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Technical Report
Abstract

On Wednesday March 16", 2022, a group of hackers broadcast a fake video of Ukrainian
President Volodymyr Zelenskyy informing soldiers to lay down their weapons and surrender to
Russian forces (Allyn, 2022). The application of deep-learning based forgery to political
manipulation exemplifies a threat of this type of content manipulation, known as DeepFakes, that
has raised concerns since applications of deep-learning based face-swaps became popularized in
2017 (Aubg¢, 2017). The quality of the Zelenskyy DeepFake was not state of the art.It contained
visual and auditory artifacts that allowed users to easily identify the video as fake. Most
prominently, viewers referenced the inaccurate accent of the video audio. However, more
sophisticated DeepFakes are not easily distinguishable from authentic content. In order to engage
in academic discourse on the contemporary threat of DeepFakes, this technical paper overviews
current DeepFake generation and detection methods, elucidates countermeasures, and
summarizes the current performance of generation and detection. Once the technical background
in contemporary DeepFake technology has been established, the paper draws on parallels to the
race between malware generation and malware detection to inform technical predictions around
the future trajectory of DeepFake generation and mitigation.

Figure 1

Labelled Screenshot of the Volodymyr Zelensky DeepFake Released
on TV24's Website

Nofe. Image taken from Sardarizadeh, 3. [@Shayandt]. (2022, March 16). President Zelensky has
uploaded a wideo o rofute the fake video af him ... TV24's hacked website still has a screanshot of

fhe fake wideo along with a transcript of if. [Tweel]. Twitter,




1. DeepFake Generation Technologies

The computing research community has investigated applications of machine learning to
manipulate visual media for decades. In August 1997, a group of researchers presented on the
application of computer vision to learn and replicate the visual speech patterns of a particular
subject. This research was presented as a method to improve film dubbing by syncing lip motion
to new audio-tracks (Bregler et. al., 1997). Since then, computer vision methodologies and
capabilities have seen rapid advancements. Correspondingly, the ability to convincingly fabricate
and manipulate visual data has caught the attention of multifarious individuals with a wide range
of intentions.

Figure 2

Deep Learning Based Pose Frontalization to Aid Facial Recognition

Note. Face images from CFP dataset and the synthesis images frontalized by the proposed
GEP-GAM. Luan, X., Geng, H., Liu, L., Li, W., Zhao, ¥, & Ren, M. (2020). Geomeatry Structure
Preserving Based GAN for Multi-Fose Face Frontalization and Recognition. IEEE Access, &,
104676-104687 . hitps:/idoi.orgM10. 1108/ACCESS 2020 2006637

Methodologies that use footage of a source subject to drive synthetic expressions on a
target subject have been used to facilitate post-production in the movie and video game
industries (Perov et. al, 2021). Advanced facial recognition systems use deep learning and



computer vision to change the pose of subjects in security footage as shown in Figure 2 (Luan et
al., 2020). Additionally, displayed in Figure 3, facial swapping via computer vision is proposed
as a technique to anonymize publicly available photographs and video (Ma et al., 2021;
Rothkopf, 2020). However, the fabrication of media through deep learning algorithms gained
widespread attention in 2017 when a Reddit user with the online pseudonym “DeepFakes” began
proliferating pornographic videos manipulated to feature the faces of popular celebrities in the
place of adult performers (Tolosana et. al., 2020). As a result, the term “DeepFake" has become
synonymous with manipulated media generated via deep-learning. The threat of malicious
DeepFake applications has garnered significant attention.

Figure 3

FaceSwap Based Identity Anonymization
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Nate, Face anonymization effects of [Ma et al.)'s method on FaceForensics++ videas, The
ariginal face video frames and the correspending anonymized faces ara shown, Taken fram Ma,
T. L, D, Wang, W., & Dong, J. (2021). CFA-Net: Controllable Face Anonymization Metwork with
Identity Representation Manipulation. ArXiv:2105. 71137 [Cs]. httip:farxiv.org/abs/2105. 11137




1.1 Kinds of DeepFakes

Literature on DeepFakes often classifies deep-learning manipulations into a few different
categories. Common categories of visual DeepFakes are face-swap, reenactment, lip-syncing,
face synthesis and attribute manipulation, though the names and boundaries between categories
vary (Mirsky & Lee, 2022; Masood et al., 2021). Face-swaps have gained significant attention
and are currently the most prevalent form of deepfake manipulation (Masood et. al, 2021).

Figure 4

Examples of Different Kinds of DeepFakes
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Note. Examples of reenactment, replacement, editing, and synthesis deepfakes of the human
face. Taken from Mirsky, ., & Lee, W, (2022). The Creation and Detection of Deepfakes: A Survey, ACM
Computing Surveys, 54(1), 1-41. hitps://doi.org/10.1145/3425780

Face-swap DeepFakes replace the face of a subject in a source video with the identity of a target
subject.

Reenactment DeepFakes use footage of a source subject to drive the expressions, pose, gaze or
body movements of a target subject.

Lip-sync DeepFakes drive the motion of a subject’s mouth to match a desired audio.

Attribute manipulations do not use a target identity, but rather manipulate features on a source
subject. Manipulated features can include age, facial hair, clothing, weight, ethnicity, and beauty.

Face synthesis involves creating synthetic, realistic looking human faces.



Additionally, deep-learning based audio-manipulations are a category of DeepFake media
that has seen recent growth in the wild (Masood et. al, 2021). Two primary approaches for
generating audio DeepFakes are text-to-speech synthesis and voice conversion.

1.2 DeepFake Malicious Use

Malicious use of DeepFakes undermines trust in truth. Puppetry and face swap methods
can be used to target individuals in defamation and discredibility attacks. A 2018 political
defamation attack on journalist Rana Ayyub leveraged pornographic DeepFake technology to
defame and discredit the young journalist by face-swapping her features onto an adult performer.
This forged video was shared thousands of times, resulting in a level of cyber harassment that
warranted intervention by the United Nations (Ayyub, 2018).The application of face-swap and
reenactment videos to target political leaders in disinformation attacks has gained widespread
attention. In May 2018, a political group in Belgium released a DeepFake video of Donald
Trump urging Belgium to withdraw from the Paris Climate Agreement. (Schwartz, 2018). Later,
in 2020, a climate activist group produced a forged lip-sync video of Belgian Prime Minister
Shophie Wilmes speaking on the climate crisis (Galindo, 2020). Allegedly, both videos, shown in
Figure 5 and 6 respectively, were produced with the intent to gain attention rather than deceive
viewers. However, as mentioned in the introduction, Ukrainian President Volodymyr Zelenskyy
was recently targeted in an attack that involved a face-swap video broadcast on live television. In
this forgery, the Ukrainian President was depicted directing soldiers to lay down their weapons in

the war against Russia (Allyn, 2022).

Figure 5

DeepFake Video of Donald Trump Urging Belgium to Figure 6

Withdraw From the Paris Climate Agreemenr

DeepFake Video of Shophie Wilmés Speaking on the
Climate Crisis
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In response to disinformation threats, legislation passed in Texas and California ban the
distribution of deceptive audio or visual media around elections (AB 730 CA., 2019; SB 751
TX., 2019). Other states, such as Maine, Washington and Maryland, have introduced similar
legislation (HB 198 MD, 2019; SB 1988 ME, 2020; SB 6513 WA, 2020). Legal courts also
grapple with DeepFake threats. Malicious actors may employ face-swap and reenactment
applications to tamper with visual evidence. This amplifies a threat, referred to as the liar’s
dividend, where any footage can be refuted as fake. In this way, visual evidence is rendered less
reliable (Chesney & Citron, 2019).

Facial editing and synthesis are leveraged in online deception. Mirsky & Lee describe
baiting by child predators as a malicious surface for deep learning based facial editing; predators
can edit photos to appear younger (Mirsky & Lee, 2022). Profiles are also manipulated through
facial synthesis models.Forged photos that resemble real people, exemplified in Figure 8, have
been used in online profiles to spread disinformation and conduct corporate scams (Bond, 2022).
Additionally, the European Union identifies GAN based face morphing as a method of creating
falsified IDs that match the identity of two individuals (Ciancaglin et al., 2020).

Figure 8

DeepFake Profile Picture Creafed Via Facial Synthesis
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Note. Taken from Bond, 5. (2022, March 27). Thal Smiling Linkedin Profile Face Might be a
Computer-Generated Fake. NPR. Retrieved Apnl 29, 2022, from
https:iwww.nprorg/2022/03/2710858140808  ake-linkedin-profiles

In the wild, DeepFakes are increasingly seen in phishing schemes. Voice phishing attacks
have applied auditory DeepFakes as a vector for impersonation (Brewster, 2021). Reenactment
DeepFakes, such as pornographic face-swaps, have been used as a blackmail tool in other
extortion schemes (Joshi, 2021).



1.3 Challenges to Realistic DeepFake Generation:

While research has worked to address limitations, existing models of DeepFake
generation have certain weak points. Mirsky & Lee identify the following as challenges of
creating realistic DeepFakes: generalization, paired training, identity leakage, occlusions, and
temporal coherence.

Figure 9

DeepFakes with Low Fidelity Due to Challenging Generation Conditions
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Note, Problems with current deepfake generation methods. From left to right: low resolution,
low guality, strange artifacts due to wearable items, and facial pose variations. Taken from Le,

T.-M., Nguyen, H. H., Yamagishi, J., & Echizen, |, (2022). Robust Deepfake On Unrestricted
Media: Generation And Detection. doi; 10, 48550/ARXIV. 2202 06228

Generalization refers to limitations of models to adapt to new identities, illumination
conditions, head poses, and other image variations. Masood et al. note that pose variations,
illumination conditions and distance from the camera can interfere with the production of quality
DeepFakes (Masood et al., 2021). The best results are seen when the input media has a frontal
facial view (Xuan et al., 2019). Varying illumination conditions between source and target
images result in semantic inconsistencies in generated media.

Occlusion refers to challenges presented by objects that obscure the face, such as glasses
or motioning hands. These occlusions can increase semantic inconsistencies in the generated
output.

Identity leakage references weakness in face swap and reenactment DeepFakes where the
source identity is reproduced along with the target identity in the generated DeepFake



Paired training refers to the need to match the input to a neural network with the desired
output when training, which can be a laborious process.

Temporal coherence refers to artifacts such as flicker, jitter, and semantic inconsistencies
that appear when DeepFake generators operate on a frame by frame basis (Mirsky & Lee, 2022).
Frame by frame temporal inconsistency is displayed in Figure 10.

Figure 10

Temporally Inconsistent Frames in DeepFake Datasets
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Note, Temporal incoherence in existing daiasets: FaceForensic++{FF++),
DeeperfForensics(DFo), Deepfake Detection Challenge Preview(DFDC), and
FaceShifter{FEh). In the top 4 rows, we show four temporal incoherence that happenad
between the neighborfood frames Taken from Zheng, Y., Bao, J., Chen, D., Zeng, M., & Wen,
F. (2021, Oxrwfpiog). Exploring Temporal Coharence for More General Video Face Forgery
Detection. Proceadings of the IEEE/CVF International Conference on Computer Vision
(ICCW), 1504415054,

Additionally, current generation methods for synthetic audio have weakness in lack of
natural emotions, lack of natural pauses, and behavioral variation from the target identity.
Behavioral variations are observed in speaking pace and breathiness (Masood et al., 2021).



1.4 DeepFake Model Architecture
Encoder-Decoder Networks:

Early face swap models were built using two encoder-decoder network pairs (deepfakes,
2022/2017; Masood et al., 2021). Often used in translation applications, an encoder-decoder
network, diagrammed in Figure 11, functions by training two separate networks on interpretation
tasks. The first network, the encoder, takes in input data and transforms it into a statistical vector
representation. The second network, the decoder network, takes the statistical vector and
reproduces the input data (Keldenich, 2021). The application of encoder-decoder networks to
face swap applications involves training the first encoder-decoder network on the source face and
the second encoder-decoder network on the target face. The encoder extracts latent features and
the decoder reconstructs the face. Then, the decoders are swapped. This results in a model that
uses the source encoder and the target decoder to produce an image with the identity of the
source face on the target image (Mirsky & Lee, 2022). An encoder-decoder network that learns
without labels is known as an autoencoder (Kana, 2020).

Figure 11

Diagram of Encoder-Decoder Network

. \ 3 [ \
THE BIRDFLY - * 27 * m—) | LOISEAU VOLE

Encoder Decoder
19

Encoder
Vector

Note, Taken from Keldenich, T. (2021, October 17). Encoder Decoder What and Why 7 - Simple
Explanation. Inside Machine Learning.
5 /(inE] achinelearning comfen/encaoder-decoder-whal-and-why-simple-axplanation/

Variational Autoencoder Networks:

One weakness of standard autoencoder networks is a sparsely populated latent space. A
research advance to improve the generation of images from this sparsely populated space is the
introduction of normalization. By enforcing a normal distribution on the latent space, values are
more continuous. A variational autoencoder computes the mean and standard deviation of latent



space values. Then, values sampled from a normal distribution are propagated to the decoder
(Kana, 2020).

The application of variational autoencoder networks to DeepFake generation is often
used in disentanglement to target training towards specific features. This disentanglement
improves the image fidelity of DeepFakes. Additionally, variational autoencoder architectures
improve the performance of DeepFake generation for source data with inappropriate fitting for
3D morphable models, as shown in Figure 12. These cases include strange lighting conditions
and different facial orientations. However, a weakness of the variational autoencoder generation
process is the loss of target lighting conditions and occlusions, such as glasses or hands (Masood
et al., 2021). Table 1 surveys DeepFake models that leverage variational autoencoder networks.

Figure 12

Comparison of Face-Swaps using 30 Morphable Model and Variational Aufoencoder Architecture
Across Suboptimal Cases

Source Target
[Nirkin'17] FSNet [Nirkin'17] FSNet
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MNote. Typical failure cases of Nirkin et al.’s method [15] and FSNet. (a) Failure segmentation and (b)
incorrect lighting estimation are those for Nirkin et al.'s method and (¢) cccluded target face is that for
proposed FSMNet, Taken from Natsume, R., Yatagawa, T., & Morishima, S. (2018). FSNet: An
Identity-Aware Generative Model for Image-based Face Swapping. ArXiv: 1811, 12666 [Cs].
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Table 1

DeepFake Generation with Variational Autoencoder Architecture

Model Name

Authors

Description

Kinds of DeepFake
Applications

RSGAN

(Natsume et al.,
2018a)

Region-separative generative
adversarial network; utilizes 2
variational autoencoders that
target training towards facial and
hair regions separately

face-swap; attribute
manipulation; synthesis

FSNET

(Natsume et al.,
2018b)

Both variational autoencoder
objectives and generative
adversarial network objectives
are used; trains toward face
region in source images and
non-face regions in target
images; uses inpainting in the
generator

face-swap

CVAE_GAN

(Bao etal., 2017)

Utilizes a combined variational
autoencoder and generative
adversarial network that
conditions generation on fine
grained categories

synthesis; attribute
manipulation; inpainting*

Additive Focal
Variational
Auto-encoder

(Qian et al., 2019)

Targets training towards
appearance encodings and
identity-agnostic expression
encodings

attribute manipulation;
reenactment

LumiéreNet

(Kim & Ganapathi,
2019)

Uses source audio to drive facial
expressions, body postures and
gestures

lip-sync

3D Morphable Models:

In 1999, Blanz and Vetter proposed a 3D morphable face model, depicted in Figure 13,
which generates subject-specific 3D face models from 2D photographs. This goal is




accomplished through a substantial face model database that stores facial texture and shape as a
vector representation. 3D faces are generated through the formation of linear combinations of
prototype faces (Blanz & Vetter, 1999). 3D morphable models have recently seen a rise in deep
learning applications (Egger et al., 2020). DeepFake generation, particularly reenactment
generation, has leveraged these 3D morphable models. Table 2 overviews a variety of DeepFake
architectures which apply 3D morphable models.

Table 2

Figure 13

Diagram of QOriginal 30 Morphable Face Model
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A A
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Note. Derived from a dataset of prototypical 3D scans of faces, the morphable face model
contributes to two main steps in face manipulation: (1) derving a 30 face model from a
novel image, and (2) modifying shape and texture in a natural way. Taken from Blanz, V., &
Vetter, T, (1989). A morphable model for the synthesis of 30 faces. Proceedings of the 26th
Annual Conference on Computar Graphics and Interactive Technigues - SIGGRAPH 99,

187194, hitps:idoj.org10.1145/311535 311556

DeepFake Generation with 30D Morphable Models

Kinds of DeepFak
Model Name Authors Description n S ° . ceprake
Application
. Drives full head animation reenactment;
Deep Video . . . . .
Portraits (Kim et al., 2018) through a space-time generative |lip-sync; expression

adversarial network

reenactment




Uses a 3-player generative
adversarial network architecture
in combination with a 3D
FacelD-GAN (Shen et al., 2018a) [morphable model to produce an |reenactment
architecture for facial
reenactment with reduced
identity leakage

Uses three encoder-predictor
networks in a 3-player generative
adversarial network architecture. |reenactment; face
One of the encoder-predictor swap

networks is trained to predict 3D
morphable model parameters

FaceFeat-GAN (Shen et al., 2018b)

Utilizes a conditional generative
adversarial network and 3D
paGAN (Nagano et al, 2018) |morphable model to produce 3D |reenactment
avatars from a single source
image

Uses a fully convolutional neural
network to segment facial

n/a* (Nirkin et al., 2017) |regions; applies a 3D morphable |face-swap
model to understand facial
texture and geometry

Uses audio analysis and
space-time retrieval in
combination with a 3D
morphable model to reproduce a
mouth region that matches source

VDub (Garrido et al., 2015) lip-sync

audio

Generative Adversarial Networks:

Drawing on game theory foundations, the first generative adversarial network (GAN) was
proposed in 2014 by Goodfellow et al (Goodfellow et al, 2014). This architecture functions by
using an adversarial network to pit a generative model against a discriminative model. The
generative model attempts to produce data matching the distribution of the training set and the
discriminative model attempts to classify whether or not data was produced by the generative




model. The generator is trained towards maximizing the classification error of the discriminator.
The discriminator is trained toward minimizing classification error (Goodfellow et. al, 2014;
Kana, 2021). Generative adversarial networks have become prominent in the generation of
DeepFakes. Table 3 surveys DeepFake generation methods that leverage generative adversarial
network architecture.

Figure 14

Diagram of Generative Adversarial Network Using a Celebrity Faceset
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Note. Taken from Kana, M. (2021, February 19). Generafive Adversanal Nefwork (GAN) for Dummies—A Step By Step Tutorial.

Medium. pttps./towardsdatascience com/generative-adversarial-network-gan-for-dummies-a-step-by-step-tutonal-fdefff 1 70391

In 2017. Karras et al. improved generative adversarial network training through their
ProGAN methodology, which utilizes a mini-batch size and additional network layers to increase
the resolution of generated images (Karras et al., 2018). StyleGAN and StyleGAN2 build further
on ProGAN to improve fidelity (Karras et al., 2019; Karras et al.; 2020). StyleGAN2 addresses
semantic attributes (Karras et al., 2020). In the case of DeepFakes, these semantic attributes can
include gaze direction and teeth alignment. A number of other researchers have used other
varying strategies to address the resolution of GAN generated images (Zhang, Goodfellow, et al.,
2019; Brock et al., 2019).

When using generative adversarial networks for DeepFake generation tasks, there is a
necessity for a large corpus of high fidelity training data. Facial reenactment models that require
less subject-specific training data address this weakness (Zakharov et al., 2019; Zhang, Zhang,
He et al., 2019; Hao et al., 2020). However, weaknesses of these few-shot learning methods
include identity leakage, where a source identity is partially reproduced in generated videos
(Masood et al., 2021). DeepFake generation has also addressed temporal incoherence through the



use of temporal coherence analysis and optical flow estimation in discriminators (Masood et al.,

2021).

Table 3

DeepFake Generation with Generative Adversanal Networks

Model Name

Authors

Description

Kinds of
DeepFake
Application

Faceswap-GAN

(shaoanlu, 2022/2017)

Adds a discriminator and adversarial loss
to the encoder-decoder network
popularized by reddit user deepfakes

faceswap

FSGAN

(Nirkin et al., 2019)

A subject agnostic model that uses a.) a
network for face completion to handle
weaknesses related to facial occlusions.
and b.) a network for face blending to
reduce artifacts, while maintaining target
lighting

face-swap;
reenactment

End-to-End
Speech-Driven
Realistic Facial
Animation with
Temporal GANs

(Vougioukas et al.,
2019)

Utilizes discriminators to improve
audio-visual synchronization in a model
that uses audio to drive motions of a
talking head

lip-sync

TP-GAN

(Huang, Zhang, et al.,
2017)

Uses a two pathway generative
adversarial network to handle minimal
poorly posed input images.This
architecture perceives global structure,
through an encoder-decoder network, and
local details through four patch networks.
The architecture uses a combination loss
function of adversarial loss, symmetry
loss, and identity-preserving loss

reenactment

Deep Video
Portraits

(Kim et al., 2018)

Drives full head animation through a
space-time generative adversarial network

reenactment;
lip-sync;
expression
reenactment




Uses a 3-player generative adversarial
network architecture in combination with

FacelD-GAN (Shen et al., 2018a) a 3D morphable model to produce an reenactment
architecture for facial reenactment with
reduced identity leakage
Uses three encoder-predictor networks in
a 3-player generative adversarial network
. ) reenactment;
FaceFeat-GAN |(Shen et al., 2018b)  |architecture. One of the encoder-predictor
. . . face swap
networks is trained to predict 3D
morphable model parameters
Utilizes a conditional generative
adversarial network and 3D morphable
paGAN (Nagano et al, 2018) P reenactment
model to produce 3D avatars from a
single source image
Region-separative generative adversarial |face-swap;
RSGAN (Natsume et al., network; utilizes 2 variational attribute
2018a) autoencoders that target training towards |manipulation;
facial and hair regions separately synthesis
Both variational autoencoder objectives
and generative adversarial network
Natsume et al., objectives are used; trains toward face
FSNET ( J .. _ face-swap
2018b) region in source images and non-face
regions in target images; uses inpainting
in the generator
Utilizes a combined variational synthesis;
autoencoder and generative adversarial attribute
CVAE GAN  |(Bao etal., 2017) &l . e
- network that conditions generation on fine |manipulation;
grained categories inpainting™®
Applies attribute classification constraint
to guarantee manipulation of desired .
. ) . attribute
AttGAN (He et al., 2018) features; applies reconstruction learning . .
manipulation

to constrain manipulation to only the
desired features




Applies an attention mask to constrain

editing to an attribute area; progressively |attribute
PA-GAN (He et al., 2020) ne . prog 4 e
manipulates attributes from high level manipulation
features to low level features
Utilizes an attribute manipulation network
and a spatial attention network in the .
. . attribute
SaGAN (Zhang et al., 2018)  |generator of a generative adversarial . )
. . . . manipulation
network to restrict attribute manipulation
to certain regions of an image
Incorporates selective transfer units into
an encoder-decoder network in the .
. . attribute
STGAN (Liu et al., 2019) generator to improve accuracy and . .
) . manipulation
perceptual quality of attribute
manipulations
Addresses the diversity and scalability of .
. . . ., _|attribute
image to image translation across multiple . .
. . . . . manipulation;
StarGAN v2 (Choi et al., 2020) domains using a generative adversarial
. . . reenactment;
network architecture with a mapping
face swap
network and style encoder
. .. reenactment;
Produces high resolution images through .
.. . . attribute
A conditional adversarial networks with . .
Pix2pixHD (Wang et al., 2018) . manipulation;
perceptual loss, a measure of high level
. . face-swap;
differences in images .
lip-sync
Conditions generation on annotated
Action Units (AU), which encode facial
. Pumarola et al., expressions; utilizes attention
GANimation ( P . ) reenactment
2018) mechanisms to improve robustness to
varying background and lighting
conditions
Introduces a triple consistency loss to
GAN with triple |(Sanchez & Valstar, [generative adversarial face translation to |reenactment;
consistency loss |2018) better handle differing distributions in the |face-swap

input and target domains




Few-Shot

Adversarial Extensively trains on a large dataset of

Learning of (Zakharov et al., videos to allow for the generation of reenactment;
Realistic Neural |2019) realistic neural talking head models from (face-swap
Talking Head one or few frame(s)

Models

One shot learning approach, which
disentangles shape and appearance
information through 2 encoders with a reenactment
shared decoder that aggregates multi-level
features

One-shot Face  [(Zhang, Zhang, He et
Reenactment al., 2019)

Uses a generative adversarial network

hich d
FaR-GAN (Hao et al., 2020) whic c'oml')oses appearance an ‘ reenactment
expression information for effective face

modeling in one-shot reenactment

General Advances in DeepFake Generation:

Recent notable advances in DeepFake generation include post-processing steps that
address artifacts, address occlusions and improve smoothing. Inpainting, a computer vision task
that fills in missing details in an image, improves the fidelity and coherence of generated
DeepFakes. Additionally, artifacts are reduced through the use of loss functions that handle
specific weaknesses (Masood et al., 2021). Perceptual loss based on the VGG-Face vision model
is used to improve the fidelity of eye movements and to smooth artifacts (Masood et. al., 2021).
Self-attention modules and adaptive instance normalization (AdaIN) layers improve image
fidelity (Huang & Belongie, 2017; Masood et al, 2021). There have also been a variety of
approaches to lower the burden of training data. Masood et al note advances in unpaired,
self-supervised training strategies which mitigate a need for extensive labeled training data
(Masood et al, 2021). Mirsky & Lee note variations among the generalizability of models. Rigid
models require training toward a specific source identity and a specific target identity. More
general models allow any source identity to drive the target identity that a model was trained on.
The most generalizable models use any source identity to drive any target identity (Mirsky &
Lee, 2022). Advances in DeepFake generation permit increased real time manipulations,
allowing for a greater enmeshment with other social engineering pressures (Masood et al, 2021).




2. DeepFake Countermeasures

DeepFake generation is not flawless. As shown in Figure 15 and Figure 16, many
DeepFakes contain visual, semantic artifacts, such as discoloration, inconsistent lighting,
unnatural teeth, or unnatural hair that indicate inauthenticity to a viewer (Johansen, 2020). A
variety of strategies have been proposed to mitigate the threat of DeepFake forgeries.
Researchers have proposed a number of different deep learning based technical detection
methods. Scholarship has introduced frameworks for digital providence. Some scholars have
asserted a need for increased digital literacy. Other research has investigated technical adversarial

attacks of DeepFake generation through image perturbations.

Figure 15

Discoloration in Generated DeepFake

-

Mate. Example from FaceFenensies [33] showing shading artifacts arising from illumination eglimatian and
imprecise geometry of the nose. Taken from Matern, F., Riess, C., & Stamminger, k. {2019). Exploiting
Wisual Artifacts lo Expose Deeplakes and Face Manipulations, 2019 JEEE Winter Applications of Compuler

Vizion Workshops (WACVIY), 83-92.
Figure 16

Synthesis DeepFake with Visual Artifacts: Inconsistent Lighting, Unnatural Hair, and Unnatural Teeth
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2.1 Technical Detection Approaches

Technical approaches for detecting DeepFakes target a variety of different weaknesses in
DeepFake generation. The following section categorizes technical DeepFake detection models
into blending artifact detection, environmental artifact detection, forensic artifact detection,
behavioral artifact detection, physiological artifact detection, coherence based detection,

anomaly detection, and generic classifiers. Specific details on detection models are described in
Table 4.

Blending Artifact Detection:

Researchers have identified spatial blending artifacts on face-swap DeepFakes where the
boundaries of facial images are semantically inconsistent when the image is replaced in the
frame. This results in dissimilarity between neighboring pixels. A number of detection models
have used local feature descriptors and frequency analysis to classify media as real or fake by
comparing the similarity of pixels (Agarwal et al., 2017; Zhang, Zheng, & Thing., 2017; Akhtar
& Dasgupta, 2019; Durall et al., 2019). Agarwal et al. note that while blending procedures in
face-swap generation leave center regions well-blended, regions around eyes, nose and mouth
tend to be vulnerable to artifacts (Agarwal et al., 2017). Liu & Lyu note the presence of residuals
leftover from face-warping processes in lower resolution DeepFakes (Liu & Lyu, 2019).

Environmental Artifact Detection:

Shown in Figure 17, artifacts of face-swap DeepFakes include semantic inconsistencies
between a face and its background. Researchers have used both patch and pair convolutional
neural networks and encoder decoder networks to classify media based on discrepancies between
foreground and background features (Li et al., 2020; Nirkin et al., 2020). Additionally, DeepFake
content is prone to inconsistent lighting patterns. Straub specifically targets this inconsistency in
his model, which makes both pixel-to-adjacent-pixel and regional lighting comparisons to
differentiate authentic and DeepFake media (Straub, 2019).

Figure 17

Discrepency Between DespFake Faces and Context Including Glasses, Hair, Ears and Neck

BN

Note, Two example fake (swapped) faces from DFD, Left: The arm of the eyeglasses does not extend from
face to context, Right: An apparent identity mismatch between face and context ... these and similar
discrepancies can be used as powerful signals for automatic detection of swapped faces. Taken from Nirkin,
Y., Wolf, L., Keller, ¥., & Hassner, T. {2020). DeepFake Detection Based on the Discrepancy Between the

Face and its Context, ArXiv.2008,12262 [Cs]. hitp:larxivorg/abs/2008, 12262



Forensic Artifact Detection:

Forensic analysis has allowed researchers to identify manipulated media through subtle
details in content. For example, Koopman et al. leverage patterns of sensor noise left by factory
defects in digital cameras to differentiate real and DeepFake media (Koopman et al., 2018).
Other forensic analysis has identified the fingerprints of pixel patterns generated by different
generative adversarial networks (Marra et al., 2018).

Behavioral Artifact Detection:

Other methods of DeepFake detection target anomalies in the behavior of subjects.
Agarwal et al. propose a model that learns the facial expression and speech patterns of world
leaders such that DeepFakes can be identified by divergence in these learned patterns (Agarwal
et al., 2019). Other authors leverage discrepancies in audio and visual cues (Mittal et al., 2020;
Korshunov & Marcel, 2018; Korshunov et al., 2019).

Figure 18

Analysis of Audio and Visual Cues

visual features and spectrogram. Taken from Korshunov, P, & Marcel, 5,
{2018). Speaker Inconsistency Detection in Tampered Video. 2018 26th
European Signal Processing Conference (EUSIPCO), 2375-2379.




Physiological Artifact Detection:

Natural physiological patterns are also used to differentiate between forged and authentic
content. Researchers have explored the use of pulse, heart rate and blinking as biological
indicators of authenticity. Models are trained to classify media content based on these signals
(Ciftci & Demir, 2020; Ciftci et al., 2020; Conotter et al., 2014; Li, Bao, et al., 2018)

Coherence Based Detection:

Due to a weakness of DeepFake generation methods at producing temporally coherent
video footage, a number of detection approaches leverage classifiers that evaluate the temporal
coherence of input media. By comparing video frames and identifying artifacts such as flicker
and jitter, models are able to differentiate between authentic and fake content (Gliera & Delp,
2018; Sabir et al., 2019; Amerini et al., 2019).

Anomaly Detection:

Other researchers have leveraged unsupervised deep learning architectures to recognize
anomalies indicative of DeepFake content. These models are trained on normal data and detect
deviations from authentic media patterns. Khalid and Woo compute an anomaly score of encoded
and reconstructed images from a reconstruction network trained solely on real faces (Khalid &
Woo, 2020). Other researchers have measured anomalies using facial recognition networks. This
is accomplished through monitoring neural activation or analyzing how well an image fits
training distributions (Want et al., 2020; Fernandes et al., 2020).

Generic Classifiers:

Unsupervised deep learning architectures are also deployed in generic classification
models. One strength of deep learning based detection is better performance on compressed
imagery (Marra et al., 2018). A number of authors propose models that use convolutional neural
networks to classify input as real or fake (Afchar et al., 2018; Do Nhu et al., 2018; Tariq et al.,
2018; Ding et al., 2019). Advances in the use of convolutional neural network classifications
include Hsu et al’s. use of Siamese convolutional neural networks to classify content (Hsu et al.,
2020). Given that convolutional neural networks are blind to attacks that they are not trained on,
Fernando et al. propose a Hierarchical Memory Network that utilizes neural memories to
anticipate future semantic embeddings (Fernando et al., 2019). To produce a robust model that is
less prone to false positives, Rana & Sung propose an ensemble learning technique that utilizes 7
distinct convolutional neural DeepFake detection networks (Rana & Sung, 2020). To exploit
temporal weaknesses in DeepFake generation, de Lima et al. employ a 3D convolutional neural
network to analyze multiple frames simultaneously (de Lima et al., 2020). However, it is noted



that generic classifiers are especially prone to adversarial machine learning attacks (Mirsky &

Lee, 2022).

Table 4

Survey of DeepFake Technical Detection Models

Authors Detection Type Description
* leverages differences in neighboring pixels
* compares the difference between a center pixel and
Blending Artifact its neighbors
(Agarwal et al., 2017) DeiI;c;il:)i Hac 8
* analysis through a Weighted Local Binary Pattern,
which assigns weights inversely proportional to
distance from a center pixel
* leverages statistical analysis of pixels
Blending Artifact * pass input through a high pass filter to obtain
(Mo et al., 2018) Detection residuals
* use a convolutional neural network to classify images
as real and fake
' Blending Artifact * trail.ls a convolu'tiogal neural netwo_rk gxplicitly on
(L1, Bao, et al., 2020) } blending boundaries in order to classify images as real
Detection
and fake
(Li & Lyu, 2019) Blendipg Artifact * analyzes,. images for residuals leftover from
Detection face-warping processes
. * uses a patch and pair neural network to classify
: Environmental . . Ny L
(L1, Yu, et al., 2020) ) ) images based on differences in pixel distribution
Artifact Detection
between face patches and background patches
* compares a face to its context. Context can include
features such as hair, ears, and neck
o Envi tal * i
(Nirkin et al., 2020) n\flronmen a ' processes faces and context separately in face encoder
Artifact Detection networks

* decoder network is used to classify images as real or
fake




(Straub et al., 2019)

Environmental
Artifact Detection

* leverages both pixel-to-adjacent pixel comparisons
and regional lighting comparisons to identify DeepFake
media

(Yang et al., 2018)

Forensic Artifact
Detection

* uses a support vector machine to classify images
based on 3D head pose estimation

(Marra et al., 2018)

Forensic Artifact
Detection

* identify DeepFake content based on fingerprints left
by GAN noise residuals

(Yu et al., 2019)

Forensic Artifact
Detection

* classify content based on unique fingerprints of GAN
models

(Koopman et al.,
2018)

Forensic Artifact
Detection

* utilizes photo response non uniformity (PNRU)
patterns

* classifies based on normalized cross correlation
scores of PNRU for video frames

PNRU refers to the noise pattern left by factory defects
in digital cameras

(Agarwal et al., 2019)

Behavioral Artifact
Detection

* analyzes the expression behaviors of a specific
identity through tracking facial movements, head
movements, and muscle movements, which are
encoded as action units

* characterizes an individual's motion signature through
Pearson correlation

* trains a support vector machine on an identity’s
expression behavior to classify videos

(Mittal et al., 2019)

Behavioral Artifact
Detection

* uses a Siamese network-based architecture to extract
and analyze emotional cues of audio and visual content

* classify based on similarity between audio and visual
emotional cues

continued on next page




(Korshunov &
Marcel, 2018)

Behavioral Artifact
Detection

* detects audio-visual inconsistencies

* compare performance of different feature processing
methods

* conclude that long short-term memory networks
(LSTM) perform best

LSTM are recurrent neural networks that learn long
term dependencies to better handle sequences of data

(Korshunov et al.,
2019)

Behavioral Artifact
Detection

* use a two-class classifier to differentiate real and fake
media based on inconsistency in audio and visual cues

* utilize feature embeddings from a deep neural
network trained on speech recognition for audio cues

* utilize face and mouth landmarks for visual cues

* use a long short-term memory network to learn
temporal sequences of a video

(Ciftci & Demir,
2020)

Physiological Artifact
Detection

* uses a convolutional neural network based classifier
to label content as real or fake based off of analysis of
biological signals in different facial regions

(Ciftci et al., 2020)

Physiological Artifact
Detection

* use spatiotemporal patterns of biological signals to
classify content as real or fake

* fingerprint DeepFake source models by interpreting
spatiotemporal biological signal patterns as a projection
of residuals

(Connotter et al.,
2014)

Physiological Artifact
Detection

* differentiate computer generated and human faces
based off of fluctuations in human faces due to changes
in blood flow

* these fluctuations are indicative of pulse




(Li, Bao, et al., 2018)

Physiological Artifact
Detection

* utilizes a long short term recurrent CNN (LRCN) to
analyze temporal states of eyes to analyze eye-blinking
patterns

* classify content based on presentation of natural
eye-blinking

LRCNs are a combination of CNN and recursive neural
networks. These networks are suited to handle temporal
knowledge

(Giiera & Delp, 2018)

Coherence Based
Detection

* train a recurrent neural network to recognize temporal
artifacts, such as flicker and jitter, that are indicative of
DeepFake content

(Sabir et al., 2019)

Coherence Based
Detection

* leverage weakness in the temporal coherence of
generated DeepFakes

* utilize combinations of recurrent convolutional neural
networks to identify temporal discrepancies

(Amerini et al., 2019)

Coherence Based
Detection

* uses optical flow fields to identify dissimilarity
between frames in a video

* inter-frame dissimilarities are used as a feature in a
CNN based classifier

(Khalid & Woo, 2020)

Anomaly Detection

* train a reconstruction variational autoencoder on only
real faces

* identify DeepFakes by passing content into the
trained reconstruction network and computing an
anomaly score

* the anomaly score is based off of the mean square
error of encoded and reconstructed images

(Wang et al., 2020)

Anomaly Detection

* monitor layer-by-layer neural activation of facial
recognition models

* uses neural coverage and activation to classify
content as authentic or fake

* robust against some adversarial perturbation attacks




(Fernandes et al.,
2020)

Anomaly Detection

* proposes an attribution based confidence metric

* classify images as real if confidence values are above
0.94

Afchar et al., 2018

Generic Classifier

* uses a deep learning method to classify images as real
or fake

* uses a low number of layers to focus on mesoscopic
properties of images

(Do Nhu et al., 2018)

Generic Classifier

* use a deep convolutional neural network to detect
DeepFakes

* utilize a deep face recognition system for face feature
extraction

* network is fine tuned for real/fake image
classification

(Ding et al., 2019)

Generic Classifier

* use deep transfer learning for face swap detection

* include uncertainty measure with each prediction

(Hsu et al., 2020)

Generic Classifier

* train a fake feature network using pairwise deep
learning to differentiate the features of real and fake
images

* add a classification layer to the fake feature network
to label images as real/fake

(Fernando et al.,
2019)

Generic Classifier

* use a convolutional neural network based approach
for detecting face tampering

* utilize a Hierarchical Memory Network architecture
that stores information in neural memories and uses
visual cues to predict future semantic embeddings

* more robust to unseen manipulation techniques

(Rana & Sung, 2020)

Generic Classifier

* ensemble learning technique that uses 7 distinct
convolutional neural networks trained for DeepFake
detection

* less prone to false positives




(de Lima et al., 2020) |Generic Classifier frames simultaneously when classifying fake/authentic

content

(Tariq et al., 2018) Generic Classifier

* focus a neural network based classifier on image
contents to detect forged faces

Weaknesses of Technical Detection Approaches:

Masood et al. note that many existing detection mechanisms are best suited for face
swaps. Lip-sync and expression manipulations leave more subtle artifacts that challenge existing
detection architectures. These scholars note that research approaches have demonstrated greater
reliability for image-based manipulation detection as compared to video-based decisions
(Masood et al, 2021). Limits in DeepFake detection generalizability are related to the strong
reliance of existing detection models on a finite set of research datasets (Pu et. al, 2021; Masood
et al, 2021). The artifacts present in these training sets are not guaranteed to represent the
artifacts present in deployed DeepFakes.

Performance of Technical Detection Across Different Communities:

Through an exploration of racial bias in detection models, Pu et al. conclude that the
CapsuleForensics detection model has the highest accuracy on classifying the authenticity of
videos for input featuring Black faces. The F1 score of classification for this group is 74%. The
performance on Caucasian faces is comparable with an F1 score of 72%. However, the
performance on Asian faces drops to a mere 48% (Pu et al., 2021). Other ethno-racial categories
were not investigated. During the 2020 CVPR Media Forensics Workshop, Prabhu et al.
commented on populations whose videos were likely to experience a high degree of false
positive classification in DeepFake detection models. Detection based on blending artifacts is
prone to misclassifying the faces of individuals who have conditions such as leprosy or vitiligo.
Detection based on blending artifacts is likely to misclassify the faces of burn victims,
individuals with facial tattoos and smooth baby faces (Prabhu, 2020).

* employ a 3D convolutional neural network to analyze




Figure 19

Communities Vulnerable to DeepFake Misclassification

.

DeepFake Content

Real Individual with Leprosy Real Burn Victim

Mote, Compiled from Prabhu, A., Materzyniiska, J., Dokania, P. K., Torr, B H. 5., & Lim,
S-N. {2020, June 18). Is Your Face Fake? Social Impacts of Algonthmic “Fake”™
Dagtarmination [Conference], DFDC Risk-a-thon & CVPR media forensics workshop
2020, Seattle Washington. https://drimpossible. github.io/documentsdfdc_slides. pdf

2.2 Adversarial Image Perturbation

One preventative measure against DeepFake generation is adversarial image
manipulations that target weaknesses in DeepFake generation models. A number of different
models have been proposed to perturb images. Yeh et al propose a method that applies
adversarial loss to images in such a way that manipulating these images is rendered more
difficult. This adversarial attack specifically targets image translation models such as CycleGAN,
pix2pix and pix2pixHD (Yeh et al., 2020). Segalis and Galili propose a model that targets
face-swapping autoencoders. This OGAN model iteratively trains an adversarial image generator
against a face-swapping model to create a model of training resistant adversarial image
perturbations. The model is more robust toward DeepFake generation models trained on datasets
that include adversarially manipulated input images (Segalis & Galili, 2020). Dong & Xie
explore 3 different adversarial attacks on autoencoders. One universal image perturbation model
is image agnostic. The other two models provide precise, image-specific distortions (Dong &
Xie., 2021). Huang et al. propose a robust Cross-Model Universal Watermark that protects a
variety of facial images from multiple DeepFake models. This attack iteratively trains attacks



against multiple DeepFake models. Then, the authors propose a two-level processing step to
reduce conflicts between resulting watermarks (Huang et al., 2021).

Figure 20

Adversarial Perfurbations as Protection Against GAN-Based Manipulations
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Note, |llustration of the CMUA-Watermark. Once the CMUA-watermark has been generated, it can be directly added to any facial
image to generate a protected image that is visually identical to the original image but can distort outputs of deepfake models. Taken
from Huang, H., Wang, Y., Chen, Z., Zhang, Y., Li, Y., Tang, Z., Chu, W,, Chen, J., Lin, W., & Ma, K.-K. (2021). CMUA-Watermark: A
Cross-Model Universal Adversarial Watermark for Combating Deepfakes. ArXiv, 270510872 [Cs]. hitp:/farxiv. / B7

2.3 Distributed Ledger Technologies
Provenance Based Approaches:

In 2019, Hasan and Salah proposed a framework of digital provenance and history
tracking to combat the threat of DeepFake attacks. This framework uses blockchain technologies
to provide credible and secure proof of authentication through traceability to a trusted data
source. These authors leverage features of the InterPlanetary File System (IPFS) decentralized
storage, a decentralized reputation system, and Ethereum Name service. The authors note that
one challenge of provenance based solutions is establishing trust in a signing authority (Hasan &
Salah, 2019). The code for Hasan & Salah’s framework is publicly available on GitHub
(smartcontract694, 2018/2022). England et al. propose an alternative framework to track media
provenance.This authentication is characterized by a system of verified manifests. When media
is uploaded by a content provider, a publisher-signed manifest is created. This manifest is
registered and signed by a permissioned ledger authority via the Confidential Consortium
Framework (CCF). Manifests are stored in a database that allows for fast lookup via web
browser (England et al., 2021). To inform the design of provenance indicators, Sherman et al.



conduct user interviews. These interviews reveal that media provenance is a key heuristic
leveraged by users to identify misinformation (Sherman et al., 2021).

Figure 20

Blockchain Based History Tracking for Media Provenance
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Mote. Tracing video source origin using [Hasan & Shah's] proposed solution. Taken from Hasan, H. R., &
Salah, K. (2019). Combating Deepfake Videos Using Blockchain and Smart Confracts, [EEE Access, 7,
41596-41606. hitps:{idol.orgM 0 M0HACCESS 2019, 2905689

Content Moderation Approaches:

Other applications of distributed ledger technologies to combat deceptive media hone in
on content moderation. Frameworks apply blockchain technologies to decentralized content
moderation, trustworthiness checkers, incentivized fact checking, decentralized social media
platforms, and reputation systems. Trustworthiness checkers are social networks that allow any
node (ie. user) to verify that content is truthful. Fact-checking incentivized applications utilize
reputation metrics to incentivize the reliability of fact-checking behavior through monetary
rewards for reliable fact-checkers. Reputation systems produce credibility scores for the
publishers of content (Fraga-Lamas & Fernandez-Caramés, 2020). For distributed content
moderation to succeed, users must be digitally literate.

Digital Literacy
Other authors have argued the need for greater digital literacy among internet users

(Westerlund, 2019). By preparing users to anticipate the presence of deceptive media, visual and
auditory content can be more critically consumed. While awareness of distinguishing visual



artifacts allows users to identify some unsophisticated DeepFakes, digital literacy more
significantly employs heuristics to evaluate the credibility of information sources and content.

3. Current State of DeepFake Detection and Generation Arms Race
3.1 Kaggle DeepFake Detection Challenge
Dataset Development:

In 2020, Facebook AI, AWS, Microsoft and the Partnership on Al Steering Committee
partnered with Kaggle to host an open competition of DeepFake face swap detection models
(Kaggle, 2020). For this competition, researchers at Facebook Al developed a novel dataset
containing more than 100,000 videos for use as a blackbox test set for challenge submissions.
This dataset was developed with footage from 3,426 consenting, paid actors and eight different
facial manipulation algorithms. The authors recognized that existing DeepFake datasets had
overrepresentation of actors in non-natural settings, such as news and briefing rooms, which lead
to underrepresentation of natural illumination conditions in research datasets. To fill this deficit,
the authors of the dataset staged videos in a variety of different natural lighting conditions.

Research Commentary On Generation Weaknesses:

The developers of this dataset note that DeepFake autoencoders, convolutional
autoencoders with one shared encoder and two identity specific decoders, provided flexible
DeepFake generation under a variety of lighting conditions. However, shown in Figure 21, this
architecture had weaknesses around extreme poses and glasses (Dolhansky et al., 2020).

Figure 21

DeepFake Generation Using DeepFake Autoencoder Architecture

7 .
MNote. A selection of results of varying quality. Quality increases from left to right. Taken from Dolhansky, B.,
Bitton, J., Pflaum, B., Lu, J., Howes, R., Wang, M., & Ferrer, C. C. (2020). The DeepFake Detection Challenge
(DFDC) Dataset. ArXiv:2006.07397 [Cs]. hitp:Varxiv.org/abs/2006.07 397




Additionally, frame-based morphable mask models tended to work well on single-frame
images, but produced discontinuities in the face and occasionally failed to fit the mask to a face
as shown in Figure 22 (Dolhansky et al., 2020).

Figure 22

DeepFake Generation Using Frame Based Morphable Mask Models

Note. A selection of results of varying quality. Quality increases from left to right. Taken from Dolhansky, B.,
Bitton, J.. Pflaum, B., Lu, J., Howes, R., Wang, M., & Ferrer, C. C. (2020). The DeepFake Detection Challenge
(DFDC) Dataset. ArXiv:2006.07397 [Cs). hitp://arxiv.oralabs/2006.07397

Shown in Figure 23, the FSGAN model functioned well in good lighting conditions and
translated extreme poses well. However, it experienced poor performance in dark lighting
conditions (Dolhansky et al., 2020).

Figure 23

DeepFake Generation Using FSGAN

Mote. A selection of results of varying quality. Quality increases from left to right. Taken from Dolhansky, B.,
Bitton, J.. Pflaum, B., Lu, J., Howes, R., Wang, M., & Ferrer, C. C. (2020). The DeepFake Detection Challenge
(DFDC) Dataset. ArXiv:2006.07387 [Cs). hitp:/arxiv.org/abs/2006.07 397

The GAN based neural talking head model had fairly consistent performance, but
performed poorly in poor lighting conditions. Additionally, seen in Figure 24, the model
produced visually similar eyes on all DeepFake generations (Dolhansky et al., 2020).

Figure 25

DeepFake Generation Using A GAN Based Neural Talking Head Model
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Note. A selection of results of varying quality. Quality increases from left to right. Taken from Dolhansky, B.,
Bitton, J.. Pflaum, B., Lu, J., Howes, R., Wang, M., & Ferrer, C. C. (2020). The DeepFake Detection Challenge
(DFDC) Dataset. ArXiv:2006.07397 [Cs/. hitp:/arxiv.org/abs/2006.07397




Finally, researchers observed poor performance of the StyleGAN model with weaknesses
of semantically invalid eye poses, such as eyes looking in different directions, and mismatched
illumination (Dolhansky et al., 2020). Generations using StyleGAN are shown in Figure 26.

Figure 26

DeepFake Generation Using StyleGAN

MNote, A selection of results of varying quality. Quality increases from left to right. Taken from Dolhansky, B.,
Bitton, J., Pflaum, B., Lu, J., Howes, R., Wang, M., & Ferrer, C. C. (2020). The DeepFake Detection Challenge

(DFDC) Dataset. ArXiv:2006.07397 [Cs]. hitp:/farxiv.orgfabs/2006 07397
Challenge Results:

The submission to the 2020 Kaggle DeepFake Detection Challenge revealed that current
face swap generation technologies are outpacing technical detection methods. Of the 21,114
submissions, the top performing model only achieved an average precision of 65% against the
black-boxed dataset. This model ranked fourth in precision on the publicly available dataset. The
best performance on the public test set reached a mere 83% average precision (Facebook Al,
2020). Performance on the private test set was poor across the board. 60% of submissions had
log loss lower than or equivalent to randomly guessing on a balanced test set. Good performance
on the public test set was correlated with good performance on the private test set.The top
performing solution used a multi-task cascaded convolutional neural network for facial detection
and alignment and an EfficientNet network for feature encoding. Many other top-performing
solutions also used combinations of convolutional neural network architectures including
EfficientNet networks and Xception architectures (Dolhansky et al., 2020; Tan & Le, 2020;
Chollet, 2017).

DeepFake Videos In The Wild: Analysis and Detection
Summary of Results:

In 2021, a collaboration of researchers at Virginia Tech, the University of Virginia, the
University of Michigan, Facebook and LUMS Pakistan produced an analysis of state of the art
DeepFake detection model performance on a DeepFake video test set created from a collection
of non-pornographic DeepFakes. These videos were found on online platforms such as Youtube,
Billibilli and Reddit using targeted search queries and DeepFake specific subforums. The 7



tested detection models performed poorly on the DeepFakes In the Wild dataset. The best
performing model, CapsuleForensics, which employs both a VGGFace network and a Capsule
network, had an F1 score below 77%. The worst performing model, Multitask, built using a
multi-output autoencoder, only achieved an F1 score of 66%. All models had precision below
69%, which indicated the presence of false positives. The authors conclude that detection does
not generalize well to DeepFakes found in the wild. Contrary to their hypothesis, they observed
comparable performance between supervised and unsupervised detection models (Pu et al.,
2021).

Weakness in Research Dataset Representation:

In their discussion, Pu et al. make a number of observations on the current state of the
arms race between DeepFake generation and detection. The authors attempt to identify the
generation method of the videos in their dataset and find that 94.2% of videos found on Youtube
were generated using DeepFaceLab software. They note that no existing research datasets have
representation of videos produced using DeepFaceLab software, despite its high prevalence in
the wild. This lends to a greater claim that the datasets used by the research community are not
necessarily representative of the DeepFakes produced in the wild. To allow for more
representative and specific DeepFake detection, the authors propose a Deep Neural Network to
fingerprint the model used to create a DeepFake. This proposed network leverages a
fingerprinting model that is trained to fingerprint a GAN model from a GAN-generated image
(Pu et al, 2021).

Weakness In Detection Assumptions:

The authors also identify a number of assumptions made by DeepFake detection models
that do not hold up to DeepFakes in the wild (Pu et. al, 2021). For example, many detection
models assume that every frame of a video has a fake face. In the wild, this was not found to be
true. Additionally, models are designed towards DeepFakes with one face in each frame.
DeepFakes in the wild were found to contain multiple faces in a frame. Furthermore, DeepFakes
in the wild tend to have a longer duration than DeepFakes found in research datasets. The
authors note that this leads to a weakness where DeepFakes videos with a large number of clean
frames are likely to be falsely classified as non-DeepFake content, since the classification is
often determined via an average of frame scores. The authors argue for a classification method
first proposed by Li & Lyu by which a top percentile of frame scores are used to compute a
classification (Li & Lyu, 2019; Pu et al., 2021).



Weaknesses to Adversarial Attacks:

Curious as to which features are identified as relevant by detection schemes, the authors
utilize IntGrad, a DNN based feature-attribution explanation methodology to analyze detection
models (Sundararajan et al., 2017; Pu et al, 2021). They find that detection models are more
likely to identify an image with more background features as real, which allows adversaries to
pass in DeepFakes with background noise to spoof detection models. Pu et al. argue that
identifying facial boundaries and confining analysis to relevant regions is critical for accurate
DeepFake detection (Pu et al., 2017). Other researchers have also investigated the weaknesses of
detection methods to adversarial attacks. In 2021, Fan et. al proposed a Poisson noise DeepFool
model that iteratively develops adversarial examples. In experiments, this model weakened
DeepFake detection accuracy from 0.9997 to 0.0731 (Fan et. al, 2021).

4. Games of Cat and Mouse

While the detection of DeepFakes poses unique challenges, it is not the first situation
where the technology of malicious adversaries has been caught in a game of cat and mouse with
complementary defensive technologies.

4.1 A History of Malware Generation and Anti-Malware Detection

The competition between computer malware and anti-malware technologies can be traced
back to 1987 with the insertion of a Trojan horse into Ross Greenberg’s Flushot IV antivirus
program. In response, Greenberg developed Flushot Plus (Marshall, 1988). Preliminary
approaches to writing anti-virus software utilized simple signature detection methods. Signature
detection code identifies the presence of malicious malware by matching bytes of executable
code to known virus signatures. In response to the deployment of signature-based antivirus, virus
writers began to encrypt their viruses such that the code body no longer matched a given virus
signature. The first encrypted virus was the DOS virus CASCADE developed in 1988 (Rad et al.,
2011).

When anti-virus began detecting signatures for encrypted viruses, virus writers
obfuscated their viruses through mutation. Oligiomorphic viruses utilize a set of varying
decryptor loops so that not all infections by a particular virus are identical. This adds additional
overhead to the process of signature scanning. With oligiomorphic viruses, it is necessary to
identify multiple signatures for a singular virus (Rad et al., 2011). Oligiomorphic viruses
prompted the development of more efficient virus scanners through techniques such as hashing,
top and tail scanning and generic signatures with flexibility from mismatches and wildcards.
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Structure of Oligiomorphic Viruses
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To evade efficient virus scanners, virus writers developed polymorphic viruses which
mutate the decryptor with each new infection. One virus scanning advancement, X-RAY
scanning targets weaknesses in virus encryption to allow for plain text scanning. Metamorphic
viruses were developed to evade advancements in antivirus by mutating not only decryption
code, but instead mutating the virus body with each new infection.
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Ultimately, rather than improve virus signature scanners, antivirus engines moved
towards virtualization that protects computer hardware. Code emulation runs executable code on
virtual hardware and waits for a polymorphic virus to decrypt itself before scanning. However, in
response to this strategy, advanced viruses began to detect virtual environments and will stop
execution if emulation is suspected (Rad et al., 2011).

4.2 Computational Advantage of Malware Generation

The coevolution of malware and anti-malware technologies is not a balanced arms race.
Detecting malware is more challenging and expensive than developing virus code (Menéndez et
al., 2021). Malware writers have more limited scope when infecting a program; the goal to
embed malicious code in a target program can be accomplished through a number of different
avenues and must merely exploit finite vulnerabilities. The behavior of antivirus and common
computer programs is defined. On the other hand, Fred Cohen proved in 1987 that it is
theoretically impossible to write an algorithm to perfectly detect all computer viruses (Cohen,
1987).

To protect against all attacks, antivirus would need to not only protect against existing
cyber threats, but also provide protection against unknown and novel threats. In addition, perfect
anti-virus would require proof that every executable program on a computer does not contain
malicious code. The process of scanning every executable program would degrade system
performance. Antivirus writers recognize the infeasibility of perfect virus detection and instead
balance a number of efficiency and accuracy trade-offs to produce sufficiently desirable
performance. Rad et al. note that users will not purchase antivirus engines that produce too many
false positives (Rad et al., 2011). When antivirus systems quarantine benign programs, users face
inconvenience. Additionally, antivirus systems are incentivized to limit the resources and time
for which they run. From a user perspective, antivirus systems that consume too many resources
and slow down other programs are not desirable. For this reason, antivirus systems use a number
of heuristics to merely scan and analyze portions of executable files that are likely to contain
virus code (Rad et al., 2011).

4.3 Computational Advantage of DeepFake Generation
Technical Detection:

DeepFake generation and detection both rely on complex machine learning models that
require access to graphical processing units and a significant training overhead. However, the
scope of the media to which each is applied varies greatly. DeepFake generation targets finite use
cases and need only train towards the production of finite media for target identities. In contrast,
perfect DeepFake detection would require flexible identification of any falsified media, which is



a much broader domain. DeepFake generation can involve tedious, iterative cycles to improve
fidelity. However, DeepFake detection must balance constraints of computational resources to
remain scalable to practical use. On average, 500 hours of video footage per minute are uploaded
to Youtube (Bernaciak & Ross, 2022). Digital platforms, such as Youtube and Billibilli, have the
power to enforce constraints on uploads. However, given that top performing DeepFake
detection algorithms require access to graphical processing units and sufficient memory,
DeepFake detection cannot be hosted on local machines that lack these resources (Hao, 2020;
Seterbekov, 2020/2022). Technology platforms have sufficient resources to implement DeepFake
detection, but will likely balance DeepFake detection into a network of computational and
performance costs. Given the current framework of misinformation policies on technology
platforms, DeepFake detection is likely to first see use as a data point in more complicated
user-initiated content moderation procedures.

Provenance Based Solutions:

Recent research proposals have acknowledged that there are logistic feasibility challenges
to widespread adoption of mitigation solutions. Provenance based solutions are gaining traction
in the research and legislative communities (Lima, 2021). Proponents of these strategies
recognize feasibility constraints and frictions. Dhal et. al discuss the network scalability design
considerations of their blockchain and keyed watermark based framework for provenance on
social media (Dhall et al., 2021). England et al. conduct experiments to demonstrate that their
proposed Authentication of Media via Provenance (AMP) ledger system scales well for HTTP
Adaptive Streaming. The observed latency threshold was low enough to not interfere with user
viewing experience (England et al., 2021). Other scholars recognize that the success of
provenance solutions does not necessarily rely on ubiquitous adoption of ledger technologies, but
rather a system where verified content can be traced to trusted news and media authorities
(Aythora et al., 2020). For provenance approaches to succeed at combating DeepFake
misinformation, there is a necessary level of digital literacy and skepticism that users must
exhibit to question information. From survey data, Sherman et al. conclude that users view
provenance as an important heuristic for determining the reliability of media (Sherman et al.,
2021). This gives some weight to the applicability of provenance based approaches. However, it
is important to note that changes to protocols are a historically slow process, due to contention
over benefits, trade-offs and backwards compatibility (Handley, 2006). Any adoption of
provenance based approaches is unlikely to start with broad adoption.. Rather, if practical
adoption of provenance is seen, it is likely to start with verified organizations such as news
outlets.



4.4 Do You Know Your Enemy - Competitive Advantage of Knowledge on the Adversary
Zero Day Vulnerabilities:

In the context of malware, there is a concept known as a zero day vulnerability. This is a
vulnerability that has not been discovered by benevolent actors and instead is at risk of
exploitation by malicious adversaries. The associated concept of zero day exploits refers to
attacks that exploit these overlooked vulnerabilities. Developers have zero days to patch the
vulnerable software before it is exploited (FireEye, n.d.).

Advantage of Malware Writers:

Malicious actors have access to a number of forensics and information gathering tools to
identify exploitable weaknesses. Adversaries can use network scanners, network traffic analysis,
password cracking tools, vulnerability scanners, fuzzing tools, reverse engineering tools and
other information collection tactics to develop exploitations. Any access to software allows for
information gathering. Tools such as Fuzzdb contain prebuilt attack payloads that can be
leveraged against unsecure systems (Fuzzdb-Project/Fuzzdb, 2015/2022). Fuzzing is a technique
used by both software security professionals and malicious adversaries. In this automated
process, variations of input are passed into a system with the intent of discovering exploitable
vulnerabilities (Li, Zhao, et al., 2018). For example, fuzzing exploits can embed shell code into
target programs, pass arguments to system calls, carry out SQL injection attacks, or reveal
internal behavior of systems (MITRE, 2021). Malware writers have advantage in their ability to
gather information on the weaknesses of the defenses used by their target.

Advantage of DeepFake Generators:

Many DeepFake detection methods have been made publicly available through GitHub
repositories or published research papers. In the development of DeepFakes to circumvent
existing detection methods, DeepFake developers have access to detection models and are able to
test for vulnerabilities in existing detection architectures. DeepFake developers are able to train
towards DeepFakes that fit a domain that is undetectable by existing detection models, but
convincing to the human eye. There is no limit on the amount of input that DeepFake developers
can pass into open source detection models. However, once a DeepFake exploits vulnerabilities
to fail detection, those interested in detecting DeepFakes have zero days to discover that the
DeepFake detection has failed before there is potential for negative implications.



Overfitting and Novel Threats:

Recent research has shown that deep learning based DeepFake detection methods are
overtitted toward research community datasets and perform reasonably poorly on novel
DeepFakes (Pu et al., 2021; Dolhansky et al., 2020). Just as malware writers learn to exploit
vulnerabilities of computer anti-malware scanners, DeepFake generation methods develop
techniques to better evade detection through learning weaknesses of existing detection
techniques. In this way, the cat and mouse game between DeepFake generation and DeepFake
detection is driven by generation techniques. This dynamic leaves DeepFake generation one step
ahead of DeepFake detection. While general computer vision advances are able to aid the
fine-grained visual classification techniques of DeepFake detection, the edge that DeepFake
generation has over DeepFake detection is exacerbated by the fact that many of the top
performing models of DeepFake detection rely on large sets of training data. Pu et al. show that
the training sets that are popular in the research community are not representative of the
DeepFakes found in the wild (Pu et al., 2021). Researchers must balance the representation of
different DeepFakes in their training sets and stay up to date on recent developments as they
attempt to catch increasingly more sophisticated DeepFake generations. Given the time and
training data necessary to create quality DeepFakes, the procurement of state of the art DeepFake
datasets is a limiting factor in the development of better detection algorithms. It is likely that
DeepFake generation will continue to have an edge over DeepFake detection. Use of DeepFake
detection methods may be a better heuristic tool to evaluate the authenticity of media than a
catch-all tool to prevent DeepFake generation.

4.5 Beyond Code - Social Engineering Exploits
Social Engineering and Malware:

Malicious adversaries do not merely exploit vulnerabilities in technical software.
Exploitations of user psychology are also used in the context of phishing, baiting and scareware.
Baiting seeks to exploit user interest or curiosity. Examples of digital baiting attacks include
malware masked as a desirable software or media download. A physical baiting attack can take
the form of a USB drive left in a parking lot, sparking user interest (Paganini, 2020). Scareware
exploits user anxieties. It can take the form of popup banners on a web browser that indicate the
presence of computer viruses, prompting users to download malware that is disguised as
antivirus (Stouffer, 2021).



Social Engineering and DeepFakes:

The attack surface of DeepFakes extends beyond a technical detection problem.
DeepFakes can be used to introduce a level of psychological doubt that leaves viewers
vulnerable to other social engineering tactics. Additionally, researchers note that users display a
predisposition to more readily trust faces generated via generative adversarial network than real
faces (Nightingale & Farid, 2022). In this way, the threat of DeepFakes cannot easily be solved
through binary classification alone.

5. Semantic Context and Model Training Decisions

Not all DeepFake attack surfaces are created equally or warrant the same treatment. A
2019 web crawl by DeepTrace found a high prominence of non-consensual DeepFake
pornography (Ajder et al., 2019). While the believability of DeepFake pornography adds danger
to threats of blackmail and manipulation, the danger of the attack is less based on questions of
indeterminate authenticity. Targets of DeepFake pornography videos can testify to the content’s
fake nature. However, this does not protect victims from violations of privacy, consent,
defamation or legal repercussions. Additionally, there is no guarantee that a victim of such an
attack will be believed. Supporting victims of non-consensual DeepFake pornography requires a
deeper understanding of victim and viewer experience. An Instagram based phishing scam in
India targeted victims by sending DeepFake pornography videos to the friends and family of the
victim if the scammer did not recieve payment (Joshi, 2021). Combating the threat of these types
of schemes involves greater public awareness to the threat of DeepFake pornography attacks.
With greater awareness, the pornographic media can more easily be dismissed as fake.
Additionally, in cases where victims find it beneficial to use detection technology to substantiate
their claim to the forged nature of a pornographic video, detection algorithms should be biased
towards falsely identifying real videos as fake rather than optimized for accuracy. In this context,
false negatives produce greater harm to the subject of this media than false positives. Given that
DeepFake detection algorithms tend to overfit to the data they are trained on, it would be
reasonable for future research to specifically target model training towards the context of a
face-swap video. For example, lighting conditions and speech patterns will be different in
interview-based DeepFakes than pornographic DeepFakes. Model training that is specific to
different attack surfaces allows for different trade-off decisions on false positive and false
negative rates based on the situational risk of each outcome.

Conclusion

A variety of distinct deep learning architectures have been applied to the creation of
forged media known as DeepFakes. These forgeries swap faces of source and target subjects,



manipulate features, drive the actions of a subject, manipulate audio, and synthesize new
identities. Applications of generative adversarial networks, in tandem with variational
autoencoders and 3D morphable mask models, are increasingly prevalent in this domain. Though
generation has seen many improvements in recent years, DeepFake generation models still face
weakness around generalizability, occlusions, identity leakage and temporal coherence.

DeepFake countermeasures have included a variety of technical detection models that
leverage different weaknesses in DeepFakes. Supervised artifact based detection leverages both
visual and temporal features. Visual features include blending artifacts, such as pixel
dissimilarity, environmental artifacts, such as foreground and background incoherence, and
forensic artifacts, such as pixel patterns from GAN procedures. DeepFakes are also identified
through temporal features such as behavioral anomalies and lack of physiological indicators.
DeepFake detection has deployed unsupervised machine learning models in generic classifiers
and anomaly detection. Another technical countermeasure to DeepFakes is adversarial
perturbations to images that impede DeepFake generation. A countermeasure that has recently
gained a lot of traction is blockchain based provenance systems that allow users to trace media to
its original source.

Currently, DeepFake generation technology outperforms technical DeepFake detection
models. Weakness in DeepFake detection includes overfitting towards research community
datasets, model assumptions that do not match real world DeepFakes, and vulnerability to
adversarial attacks.

Given the precedent of malware generation and detection, it is likely that DeepFake
generation will continue to outpace technical DeepFake detection. Parallel to malware detection,
DeepFake detection has a much broader goal and is constrained by performance concerns within
a larger system. DeepFake detection must be flexible to detect any forgery. DeepFake generation
must only produce one forgery that fools detection. Just as malware writers are able to use
fuzzing to identify vulnerabilities in antimalware systems, malicious actors hoping to improve
DeepFake generation can test and fine-tune their generations towards open source DeepFake
detection methods. Just as virus writers leverage social engineering to advance their attacks,
malicious actors using DeepFakes can create and exploit user doubt.

Rather than attempt to win an unbalanced game, future research into DeepFake
countermeasures should center user experience of DeepFakes to identify appropriate digital
literacy and technical mitigation steps. Additionally, research can focus model training towards
specific semantic contexts to best balance benefits and drawbacks of detection models.



Works Cited

AB-730 Elections: deceptive audio or visual media, Ca. (2019).

https://leginfo.legislature.ca.gov/faces/bill TextClient.xhtml?bill id=201920200AB730

Afchar, D., Nozick, V., Yamagishi, J., & Echizen, 1. (2018). MesoNet: A Compact Facial
Video Forgery Detection Network. 2018 IEEE International Workshop on Information

Forensics and Security (WIFS), 1-7. https://doi.org/10.1109/WIFS.2018.8630761

Agarwal, S., Farid, H., Gu, Y., He, M., Nagano, K., & Li, H. (2019). Protecting World
Leaders Against Deep Fakes. CVPR Workshops.

Ajder, H., Patrini, G., Cavalli, F., & Cullen, L. (2019). The State of DeepFakes: Landscape,
Threats, and Impact. DeepTrace, 27.

Akhtar, Z., & Dasgupta, D. (2019). A Comparative Evaluation of Local Feature Descriptors

for DeepFakes Detection. 2019 IEEE International Symposium on Technologies for

Homeland Security (HST), 1-5. https://doi.org/10.1109/HST47167.2019.9033005
Allyn, B. (2022, March 16). A Deepfake Video Showing Volodymyr Zelenskyy
Surrendering Worries Experts. NPR.
https://www.npr.org/2022/03/16/1087062648/deepfake-video-zelenskyy-experts-war-m
anipulation-ukraine-russia
Amerini, ., Galteri, L., Caldelli, R., & Bimbo, A. (2019). Deepfake Video Detection
through Optical Flow Based CNN. 2019 IEEE/CVF International Conference on

Computer Vision Workshop (ICCVW). https://doi.org/10.1109/ICCVW.2019.00152

Aubg¢, T. (2017, February 13). Al, DeepFakes, and the End of Truth. Medium.

https://medium.com/swlh/ai-and-the-end-of-truth-9a42675de18




Aythora, J., Burke, R., Chamayou, A., Clebsch, S., Costa, M., Earnshaw, N., Ellis, L.,
England, P., Fournet, C., Gaylor, M., Halford, C., Horvitz, E., Jenks, A., Kane, K.,
Lavallee, M., Lowenstein, S., MacCormack, B., Malvar, H., O’Brien, S., ... Zaman, A.
(2020). MULTI-STAKEHOLDER MEDIA PROVENANCE MANAGEMENT TO
COUNTER SYNTHETIC MEDIA RISKS IN NEWS PUBLISHING. 11.

Ayyub, R. (2018, November 21). I Was The Victim Of A Deeptfake Porn Plot Intended To
Silence Me. Huffington Post.

https://www.huffingtonpost.co.uk/entry/deepfake-porn uk 5bf2¢126e4b0f32bd58ba3 1

6
Bao, J., Chen, D., Wen, F., Li, H., & Hua, G. (2017). CVAE-GAN: Fine-Grained Image

Generation Through Asymmetric Training. 2745-2754.

https://openaccess.thecvf.com/content_iccv_2017/html/Bao_CVAE-GAN_Fine-Grained

Image ICCV 2017 paper.html

Bickert, M. (2020, January 7). Enforcing Against Manipulated Media. Meta.

https://about.fb.com/news/2020/01/enforcing-against-manipulated-media/
Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3D faces.
Proceedings of the 26th Annual Conference on Computer Graphics and Interactive

Techniques - SIGGRAPH 99, 187-194. https://doi.org/10.1145/311535.311556

Bond, S. (2022, March 27). The latest marketing tactic on LinkedIn: Al-generated faces:

NPR. https://www.npr.org/2022/03/27/1088140809/fake-linkedin-profiles

Bonner, A. (2019, June 1). The Complete Beginner s Guide to Deep Learning: Artificial

Neural Networks. Medium.



https://towardsdatascience.com/simply-deep-learning-an-effortless-introduction-45591a

lc4abb

Bregler, C., Covell, M., & Slaney, M. (1997). Video Rewrite: Driving visual speech with
audio. Proceedings of the 24th Annual Conference on Computer Graphics and
Interactive Techniques - SIGGRAPH 97, 353-360.

https://doi.org/10.1145/258734.258880

Brewster, T. (2021, October 14). Fraudsters Cloned Company Director’s Voice In $35
Million Bank Heist, Police Find. Forbes.

https://www.forbes.com/sites/thomasbrewster/2021/10/14/huge-bank-fraud-uses-deep-f

ake-voice-tech-to-steal-millions/

Brock, A., Donahue, J., & Simonyan, K. (2019). Large Scale GAN Training for High
Fidelity Natural Image Synthesis. ArXiv:1809.11096 [Cs, Stat].

http://arxiv.org/abs/1809.11096

Chan, C., Ginosar, S., Zhou, T., & Eftros, A. A. (2019). Everybody Dance Now. 5933—-5942.

https://openaccess.thecvf.com/content ICCV_2019/html/Chan_Everybody Dance No

w_ICCV_2019_paper.html

Chesney, B., & Citron, D. (2019). Deep fakes: looming challenge for privacy, democracy,
and national security. California Law Review, 107(6), 1753-1820.
Choi, Y., Uh, Y., Yoo, J., & Ha, J.-W. (2020). StarGAN v2: Diverse Image Synthesis for

Multiple Domains. ArXiv:1912.01865 [Cs]. http://arxiv.org/abs/1912.01865

Chollet, F. (2017). Xception: Deep Learning with Depthwise Separable Convolutions.

ArXiv:1610.02357 [Cs]. http://arxiv.org/abs/1610.02357




Ciancaglin, V., Gibson, C., Sancho, D., McCarthy, O., Eira, M., Amann, P., Klayn, A.,
McArdle, R., & Beridze, 1. (2020). Malicious Uses and Abuses of Artificial Intelligence.
Trend Micro Research, Europol’s European Cybercrime Centre (EC3), & United
Nations Interregional Crime and Justice Research Institute (UNICRI).

https://www.europol.ecuropa.cu/publications-events/publications/malicious-uses-and-ab

uses-of-artificial-intelligence

Ciftci, U. A., & Demir, 1. (2020). FakeCatcher: Detection of Synthetic Portrait Videos using
Biological Signals. IEEE Transactions on Pattern Analysis and Machine Intelligence,

1-1. https://doi.org/10.1109/TPAMI.2020.3009287

Ciftci, U. A., Demir, 1., & Yin, L. (2020). How Do the Hearts of Deep Fakes Beat? Deep

Fake Source Detection via Interpreting Residuals with Biological Signals.

ArXiv:2008.11363 [Cs]. http://arxiv.org/abs/2008.11363
Cohen, F. (1987). Computer viruses. Computers & Security, 6(1), 22-35.

https://doi.org/10.1016/0167-4048(87)90122-2

Conotter, V., Bodnari, E., Boato, G., & Farid, H. (2014). Physiologically-based detection of
computer generated faces in video. 2014 IEEE International Conference on Image

Processing (ICIP), 248-252. https://doi.org/10.1109/ICIP.2014.7025049

deepfakes. (2022). Deepfakes faceswap [Python]. https://github.com/deepfakes/faceswap

(Original work published 2017)
de Lima, O., Franklin, S., Basu, S., Karwoski, B., & George, A. (2020). Deepfake Detection
using Spatiotemporal Convolutional Networks. ArXiv:2006.14749 [Cs, Eess].

http://arxiv.org/abs/2006.14749




Dhall, S., Dwivedi, A. D., Pal, S. K., & Srivastava, G. (2021). Blockchain-based Framework
for Reducing Fake or Vicious News Spread on Social Media/Messaging Platforms.
ACM Transactions on Asian and Low-Resource Language Information Processing,

21(1), 8:1-8:33. https://doi.org/10.1145/3467019

Ding, X., Raziei, Z., Larson, E. C., Olinick, E. V., Krueger, P., & Hahsler, M. (2019).
Swapped Face Detection using Deep Learning and Subjective Assessment.

ArXiv:1909.04217 [Cs, Stat]. http://arxiv.org/abs/1909.04217

Dolhansky, B., Bitton, J., Pflaum, B., Lu, J., Howes, R., Wang, M., & Ferrer, C. C. (2020).
The DeepFake Detection Challenge (DFDC) Dataset. ArXiv.2006.07397 [Cs].

http://arxiv.org/abs/2006.07397

Dong, J., & Xie, X. (2021). Visually Maintained Image Disturbance Against Deepfake Face
Swapping. 2021 IEEE International Conference on Multimedia and Expo (ICME), 1-6.
doi:10.1109/ICMES51207.2021.9428173

Do Nhu, T., Na, L., & Kim, S. H. (2018). Forensics Face Detection From GANs Using
Convolutional Neural Network.

Durall, R., Keuper, M., Pfreundt, F.-J., & Keuper, J. (2019). Unmasking DeepFakes with

simple Features. https://doi.org/10.48550/arXiv.1911.00686

England, P., Malvar, H. S., Horvitz, E., Stokes, J. W., Fournet, C., Burke-Aguero, R.,
Chamayou, A., Clebsch, S., Costa, M., Deutscher, J., Erfani, S., Gaylor, M., Jenks, A.,
Kane, K., Redmiles, E. M., Shamis, A., Sharma, 1., Simmons, J. C., Wenker, S., &
Zaman, A. (2021). AMP: Authentication of media via provenance. In Proceedings of
the 12th ACM Multimedia Systems Conference (pp. 108—121). Association for

Computing Machinery. https://doi.org/10.1145/3458305.3459599




Egger, B., Smith, W. A. P., Tewari, A., Wuhrer, S., Zollhoefer, M., Beeler, T., Bernard, F.,
Bolkart, T., Kortylewski, A., Romdhani, S., Theobalt, C., Blanz, V., & Vetter, T. (2020).
3D Morphable Face Models—Past, Present and Future. ArXiv:1909.01815 [Cs].

http://arxiv.org/abs/1909.01815

Facebook Al. (2020, June 25). Deepfake Detection Challenge Dataset.

https://ai.facebook.com/datasets/dfdc

Fan, L., Li, W., & Cui, X. (2021). Deepfake-Image Anti-Forensics with Adversarial

Examples Attacks. Future Internet, 13(11), 288. https://doi.org/10.3390/f113110288

Fernandes, S., Raj, S., Ewetz, R., Pannu, J. S., Jha, S. K., Ortiz, E., Vintila, 1., & Salter, M.
(2020). Detecting Deepfake Videos using Attribution-Based Confidence Metric. 2020

IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW). https://doi.org/10.1109/CVPRW50498.2020.00162
Fernando, T., Fookes, C., Denman, S., & Sridharan, S. (2019). Exploiting Human Social

Cognition for the Detection of Fake and Fraudulent Faces via Memory Networks.

ArXiv:1911.07844 [Cs, Stat]. http://arxiv.org/abs/1911.07844
FireEye. (n.d.). What is a Zero-Day Exploit? FireEye. Retrieved April 5, 2022, from

https://www.fireeye.com/current-threats/what-is-a-zero-day-exploit.html

Fraga-Lamas, P., & Fernandez-Caramés, T. M. (2020). Fake News, Disinformation, and
Deepfakes: Leveraging Distributed Ledger Technologies and Blockchain to Combat
Digital Deception and Counterfeit Reality. /T Professional, 22(2), 53-59.

https://doi.org/10.1109/MITP.2020.2977589

Fuzzdb-project/fuzzdb. (2022). [PHP]. FuzzDB Project.

https://github.com/fuzzdb-project/fuzzdb (Original work published 2015)




Gabriela Galindo, “XR Belgium posts deepfake of Belgian premier linking Covid-19 with
climate crisis,” The Brussels Times, November 9, 2020.
https://www.brusselstimes.com/news/belgium-all-news/politics/106320/xr-belgium-post
s-deepfake-of-belgian-prem ier-linking-covid-19-with-climate-crisis/

Garrido, P., Valgaerts, L., Sarmadi, H., Steiner, 1., Varanasi, K., Pérez, P., & Theobalt, C.
(2015). VDub: Modifying Face Video of Actors for Plausible Visual Alignment to a
Dubbed Audio Track. Computer Graphics Forum, 34(2), 193-204.

https://doi.org/10.1111/cgf. 12552

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., & Bengio, Y. (2014). Generative Adversarial Networks.

https://doi.org/10.48550/arXiv.1406.2661

Graphika Team. (2021). Fake Cluster Boosts Huawei: Accounts with GAN Attack Belgium
Over 5G Restrictions. Graphika.

https://public-assets.eraphika.com/reports/eraphika report fake cluster boosts huawei

ndf

Gtiera, D., & Delp, E. J. (2018). Deepfake Video Detection Using Recurrent Neural
Networks. 2018 15th IEEE International Conference on Advanced Video and Signal

Based Surveillance (AVSS), 1-6. https://doi.org/10.1109/AVSS.2018.8639163

Handley, M. (2006, July). Why the Internet only just works. Bt Technology Journal - BT
TECHNOL J, 24, 119-129. doi:10.1007/s10550-006-0084-z
Hao, H., Baireddy, S., Reibman, A. R., & Delp, E. J. (2020). FaR-GAN for One-Shot Face

Reenactment. ArXiv:2005.06402 [Cs]. http://arxiv.org/abs/2005.06402




Hartman, T., & Satter, R. (2020, July 15). These Faces Are Not Real: How to Detect
DeepFake Faces. Reuters.

https://graphics.reuters.com/CYBER-DEEPFAKE/ACTIVIST/nmovajgnxpa/

Hasan, H. R., & Salah, K. (2019). Combating Deepfake Videos Using Blockchain and Smart
Contracts. IEEE Access, 7, 41596—41606.

https://doi.org/10.1109/ACCESS.2019.2905689

HB 198 Election Law - Online Campaign Material - Use of Deepfakes, Ma. (2020).

https://legiscan.com/MD/bill/HB198/2020

He, Z., Zuo, W., Kan, M., Shan, S., & Chen, X. (2018). AttGAN: Facial Attribute Editing by
Only Changing What You Want. ArXiv:1711.10678 [Cs, Stat].

http://arxiv.org/abs/1711.10678

He, Z., Kan, M., Zhang, J., & Shan, S. (2020). PA-GAN: Progressive Attention Generative
Adversarial Network for Facial Attribute Editing. ArXiv:2007.05892 [Cs].

http://arxiv.org/abs/2007.05892

Hsu, C.-C., Zhuang, Y.-X., & Lee, C.-Y. (2020). Deep Fake Image Detection Based on

Pairwise Learning. Applied Sciences, 10(1), 370. https://doi.org/10.3390/app10010370

Huang, R., Zhang, S., Li, T., & He, R. (2017). Beyond Face Rotation: Global and Local
Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis.

ArXiv:1704.04086 [Cs]. http://arxiv.org/abs/1704.04086

Huang, X., & Belongie, S. (2017). Arbitrary Style Transfer in Real-time with Adaptive

Instance Normalization. ArXiv:1703.06868 [Cs]. http://arxiv.org/abs/1703.06868

Huang, H., Wang, Y., Chen, Z., Zhang, Y., L1, Y., Tang, Z., Chu, W., Chen, J., Lin, W., &

Ma, K.-K. (2021). CMUA-Watermark: A Cross-Model Universal Adversarial



Watermark for Combating Deepfakes. ArXiv:2105.10872 [Cs].

http://arxiv.org/abs/2105.10872

Johansen, A. G. (2020, August 13). How to spot deepfake videos—15 signs to watch for.

Norton.

https://us.norton.com/internetsecurity-emerging-threats-how-to-spot-deepfakes.html

Joshi, S. (2021, September 7). They Follow You on Instagram, Then Use Your Face To Make
Deepfake Porn in This Sex Extortion Scam.

https://www.vice.com/en/article/z3x9yj/india-instagram-sextortion-phishing-deepfake-p

orn-scam
Kaggle. (2020). Deepfake Detection Challenge.

https://kaggle.com/competitions/deepfake-detection-challenge

Kana, M. (2020, March 28). Variational Autoencoders (VAEs) for Dummies—Step By Step
Tutorial | Towards Data Science.

https://towardsdatascience.com/variational-autoencoders-vaes-for-dummies-step-by-ste

p-tutorial-69e6d1c9d&8e9

Kana, M. (2021, February 19). Generative Adversarial Network (GAN) for Dummies—A
Step By Step Tutorial. Medium.

https://towardsdatascience.com/generative-adversarial-network-gan-for-dummies-a-step

-by-step-tutorial-fdefff170391

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018). Progressive Growing of GANSs for
Improved Quality, Stability, and Variation. ArXiv:1710.10196 [Cs, Stat].

http://arxiv.org/abs/1710.10196




Karras, T., Laine, S., & Aila, T. (2019). 4 Style-Based Generator Architecture for
Generative Adversarial Networks. 4401-4410.

https://openaccess.thecvf.com/content CVPR_2019/html/Karras_A_Style-Based_Gene

rator Architecture for Generative Adversarial Networks CVPR 2019 paper.html

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T. (2020). Analyzing and
Improving the Image Quality of StyleGAN. 8110-8119.

https://openaccess.thecvf.com/content CVPR 2020/html/Karras_Analyzing_and Impr

oving the Image Quality of StyleGAN CVPR 2020 paper.html

Keldenich, T. (2021, October 17). Encoder Decoder What and Why ? - Simple Explanation.
Inside Machine Learning.

https://inside-machinelearning.com/en/encoder-decoder-what-and-why-simple-explanat

ion/
Khalid, H., & Woo, S. S. (2020). OC-FakeDect: Classifying Deepfakes Using One-Class

Variational Autoencoder. 656—657.

https://openaccess.thecvf.com/content CVPRW_2020/html/w39/Khalid OC-FakeDect

_Classitying_Deepfakes Using_One-Class_Variational Autoencoder CVPRW_2020_

paper.html
Kim, H., Garrido, P., Tewari, A., Xu, W., Thies, J., Niessner, M., Pérez, P., Richardt, C.,
Zollhofer, M., & Theobalt, C. (2018). Deep video portraits. ACM Transactions on

Graphics, 37(4), 163:1-163:14. https://doi.org/10.1145/3197517.3201283

Kim, B.-H., & Ganapathi, V. (2019). LumiereNet: Lecture Video Synthesis from Audio.

ArXiv:1907.02253 [Cs, Eess, Stat]. http://arxiv.org/abs/1907.02253




Korshunov, P., & Marcel, S. (2018). Speaker Inconsistency Detection in Tampered Video.
2018 26th European Signal Processing Conference (EUSIPCO), 2375-2379.

https://doi.org/10.23919/EUSIPCO.2018.8553270

Korshunov, P., Halstead, M., Castan, D., Graciarena, M., McLaren, M., Burns, B., & Marcel,
S. (2019, June). Tampered speaker inconsistency detection with phonetically aware
audio-visual features. In International Conference on Machine Learning.

Koopman, M., Macarulla Rodriguez, A., & Geradts, Z. (2018, August 20). Detection of
Deepfake Video Manipulation.

Le, T.-N., Nguyen, H. H., Yamagishi, J., & Echizen, 1. (2022). Robust Deepfake On
Unrestricted Media: Generation And Detection. doi:10.48550/ARXIV.2202.06228

Li, J., Zhao, B., & Zhang, C. (2018). Fuzzing: A survey. Cybersecurity, 1(1), 6.

https://doi.org/10.1186/s42400-018-0002-y

Li, L., Bao, J., Zhang, T., Yang, H., Chen, D., Wen, F., & Guo, B. (2020). Face X-ray for
More General Face Forgery Detection. ArXiv:1912.13458 [Cs].

http://arxiv.org/abs/1912.13458

Li, Y., Chang, M.-C., & Lyu, S. (2018). In Ictu Oculi: Exposing Al Created Fake Videos by

Detecting Eye Blinking. 2018 IEEE International Workshop on Information Forensics

and Security (WIFS), 1-7. https://doi.org/10.1109/WIFS.2018.8630787
Li, Y., & Lyu, S. (2019). Exposing DeepFake Videos By Detecting Face Warping Artifacts.

ArXiv:1811.00656 [Cs]. http://arxiv.org/abs/1811.00656

Lima, C. (2021, August 6). Analysis | The Technology 202: As senators zero in on

deepfakes, some experts fear their focus is misplaced. Washington Post.



https://www.washingtonpost.com/politics/2021/08/06/technology-202-senators-zero-de

epfakes-some-experts-fear-their-focus-is-misplaced/

Liu, M., Ding, Y., Xia, M., Liu, X., Ding, E., Zuo, W., & Wen, S. (2019). STGAN: A
Unified Selective Transfer Network for Arbitrary Image Attribute Editing.

ArXiv:1904.09709 [Cs]. http://arxiv.org/abs/1904.09709

Luan, X., Geng, H., Liu, L., Li, W., Zhao, Y., & Ren, M. (2020). Geometry Structure
Preserving Based GAN for Multi-Pose Face Frontalization and Recognition. /EEE

Access, 8, 104676—-104687. https://doi.org/10.1109/ACCESS.2020.2996637

Nagano, K., Seo, J., Xing, J., Wei, L., Li, Z., Saito, S., Agarwal, A., Fursund, J., & Li, H.
(2018). paGAN: Real-time avatars using dynamic textures. ACM Transactions on

Graphics, 37(6), 258:1-258:12. https://doi.org/10.1145/3272127.3275075

Natsume, R., Yatagawa, T., & Morishima, S. (2018). RSGAN: Face Swapping and Editing
using Face and Hair Representation in Latent Spaces. ArXiv:1804.03447 [Cs].

http://arxiv.org/abs/1804.03447

Natsume, R., Yatagawa, T., & Morishima, S. (2018). FSNet: An Identity-Aware Generative
Model for Image-based Face Swapping. ArXiv:1811.12666 [Cs].

http://arxiv.org/abs/1811.12666

Nightingale, S. J., & Farid, H. (2022). Al-synthesized faces are indistinguishable from real
faces and more trustworthy. Proceedings of the National Academy of Sciences of the
United States of America, 119(8), €2120481119.

https://doi.org/10.1073/pnas.2120481119

Nimmo, B., Eib, C. S., Tamora, L., Johnson, K., Smith, 1., Buziashvili, E., Kann, A., Karan,

K., Ponce de Ledn Rosas, E., & Rizzuto, M. (2019). #OperationFFS: Fake Face



Swarm. Graphika, DFRLab.

https://public-assets.graphika.com/reports/graphika report operation_ffs fake face sto

rm.pdf

Nirkin, Y., Keller, Y., & Hassner, T. (2019). FSGAN: Subject Agnostic Face Swapping and
Reenactment. 7184-7193.

https://openaccess.thecvf.com/content ICCV_2019/html/Nirkin FSGAN_Subject Agn

ostic Face_Swapping_and_ Reenactment ICCV_2019_paper.html

Nirkin, Y., Masi, I., Tran, A. T., Hassner, T., & Medioni, G. (2017). On Face Segmentation,
Face Swapping, and Face Perception. ArXiv:1704.06729 [Cs].

http://arxiv.org/abs/1704.06729

Nirkin, Y., Wolf, L., Keller, Y., & Hassner, T. (2020). DeepFake Detection Based on the
Discrepancy Between the Face and its Context. ArXiv:2008.12262 [Cs].

http://arxiv.org/abs/2008.12262

Ma, T., Li, D., Wang, W., & Dong, J. (2021). CFA-Net: Controllable Face Anonymization
Network with Identity Representation Manipulation. ArXiv:2105.11137 [Cs].

http://arxiv.org/abs/2105.11137

Marra, F., Gragnaniello, D., Verdoliva, L., & Poggi, G. (2018). Do GANs leave artificial

fingerprints? https://doi.org/10.48550/arXiv.1812.11842

Masood, M., Nawaz, M., Malik, K. M., Javed, A., & Irtaza, A. (2021). Deepfakes
Generation and Detection: State-of-the-art, open challenges, countermeasures, and

way forward. 54.



Matern, F., Riess, C., & Stamminger, M. (2019). Exploiting Visual Artifacts to Expose
Deepfakes and Face Manipulations. 2019 IEEE Winter Applications of Computer Vision
Workshops (WACVW), 83-92.

Menéndez, H. D., Clark, D., & T. Barr, E. (2021). Getting Ahead of the Arms Race:
Hothousing the Coevolution of VirusTotal with a Packer. Entropy, 23(4), 395.

https://doi.org/10.3390/¢23040395

Mirsky, Y., & Lee, W. (2022). The Creation and Detection of Deepfakes: A Survey. ACM

Computing Surveys, 54(1), 1-41. https://doi.org/10.1145/3425780

MITRE. (2021, October). CAPEC - CAPEC-28: Fuzzing (Version 3.7) [MITRE].

https://capec.mitre.org/data/definitions/28.html

Mittal, T., Bhattacharya, U., Chandra, R., Bera, A., & Manocha, D. (2020). Emotions Don’t
Lie: An Audio-Visual Deepfake Detection Method Using Aftective Cues.

ArXiv:2003.06711 [Cs]. http://arxiv.org/abs/2003.06711

Mo, H., Chen, B., & Luo, W. (2018). Fake Faces Identification via Convolutional Neural

Network. Proceedings of the 6th ACM Workshop on Information Hiding and

Multimedia Security, 43—47. https://doi.org/10.1145/3206004.3206009
Paganini, P. (2020, August). The most common social engineering attacks [updated 2020)].
Infosec Resources.

https://resources.infosecinstitute.com/topic/common-social-engineering-attacks/

Perov, 1., Gao, D., Chervoniy, N., Liu, K., Marangonda, S., Umé, C., Dpfks, M., Facenheim,
C.S.,RP, L., Jiang, J., Zhang, S., Wu, P., Zhou, B., & Zhang, W. (2021). DeepFaceLab:
Integrated, flexible and extensible face-swapping framework. ArXiv:2005.05535 [Cs,

Eess]. http://arxiv.org/abs/2005.05535




Prabhu, A., Materzynska, J., Dokania, P. K., Torr, P. H. S., & Lim, S.-N. (2020, June 15). Is
Your Face Fake? Social Impacts of Algorithmic “Fake” Determination [Conference].
DFDC Risk-a-thon & CVPR media forensics workshop 2020, Seattle Washington.

https://drimpossible.github.io/documents/dfdc slides.pdf

Pu, J., Mangaokar, N., Kelly, L., Bhattacharya, P., Sundaram, K., Javed, M., Wang, B., &
Viswanath, B. (2021). Deepfake Videos in the Wild: Analysis and Detection.

https://arxiv-org.proxy01.its.virginia.edu/abs/2103.04263v2

Pumarola, A., Agudo, A., Martinez, A. M., Sanfeliu, A., & Moreno-Noguer, F. (2018).
GANimation: Anatomically-aware Facial Animation from a Single Image.

ArXiv:1807.09251 [Cs]. http://arxiv.org/abs/1807.09251

Qian, S., Lin, K.-Y., Wu, W,, Liu, Y., Wang, Q., Shen, F., Qian, C., & He, R. (2019). Make a
Face: Towards Arbitrary High Fidelity Face Manipulation. ArXiv:1908.07191 [Cs].

http://arxiv.org/abs/1908.07191

Rana, M., & Sung, A. (2020). DeepfakeStack: A Deep Ensemble-based Learning Technique
for Deepfake Detection. 70-75.

https://doi.org/10.1109/CSCloud-EdgeCom49738.2020.00021

Rothkopf, J. (2020, July 1). Deepfake Technology Enters the Documentary World. 7he New
York Times.

https://www.nytimes.com/2020/07/01/movies/deepfakes-documentary-welcome-to-che

chnya.html

Sabir, E., Cheng, J., Jaiswal, A., AbdAlmageed, W., Masi, 1., & Natarajan, P. (2019).
Recurrent Convolutional Strategies for Face Manipulation Detection in Videos.

ArXiv:1905.00582 [Cs]. http://arxiv.org/abs/1905.00582




Sanchez, E., & Valstar, M. (2018). Triple consistency loss for pairing distributions in

GAN-based face synthesis. ArXiv:1811.03492 [Cs]. http://arxiv.org/abs/1811.03492

SB No. 751 An Act Relating to the Creation of a Criminal Offense For Fabricating a
Deceptive Video with Intent to Influence the Outcome of an Election. Tx Section

255.004 (2019). https://capitol.texas.gov/tlodocs/86R/billtext/html/SBO0751F.htm

SB 1988 An Act To Prohibit the Distribution of Deceptive Images or Audio or Video
Recordings with the Intent To Influence the Outcome of an Election. Me. (2019).

https://legiscan.com/ME/text/LD1988/2019

SB 6513 Restricting the use of deepfake audio or visual media in campaigns for elective
office.Wa (2020).
https://apps.leg.wa.gov/billsummary/?BillNumber=6513& Year=2020&Initiative=false
Schwartz, O. (2018, November 12). You thought fake news was bad? Deep fakes are where
truth goes to die. The Guardian.

https://www.theguardian.com/technology/2018/nov/12/deep-fakes-fake-news-truth

Seferbekov, S. (2022). Selimsef/dfdc deepfake challenge [Python].

https://github.com/selimsef/dfdc_deepfake challenge (Original work published 2020)

Segalis, E., & Galili, E. (2020). OGAN: Disrupting Deepfakes with an Adversarial Attack

that Survives Training. ArXiv:2006.12247 [Cs, Stat]. http://arxiv.org/abs/2006.12247

shaoanlu. (2022). Faceswap-GAN [Jupyter Notebook].

https://github.com/shaoanlu/faceswap-GAN (Original work published 2017)

Yujun Shen, Ping Luo, Junjie Yan, Xiaogang Wang, and Xiaoou Tang. 2018. FaceID-GAN:

Learning a symmetry three-player GAN for identity-preserving face synthesis. In



Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
821-830.

Yujun Shen, Bolei Zhou, Ping Luo, and Xiaoou Tang. 2018. FaceFeat-GAN: A two-stage
approach for identitypreserving face synthesis. arXiv preprint arXiv:1812.01288
(2018).

Sherman, 1. N., Stokes, J. W., & Redmiles, E. M. (2021). Designing Media Provenance
Indicators to Combat Fake Media. 24th International Symposium on Research in

Attacks, Intrusions and Defenses, 324—-339. https://doi.org/10.1145/3471621.3471860

smartcontract694. (2021). Smartcontract694/PoA. https://github.com/smartcontract694/PoA

(Original work published 2018)

Stouffer, C. (2021, September 15). What is scareware? A definition, examples, removal tips.

https://us.norton.com/internetsecurity-online-scams-how-to-spot-online-scareware-sca

ms.html

Straub, J. (2019). Using subject face brightness assessment to detect ‘deep fakes’
(Conference Presentation). In N. Kehtarnavaz & M. F. Carlsohn (Eds.), Real-Time
Image Processing and Deep Learning 2019 (p. 18). SPIE.

https://doi.org/10.1117/12.2520546

Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic Attribution for Deep Networks.

ArXiv:1703.01365 [Cs]. http://arxiv.org/abs/1703.01365

Tan, M., & Le, Q. V. (2020). EfficientNet: Rethinking Model Scaling for Convolutional

Neural Networks. ArXiv:1905.11946 [Cs, Stat]. http://arxiv.org/abs/1905.11946




Tariq, S., Lee, S., Kim, H., Shin, Y., & Woo, S. S. (2018). Detecting Both Machine and
Human Created Fake Face Images In the Wild. MPS@CCS.

https://doi.org/10.1145/3267357.3267367

Tolosana, R., Romero-Tapiador, S., Vera-Rodriguez, R., Gonzalez-Sosa, E., & Fierrez, J.
(2022). DeepFakes detection across generations: Analysis of facial regions, fusion, and
performance evaluation. Engineering Applications of Artificial Intelligence, 110,

104673. https://doi.org/10.1016/j.engappai.2022.104673

Twitter. (n.d.). Our synthetic and manipulated media policy | Twitter Help. Retrieved March

17, 2022, from https://help.twitter.com/en/rules-and-policies/manipulated-media

Vougioukas, K., Petridis, S., & Pantic, M. (2019). End-to-End Speech-Driven Realistic
Facial Animation with Temporal GANs. 4.

Wang, R., Juefei-Xu, F., Ma, L., Xie, X., Huang, Y., Wang, J., & Liu, Y. (2020).
FakeSpotter: A Simple yet Robust Baseline for Spotting AI-Synthesized Fake Faces.

ArXiv:1909.06122 [Cs]. http://arxiv.org/abs/1909.06122

Wang, T.-C., Liu, M.-Y., Zhu, J.-Y., Tao, A., Kautz, J., & Catanzaro, B. (2018).
High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANSs.

ArXiv:1711.11585 [Cs]. http://arxiv.org/abs/1711.11585

Westerlund, M. (2019). The Emergence of Deepfake Technology: A Review. Technology
Innovation Management Review, 9(11), 40-53.

https://doi.org/10.22215/timreview/1282

Wu, W., Zhang, Y., Li, C., Qian, C., & Loy, C. C. (2018). ReenactGAN: Learning to Reenact

Faces via Boundary Transfer. ArXiv:1807.11079 [Cs]. http://arxiv.org/abs/1807.11079




Xuan, X., Peng, B., Wang, W., & Dong, J. (2019). On the generalization of GAN image
forensics. https://doi.org/10.48550/arXiv.1902.11153

Yeh, C.-Y., Chen, H.-W.,, Tsai, S.-L., & Wang, S.-D. (2020). Disrupting
Image-Translation-Based DeepFake Algorithms with Adversarial Attacks. 53—62.

https://openaccess.thecvf.com/content WACVW_2020/html/w4/Yeh Disrupting Imag

e-Translation-Based DeepFake Algorithms with Adversarial Attacks WACVW_202

0_paper.html

Yang, X., Li, Y., & Lyu, S. (2018). Exposing Deep Fakes Using Inconsistent Head Poses.

https://doi.org/10.48550/arXiv.1811.00661

Youtube. (n.d.). Misinformation policies—YouTube Help. Retrieved March 17, 2022, from

https://support.google.com/youtube/answer/10834785?hl=en

Zakharov, E., Shysheya, A., Burkov, E., & Lempitsky, V. (2019). Few-Shot Adversarial
Learning of Realistic Neural Talking Head Models. ArXiv:1905.08233 [Cs].

http://arxiv.org/abs/1905.08233

Zhang, G., Kan, M., Shan, S., & Chen, X. (2018). Generative Adversarial Network with
Spatial Attention for Face Attribute Editing. 417-432.

https://openaccess.thecvf.com/content ECCV_2018/html/Gang_Zhang_Generative_Ad

versarial Network ECCV 2018 paper.html

Zhang, H., Goodfellow, 1., Metaxas, D., & Odena, A. (2019). Self-Attention Generative

Adversarial Networks. Proceedings of the 36th International Conference on Machine

Learning, 7354-7363. https://proceedings.mlr.press/v97/zhang19d.html



Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., & Metaxas, D. (2017).
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative

Adversarial Networks. ArXiv:1612.03242 [Cs, Stat]. http://arxiv.org/abs/1612.03242

Zhang, Y., Zhang, S., He, Y., Li, C., Loy, C. C., & Liu, Z. (2019). One-shot Face

Reenactment. ArXiv:1908.03251 [Cs, Eess]. http://arxiv.org/abs/1908.03251

Zhang, Y., Zheng, L., & Thing, V. L. L. (2017). Automated face swapping and its detection.
2017 IEEE 2nd International Conference on Signal and Image Processing (ICSIP),

15-19. https://doi.org/10.1109/SIPROCESS.2017.8124497




