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Abstract

The classic stable-matching algorithm of Gale and Shapley and subsequent variants by, e.g., Abdulkadiroglu

et al. [APR05], have been used successfully in a number of real-world scenarios, including the assignment

of US medical school graduates to residency programs and students in New York, Norway, and Singapore

to high schools and universities. One shortcoming of the Gale-Shapley family of matching algorithms is

susceptibility to strategic manipulation by the participants. The commonly used paradigm to mitigate

this shortcoming, employing a trusted third party to compute matchings explicitly, is outdated, expensive,

and in some scenarios, impossible. This makes stable matching a natural problem for secure, multiparty

computation (SMPC). Secure multiparty computation allows two or more mutually distrustful parties to

evaluate a joint function on their inputs without revealing more information about the inputs than each

player can derive from his own input and output.

We use Portable Circuit Format (PCF), a compiler and interpreter for Yao’s garbled circuit protocols, to

produce the first feasible, privacy-preserving protocol for stable matching. In doing so, we improve the

theoretical bounds for stable matching constructions, develop global optimizations for PCF circuits, and

improve garbling techniques used by PCF. We also analyze variants of stable matching that are used in

real-world scenarios. Experiments show that after aggressive circuit optimization, our protocols scale with

good performance for matchings with hundreds of participants.
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Chapter 1

Introduction

1.1 Secure Computation

Consider two billionaires eating dinner at a very expensive restaurant. When they finish their meal, the

waiter delivers a very expensive bill and expects a large tip. The billionaires begin to quibble over who

should pay, and they resolve that the richer one should pay the bill and the other cover the tip. Assume

that neither billionaire wishes to reveal his true net worth to the other, for fear that the other may reveal his

holdings to the IRS. Can the billionaires accurately compare their true net worths to discover who is richer,

and more importantly, who should pay the bill?

Andrew Yao proposed a very similar problem in 1982 [YAO82] (back when a million dollars was a lot of

money), opening up a vast and fruitful field of research known as secure computation. Consider a situation

in which two mutually distrustful parties wish to compute a joint function on their inputs, but do not wish

to involve or do not have the luxury of knowing a trusted third party. Secure computation allows distrustful

parties to jointly compute arbitrary functions while preventing any player or onlooker from learning more

about another player’s input than what he could deduce from his own input and output.

1.2 Stable Matching

The stable marriage problem, originally introduced by David Gale and Lloyd Shapley [GS62] in 1962, has

become a very deep and fruitful area of research since its inception, and in 2012 Shapley and Alvin Roth

won the Nobel Prize in economics for its theory and application. Consider a group of N men and a group N

1



Chapter 1 Introduction 2

women, all of whom desire a heterosexual partner for marriage, but without an effective or fair marketplace

through which to choose a suitable mate. The stable marriage problem (or, as we will refer to it more

generally, the stable matching problem), asks whether it is possible to match the men and the women such

that no man A and woman B exist such that A is matched to a woman b whom A desires less than B, and

that B is matched to some man a whom she desires less than A. If no pair of A and B exists, then the set of

marriages is called stable since no pair of mates has incentive to break their bonds of matrimony and vow

anew.

Stable matching is not only applicable to marriages, it applies to the class of markets in which effective

pricing mechanisms do not exist or are difficult to create. In these situations, constructing an efficient market

often involves building an online clearing house where participants in the market submit preferences and a

matching algorithm is computed. Variants of stable matching include the stable roommate problem [Irv85],

which involves matching members of a single set rather than two bipartite sets, and stable matchings with

additional requirements, such as medical students seeking residencies with their spouses.

As a motivating example, we wish to apply stable matching to sorority recruitment at universities.

Sorority matching, just like many real-world applications of stable matching, is very important to the future

of a recruit. The sorority which she joins will affect her social and professional networks for the rest of her

college education and beyond, just as schools and residency programs affect the social and professional

networks for the rest of a student’s life. When the stakes are so high, the process requires effective, robust

mechanisms.

1.3 Secure Stable Matching

Stable matchings are extremely well-suited to secure computation because of privacy concerns regarding

the participants’ input preferences and strategic incentives to violate the privacy assumption. We show that

the trusted third party model is outdated as well as dangerous. In addition, there is often no trusted third

party to compute a matching! Collaboration among women is dangerous to the men, and the stakes are

high enough in real-world matching situations – with potential benefit to all of the women involved – to

incentivize cheating or collusion with the third party at the expense of the men. We show that it is possible

to enforce fair play by protecting input privacy.

The attempt to implement stable matching illustrates some of the weaknesses in secure computation

technology, but shows how close the field is to providing implementations in the real world. In the effort to

develop an application for securely computing stable matching, we also developed general optimizations to

PCF, our platform for secure computation.



Chapter 2

Garbled Circuits

2.1 Yao’s Garbled Circuits

The garbled circuit protocol is an interactive algorithm between two players, whom we will name Gen and

Eval. Adapting the notation of Lindell and Pinkas [LP09], we say that Gen and Eval will jointly compute

a function f (x, y) = ( fx(x, y), fy(x, y)), where Gen’s input and output are given as (x, fx(x, y)) and Eval’s

input and output are given as (y, fy(x, y)). We will assume for the sake of simplicity that fx(x, y) = fy(x, y),

i.e. Gen and Eval receive the same output from the protocol, and denote it simply as f (x, y). For the sake of

simplicity, also assume that x, y, f (x, y) 2 {0, 1}n for some integer n.

Let (G(1n), Ek(m) = c, Dk(c) = m) be a private key encryption scheme such that G(1n) generates an

encryption key k, Ek(m) is an encryption algorithm using key k on message m that produces cipher text c,

and D is a decryption algorithm that uses k to decrypt c and retrieve m.

Let OT be an oblivious transfer protocol between two players P1 and P2, where P1’s input is (m0, m1)

and P2’s input is b 2 {0, 1}. P1’s output from the protocol is ? (indicating no output), and P2’s output is

(mb).

Yao’s Garbled Circuit scheme is an interactive protocol in which Gen will generate a garbled circuit and

Eval will evaluate it to discover the outputs. We will assume that Eval honestly relays the output to Gen

when she has completed the computation. This assumption can be removed for the final construction.

2.1.1 A Single Gate

We will show how to garble a single gate from the binary circuit which Gen and Eval compute, drawing

heavily from the explanation given by Lindell and Pinkas [LP09]. The construction of a full circuit follows

3
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inductively from the guarantees provided by the encryption of a single gate. Begin by considering, for

example, an AND gate:

x y z
0 0 0
0 1 0
1 0 0
1 1 1

Table 2.1: A Standard AND Gate

x y z
0 0 0
0 1 1
1 0 1
1 1 0

Table 2.2: A Standard XOR Gate

Garbling the gate will require obscuring the inputs to each gate and encrypting the outputs such that

knowing the output of a gate betrays no information about its true value. We will replace the inputs and

the outputs with keys that are mapped to their true values, and the mapping will be kept secret. Begin by

generating six encryption keys by repeatedly invoking G(1n) and name them k0
x, k1

x, k0
y, k1

y, k0
z, k1

z. We replace

the above standard gate with a new ”garbled” gate and then define a new function for evaluating its output.

x y z
k0

x k0
y k0

z
k0

x k1
y k0

z
k1

x k0
y k0

z
k1

x k1
y k1

z

Table 2.3: A Garbled AND Gate

x y z
k0

x k0
y k0

z
k0

x k1
y k1

z
k1

x k0
y k1

z
k1

x k1
y k0

z

Table 2.4: A Garbled XOR Gate

Notice the convention that the subscript of k maps it to a specific input variable or wire, and the superscript

describes the value of that input from the table above, or equivalently the semantic value of the wire. We now

define a new function for evaluating a gate. Whereas for a standard gate, we define the function

g(x, y) : {0, 1}⇥ {0, 1}! {0, 1}

we now define the new function

garbledgate(ka
x, kb

y) : ka
z ⇥ kb

y ! kg(a,b)
z

for a, b 2 {0, 1}, and g(a, b) defined by the truth table of the standard gate it computes. A single arbitrary

garbled row is defined by

cx,y = Eka
x (E

kb
y
(kg(a,b)

z ))
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Or, more verbosely, a full garbled gate table is completely defined by the values

c0,0 = Ek0
x
(Ek0

y
(kg(0,0)

z ))

c0,1 = Ek0
x
(Ek1

y
(kg(0,1)

z ))

c1,0 = Ek1
x
(Ek0

y
(kg(1,0)

z ))

c1,1 = Ek1
x
(Ek1

y
(kg(1,1)

z ))

Given c, the function garbledgate is evaluated by decrypting c using both of the input keys to discover the

output key.

2.1.2 Circuits Composed Of Gates

To garble a complete circuit, Gen will compute all of the cipher texts described in the construction above and

send them to Eval for decryption using the input keys. Gen composes gates to construct a circuit by using

the output key (denoted as k2 above) of one gate as the input key to the next gate. Gates with fan-out of

more than 1 will have their output keys used as input to multiple gates.

There are two glaring issues with the above scheme. First, if Eval knows all of the keys k, then Eval can

decrypt every possible output key for every gate in the circuit. Second, Eval can learn the semantic value

hidden by each key simply by the order of the cipher texts it receives for each gate.

To handle the first issue, we maintain the invariant that Eval knows only two of the input keys, ka
0 and

kb
1 for each gate that she attempts to decrypt. If Eval attempts to decrypt a c for which she does not have

both keys, she will receive ?. Second, Gen can obscure which key Eval decrypts by randomly permuting

the cipher texts for a gate before sending them to Eval. This hides the values of a and b from Eval, but it

forces Eval to attempt to decrypt every cipher text. The scheme for both of these issues will be revisited and

improved in Section 2.3.

2.1.3 Input Privacy

In order to evaluate the circuit, Eval must learn the keys that correspond to both Gen’s inputs and its own

inputs. Gen trivially sends the keys for its inputs to Eval, sending ka
xi

for the value a of every one of its inputs

xi, revealing nothing about xi = a. To learn the keys kb
yi for each of its own inputs yi while preventing Gen

from learning Eval’s inputs, Eval and Gen perform an OT where Gen’s inputs are (k0
yi

, k1
yi
) and Eval’s input

is b. All of the OTs for Eval’s inputs can be performed in parallel.
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2.1.4 Correctness

A formal proof of correctness for this scheme is deferred to Lindell and Pinkas [LP09], but a couple of

notions for correctness are important to give here. First, Eval should decrypt a cipher text for which she has

both input keys with negligible probability of error. Second, Eval’s probability of decrypting a cipher text

for which she does not have both necessary keys should be negligible. The probabilities of error will be

dependent on the encryption scheme chosen, but the probability of error can always be reduced thanks to a

result by Dwork, Naor, and Reingold [DNR04].

2.1.5 Security

Rather than give a formal proof of security, we give a couple of notions of security that are important to this

scheme.

Eval’s input privacy is intuitively reduced to the security of the OT, since Gen’s view of the protocol is

only of the OT messages passed.

Gen’s privacy is proven by constructing a simulator that can generate the view of Eval. In this case, the

simulator will not be able to correctly garble a circuit to evaluate f (x, y), so it generates a “fake” garbled

circuit that always evaluates to f (x, y) which must be indistinguishable from a real garbled circuit in an

actual execution of the protocol.

2.2 Free XOR

It is not necessary that all gate garblings be generated independently. Koleshnikov and Schneider showed

that garbled XOR gates may in fact be completely dependent on their input wires, eliminating the necessity to

transmit any information between Gen and Eval for their computation [KS08]. In addition, the construction

is incredibly cheap to compute, requiring only a single XOR operation per gate.

Begin by revisiting the construction of a garbled gate in Table 2.4; notice that rather than generating k0
z

and k1
z using G(1n), it is possible to make each kz completely dependent on the input keys. Assume that

there exists some R 2 {0, 1}n, where n is the length of each key k. Now, let all k0
z = k0

x � k0
y and, for all

i 2 {x, y, z}, let k1
i = k0

i � R. We can easily see that we have a new garbled XOR gate in Table 2.5.

And now, in order for Eval to evaluate an XOR gate, she needs only to XOR her two input keys. R must

be chosen once by Gen and held globally to be used for all gates, and Gen must keep R hidden from Eval, lest

Eval learn extra information about the circuit. A complete argument for security is deferred to Koleshnikov

and Schneider.
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x y z
k0

x k0
y k0

z = k0
0 � k0

y
k0

x k0
y � R k1

z = k0
x � k0

y � R
k0

x � R k0
y k1

z = k0
x � k0

y � R
k0

x � R k0
y � R k0

z = k0
x � k0

y

Table 2.5: A Garbled Free XOR Gate

2.3 Point and Permute

We digress slightly from giving optimizations for gates in order to introduce new notation that will resolve

some security concerns and reduce the decryption burden on Eval. We identified in section 2.1.2 that the

truth table for a garbled circuit must be randomly permuted to prevent Eval from learning the semantics

of the gate by the order of the cipher texts. We also noted in section 2.1.4 that Eval should have negligible

probability of correctly decrypting a cipher text for which she does not have the keys, which is a concern

because Eval needed to decrypt all possible cipher texts. We now give a construction that allows Eval to

only decrypt one cipher text per gate.

Consider a wire wi within the circuit to be composed of (ka
i , p), where p is a random permutation bit and k

is the key that the wire holds, as defined before. When Gen encrypts a wire, Gen appends p to the end of k.

When Eval decrypts the wire to learn k, she also learns p, and with two values of p from two input wires she

can deterministically select the value to decrypt from the garbled gate they enter. She does this by simply

selecting the 2 ⇤ p0 + p1 entry in the garbled table to decrypt. This scheme is compatible with Free XOR

above by defining every p1
z for k1

z to be p0
z � 1. When computing the new wires for a gate, we have that for

wire i, w0
z = (k0

x � k0
y, p0

x � p0
y) and w1

z = (k0
x � k0

y � R, p0
x � p0

y � 1).

Intuitively, because the permutation bits are chosen independently of the keys, this permutation of

garbled gate tables makes each table look randomly permuted, and in fact even gates of the same type are

permuted independently of each other. This trick requires the garbling to store the semantics of the zero key

for each wire, and every output wire must have the semantics of the permutation bit revealed in order to

derive the true outputs.

2.4 Garbled Row Reduction

While the Free XOR trick allows us to eliminate all communication for XOR gates and evaluate them using

a single XOR, it does not help us reduce the computation or communication necessary for other gates.

Garbled Row Reduction (GRR3), suggested by Pinkas, et al. [PSSW09], permits us to reduce the amount of

information communicated and stored for every non-XOR garbled gate by one entry, transmitting only 3
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table entries (hence the name GRR3). The intuition for this optimization is simple. Rather than generating

the key for both output values (k0
z and k1

z) from G(1n), we can directly determine the value of one kz from the

two input keys that are used to generate it, by computing k = Ekx (Eky(0
n)). We define this k to be the first

row sent by Gen for the gate, so Gen no longer needs to send that row. The other kz is defined as determined

by the Free XOR method.

We note here that in most current constructions, the double encryption over a key is computed as

Es
kx ,ky

(m) = H(kx||s)� H(ky||s)�m

where H(k||s) is some hash function keyed by k on input s, and s is some string completely unique to each

invocation of the encryption. In some constructions, s is given as Gid||c0||c1, where Gid is the gate’s number,

also commonly referred to as a label, and the c values are the ”external” values of the wire, given by the

permutation bits concatenated onto the end of them. Here, rather than compute the encryption over some

message kz (where kz takes the place of m above), kz is simply defined to be the mask computed by XORing

hashes of the input keys. In addition, because this key is defined to be the first row in the table, both c values

are 0. (The value c for this output wire is also implicitly defined by this operation.)

Intuitively, this row reduction should maintain privacy because it reveals no new information to Eval

about the keys. If the key in the first position of the table were defined to be the zero string, then Eval could

always recover that row. However, Eval will only be able to compute the first row in this scheme if Eval has

both input keys to that row of the gate, since she must use them to encrypt the zero string. A complete proof

of security is deferred to Pinkas, et al. [PSSW09].

2.5 Half-Gates

Pinkas, et al.[PSSW09] also showed that it is also possible to send only two ciphertexts per gate (with

minimal assumptions), but doing so came at the expense of not benefitting from free XOR. Zahur, Rosulek,

and Evans [ZRE14] introduced half-gate garbling, which permits communicating two ciphertexts per gate, is

compatible with Free-XOR, and works for any gate with an odd numbers of 0 outputs.

The mechanism is by garbling two half-gates whose XOR becomes the full gate’s output key. Intuitively,

we can use the technique from GRR to communicate one ciphertext of each half gate for free, then combine

the two half-gates to communicate the possible four ciphertexts at the expense of two. Zahur, Rosulek, and

Evans also proved this is a minimal scheme for known garbling mechanisms.
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Two Half-Gates

The “generator” half-gate’s two ciphertexts are H(B)�C and H(B� R)�C� aR, where B is an input key, C

is the output key, R is the circuit’s global xor-offset, and a is a boolean variable that is determined by the kind

of gate being garbled. The “evaluator” half-gate’s two cipher texts are H(A)� C and H(A� R)� C� B,

where A is the other input key. Since both A and B are input keys, the first ciphertexts for both half-gates

can be communicated for free by setting H(X)� C = 0k (where k is the security parameter). When Eval

learns both half-gate ciphertexts, she can XOR the two to determine her final gate. We note here that H will

need the gate index as its second input, and because there are two half-gates, it must be incremented twice,

once for each half-gate.

The challenge becomes for Gen to communicate enough information for Eval to learn her two ciphertexts.

We show that Gen only needs to send Eval two messages. The first is TG = H(A)� H(A� R)� (pb � ab)R,

where pb is the permutation bit of the second key and ab is a bit that depends on the gate’s truth table.

The second is TE = H(B) � H(B � R) � (A � (aaR)), where aa is another constant dependent on the

truth table. With this information and the knowledge of two keys Eval already has, she can derive the

output gate. She sets WG = H(A)� saTG, where sa is the permutation bit on her version of key A, and

WE = H(B)� sb(TE � A), where sb is the permutation bit on her version of key B. The final output key is

then W = WG �WE. For Gen (who knows the values of R), WG = H(A)� pbTG, WE = H(B)� pb(TE � A),

and the output key is W = WG �WE.

2.6 Fixed-Key Garbling

Until now, the discussion of garbling has treated the hash function as an abstraction. BHKR [BHKR13]

showed that if AES can be treated as a pseudo-random permutation, then fast garbling can be achieved by

using fixed-key AES on the input keys. In this construction, the fixed key is public to both evaluating parties,

and the key derivation function on both input keys is p(K)� K, where K = 2A� 4B� T; in this equation, p

is fixed-key AES, T is a tweak and consists of the gate index, 2A means that key A has been doubled, and 4B

indicates B has been doubled twice; we defer a discussion of doubling to BHKR [BHKR13] except to note

that it can be quickly accomplished with single left shift.

Half-gates are only encrypted with a single key, but this does not preclude us from garbling with fixed-key

AES. For half-gates, the key derivation function simply becomes p(K)� K where K = 2A� T, as given in

its original construction [ZRE14].



Chapter 3

Portable Circuit Format

Starting with Fairplay [MNP+04], a number of systems have been introduced to perform secure computation

of arbitrary programs [WLN+15] [Zah14]. The process of specifying a protocol for securely computing an

arbitrary function generally involves three phases: specification in some high level language, conversion

to binary circuit representation, and on-line evaluation by garbling the circuit. KsMB [KasMB13] provided

the specification of a system that compiled arbitrary C programs to a compressed circuit format capable of

expression computations requiring billions of gates, called PCF. Key to the format was the intuition that

loops with fixed bounds in the circuit need not be unrolled until the last minute: at evaluation time. After

HEKM [HEKM11] showed that large secure computations could be performed without enormous memory

cost, PCF provided an extensible framework for compiling and evaluating very large circuits. However, it

was still capable only of rudimentary analysis and could not perform full optimization over large circuits. In

this chapter, we introduce improvements to the PCF specification as well as techniques to perform static

analysis of circuits which achieve global data flow optimization on circuits consisting of trillions of gates,

providing the means to analyze circuits larger than have been evaluated.

3.1 PCF Version 2

After KsMB [KasMB13], PCF was rewritten to improve its memory model and make the circuit format more

extensible. Because no information about the improvements has been published, we now provide a short

description of PCF’s structure and the new full list of opcodes for PCF Version 2.

10
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3.1.1 PCF V2 Structure

As a first step to generating circuits, the PCF compiler passes a C program – restricted such that no array

access or loop bound may depend on the input – through LCC [Fra91] to produce the program’s bytecode.

The PCF translator then converts the bytecode to a PCF circuit before the optimizer removes unnecessary

gates. The resulting PFC circuit can be evaluated by an interpreter which implements the PCF specification.

PCF’s computational model follows a standard stack machine, where wires are allocated as memory

addresses and new wires are allocated dynamically on an expanding stack with function calls. We include

the simple caveat that the zeroth wire in every stack frame holds a pointer to the absolute zeroth wire, which

holds the global condition wire. In addition, because the expanding and contracting of the stack may lead

the PCF interpreter to attempt to re-use leftover values in the wire table as new functions are called on top of

old ones, the LCC-to-PCF translator ensures that new wires are cleared (set to 0) before each use. The PCF

optimizer removes unnecessary assignments through faint variable analysis.

PCF implements conditional statements and conditional function calls by computing a MUX over the

output of every branch in the program, keyed by the conditional wires; just as in the last version of PCF, the

global condition wire and a list of branch targets are updated every time a conditional statement is reached.

The new PCF optimizer does not currently support inter-procedural data flow analysis, but it is capable of

analyzing very large sequential programs if their function calls are inlined.

PCF may be extended by designing and implementing extra opcodes, but these are not necessary. It

provides an interface via the call function for hooking special features or additional protocols; for example,

inputs and outputs are designated and extracted by calling special functions provided by the PCF toolchain.

3.1.2 PCF V2 Opcodes

Table 3.1 describes the opcodes that comprise the PCF Version 2 specification. Descriptions of each operation

are given in the table and examples are given in Figure 3.1. An example of the indirection operations is given

in Figure 3.3.

3.1.3 PCF V2 Interpreter

The PCF interpreter was rewritten since KsMB [KasMB13] to go along with the improved compiler, optimizer,

and new opcode specification, but the significant improvements are in garbling. PCF still uses lazy gate

generation and pipelined evaluation [HEKM11], and now evaluates gates using fixed-key AES for encryption

[BHKR13] and half-gates [ZRE14] for odd-parity gates.
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bits Splits an integer into its two’s complement representation and stores it.

join The (almost) inverse of bits, combines an unsigned integer into a single constant value.

gate Emits a gate with truth table, input wires, and output wire.

const Creates a constant value and stores it in the provided destination wire.

add, sub, mul Arithmetic instructions that perform arithmetic on input-independent values.

initbase Initializes the program’s base pointer. Appears once, at the very beginning of the program.

clear Set memory from baseptr to (baseptr + localsize) to 0, used to clear space for local variables.

copy Copies a value from one position to another, x=y.

mkptr Creates a pointer to a specified wire.

copy-indir Dereference a pointer and copy the dereferenced value to a location (x=*y).

indir-copy Copy a value to the location pointed to by a pointer (*x=y).

call Calls a function given by fname and sets the new base.

ret Returns from a function call, setting the return value (if one exists).

label Assigns a label to an instruction address, used to name functions and bits of procedures.

branch Executes a conditional jump on supplied wire.

Table 3.1: PCF2 opcodes and descriptions

3.2 Data Flow Analysis

PCF is a small, portable, and extensible tool for defining circuits. However, naı̈vely compiling PCF programs

introduces a substantial amount of extra garbled gates, especially if the objective function does not need

all of the bits in the standard available data types. We would like a way to indicate to the PCF compiler or

optimizer which gates are important to our final output in order to remove unnecessary, expensive garbling

from our protocols. For small computations or computations that do not conform to the standard data types

provided by C, removing extra wires that result from compiling to a poorly fitting standard can substantially

reduce circuit size.

Without writing a new programming language feature, this can be accomplished by forcing wires in the

PCF circuit to become dead and then removing dead wires using data flow analysis. Wires can easily be

forced dead by performing a simple bitwise AND with constants that contain a 0 in every unnecessary bit

position, and constant propagation (explained in Section 3.2.3) can identify the 0 outputs and propagate

them through the circuit. We remove forced-dead gates with faint variable analysis, including the masks
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(BITS :DEST (1 2 3 ... 31 32) :OP1 100 ) // decomposes 100 into 32 wires, beginning at wire 1

(JOIN :DEST 1 :OP1 (1 2 3 ... 31 32) ) // assembles wires 1-32 and puts the constant in wire 1

(GATE :DEST 3 :OP1 1 :OP2 2 :TRUTH-TABLE #*0001 ) //AND gate on wires 1 and 2, with output in wire 3

(CONST :DEST 10 :OP1 3 ) // puts constant 3 into wire 10

(ADD :DEST 3 :OP1 1 :OP2 2 ) // adds the constants in wires 1 and 2, putting the result in 3

(INITBASE :BASE 1 ) // initializes the base pointer at 1 (0 is the global condition wire)

(CLEAR :LOCALSIZE 64 ) // clears 64 bits from the last base pointer to make room for local variables

(COPY :DEST 0 :OP1 64 :OP2 32 ) // copies 32 wires into 0-31, starting with 64

(MKPTR :DEST 10 ) // turns wire 10 into a pointer to the value it holds

(COPY-INDIR :DEST 165 :OP1 164 :OP2 32 ) // copies 32 wires pointed to by 164 into 165

(INDIR-COPY :DEST 163 :OP1 165 :OP2 32 ) // copies wires 165-197 into the location pointed by 163

(CALL :NEWBASE 100 :FNAME "alice" ) //calls "alice" setting base pointer to 100

(RET :VALUE 100 ) // returns the values in 100-131

(LABEL :STR "main" ) // symbolizes the beginning of the "main" routine

(BRANCH :CND 250 :TARG "$5" ) // branches to target "$5" on conditional wire 250

Figure 3.1: Examples of PCF V2 opcodes.

themselves. To perform this masking over the entire circuit, we need only to mask the input wires after

they have been retrieved and to mask the output wires before they are extracted from the circuit; figure ??

shows how this is achieved. This trick gives the programmer incredibly granular control of the circuit while

working at the high-level language, including the ability to specify minimal circuits using operations over

single bits.

// With these 6 instructions, we copy 65-96 into locations 1-32.
(CONST :DEST 227 :OP1 1 ) // load const 1 into 227
(MKPTR :DEST 227 ) // turn address 227 into a pointer; it now references 1
(CONST :DEST 228 :OP1 65 ) // load const 65 into 228
(MKPTR :DEST 228 ) // turn address 228 into a pointer; it now references 65
(COPY-INDIR :DEST 229 :OP1 228 :OP2 32 ) // 229-260 will now contain a copy of 65-96
(INDIR-COPY :DEST 227 :OP1 229 :OP2 32 ) // the location that 227 points to will contain a copy of 229-260

Figure 3.2: copy-indir and indir-copy by example.
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unsigned int input = alice(0) & 0x3F;
unsigned int somevar = myFunc(input);
...
output_alice(somevar &0x3F);

Figure 3.3: Input and output masks in a C program.
Only the least significant six bits of input and output are important to the PCF program. The special

functions alice() and output alice() (and corresponding bob() and output bob()) are provided by the PCF
interpreter.

3.2.1 Definitions and Algorithms

The data flow analyses used here are all adapted from Khedker, Sanyal, and Karkare [KSS09]. We begin by

defining a data flow analysis, and will proceed in the following sections to describe how the equations are

adapted for PCF programs.

We begin by considering an abstract program to be a sequence of operations on data, which we separate

into basic blocks. By definition, a basic block is a maximal group of consecutive statements that are always

executed together with a strictly sequential control flow between them. These basic blocks are arranged in

some topological order such that when composed, the program’s output is well defined. This topological

ordering can be decomposed into a control flow graph, or CFG, which describes each basic block as well as each

block’s predecessors and successors. Any block b’s predecessors are those which can be executed immediately

before b and a block’s successors can be executed immediately after b. Each edge in the CFG therefore

denotes a predecessor-successor relationship, where for every edge b1 ! b2, block b1 is the predecessor of b2

and block b2 is the successor of b1. The ancestors of a block b are the transitive closure of b’s predecessors.

The descendants of a block b are the transitive closure of b’s successors. Note that if b is located in a loop, the

intersection of b’s ancestors and descendants will not be empty. We assume that every CFG has two distinct

nodes, Start and End, which appear at the beginning and end of a program’s execution, respectively.

PCF’s set of basic block operations are described by the opcodes listed in Section 3.1.2, and for simplicity

of data flow analysis, we enforce only one operation per basic block, although this is not strictly necessary.

In a PCF circuit, the order of the program is well defined by the output of the compiler, so most blocks have

only one predecessor or successor. Blocks may have multiple predecessors only if they are labels that are

target of one or more branch instructions, and each branch instruction has two successors.

Data flow values encountered over the course of a program adhere to a partial ordering over the set of

possible values. This partial ordering forms a lattice with the relation @, where we say x is “weaker than” y

if x @ y; equivalently, x @ y can be read “x safely estimates y.” We will define the weaker-than operation in

each of our analyses. Each lattice will also have a distinct greatest element and a weakest element; we will

define this for each flow analysis as well. To complete the definition of a lattice, we include a confluence
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operation for combining flow values of blocks, which will either be “meet” u or “join” t, where xu y denotes

the least upper bound of both x and y, and x t y denotes the greatest lower bound of x and y in the data

lattice. In our data flow analyses, the meet operation will be similar to set-intersection and the join operation

will be set-union.

Each block in the CFG operates on some subset of the data that is available to it at the time of its execution.

The relationship between information available before and after a block’s execution is given by a set of linear

simultaneous equations called data flow equations, defined as follows: Inn is the set of information available

before a block’s execution, Outn is the set of information available after a block’s execution, Genn is the set of

information created during the execution of a block, and Killn is the set of information which becomes invalid

during a block’s execution. While performing analysis, the framework will compute a flow function over the

operations within each block to produce the information available after the block. Generally, this function

will follow the equations Outn =
F

x2Inn fn(x), where fn(x) = (x� Killn(x)) [ Genn(x), and Inn = Outn�1.

By convention, the information available at the Start and End nodes are BIstart and BIend, respectively.

The nature of some data flow problems requires us to move forward through a CFG, backward through a

CFG, or in both directions on a CFG. For simplicity, our analyses do not require moving in both directions

at the same time, although we do perform forward and backward data flows in sequence. In a forward

data flow analysis, we will begin by analyzing the Start node and move successively through the successors

of a node until each data flow variable converges. In a backward data flow analysis, we begin at End and

iterate through predecessors. The order in which blocks are traversed in a program is given by the worklist

algorithm for computing the maximum fixed point assignment at each program point. The textbook worklist

algorithm given is reproduced in Algorithm 1; it is not changed for PCF.

We note that in lines 17 and 22 of the algorithm, the data structure used to implement the worklist has

a profound impact on the algorithm’s efficiency. For example, if new values are appended to the end of a

trivial list at every iteration, then the analysis will begin its first pass with the first block in the circuit and

proceed to the final block, after which it perform a second pass beginning with the second block, and so on

until the analysis becomes an O(n2) operation, where n is the number of PCF opcodes in the circuit. We use

a pairing heap to remove the minimum-index instruction at each step (maximum index for backward flows).

Additionally, we keep track of the nodes already in the worklist by maintaining a set data structure (described

in Section 3.2.5) to prevent adding duplicate entries to the worklist. As a result, the algorithm iterates over

loops until the values within have found their maximum fixed point assignments, and inner loops converge

to their assignments before outer loops. Although we iterate over loops we do not unroll them to their full

depth, as we need only iterate until the variables in the loop meet their fixed point assignments.
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Algorithm 1 Worklist Algorithm for Computing Data Flow [KSS09]
1: for all u 2 Points do
2: if u == START then
3: Initialu = BIStart
4: else
5: if u == END then
6: Initialu = BIEnd
7: else
8: Initialu = >
9: end if

10: end if
11: xu = Initialu u (

d
v2neighbors(u) fv!u(>))

12: if x @ > then
13: add u to worklist
14: end if
15: end for
16: while worklist is not empty do
17: Remove the first program point u from worklist
18: for all v 2 neighbors(u) do
19: temp = xv u fu!v(xu)
20: if temp @ xv then
21: xv = temp
22: add v to worklist
23: end if
24: end for
25: end while

3.2.2 Faint Variable Analysis

Faint variable analysis is the transitive closure of dead variable analysis; a variable x 2 Var is defined to be

faint at a program point u if along every path from u to End, it is either not used before being defined or is

used to define a faint variable.

Faint variable analysis is a backwards data flow problem, and since it is an all-paths analysis, the

confluence operator is intersection and the weakness operation is subset. Because the most aggressive

optimization is to declare all variables faint, the “top” value is Var, or all variables. We use the standard

textbook definitions for Gen and Kill, where Gen contains operations that assign or read a variable and Kill

contains those which use the variable. However, faint variable analysis tracks all of the faint gates in the

program, while it is generally more efficient to track the live variables. Therefore, to compute our faint

variable analysis, we turn the lattice upside down so that > (top of the lattice) is {} and ? (bottom of the

lattice) is Var, switch the definitions of Gen and Kill, and set the confluence operator to set-union. We then

apply this analysis to discover all of the variables that are not faint at a program point.

The copy-indir and indir-copy opcodes require constants in their destination wires in order to dereference

the location of the inputs or the outputs. In order to have all of the required information to mark dereferenced
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wires properly as faint (live), we must perform constant propagation analysis before faint variable analysis.

We prefer to perform faint variable analysis as a last step in data flow analysis in order to clean up and

remove all of the wires which have been deemed unnecessary by previous analyses.

3.2.3 Constant Propagation Analysis

Constant propagation analysis permits us to eliminate gates that compute wires whose values could be

predicted without garbling gates and to provide important data flow information to other data flow analyses;

because we consider garbling to be the bottleneck in secure computation, no circuit should compute any

garbled gate online if its outputs could be predicted from a static circuit.

Constant propagation is a forward data flow problem whose lattice is actually a product of lattices for

each variable in the data flow; for simplicity, we defer the discussion of the constant propagation lattice to

the textbook [KSS09], except to note that non-constant wires are saved as not-const. The confluence operator

is union, and we say that x @ y if every entry in x is the same as the corresponding entry in y or not-const.

We maintain the constants as a map from wire table index to constant value, and when merging to blocks’

flow values using the confluence operator, conflicting entries become not-const.

The size of the constant table is a big concern for data flow analysis since it must be replicated at each

basic block, and when the circuit consists of tens of thousands of operations over tens of thousands of wires,

any naı̈ve implementation of the constant table will quickly fill up the memory of the machine on which it

runs. We include several optimizations intended at minimizing the constant table at each block, including

compressing the entries in the table and removing constant values that are not available or necessary at the

part in a program where a block exists.

3.2.4 Live Variable Analysis

By definition, a variable x is live at a program point u if some path from u to End contains a use of x which is

not preceded by its definition. Because the constant table can become very large, it is useful to remove those

which are not live at any point in a program, so we perform live variable analysis as a preprocessing step to

constant propagation analysis and eliminate dead constants as we proceed through constant propagation.

Liveness analysis for PCF circuits can be implemented according to the textbook definition with confluence

operation set-union and weakness function superset.

Because we cannot track all of the pointers in the table without constant propagation analysis, our initial

liveness analysis must be conservative, not eliminating any pointed-to locations in the data. We compensate

for the extra weight assumed by carrying unused data by eliminating variables if we know they have passed



Chapter 3 Portable Circuit Format 18

their final uses. We construct a usage map of every variable, recording the earliest and last use of every wire

in the program, so that we may eliminate extra entries in the liveness table after their last use in the map.

Note that we do not use the live variable analysis for eliminating any wires from the PCF circuit, making

this elimination safe to the final flow analysis.

It may seem that we could perform live variable analysis instead of our version of faint variable analysis

to remove faint gates, since the two should compute the same thing on the variables. However, live variable

analysis is a forward data flow analysis, and its function is to provide information about all of the variables

which are still used by the program at every point. Our version of faint variable analysis is capable of doing

the same thing, but we perform the backwards analysis to determine which variables are actually important

in our program by tracking which wires contribute to the output at every program point.

3.2.5 Memory Optimizations and the Fetsko Set

Even after removing constants that are no longer live, large circuits consisting of tens of thousands of

instructions quickly fill the memory of a standard machine because each block requires its own copy of the

wire table. To solve the memory problems and improve both size of the flow data and speed of analysis, we

introduce a special data structure and name it the Fetsko set. The Fetsko set is a functional data structure

that run-length encodes an AVL-tree. It achieves the same worst-case performance as an AVL tree, but in

practice it achieves excellent performance for both compression and speed in analyzing PCF circuits by

leveraging the common structure of PCF data flow values. Memory in PCF circuits is composed primarily

of wires grouped together in 32-bit groups (or 16-bit, 8-bit, or 4-bit groups, depending on declared data

type,) whose values are likely to be related to each other. In addition, although wires holding constants may

contain any integer value, most wires will have the value 0, 1, or not-const for unknown wires. By run-length

encoding the entries in the wire table, the Fetsko set stores large numbers of wires in very little space and

severely shortens the height of the look-up tree for constant values. We additionally employ Fetsko sets for

liveness analysis and faint variable analysis because they improve the speed of table lookups and minimize

the memory footprint of the liveness sets.

Each node of the Fetsko set contains six fields: the left tree, the right tree, the “index,” the “data,” the

height, and the length. The index of the tree node serves as the value employed by the comparison function

to order the tree. The index and the data of the node form a key-value pair comprising the node’s information.

For example, if the 100th wire in the circuit contains the value not-const, then its index and data fields would

be (100,not-const). The length of the node stores how many following nodes contain the same data, so in

the current example, a value of 5 in the length field would indicate that nodes 100-104 all contain not-const.
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The left, right, and height fields of the Fetsko node are all the same as in an AVL tree. We use the Fetsko

set to efficiently store values of the constant table as well as the liveness and faintness tables; for the latter

two, all of the data fields are simply set to true. Inserting an individual node into the Fetsko set may be

troublesome if it would border a node that shares its data type or if it would bridge the gap between two

existing nodes with equivalent data fields. In the first case, the bordering node must first be removed, and

then a new node is inserted with expanded ”length” field to accommodate both nodes. In the second case,

the process may simply be repeated twice and the tree rebalanced afterwards. However, in such a scenario

the two neighboring nodes are likely to exist in a parent-child relationship; to account for this contingency,

each insert operation begins with a tree search to determine if a node join will be necessary. An insert that

bridges the gap between two nodes therefore becomes a search, a remove and update, a second search, a

second remove and update, and a final insert and rebalance.

Because the data structure holding the wire table is compressed, we are forced to change our weak-

ness function to a compression-aware algorithm; this change also effects substantial improvement in the

performance of the data flow analysis. Our compression-aware weakness function is simply set-subset on

compressed sets; for constant propagation, this must be modified to include not-const as a bottom element in

the data value lattice such that if checking whether x @ y and x.a 6= y.a but x.a = not-const, then x @ y, but

this is not true if y.a = not-const but x.a is another constant.

3.3 Other Approaches to Optimization

Other systems for secure computation use a variety of approaches to circuit minimization. For example,

TinyGarble [SHS+15] compiles C circuits to a hardware description language and runs standard hardware

optimization tools to minimize circuits. CMBC-GC [FHK+14] unroll their loops, but also perform structural

hashing, constant propagation (like PCF), and pattern-based rewriting to optimize their garbled circuits,

with the goal of minimizing the total number of non-XOR gates. Our compiler favors XOR gates in the

translation step from bytecode to PCF, and it is compatible with structural hashing and pattern-based

rewriting, although we do not need to unroll our loops during optimization as CMBC-GC does. We note that

this our approach does not perform as well as runtime systems which maintain a counter on the number

of loop iterations to reduce the garbling overhead of maintaining counting variables, but for circuits with

expensive computation within the loop, this overhead is small compared to the larger computation.



Chapter 4

Stable Matching

4.1 The Stable Matching Problem

Stable matching is a well studied combinatorial problem first formalized by Gale and Shapley [GS62] in the

language of heterosexual, monogamous marriage. An instance of this special case of the problem consists of

a set M of male suitors, a set W of female reviewers (with |M| = |W| and M\W = ∆), and a strict preference

ordering (or “ranking”) of W (resp. M) for each m 2 M (resp. w 2W); we say that “m prefers w1 to w2” if m

would rather marry w1 than w2. A solution to this instance consists of a one-to-one correspondence between

M and W; a solution is a stable matching if it contains no pairs (m1, w1) and (m2, w2) such that m1 prefers w2

to w1 and w2 prefers m1 to m2. Gale and Shapley proved that it is always possible to construct such a pairing

and gave an efficient algorithm to do so, described in 4.2.

In the general stable-matching problem (defined precisely in Section 5.3), the two sets of participants

(suitors who propose matches and reviewers who may or may not accept the proposals) need not be of the

same size, and each participant may rank only a proper subset of its potential “matches.” Gusfield and

Irving [GI03] provide a comprehensive overview of stable-matching algorithms.

Stable matching has seen extensive real-world use in scenarios that require the clearing of two-sided

markets, including NRMP – the assignment of graduating medical students to residency programs1, the

assignment of New York City teenagers to high schools [APR05], and the assignment of Norwegian and

Singaporean students to schools and universities [TST99].

1National Residency Matching Program, http://www.nrmp.org
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4.2 The Deferred Acceptance Algorithm

The algorithm presented by Gale and Shapley to solve the stable marriage problem, popularly known as the

”Deferred Acceptance” algorithm, matches a set of suitors with a set of reviewers. As input, all participants

rank each member of the opposite party from most desirable to least desirable. The algorithm progresses

by permitting each unmatched suitor to propose to the reviewer he desires most among those to whom

he has not yet proposed. If a reviewer has not yet received a proposal, she says ”maybe” to the proposing

suitor and accepts a temporary match. If she already has a match, she compares the current offer against

her temporary match, then says ”maybe” to her more desired mate and says ”no” to the other, who returns

to the group of unmatched suitors. When there are no unmatched suitors left, all temporary matches are

accepted as permanent and the algorithm terminates.

The algorithm provides two main guarantees. First, if the set of suitors and the set of reviewers are the

same size, everyone gets matched (with the implicit assumption that a match to any partner is better than

not being matched). Once a reviewer has said maybe, at no point can she be unmatched or single, since she

only says no if she is already provisionally matched to a previous suitor. At the end of the protocol, no suitor

or reviewer may remain unmatched, since any unmatched suitor must eventually propose to every reviewer.

Second, it ensures that all the matches are stable. Let there exist two pairings (Alice, X) and (Y, Bob) are

where Alice prefers Bob to X and Bob prefers Alice to Y. Since Bob prefers Alice to Y, he must have proposed

to Alice before he proposed to Y. At this point, Alice can say either maybe or no to Bob:

• Alice only says no to Bob if she prefers her current match to Bob.

• If Alice says maybe to Bob, the only way in which she can be separated from Bob is if a more preferable

partner proposes to her.

Thus, at the end of the protocol, if Alice is not matched to Bob, she is matched with someone she prefers

to Bob. The two pairings (Alice, X) and (Y, Bob) cannot exist if Alice prefers Bob to X and Bob prefers Alice

to Y.

Stable matching procedures exhibit useful properties. Roth [Rot82] showed that there will always be

one stable arrangement weakly preferred by the suitors and one weakly preferred by the reviewers. The

algorithm proposed by Gale and Shapley will always output a stable matching weakly preferred by the

suitors; that is, each suitor will be at least as well off under the Deferred Acceptance assignment as under any

other stable assignment. We say that such an assignment is male-optimal. (The reviewer-optimal assignment

is achievable simply by flipping the suitors and reviewers.) Abdulkadiroglu et al. [APR05] and Roth [Rot82]
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leveraged this property in designing the New York City Match and revising the NRMP to favor students and

residents.

In the worst case, the Deferred Acceptance algorithm runs in O(n2), as the maximum number of proposals

is n2 � n + 1 [GS62], although in practice it is usually much better than that, about O(n ln n) [Pit89]. In order

for the algorithm to require the maximum number of proposals, the preference profiles of all participants

must be arranged very specifically. Franklin et al. give an example of preference profiles that force the

worst-case number of proposals; in order for the full n2 � n + 1 proposals to be offered, preferences must

be arranged so that in each round, every suitor except for one proposes to a reviewer who prefers him last

among all possible remaining partners, and the final suitor knocks one suitor off of his temporary partner in

each round. Gale and Shapley [GS62] also showed that it is not guaranteed that in a stable matching, any

single participant gets his or her first choice of partners.

4.3 Privacy and Cheating

Agents on both sides of these markets have legitimate concerns about the privacy of their rankings and the

integrity of the computation, especially in settings where preference leaks may have social or professional

consequences for the participants in the future. In the terms of stable marriage, we insist that no married

woman should have proof that she was anything but her husband’s first choice, and likewise for a married

man and his wife’s first choice. However, straightforward implementations of stable-matching algorithms

may leak information about participants’ preferences or the history of matches made and broken on the path

to a stable solution. Therefore, stable matching is a natural candidate for secure multiparty computation

(SMPC). Previous works on SMPC for stable matching include those of Golle [Gol06] and Franklin et

al. [FGM07a].

Prior work has shown that, in the traditional setting in which all inputs are known by all players,

stable matching procedures are susceptible to manipulation by strategic players [Rot82, TST99]. Although

members of the suitor group have no incentive to misrepresent their preferences [Rot82], and members of

the reviewing group never benefit from misrepresenting their first choices [Rot82], a strategic player in the

reviewing group may misrepresent his or her preferences to change the outcome and can sometimes switch

the stable arrangement from suitor-optimal to reviewer-optimal [Rot82, TST99]. Pittel [Pit89] showed that

the average rank of the reviewers’ final partners is ln(n) when computing the reviewer-optimal matching

and n
ln(n) when computing the suitor-optimal pairing. In addition, Gale and Sotomayor [GS85] showed that

when partial lists are allowed, i.e. suitors or reviewers may mark some members of the opposite party as less

desirable than remaining unmatched, the reviewers can force the reviewer-optimal matching by marking as
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“unacceptable” each suitor less than his or her reviewer-optimal suitor. We see that if reviewers can cheat by

collaborating to precomputing the stable assignments with knowledge of the suitor preferences, they have

incentive to do so.

Reviewers may also cause “faux stability” by misrepresenting their preferences; in this situation, the

algorithm might output an assignment that is stable with respect to the inputs it receives but unstable with

respect to the true preferences of the players. By enforcing input privacy, we leave reviewers in a position in

which they will not be able to change the outcome in a predictable way. Because lying about their preferences

may wind up making the outcome worse for them instead of better, simply telling the truth becomes a

dominant strategy as reviewers leverage the opportunity to accept the best offer they get. Rogue reviewers

may still intentionally mislead about their preferences in order to improve their results without collaborating

or force an unstable matching with a beneficial aftermarket pairing, but Immorlica and Mahdian [IM05]

showed that if most participants tell the truth, then honesty is indeed the dominant strategy.

4.4 Sorority Matching

We would like to apply stable matching to annual sorority recruitment at the University of Virginia, which

closely resembles the matching mechanism analyzed by Mongell and Roth [MR91]. The recruitment process

takes place at the beginning of each spring semester, when hundreds of female UVa undergraduates visit

UVa’s 16 chartered sororities. Recruitment is a collaborative process executed by sororities and “recruits”

that consists of several rounds of house visitations, preference rankings, and cutoffs. In the final round of

the process, each recruit writes a final preference list of three sororities to which she would like admission,

and all sororities rank their remaining recruits in order of preference. The sororities and recruits submit

these final preferences to a trusted third party not affiliated with the university, who computes a matching

to determine all of the “bids,” or offers of admission, presented by the sororities to the remaining recruits.

The fact that a trusted third party is used for this computation indicates that the participants understand

the highly personal nature of the input (and concomitant need for privacy safeguards) and the socially

consequential nature of the output (and concomitant need to prevent byzantine manipulation). Using

a PCF-based matching protocol, they could continue to maintain privacy and integrity but perform the

computation without needing to trust – or pay – a third party.
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Secure Stable Matching

5.1 A Garbled Circuit Approach for Stable Matching

With sorority matching as motivation, we set the goal of implementing a protocol for securely computing

stable marriages with hundreds of participants. Yao’s garbled circuit scheme [YAO82], which is currently a

popular topic yielding very fruitful research [HEKM11, CMTB13, BHKR13], is a good candidate for reasons

of both efficiency and practicality. Circuit garbling employs symmetric key cryptography, which is orders

of magnitude more efficient than the asymmetric operations which most multiparty protocols employ. In

addition, garbled circuits can be evaluated in a constant number of rounds, which improves on the potentially

large number of communication rounds incurred by private information retrieval schemes featured by other

protocols, including the one by Franklin et al. [FGM07a]. Considering practicality, there do not exist good

implementations of multi-party protocols at the scale of this work, involving hundreds of active participants

in the computation. In addition, for such a large-scale computation, it is unlikely that every participant will

behave reliably for the duration of the protocol.

Our approach performs stable matching by encoding the Gale-Shapley algorithm as a circuit that, as

a first step, combines preferences that have been XOR-shared with two participants in the matching. It is

important that these participants, henceforth referred to as “matching agents,” not both be members of

the same group in order to prevent collusion. While suitors could collude to change the stable assignment,

the proposing party’s dominant strategy is always to reveal its true preferences; although it may be able

to alter the assignment by changing the inputs of some suitors or reviewers, any manipulation for a better

personal outcome would necessarily affect the stability of the solution because the algorithm is already

Pareto optimal for all of the suitors. In contrast, if both of the matching agents are reviewers, then they could

24
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collaborate to decode the suitors’ preferences and then, in some cases, force the outcome of the protocol to be

the reviewer-optimal stable assignment [GS85], maintaining the stability property while cheating the suitors.

After receiving the input preferences, the circuit adheres to the Gale-Shapley algorithm, albeit modified

for the purposes of table look-ups. The lists of suitor preferences, reviewer preferences, suitor proposal

counters, and current matches are implemented as separate arrays which must be accessed via a mux each

time a specific index is desired. When considering the feasibility of circuits for stable matching, this overhead

in computation has been identified as “cumbersome” by Naor et al. [NPS99]. While it is the biggest source of

overhead in our computation, we show that it is still feasible to evaluate circuits for reasonably sized inputs

and that it compares fairly well with the overhead encountered by other privacy-preserving techniques.

Computation and communication for our scheme are linear in the size of the circuit, which is q(n4 lg(n))

for a true Gale-Shapley implementation because lookups to the preference arrays are q(n2), lookups must be

performed for each of the q(n2) proposals, and each player is encoded with lg(n) bits. Further modifications

to the proposal algorithm based on heuristics for the number of necessary proposals reduce this complexity

to q(n3 lg(n)). The complete garbled circuit can be evaluated in q(1) rounds.

5.1.1 Proposed System Setup

We propose a system for many parties to compute a stable matching as follows. As the first step of the

protocol, the suitors and the reviewers each select a trusted member that will be the group’s matching

agent. Every participant in the stable matching then sends XOR-shared inputs to the two matching agents,

who subsequently use PCF to evaluate the stable matching. After circuit evaluation, the both matching

agents send the results back to each participant. In the sorority rush setting, the recruits could operate a

university-owned machine as their matching agent while the sororities use property of the sorority council.

We are designing a web app for stable matching in the “real world” that allows matching agents to run

the secure computation for stable matching. Each matching agent downloads our web server (written in

Python) and tells the other agent their own IP address. Each user registers (username, email address, and

password) with their own matching agent before some designated preference submission time when the

users authenticate and submit their preferences. Right before the submission time, the agents share the

names of their participants (and sort them, for example alphabetically, to establish a canonical ordering). To

submit preferences, each player’s browser computes XOR-shares of the player’s rankings and sends them to

both matching agents. When the secure computation halts, the servers email their participants telling them

to log in again to view the results.
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Note that simply dividing a trusted third party into two entities is not a trivially generalizable approach

to secure multiparty computation. We think it is reasonable for stable matching because, as discussed

in Section 4.3, both groups of participants wish to maintain their own privacy and should protect their

respective matching agents. Additionally, although the reviewers have incentive to collude, no suitor in the

matching benefits from collaborating with the reviewers (in fact, such behavior can only hurt their outcome),

so they are individually and collectively incentivized to ensure their matching agent is secure.

5.2 Alternative Solutions

5.2.1 Franklin et al

Golle [Gol06] and Franklin et al. [FGM07a] explored SMPC protocols for stable matching. In both works, the

classic Gale-Shapley algorithm is modified to make it privacy-preserving but still computationally feasible.

Golle’s variant introduces semi-honest “matching authorities” and adds “dummy” men; it uses threshold

homomorphic encryption and re-encryption mixnets to privately compute a stable matching. Franklin

et al. use the same approach but devise a protocol with lower communication complexity than that of

Golle [Gol06] for multi-party computation, while also providing a protocol with better performance by using

only two “matching authorities” operating with xor-shared inputs. By proposing a more efficient protocol

for multiparty indirect indexing, Franklin et al. [FGM07b] then improve on the multi-party protocol, offering

the same complexity for the multiparty setting as with two matching authorities, except for a factor of the

number of parties in communication complexity.

We first analyze the private stable matching by Franklin et al. [FGM07a] in which two “matching

authorities” run a stable matching algorithm on xor-shared inputs. Stable matching is naturally a multi-party

problem, but under reasonable trust assumptions, the bulk of the work of the computation can be done

between two representative organizations whom the participants believe will not collude. This model of

client-server secure computation allows most of the participants to only have to send one message to each of

the organizations to participate in the protocol.

The protocol that Franklin et al. propose closely follows the traditional Gale-Shapley algorithm, slightly

modified to handle shared inputs. To achieve privacy, participants XOR-share their inputs with the two

matching authorities, who then operate on shared data structures. Specifically, they share four data structures:

one each containing suitor and reviewer preferences, one containing the number of proposals made by

each suitor, and one containing intermediate best matches. The preference arrays are of size n2, and the

bookkeeping lists are both of size n. Our protocols use the same input and model.
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To compute stable assignments privately, Franklin et al employ two cryptographic tools to hide the

intermediate state of the computation: a private information retrieval scheme for reading and writing

the shared data structures, and Yao’s garbled circuits [YAO82] for comparing reviewer preferences and

incrementing the number of times a suitor has proposed. Reads and writes are accomplished using the

PIR scheme of Naor and Nissim [NN01], which depends on the 1-of-W OT of Naor and Pinkas [NP01] that

requires W public key operations; here, W is the size of the preference lists, or n2, making the computation

complexity O(n4). The communication complexity of the 1-of-W OT of Naor and Nissim is proportional to

the size of the security parameter plus the size of a single element. The PIR scheme is run a constant number

of times for each round of proposals, making the communication complexity for the entire evaluation O(n2)

for information retrieval. However, the scheme requires a polylogarithmic number of rounds, making their

round complexity O(n2 polylog(n)). Total communication complexity for the protocol is O(n2 polylog(n))

because the Yao circuits evaluated at each proposal are polylogarithmic in the number of players. We note

that the protocol is complicated and no one has attempted an implementation; moreover, since most of the

operations are public-key operations, our protocol will outperform it.

5.2.2 ORAM

We compare the performance of our fully garbled-gate protocol with one that uses SCORAM [WHC+14],

the state of the art in ORAM for secure computation, for all of its database lookups. Since lookups to

the preference tables in our implementation are O(n2), more efficient database lookups could reduce the

complexity of our algorithm, potentially making incredibly large instances tractable. Using a 220 byte

SCORAM [WHC+14] to privately hold preference profiles would incur a cost of about 4.4 million gates.

In comparison, assuming that one proposal is dominated by the two lookups into the preference tables,

only our biggest test, with 500 players on each side ranking 50 partners, saw more than 4 million gates per

lookup. However, even if we considered SCORAM to required only O(1) rounds of communication per

lookup because the size of the database is small, using SCORAM would increase the round complexity of

the protocol to O(n) in terms of proposals, which would take longer than the O(1) rounds for evaluating a

circuit.

Keller and Scholl [KS14] implement the Gale-Shapley algorithm using the SPDZ protocol of Damgård

et al. [DKL+13] and oblivious arrays [LDDAM12], achieving computational complexity of O(N2log4N).

However, their ORAM offline phase for stable matching instances of size 102 is on the order of 107 seconds,

already far worse than our implementation. Additionally, although Keller and Scholl do not report mali-

ciously secure evaluations, our approach of using Yao’s garbled circuit construction enables a trivial path
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to achieving malicious security. As far as we know, none of the ORAM schemes are currently capable of

handling malicious adversaries due to the difficulty of compiling the ORAM step for malicious clients.

We conclude that ORAM techniques are not currently better suited for these database lookups than a

mux over preference arrays for the instances we generated.

5.3 Circuits for the Deferred Acceptance Algorithm

5.3.1 Problem Statement

In our version of the problem, there is a set S of suitors and a set R of reviewers, with S \ R = ∆ but |S| not

necessarily equal to |R|. Each suitor s ranks a subset Rs ✓ R of the reviewers, and each reviewer ranks a

subset of the suitors; if r 62 Rs, it is understood that s considers r to be less desirable that all elements of Rs

and would not agree to a match with s (and analogously for s 62 Sr). A solution to this more general version

of the problem is a partial function f : S �! R, where, in order to have r = f (s), it must be the case that

r 2 Rs and s 2 Sr (i.e., r and s would rather be matched with each other than remain unmatched). Such a

solution is stable if there are no two pairs (s1, r1 = f (s1)) and (s2, r2 = f (s2)) such that s1 prefers r2 to r1 and

r2 prefers s1 to s2, and there are also no pairs (r, s) in which both r and s are unmatched but would accept

each other (formally, no pairs (r, s) with s 62 Dom( f ), r 62 Range( f ), r 2 Rs and s 2 Sr).

We provide a formalization of the algorithm presented in 4.2.

Formal description

We define S = s1, s2, . . . , sn to be the set of suitors, and R = r1, r2, . . . , rn to be the set of reviewers in the

stable matching.

MS,R describes a stable matching as a binary relation in S⇥ R such that (si, rj) 2 M if (si, rj)|si 2 S, rj 2 R

is a pair in the stable matching.

M0S,R describes a set of assignments as a binary relation in S⇥ R such that (si, rj) 2 M if (si, rj)|si 2

S, rj 2 R is a pair in the assigned matching.

S0 ✓ S such that S0 contains only unmatched suitors.

(si, ·) = {rj|(si, ri) 2 M}

(·, ri) = {sj|(sj, ri) 2 M}

P describes the set of preferences for each suitor and reviewer for the members of the other party.

ps 2 P describes s’s preferences [ri, rj, . . . ] such that s prefers ri to rj if ps(ri) > ps(rj).

pr 2 P describes r’s preferences [si, sj, . . . ] such that r prefers si to sj if pr(si) > pr(sj). The algorithm

described in Section 4.2 is formally presented in Alg. 2.
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Algorithm 2 GaleShapley(S,R,P):
S0 = S
while 9s 2 S0 do

s S0
r  ps|ps(r) � ps(r0) 8r0 2 R such that s has not already chosen r, r0
if (·, r) = ∆ then

M0 = M0 [ {(s, r)}
S0 = S0\{s}

else
s0  (·, r)
if pr(s) > pr(s0) - that is, r prefers s to s0 then

M0 = M0\{(s0, r)}
S0 = S0 [ {s0}
M0 = M0 [ {(s, r)}
S0 = S0\{s}

end if
end if

end while
return M0

5.3.2 Our Circuit Implementation

In order to perform a secure stable matching, we first design an implementation of the matching algorithm

described above that does not leak information about the inputs. In particular, the secure computation system

that we use does not hide the running time or the instructions that are executed, and thus, we must design an

implementation whose running time and instruction patterns do not leak any information about the input.

To do this, we use PCF to design a boolean circuit that computes the stable matching as described above.

We begin by arbitrarily ordering the suitors and reviewers and assigning them unique indices by which

they will be identified. The input to the circuit consists of two matrices which represent the ordered list

of preferences, i.e. the preference profile for each suitor and reviewer. Suitors format their inputs by listing

reviewers in the order in which they would like to propose (i.e., with reviewers sorted in decreasing order of

preference). Reviewers submit preferences by listing desired suitors in the same way, with the most preferred

suitor listed first and the least preferred suitor listed last.

As an example, suitor S1 may submit an input

(1, 0, 2, 3)

to indicate that its preferences are for reviewers R1, R0, R2, R3 in order. Similarly, reviewer R0 may submit

input

(2, 3, 1, 0)
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to indicate it prefers S2, S3, S1, S0 in order.

The output of the circuit consists of the match for suitors S1, S2, . . . , Ss.

5.3.3 Gate Analysis

We define |S| as the number of suitors and |R| as the number of reviewers involved in the matching process.

Note that there may be multiple copies of each reviewer, depending upon the quota, or number of suitors the

reviewer is willing to accept.

We need dxe bits to represent an integer x. The input for each suitor, which is an ordered list of |R|

reviewers, can therefore be described in |R|dlg |R|e bits. Similarly, the input for each reviewer takes |S|dlg |S|e

bits.

Since we have |S| suitors and |R| reviewers, the total number of bits required is |S||R|dlg |R|e+ |R||S|dlg |S|e =

|S||R|(dlg |R|e+ dlg |S|e)

In their seminal paper [GS62], Gale and Shapley prove a worst-case running time of |S|2 � |S|+ 1 rounds

in their stable matching algorithm.

Within this loop, the number of gates is dominated by the need to access elements randomly from both

the suitor and reviewer input arrays. The inside of the loop therefore contributes |S||R|(dlg |R|e+ dlg |S|e)

gates. Overall, the circuit requires q(|S|2⇥ |S||R|(dlg |R|e+ dlg |S|e)) = q(|S|3|R|(dlg |R|e+ dlg |S|e)) gates.

5.3.4 The ”Limited” Stable Matching Adaptation

In the case of sorority matching, recruits and sororities are not permitted to rank every member of the

opposite party during the final matching procedure. Rather, recruits are permitted to rank up to 3 sororities

and sororities are permitted some number k that varies based on historical acceptance rates and targeted

incoming class size, but is usually about 90. We simplify and generalize our implementation by assuming k

does not change between suitors or between reviewers, allowing every suitor to rank up to ks reviewers

and every reviewer to rank up to kr suitors. In the language of stable marriage, suitors and reviewers are

forced to declare that after their kth preferred match, they would rather remain unmarried than be bound to

an undesirable partner.

Input Preferences

Because suitors and reviewers no longer submit preferences for all members of the opposing party, they

truncate their preference profiles to only their k most preferred partners. For example, if suitor s were to
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have preference profile (2,0,1,3) with ks = 3, s’s inputs would be (2,0,1).

Formal Description

We introduce the following additional notation to the description given in section 5.3:

K = the set of limitations assigned to suitors and reviewers on the number of preferences they are

permitted to declare, where after the kth declared preference the individual prefers to remain unmatched

ks = the limit designated for suitors on number of reviewers to rank

kr = the limit designated for reviewers on number of suitors to rank

PC = the set of proposal counts for each suitor, where a proposal count indicates the number of times a

suitor has submitted a proposal to a reviewer

pci = the number of times si has offered proposals to reviewers, where 0  pci  ks8pc 2 PC

Algorithm 3 LimitedStableMatch(S,R,P,K,PC):
S0 = S
pcs = 08s 2 S0
while 9s 2 S0 do

s S0
if pcs = ks then

S0 = S0\{s}
else

pcs = pcs + 1
r  ps|ps(r) � ps(r0) 8r0 2 R such that s has not already chosen r, r0
if (·, r) = ∆ then

M0 = M0 [ {(s, r)}
S0 = S0\{s}

else
s0  (·, r)
if pr(s) > pr(s0) - that is, r prefers s to s0 then

M0 = M0\{(s0, r)}
S0 = S0 [ {s0}
M0 = M0 [ {(s, r)}
S0 = S0\{s}

end if
end if

end if
end while
return M0

Implications for Stability

While the limited matching circuit does not achieve stable outcomes in a market where all parties desire

a match over no match, it does preserve stability if suitors and reviewers would truly prefer to remain

unmatched than to be matched to any partner below the kth preference and does preserve stability when each

suitor finds a permanent match before proposing ks times. In markets where all players prefer a partner to
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Suitor
preferences R0 R1 R2 R3

S0 0 1 2 3
S1 3 1 2 0
S2 0 2 3 1
S3 2 3 1 0

Reviewer
preferences S0 S1 S2 S3

R0 0 3 1 2
R1 0 1 3 2
R2 3 2 1 0
R3 2 1 3 0

Table 5.1: Example: suitor and reviewer preference profiles

solitude, suitors are at least as well off as they would have been under the suitor-optimal stable assignment,

and reviewers are at most as well off as they would have been under the suitor-optimal stable assignment.

For example, consider the preference profiles where ks = 2 given by Table 5.1. Note that the suitor-optimal

stable assignment for these inputs is {(S0, R0), (S1, R1), (S2, R3), (S3, R2)}, and the ”limited” matching

assignment is {(S0, R0), (S1, R3), (S2, ∆), (S3, R2), (∆, R1)}. S1 is better off under the ”limited” matching

procedure and R3 is better off under the stable assignment.

5.3.5 ”Limited” Circuit Gate Analysis

The number of gates required to perform the limited matching circuit differs from the basic circuit in two

ways. First, the outer proposal loop is run |S|⇥ ks times, or until all suitors have exhausted all of their

permitted proposals. Second, the submitted preferences for suitors can be described in |S|⇥ ks ⇥ dlg |R|e

bits, and the submitted preferences for reviewers can be described in |R|⇥ kr ⇥ dlg |S|e bits. The inside of

the proposal loop therefore contributes |S|ksdlg |R|e+ |R|krdlg |S|e gates, and the loop runs |S|⇥ ks times,

requiring a total of q(|S|ks(|S|ksdlg |R|e+ |R|krdlg |S|e)) gates.

5.4 Running fewer proposals

Although the worst case instances of stable matching problems require n2 � n + 1 proposals, this is not the

case for most instances. In this section, we perform an ad-hoc analysis of the number of rounds needed

to find a matching. We use these numbers to pick a reasonable number of proposals to make, and build

circuits for these cases. Assuming that leaking the number of proposals needed to find a matching may be

acceptable even though it would expose some information about generally how many proposals the men
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players mean median min max sd

10 23.94 23 10 52 6.214
50 208.4 200 97 527 50.557
100 496.6 479 241 1374 112.840
500 3353 3251 1974 7873 626.424

1000 7429 7227 4582 17160 1252.557
1500 11780 11480 7257 25760 1889.478
2000 16300 15860 10590 31400 2558.789

Table 5.2: Descriptive statistics for distributions of proposals
The average number of proposals and standard deviation increase linearly with the number of participants.

20,000 simulations for each size

must have made in order to find their mates (and therefore how desirable the final pairings are to the men),

we can implement more efficient protocols by first attempting k matches and outputting an XOR-shared

matching, and then running a small secure computation to see whether the result is a stable matching; if not,

we can simply continue with another k proposals until the result is stable.

5.4.1 Empirical Results for Number of Proposals

We ran simulations of the standard Gale-Shapley algorithm with random inputs for party sizes between

10 and 2,000 players and found the distribution of number of proposals resembles a truncated lognormal

distribution with slight right skew. Further, the average number of proposals and standard deviation grow

linearly with the number of players. These results are described in Table 5.2.

To better estimate stable assignments than the “limited” circuit, we run the standard Gale-Shapley

algorithm with a pre-set number of proposals. We note that “limited” circuits are generally smaller than the

pre-set proposal circuits because of much cheaper preference lookups and, depending on the chosen value

of K, fewer proposals. The number of proposals for a particular circuit size is set as the mean number of

proposals plus six times the standard deviation for that inputs size, and we postulate that most inputs which

require more proposals than this require some collusion among the players.

5.4.2 Applicability of the Simulation

The General Case

We briefly discuss whether a simulation with randomly assigned preferences is appropriate for estimating

the distribution of proposals necessary when in real life, preference profiles are more likely to be drawn from

some distribution arising from the relationships between people.
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We know from Pittel [Pit89] that the average total rank of reviewers by the suitors, and thus the

average number of proposals until a stable matching is found, is about n ln(n), which is consistent with our

simulations. We argue that when inputs are drawn from some distribution over the preference profiles, the

mean number of proposals is reasonably estimated by the mean when drawn from a random distribution.

First, we assume that in practice, worst-case inputs like the one shown by Franklin et al. [FGM07a] which

cause the long right tail of the proposal distribution are impractical because they are highly structured and

require that no suitor and reviewer be mutually interested. Next, we consider extreme cases for similarity

and dissimilarity. In the extreme case for similarity, when all suitors have the same preference profile, suitors

propose in the same order to the reviewers, requiring
n
Â

i=1
i = n(n+1)

2 proposals. On the other extreme, when

suitors all have different first preferences, the algorithm requires only n proposals.

For the deferred-acceptance mechanism to fail to converge quickly to a solution, the preference profiles

must be dissimilar, since suitors must create tentative matches that are broken only down the line. When

preference profiles are similar, or drawn from a distribution over which groups of suitors and reviewers

are likely to have similar preferences, suitors create potential matches that are quickly broken, reducing the

algorithm’s search space much faster.

When we consider drawing preferences from a distribution in which some players – or groups of players

– are mutually interested, we form cliques in the preference graph that approximate the simultaneous

execution of multiple smaller stable matching instances. If each of these cliques were to have no crossover,

i.e. every member of each clique ranked all of the member of his and her clique before members of any other,

then for a cliques of equal size, the worst-case number of proposals would be a
n
a

Â
i=1

i = a
n
a (

n
a +1)
2 = 1

2a n(n + a)

and the average would be a · n
a ln( n

a ) = n ln( n
a ). Small amounts of crossover in the preference graph should

not adversely affect the number of proposals, since we postulate that in practice, crossed-over preferences

are likely to be rejected quickly or have the interest requited.

If we consider a case where there are a number of cliques of various sizes with maximum size b, then the

worst case number of proposals would be dominated by the size of the biggest clique, and the average would

be no more than n ln( n
b ). We make the critical assumption that the distribution of proposal preferences

within each clique of suitors and reviews is random, which we think is more reasonable than the assumption

that the entire distribution is one clique with randomly distributed preferences. We also err on the side of

caution by making the number of proposals a parameter to our system, so that the size of the circuit can be

set and expanded as necessary.

Sorority Matching



5.5 Experimental Results 35

In the case of sorority matching, the rush process forces preference profiles to be highly structured. Indeed,

in the final round of the process, recruits are only permitted to rank up to 3 sororities, but in our conversion

to stable matching, each of these sororities is given 35 players in the matching that form a preference clique.

Every time a new member is accepted or rejected from the sorority, up to 35 bonds must be broken and

re-made as members percolate through the list, incurring the worst-case described above. However, the

cliques are highly disjoint because each recruit is only allowed to rank three sororities, and from practice we

know that the rush process forces a large amount of stratification among the recruits, allowing us to model

the process as a stable matching with strongly connected cliques with little crossover.

5.5 Experimental Results

5.5.1 Notation

We constructed matching circuits for both the basic stable matching algorithm and our limited matching

algorithm in PCF2 for a variety of circuit sizes, with and without modifications. The sizes of the matching

instances are discussed in the form |S|x|R|xKsxKr, where |S| is the number of suitors, |R| is the number of

reviewers, Ks is the number of reviewers whom each suitor is permitted to rank, and Kr is the number of

suitors whom each reviewer is permitted to rank. In tables 5.3 and 5.4, circuits are given in NxK, where

|S| = |R| = N and Ks = Kr = K. The abbreviated notation reflects simplifications we made to the protocol

for running these tests.

5.5.2 Empirical Results

For comparison, the number of gates required for a variety of feasible circuits is in Table 5.3. In addition,

to easily estimate circuits for other participant sizes and numbers of proposals, we present results for the

number of gates per proposal in Table 5.4.

We note that PCF has been shown capable of running circuits on the order of billions of gates [KSS12]

[KasMB13], and consequentially 500x500x10x10 is close to the boundary of feasibility. We estimate the

number of gates required for a complete sorority matching, which is size 560x680x90x105, by lower-bounding

it with a full circuit for size 500x500x50x50. Using Table 5.4, we project the latter circuit to be about

244,819,650,000 gates, indicating sorority matching is well beyond the current scope of PCF’s capability.
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Circuit Size proposals not optimized optimized

4⇥ 4 13 237,371 161,207
10⇥ 10 91 8,312,879 4,966,117
50⇥ 50 515 867,844,063 520,132,272
50⇥ 50 2451 4,131,719,359 2,475,800,096
100⇥ 5 500 269,144,923 175,649,776

100⇥ 10 1000 852,396,923 538,128,990
100⇥ 100 1175 7,641,520,223 4,576,531,782

200⇥ 5 1000 1,069,797,223 704,633,740
200⇥ 10 2000 3,395,801,223 2,160,526,154

500⇥ 5 2500 6,660,754,123 3,833,865,232
500⇥ 10 5000 21,172,014,123 12,262,866,201

Table 5.3: Circuit sizes in number of gates
Stable Matching instances given in N ⇥ K, where |S| = |R| = N and |Ks| = |Kr| = K, with number of

proposals

Circuit Size 5 proposals 6 proposals gates/prop

100⇥ 5 1,696,876 2,048,296 351,420
100⇥ 10 2,614,020 3,152,226 538,206

100⇥ 100 19,102,152 22,997,391 3,895,239
200⇥ 5 3,401,520 4,106,276 704,756

500⇥ 10 11,919,439 14,372,002 2,452,563
500⇥ 25 25,473,800 30,677,563 5,203,763
500⇥ 50 48,079,667 57,872,453 9,792,786

Table 5.4: Incremental gates per proposal for large optimized circuits.
Multiplying the number of incremental gates by number of desired proposals slightly overestimates size of

desired circuit.

5.5.3 Runtime Analysis

We ran several of our circuits for the honest-but-curious case on c3.xlarge AWS instances with security

parameter = 80. We present confidence intervals in Table 5.5. Although the larger circuits took hours to

run, it is not unreasonable to use them for real matching instances when results can be computed over a

weekend. We note that although we use methods described by BHKR [BHKR13], our garbling times are

still considerably slower than theirs. We explain this by considering that the computation measurements

include considerable time moving values through the interpreter, as our measurements do not include only

encryption but all of the computation to evaluate every operation in the PCF circuit. In addition, although

our circuit optimization removed a large number of gates, some garbling operations were replaced with

copies, which are must but still contribute extra unnecessary work to the protocol. These copies can be

replaced with copy propagation analysis, an intended direction of future work on the PCF optimizer.
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computation (s) communication (s)
Circuit Size proposals gen eval gen eval

10⇥ 10 91 12.9 ± 0.2 12.3 ± 0.2 32.3 ± 0.4 33.0 ± 0.5
50⇥ 50 515 1,501 ± 6 1,417 ± 6 3,311 ± 14 3,411 ± 24
50⇥ 50 2,451 7,216 ± 73 6,779 ± 75 15,773 ± 271 16,313 ± 317

100⇥ 100 1,175 14,063 ± 694 13,138 ± 575 30,130 ± 979 31,211 ± 1,060
200⇥ 10 2,000 6,021 ± 167 5,700 ± 163 14,219 ± 203 14,585 ± 298

Table 5.5: Honest-but-curious run time evaluation
Tests were run on c3.xlarge AWS instances with security parameter 80. Confidence intervals are given for

data where more than one evaluation was performed; however, for long tests few data were collected.
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Conclusion

We have given a garbled circuit construction for privately computing stable matching assignments, modified

the algorithm for real-world variants, and analyzed its applicability to sorority matching. Stable matching is

a well-motivated problem for secure multiparty computation, and because of its rich structure, poor fit for

current privacy techniques, susceptibility to strategic manipulation, and high stakes of outcome, it is a good

benchmark application for the field of secure computation.

Our stable matching construction highlights some of the current weaknesses in secure computation

technology. Even after developing compiler optimizations and employing the latest garbling techniques, our

circuits are still too big to privately compute stable matching for groups on the order of sorority matching.

In the case of stable matching, the culprit is memory lookup: each preference lookup requires a MUX over

the entire preference array, which is O(n2) for standard stable matching and O(nk) where k ⌧ n for our

real-world variants. An oblivious algorithm and ORAM offer promising alternatives, but our efforts to

produce an algorithm that would improve on Deferred Acceptance bore few fruit, and ORAM is still not

efficient enough to beat circuits of our target size.

Even though we perform the simulations while sending traffic between programs through the network

interface on a single machine, our simulations show that communication time now far exceeds computation

time. Future research into secure computation protocols may focus on further reducing the cost of communi-

cation; since garbling techniques have become very efficient with fixed-key garbling and half-gates, it may

be time to begin trading computation for communication.

The new PCF compiler shows promising results for compiling programs for secure computation, but it

leaves a lot of inefficiency in the circuit design. Because PCF now simulates a stack machine, PCF circuits

often waste time copying values from their permanent homes to temporary variables before operating on

38
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them and returning the values up the stack. Although the PCF optimizer removes a substantial amount of

gates from the circuit and provides very granular control over boolean gates, it falls into the same trap as the

compiler, producing a large number of copies. The solution is copy propagation analysis on PCF circuits as

an extra step in optimization.

Circuit evaluation by the PCF interpreter has plenty of room for improvement. PCF circuits are ordered

topologically, but the ordering is not usually strict. A mechanism similar to the data flow analysis could

decompose the circuit into its control flow graph to evaluate independent gates simultaneously on separate

threads, bringing the limiting factor of evaluation time from overall circuit size to circuit depth. Additionally,

the toolchain could be improved further with a step that replaces the interpreter altogether and compiles

PCF circuits directly to C programs that securely evaluate the target function.
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[DKL+13] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P
Smart. Practical covertly secure mpc for dishonest majority–or: Breaking the spdz limits. In
Computer Security–ESORICS 2013, pages 1–18. Springer, 2013.

[DNR04] Cynthia Dwork, Moni Naor, and Omer Reingold. Immunizing encryption schemes from
decryption errors. In Advances in Cryptology-EUROCRYPT 2004, pages 342–360. Springer, 2004.

[FGM07a] Matthew Franklin, Mark Gondree, and Payman Mohassel. Improved efficiency for private
stable matching. In Topics in Cryptology – CT-RSA, 2007.

[FGM07b] Matthew Franklin, Mark Gondree, and Payman Mohassel. Multi-party indirect indexing and
applications. In Advances in Cryptology–ASIACRYPT 2007, pages 283–297. Springer, 2007.

[FHK+14] Martin Franz, Andreas Holzer, Stefan Katzenbeisser, Christian Schallhart, and Helmut Veith.
CBMC-GC: An ANSI C Compiler for Secure Two-Party Computations. In Albert Cohen, edi-
tor, Compiler Construction - 23rd International Conference, CC 2014, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13,
2014. Proceedings, volume 8409 of Lecture Notes in Computer Science, pages 244–249. Springer,
2014.

[Fra91] Christopher W Fraser. A retargetable compiler for ansi c. ACM Sigplan Notices, 26(10):29–43,
1991.

[GI03] Dan Gusfield and Robert Irving. The Stable Marriage Problem: Structure and Algorithms (Foun-
dations of Computing Series). MIT Press, 2003.

[Gol06] Phillippe Golle. A private stable matching algorithm. In 10th International Conference on
Financial Cryptography and Data Security, 2006.

[GS62] D. Gale and L. S. Shapley. College admissions and the stability of marriage. The American
Mathematical Monthly, 69(1):pp. 9–15, 1962.

[GS85] David Gale and Marilda Sotomayor. Ms. machiavelli and the stable matching problem.
American Mathematical Monthly, pages 261–268, 1985.

40



Bibliography 41

[HEKM11] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party computa-
tion using garbled circuits. In Proceedings of the 20th USENIX Conference on Security, SEC’11,
pages 35–35, Berkeley, CA, USA, 2011. USENIX Association.

[IM05] Nicole Immorlica and Mohammad Mahdian. Marriage, honesty, and stability. In Proceedings
of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 53–62. Society for
Industrial and Applied Mathematics, 2005.

[Irv85] Robert W Irving. An efficient algorithm for the ?stable roommates? problem. Journal of
Algorithms, 6(4):577–595, 1985.

[KasMB13] Benjamin Kreuter, ahbi shelat, Benjamin Mood, and Kevin Butler. PCF: A portable circuit
format for scalable two-party secure computation. In 22nd USENIX Security Symposium, 2013.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free xor gates and
applications. In Automata, Languages and Programming, pages 486–498. Springer, 2008.

[KS14] Marcel Keller and Peter Scholl. Efficient, oblivious data structures for mpc. Cryptology ePrint
Archive, Report 2014/137, 2014. http://eprint.iacr.org/.

[KSS09] Uday Khedker, Amitabha Sanyal, and Bageshri Sathe. Data flow analysis: theory and practice.
CRC Press, 2009.

[KSS12] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. Billion-gate secure computation with
malicious adversaries. In USENIX Security Symposium, pages 285–300, 2012.

[LDDAM12] John Launchbury, Iavor S Diatchki, Thomas DuBuisson, and Andy Adams-Moran. Effi-
cient lookup-table protocol in secure multiparty computation. In ACM SIGPLAN Notices,
volume 47, pages 189–200. ACM, 2012.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party com-
putation. Journal of Cryptology, 22(2):161–188, 2009.

[MNP+04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, Yaron Sella, et al. Fairplay-secure two-party
computation system. In USENIX Security Symposium, volume 4. San Diego, CA, USA, 2004.

[MR91] Susan Mongell and Alvin E. Roth. Sorority rush as a two-sided matching mechanism. The
American Economic Review, 81(3):pp. 441–464, 1991.

[NN01] Moni Naor and Kobbi Nissim. Communication preserving protocols for secure function
evaluation. STOC?01: Proceedings of the thirty-third annual ACM symposium on Theory of
computing, 2001.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In Proceedings of the
twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 448–457. Society for Indus-
trial and Applied Mathematics, 2001.

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions and mechanism
design. In Proceedings of the 1st ACM conference on Electronic commerce, pages 129–139. ACM,
1999.

[Pit89] Boris Pittel. The average number of stable matchings. SIAM Journal on Discrete Mathematics,
2(4):530–549, 1989.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P Smart, and Stephen C Williams. Secure two-party
computation is practical. In Advances in Cryptology–ASIACRYPT 2009, pages 250–267. Springer,
2009.

[Rot82] Alvin E. Roth. The economics of matching: Stability and incentives. Mathematics of Operations
Research, 7(4):pp. 617–628, 1982.

http://eprint.iacr.org/


Bibliography 42

[SHS+15] Ebrahim M Songhori, Siam U Hussain, Ahmad-Reza Sadeghi, Thomas Schneider, and Fari-
naz Koushanfar. Tinygarble: Highly compressed and scalable sequential garbled circuits. In
IEEE S & P, 2015.

[TST99] C. P. Teo, J. Sethuraman, and W. P. Tan. Gale-shapley stable marriage problem revisited:
strategic issues and applications. In 7th Conference on Integer Programming and Combinatorial
Optimization, 1999.

[WHC+14] Xiao Shaun Wang, Yan Huang, TH Hubert Chan, A Shelat, and E Shi. Scoram: Oblivious ram
for secure computation. In ACM Conference on Computer and Communications Security (CCS),
2014.

[WLN+15] XS Wang, C Liu, K Nayak, Y Huang, and E Shi. Oblivm: A programming framework for
secure computation. In IEEE Symposium on Security and Privacy (S & P), 2015.

[YAO82] AC YAO. Protocols for secure computation. 23rd FOCS, 1982, 1982.

[Zah14] Samee Zahur. Obliv-c: a lightweight compiler for data-oblivious computation. In Workshop on
Applied Multi-Party Computation. Microsoft Research, Redmond, 2014.

[ZRE14] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole: Reducing data
transfer in garbled circuits using half gates. Cryptology ePrint Archive, Report 2014/756, 2014.
http://eprint.iacr.org/.

http://eprint.iacr.org/

	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures

	Introduction
	Secure Computation
	Stable Matching
	Secure Stable Matching

	Garbled Circuits
	Yao's Garbled Circuits
	A Single Gate
	Circuits Composed Of Gates
	Input Privacy
	Correctness
	Security

	Free XOR
	Point and Permute
	Garbled Row Reduction
	Half-Gates
	Fixed-Key Garbling

	Portable Circuit Format
	PCF Version 2
	PCF V2 Structure
	PCF V2 Opcodes
	PCF V2 Interpreter

	Data Flow Analysis
	Definitions and Algorithms
	Faint Variable Analysis
	Constant Propagation Analysis
	Live Variable Analysis
	Memory Optimizations and the Fetsko Set

	Other Approaches to Optimization

	Stable Matching
	The Stable Matching Problem
	The Deferred Acceptance Algorithm
	Privacy and Cheating
	Sorority Matching

	Secure Stable Matching
	A Garbled Circuit Approach for Stable Matching
	Proposed System Setup

	Alternative Solutions
	Franklin et al
	ORAM

	Circuits for the Deferred Acceptance Algorithm
	Problem Statement
	Our Circuit Implementation
	Gate Analysis
	The "Limited" Stable Matching Adaptation
	"Limited" Circuit Gate Analysis

	Running fewer proposals
	Empirical Results for Number of Proposals
	Applicability of the Simulation

	Experimental Results
	Notation
	Empirical Results
	Runtime Analysis


	Conclusion
	Bibliography

