
Proactive and Attentive Autonomous Navigation and Avoidance of

Dynamic and Intermittently-Visible Actors

A Thesis

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Master of Science (Computer Science)

by

Garrett A. Moore Jr.

December 2023

© 2023 Garrett A. Moore Jr.

Approval Sheet

This thesis is submitted in partial fulfillment of the requirements for the degree of

Master of Science (Computer Science)

Garrett A. Moore Jr.

This thesis has been read and approved by the Examining Committee:

Nicola Bezzo, Advisor

Madhur Behl, Committee Chair

Tariq Iqbal

Accepted for the School of Engineering and Applied Science:

Jennifer L. West, Dean, School of Engineering and Applied Science

December 2023

i

Abstract

In the increasingly populated and dynamic world we inhabit, one of the fundamental challenges autonomous

mobile robots face is navigating through crowded environments. In addition to creating a more complex

environment for robots to traverse, crowds also introduce the challenge of intermittent occlusions - actors

in the environment may become temporarily occluded from each others’ view by other actors as they move

through the environment. Intermittent occlusions can result in scenarios where actors seemingly appear

out of nowhere, which can induce erratic or unsafe behavior in a robot’s planned trajectory. To mitigate

this risk, we propose a novel framework for identifying actors of interest in crowded environments based on

observed actor dynamics and predicting their behavior over a short time horizon. These predictions are used

to formulate constraints for a model predictive controller, which allows our system to compute an optimal

trajectory through crowded environments containing intermittently occluded actors.

ii

Acknowledgments

First, I would like to thank my advisor Nicola Bezzo for his support, guidance, and inspiration during my

time at the University of Virginia. He has been instrumental in my academic and professional development,

and has always encouraged me to explore and engage with the interests that brought me back to Graduate

School in the first place. I am very thankful to have had him as my advisor and mentor.

I would also like to thank my friends and colleagues in the AMR lab - Jacob, Nick, Lauren, Patrick, Shijie,

Rahul, and Will. This brilliant, kind, and hilarious group has been so supportive of me as a student and

researcher and has really helped make UVA feel like a home to me over the past few years.

Finally, I would like to thank my family for their continual love and support throughout my life. They

have always been there for me no matter what, and have continually encouraged me to be the best version of

myself that I can be. Mom, Dad, Allison, Isaiah, and Chloë Ester, I am so thankful for you and everything

you’ve done to support me on this journey!

iii

Contents

Contents iv
List of Figures . 1

1 Introduction 1
1.1 Contribution . 3

2 Survey of Related Work and State of the Art in Dynamic Obstacle Avoidance 4
2.1 Path Planning for Dynamic Obstacle Avoidance . 4
2.2 Occlusion Handling . 5
2.3 Attentive Obstacle Avoidance . 5
2.4 MPC-Based Motion Planning . 6

3 Problem Formulation 8
3.1 Problem Formulation . 8

4 Approach 10
4.1 Perception . 11

4.1.1 Actor State Perception . 11
4.1.2 Actor Visibility . 11
4.1.3 Last Known State . 12

4.2 Dynamic Prediction of Actor Trajectories . 13
4.3 Attentive Actor Tracking . 15
4.4 Occlusion-Aware Dynamic Prediction Module . 16

4.4.1 Dynamic Prediction for Occluded Obstacles . 16
4.5 MPC-Based Obstacle Avoidance . 18

4.5.1 Formulation of Constraints . 19
4.5.2 Formulation of the Optimal Control Problem . 20

5 Simulations and Experiments 23
5.1 Software Architecture . 23
5.2 Matlab Simulations . 24

5.2.1 Simulated Sensing and Dynamics . 24
5.2.2 Visualization Overview . 24
5.2.3 Simulation 1: Anticipating the Worst-Case Scenario 26
5.2.4 Simulation 2: Occlusions in a Crowd . 30

5.3 Experiments . 34

6 Conclusions and Future Work 38
6.1 Conclusion . 38
6.2 Future Work . 39

6.2.1 Software Package Improvements . 39
6.2.2 Enhanced Actor Trajectory Sampling . 39
6.2.3 Further Testing and Design Iteration . 40

iv

List of Figures

1.1 LiDAR field of view becoming intermittently occluded by highway drivers[5] 2

3.1 The black car is temporarily occluded from the blue car’s view by the yellow bus 8

4.1 System block diagram, with core contributions outlined in green 10
4.2 Sample perception data from simulated line-of-sight sensor . 12
4.3 Basic dynamic prediction for an actor . 13
4.4 Real-world experiment setup (a) next to a visualization of the robot’s dynamic predictions for

nearby actors (b) . 14
4.5 Sample scenario of tracking five actors (a) then untracking the leftmost actor (b). 16
4.6 The dynamic prediction for the occluded actor (a) enters the robot’s perception range (b). . . 17
4.7 Prediction is recomputed (a), then converges with the occluded actor’s actual state (b). . . . 18
4.8 Example optimal trajectory produced by MPC . 22

5.1 Software Architecture . 23
5.2 Overview of our MATLAB simulation environment . 25
5.3 The Naive agent is caught off guard (a) and plans a harsh detour en route to the goal (b). . . 26
5.4 The robot correctly predicts the trajectory of an occluded actor and is able to anticipate its

sudden re-appearance . 27
5.5 Comparison of the velocity profiles of different permutations of our approach 28
5.6 Performance comparison between different permutations of our approach 28
5.7 Distance to nearest actor comparison between different permutations of our approach 29
5.8 Rationale for how the Attentive-Proactive approach achieves a lower mean distance to the

closest actor during the simulation . 30
5.9 Error between the robot’s predicted and actual trajectory during Simulation 1 31
5.10 Initial state of the crowd (a) and crowd converging, with actors beginning to occlude each

other (b). 31
5.11 The Naive approach is unable to smoothly navigate the crowd and produces an erratic maneuver

(a) but the Attentive-Proactive plans a smooth, safe path (b). 32
5.12 Comparison of the velocity profiles of different permutations of our approach 32
5.13 Performance comparison between different permutations of our approach 33
5.14 Distance to nearest actor comparison between different permutations of our approach 34
5.15 Error between the robot’s predicted and actual trajectory during Simulation 2 34
5.16 Overhead view of our experiment setup . 35
5.17 Initial state of the experiment, rendered with obstacle radii 36
5.18 Comparing paths generated by the Naive (a) and Attentive-Proactive (b) in the experiment . 37
5.19 Obstacle avoidance comparison between the Naive (a) and Attentive-Proactive (b) approaches

during a real-world experiment . 37

1

2

Chapter 1

Introduction

Autonomous mobile robots are developing increasingly complex capabilities as the state-of-the-art advances.

As these systems’ capabilities advance, so too does the complexity of the environment in which they can

be successfully deployed. One particularly challenging component of autonomous navigation through an

environment is coexisting with other intelligent entities and taking their actions into consideration while

carrying out an independent mission. Because many of the domains at the forefront of robotics research

are densely populated by vehicles, pedestrians, and other mobile entities, this fusion of path planning and

obstacle avoidance becomes increasingly complex as more and more actors enter the environment.

While many methodologies exist for motion planning around dynamic actors, real-world environments

have an additional facet that further complicates the problem – imperfect information. The sensors most

typically deployed on autonomous mobile robots, Lidar, Radar, and Cameras, can only sense objects in their

line of sight. In densely populated environments like those mentioned above, actors are often occluded by

terrain, obstacles, and even other actors. These occlusions are often intermittent and difficult to predict,

such as pedestrians crossing through traffic, large buses or trailers passing smaller vehicles on the highway,

or off-road robots passing through dense foliage in the woods. An example of these sorts of occlusions is

shown in Figure 1.1. Traditional motion planning algorithms only consider the actions of visible actors, so

in occlusion-rich environments, autonomous systems risk failing to consider the behavior of actors outside

of their current field of view (FOV). Actors disappearing and reappearing at unexpected times can lead to

scenarios in which motion planners are forced to react at the last minute, which can result in drastic or

erratic behavior. This is a significant shortcoming that can pose a substantial risk to robots and the other

entities with which they share their environments.

When we as humans navigate through crowded environments, we can implicitly separate the signal from

1

Figure 1.1: LiDAR field of view becoming intermittently occluded by highway drivers[5]

the noise; through our observations, we can determine which elements of our environment we should pay

attention to and which elements we can safely ignore. This process is known as Saliency Detection [26] and is

a crucial process for efficiently negotiating crowded decision spaces. Notably, our ability to reason about the

actions of entities in our surroundings is not limited to what we can currently see. Based on our previous

observations, we are able to infer what may be happening within regions of our surroundings that are occluded

or otherwise hidden from us. There are many different ways humans accomplish this, but one specific way

that we will examine in this thesis is simple dynamic prediction. If we observe an actor moving out of sight,

we begin to predict the trajectory that that actor could follow based on our observations about that actor

and our knowledge of likely objectives in the surrounding environment. In simple scenarios, this could be as

straightforward as projecting along the actors’ last observed trajectory at its last observed velocity; in more

complex cases, this could be projecting along multiple possible trajectories based on our assessment of viable

goals in the environment. The common thread is that our decisions are informed by predictions about actors’

future intentions given observations about their dynamics.

Inspired by this, we present a novel motion planning approach that is able to determine whether or not an

actor is relevant to our path planning computations. If an actor that is determined to be relevant becomes

occluded from our view, our approach utilizes the actor’s last observed dynamics to predict its most aggressive

possible trajectory out to a finite time horizon. The positions in this trajectory are used as constraints for a

2

Model Predictive Controller (MPC), which allows for proactive navigation around states where the occluded

actor(s) would be if they followed their most aggressive trajectory.

This thesis is organized in the following manner: Chapter 1 presents an introduction to the thesis and an

overview of its core contributions. Chapter 2 reviews the state-of-the-art for dynamic obstacle avoidance

and occlusion-aware obstacle avoidance. Chapter 3 discusses the problem preliminaries and mathematical

formulation, and Chapter 4 discusses the specifics of our proposed approach in depth. Chapter 5 gives an

overview of the simulated case studies, real-world experiments, and their results. Finally, Chapter 6 provides

a conclusion to the thesis, along with a discussion of potential future lines of effort to advance this research.

1.1 Contribution

The two primary contributions of this thesis are as follows:

Occlusion-Aware Trajectory Prediction for Dynamic Actors — The first contribution of this work

is a motion planning framework that utilizes observations about self and actor dynamics to avoid collisions

while traveling to a goal pose. This framework is a novel extension of a Model Predictive Controller (MPC)

that recognizes when salient actors have become occluded from the robot’s field of view. Once an occlusion

has been detected, our approach uses the last observed state of the occluded actor to predict the worst-case

trajectory that it could follow over a finite time horizon - the trajectory that would minimize the robot’s

reaction time when the actor reappears in the robot’s field of view. This predicted trajectory consists of a

series of actor positions over the MPC’s prediction horizon, which are then used to form constraints in the

underlying MPC. In this way, the MPC is able to safely plan a path around each actor’s predicted locations

at each step in its prediction horizon.

Attentive Actor Tracking — While the previous contribution serves as a powerful tool to plan safe

paths around predicted actor positions, it suffers from an increase in complexity proportional to the number

of actors that the motion planner is tracking. In order to combat this, we have developed an attentive

component to our dynamic predictions that allows the planner to disregard actors that will not likely be

relevant to the robot’s planned trajectory. This is accomplished by monitoring the relative motion of actors

in the robot’s environment. All visible actors are initially treated as ’tracked’ by the motion planner, but if

the distance between an actor and the robot is observed to be continuously increasing over a set time interval,

the planner stops tracking that actor. Only the trajectories for tracked actors are predicted in the Dynamic

Prediction module, and subsequently used as constraints for the underlying MPC. This ensures that resources

are not spent computing trajectories for actors that are unlikely to interact with the robot over its control

horizon.

3

Chapter 2

Survey of Related Work and State of the Art

in Dynamic Obstacle Avoidance

Motion planning and collision avoidance are highly studied topics in the field of autonomous mobile robotics

and are fundamental to the operation of autonomous systems. Methods for avoiding dynamic obstacles are

particularly important to systems that operate in human-inhabited spaces, as humans are highly mobile

agents with a wide variety of potential behaviors. In this section, we will discuss the current state-of-the-art

practices for obstacle-avoidant motion planning, along with some of their key strengths and deficiencies. We

will also discuss current state-of-the-art practices for attentive obstacle tracking, and methods by which

complex scenarios with many agents can be reduced to simpler terms.

2.1 Path Planning for Dynamic Obstacle Avoidance

There are many popular approaches to path planning that are utilized for obstacle avoidance in robotics

today, ranging from force-based methods like Artificial Potential Fields [27] and Time Elastic Bands [13], to

sample based methods like RRT[17] and PRM[9], to various forms of optimization-based planning such as

Reinforcement Learning[19], Control Barrier Functions [23], and Model Predictive Control[7].

While many of these optimization-based planning methods have previously been relegated to offline usage

in the past due to their computational expense, the ever-expanding capabilities of embedded computing

platforms have meant that many of these methods are now beginning to become accessible solutions for

online, real-time path planning.

4

Chief among the strengths of optimization-based planners is their ability to optimize around diverse

sets of constraints, a quality which makes them well-suited for solving path planning problems in complex

environments. Incorporating obstacle state information as a constraint is common practice in many obstacle

avoidance approaches, but most of these approaches only take into account the states of obstacles currently

visible to them - in this case, within the range of their sensors.

This poses a significant limitation to these path planning methods when operating in environments with

imperfect information, particularly in circumstances where obstacles are intermittently visible. Our approach

aims to address this deficiency by introducing a form of occlusion handling to predict the trajectory of

intermittently occluded actors in the environment.

2.2 Occlusion Handling

Occlusion handling is a specialized branch of motion planning that accounts for the uncertainty inherent to

areas that are outside of a robot’s field of view (FOV). Many approaches such as [6] utilize Partially Observable

Markov Decision Processes (POMDP), which allows them to plan an optimal path over a distribution of

probable states of occluded actors, but the complexity scales linearly with the number of actors in the

environment. Authors of [4] improve on this approach by independently optimizing around each actor and

then fusing the results, but their approach is reliant on knowing the number and type of actors in the

environment a priori. Authors of [1] consider robot and environment dynamics to compute worst-case velocity

profiles for occluded actors, but their approach was only ever able to be implemented as an offline planner.

Authors of [11] developed an optimization constraint that allows an MPC to minimize the occluded area as it

navigates by occlusions, both reducing the risk of collision and supporting faster motion around occluded

obstacles.

Most of the current approaches for handling safe navigation around occlusions work well with fewer

occlusions but have difficulty scaling to environments with larger numbers of potential occlusions and occluded

actors. Our approach seeks to reduce the severity of this difficulty by intelligently reducing the number of

actors that we need to predict motion for.

2.3 Attentive Obstacle Avoidance

Attentive obstacle avoidance is another topic that has been explored in recent years in an attempt to determine

which sensed entities are most significant or salient in a given environment. Authors in [24] aim to emulate

the human capability to identify the most salient objects in a scene in a LiDAR-based perception framework,

5

and authors in [10] seek to identify scale-able salience perception algorithms. Other frameworks such as SARL

[18] utilize deep neural networks to perform socially attentive pooling, which aims to identify the salience of

each individual agent in a crowded environment. Authors of [25] take a broader approach, applying principles

of group-based behavior prediction to construct an MPC that plans around observed group dynamics. [20]

expands on this effort, coupling group classification with a robust MPC that also accounts for actor dynamics.

While many methods in this field that utilize machine learning to develop classification tools for determining

salience are highly robust, one downside is that they often require significant amounts of training to learn

specific scenarios. In our approach, we explore a simplified concept of salience that does not require training

machine learning models, and instead analyzes trends in actors’ dynamic behavior over time. Our goal is to

develop a salience determination process that is general enough to support the wide variety of actors that an

autonomous mobile robot might encounter while navigating in a crowded urban environment.

2.4 MPC-Based Motion Planning

We found MPC to be an appealing methodology to explore for our application due to its ability to perform

online optimizations around multiple constraints while taking into account the dynamics of the robot and the

actors around it. During our research, we encountered many cases where MPC was utilized in support of

objectives within the domains we were already researching.

Authors of [16] utilize an MPC-based solution to track an obstacle avoidance trajectory generated by a

potential field planner. [12] implements an MPC-based planner to plan a path that minimizes the area of

occluded regions and predicts the probability of colliding with actors appearing from the occluded regions.

The author of [20] provides inspiration for utilizing MPCs in an attention-aware motion planning context,

using a deep neural network based approach to reduce the set of actors that an MPC needs to predict motion

for.

While MPC-based controllers can serve as excellent motion planning solutions in many scenarios, they

are not without their challenges. The computational complexity of their optimizations can grow rapidly

with the number of constraints they must optimize around and the time horizon they must optimize over.

Because the optimization is solved online, increased latency poses the risk of introducing latency into a robot’s

control system. Moreover, many MPC-based obstacle avoidance methods only account for obstacles that

are visible to the robot. In crowded and occlusion-rich environments, this does not remain sufficient for safe

motion planning. Obstacles not visible to the robot are often excluded from the optimization process. Our

approach aims to address these deficiencies by combining occlusion handling and attentive obstacle avoidance

6

methodologies to produce an MPC-based controller that can both determine salient obstacles within a robot’s

surroundings and predict their trajectories when they become occluded from the robot’s FOV.

7

Chapter 3

Problem Formulation

This chapter provides an overview of the problem space explored by our work. We will begin with a discussion

of the notation and formulas used to describe the problem and our systematic approach, followed by an

overview of the fundamental techniques expanded upon by this thesis. This will be followed by a formal

problem definition that describes the challenge that this work aims to address.

Figure 3.1: The black car is temporarily occluded from the blue car’s view by the yellow bus

3.1 Problem Formulation

Consider an autonomous robot navigating through a structured or unstructured environment populated

by other entities referred to as actors. This environment contains both static and dynamic actors that are

carrying out tasks independent of that of the robot, and due to the nature of the environment these actors

can become intermittently occluded from the robot’s field of view. An example of intermittent occlusion is

illustrated in Figure 3.1. These actors are assumed to be non-cooperative and non-communicative with the

8

robot. We are tasked with developing a motion planning and control policy to navigate to a goal pose while

minimizing the risk of collision with relevant actors in our vicinity.

Due to the unpredictable intermittent visibility of the actors in the environment, we are faced with a

challenging motion-planning problem. When an actor suddenly appears out of nowhere within close proximity

to the robot, the resulting motion planning computations can produce sudden and erratic control policies. In

the real world, this chaotic behavior can be dangerous to both the robot and the actors around it, resulting

in, at best, an uncomfortable experience and, at worst, a collision incident.

Furthermore, as the number of actors in a scenario grows, so too does the computational complexity of

the optimal control problem. If the number of actors in the robot’s vicinity grows to be too large, the robot

may become unable to carry out safe motion planning efficiently enough to operate at near real time.

The problem, then, becomes the following: how can we develop a motion planning and control policy to

navigate to a goal while minimizing the risk of collision with significant actors in our vicinity, and how can

we intelligently reduce the number of actors that must be considered in our control optimization?

Our formulation of this problem is based on the following assumptions:

1. The Robot’s perception is limited to a generalized line-of-sight model that represents a fusion of lidar

and camera data.

2. The Robot’s perception capabilities are able to accurately measure actor position, orientation, and

velocity

3. The Robot possesses a priori knowledge of the environment’s structure via a map and is able to reason

about structured trajectories that the actors can take.

4. The Robot does not explicitly communicate with the actors

9

Chapter 4

Approach

In this chapter, we describe our technical approach to motion planning through an environment populated

by dynamic and intermittently occluded actors. Our framework consists of two core components: First,

our attentive actor tracking module uses observations of actors’ dynamics to determine which actors are

considered salient to the robot’s motion planning process. These actors are marked as ’tracked’. Next, the

set of tracked actors is passed to the dynamic prediction module, which uses the tracked actors’ last observed

dynamics to predict their future trajectories over a short time horizon. If a tracked actor becomes occluded

from the robot’s field of view, the prediction module performs an additional layer of prediction, in which a

sample of viable trajectories is used to generate an approximate reachable set of positions for the occluded

actor. The trajectories and regions generated in the dynamic prediction module are used as constraints in a

model predictive controller, which is then able to compute an optimal control policy over a fixed time horizon

that avoids all tracked actors in the robot’s vicinity.

Figure 4.1: System block diagram, with core contributions outlined in green

As indicated in Figure 4.1 above, the perception module senses the robot’s environment and returns a set

of the positions and velocities of all actors within the range of the robot’s sensor package, A. The Attentive

Actor Tracking module determines which members of A should be tracked and which previously tracked

10

members should be untracked. This module returns Atr, the set of last known positions and velocities of

all tracked actors at time t. The Dynamic Prediction Module uses Atr to predict a set of future positions

for each tracked actor, Xtr, which are then passed to the MPC to be formulated into obstacle avoidance

constraints. After updating its constraints, the MPC computes an optimal control sequence for the robot to

reach its goal and issues those controls to the robot (plant). Finally, the plant executes the commands in

the real or simulated world and publishes its updated state XR back to the Perception module. In order to

illustrate the approach discussed in this chapter, we will provide images from our Matlab simulations. These

simulations are included as a reference in this section but will be discussed in greater depth in Chapter 5.

4.1 Perception

The perception process controls how the robot receives information about its surroundings, and what

information it can use to perform the rest of the computations in our approach. This section discusses the

data produced by the perception process, and how it is passed to subsequent modules in the approach.

4.1.1 Actor State Perception

First, the robot measures the state of each actor in its environment. The robot assumes that it receives

observations about each actor a within the robot’s perception range that contain that actor’s position [xa, ya]

and velocity [vax, v
a
y]. Independent of perception, the robot also maintains a Boolean Φa

tr that describes

whether or not actor a is tracked by the Attentive Actor Tracking module. The concept of tracking will

be explained in detail in the following section. Each observation is stored as a state matrix Xa, where

Xa = [xa, ya, vax, v
a
y ,Φ

a
tr]

T . Lastly, each of these matrices is added to an overall state matrix X that contains

the collective states of all visible or tracked actors.

X =





x1

y1

v1x

v1y

Φ1
tr


. . .



xn

yn

vnx

vny

Φn
tr





4.1.2 Actor Visibility

Since the robot relies on a line-of-sight sensor for perception, we anticipate that there will be intermittent

visibility of actors in the robot’s environment. The robot maintains a list of visible actors in its environment

11

at each cycle, along with the time that they were last visible, which allows it to maintain a record of

any intermittent occlusions occurring during operation. The following Figure 4.2 illustrates how the robot

visualizes its environment based on the data it receives from its perception module. In this figure, the robot

is represented by the blue triangle inside the red circle, and each visible actor is represented by a black circle.

The white region represents the visible area within the robot’s perception range. Note that the visible area is

limited by both the sensor’s range and physical interference from the sensed actors.

Figure 4.2: Sample perception data from simulated line-of-sight sensor

4.1.3 Last Known State

Combining typical state measurements with visibility awareness allows the robot to maintain a set of Last

Known States for each actor that they’ve encountered in their environment, XL. This contains the last

observed position [xa, ya] and velocity [vax, v
a
y] of each actor, its corresponding tracking variable Φa

tr, and the

time it was last observed at t. The Last Observed State, XL, is represented as follows:

12

XL =





x1

y1

v1x

v1y

Φ1
tr

t1


. . .



xn

yn

vnx

vny

Φn
tr

tn




This contains all the information necessary for the robot to perform this approach. In the following

section, we will discuss how this is utilized to determine which actors the robot should track, make predictions

about future actor positions, and maintain those predictions throughout intermittent occlusions.

4.2 Dynamic Prediction of Actor Trajectories

The foundational element of our approach is dynamic path prediction. As the robot observes its surroundings,

it constantly measures the positions of all actors within its sensing radius. The positions of the observed

actors over time are used to compute velocity estimates for each actor, and these velocities are subsequently

used to predict a series of reachable future states for each actor over a receding time horizon.

Figure 4.3: Basic dynamic prediction for an actor

Each actor a in our environment is assigned a safety radius ra that the MPC must respect as it plans its

path, which is defined from the dimensions of the actor measured by the robot’s perception module. As seen

in Figure 4.3 above, the robot represents its future state predictions as a series of circles around each actor’s

reachable future states, one for each step in the MPC’s prediction horizon. The positions of these circles’

origins are predicted using the kinematic equations below. At each prediction step, the radius of the circle

increases by a scale factor fr to account for uncertainty in the future state of the actor. This margin accounts

for uncertainties in the direction of motion, process error in executing the optimal control commands, and

noise due to disturbances encountered by the actor as it moves along its trajectory. This scale factor fr serves

13

as an approximation for computing the reachable set of states given that combined uncertainty. This is not

expected to be a permanent replacement for a more formal reachability analysis tool but rather serves as a

useful approximation that can be tuned via experimentation.

The resulting prediction is presented as a sequence of circles with gradually increasing radii, as seen in

Figure 4.3 above. This set of actor positions and radii is added to Xtr, which will allow the MPC to plan a

trajectory that respects the boundaries of each actor at each step in its control horizon.

xa′ = xa + vaxdt (4.1)

ya′ = ya + vaydt (4.2)

By default, we perform this prediction for each actor in our environment within our line of sight. Figure

4.4 shows a series of predictions for an environment containing three entities: two robots and a large wall

structure. The ego vehicle is represented by a blue triangle inside a circle, and each actor is represented by a

black circle. In order to better approximate a safe boundary around larger objects like the wall shown in

this example, we discretize them into smaller objects and treat each component as an independent actor. As

shown in Figure 4.3, each actor’s dynamic prediction is represented by a series of red circles starting at each

actor’s origin and extending along the actor’s observed velocity vector.

(a) (b)

Figure 4.4: Real-world experiment setup (a) next to a visualization of the robot’s dynamic predictions for
nearby actors (b)

While this approach is adequate on its own for small numbers of actors, it quickly grows in computational

expense and complexity with the number of actors being tracked. The following section describes our approach

to reducing this complexity using Attentive Actor Tracking.

14

4.3 Attentive Actor Tracking

The Attentive Actor Tracking module determines which actors in the robot’s environment are worth paying

attention to and which actors are not. This is significant because being able to ignore actors reduces

the number of actor trajectories that need to be predicted by the Dynamic Prediction Module, and also

significantly reduces the number of constraints passed to the MPC.

We begin by assuming that the robot should always pay attention to visible actors that are moving

consistently towards the robot’s position and can always disregard visible actors that are moving consistently

away from the robot’s position. This can be achieved by continuously measuring the Euclidean Distance, die,

(eq. 4.3) between each visible actor i and the robot, where the robot’s position is represented by [xr, yr] and

the position of each actor is represented by [xi
a, y

i
a].

die =
√
(xr − xi

a)
2 + (yr − yia)

2 (4.3)

Φi
tr =


0 die(t) > die(t− 1) ∀t0 < t < nt

1 otherwise

(4.4)

Recall from Section 4.1.3 that Φi
tr is a boolean that represents whether or not actor i is tracked by the

robot. Equation 4.4 serves as a way to continuously recompute that value at runtime.

This computation is performed at each cycle of the robot’s control process. If the computed distance to

an actor has increased over each of the previous nt cycles, then the robot determines that it no longer needs

to pay attention to that actor. The variable nt can be adjusted experimentally to tune the performance of

the Attentive Actor Tracking Module but is set to 5 cycles by default.

In order for our approach to be aware of whether or not the robot is paying attention to an actor, the

robot must maintain a tracking variable Φi
tr for each actor i. In our framework, an actor is considered to be

tracked (Φi
tr = 1) immediately upon entering the robot’s field of view. At each cycle the robot recomputes die

between the robot’s position and each actor i. If die is increasing and has been continuously increasing for the

past nt cycles, then actor i becomes untracked (Φi
tr = 0). Similarly, if die between our position and untracked

actor i is decreasing and has been continuously decreasing for the past nt cycles, then actor i becomes tracked

again.

This process can be visualized in the following scenario, shown in Figure 4.5. As the robot navigates

through the environment toward its goal (indicated by the orange point), it initially tracks all five actors and

performs dynamic trajectory prediction for each of them. For the tracked actors, this future set of positions

15

is represented by a sequence of red circles. As we pass the leftmost actor i, die begins increasing, and after nt

cycles we untrack actor i.

(a) (b)

Figure 4.5: Sample scenario of tracking five actors (a) then untracking the leftmost actor (b).

4.4 Occlusion-Aware Dynamic Prediction Module

This section describes the function of the Occlusion-Aware Dynamic Prediction Module, which predicts a

sequence of future positions Xtr for each tracked actor in the set Atr. This builds on the basic Dynamic

Prediction process described in section 4.2 but also incorporates the Last Observed State of each actor to

predict the trajectory of occluded actors.

4.4.1 Dynamic Prediction for Occluded Obstacles

Dynamic predictions for occluded obstacles are accomplished in a similar manner to predictions for visible

obstacles. The primary difference is that since the robot can no longer truly observe the state of the tracked

actor when it is occluded, its predictions must also account for changes in velocity or trajectory over the

duration of the actor’s occlusion.

Our approach begins by estimating an upper bound for a velocity that the occluded actor could reasonably

achieve, Vub. This value is experimentally determined to be an appropriate maximum for the desired use case.

Once a tracked actor becomes occluded, the Dynamic Prediction module predicts future states of the

occluded actor over the MPC’s control horizon using Vub, starting from the last observed state of the occluded

actor i, Xi
L. This predicted state of the occluded actor n is propagated from cycle to cycle using Vub and

16

the actor’s equations of motion, but if at any time the predicted origin of the occluded obstacle enters the

observable area of the robot, this indicates that the prediction was invalid. In this case, Vub is reduced by a

constant percentage δv, and the predicted path is recomputed from the last observed state of the robot. δv

can be tuned experimentally to adjust performance. In this way, the predicted position of the occluded actor

converges to just outside the visible area of the ego vehicle. As the visible area of the robot’s perception

module continues to recede, the fastest predicted state of the occluded actor converges with the robot’s actual

position.

(a) (b)

Figure 4.6: The dynamic prediction for the occluded actor (a) enters the robot’s perception range (b).

Consider the continuation of the scenario shown in Figure 4.4. As the mobile actor i becomes occluded

(shown in Figure 4.6(a)) the robot computes a Dynamic Prediction for actor i with increased velocity Vub.

This Dynamic Prediction continues at each time step until the moment where the initial position of that

prediction enters the visible area within our perception radius (shown in Figure 4.6(b)). If this predicted

trajectory had been accurate, the robot would have sensed the occluded actor reappear at this point, so this

indicates that we need to recompute our prediction and propagation with a lower Vub.

We update our velocity upper bound such that Vub = (1 - δv)Vub and recursively recompute our predictions

from the last known position of actor i until the initial position of the prediction is no longer visible. This

position is then propagated until the initial position in this prediction becomes visible, and in this case, we

observe the predicted trajectory converge with the actual trajectory of actor i as it reappears.

In the resulting prediction, shown in Figure 4.7, the actor’s predicted position converges to a position

just outside the robot’s field of view inside the occluded region. This results in an approximation of the

worst-case scenario for that actor’s trajectory, the trajectory where the occluded actor will reappear out of

the occluded region at the next time step. We consider this the worst-case scenario because it minimizes the

17

(a) (b)

Figure 4.7: Prediction is recomputed (a), then converges with the occluded actor’s actual state (b).

distance and time that the robot has to react to the actor when it reappears, which increases the likelihood

that the robot’s motion planner will generate an erratic path in response to a sudden constraint.

The dynamic prediction module produces a set of future positions for each tracked actor, Xtr. This set

contains the series of predicted states for each tracked actor at each time step t from 1 < t < N , where N

is the control horizon we’re using for our MPC. This will allow us to construct constraints for our MPC

that represent the state of each actor at each time step, an operation that is critical for avoiding dynamic

obstacles. A deeper discussion of how this is utilized and a further discussion of the overall MPC will be the

focus of the next section.

4.5 MPC-Based Obstacle Avoidance

The Model Predictive Controller (MPC) is a predictive control approach that computes a set of optimal

control inputs that minimize a particular cost function. This cost function consists of formalized mathematical

constraints, which can be tailored to describe the requirements of a given application. For our application,

we have constructed an MPC capable of avoiding dynamic obstacles. As a part of this process, the controller

makes predictions about future trajectories of both the robot and its surrounding actors using dynamic

models then utilizes those predicted trajectories as time-variant position constraints in its control optimization

process. The MPC’s optimization constraints can also consider operational elements such as safety margins

around actors, simple obstacle avoidance behaviors, lane lines, and proximity to a goal pose. The output

of the Dynamic Prediction Module, Xtr, is passed into our Model Predictive Controller (MPC) as a set of

position predictions over a time horizon, N . This set of predictions is used to construct position constraints,

18

which allows us to optimize around them over the duration of the time horizon.

Kinematic Models

One of the foundational components in the formulation of our Model Predictive Controller (MPC) is the set

of kinematic models that describe the motion of the robot and the actors that it interacts with. The robot’s

motion is modeled with a non-holonomic unicycle model [8]. Using the unicycle model, we represent the state

of the robot as follows: xr = [xr, yr, θr]
T, where xr refers to its x-axis position, yr refers to its y-axis position,

and θr refers to its orientation. The robot’s control input is represented as follows: ur = [vr, ωr]
T, where vr

represents a linear velocity and ωr represents an angular velocity. Thus, the robot’s equations of motion are

as follows:

ẋr = vr cos θr

ẏr = vr sin θr

θ̇r = ωr

(4.5)

Next, we define the kinematic model for all obstacles using a point mass kinematic model. The state

of each actor is represented as xa = [xa, ya], and the control input issued to each actor is represented as

ua = [vax, v
a
y], where each term represents a velocity command issued in the x and y directions respectively.

Thus, the equations of motion for the actors are as follows:

ẋa = vax

ẏa = vay

(4.6)

This simplistic model was chosen because it represents the observation that the robot is able to make

about actors in its vicinity; one of our grounding assumptions is that our framework makes observations

about its surroundings in the form of position and velocity. Our system is not able to determine any deeper

insight into the actors’ dynamics from its sensor array.

4.5.1 Formulation of Constraints

After receiving Xtr from the Dynamic Prediction Module, we are able to fully define the constraints that

govern our optimization. We begin by creating a constraint that represents the robot dynamic model derived

in the previous section. This constrains each subsequent robot state to be a function of the previous robot

state and the previous control input.

x(t+ k + 1) = f(x(t+ k), u(t+ k)),∀k = [0, N] (4.7)

19

Next, we construct an obstacle avoidance constraint using Atr(t). This constraint explicitly states that for

each actor in the set of tracked actors (both visible and invisible to the robot) at time t, Atr(t), the Euclidian

distance between the robot and that actor must be greater than a safety margin δs. This margin is defined as

follows:

δs = rr + ria(1 +
kβ

N
) + ρ, ∀k = [0, N],∀i ∈ At(t) (4.8)

Where rr is the robot’s safety radius, ria is the safety radius of actor i, β is an inflation factor that

approximates the effects of uncertainty on the motion of each actor, and ρ is a configurable factor of safety

that increases the clearance that the robot gives other actors. Once we’ve defined δs, we can define our full

obstacle avoidance constraint:

||xr(t+ k)− xi(t+ k)|| > δs,∀k = [0, N],∀i ∈ Atr(t) (4.9)

Finally, we create boundary constraints that limit the range of states and controls within their respective

feasible regions. These constraints take into account the limits of possible commands, as well as the boundaries

of the traversable area (such as walls and non-actor obstacles).

u(t+ k) ∈ U(t+ k),∀k = [0, N − 1] (4.10)

x(t+ k) ∈ X(t+ k),∀k = [0, N] (4.11)

4.5.2 Formulation of the Optimal Control Problem

Our goal is to compute a set of optimal controls to navigate through an environment containing heterogeneous

dynamic actors. We’ve chosen to utilize a Model Predictive Controller (MPC) because it produces a control

policy that takes into account the dynamics of the robot and the obstacles it’s avoiding over time. To begin

construction of our MPC, we begin with a typical MPC formulation. Given the constraints defined above, we

can construct the following cost function:

J = (xr(t+N)−xg)
TQ(x(t+N)−xg)+

N−1∑
k=1

(xr(t+l)−xg)
TQ(x(t+N)−xg)+ur(t+k−1)TRur(t+k−1) (4.12)

In which xr(k) is the robot state at time k, xg is the robot’s goal state, ur(k) is the kth computed optimal

control input, Q is the cost weighting matrix penalizing deviation in state, R is the cost weighting matrix

penalizing deviation in control, and N is the control horizon. After defining the cost function, we are able to

20

fully formulate our optimal control problem:

argmin
u(0),...u(N−1)

J(x(0), u(0), ..., u(N − 1))

subj. to:

x(t+ k + 1) = f(x(t+ k), u(t+ k)),∀k = [0, N]

||xr(t+ k)− xi(t+ k)|| > δs(t),∀k = [0, N],∀i ∈ Atr(t)

u(t+ k) ∈ U(t+ k),∀k = [0, N − 1]

x(t+ k) ∈ X(t+ k),∀k = [0, N]

Solving this optimal control problem results in a set of optimal controls at each time step in the MPC’s

control horizon, U . U consists of a series of linear and angular velocity commands that, when issued to the

robot, produce an optimal trajectory that advances us towards our goal while avoiding the trajectories of the

visible and invisible salient dynamic actors in our environment. Revisiting the scenario mentioned in Figure

4.7(b), we can visualize that trajectory with the green dashed line shown in front of the robot in Figure 4.8

below.

In the following section, we will explore how our approach performs through a variety of simulated and

real experiments.

21

Figure 4.8: Example optimal trajectory produced by MPC

22

Chapter 5

Simulations and Experiments

In this section, we perform a combination of simulations and real-world experiments to validate our approach.

In each of these scenarios, the robot begins in an environment containing a group of dynamic agents and is

tasked with navigating around these agents to reach a goal pose. As an additional challenge, some number

of the actors in each case experience intermittent occlusion from the ego vehicle’s view. We begin with an

overview of our software architecture and experimental setup, and then proceed to the discussion of the

individual experiments and their results.

5.1 Software Architecture

The software architecture for our approach is shown in Figure 5.1 below. An in-depth description of each of

these components’ functions and what they’re responsible for is covered in Chapter 4, but this description

will serve as a higher-level overview of how these components are implemented and connected together.

Figure 5.1: Software Architecture

The first four components in the diagram, Perception, Attentive Actor Tracking, Dynamic Prediction,

and the MPC, were all implemented as part of a MATLAB R2022B [15] software package that we developed

throughout the course of this research. MATLAB was chosen due to its ease of use and the robustness of its

23

visualization capabilities, which were both helpful qualities during the development of our approach. We

implemented the symbolic solver at the core of our MPC in CasADi [2], an open-source nonlinear optimization

toolkit. For our simulated experiments, we simulated our plant and world within MATLAB, and for real-world

experiments, we utilized the Robot Operating System (ROS)[22] to connect to robots and sensors in our lab.

5.2 Matlab Simulations

This series of simulated experiments was conducted in MATLAB R2022B [15], on an Ubuntu 20.04 machine

equipped with an AMD Ryzen 3800X processor, an NVIDIA 2080 Super GPU, and 32GB of RAM.

5.2.1 Simulated Sensing and Dynamics

The primary sensor used in our experiments is a simulated LiDAR built in MATLAB. This sensor is assumed

to have perfect information within its field of view and is able to precisely measure the distance from each

virtual laser to the surface it intersects with. The LiDAR is modeled with a 360◦ field of view and an 8m

range. The robot’s motion is modeled using non-holonomic unicycle dynamics in accordance with how we’ve

chosen to design our MPC 4.5, and the dynamics of the obstacles in the environment are modeled as simplistic

point model 4.6. In short, the dynamics of the entities in the simulation match the dynamics that the MPC

was designed to model.

5.2.2 Visualization Overview

This section serves to explain the graphical representations and significance of each entity in our MATLAB

simulations, which remain consistent throughout our simulated and real experiments. Figure 5.2 below shows

a top-down view of one of our MATLAB simulations in operation. In the center of the scene, a robot being

controlled by our system is represented by a blue triangle. The trajectory that the robot has followed so far

is shown in blue, and the planned path resulting from the series of optimal controls produced by the MPC

is represented by the dashed green line. The goal pose that the robot is trying to reach is represented by

the orange dot. The robot is surrounded by a red circle, which represents a safety radius around the robot.

Similarly, the bold, black circles in the robot’s surroundings represent safety radii around obstacles in the

environment. These radii are chosen arbitrarily in our simulated experiments, but during real-world testing

these are derived from coarse measurements of the actual obstacles they represent. Objects that are too

large or eccentric to be approximated by a single circle are instead approximated by a series of adjacent or

overlapping circles.

24

Our MPC’s obstacle avoidance constraints ensure that we will always maintain space no less than the sum

of these two radii between our path and each obstacle, which is the foundation of how we are able to avoid

them. In the discussion of our approach and experiments, we refer to this first black circle as an obstacle’s

initial position because it represents the initial position of the obstacle at the beginning of the MPC’s current

control horizon.

Figure 5.2: Overview of our MATLAB simulation environment

The dashed and colored circles emanating from each obstacle’s initial position represent a prediction

based upon that obstacle’s last observed position and velocity, affected by gradual inflation to account for

uncertainty present in both the movement of the robot and our ability to measure it. Red dashed circles

represent predictions given the true, observed dynamics of a visible obstacle, and blue dashed circles represent

predicted dynamics of an occluded obstacle. The trajectory rendered in blue represents an approximation of

the ’worst-case path’ that the occluded obstacle could take, which is the path that minimizes the amount of

time the robot has to react to the occluded actor reappearing in the robot’s field of view. Each successive

circle represents the next position in a sequence of predicted positions that corresponds with each step of the

MPC’s horizon. It’s also worth noting that these predictions may visibly overlap during these experiments,

as the other entities in the environment are not constrained to respect the safety radii or each other.

Visibility, and the lack thereof, is represented by the dark grey and white area of the environment. The

25

area shown in white is the region visible to the robot, and the dark grey regions represent the area outside of

the robot’s Field of View (FOV) or occlusions caused by obstacles blocking the robot’s line of sight.

5.2.3 Simulation 1: Anticipating the Worst-Case Scenario

The first simulated case we explored required the robot to navigate to a goal while avoiding two dynamic

actors. One of these actors was briefly visible to the robot but quickly moved out of view and remained

occluded for the majority of the robot’s mission. Of the scenarios tested during the development of our

approach, we chose to include this one because of how clearly it illustrates the benefit of anticipating the

worst-case scenario. We first tested a ’Naive’ approach– the same baseline MPC that we designed for our

approach, but without any of the attentive or proactive prediction capabilities. Figure 5.3 demonstrates how

an occluded actor suddenly appearing in the robot’s field of view can easily induce an erratic and potentially

unsafe trajectory.

(a) (b)

Figure 5.3: The Naive agent is caught off guard (a) and plans a harsh detour en route to the goal (b).

Next, we ran the same simulation with our full approach active. Figure 5.4(a) shows the progression

of our approach’s initial prediction converging to the worst-case scenario on the boundary of the occluded

region, and Figure 5.4(d) demonstrates the benefit of that prediction. Because our approach considered the

worst-case scenario in its motion planning optimization, our robot took a more conservative trajectory and

avoided a drastic evasive maneuver.

We ran two additional permutations of the experiment with two more configurations of our approach: one

only using the attentive selection component of our approach and another only using its’ proactive prediction

26

(a) Initial predictions for visible actors (b) Worst-case state is propagated

(c) Worst-case state converges with occluded actor (d) Erratic re-planning has been mitigated

Figure 5.4: The robot correctly predicts the trajectory of an occluded actor and is able to anticipate its
sudden re-appearance

component. This allowed us to get some additional perspective on how our approach was improving the robot’s

performance. The following series of figures compare the Naive, Attentive, Proactive, and Attentive-Proactive

approaches in detail.

The benefits of the Proactive component of our approach are clear when we examine the robot’s dynamics

(Figure 5.5) during the course of the experiment. The Proactive and Proactive-Attentive approaches maintain

a much more consistent and smooth velocity profile throughout the mission and achieve higher mean velocities

as a result of that. The Proactive approaches also arrive at their goal pose over 20% faster than the Naive

approach, which is a substantial increase in agility. The pure Attentive component of our approach did not

have a noticeable effect on performance during this mission, but this aligns with our intuition. Since the

actor that became occluded during the scenario was tracked by the Attention module, nothing was excluded

from the set of dynamic predictions and thus no performance gain was realized.

27

Figure 5.5: Comparison of the velocity profiles of different permutations of our approach

Figure 5.6: Performance comparison between different permutations of our approach

When we examine cycle times across the four approach permutations, as shown in Figure 5.6, we see that

this enhanced agility comes at an increase in computational cost. The approaches utilizing the Proactive

approach component have an average cycle time of 0.1588ms, which is a 71% increase in computational cost.

28

However, if the Attention component had been more active in this scenario, we would have expected it to

help offset that cost increase.

Figure 5.7: Distance to nearest actor comparison between different permutations of our approach

Next, we compare the Euclidean distance between the robot and the nearest obstacle over the course of

the simulation (5.7). When running the simulation using the Naive approach, the mean Euclidean distance

to the nearest obstacle de =1.0549m. However, when we run the simulation using the Attentive-Proactive

approach, we measure de = 0.9017m. Figure 5.8 demonstrates why we believe this occurs. Since the robot

has taken a conservative path, it begins the obstacle avoidance maneuver closer to the obstacle rather than

becoming deflected by it. As soon as the robot perceives enough space between other obstacles to navigate

through, it will attempt to do so with the tightest possible clearance that it can achieve. In this manner,

a lower de indicates that the Attentive-Proactive configuration of the approach is superior in navigating

precisely through crowded environments.

Finally, we examine the error between the robot’s predicted and actual trajectories at each cycle. This is

accomplished by comparing the predicted trajectory produced by the MPC-issued optimal control sequence

at time t to the predicted trajectory at time t− 1 and computing the Euclidean distance between each point

in both trajectories. This produces a measure of how conservative the robot’s predicted trajectories are over

the course of a mission. A high trajectory prediction error suggests that the robot has had to compute a

significantly different trajectory in response to sudden stimuli, and a low trajectory prediction error suggests

29

Figure 5.8: Rationale for how the Attentive-Proactive approach achieves a lower mean distance to the closest
actor during the simulation

that the robot correctly anticipated the stimuli encountered over the course of its mission.

Figure 5.9 compares the trajectory prediction errors in each approach formulation over the course of

Simulation 1. The Proactive and Attentive-Proactive approaches substantially outperform the Naive and

Attentive approaches, maintaining a trajectory prediction error of less than 0.1m for the entirety of the

mission. Of note, the configurations that leverage the Proactive approach avoided four major prediction

deviations during this simulation, three of which exceeded a 0.5m deviation from the previous predicted

trajectory.

To summarize our findings of the first simulation, we observed that our full approach was able to

significantly improve overall agility and resilience to disturbance from the optimal path in exchange for an

increase in computational expense. In subsequent experiments, we hope to explore how engaging the attention

component of our approach can help discount the expense of this benefit.

5.2.4 Simulation 2: Occlusions in a Crowd

Our second simulated case required the robot to navigate through a crowd of dynamic actors on its way to a

goal. While the environment appeared open enough to navigate through at the beginning of the simulation,

the actors quickly converged into a chaotic tangle directly in front of the robot’s goal, Figure 5.10. We chose

to include this scenario to illustrate the benefit of predicting occluded behavior in dense crowds.

30

Figure 5.9: Error between the robot’s predicted and actual trajectory during Simulation 1

(a) (b)

Figure 5.10: Initial state of the crowd (a) and crowd converging, with actors beginning to occlude each other
(b).

Figure 5.10(b) shows results similar to the first experiment, where the two previously occluded actors

suddenly reappeared in close proximity to the robot. This resulted in the Naive approach producing another

erratic maneuver. However, activating the Attentive-Proactive approach during the next attempt produced a

smoother and more stable path to the robot’s goal. Because our approach was able to anticipate the potential

worst-case scenarios for those occluded actors, by the time they reappeared the robot was able to smoothly

31

(a) (b)

Figure 5.11: The Naive approach is unable to smoothly navigate the crowd and produces an erratic
maneuver (a) but the Attentive-Proactive plans a smooth, safe path (b).

decelerate and steer around them. 5.11(b)

Next, we re-ran this test with the different permutations of our approach to get a closer look at its

performance.

Figure 5.12: Comparison of the velocity profiles of different permutations of our approach

As shown in Figure 5.12, the Attentive-Proactive planner was able to outmaneuver the Naive and pure

32

Attentive planners and arrive at the goal almost two seconds earlier. Observing the Naive approach’s behavior

shows that it takes approximately two seconds to return itself to the optimal trajectory after being perturbed

by an unknown occluded actor. The time cost of this sort of detour is significant, especially in environments

where this sort of occurrence can be encountered multiple times in a single mission.

Figure 5.13: Performance comparison between different permutations of our approach

The performance metrics for this simulation closely matched the behavior observed in the previous

simulation; the Attentive-Proactive approach is roughly 70% more computationally expensive than the Naive

approach. However, in this scenario we also observed an example of the Attentive Actor Tracking module

discarding a prediction, which avoided an approximately 0.1s cycle time spike. A plot of these metrics is

shown in Figure 5.13.

Comparing the Euclidian distance between the robot and the nearest obstacle over the course of the

mission (Figure 5.14) shows that the Attentive-Proactive approach outperforms the Naive approach by

maintaining a more conservative margin around obstacles.

Finally, we examine the predicted trajectory error over the course of Simulation 2. Similar to what was

observed in Simulation 1, we found that the configurations leveraging the Predictive approach maintained

a more consistent and lower predicted trajectory error. Figure 5.15 shows the error between the robot’s

predicted and actual trajectories at each cycle in Simulation 2.

33

Figure 5.14: Distance to nearest actor comparison between different permutations of our approach

Figure 5.15: Error between the robot’s predicted and actual trajectory during Simulation 2

5.3 Experiments

In addition to evaluating our approach in a simulated environment, we also performed a real-world experiment

in the Autonomous Mobile Robotics Lab[3] at the University of Virginia. The experiment was designed to be

34

analogous to our first simulation, so that we could assess the capabilities of our approach on a real hardware

platform.

Figure 5.16: Overhead view of our experiment setup

We constructed a scenario for the experiment consisting of two small Unmanned Ground Vehicles (UGVs)

and three small barrier objects to provide occluding features in the environment (Figure 5.16). Our primary

test platform was a Clearpath Jackal [21], a small, non-holonomic UGV purpose-built for robotics research

applications. In addition, we also utilized a ROSBot 2[14], another small robotics platform for learning and

development, for use as an additional autonomous actor for our tests. With this experiment, we sought to

replicate the results of our MATLAB simulations in the physical world. Figure 5.17 shows a plot of the robot

and its environment during the experiment,

After testing both the Naive and Attentive-Proactive approaches on the Jackal, we found that both

performed similarly to how they performed in simulations. When the occluded actor reappeared into view of

the robot controlled by the Naive approach, it planned a reactive detour away from the goal that almost took

the robot outside the boundaries of the test area. However, just like in the simulation, the Attentive-Proactive

approach was able to anticipate the worst-case trajectory of the occluded actor. Figure 5.18 compares the

planned trajectory of the Naive approach with the Attentive-Proactive approach during the experiment,

illustrating how the Naive approach planned a detour around the actor and the Attentive-Proactive approach

35

slowed down to let it pass by. Photographs of the experiment at this moment are shown in Figure 5.19

showing the results of these differently planned trajectories in the physical world. These images have been

annotated to provide additional context to the scene. The robot’s planned trajectory is annotated in yellow,

and actor obstacle avoidance radii are annotated in red. Since the robot had already been planning around

the occluded actor’s worst-case trajectory prior to its reappearance, it was able to maintain its smooth

trajectory toward the goal.

Figure 5.17: Initial state of the experiment, rendered with obstacle radii

36

(a) (b)

Figure 5.18: Comparing paths generated by the Naive (a) and Attentive-Proactive (b) in the experiment

(a) (b)

Figure 5.19: Obstacle avoidance comparison between the Naive (a) and Attentive-Proactive (b) approaches
during a real-world experiment

37

Chapter 6

Conclusions and Future Work

6.1 Conclusion

In this thesis, we have presented a novel synthesis of motion planning methods that allows us to proactively

avoid dynamic obstacles with intermittent visibility in crowded environments. To achieve this, we first

introduced a method to monitor obstacle state evolution over time and to make inferences about their

intended trajectories from those observations. These inferences allowed us to determine which obstacles

were important to pay attention to, which in turn minimized the number of obstacles we needed to consider

for subsequent motion planning optimizations. Next, we utilized our obstacle state observations to make

predictions about the future trajectories of the significant obstacles. These trajectories allowed us to

construct a sequence of future positions for these obstacles, which were used as constraints by an MPC to

generate optimal collision avoidance behavior. We validated this approach through simulations and real-world

experiments and found that it was able to reliably produce safe trajectories that were resilient to collision with

intermittently occluded obstacles. These experiments demonstrated that our approach produced conservative

predictions that remained consistent from cycle to cycle, with minimal deviation in response to sudden

stimuli. Furthermore, we found that our approach outmaneuvered a traditional, naive MPC in crowded and

occlusion-rich scenarios, increasing agility by as much as 20% under some conditions. However, one major

limitation of this capability is that it comes at the expense of increased computation time. This is acceptable

for a prototype, but in order to deploy this in a real-world capacity we will need to find methods of further

reducing that computational expense. One immediate way we could address this would be to explore porting

our software to a better-optimized programming language. The more we’re able to optimize our software

stack, the better we’ll be able to tune our performance for real-world applications. This limitation and our

38

plans to mitigate it will be discussed further in the ’Future Work’ section of this report. We consider these to

be very promising initial results and are eager to continue exploring this problem space in future work.

6.2 Future Work

During the development of our approach, we identified several areas of interest that we would like to explore

further in our future work.

6.2.1 Software Package Improvements

As one of our short-term goals for this work, we plan to port our code to Python and open-source it to the

broader academic community. While MATLAB provided a straightforward and troubleshooting-friendly

development environment during the bulk of our work, it lacks the accessibility and ubiquity necessary for

our work to be easily shared with others. Fortunately, both ROS and Casadi have native support for Python,

which will eliminate a lot of potential friction when trying to port our code to a new language.

We also plan to explore a deeper optimization of our software architecture. Spending some time analyzing

the code with a performance profiler will allow us to identify key areas of the code where we can improve our

performance, and improving those areas will further improve the quality of our results. Notably, since the

performance of certain functions can vary from language to language, we plan to explore this after porting

the code to Python.

6.2.2 Enhanced Actor Trajectory Sampling

One of our approach’s core assumptions was that we were able to compute a ’worst-case scenario’ trajectory

for tracked and occluded actors given the geometry of the environment and the obstacles within it. While

this was black-boxed to limit the scope of this research, we acknowledge that it could be a fairly deep area of

study in its own right. We plan to explore this topic in greater depth in the future, and try to develop an

enhanced actor trajectory sampling module to improve the capabilities of our system further. One potential

approach to this that we’re beginning to explore is using an adversarial path planner to determine the

most aggressive ’intercept course’ an occluded actor might take to disrupt our planned path. The occlusion

boundary convergence behavior will likely continue to function in the same way, but with the added advantage

of the trajectories not needing to be defined a priori.

Another approach we would like to explore integration with is probabilistic trajectory prediction. Proba-

bilistic approaches generate a large number of potential trajectories for sensed actors and assign a probability

39

to describe the likelihood that the actor follows each possible trajectory. This probability score can serve

as an additional data point for determining the salience of actors in the robot’s vicinity. In addition to

enhancing our approach’s ability to determine actor salience, this style of trajectory prediction could be very

interesting to apply to salient occluded actors in order to predict more complex worst-case scenario behaviors.

Furthermore, leveraging probabilistic trajectory prediction could augment the trajectories we predict for

salient occluded actors beyond just the worst-case scenario. As an addition or replacement to predicting

the worst-case scenario trajectory, we could also explore predicting the most probable trajectory that the

occluded actor could follow.

6.2.3 Further Testing and Design Iteration

We plan to test our approach against comparable and competitive motion planning approaches in order to

better assess our performance against the state of the art. In addition to understanding how our solution

performs relative to other common solutions, this may also allow us to draw insight from other approaches

and find new ways to improve our system further. We also plan to test our approach on a broader variety of

robotic platforms. The systems we initially integrated with (Clearpath Jackal, ROSbots) were compatible

with the non-holonomic unicycle model we initially developed with, but we are very interested in testing our

approach out on more complex dynamical systems like quadrupedal or bipedal robots.

40

Bibliography

[1] R. Alami, T. Simeon, and K. Madhava Krishna. “On the influence of sensor capacities and environment

dynamics onto collision-free motion plans”. In: IEEE/RSJ International Conference on Intelligent

Robots and Systems. Vol. 3. 2002, 2395–2400 vol.3. doi: 10.1109/IRDS.2002.1041626.

[2] Joel A E Andersson et al. “CasADi – A software framework for nonlinear optimization and optimal

control”. In: Mathematical Programming Computation (2018).

[3] Nicola Bezzo. AMR Lab Website. url: https://www.bezzorobotics.com/r.

[4] Maxime Bouton et al. “Scalable Decision Making with Sensor Occlusions for Autonomous Driving”. In:

2018 IEEE International Conference on Robotics and Automation (ICRA). 2018, pp. 2076–2081. doi:

10.1109/ICRA.2018.8460914.

[5] Engin Bozkurt. Lidar Obstacle Detection. url: https://github.com/enginBozkurt/LidarObstacleDetection/

tree/master.

[6] Sebastian Brechtel, Tobias Gindele, and Rüdiger Dillmann. “Probabilistic decision-making under

uncertainty for autonomous driving using continuous POMDPs”. In: 17th International IEEE Conference

on Intelligent Transportation Systems (ITSC). 2014, pp. 392–399. doi: 10.1109/ITSC.2014.6957722.

[7] Shuo Cheng et al. “Longitudinal Collision Avoidance and Lateral Stability Adaptive Control System

Based on MPC of Autonomous Vehicles”. In: IEEE Transactions on Intelligent Transportation Systems

21.6 (2020), pp. 2376–2385. doi: 10.1109/TITS.2019.2918176.

[8] G. Dudek and M. Jenkin. Computational Principles of Mobile Robotics. Cambridge University Press,

2010. isbn: 9781139855594. url: https://books.google.com/books?id=0cggAwAAQBAJ.

[9] Mohamed Elbanhawi and Milan Simic. “Sampling-Based Robot Motion Planning: A Review”. In: IEEE

Access 2 (2014), pp. 56–77. doi: 10.1109/ACCESS.2014.2302442.

41

https://doi.org/10.1109/IRDS.2002.1041626
https://www.bezzorobotics.com/r
https://doi.org/10.1109/ICRA.2018.8460914
https://github.com/enginBozkurt/LidarObstacleDetection/tree/master
https://github.com/enginBozkurt/LidarObstacleDetection/tree/master
https://doi.org/10.1109/ITSC.2014.6957722
https://doi.org/10.1109/TITS.2019.2918176
https://books.google.com/books?id=0cggAwAAQBAJ
https://doi.org/10.1109/ACCESS.2014.2302442

[10] Dashan Gao and Nuno Vasconcelos. “Discriminant Saliency for Visual Recognition from Cluttered

Scenes”. In: Advances in Neural Information Processing Systems. Ed. by L. Saul, Y. Weiss, and L.

Bottou. Vol. 17. MIT Press, 2004. url: https://proceedings.neurips.cc/paper_files/paper/

2004/file/dda04f9d634145a9c68d5dfe53b21272-Paper.pdf.

[11] Jacob Higgins and Nicola Bezzo. “A Model Predictive-based Motion Planning Method for Safe and Agile

Traversal of Unknown and Occluding Environments”. In: 2022 International Conference on Robotics

and Automation (ICRA). 2022, pp. 9092–9098. doi: 10.1109/ICRA46639.2022.9811717.

[12] Jacob Higgins and Nicola Bezzo. “Negotiating Visibility for Safe Autonomous Navigation in Occluding

and Uncertain Environments”. In: IEEE Robotics and Automation Letters 6.3 (2021), pp. 4409–4416.

doi: 10.1109/LRA.2021.3068701.

[13] Pei-En Hsu et al. “Collision Avoidance for AGV Navigation Using the Time Elastic Band Algorithm”. In:

2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan). 2023, pp. 855–856.

doi: 10.1109/ICCE-Taiwan58799.2023.10227064.

[14] Hussarion.com. Rosbot landing page. url: https://store.husarion.com/collections/robots/

products/rosbot.

[15] The MathWorks Inc. MATLAB version: 9.13.0 (R2022b). Natick, Massachusetts, United States, 2022.

url: https://www.mathworks.com.

[16] Jie Ji et al. “Path Planning and Tracking for Vehicle Collision Avoidance Based on Model Predictive

Control With Multiconstraints”. In: IEEE Transactions on Vehicular Technology 66.2 (2017), pp. 952–

964. doi: 10.1109/TVT.2016.2555853.

[17] Steven M. LaValle. “Motion Planning”. In: IEEE Robotics & Automation Magazine 18.1 (2011), pp. 79–

89. doi: 10.1109/MRA.2011.940276.

[18] Keyu Li et al. “SARL: Deep Reinforcement Learning based Human-Aware Navigation for Mobile

Robot in Indoor Environments”. In: 2019 IEEE International Conference on Robotics and Biomimetics

(ROBIO). 2019, pp. 688–694. doi: 10.1109/ROBIO49542.2019.8961764.

[19] Pinxin Long et al. “Towards Optimally Decentralized Multi-Robot Collision Avoidance via Deep

Reinforcement Learning”. In: 2018 IEEE International Conference on Robotics and Automation (ICRA).

2018, pp. 6252–6259. doi: 10.1109/ICRA.2018.8461113.

[20] R. Peddi. “Interpretable Monitoring for Self and Socially Aware Mobile Robot Planning”. PhD thesis.

University of Virginia, 2022.

42

https://proceedings.neurips.cc/paper_files/paper/2004/file/dda04f9d634145a9c68d5dfe53b21272-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2004/file/dda04f9d634145a9c68d5dfe53b21272-Paper.pdf
https://doi.org/10.1109/ICRA46639.2022.9811717
https://doi.org/10.1109/LRA.2021.3068701
https://doi.org/10.1109/ICCE-Taiwan58799.2023.10227064
https://store.husarion.com/collections/robots/products/rosbot
https://store.husarion.com/collections/robots/products/rosbot
https://www.mathworks.com
https://doi.org/10.1109/TVT.2016.2555853
https://doi.org/10.1109/MRA.2011.940276
https://doi.org/10.1109/ROBIO49542.2019.8961764
https://doi.org/10.1109/ICRA.2018.8461113

[21] Clearpath Robotics. Clearpath Robotics Jackal Page. url: https://clearpathrobotics.com/jackal-

small-unmanned-ground-vehicle/.

[22] Stanford Artificial Intelligence Laboratory et al. Robotic Operating System. Version ROS Melodic

Morenia. May 23, 2018. url: https://www.ros.org.

[23] Akshay Thirugnanam, Jun Zeng, and Koushil Sreenath. “Safety-Critical Control and Planning for Ob-

stacle Avoidance between Polytopes with Control Barrier Functions”. In: 2022 International Conference

on Robotics and Automation (ICRA). 2022, pp. 286–292. doi: 10.1109/ICRA46639.2022.9812334.

[24] Maria Tsiourva and Christos Papachristos. “LiDAR Imaging-based Attentive Perception”. In: 2020

International Conference on Unmanned Aircraft Systems (ICUAS). 2020, pp. 622–626. doi: 10.1109/

ICUAS48674.2020.9213910.

[25] Allan Wang, Christoforos Mavrogiannis, and Aaron Steinfeld. “Group-based Motion Prediction for

Navigation in Crowded Environments”. In: Proceedings of the 5th Conference on Robot Learning. Ed. by

Aleksandra Faust, David Hsu, and Gerhard Neumann. Vol. 164. Proceedings of Machine Learning

Research. PMLR, Aug. 2022, pp. 871–882. url: https://proceedings.mlr.press/v164/wang22e.

html.

[26] L.R. Williams and D.W. Jacobs. “Stochastic completion fields: a neural model of illusory contour shape

and salience”. In: Proceedings of IEEE International Conference on Computer Vision. 1995, pp. 408–415.

doi: 10.1109/ICCV.1995.466910.

[27] Michael T. Wolf and Joel W. Burdick. “Artificial potential functions for highway driving with collision

avoidance”. In: 2008 IEEE International Conference on Robotics and Automation. 2008, pp. 3731–3736.

doi: 10.1109/ROBOT.2008.4543783.

43

https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
https://www.ros.org
https://doi.org/10.1109/ICRA46639.2022.9812334
https://doi.org/10.1109/ICUAS48674.2020.9213910
https://doi.org/10.1109/ICUAS48674.2020.9213910
https://proceedings.mlr.press/v164/wang22e.html
https://proceedings.mlr.press/v164/wang22e.html
https://doi.org/10.1109/ICCV.1995.466910
https://doi.org/10.1109/ROBOT.2008.4543783

	Contents
	List of Figures

	Introduction
	Contribution

	Survey of Related Work and State of the Art in Dynamic Obstacle Avoidance
	Path Planning for Dynamic Obstacle Avoidance
	Occlusion Handling
	Attentive Obstacle Avoidance
	MPC-Based Motion Planning

	Problem Formulation
	Problem Formulation

	Approach
	Perception
	Actor State Perception
	Actor Visibility
	Last Known State

	Dynamic Prediction of Actor Trajectories
	Attentive Actor Tracking
	Occlusion-Aware Dynamic Prediction Module
	Dynamic Prediction for Occluded Obstacles

	MPC-Based Obstacle Avoidance
	Formulation of Constraints
	Formulation of the Optimal Control Problem

	Simulations and Experiments
	Software Architecture
	Matlab Simulations
	Simulated Sensing and Dynamics
	Visualization Overview
	Simulation 1: Anticipating the Worst-Case Scenario
	Simulation 2: Occlusions in a Crowd

	Experiments

	Conclusions and Future Work
	Conclusion
	Future Work
	Software Package Improvements
	Enhanced Actor Trajectory Sampling
	Further Testing and Design Iteration

