation oscillator stability modeling guides the direction for

improving the temperature and supply sensitivity, and it achieves one of the best

temperature stability among all the ROSCs. The wake-up code modeling predicts

the WURXs sensitivity improvements and helps with the selection of wake-up codes

and error tolerance. The WURX system achieves the best sensitivity among all the

sub-10 nW WURXs. The IMC accuracy loss modeling assists in evaluating the noise

in IMC circuits with ENOB for the first time, choosing appropriate memory micro-

architectures, and predicting the impact of IMC accuracy loss on the performance of

DNNs.

The main contributions are summarized below:

SRAM bitcell auto-generation flow and design space exploration tool.

• Proposes a technology-agnostic subthreshold SRAM bitcell auto-generation flow

that explores design knobs in the hyperdimensional design space, for example,

the bitcell sizes, bitcell types, and assist techniques.

• Categorizes the SRAM failure mechanisms into read data disturbance, HS data

disturbance, read timing failure, write timing failure, and non-write-able bit-

cells.

• Utilizes appropriate metrics to evaluate the different failures accurately and

efficiently. The inverse RTcrit and WTcrit can be used to calculate the BER

of read and write timing failures. The static WM can be used to calculate the

BER of non-write-able failures. The dynamic read disturbance with importance

sampling can be used to calculate the BER of read data disturbance.

• Improves the importance sampling technique to estimate the read data distur-
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bance BER by considering only the dominating parameters, with a simulation

time reduction of 10,000x compared to the conventional Monte Carlo simula-

tions.

• The ViPro explored the methodologies of multi-port register file design with

the built-in models of memory macro delay and energy.

On-chip relaxation oscillator

• Achieves the XO comparable temperature stability of 100 ppm from 0 to 40oC

for IoT SoCs functioning in the temperature range of human body.

• Enables power gating for reducing the active power and 8 µS rapid start-up

time without degrading stability.

• The ROSC chip taped-out in the 65 nm technology achieves 69 µW active power

at 1.05 MHz and 1 V, and 110 nW leakage power in the power gating mode.

• Employes two circuit models to guide directions for improving the temperature

and supply sensitivity.

Wake-up code analysis

• The 7.4 nW WURX system [55] taped-out in the 130nm technology achieves

a -76 dBm sensitivity, less than 0.1% missed detection, and less than 1 FWU

per hour using a baseband correlator circuit with 8-bit wake-up code and 1-bit

error tolerance.

• The wake-up code analysis model helps choosing the appropriate correlator code

length, the code weight, and the error tolerance.
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• The wake-up code analysis model predicts that a longer wake-up code (longer

RF transmission time) improves the sensitivity and consumes more RF energy

under the assumption of the same RF power.

• The available wake-up code set is larger with a longer wake-up code length,

but it degrades the sensitivity with the same RF energy. Error tolerance of

the correlator can restore the sensitivity of 31-bit codes to be less than 1 dB

compared to 8-bit codes.

In-memory computing modeling and DNN study

• Builds the IMC accuracy loss model to predict the ENOB of a given IMC micro-

architecture, which considers the memory bitcell random noise and the ADC

quantization error.

• Employs the top-down methodology to find the most relaxed requirement on

memory. To guarantee a hand-written digit recognition precision of 97.7% for

the MNIST dataset, a 16 nm SRAM working at 0.42 V with binary weights,

8-bit ADCs, and 2-bit input activations is required. The estimated energy per

MAC is EADC/64 + 2.5fJ.

• Proves DNN retraining with error injection and quantization in dot products

can alleviate the impact of noise introduced by IMC.

• Separates the analysis of memory and the evaluation of DNN, so that the circuit

designers and the DNN system architects can optimize the IMC circuits and

architectures separately with considering the impacts between each other.
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Appendix A List of Publications

A.1 Publications

• N. Liu, Agarwala, A. Dissanayake, D. S. Truesdell, S. Kamineni, X. Chen, D.
D. Wentzloff, and B. H. Calhoun, ”A 2.5 ppm/C 1.05 MHz Relaxation Oscillator
with Dynamic Frequency-Error Compensation and 8 µs Start-up Time,” ESS-
CIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC),
Dresden, 2018, pp. 150-153.

• Kosari A, Breiholz J, N. Liu, et al. A 0.5 V 68 nW ECG Monitoring Analog
Front-End for Arrhythmia Diagnosis[J]. Journal of Low Power Electronics and
Applications, 2018, 8(3): 27.

• J. Moody, P. Bassirian, A. Roy, N. Liu, S. Pancrazio, N. S. Barker, B. H.
Calhoun, S. M. Bowers, A -76dBm 7.4nW Wakeup Radio with Automatic Offset
Compensation, ISSCC, 2018

• Yahya, F., C. J. Lukas, J. Breiholz, A. Roy, H. N. Patel, N. Liu, X. Chen,
A. Kosari, S. Li, D. Akella, et al., ”A battery-less 507nW SoC with integrated
platform power manager and SiP interfaces”, Symposium on VLSI Circuits,
2017

• Banerjee, A., N. Liu, H. N. Patel, and B. H. Calhoun, and etc. ”A 256kb
6T self-tuning SRAM with extended 0.38V1.2V operating range using multiple
read/write assists and VMIN tracking canary sensors”, IEEE CICC, 2017

• Patel, H. N., A. Roy, F. B. Yahya, N. Liu, B. H. Calhoun, ”A 55nm Ultra Low
Leakage Deeply Depleted Channel Technology Optimized for Energy Minimiza-
tion in Subthreshold SRAM and Logic”, ESSCIRC, 2016

• N. Liu, and B. H. Calhoun, ”Design Optimization of Register File Throughput
and Energy using a Virtual Prototyping (ViPro) Tool”, IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), 2016

A.2 Pending Publications

• N. Liu, Agarwala, A. Dissanayake, D. S. Truesdell, S. Kamineni, and B. H. Cal-
houn, ”A 2.5 ppm/C 1.05 MHz Relaxation Oscillator with Dynamic Frequency-
Error Compensation and 8 µs Start-up Time,” submitted to JSSC.
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• N. Liu, S. Kamineni, and B. H. Calhoun, ”A technology agnostic subthreshold
SRAM bitcell auto-generation flow for ultra-low power applications, ” to be
submitted.

• N. Liu, B. H. Calhoun, and etc. ”Design Exploration and Accuracy Loss Mod-
eling of In-memory Computing for Deep Neural Networks, ”, to be submitted.

• N. Liu, P. Bassirian, J. Moody, S. M. Bowers, and B. H. Calhoun, ”Explo-
rations on RF Backend Design and Coding for Ultra-Low Power WURXs,” to
be submitted
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Appendix B Glossary of Terms

• AI - Artificial Intelligence

• BL - Bit Line

• BER - Bit error rate

• CMOS - complimentary metal oxide semiconductor

• CDF - Cumulative distribution function

• CPU - Central processing unit

• DNN - Deep Neural Network

• DRAM - Dynamic random access memory

• DVFS- Dynamic Voltage Frequency Scaling

• GPU - Graphics processing unit

• IC - Integrated Circuit

• IMC - In memory computing

• IoT - Internet-of-Things

• MPFP - Most probable failure point

• NMOS - N-type metal oxide semiconductor

• PMOS - P-type metal oxide semiconductor

• RF - Radio Frequency

• RO - Ring Oscillator

• ROSC - Relaxation osicllator

• RSNM - Read static noise margin

• RTcrit - Read critical time

• SA - sense amp

• SoC - System on chip

• SRAM - Static random access memory

• SNM - Static noise margin
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• TPU - Tensor processing unit

• ULP - Ultra-Low-Power

• WL - Word Line

• WM - Write static noise margin

• WTcrit - Write critical time

• WURX - Wake-up Receiver

• XO - crystal oscillator

• VDD - supply voltage

• Vipro - Virtual Prototyping

• VT - threshold voltage
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